
Dependable boot and fail safe
software for the DTUsat-2

Esben Rugbjerg

Kongens Lyngby 2007
IMM-MASTER-2007-39

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-MASTER: ISSN 0909-3192

Contents

Introduction 3

Background . 3

Status . 4

Problem . 4

Approach . 5

The report . 6

1 Dependability 9

1.1 Dependability notions . 9

1.2 The KIS(S) principle . 13

1.3 Redundancy . 13

1.4 Graceful service degradation . 14

1.5 Available tools . 15

1.6 Coding rules . 15

ii CONTENTS

1.7 Source code inspection tools . 16

2 System description 19

2.1 The development board . 19

2.2 The externally connected peripherals 23

2.3 The memory layout . 25

3 Requirement analysis of the boot procedure 29

3.1 The choice of implementation languages 29

3.2 Before launch . 31

3.3 After launch . 31

3.4 The system information block . 36

3.5 The fail safe mode . 39

4 The memory test 41

4.1 Memory test - analysis . 41

4.2 Memory test - design . 47

4.3 Memory test - implementation 51

4.4 Memory test - software test . 52

5 Software modules 55

5.1 The SIB - design . 55

5.2 The SIB - implementation . 62

5.3 The SIB Parameter Structure . 64

CONTENTS iii

5.4 FLASH driver - analysis . 64

5.5 FLASH driver - design . 68

5.6 FLASH driver - Implementation 71

5.7 Real Time Clock - analysis . 71

5.8 RTC - design . 72

5.9 RTC - implementation . 73

6 Implementation details of the boot procedure 75

6.1 The first phase . 75

6.2 The second phase . 83

7 Compilation and debugging 87

7.1 Building and compilation . 87

7.2 The linker scripts . 89

7.3 Debugging and Test . 90

8 The timed models 95

8.1 Introduction . 95

8.2 Communication between OBC and COMM 96

8.3 Modelling the memory test of DTUsat-1 103

Conclusion 109

8.4 Main contributions . 110

8.5 Future work . 110

iv CONTENTS

8.6 Final conclusion . 111

Bibliography 112

Index 112

Appendices 114

A Schematic of the satellite 115

B Solutions used in report generation 117

B.1 Source listing . 117

C Pseudo code of the memory test implemented in Assembly 121

D Test cases and results from the memory test function 125

D.1 The structural test . 125

E DTUsat-1 related material 129

E.1 Source code . 129

F Source files of the DTUsat-2 implementation 137

F.1 init.S . 137

F.2 memTest.S . 143

F.3 cStack.S . 149

F.4 boot.h . 149

F.5 boot.c . 150

CONTENTS v

F.6 sysInfo.h . 154

F.7 sysInfo.c . 156

F.8 intFlash.h . 161

F.9 intFlash.c . 164

F.10 rtc.h . 173

F.11 rtc.c . 174

F.12 intWDT.h . 176

F.13 intWDT.c . 177

F.14 crc.h . 178

F.15 crc.c . 179

F.16 cMemTest.h . 183

F.17 cMemTest.c . 185

F.18 testBench.S . 188

F.19 test01.gdb . 189

G Test output 205

G.1 Output from test of memory test function 205

H The timed models 207

H.1 OBC vs. COMM . 207

H.2 Memory test of DTUsat-1 . 214

vi CONTENTS

Preface

This report describes the master’s thesis project of cand.polyt Esben Rugbjerg.
The project has been carried out between September 2006 and April 2007 on
Technical University of Denmark at Institute of Informatics and Mathematical
Modelling. I would like to thank my counsellor assistant professor Hans Henrik
Løvengreen of Informatics and Mathematical Modelling at Technical University
of Denmark. The project has been written as a part of the DTUsat-2 project.
The DTUsat-2 project’s primary goal is to teach students at DTU about the
special issues which should be considered when designing a spacecraft. Besides
it is also planned to set the built satellite in orbit to solve its scientific mission
which is to track birds.

Lyngby d.

II CONTENTS

Contents

IV CONTENTS

List of Figures

1.1 The dependability tree. Copied from figure 2.1 of [ALR04]. . . . 10

2.1 The memory layout of the RAM concerning the routines provided
by the boot loader. The areas written in yellow is not used during
execution of a program and thereby also available to the program
together with the user space. 27

2.2 The memory layout of the user space just after boot time. 28

4.1 The memory test algorithm used in DTUsat-1 as described in the
assembler code in init.S. 44

4.2 Pseudo code of the ’Write’ function 46

4.3 The mechanism showing why the WDT cannot recover the system
from an infinite loop caused by a software fault or permanent fault
in the memory test function. 47

4.4 First part of the memory test algorithm used during the init
phase. This is a short version meant for obtaining an overview
over its functionality. 49

VI LIST OF FIGURES

4.5 Second part of the memory test algorithm used during the init
phase. This is a short version meant for obtaining an overview
over its functionality. 50

5.1 Figure ill. the contents of the 512 bytes data assembled before
being written to the FLASH. 69

5.2 Pseudo code of prepDataArraySIB(). 70

5.3 Flowchart showing the procedure for writing a SIB to the FLASH
memory. 70

8.1 Schematic illustration of the wire connection between the OBC
and the beacon module of the COMM subsystem. All unneces-
sary details are discarded. 98

8.2 Figure showing the interconnections between the processes in the
OBC-COMM model. Solid lines represent channel connections
and dashed lines represent connections through global variables.
Only the important interconnections are showed. 100

8.3 Figure showing connection between edges and assembler instruc-
tions in model of memory test on DTUsat-1. 104

8.4 The process handling fault injection in the memory test model. . 106

8.5 Ill. showing the infinite loop in the ’Write’-process. 108

A.1 The schematic system layout of DTUsat-2. Created by Jonas
Bjarnøe. 116

C.1 To be continued in figure C.2. 121

C.2 First part of the memory test algorithm used during the init phase.122

C.3 To be continued in figure C.4. 123

C.4 Second part of the memory test algorithm used during the init
phase. 124

LIST OF FIGURES 1

H.1 The OBC process. 210

H.2 The COMM process. 211

H.3 The WDTs. 211

H.4 The wire processes. 212

H.5 The wire control process. 212

H.6 The data control process. 213

H.7 The ’write’-function process . 215

H.8 The failure control process. 215

H.9 The fault injection process. 216

2 LIST OF FIGURES

Introduction

Background

In the summer 2003 the DTUsat-1 was launched using a reused russian ballistic
missile. The DTUsat-1 was a CubeSat satellite which means that it adhere to
the CubeSat[HT05] design concept. This concept dictates that the design of
the satellite shall conform to a simple set of rules where the most important is
that the satellite must be a cube with a side length 10 centimeter.

The concept behind the CubeSat project is to design small satellites with a
low weight resulting in keeping the launch expenses low. Another major asset
of the design is that the launch system is standardised making it simpler to
incorporate the satellites as secondary payload on commercial rockets.

No signals were received from this satellite which means that it for some reason
never got into function. The cause of the failure of the DTUsat-1 has never
been determined since no information about the state of the satellite could be
collected. The satellite is a complex system where a specific combination of
several events needs to occur in the correct order if just a single ’beep’ shall be
sent from it. Because several different subsystems need to work in cooperation
to startup the satellite the fault causing the error can be found in any of these1.
This complicates the error detection and has made it impossible to determine
why the satellite never started working.

In the middle of 2005 a new satellite project (the DTUsat-2) was proposed at

1No chain is stronger than its weakest link.

4 LIST OF FIGURES

DTU. In this project a new cubeSat should be built. In spite of the failure of
the first satellite it was decided that the DTUsat-2 should contain a scientific
mission as its payload. A payload contest was arranged to get proposals for the
payload. The winning project was announced ind November 2005. It suggested
that birds (cuckoos) should be tracked on their migratory route by placing
GPS transmitters on the back of them and collect the information about their
positions using the satellite. Besides that the satellite should also contain a
simple camera such that pictures of the earth can be transmitted back from the
satellite.

Status

The subsystems of the DTUsat-2 are built as student projects, because the
major goal of the satellite project is to educate engineer students in system
engineering and aspects of spacecraft design. Both hardware and software are
designed and implemented by students. Until now some of the subsystems (the
electrical power system (EPS) and the on board computer (OBC)) have been
designed and implemented but the radio systems are not yet designed. A lot of
the software for the satellite is designed and some is implemented. Parts of the
software of the DTUsat-1 has been reused. Some of the software projects are
delayed because the complete hardware design is not known yet.

Problem

The most mission critical group of applications developed in the engineering
world is that of spacecrafts. These highly developed technical applications con-
tain state of the art solutions in all their aspects. All components of the system
are chosen especially for their purpose and most of them are also developed
with this specific purpose in mind. This is also the case concerning the software
programs running on the computers in, for example a satellite.

When a system is given the predicate mission critical it means that if any
subsystem fails during operation it is very likely that the mission of the whole
system fails. This property results from the fact that it is very difficult to recover
the system from the fault e.g. because it is almost impossible to get in physical
contact with the system again. This is e.g. the case with satellites. It can also
result from a time-wise property for example that some astronomic event only
can be observed very rarely.

LIST OF FIGURES 5

The software of the DTUsat-1 was divided into the following parts: A nominal
mode which was recognised by the fact that the operating system (OS) had been
booted successfully, and the fail safe mode (FS) in which the FS software was
executed. Execution of the boot software is a part of the FS. This structure of
the software has been adopted by the DTUsat-2 project. The nominal mode is
quite complex system whereas the boot and FS software is kept as simple and
minimalistic as possible.

For this reason the boot and FS software of a satellite is considered mission
critical. The task of the program is to startup the satellite and ensure that all
subsystems function correctly before the OS of the satellite is started. If for
some reason the OS cannot be started for example due to some subsystem not
working as expected or the OS itself fails, the FS program should be started to
handle this situation. Therefore the boot and FS software is the most mission
critical software on the satellite: If the boot software does not function correctly
the satellite will never start, and if the FS software does not function correctly
the satellite cannot be recovered from any failures caused by some of the other
software on the satellite or one of the hardware subsystems. In both situations
the satellite and thereby its mission will fail.

The main task in this project is to design and implement the boot and FS
software for the DTUsat-2. The program should be as complete as possible
meaning that as much of the functionality of the program as possible should
be designed and implemented. The goal is a highly dependable, operational
program which can be used on the DTUsat-2 when it is completed with as few
modifications as possible.

Approach

The boot and FS software needs to be very robust and dependable and it should
be developed to an operational level in this project. These three properties have
been decisive for the choice of approach in the project.

In order to achieve the robustness and dependability of the program best practice
methods of software development have been applied during the project. The
choice of the used software tools and tool chain also reflects this. As explained
later in chapter 7 the GCC tool chain has been chosen among other reasons
because it is open source software which enables us to inspect the source code if
some problems demands it. Another and even more important reason is that the
GCC tool chain is considered very reliable due to its long development history.

6 LIST OF FIGURES

The project has been carried out as a classic software project with an analysis
phase, a design phase and an implementation phase, since this is an approved
procedure and since I am familiar with this method.

Through the analysis and design phases of this project an operational approach
has been chosen. This approach has been based on classical “pen and paper”-
pseudo-coding. This working method is in contrast to the more academic
method where a formal model of the whole satellite and the program running
on it would have been developed. The temporal properties of this model would
have been verified using a model checker. The verified model could then consti-
tute the outline for the implementation of the program in the C programming
language. The time frame of the project did not allow such a model to be devel-
oped. Another reason why this approach was abandoned was that the modelling
approach is not believed to lead to the desired product i.e. an operational pro-
gram. These two reasons entailed that a more operational approach was chosen.
It was tried to combine the described approach with the usage of available soft-
ware tools whenever they were found to simplify specific tasks in the project or
raise the robustness or dependability of the final product. It was however not
found feasible to use any software tools to handle any larger issues during the
software development process. Neither suitable problems nor tools were found.

The software of the DTUsat-1 has been used as inspiration and the FS part
has been modified and merged into the DTUsat-2 software. This has been done
partly because this part of the program was well designed and tested and due
to lack of time in the present project to write the everything from scratch.

The report

The report describes the development of the boot and FS software of the
DTUsat-2. The first chapter contains short introduction to dependability in
software which is a main property of mission and safety critical software. The
second chapter contains a description of the OBC and the test board used dur-
ing development of the software. The third chapter contains an analysis of the
boot situation of the satellite and outline the requirements of the boot and FS
software. The fourth chapter describes the development of the memory test
used during the boot procedure. The fifth chapter describes the development
of other parts of the boot and FS software. The sixth chapter contains a de-
scription of methods used while testing and building the software. The seventh
chapter describes the attempts to verify the soundness of the protocol used to
communicate between the on board computer (OBC) and the radio (COMM)
subsystem of the satellite using the model checker Uppaal. Finally a conclusion

LIST OF FIGURES 7

describing the obtained result and the properties of the developed software are
given in chapter eight. After that some appendices are given containing the
source code of the program as well as test output etc.

In this report a lot of references to background information which is not neces-
sarily interesting when reading the report as the documentation of a master’s
project are given.

The reason for this is that the report is written with more than this purpose in
mind. Besides being the documentation of a master’s thesis it is also intended to
be the primary source of information about the boot system and its internals for
the students who shall complete the system when the hardware platform of the
DTUsat-2 will be finished. Emphasis has therefore been put into collecting all
relevant references. In addition to this an index and a glossary are also available.
In the index the names of the C functions are listed together with links to the
source code and their prototype. The beginning positions of the C functions are
also listed in the table of contents. The glossary contains explanations of the
abbreviations used during the report together with definitions of some central
terms in the project.

8 LIST OF FIGURES

Chapter 1

Dependability

Dependability is a central subject in computer technology especially concerning
embedded systems. The reason for this is that most applications of embedded
systems possess some kind of safety or mission critical properties.

This chapter is divided into two main sections. The first section contains a
brief description of the basic of dependability notions and the second section
introduces some methods which can be used to raise the dependability of a
system. A more thorough survey than the one given in this chapter is presented
in [GL02].

1.1 Dependability notions

Dependability of computer systems has been a research subject since the begin-
ning of the development of electronic computers. The reason is that computer
scientists always have tried to raise the dependability of the systems such that
the results computed by the computer could be trusted and such that the com-
puters could be trusted to work at all. Later when computers were used to
control systems where failures could be lethal to humans this research subject
became even more important.

10 Dependability

1.1.1 The framework of Dependability theory

A good starting point for getting an overview over the notions used in depend-
ability theory is the dependability tree which is a simple tree structure showing
the relations between the central notions in dependability. It is shown in figure
1.1 which is copied from figure 2.1 of [ALR04].

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Attributes

Means

Fault Prevention

Fault Tolerance

Fault Removall

Fault Forecasting

Faults

Errors

Failures

Threats

Dependability

Figure 1.1: The dependability tree. Copied from figure 2.1 of [ALR04].

Figure 1.1 shows that the three central areas of dependability theory are:

Dependability attributes Dependability attributes are the quantities which
a system’s dependability is measured in. The attributes are not necessarily
given a specific value but the quantities constitute a framework which a
system’s dependability can be assessed in.

Dependability threats The threats are faults, errors and failures.

Dependability means The means are the tools available to raise the depend-
ability of a system.

1.1.2 The Attributes

The dependability attributes are a set of attributes which can be described for a
specific system. It does not always make sense to try to determine the value of all
attributes for a specific system. For example it is not meaningful to determine

1.1 Dependability notions 11

the safety 1 of the DTUsat-2 because it will be very far away and no people will
ever get in physical contact or even close to it while it is in service.

A central attribute to the DTUsat-2 project is the availability which is defined
as:

readiness for correct service

in [ALR04, section 2.3]. The most important attribute is the reliability. The
reliability is defined as the system’s exhibits of:

continuity of correct service

in [ALR04, section 2.3]. The availability of the DTUsat-2 is raised by ensure
the robustness of the EPS and including a battery in the system’s design of the
satellite etc.

The attributes confidentiality and Integrity are together with Availability closely
connected to the IT security area. confidentiality is defined as:

absence of unauthorized disclosure of information

and integrity as the:

absence of improper system alterations

Both quoted from [ALR04, section 2.3].

Maintainability is defined in [ALR04, section 2.3] as the:

ability to undergo modifications and repairs

Even though it is impossible to get in physical contact with the satellite when
it has been launched this attribute is interesting even in the case of a satellite.

1defined as “absence of catastrophic consequences on the user(s) and the environment” in
[ALR04, section 2.3].

12 Dependability

On the DTUsat-2 as little of the software as possible is stored in a ROM, and
as much as possible in a FLASH memory. The software stored in the ROM is
made capable of writing to the FLASH memory making it possible to erase the
entire OS and application software of the satellite and upload a new version. In
this sense the satellite has the highest possible maintainability.

1.1.3 The notions of faults, errors and failures

In normal conversations the three terms fault, error and failure is almost inter-
changeable or at least the two first are. This is not the case in dependability
theory where each term has a specific meaning.

In dependability theory a failure is the consequences to the surrounding or
system caused by some wrong internal state of the system. The wrong internal
state is called the error. The cause of the error is called a fault. This distinction
will be illustrated in a small case study.

1.1.3.1 The Mars Climate Orbiter incident

September 23th 1999 Nasa’s Mars Climate Orbiter was navigated into orbit
around Mars. Unfortunately it was lost during this maneuver. The following
investigation showed that the reason for the loss was that the altitude of the
satellite was to low. It should have entered an orbit with an altitude of 150 kilo-
meters above the surface of the planet but the actually altitude was only about
60 kilometers which had catastrophic consequences for the satellite [MCO99].

In the following investigation it was revealed that the cause of the low altitude
was a fault where one team of engineers used imperial units and another team
used the metric system [IHU99].

In this example the fault is the usage of the imperial units instead of the metric
system. The error is the low altitude of the spacecraft and the failure the
spacecraft’s crash into the surface of Mars.

1.1.4 The means available in dependability

As it has been implied indirectly there are different techniques to improve de-
pendability of a system. All these techniques can be classified into one of the

1.2 The KIS(S) principle 13

following groups (copied from [ALR04, section 2.4]:

fault prevention are means to prevent the occurrence or introduction of faults.

fault tolerance are means to avoid service failures in the presence of faults.

fault removal are means to reduce the number and severity of faults.

fault forecasting are means to estimate the present number, the future inci-
dence, and the likely consequences of faults.

In the boot and FS software on the DTUsat-2 two major fault tolerance
methods have been implemented. The first is the memory test (described in
chapter 4) which tries to prevent the usage of defective memory locations. The
second is the use of a WDT which can recover the system if it gets trapped
in an infinite loop. In the rest of this chapter some fault prevention and fault
tolerance methods will be presented.

1.2 The KIS(S) principle

The kis(s) (Keep It Simple (stupid!)) principle is not a real design paradigm
but a guiding rule used when choosing between different design options. The
principle require the designer to choose the simplest solution which solves the
problem, avoiding adding unnecessary features and complexity. The principle
can also be applied to writing style of the source code where the programmer
is demanded to keep the code as simple and self explained as possible. The
principle is also connected to Occam’s razor [kis06].

The main design principle which should adhered in all design processes concern-
ing parts of the DTUsat-2 project is the kis(s) principle. This principle should
be adhered even when other design paradigms are applied.

1.3 Redundancy

Redundancy can be applied to both software and hardware. It can be applied
in both a parallel (computational) and a serial (temporal) manner.

The parallel redundancy is normally applied as hardware redundancy where sev-
eral computers compute the answer to the same problem using different methods

14 Dependability

or algorithms. When all computers have computed an answer the answers are
compared and the answer which occur most often is used. The method is based
on the assumption that if an answer occur several times even if it is computed
using different methods it must be correct. The method can also be described
as a voting process where the computers vote on the solutions to a problem.

The temporal redundancy is normally applied as software redundancy. Empty
slots of time are added to the schedule making it possible to rerun processes
which fail. Another solution is computing the solution to the problem again
using a simpler algorithm.

The size of the DTUsat-2 and the available resources of energy and therefore
computing resources does not allow any kind of hardware redundancy to be
implemented in the satellite.

In general both software and hardware redundancy adds a lot of complexity to a
system if applied. This argument constitute another major reason for avoiding
software redundancy on DTUsat-2, since the kis(s) principle should always be
adhered. This does not mean that software redundancy in general cannot be
applied to a system in combination with the kis(s) principle but that it has not
been found feasible in this particularly project.

1.4 Graceful service degradation

Graceful service degradation means to adapt the quality of a service based on
the available computing resources and available functional subsystems. Graceful
service degradation is closely related to reconfiguration. Reconfiguration means
to restore a stalled system to some operational state, avoiding use of subsystems
which contain permanent faults. Reconfiguration is primarily applied on the
hardware level.

Graceful service degradation on software level may be based on using simpler
or slower algorithms to compute the solution. In this case a trade off between
quality of the produced solution and ability to deliver a solution at all is made.

On the DTUsat-2 graceful service degradation is used as a design principle by
adding a fail safe mode in addition to the nominal mode.

1.5 Available tools 15

1.5 Available tools

Several software tools have been developed to help developing more dependable
software. In this section a short summary of some of the available tools will be
given. The tools have been chosen for their relevance to the DTUsat-2 boot and
FS software.

None of the tools have actually been used during the development of the boot
and FS software development due to lack of time.

1.5.1 Stack size calculation tools

Stack usage tools analyse the binary code to estimate the worst case stack size.
This is relevant when planing memory usage of the system. The stack usage
analysis is a static test meaning that the worst case stack usage is computed for
the specific binary file not inferring any kind of equation for the stack usage.

The reason for doing the analysis on the binary is that the compiler optimisation
can influence the stack size, hence it is not meaningful to do the calculations on
the source code.

The stack size analysis makes it possible to prevent stack overflows and is hence
a good fault prevention method. An example of a stack analysing tool is the
commercial tool StackAnalyzer (see [stA07]).

Another solution is to do the calculation manually by constructing a test case
which gives rise to the largest possible stack usage, and then inspect the memory
by a debugging tool when the test program has been run. This method is
outlined in [ARM] together with other similar methods. This solution does not
lead to a verifiable calculation of stack size but only to an estimation.

1.6 Coding rules

Coding rules are conventions and rules for how the source code should be written.
They include rules about which language constructs are allowed, how variables
and functions are named etc. Coding rules have two purposes: Prevent the
usage of “dangerous” constructions in the source code and raise the uniformity
between code written by different developers.

16 Dependability

An example of a classic coding rule is that while() loops are not allowed, because
they contain the ability to go into infinite loops. All loops should be bound to
finite upper level of iterations.

Especially in the case of development of mission or safety critical software com-
pliance of coding rules are required. An example of this is the “C and C++
Coding Standards” of the European Space Agency [esa00]. This report contains
113 rules and recommendations on how to write understandable, portable and
safe C and C++ code. The rules and recommendations are based on experiences
more than theoretical or strictly analytical work. A more thorough survey on
design and coding constraints is given in [PP02].

1.7 Source code inspection tools

A group of fail prevention tools do an automated code inspection of the source
code. Several different programs exist. In this section short descriptions of two
of the tools are given. The tools have been chosen for the following reasons:
Security Programming Lint (Splint) implements a lot of tests also implemented
in an older and popular tool called “Lint”, and it is optionally annotation driven.

The Berkeley Lazy Abstraction Software Verification Tool (BLAST) is a anno-
tation driven model checker for C source code.

1.7.1 Splint

Splint ([spl]) is a source inspection tool. It reads the source files and searches
for unused declarations, type inconsistencies, use before definition etc. [Sec, p.
9]. The coding mistakes searched for by Splint is often the same as the coding
rules mentioned in section 1.6 try to avoid.

Splint is capable of finding a lot different coding mistakes. Unfortunately it
produces a lot of false positives. The most of these false positives can be removed
if annotations are added to the source code. These annotations helps Splint to
determine which of the potentially faults are actually faults and which are code
constructions intended by the programmer.

An example is the /*@null@*/ which tells Splint that the pointer declared on
the next line is intended to contain null pointer in some cases. As it can be
seen the annotations are added to the source code as comments. Therefore the

1.7 Source code inspection tools 17

program can be compiled directly.

/*@null@*/
int * counter;

1.7.2 BLAST

The Berkeley Lazy Abstraction Software Verification Tool (BLAST) (see [BLA05]
is a model checker for C source code. The model-checker can verify that invari-
ants are not violated during execution of the code. The code is executed in a
symbolic fashion by the model checker.

BLAST also contains a scripting language which makes it possible to carry out
more advanced tests where more than one invariant needs to be tested at the
same time. Using the scripting language also avoids applying changes to the
source code.

BLAST contains some advanced features which will not be discussed here.

18 Dependability

Chapter 2

System description

The brain of the satellite is the OBC. Physically the OBC is a circuit board.
This board is equipped with the central CPU chip (described in 2.1.1), the
external memory chips (SRAM and FLASH, described in 2.1.1.3), an external
watch dog timer (WDT)1 and some components controlling the energy supplies.

The energy for the subsystems of the satellite is supplied by the electric power
system (EPS), which therefore must be considered the heart of the satellite.
This board is connected to the solar panels, the batteries, the sun sensor board,
the Altitude Control System sensor board (ACS sensor board), the ACS board2

and all other subsystems. This board contains all central electrical systems and
power connections.

2.1 The development board

This section contains a description of the hardware system used during the soft-
ware development. The system is an Olimex LPC-E2294 development prototype
board [oli06] equipped with a Philips LPC2294 ARM CPU chip and several pe-

1no information is available on this device yet.
2The “ACS sensor board” and the “ACS board” are two diffenrent boards.

20 System description

ripherals for example a 16x2 character LCD display. Where no other thing is
mentioned the information given in this chapter also complies to the OBC of
the DTUsat-2. No information will be given about the interface between the
programming PC and the development board.

2.1.1 The CPU chip

The CPU chip on the development board which has been used during the devel-
opment of the software is a Philips LPC2294. Besides the processor it contains
all necessary devices to build a simple embedded system. In this section a de-
scription of the relevant subsystems on the chip is presented. The CPU chip on
the DTUsat-2 is a Philips LPC2292. The only difference between the two chips
is that the LPC2294 contains four CAN bus controllers whereas the LPC2292
only contains 2 CAN bus controllers.

2.1.1.1 The processor core

The processor core implements the ARM7TDMI architecture which is a true
32-bits architecture with both 32-bits instruction set and memory space. It is a
RISC architecture which does not contain any floating point (FP) instructions.
The CPU contains 13 general purpose registers. The ARM7TDMI is a pipelined
architecture having three stages (fetch, decode and execute).

Besides the 32-bits instruction set the processor is also capable of executing the
16-bits thumb instruction set. This instruction set was developed to offer more
compact binary code than the 32-bit code offers.

2.1.1.2 The clock system

The crystal which supplies clock pulses to the CPU chip runs at 14.7456 MHz.
This clock is passed to the phase locked loop (PLL) circuit, which is used to
increase the clock frequency of the CPU core. This frequency is referenced as
the cclk in the documentation which gives a more thorough description of the
use and configuration of the PLL in [Phi03, page 75]. An example of how to
calculate the constants needed to setup the PLL is also given in [Lyn05, section
15]. Besides the cclk the chip has a peripheral clock net. This clock is referenced
to as the pclk. The frequency of this clock is controlled by the VLSI peripheral

2.1 The development board 21

bus (VPB)3 clock divider (VPB divider). How to configure the VPB divider is
described in page 86 of [Phi03]. the pclk is for example used by the WDT. The
frequency of the pclk also depends on the configuration of the PLL since it is
generated by dividing the cclk.

2.1.1.3 The memory system

The LPC2294 contains both internal FLASH memory and internal static RAM.
Besides that, it is possible to connect external memory devices. On page 48
and 49 in [Phi03] two complete memory maps of the memory in the LPC2294
chip are given. The memory system contains no cache stages, but the bus
system includes a memory accelerator module (MAM) which enables execution
of sequential code at the speed of the internal clock (cclck). This module is
described further in section 2.1.1.3. A more complete describtion of the memory
layout of the system is given in section 2.3.

The RAM The internal static RAM is 16 KB in size. It starts at address
0x40000000 and ends at 0x40003FFF.

The FLASH memory The internal FLASH of the LPC2294 chip has a stor-
age capacity of 256 KB. It is mapped into the address space from address 0
to address 0x003FFFF. The top 8 KB of the FLASH is reserved for the boot
loader program and should not be erased or used for anything else. At the lowest
64 bytes of the FLASH (starting at address 0x00000000) the interrupt vectors
should be placed. At address 0x00000000 the reset interrupt vector should be
placed and it should contain a jump function to the entry point of the boot
program.

The memory accelerator module The memory accelerator module (MAM)
speeds up reading of the FLASH memory by prefetching 128 bit in each read
operation and latch them for faster answering on instruction fetch requests from
the CPU. The FLASH memory is divided into two banks each having a 128-
bit latch. This enables a switch behavior where one bank is reading 128 bit
of instruction data while the other bank is prefetching the next 128-bit. The
MAM is described in [Phi03, page 90 - 93].

3Described in [Phi03] on page 18

22 System description

2.1.1.4 The internal watch dog timer

The internal watch dog timer (WDT) is used as the primary WDT during
software development. The WDT can be setup to have a timeout period between
69.4µ seconds and 1165.08seconds (= 19.41minutes) if the pclk runs at 14.7456
Mhz.

The WDT contains a mode and status register referenced as WDMOD in the
documentation. The value of this register is maintained during a reset if the
power of the chip is not disconnected or interrupted. From this register it is
possible to determine whether the WDT induced the reset or not.

The WDT is described more thoroughly in [Phi03, pp. 256].

2.1.1.5 The real time clock

The real time clock (RTC) is a clock system using normal time units like hours,
minutes, month and year. It is possible to read the time from the clock’s counter
registers. The RTC can also be setup as an alarm by providing interrupt gener-
ation based on value matching between its counters and a set of register which
contain the desired time for the alarm.

The value of the counters is not maintained during power off. If the WDT reset
the system only a delay as long as it takes the system to startup and initialise
the RTC will occur.

The RTC is described more thoroughly in [Phi03, pp. 242].

2.1.1.6 The boot loader

Every time the CPU chip is turned on or reset a boot loader program laying
in the internal FLASH memory is executed. This program executes before any
user program is executed.

If the ’BSL’ jumper is set the boot loader calls its “In-System Programming”
(ISP) functions. These functions is used to program the internal FLASH i.e.
uploading a new user program. This is done through a UART of the chip.

The boot loader program also contains functions which are used to program the
internal FLASH through a program running on the CPU. In this way unused

2.2 The externally connected peripherals 23

memory of the internal FLASH can be utilised by the user program. The men-
tioned functions are called “In-Application Programming” (IAP) functions and
are described in [Phi03, pp. 262].

An example of the usage of the IAP functions is presented in 5.5. Through
out the rest of the report the boot loader program is referenced as the “boot
loader” or the “internal boot loader”. The program developed in the project is
referenced to as the “boot program”.

2.2 The externally connected peripherals

Several external peripherals are connected to the CPU. All subsystems of the
satellite can be considered peripherals if the OBC controls them. As all subsys-
tems have not yet been designed an exhaustive description of all peripherals and
subsystems is not provided here. Only peripherals and subsystems which are
designed, implemented and relevant for the boot or FS software are described.

2.2.1 External memory

The external memory is accessed through the external memory controller (EMC).
It provides the possibility to have four banks of 16 MB each. Bank number 0
begins at address 0x80000000. The interface of the EMC is described in details
in [Phi03, pp. 56].

It is possible to change the boot behavior of the chip such that the boot loader
boots the boot program from address 0 of the first external memory bank. This
would be address 0x80000000. See [Phi03, p. 133] for details.

The ability to change the boot address of the system will be exploited on the
satellite to boot the boot software stored in a ROM. This ROM is connected as
memory bank zero of the EMC, starting at address 0x80000000. The interrupt
vectors are placed from the beginning of this and 64 bytes up and starts with
the RESET interrupt vector at address 0x80000000.

External RAM On the development board 1 MB of external S-RAM is
mounted. This is 10 ns devices of the type: “K6R4016V1D” [sam04] and it
is manufactured by Samsung.

24 System description

The external RAM on the OBC is static RAM as the internal RAM is. It
is connected as the external memory bank one through the EMC. The size of
the RAM is two MB and it starts at address 0x81000000 and ends at address
0x8101FFFFF. Details on the configuration of the communication between the
EMC and the external RAM are found in [Phi03, pp. 56].

The external RAM is primarily used by the OS but is also used as stack area
for the boot and FS software if the whole internal RAM area is corrupted.

External FLASH memory The development board is equipped with 4 MB
of external FLASH memory. This memory is connected to the bank zero of the
EMC. The external FLASH is of the type “Intel Advanced+ Boot Block Flash
Memory 28F160C3” as described in [Int05].

The external FLASH memory of the OBC has a storage capacity of 2 MB and
is manufactured by Intel. The type of the FLASH is “Intel Advanced+ Boot
Block Flash Memory 28F160C3” and it is described in [Int05]. The purpose of
the external FLASH is to store data collected by the OBDH. It will be connected
as bank one of two of the EMC.

2.2.2 The GPIO interface

The GPIO interface is a port based interface. It is only used for the hold
signal send to the COMMpic because as much as possible of the communication
between the OBC and the other subsystems should be transmitted over standard
bus systems. This is a design goal of the DTUsat-2. The GPIO interface is
described in [Phi03, page 134 - 137].

2.2.3 The CAN bus and SPI interface

The CAN bus is used to communicate with the other subsystems on the satel-
lite. Two different CAN bus controllers resulting in two individual channels are
available on the LPC2292 chip, where four are available on the LPC2294 chip.
The controllers of the CPU chip are described in
[Phi03, page 188 - 210].

The SPI interface is also a hardware interface. It is used to connect the COMM
system to the OBC.

2.3 The memory layout 25

2.3 The memory layout

During execution of the boot program and other programs which use the IAP
routines to write data to the internal FLASH memory of the CPU chip, areas
of the RAM is used by these routines. This should be taken into account in
the design of the memory layout. Also the usage of areas by the stacks of the
exception routines should be considered when prioritising the allocation of the
RAM.

2.3.1 Memory area used by the boot loader of the chip

The memory layout concerning the ISP and IAP routines can be seen in figure
2.1.

The boot loader of the chip uses some of the internal RAM when some of its
code is executed. The ISP routines are used to write to the FLASH memory
when uploading a program to the system. Therefore these routines are only
used when no program is executed on the processor. The IAP routines are used
to do operations on the FLASH through a user program. Besides the memory
especially reserved to the IAP routines it also use some memory on the normal
program stack. This amounts to be at most 128 bytes [Phi03, page 265].

Besides the FLASH writing routines the boot loader also provides a debug
interface called RealMonitor which is especially suited for real time debugging.
This is not used during development in this case due to lack of Linux based
debugging applications which supports the RealMonitor protocol. The memory
use of the system is shown in figure 2.1 for completeness only.

2.3.2 The memory areas used by exception routines

Several exception types exist in the ARM architecture. A very important type is
the interrupt. In this section the terms exception vectors and interrupt vectors
are interchangeably.

When handling exceptions the ARM processor changes into other modes only
used for this purpose. These modes have their own set of special purpose regis-
ters for example the stack pointer (SP) register. This design is chosen to speed
up handling of interrupts and exceptions by avoiding time consuming context
shifts. To support this design, special areas are reserved for the stacks used by

26 System description

these routines. The area containing these stacks has been placed at the top of
the RAM area.

The area in the bottom of the internal RAM is used to store the remapped
exception vectors, see [Phi03, page 52]. There is two reasons for this solution:
speed, since the RAM responds faster than the FLASH memory, and security: If
one of the IAP routines are called by a user program, the internal FLASH enters
a busy mode making it impossible to read from it. Therefore if an interrupt
occurs while the IAP routine is executed, it will not be possible for the system
to read the exception vectors from the FLASH memory. Instead it is possible
to read them from the RAM if they are also stored there.

The size of the area used by the exception vectors is 64 bytes. Since the inter-
rupts are disabled during boot this area is not used. When booting the system,
the boot loader of the chip sets up the MEMMAP register which controls the
remapping, see [Phi03, page 74], such that no remapping is activated.

The area in the top is the actual stack areas used by the interrupt serving
routines. If the interrupts are disabled they can be reduced to 4 bytes each.
It is necessary to have unique stacks for the undefined instruction mode, the
abort mode, the fast interrupt (FIQ) mode, the interrupt (IRQ) mode, and the
supervisor mode. The user mode and the system mode share their stack. The
user and system stack is a real stack laying below the other pseudo stacks and
grows downwards. As it can be seen five pseudo stacks are needed, taking up
four bytes each, using twenty bytes all included. This is described in more details
in [Lyn05, section 14]. These twenty bytes are taken from the area available for
boot and FS program, The memory layout of the user space can be seen in
figure 2.2.

2.3 The memory layout 27

0x40003FFF

FLASH routines

32 bytes

0x40003FE0

Used by the ISP and IAP

8 kB

Boot block remapped

from FLASH

0x7FFFFFFF

0x7FFFE000

0x40004000Top of SRAM

Avaiable stack area

for boot and FS

software: 16 kB − 32 bytes

FLASH routines

0x40003FDF

0x40003EE0

0x40003EDF

USER SPACE

0x40000200

15584 bytes

0x400001FF

0x40000120

224 bytes

FLASH routines

Space used by the ISP

0x4000011F

0x40000000

288 bytes

Stack area used by the ISP256 bytes

Space used by RealMonitor

Figure 2.1: The memory layout of the RAM concerning the routines provided
by the boot loader. The areas written in yellow is not used during execution
of a program and thereby also available to the program together with the user
space.

28 System description

0x40003FDF

Interrupt serving stacks 20 bytes

0x40003FCC

0x40003FCB

0x40000000

Available user space16332bytes

0x40003FE0

Figure 2.2: The memory layout of the user space just after boot time.

Chapter 3

Requirement analysis of the
boot procedure

This chapter contains a requirements analysis of the boot process of the DTUsat-
2 regarding requirements of the boot software which carry out and control the
boot procedure.

The following description of the launch lacks some data since some informations
about the launch and subsystems is not available yet.

3.1 The choice of implementation languages

The choice of implementation language is a central design decision. In this
project dependability, robustness and simplicity are central demands to the
implemented program. Therefore the implementation language should support
these three properties. To ensure these three properties the programmer should
have as much control over the program as possible. This is accomplished by
using a simple programming language where only the most simple things are
taken care of by the compiler.

Another central characteristic of the candidate language is that it should run

30 Requirement analysis of the boot procedure

directly on the CPU since no OS is available yet, why facilities such as memory
management not yet is available.

3.1.1 The assembly language

These demands point in the direction of the assembly language. This language
demands the programmer of controlling almost everything and give him the
most freedom to control the computer. Another very important property is
that it runs directly on the CPU.

Unfortunately the assembly language also makes things very complicated as a
consequence of the vast quantity of things the programmer needs to control.
Therefore only small programs where the special facilities which the language
offers to the programmer’s disposal are needed, should be programmed in the
assembly language.

3.1.2 High level languages

Several high level languages and there derived dialects are available as candi-
dates: C and Pascal etc. C is known to be very robust and it gives a lot of
freedom to the programmer. Both languages are supported by open source soft-
ware and free compilers. Both languages can be compiled to run directly on the
CPU without needing any facilities supplied by an OS.

The C language is familiar to the programmer which Pascal is not. This measure
is the deciding one since one additional way to make a program dependable is
by letting the programmers work in a well known environment.

Both C and Pascal are stack based programming languages meaning that they
both need a memory area to store variable values during execution. Therefore
they both need that a memory area is prepared for this purpose before a program
is called.

3.1.3 Conclusion

The assembly language can run directly on a CPU without needing any stack
area but programs written in assembly language normally get very complex
when they grow large.

3.2 Before launch 31

High level languages on the other hand keep programming issues fairly simple
even in large programs. Unfortunately they need an initialised system in order
to execute.

This leads to a situation where a combination of a low level language as the
assembly language to control the initialisation of the system and a high level
language as C to implement the advanced tasks in, is the optimal solution. This
combination is therefore chosen.

3.2 Before launch

When the final design of the DTUsat-2 is finalised it is built and assembled in
Denmark.

As a part of the assembling the final version of the boot and FS software is
built.

After the assembling another test procedure of the final satellite is carried out.
During this procedure, it is necessary to be able to communicate with FS soft-
ware to upload data and applications and download test results. Therefore the
FS software should contain facilities to support this.

When the satellite has been tested it is sent to the launch location where it is
prepared for launch. After that it is placed in the deployment system called a
P-POD, see [HT05]. In the P-POD more tests and preparations can be carried
out. At this point it should be ensured that the system is setup correctly.

• The satellite should be able to communicate before through a wired con-
nection.

• The satellite should have facilities implemented which makes it possible
to communicate with when it is placed in the P-POD.

3.3 After launch

After the satellite has been released from the launch vehicle, the kill switch will
be turned on and the EPS should test the voltage level. If the voltage level of the
batteries is high enough the EPS should turn on the rest of the sub systems on

32 Requirement analysis of the boot procedure

the satellite inclusive the OBC. If the voltage level not is high enough the EPS
will start charging the batteries instead and turn on the rest of the subsystems
when the voltage level has reached the correct value.

• The boot software should test the battery level and only start the OS if
it exceeds a certain level. If it does not exceeds this level the FS software
should be started.

3.3.1 Exception and interrupt handling during the boot
process

The ARM7TDMI architecture supports hardware exceptions. This subject is
closely related to the notion of running the CPU in a priviliged mode. The CPU
is able to run in the following modes:

User mode Unprivileged mode which normal user applications should run in.

Fast interrupt mode(FIQ) Mode to handle fast interrupts. This mode has
a large set of its own registers in the CPU. This enables a faster context
shift than normally possible.

Interrupt mode Mode to process normal interrupts.

Supervisor mode (SVC) Also called software interrupts mode. This
mode is a protected mode and used to handle software interrupts in .

Abort mode Mode to handle memory faults.

Undefined mode Mode to handle undefined instructions.

System mode Privileged mode used by the operating system.

The different type of exceptions can be divided into two groups: A group of
control able exceptions i.e. the ones which can be disabled. This is the software
interrupts, the IRQ and FIQ interrupts. The second group cannot be disabled
and consists of reset, undefined instruction, prefetch abort and data abort.

In general the exceptions should be avoided because they raise unpredictability
of the system.

The first group should be disabled as the first thing in the boot procedure. The
reason for this is to raise the predictability of the system but even more impor-
tant it prevents failures caused by the interrupt routines. Since no execution

3.3 After launch 33

stack is available early in the boot process it is very difficult to implement any
kind of exception handling routines. This is caused by the fact that no memory
to store the values of the registers is available. Therefore any alteration of any
of the registers by an interrupt routine may lead to malfunction and failure of
the software after the return from the interrupt routine.

• The interrupt system should be turned off as early as possible in the boot
process.

The second group of exceptions consists of the exceptions which is caused by
abnormalities in the execution of the code. The only way to prevent these are by
designing a well structured program. Even when this is done these exceptions
could occur anyway. An ’undefined instruction’ -exception could occur because
of a bit flip in the memory. If this happens the system should be able handle
the exception in a controlled manner.

• The system should able to handle all exceptions in a controlled manner.

3.3.2 Initialisation of the WDT

Another important task which should be carried out as early as possible in the
boot process is to setup and start of the WDT. This is necessary to recover the
system from hardware failures during the earliest phases of the boot procedure.

• The WDT should be initialised and turned on as early as possible in the
boot process.

3.3.3 Location of the C stack

A major task of the boot software is to set up a C stack on which the rest of the
boot and FS program can be executed on. Therefore the boot program needs
to choose an area of the memory to host the stack. The most simple approach
is to place the stack in the same area at every boot i.e. give the stack a static
location. This is not the optimal solution since the chosen memory area could
get damaged by cosmic radiation and be rendered useless. If this happened the
satellite would loose its ability to boot.

Instead the boot program should place the stack in a flawless area of the memory.
Before the program can do that, it needs to ensure that the chosen memory area

34 Requirement analysis of the boot procedure

is actually fully functional and contains no defective memory cells. To test this
the boot software should carry out a memory test on the memory area used to
store the stack before the stack is setup.

All the above tasks needs to be carried out by a program implemented in the
assembly language because no C stack is available.

• The boot program should setup a C stack. Before doing that it should
ensure that the chosen area is fault free.

3.3.4 Task carried out by the C program

After the C stack has been established the rest of the tasks during the boot
process can be carried out by a program implemented in the C programming
language.

3.3.4.1 The silence period

According to the CubeSat Design Specification [HT05], the satellite must stay
silent i.e. send no beacons or anything else for the first fifteen minutes after it
has been released from the launch vehicle, and it is only allowed to send low
power beacons for the next fifteen minutes (from fifteen to thirty minutes from
launch). After this period it is allowed to activate its high power transmission
and primary radios.

When the COMMpic/beacon module gets turned on, it will test the state pins
connected to the OBC, to test whether it is allowed to start sending beacon
messages or not. At the first boot just after launch these pins should be set in
hold state such that the satellite stays silent for the first fifteen minutes after it
has been launched. Since it cannot be detected for how long the charging of the
batteries lasted it is necessary to keep the satellite silent for a fifteen minutes
period to ensure that it has been silent for at least this period.

As the COMM subsystem is not designed yet, the length of its boot period is
unknown. It is expected though that it is shorter than the time it takes for the
OBC to startup and setup the state pins to carry the ’hold’ signal. This will lead
to a situation where the COMM starts to send beacons just after it has been
powered on and before the fifteen minutes silence period is over. Obviously this
should be avoided, and a solution to this problem is to let the beacon module

3.3 After launch 35

wait for a short period of time every time it is turned on. The size of this
period will lay in the range of a few seconds and will depend on the worst case
execution time of the memory test described in chapter 4.

• The OBC should send a silence signal to the COMM and keep it for first
fifteen minutes after launch.

Since reboots could occur during the silence period it should be recorded between
the boots how long the satellite has been silent or how much time is left of the
silence period.

• The boot software should record for how long the hold signal has been
hold, and save the information in the FLASH memory periodically.

3.3.4.2 The rest of the boot procedure

After the C program is started it should be able to determine whether the
satellite has been booted recently. If this is the case it should also be able to
determine how many times, and start the FS software if the number of attempts
exceeds a certain limit.

Before the boot program is allowed to boot the satellite in nominal mode i.e.
start the OS, a complete memory test of all volatile memory should be carried
out. Only if no faults are found the boot software should boot the satellite in
nominal mode.

In addition to verify the integrity of the volatile memory the boot program
should also verify the integrity of the binary image containing the OS and the
application software. If faults are encountered the FS software should be started.

• The boot program should be able to determine if the OS has been booted
recently and for how many times.

• The boot program should do a complete memory test of all volatile mem-
ory except the area used by the C stack of the boot and FS software. If
faults are found the satellite should not be booted in nominal mode.

• The boot program should only boot into nominal mode if the integrity of
the binary files can be confirmed.

36 Requirement analysis of the boot procedure

3.4 The system information block

During the boot procedure various pieces of information about the system state
of the latest boot and the system set up in general are needed. These pieces
of information are used to determine for example whether to startup the OS or
not. All information which should be stored between boots are written in the
system information block (SIB).

The information should be stored between consecutive boot attempts, why it
needs to be stored in a non volatile memory. On the DTUsat-2 this is either
the internal or external FLASH memory.

3.4.1 The content of the SIB

The content of the SIB can be divided into two groups: information which is
updated at every boot and rarely updated information. The first group con-
tains information about the state of the system and the second group contains
information about the software on the system.

3.4.1.1 The state of the system

The content of the system state part of the SIB should contain the following
values:

Launch bit The launch bit indicate whether the satellite has been silent for the
first fifteen minutes after launch as demanded by the CubeSat standard.
This information is used to control whether the satellite needs to stay
silent or not. It is also used to keep track of how long time the system has
actually been silent if a reboot should occur during the fifteen minutes
period. The value of the launch bit is set to fifteen before launch and
should be decremented every time a period of one minute has elapsed.
When the value of the launch bit equals zero, the fifteen minutes have
elapsed. If the satellite reboots during the fifteen minutes, this counter
ensures that the system can continue were it left and not has to restart on
the fifteen minutes period. The name ’launch bit’ is misleading because it
indicates that the variable is a boolean which is not the case. The source
of the name is the launch bit of the DTUsat-1 which were used to indicate
whether the silence period had elasped or not. This variable only had two

3.4 The system information block 37

legal values unlike the launch bit of the DTUsat-2 which will have at least
fifteen legal values.

Boot counter The boot counter stores the number of allowed boot attempts.
It is used to determine whether the OS or the FS software should be
booted. If the OS has been attempt booted to many times the FS should
be booted instead and the earth station should be contacted.

Checksum The checksum contains the checksum of the SIB exclusive the
checksum itself.

Dynamic change of the boot attempt limit To allow the operators at
the ground station to change the boot attempt limit the boot counter should
be a decrementing counter instead of an incrementing. If it is decrementing it
is initialised to a value larger than zero, and when a boot has been attempted
it is decremented.

When it reaches zero it indicates that no more attempts to boot the OS are
allowed and that the FS mode software should be booted.

If the operators on Earth want to change the boot counter they can just upload
a new version of the SIB containing a different value of the boot counter.

3.4.1.2 The state of the software

The second part of the system information block should contain information
about the location of the OS and application software and its checksum.

OS beginning address The beginning address of the binary image containing
the OS and the application software.

OS end address The end address of the binary image.

OS checksum The checksum of the binary image containing the OS and the
applications.

OS pointer Pointer which points to the address where the execution of the OS
should begin.

38 Requirement analysis of the boot procedure

3.4.2 The default configuration of the SIB

If the system fails to read the most recent SIB for example due to memory faults
it should have a default version to fall back on. The default version is only used
if errors occur. Because of this the default version of the SIB should contain the
values which leads execution into the FS software. The variable which controls
this is the boot counter which therefore should be set to zero.

The default configuration of the SIB should also be easy identifiable. This is
because the boot software needs to be able to identify that it is not the most
recent SIB which is used. The boundaries of the OS stored in the default version
of the SIB should never be used to anything since the boot counter is set to zero,
indicating that the FS program should be started instead of the OS. Therefore
these fields could be used to identify the default SIB from.

As a consequence of this, a valid version of the SIB containing the correct
boundaries, checksum of the OS and pointer to the starting position of the OS
should be stored in the first SIB position in the FLASH memory before launch.
An important property of this SIB is that it should have the launch bit set to
15 to indicate that the system should be silent for the first fifteen minutes.

If the boot program for some reason is unable to read the SIB placed in the
FLASH before launch it will not set the hold signal to the COMM beacon mod-
ule. This results in the beacon module starting to send beacons immediately
after the satellite has left the launch vehicle. This is as mentioned in section
3.3.4.1 an illegal action and should be avoided. The probability that this situ-
ation should occur is extremely unlikely. The solution which protects against
the occurrence of this situation demands that the default version of the SIB has
the value fifteen on its launch bit. This could complicate the maintenance and
usage of the satellite:

If for some reason the EPS is only able to deliver power for a period shorter
than fifteen minutes and the most recent SIB is damaged, the satellite will
enter a state where it is unreachable. This situation is considered worse than
the extremely unlikely situation that the satellite should start sending beacons
before the fifteen minutes period has elapsed just after launch.

3.5 The fail safe mode 39

3.5 The fail safe mode

The fail safe mode software is used to do maintenance on the OBC and on board
data handling (OBDH) (the OS and the application software) which cannot be
carried out while the OS is running or if the OS fails to startup. The last task
is the most important since it enables the operators on Earth to get in contact
with the satellite if the OS has crashed and cannot restart on its own.

To resolve these tasks the FS software needs to be able to perform the following
operations:

Download data The FS software needs to be able to download any data placed
anywhere in the memory of the satellite. This capability should be used to
download status information, and data which could be used to debugging
and to trace errors.

Upload data The FS software needs to be able to upload any data to any
location in the memory of the satellite (except for the area containing
the boot and FS software). This capability should be used to replace the
OS and OBDH. It could also be used to upload special programs which
should be used for debugging purposes or carrying out special tasks on
the satellite. Finally the capability could be used to place new system
information after replacement of the OS.

Execute programs The FS software should be able to start execution of code
for any memory address in the satellite. This facility should be used to
start any uploaded programs.

Collect status information The FS sofware should be able to collect and
return every kind of status information generated on the satellite. This
facility should be used collect status information which could be used
during diagnostics of faults in the satellite.

Of course a lot of scenarios of failure situations should be considered while
analysing the satellite. First of all it should be determined which minimum pre-
conditions are necessary in order to execute the FS software and get in contact
with Earth:

1. The EPS needs to be in working condition such that power is supplied to
the other subsystems of the satellite (at least the OBC and COMM).

2. The OBC needs to be in such a condition that the CPU chip and the ROM
chip containing the boot and FS software, can work and communicate,

40 Requirement analysis of the boot procedure

such that the boot program is able to start and run. This also demands
the internal FLASH of the CPU chip to work since it contains the boot
loader which startup the chip.

3. Finally the radio needs to be in such a shape that commands and data
can be sent between the ground station (GS) and the satellite.

As it is seen neither the external RAM nor the external FLASH memory need
to be in working condition. Other subsystems of the satellite could also be
defective in some way without necessarily influencing the execution of the FS
software. The satellite could be in a condition where the systems needed to
start up the FS software are in working condition but where the lack of other
subsystems makes it impossible to run the satellite in nominal mode. This is of
course not a desired situation but as long as any contact to the satellite can be
established the satellite is usable to some extent.

3.5.1 The DTUsat-1 FS software

Due to lack of time it has not been possible to develop a new version of the FS
software. On the other hand the FS software of the DTUsat-1 was well function-
ing and software to communicate with it has been developed and implemented.
Therefore it was decided that as much of this code base as possible should be
reused.

To get the DTUsat-2 boot software and the DTUsat-1 FS software to work
together the latter needed to be modified. The major differences between the
two are about every aspect concerning the SIBs and its handling.

Another major area where the software needs to be updated are the FLASH
drivers. The primary reason for this is that neither the external nor internal
FLASH are the same as used on the DTUsat-1. Since these drivers are heavily
hardware specific a complete reimplementation is necessary.

The SIB system demands some kind of storage to store runtime information
about it. Therefore a new data structure to store these data should be developed.
This structure does not necessarily need to be stored between boots because it
can be regenerated during the boot process.

Chapter 4

The memory test

4.1 Memory test - analysis

Due to the fact that the satellite will be placed in a harsh environment in terms
of electromagnetic and cosmic radiation there is a high probability that this
radiation will affect the electric systems of the satellite.

The radiation could induce transient faults as bit flips changing the content of
a memory cell or a register.

It could also damage the ICs permanently by damaging either the wires or the
transistors. This results in a situation where for example memory cells would
carry either a zero or one no matter what is written into it (known as stuck at
zero/ones errors).

Also the impact of the forces on the satellite during launch could induce faults,
for example by damaging the tracks on the circuit board.

All these kinds of errors have the potential of leading to failure of the system and
thereby reset, but where transient bit flips will be removed when the memory cell
is rewritten after a reboot, the permanent damage of wires (inside or between
ICs) or transistors will lead to recurrence of failure unless the defective memory

42 The memory test

cell is identified and use of it is avoided by including some kind of fault tolerance.

4.1.1 Categorising the type of fault

Two kinds of faults may occur: transient and permanent. The first may be
handled in a simple way by rewriting the memory cell, but the latter may
be fatal to the system. Since the two kinds of faults exhibit these different
characteristics the memory test should be able to identify which kind of fault
it detects so that the fault is handled correctly and a transient fault is not
perceived as permanent triggering a radical actions.

4.1.2 Requirements by the memory test program

When the system starts up, the boot software starts using the RAM as soon as
C code is executed since this is stack based. A stack placed in a memory area
containing flawed memory cells will therefore lead to failure already in the start
up phase since a part of the boot program is written in C. Therefore a memory
test should be carried out before the C stack is setup and the result of the test
should influence the placement of the stack.

The primary requirement of the memory test is therefore that it should be able
to identify defective memory cells or other errors in the memory system. Based
on this information the system should be able to identify a continuous memory
area without faults, large enough to contain the C stack.

During the execution of the C based boot software a complete memory test
should be carried out. This test should verify that the complete memory is
functioning correctly since this is a necessary condition in order to startup the
OS.

The test implemented in C is based on the algorithm in [Bar99]. It should test
the external memory since the stacks of the OS should be placed here. If the
internal RAM contains such a big amount of flawed memory cells that no area
large enough to host the C stack used by the boot software is found, and it
therefore has to be placed in the external RAM, the memory test should not be
carried out by the boot program. Instead it should start the FS program. After
that a memory test controlled by the FS can be carried out.

In the rest of this section only the test executed before setting up the C stack
is considered.

4.1 Memory test - analysis 43

4.1.3 Faults in memory systems

As mentioned in section 4.1 the memory test should detect any kind of faults in
the memory system. In this case the memory system refers to volatile memory
of the system i.e. the RAM. This requirement is reduced a little since only
software based fault detection is available.

An article written by Michael Barr [Bar00] treats the subject from a practical
point of view, identifying the kinds of faults needed to be detected and gives
guidelines on how to design and implement a test suite which fulfils the require-
ments to detect these fault types.

Michael Barr describes electrical wiring problems as the most common group
of faults in memory systems. He also mentions problems in the chips, that is
permanent damages of either wires or transistors, but categorise them as rare
which might be correct in an protected environment as the surface of the Earth.
But in space these kinds of errors may be common. Fortunately the test suite
he suggests is told also to be capable of detecting errors in the data storage
functionality of ICs, which is also a basic requirement of the memory test. Also
shorts or opens of the address wires which lead to situations where two addresses
refers to the same memory cell are detected.

Jack G. Ganssle also treats the subject of memory testing in two articles ([Gan95]
and [Gan97])1. The most of the highlights in the first article are copied by
Michael Barr in [Bar00], except for one central key point: Since the memory
test should test the RAM, naturally it cannot utilise the RAM during its exe-
cution. Therefore the memory test cannot be implemented in C since C uses a
stack which is normally placed in the RAM.

In the latter ([Gan97]), one of the key points is that the test should run as fast
as possible and toggle as many address lines and data lines of the memory chip
at the same time as possible [Gan95], since this will reveal weaknesses caused
by the electrical characteristics of the chip. This is not necessary in our case for
two reasons:

1. The clock frequency on the external memory is low compared to the speed
normally used on memory busses in embedded systems. Therefore it is
unlikely that the test would reveal any faults, simply because the chips
are designed to run of a much higher pace.

2. If any faults were found, no solutions to the problem could be applied
since the only solution is to replace the chips.

1The latter contains replications of some of the first’s paragraphs

44 The memory test

A test of the electrical properties of the memory system should of course be
carried out before launch of the satellite.

The sources presented in this section seems to be the only ones treating the
subject of software based memory test. This conviction is based on an extensive
search for articles and homepages treating this subject on both the Google search
engine and several article databases. The subject does not seem to represent an
active research field and in general the algorithms presented in the articles are
based on common sense and long time experience. It should also be stressed
that the field of hardware based memory tests and embedded selftests seems to
be an active research field, but this field has not been investigated further due
to lack of time and because it was deemed less important for the project and
the found information would probably be difficult to utilise.

4.1.4 Discussion of the approach used in DTUsat-1

The approach used in DTUsat-1 is to do a simple memory test during the boot
process to identify a memory area to host the C stack. This memory test uses
the algorithm presented in figure 4.1 based on the assembly code in the file
/failsafe/init.S as found in appendix E.1.1. The control function can be
seen in figure 4.1. This function tests the two memory areas RAM0 and RAM1.

Input: base addresses of the RAM areas, lengths of the RAM areas, test
patterns: 1: 0x00000000 and 2: 0xFFFFFFFF, size of the needed space
for the stack

Output: beginning address of the descending C stack
load inputs ;1

;2

setup parameters for RAM0 for Write();3

call Write() ;4

;5

setup parameters for RAM1 for Write();6

call Write() ;7

Figure 4.1: The memory test algorithm used in DTUsat-1 as described in the
assembler code in init.S.

The real functionality of the test is hidden in the Write() function showed in
figure 4.2.

There are at least two issues which should be addressed in this function. The
first is the choice of pattern used for the tests. These two patterns have the

4.1 Memory test - analysis 45

advantage that they generate a lot of changes on the data lines of the bus as
suggested by Ganssle in [Gan95].

Unfortunately the way this test is performed makes it vulnerable to capacitive
effects on the wires as described by Barr in [Bar00]. A solution could be to read
each memory cell twice to try to unload it and if it shows the correct result the
second time it is read, then it could be expected as working correctly. Another
argument for this is that the running speed of the satellite system is so low that
a stress test of the bus is not necessary. A general argument against doing any
kind of stress test during boot is that it would not make sense to do when the
satellite is launched since the bus cannot be changed in any way after launch.
The only information needed after launch is whether the memory cells works
correct or not. Of course a stress test will reveal this but it will be sensitive to
the extreme condition which is induced as a part of the stress test. This increase
the probability of the test producing false positives.

The second issue concerning the implemented memory test is its structure which
leads the function into an infinite loop if a permanent error in the memory is
detected. The fault in the code which leads to the erroneous infinite loop and
thereby failure of the system is the lack of an increment in the memory address
if an error is detected. The correct place to do it would be in the Fail function
in the assembly code. This should be done just after the update of the ’highest
valid address’.

The memory test is run before any kind of branching in the init sequence. If a
fault in this function results in an infinite loop the WDT will not have any effect
on it even if it times out. The reason is that every time the system reboots it
will be caught in the loop again. The mechanism is illustrated in figure 4.3. A
model verifying this behavior has been implemented in UPPAAL. A description
of it can be found in section 8.3.

4.1.5 Conclusion

It can be concluded that the memory test should be capable of detecting faults
present in and outside the ICs. It should be capable of identifying a correct
functioning continuous memory area which can be used for the C stack used
by the boot software. The test should not perform a stress test but simply
ensure that the used part of the memory works correctly. Finally it should be
implemented in such a way that it does not use the RAM during its execution
since the correctness of this is not established yet.

46 The memory test

Input: base ADDR of memory area, highest valid ADDR of memory area,
test patterns: 1: 0x00000000 and 2: 0xFFFFFFFF, size of the needed
space for the stack

repeat1

write pattern 2 to this address ;2

if content of memory address is different from pattern 1 then3

change highest valid address to this address ;4

Write() ;5

break ;6

end7

write pattern 1 to this address ;8

if content of memory address is different from pattern 1 then9

change highest valid address to this address ;10

Write() ;11

break ;12

end13

if (highest valid address - this address) = stack size then14

setup stack ;15

break ;16

end17

jump to next address ;18

until this address < base address ;19

Figure 4.2: Pseudo code of the ’Write’ function

4.2 Memory test - design 47

(re)boot

WDT times out

memory test caught

in an infite loop

Figure 4.3: The mechanism showing why the WDT cannot recover the system
from an infinite loop caused by a software fault or permanent fault in the memory
test function.

4.2 Memory test - design

The memory test is divided into two tests: A test for identifying a memory area
large enough to contain the C stack, and a complete memory test which is able
to test the entire memory and detecting the kind of fault found. This division
is similar to the design used in DTUsat-1.

4.2.1 Stack area test

The stack area test should be able to identify an area of sufficient size to con-
tain the C stack. The test should be executed very early in the boot process
and should be implemented in the assembly language. For this reason and for
robustness it should be as simple as possible.

The algorithm is a modified version of the algorithm described in [Bar99, section:
Device test on page pp. 71]. This particular algorithm is chosen because the
test should detect defective storage locations which is a kind of device errors. In
figure 4.4 and 4.5 a modified version of the algorithm is given. The modifications
extend the algorithm by wrapping the original one in a house keeping system.
This system keeps track of when a flawless memory area which is large enough
to host the boot and FS software stack is found.

It also extends the algorithm such that it can distinguish between transient and
permanent faults. This facility however infer with the algorithm’s ability to
detect faults where two memory locations point at the same memory cell. The
reason for this is that the algorithm rewrite the memory location if a fault is
found. This is done to test if the fault was transient (which will disappear when
rewritten) or permanent.

Since transient faults caused by the radiation in space will occur much more fre-

48 The memory test

quently than shorts or opens after launch, it has been considered most important
to be able to distinguish between transient and permanent faults.

Of course a test which can detect shorts or opens should be carried out before
launch.

Since the algorithm is so long it is divided into two parts where the first part
tests the memory using the one pattern and the second part tests the memory
using the inverted pattern and eventually initialising the C stack.

In the algorithm presented in figure 4.4 and 4.5 the following input and output
values are used:

base address is the lowest valid address of the memory area.

top address is the highest valid address of the memory area meaning the high-
est valid memory address pointing at a full 32-bit word. This address is
normally equal to the length of the area minus one full 32-bit word.

top address of stack is the highest valid address of the stack area similar to
the top address of the memory area.

4.2.1.1 Placing the stack

As it can be seen the pseudo code (figure 4.4 and 4.5) the algorithm traverses
through the memory area. The memory is divided into parts each the size of
the area needed to host the stack. Every time a permanent damaged memory
location is localised the top address is aligned to the beginning of the word
containing the flawed byte and decremented by one. After that the test is
restarted at this position.

This algorithm ensures that the area used for the stack is placed in the highest
located area fulfilling the demands of size and flawlessness, if such an area exists
at all.

4.2.1.2 Fault type identification

The mechanism for identifying the type of fault located is quite simple: When
meeting a fault the program will try to rewrite the test pattern to the memory
location. If the fault is transient it is removed by rewriting the memory location.
If the fault is permanent it cannot be removed by rewriting the memory address.

4.2 Memory test - design 49

Input: base address, top address, stack size
Output: top address of stack area
start at top address + 1 ;1

for (current address > base address) AND (top address - current address) <2

stack size do
decrement current address;3

change pattern ;4

apply pattern to current address ;5

end6

reset current address to top address and pattern to initial state ;7

for (current address ≥ base address) AND (top address - current address) <8

stack size do
change pattern ;9

read byte value ;10

if read value 6= pattern then11

write pattern to current address ;12

if address is the highest valid address then13

write inverted pattern to lowest address in potential stack area ;14

end15

else16

write inverted pattern to the address above ;17

end18

read the value of the of the current address ;19

if read value 6= pattern then20

set top address = current address - 1;21

reset pattern to initial state ;22

restart test ;23

end24

end25

decrement byte counter ;26

end27

Figure 4.4: First part of the memory test algorithm used during the init phase.
This is a short version meant for obtaining an overview over its functionality.

50 The memory test

reset pattern to initial state ;1

start at top address ;2

for (current address ≥ base address) AND (top address - current address) <3

stack size do
change pattern ;4

write pattern to current address ;5

decrement current address;6

end7

reset pattern to initial state;8

start at top address ;9

for (current address ≥ base address) AND (top address - current address) <10

stack size do
change pattern ;11

read the value of the current address ;12

if read value 6= pattern then13

write pattern to current address ;14

if address is the highest valid address then15

write inverted pattern to lowest address in potential stack area ;16

end17

else18

write inverted pattern to the address above ;19

end20

read the pattern from current address ;21

if read value 6= pattern then22

set top address = current address - 1;23

restart test ;24

end25

end26

decrement byte counter ;27

end28

if (top address - current address + 1) = stack size then29

Start C based boot program ;30

else31

start register based FS software ;32

end33

Figure 4.5: Second part of the memory test algorithm used during the init phase.
This is a short version meant for obtaining an overview over its functionality.

4.3 Memory test - implementation 51

This mechanism is not completely reliable: It is theoretically possible that a
transient fault induced by a bit flip could be perceived as a permanent fault.
This situation would occur if another bit flip is induced between the rewriting
of the memory location and the second reading instruction.

This situation is extremely unlikely to occur however, since only a few instruc-
tion lays in between the rewriting and reading meaning that the instruction
would be separated by only a few milliseconds. On the other hand the algo-
rithm would never misinterpret a permanent fault as a transient which is the
most important property in this case.

4.2.2 The memory test done by the C based boot program

When the boot program is started it should carry out a more complete test of
the whole RAM area on the system. The test functions used in this process is
the functions described by Michael Barr in [Bar99, pages 66 - 73]. The tests
described here include a data bus test, an address bus test and a device test,
which test the same proporties of the memory chips as the test carried out prior
to C stack initialisation does.

The functions should be extended to be able to log information about the found
faults. It should also be ensured that they do not enter the area containing the
stack of the boot program. Therefore information about the localisation of the
stack should be passed to the program when it is called.

4.3 Memory test - implementation

This section describes the implementation issues of the memory test which is
executed before the initialisation of the C stack. Therefore it is of course imple-
mented in the assembly language. The implementation is based on the pseudo
code shown in figure C.2 and C.4. As it can be seen when comparing this al-
gorithm to the one presented in figure 4.4 and 4.5 the compound expressions
used in the major for loops have been changed to a single expression and the
second half of the expression has been moved inside the for loop to simplify the
implementation. The input and output of the function presented in figure C.2
and C.4 also follows the definitions given in section 4.2.1.

The algorithm shown in figure C.2 and C.4 also reflects that the test should
be carried out on byte level of the memory as suggested in [Bar00]. This also

52 The memory test

involves that the parameters given to the algorithm should be expressed in byte
units.

Finally the top address of the stack is aligned such that it is changed to the
correct 32-bit word address.

4.4 Memory test - software test

The assembly function doing the memory test works directly on the RAM.
This makes it difficult to test since no output data can be collected during
execution except from doing a memory dump. No input data are used either
which complicates fault injection.

The optimal solution is to test the function on two portions of RAM: one which
was known to be fault free, and a second which was known to be defective.
Unfortunately it is not possible to do this since the flat sat2 is not ready yet
and since it would be impossible to change the RAM circuits on it.

4.4.1 Fault injection

Since it is impossible to test the program on defective hardware the tests demand
the possibility to do fault injection in order to test the function in general
and especially the parts of the function which implements some sort of fault
tolerance.

A way to do fault injection in our case could be by changing the code direct-
ing all load and store operations through a function which potentially could
inject faults. This demand either a simulator containing this functionality or
modification of the code.

A modification of the program would probably introduce more faults which
would lead to more debugging and unreliable test results. Therefore this solution
has been abandoned. Instead a simulator is used. This solution is described in
section 7.3.2.2.

2The prototype of the satellite

4.4 Memory test - software test 53

4.4.2 Test strategy

The following structural test should be carried out:

• Inspect the counters when they are reset to be ensured that they are given
the correct value. This includes the test pattern.

• Ensure that the counters are incremented correctly. This includes the test
pattern.

• Inspect the counters and constants which define the for-loops ensuring
that they breaks at the correct values.

The following functional tests should be carried out:

1. Test that the function works correctly and terminates correctly when the
RAM is fault free.

2. Test that the function works correctly when different kinds of faults are
introduced in the RAM.

4.4.3 The general test setup

The GNU Debugger was used as test environment because it can execute com-
mand scripts. This makes it possible to automate the test. This system was
also used during debugging and a general description of the use of GDB can be
found in chapter 7.

A memory setup which differs from the one in the satellite is used in the tests.
This is done to give the parameters different values such that they, are easier to
recognise through the test. This should not change the tests ability to produce
correct answers since it only involves the change of specific memory addresses,
the size of the memory areas and the size of the stack. The values of the
parameters describing the memory setup passed to the function are listed in
table D.2.

4.4.4 Structural test

The inspection of the values of the registers is done on specific places in the
code e.g. when the program passes a label in the source code. Therefore a lot

54 The memory test

of new labels which is only used during test have been introduced in the code.
The names of these labels all start with “wp” for watch point.

The test cases can be seen in table D.3. An overview of the purpose of the
different groups of tests are given in table D.1.

4.4.5 Results of the tests

During the test three faults were discovered. Two of them were cut and paste
faults where changes had not been carried out to adapt the code. These faults
occurred because the code developed to test the memory using the normal pat-
tern was copied and adapted to test the memory using the inverted pattern.

The third fault found concerns the special case where a fault is found in the
first byte in the memory which is subject to the test. In this case the inverted
pattern would be written outside of the memory at the byte address just above
the flawed byte. The solution is to write the inverted pattern in the bottom of
the tested area.

Chapter 5

Software modules

This chapter contains design and implementation descriptions of various soft-
ware modules and drivers which have been developed to solve different tasks
during the boot process or as helper functions for the FS software.

5.1 The SIB - design

5.1.1 Location of the SIB

Two locations are candidates to host the SIB: The internal and the external
FLASH memory. Several measures should be evaluated when the storage loca-
tion of the SIB is decided: robustness to resist faults caused by cosmic radiation,
the available storage and the access method.

5.1.1.1 Cosmic radiation

Measurements of the two candidates’ qualities concerning resistance to cosmic
radiation are partly unknown, since no experiments have been carried out on

56 Software modules

the external FLASH chip. Therefore this measure cannot be evaluated. If any
measurements had been available this measure would be the primary one when
deciding on the location of the SIB. Measurements have been carried out on the
internal FLASH showing that it is quite robust to cosmic radiation1. Another
issue concerning the cosmic radiation is the connection between the components.
The external FLASH is of course connected through tracks on the circuit board.
This in itself causes a weakness since these rails could get damaged from.

5.1.1.2 The available storage capacity

In itself the size is not really an issue in this case since the SIB is expected to
take up only a small number of bytes. Unfortunately the procedure for writing
to the FLASH complicates the situation. It demands that a whole flash block
must be erased periodically due to the design of FLASH memories. This issue
is explained in section 5.4. The internal FLASH consist of blocks of eight kilo
bytes and the external FLASH consist of blocks of 64 kilo bytes. Therefore it
will be most efficient to store the SIB in the internal FLASH. In the internal
FLASH, it will use eight kilo bytes of the available FLASH memory compared
to the 64 kilo bytes used in the external FLASH. These considerations of course
presume that the FLASH blocks could not be used for anything else at the same
time it is used for the SIB. This is the most realistic assumption since the block
would be erased at every boot attempt if only room for one SIB is allocated in
the block.

5.1.1.3 The access method

The measure where the two candidates differ most is the access method. The
internal FLASH is placed in the CPU chip using some functions supplied by
the manufacturer of the chip (Philips). This means that the delete and write
functions which are essential in the use of the FLASH relies on some closed code
which cannot be inspected for faults or changed if that should be relevant.

The external FLASH was not delivered containing any drivers why they need
to be implemented as a part of the boot software. This gives full access to
control and inspect the code. It could also be argued that implementing the
FLASH driver would lead to a higher complexity of the code and thereby give
a higher risk that fault occurred in the code. Here it should be mentioned that

1It should last at least for 18 month with normal amount of cosmic radiation according to
the test carried out by the OBC team of the DTUsat-2

5.1 The SIB - design 57

the FLASH drivers for the external FLASH needs to be implemented in the FS
in any case since it should be able to write to it.

It can be concluded that placing the SIB in the external FLASH gives the best
knowledge and thereby assurance of a correctly functioning FLASH driver.

5.1.1.4 Conclusion

It must in general be concluded that in spite of the weakness coming from the
drivers of the internal FLASH, the external FLASH is the most insecure device.
Two arguments support this: The external FLASH has not been radiation tested
and it is connected through weaker connections than the internal FLASH, which
is the primary candidate to store the SIB.

An even better but substantially more complex solution would be to let the
system search for the best place to store the SIB based on different measures
having both the internal and external FLASH as candidates.

5.1.1.5 Location in the FLASH

An important issue concerning the location of the SIB is where in the FLASH
it should be placed. A whole eight kilo byte block is available in the internal
FLASH. Two principles are available to decide its location: static location and
dynamic location.

Static location If static location is used as principle for the location of the
SIB the memory address of its location is hard coded into the program.

This solution has the big advantage that it makes it simple to find it since the
beginning address is known.

It also has the big disadvantage that the FLASH need to be flashed every time
the new SIB is saved. Since it is only possible to flash the FLASH a finite
number of times, it will last for a shorter period of time.

Dynamic location If dynamic location is used as principle for the location of
the SIB there is no static address for its location. It can be placed at a number

58 Software modules

of different locations throughout the FLASH block. These locations lay after
each other. A magic number then identify the beginning of the SIB.

To find the most recent version of the SIB the memory area is searched back-
wards from the highest address. When the first instance of the magic number
is detected the beginning of the most recent SIB is found.

When the Block is filled up it is flashed and filled up from the lowest address
again.

Conclusion The disadvantage of flashing the FLASH block at every boot
giving it a shorter function period is a serious issue since the SIB provide vital
information during the boot process. Therefore it should be ensured that the
FLASH storing the SIBs stay functional as long as possible. Therefore dynamic
location is chosen as principle for the location of the SIB.

5.1.2 Communication between the OS and the boot soft-
ware

In the version of the software used on DTUsat-1 the communication between
the OS and the boot software was handled by having a variable in the SIB which
was used to give commands from the OS to the boot software. The OS changed
the value of the variable and the different values were interpreted as different
commands.

In this version of the software this system is abandoned since it is unnecessary.
The messaging can be handled by manipulating the other variables in the SIB,
and still pass the same commands to the boot software or the OS can carry out
the jobs itself.

5.1.2.1 Reseting boot counter

On the DTUsat-1 the boot counter was reset by the boot program after receiving
a signal from the OS. On the DTUsat-2 the OS will have functions at its disposal
to do it.

5.1 The SIB - design 59

5.1.2.2 Forcing the FS to boot

To signal the boot software to boot the FS instead of the OS it should set the
boot counter to zero and reboot the system.

5.1.3 Analysis of usage of the SIB

The SIB is used and manipulated by both the boot and FS software and the OS.
Therefore a function library should be made available containing the function
related to the SIB manipulation. This section will contain an analysis of the
demands of the modules which should be able to read and manipulate the SIBs.

5.1.3.1 Common needs of the modules

This section presents the common functional needs of the boot software and the
application programs which should handle the SIBs.

First of all the modules need to be able to find the most recent valid version of
the SIB or at least a valid default version. When a valid version is found the
modules are able to read and manipulate the values of the SIB.

Because the SIBs are stored in a FLASH memory, the number of writing opera-
tions should be kept at a minimum. This is because each bit in the FLASH only
can be changed from ’one’ to ’zero’ once before it is locked until after the next
’flash’ operation resets the block. Concerning the number of write operations,
the most general solution is to maintain a working copy of the SIB stored in the
RAM and then write this back to the FLASH when the session is over, if any
changes have been applied to the content of it. Unfortunately this solution has
a small fault tolerance since it cannot be ensured that the possibly changed SIB
is stored in the FLASH if the WDT resets the system.

When a new version of the SIB is written to the FLASH it should also be ensured
that as few values are written from the RAM as possible and they should instead
be copied from the last written instance of the SIB if it is valid. If it has been
rendered invalid, a new SIB should be uploaded from the Earth, since only the
newest written SIB could be assured to carry the correct values. The reason for
this is that the FLASH is considered more robust against bit flips induced by
cosmic radiation than the RAM.

The only solution to this problem is to write the SIB back to the FLASH in-

60 Software modules

stantly whenever a change has been applied to any of the values in it. This
solution actually comply very well since it normally will be the case that only
one value needs to be changed i.e. the boot counter. The other values are only
changed in rare cases for example when the OS is replaced.

5.1.4 Checksum

The validity of the data stored in the SIB should be ensured by calculating a
checksum from them, and compare it to the one stored in the SIB.

The checksum used in this project is the CRC32 as described in [Bar00, page
75]. The implementation is also taken from [Bar00, pages 77-79].

As suggested by Barr the algorithm is changed such that the table containing
the remainders of the byte divisions are stored in the ROM as a part of the
CRC calculation program.

There is two reasons for this approach. The first is that it speeds up the calcula-
tion of the checksum. The second is that the ROM is considered more resistant
against faults induced by the radiation in space than the RAM. Therefore fewer
faults in the data in the remainder table will occur when it is stored in the
ROM.

5.1.5 Memory efficiency

All values in the SIB are implemented as 32-bit integers. This is obviously not
the most efficient implementation regarding memory usage.

An example is the boot counter which will never need to carry a value above
100 and probably not above 25. Therefore only 7 bits are needed to represent
it.

The launch bit waste even more space than the boot counter since its greatest
value should 15 and therefore it only needs 4 bits but take up 32 bits.

The argument for using 32-bit integers in all fields in the structure is that the
data words of the ARM architecture used here is 32-bit long. Therefore the
structure will fill in a whole number of data words, avoiding padding of the
structure by the compiler. The overhead generated by using 32-bit values is at
most: 28 bits from the launch bit and 25 bits from the boot counter summing

5.1 The SIB - design 61

up to 53 bits per structure.

If an eight kilo bytes FLASH block is used to store the SIBs in, there is room
for 256 instances of the SIB in the block:

8 · 1024bytes

8 · 4bytes
= 256

If the most memory efficient version of the SIB is used there is room for 322
instants of the SIB in the block:

8 · 1024bytes

(8 · 4)bytes− (53/8)bytes
= 322

The division used here is integer division because the byte is the smallest memory
unit available in the system.

These calculations demonstrate that 12 % of the room used by an instance of
the SIB could be saved, because only one 32-bit data word can be saved. This
is because the data words need to be aligned on 32-bit boundaries:

32− 28
32

· 100 = 12%

Giving room for 25 % more instances of the SIB:

322− 256
256

· 100 = 25%

This does not give any practical impact on the reliability of the system: The
number of instances of SIBs which the FLASH block contains, only influence
the length of the life of the FLASH block. This is because it only changes the
number of times the block need to be flashed during the service of the satellite.

If the FLASH is guarantied to survive to be flashed 1000 times during service
this will result in 256.000 possible reboots during the service of the satellite,
even if the large version of the SIB structure is used, and only the boot counter
is changed at each boot. This should be more than enough. The number of
guarantied flashes during the life of the FLASH is at least 10000 according to
the documentation [Phi03, page 262].

5.1.6 The general design approach

The general approach has been to encapsulate the SIB, only allowing access
indirectly through function calls. This approach has been chosen to raise the

62 Software modules

robustness of the code by preventing corruption of the SIB by illegal values in
the individual fields.

This approach has also influenced the design of the access from the functions to
the valid version of the SIB by simply making a pointer which always points at
the valid instance of the SIB.

5.2 The SIB - implementation

The implementation language of the function used to read and manipulate the
SIB is C. This issues the question of how to represent the SIB. The first choice
for forming compound data types in C is a structure declaration.

The structure for the SIB is declared as follows (see appendix F.6 on page 155
from line 30.)

30 struct SIB { /∗∗ \ l a b e l { l s t : app : s y s In f oh : SIB} ∗/
31 int magicNum ; /∗Magic number : 0xFEEDBEEF ∗/
32 int launchBit ; /∗ i n i t i a l 15 . Decreased by 1 each minute .

0 the 15 minutes i s over ∗/
33 int bootCounter ; /∗Count the number o f boot a t tempts =

MAX BOOTS − boot a t tempts ∗/
34 unsigned long eCosBeg ; /∗32 b i t beg inn ing address o f

area con ta in ing eCos ∗/
35 unsigned long eCosEnd ; /∗32 b i t end address o f area

con ta in ing eCos ∗/
36 unsigned long eCosCheck ; /∗32 b i t CRC checksum of the

area con ta in ing eCos ∗/
37 unsigned long eCosP ; /∗ po in t e r to execu t i on

beg inn ing o f eCos ∗/
38 unsigned long checksum ; /∗32 b i t CRC checksum of the SIB

minus the checksum i t s e l f ∗/
39 } ;

5.2.1 Memory structure and location of the SIBs

The two following models for describing the location of the SIBs in the memory
have been considered:

1. Describing the location directly in the memory by calculating the values
of the pointers to them manually.

5.2 The SIB - implementation 63

2. Describing the location as an index in an array of SIBs. This solution
leaves the calculations of the pointers to the compiler.

The second solution was chosen because it seems more robust and gives an easier
and understandable code. The robustness comes from the fact that the style of
the code saves the base address of the area through the code and index from this
relatively. This invites the programmer not to change the value of the pointer
and thereby protect against errors comming from ’out of area’-faults.

The concept of the model is to cast the pointer to the beginning of the area
containing the SIBs as a pointer to a SIB:

/* Array declaration to cast the memory area as an array of SIBs*/

struct SIB * sibs = (struct SIB *) BEG_ADDRESS;

Because a pointer can be handled as an array [KR88, page 99], the area is
perceived as such using an index. The pointer is called sibs and the index
variable index (see appendix F.9 from line 28):

26 /∗Function to f i nd the l o c a t i o n o f the most recen t SIB
27 ∗ Se t s the ’ theSIB ’ to po in t a t i t , and the va lue o f

idxOFtheSib . ∗/
28 int f indSIB (struct SPS ∗ sps) { /∗∗\ l a b e l { l s t : app : s y s In f o c :

f i n dS i b }
29 \ index { f indSIB !\ t e x t i t { source code }}
30 \ addcon t en t s l i n e { toc }{ su b s e c t i on }{ f indSIB () }∗/
31 int index = 0 ;
32 for (index = sps−>arrayLength ; index > 0 ;) {
33 i f (sps−>s i b s [−− index] . magicNum == MAGIC NUM) {
34 sps−>idxOfTheSib = index ;
35 sps−>theS ib = &(sps−>s i b s [index]) ;
36 index = 0 ;
37 }
38 }
39 i f (sps−>idxOfTheSib >= 0)
40 return 0 ;
41 else
42 return 1 ;
43 }

As it can be seen from the source code above the pointer theSib always points
to the found valid SIB. If no valid SIB is found theSib points to the default
configuration of the SIB which boots the FS.

64 Software modules

The index of the valid SIB is also stored in the variable idxOfTheSib. This
value should only be used when the index of the next instance of a SIB is to be
calculated when it needs to be written to the FLASH.

5.3 The SIB Parameter Structure

A group of variables containing information about the location of the most
recent SIB and other central system information is used in a lot of different
functions. Therefore a lot of functions have the same arguments. This situation
should be simplified. Normally this would be done by making these variables
global. Global variables are not allowed on the system because they are allocated
statically by the linker. If the area used for the statical variables is damaged it
could block the system, preventing it from starting the OS or failsafe mode. The
group of central variables are instead gathered in the SIB Parameter Structure
(SPS). A reference to a central instance of the SPS is then passed to the functions
which use these variables. In this way the number of arguments of the functions
is reduced, making the code more readable and simpler in general. Below is the
declaration of the structure given:

43 struct SPS {
44 struct SIB ∗ s i b s ; /∗Pointer to array o f SIBs in FLASH. ∗/
45 struct SIB /∗@null@∗/ ∗ theS ib ; /∗Pointer to the l a t e s t

v a l i d SIB or the d e f a u l t SIB . ∗/
46 int idxOfTheSib ; /∗ Index o f t h eS i b in s i b s or RAM∗/
47 int arrayLength ; /∗Number o f SIBs in array ’ s i b s ’ . ∗/
48 struct SIB ∗ de f au l t S i b ; /∗Pointer to d e f a u l t SIB . ∗/
49 struct SIB tempSib ; /∗ S t ruc ture con ta in ing temporary va l u e s

o f SIB ∗/
50 } ;
51

52 /∗Function to f i nd the l o c a t i o n o f the most recen t SIB .

5.4 FLASH driver - analysis

The nonvolatile memory system of the satellite consist of two different FLASH
memories: the internal FLASH of the CPU chip (256 KB) and some external
FLASH chips (2 MB in total). Both are memory mapped systems.

The purpose of the internal FLASH is to store the OS and the System Informa-
tion Blocks.

5.4 FLASH driver - analysis 65

The purpose of the external FLASH is to store data collected by the applications
running on the satellite in nominal mode.

One central property of FLASH memory is that it can be read as normal RAM
by accessing the individual memory addresses. When one wants to write data
to it a special sequence of actions need to be carried out called the erase and
write cycle. The erase and write cycle can only be carried out a certain number
of times before the FLASH chip stops to work.

Another important property is that the FLASH memory is divided into blocks.
When an area in the block is written the first time since an erase operation
has been carried out on the block, any bit pattern can be written to it. When
written second or third time etc. only memory cells containing a ’1’ can be
changed to a ’0’ but not vice versa. It needs to be ’flashed’ i.e. erased (actually
setting all memory cells to contain ’1’) before a new pattern can be written.

Throughout the report the terms ’block’ and ’sector’ are used interchangeably.
In the documentation [Phi03] the term ’sector’ is used exclusively.

Due to lack of time in the project only a driver for the internal FLASH will be
developed and implemented. Therefore the rest of this sections describing the
FLASH driver will only refer to the internal FLASH.

5.4.1 Minimum size of written area

According to the User Manual of the LPC2294 [Phi03, Table 216, p. 282] at
least 512 bytes need to be written at a time. This data unit is referred to as line.
This does not give rise to any concerns when writing programs to the FLASH
since 512 is a small number compared to the number of bytes occupied by the
whole program.

However when writing SIBs to the FLASH, a lot of memory will be wasted if
it is necessary to start at 512-boundaries every time a new entry needs to be
saved.

A solution to this problem could be to look at the pointer pointing to the most
recent SIB and then calculate the beginning and end of the next SIB which
should written. From this information it is possible to fill the area behind the
latest SIB with zeros and the area in front of it up to the next 512-boundary
with ones, as if they were flashed.

A problem concerning this solution is that the area containing the ones in front

66 Software modules

of the SIB could be altered by cosmic radiation to carry zeroes instead of ones.
This renders the area containing the illegal zeros useless until it flashed the next
time. The solution to this problem is to check that the area contain nothing
but ones before it is used to store anything in.

A better solution to the line-problem would be to rewrite the FLASH writing
routines using the information found in [Jay06]. This source describes how
to reverse engineer the In Application Programming (IAP) routines to rewrite
them to for example only write 16 bytes at a time.

Due to lack of time it is not possible to use this solution. The FLASH writing
system should be designed in a layered fashion such that the lower layer later
could be replaced by a version which utilise the possibilities outlined in [Jay06].

In the rest of the project it is therefore assumed that the it is possible to use
the proposed solution i.e. writing 512 bytes data unit padding it with zeros and
ones.

5.4.2 Accessing the FLASH memory

During read operations the FLASH memory is accessed as any other memory
device through a mapping of its memory area into the global memory address
space.

When doing any other operations like write operations, it is necessary to operate
the FLASH driver circuit in the FLASH by writing and reading some command
and status registers. At the internal FLASH of the LPC2294 chip, this task is
normally done indirectly by calling some low level functions which is a part of
the boot loader of the chip. Therefore the FLASH driver routines should utilise
these functions and do the housekeeping which is necessary to simplify the usage
of the low level functions.

5.4.2.1 Available low level functions

The LPC2294 chip contains a boot loader which also makes some low level
functions, to maintain the internal FLASH memory, available. The following
functions are available:

Prepare sector(s) for write operation Unlock the sector before it is erased
or written to.

5.4 FLASH driver - analysis 67

Copy RAM to flash The write function which copy an area of the RAM to
the FLASH described by beginning address and size.

Erase sectors Erase one or more sectors. After erase the sector contain noth-
ing but ones.

Blank check sector(s) Test if the sector is empty (i.e. all ones) before a write
operation.

Read Boot code version Reads the version of the boot loader of the chip.

Compare Compare the content of two memory areas.

A complete reference for these functions can be found in [Phi03, p. 279 - 284].
The LPC2292 has been reported to contain faults which leads to errors where
the above described low level functions never return. This result in a hanging
system leading to reboot by the WDT. In Errata sheet of the 5th of August
2005 for [Phi03] concerning the LPC2292 chip, it is reported that the fault is
removed such that newer chips should not produce this error. The fault can also
be removed by updating the firmware to version 1.63 or later.

5.4.3 The block structure of the internal FLASH

As mentioned above the FLASH memory is divided into smaller blocks.

In the LPC2294 chip there is 256 KB of internal FLASH memory which is
divided into 18 blocks. Unfortunately not all blocks have the same size: Block
0 - 7 and 10 - 17 contain 8 KB of memory each. Block 8 and 9 contain 64 KB
of memory each.

This pattern complicates the design of the functions handling the memory, since
simple multiplications of the size of block cannot be used everywhere.

5.4.4 Necessary functionality

The FLASH driver is used in two major use cases: to write the SIBs to their
dedicated area and to replace the OS if this should be necessary.

Since the SIBs are stored in a dedicated data structure special functions should
be designed to handle write operations of these.

68 Software modules

The prepare and erase operations should be hidden to the user in the general
usage of the functions. Also the blank test made before each write should be
hidden by the functions.

At the same time it should be possible to prepare and erase FLASH blocks by
direct commands through the FS software.

5.5 FLASH driver - design

The FLASH driver should be divided into two separate parts: one which handles
the writing of the area containing the OS and one which handle the writing of
the SIBs. The reason for this division is that different procedures are used
because the FLASH blocks will be erased before the writing of the OS which is
not the case when writing the SIBs.

5.5.1 The SIB writing system

The SIB writing system takes care of writing the SIB to a location in the FLASH
block allocated to store these.

5.5.1.1 Preparing the 512 bytes array

As described in section 5.4.1 before the SIB can be written to the FLASH
memory it should be placed in an array which is 512 bytes long and be padded
with zeroes in front of it and ones behind. This is illustrated in figure 5.1

The function which do the padding job is described pseudo code in function
prepDataArraySIB shown in figure 5.2.

The area which is used to store the SIB should be tested for any content before
it is used and after the write operation it should be verified that the correct
data were stored. A flowchart showing the procedure for writing a SIB can be
found in figure 5.3.

5.5 FLASH driver - design 69

31

63

byte 511480

First SIB containing ’0’s.

Last SIB containing ’0’s.

First SIB containing ’1’s.

Last SIB containing ’1’s.

byte 0

32

The SIB to be written

Figure 5.1: Figure ill. the contents of the 512 bytes data assembled before being
written to the FLASH.

5.5.1.2 Test of Flash before writing operation

The FLASH memory is blank tested using a simple comparison, since it is known
that a blanked FLASH area contains nothing but ones. Therefore the bytes in
that area can simply be compared to the value 0xFF.

70 Software modules

Input: data[], SIB[], beginning of SIB
for 0 ≤ index < 512 do1

if index < beginning of SIB then2

data[index] = 0x00 ;3

else if index == beginning of SIB then4

foreach byte in SIB do5

data[index] = SIB[SIB byte index] ;6

increment index ;7

end8

data[index] = 0xff ;9

else10

data[index] = 0xff ;11

end12

end13

Figure 5.2: Pseudo code of prepDataArraySIB().

Write data unit to FLASH

Test data integrity

Success

End

Assemble 512 bytes data unit

Assemble SIB

Change position of SIB

ErrorTest area

Figure 5.3: Flowchart showing the procedure for writing a SIB to the FLASH
memory.

5.6 FLASH driver - Implementation 71

5.6 FLASH driver - Implementation

The functions which are implemented to do the FLASH operations are divided
into two groups:

1. A group of high level function where several tasks are carried out by the
same function.

2. A group of functions which only carry out a single function. Each of these
function calls one of the functions made available by the boot loader of
the chip. All the names of these functions begin with the three capitalized
letters “IAP”.

The first group of the functions are thought as the primary group used by any
programmer and the second group should only be used when new functions are
added to the first group.

5.6.1 Error information

All functions return a return value. The IAP data compare function returns both
a return value and the offset to the first fault if any is discovered. Therefore all
functions using the compare function have an extra return value which is called
errorInfo. This value should be a pointer to a 32 bit integer. The offset of the
first fault found is written to the variable which the errorInfo points at.

5.7 Real Time Clock - analysis

The LPC2294 chip is equipped with a Real Time Clock (RTC). This is a clock
circuit which not only is capable of introducing an interrupt at a specific interval
but also keeps track of time. Therefore it is possible to read the time from
registers and setup an alarm which gives rise to an interrupt.

When the chip is powered off the values of the registers are not maintained, why
it is not possible to maintain a correct time over a cold reset. If the chip is only
reset by the reset pin (warm reset) the value of the time counters are kept.

As mentioned above the clock is capable of initiating interrupts. The usage of
interrupts should be avoided in order to keep the predictability of the behavior

72 Software modules

of the system as high as possible. Therefore a method to keep track of the pace
of time without using interrupts should be developed.

The primary task of the RTC during execution of the boot program is to keep
track of time during the execution just after launch where the satellite needs to
be silent for a fifteen minutes period. Since the satellite will start with a cold
boot when it is released from the launch vehicle (LV), no real time values are
kept. Therefore only a basic functionality which detects changes in the values
of the counter registers of the RTC is needed.

For this reason the boot program is also allowed to alter the values of the counter
registers if this is necessary. This is because no real time has been set when the
fifteen minutes period should be measured.

When the fifteen minutes period has elapsed the RTC is no longer used for
anything by the boot or FS program.

5.8 RTC - design

In order to fulfil the demands outlined in section 5.7, a simple initialisation
function which ensures the disabling of the interrupt should be designed.

The initialisation procedure should reset the seconds counter such that it is
ensured that a full minute or second has elapsed every time the minutes counter
or seconds counter change. These considerations lead to the procedure outlined
here:

1. Disable interrupts by writing 0 to the Counter Increment Interrupt Reg-
ister.

2. Ensure that clock is disabled by writing 0 to Clock Control Register.

3. Reset seconds counter by writing 0 to its register.

4. Record minutes counter’s value.

5. Enable clock by writing 1 to Clock Control Register.

5.9 RTC - implementation 73

5.8.1 Measuring time

The method to detect time elapsing is to detect changes in the counter registers.
Therefore the value of the register should be recorded and after that the CPU
should poll the register and compare its value to the recorded value. When they
are not equal any longer the time period has elapsed. This leads to the following
routine for detecting the elapse of one minute:

Reset seconds counter to 0 ;1

record minutes value in variable ’minValue’ ;2

start clock ;3

record minutes value in variable ’temp’;4

while temp == minValue do5

update ’temp’ ;6

end7

stop clock ;8

5.9 RTC - implementation

5.9.1 Intialisation of the hardware

The RTC contains a circuit called the prescaler. The purpose of this circuit is
to adapt the RTC to the clock frequency of the system. It should emit 32.768
impulses every second, which the counter circuit of the RTC use as input.

The RTC needs two values to be set during initialisation: The first is the number
of clock ticks per impulse (it is referenced as PREINT in the documentation).
Unfortunately this value could consist of a integer part and a fraction part.
In this case, the fraction part is cut away. Instead a fraction of the impulse
periods prolonged by a single clock tick. The number of impulse periods which
should be extended is the second value (it is referenced as PREFRAC in the
documentation). How to calculate these values are explained in [Phi03, page
253 - 254].

The values used on the Olimex test board which has a 14.7456 Mhz crystal are:

PREINT = (14.745.600/32.768)− 1 = 449
PREFRAC = 14.745.600− ((449 + 1) · 32.768) = 0

74 Software modules

Chapter 6

Implementation details of the
boot procedure

In this chapter an overview of the implemented boot procedure will be given.
The presentation is based on the annotated source code of the boot program.

The boot procedure can be divided into two phases: The operations carried out
before the C stack initialisation and the operations carried out afterwards. The
code carrying out the first phase is pure assembly code and the second phase is
implemented in normal C code.

6.1 The first phase

The first phase is a sequence of operations which are performed by the code
of the reset routine i.e. the routine which is called when a reset exception is
caught. This routine is also carried after a cold boot.

1. Ensure that the interrupts are disabled. This operation is carried out as
a part of the HW-reset. As an extra precaution the operation is repeated
by the boot program.

76 Implementation details of the boot procedure

2. Initialise the WDT.

3. Setup EMC.

4. Setup PLL.

5. Run memory test to find an area for the stack.

6. Setup the stack.

6.1.1 Implementation

The first phase is implemented in the init.S (listed in appendix F.1), memTest.S
(listed in appendix F.2) and cStack.S (listed in appendix F.3) files.

6.1.1.1 Global variables

Normally it is necessary to copy the initialised variables placed in the .data
section and the uninitialised variables placed in the .bss section to the RAM
to make write operations to the variables possible. In the boot software of the
DTUsat-2 no static variables are used. Instead all variables are allocated on the
stack. This concept is used to avoid this copying of variables because they are
placed on static locations by the linker. Therefore a flawed memory address in
the area containing the static variables placed by the linker could obstruct the
execution of the boot program.

6.1.1.2 Constants in the assembly code

Through out the assembly code constant’s values are needed for example as
specific addresses of registers. The easiest way to use a constant is using the
mov instruction to place the value in a register.

Unfortunately this solution will not always comply. The reason is that the en-
coding method used to place the constant in the binary version of the instruction
only support a limited range of values. The encoding utilise a rotation of an
8-bit value in a 32-bit data word, which cause the following restrictions on the
value:

• It is not possible to encode values which contain ’ones’ in bit 8 to bit 15.

6.1 The first phase 77

• It is not possible to encode values where the distance (measured in bit
positions) between the two outer bits is larger than 8.

A more complete description of the issue can be found in [Fur00, page 119].

The solution to the problem is to define the problematic values as constants
stored in the memory and load their values into the registers using an ldr in-
struction. This solution has two disadvantages:

• Space of the memory is used to store the values.

• If slow memory is used, this solution will run slower than the mov solution
which can run in a single clock cycle.

None of these disadvantages lead to significant problems on the DTUsat-2, since
speed is not a concern in general, and the EMC is able to handle up to 16 MB
of memory in each bank.

6.1.1.3 The exception vectors

The first part of the code contains the exception vectors. Since interrupts are
disabled and therefore no interrupt routines are necessary in the boot program,
they all contain a jump instruction to the same procedure. The exception vectors
also jump to the same label as the interrupt vectiors. The symbols they are
jumping to has been given different names emphasizing that these could be
individual functions.

82 ldr PC, SWI Addr
83 ldr PC, PAbt Addr
84 ldr PC, DAbt Addr
85 nop /∗ Reserved Vector (ho l d s

Ph i l i p s ISP checksum) ∗/
86 ldr PC, [PC,#−0xFF0] /∗ see page 71 o f ” I n s i d e r s

Guide to the Ph i l i p s ARM7−Based Mic ro con t r o l l e r s ” by
Trevor Martin ∗/

87 ldr PC, FIQ Addr
88

89

90 Reset Addr : .word Reset Handler /∗ de f ined
be low ∗/

91 Undef Addr : .word UNDEF Routine /∗ de f ined
be low ∗/

78 Implementation details of the boot procedure

92 SWI Addr : .word SWI Routine /∗ de f ined
be low ∗/

If for some reason an exception arises in the system during the boot program
the exception vectors will jump to the exception handling routine which changes
the mode to the system mode and start at the beginning of the boot program
again.

6.1.1.4 Disabling of the interrupts

When the boot program is executed the first task is to disable the interrupts.

120

121

122 ldr r0 , = s tack end
123 msr CPSR c , #MODEUND| I BIT |F BIT /∗ Undefined

In s t r u c t i on Mode ∗/
124 mov sp , r0
125 sub r0 , r0 , #UND STACK SIZE
126 msr CPSR c , #MODEABT| I BIT |F BIT /∗ Abort Mode ∗/
127 mov sp , r0
128 sub r0 , r0 , #ABT STACK SIZE
129 msr CPSR c , #MODE FIQ | I BIT |F BIT /∗ FIQ Mode ∗/
130 mov sp , r0
131 sub r0 , r0 , #FIQ STACK SIZE
132 msr CPSR c , #MODE IRQ | I BIT |F BIT /∗ IRQ Mode ∗/
133 mov sp , r0
134 sub r0 , r0 , #IRQ STACK SIZE
135 msr CPSR c , #MODE SVC| I BIT |F BIT /∗ Superv i sor Mode

∗/
136 mov sp , r0
137 @ User mode i s not entered because we cannot re turn to a

p r i v i l e g e d
138 @ mode from user mode.
139 @ sub r0 , r0 , #SVC STACK SIZE
140 @ msr CPSR c , #MODE SYS | I BIT |F BIT /∗ User Mode ∗/

To disable the interrupts in all possible modes (minus user mode)1 of the CPU,
the mode is changed and the CSPR of that mode is altered to disable the
interrupts.

At the same time the stack pointer of the mode is initialised to a defined value
1The user mode is not entered because it is impossible to get back into any privileged mode

from the user mode unless a software interrupt is issued.

6.1 The first phase 79

giving 4 bytes to each stack. The stacks are placed in the top of the user space
as shown in figure 2.2. The area used for these stacks is untested for faults
because they are not considered used for anything.

6.1.1.5 Enabling the WDT

The second task of the boot program is to enable the WDT. This is done ac-
cording to the procedure described in [Phi03, p.256 - 258].

148 mov r0 , #WDMOD @Load r e g i s t e r wi th address o f WDMOD.
149 mov r1 , #0x03 @Prepare enab l i ng p a t t e r n .
150 str r1 , [r0] @Enable WD.
151 mov r0 , #WDFEED @Load r e g i s t e r wi th address o f WDFEED.
152 mov r1 , #0xAA @Prepare f i r s t f e ed p a t t e r n .
153 str r1 , [r0] @Sta r t f e ed sequence o f WD.
154 mov r1 , #0x55 @Prepare second f eed p a t t e r n .
155 str r1 , [r0] @End feed sequence o f WD.
156

157 p l l : .long p l l
158 vpbdiv : .long vpbdiv
159 bc : .long bc

The most important thing to notice is that the timer constant is set as large as
possible (0xFFFFFFFF), and that the WDT needs to be fed to start. The last
thing is done by sending 0xAA and 0x55 to its feed register.

6.1.1.6 The configuration of the PLL

The PLL is a circuit used to control the clock speed of the system. It is described
in section 2.1.1.2. The presented configuration assumes that the crystal on the
system runs at 14.7456 Mhz as the one on the Olimex development board. This
input frequency is multiplied by four.

The PLL has a feed procedure as the WDT. Therefore the same feed sequence
is send to the PLL after an alteration of one of its control registers.

It should be noticed that this block of code contains a loop which determines
when the PLL has locked to its new frequency.

161

162 /∗ con f i g u r a t i on o f the PLL ∗/
163 ldr r4 , p l l @se t base address f o r cons tan t s

80 Implementation details of the boot procedure

164 ldr r0 , [r4 , #p l l c f g] @Load the address o f PLLCFG in to the
r e g i s t e r .

165 mov r1 , #0x23 @Prepare va lue o f c on f i g u r a t i on r e g i s t e r 0x23
= 0b100011.

166 mov r2 , #0xAA @Prepare f e ed 1 v a l u e .
167 mov r3 , #0x55 @Prepare f e ed 2 v a l u e .
168 str r1 , [r0] @Store va lue in con f i g u r a t i on r e g i s t e r .
169 ldr r0 , [r4 , #p l l f e e d] @load r e g i s t e r the address o f the

f e ed r e g i s t e r in t o the r e g i s t e r .
170 str r2 , [r0] @wr i t e f i r s t par t o f f e ed sequence .
171 str r3 , [r0] @Write second par t o f f e ed sequence .
172 /∗ enab l i ng o f the PLL ∗/
173 ldr r0 , [r4 , #p l l c o n] @Load r e g i s t e r wi th the address o f

PLLCON.
174 mov r1 , #0x1 @load r e g i s t e r wi th enab l i n g v a l u e .
175 str r1 , [r0] @s to r e enab l i ng va lue r e g i s t e r .
176 ldr r0 , [r4 , #p l l f e e d] @load r e g i s t e r the address o f the

f e ed r e g i s t e r in t o the r e g i s t e r .
177 str r2 , [r0] @wr i t e f i r s t par t o f f e ed sequence .
178 str r3 , [r0] @Write second par t o f f e ed sequence .
179 ldr r0 , [r4 , #p l l s t a t] @Load the address o f PLLSTAT in to

the r e g i s t e r .
180 p l l l o c k :
181 ldr r1 , [r0] @ge t va lue from PLLSTAT.
182 ands r1 , r1 , #(1<<10) @And va lue o f r e g i s t e r wi th a one on

the 10 th p l a c e .

When it is confirmed that the PLL has locked to the requested frequency the
VPB divider is configured to output a fourth of its input frequency i.e. the
frequency which is supplied to the PLL.

184

185 /∗ con f i g u r a t i on o f the VPB d i v i d e r ∗/
186 ldr r0 , vpbdiv @Load the address o f the VPBDIV in to the

r e g i s t e r .
187 mov r1 , #0x00 @The pc l k i s s e t to one f ou r t h o f the c c l k .

6.1.1.7 The configuration of the EMC

The EMC is the interface between the external memory devices and the CPU.
The configuration described here is a configuration developed to work on the
Olimex development board. The EMC is fed with the pclk, which runs at
14.7456 Mhz. This gives a clock period of the pclk of 67.8 · 10−9sec.

6.1 The first phase 81

The external FLASH
Parameter Value

IDCY 4
WST1 2
RBLE 1
WST2 0

BUSERR -
WPERR -

WP 0
BM 0
MW 01
AT 00

(a)

The External RAM
Parameter Value

IDCY 0
WST1 0
RBLE 1
WST2 0

BUSERR -
WPERR -

WP 0
BM 0
MW 10
AT 00

(b)

Table 6.1: Configuration values for the external FLASH and the static RAM
connected through the EMC.

The FLASH memory The external FLASH memory is connected to the
bank zero of the EMC, why the relevant configuration register is BCFG0. The
device is a 70 ns device which means that the read cycle time is 70 ns (ref.
[Int05, page 25]). The table 6.1(a) shows the configuration BCFG0 register.
This gives the following binary string:
0001 0000 0000 0000 0000 0100 0100 0100 which can be expressed as 0x10000444.

191

192 /∗ Conf i gura t ion o f bank 0 − the e x t e r na l FLASH ∗/
193 ldr r4 , bc @load base address o f bank c on f i g u r a t i o n .
194 ldr r0 , [r4 , #b0] @Load the address o f the BCFG0 in to the

r e g i s t e r .
195 ldr r1 , [r4 , #conf b0] @Writing va lue to con t r o l r e g i s t e r .

The external RAM The external RAM is connected to bank one of the
EMC, why the relevant configuration register is BCFG1. As a whole writing
circle of this RAM last only 10 ns (see [sam04, page 2]) the timing of in general
should not give rise to any concerns. A thorough inspection of the timing
diagram of the devices ([sam04]) has not indicated any issues either. The values
of the parameters as given in [Phi03, table 3.8, page 58] are listed in table 6.1(b).
This gives the following binary string:
0010 0000 0000 0000 0000 0100 0000 0000 which can be expressed as 0x20000400.

197

198 /∗ Conf i gura t ion o f bank 1 − the e x t e r na l s t a t i c RAM ∗/

82 Implementation details of the boot procedure

199 ldr r0 , [r4 , #b1] @Load the address o f the BCFG0 in to the
r e g i s t e r .

200 ldr r1 , [r4 , #conf b1] @Writing va lue to con t r o l r e g i s t e r .

6.1.1.8 The memory test

The third task is to execute the memory test to find a place for the C stack.
Therefore the program branches to the memory test:

202

203 /∗Continue to memory t e s t ∗/
204 b memoryTest

The memory test has been described in chapter 4.

6.1.1.9 Setting up the C stack

When a usable area of RAM is found by the memory test the C stack is setup.
The code performing this operation is found in cStack.c.

12 cStack :
13 /∗ Input : ∗/
14 /∗ r0 : base address o f RAM area ∗/
15 /∗ r1 : h i g h e s t v a l i d address o f ∗/
16 /∗ s t a c k area . ∗/
17 /∗Output : ∗/
18 /∗ r0 : Stack po in t e r ∗/
19 /∗ r1 : Stack Limit ∗/
20

21

22 and r1 , r1 , #0xFFFFFFFC @Align Address .
23 mov sp , r1 @move address f o r s t a c k po in t e r to co r r e c t

r e g i s t e r .
24 sub s l , sp , #STACK SIZE @ca l c u l a t e s t a c k l im i t (s l) and p l a c e s
25 @ in co r r e c t r e g i s t e r
26 mov r0 , sp @Copy s t a c k po in t e r to r0 .
27 mov r1 , s l @Copy s t a c k l im i t to r1 .
28

29 b boot @ Branch to C code .

This function also calls the boot C function. The stack pointer and the end of
the stack area are passed as arguments to the boot function.

6.2 The second phase 83

6.2 The second phase

The second phase consist of many small steps. In this section only the central
steps are reported. The reader is asked to investigate the source code if more
details are needed.

1. Initialise central structures.

2. Find a SIB and test integrity of it.

3. If silence period is still lasting, enter silence mode.

4. Check boot counter to determine whether to start the OS or not.

5. Write SIB to record boot attempt and control validity of written data.

6. Perform complete memory test.

7. Test integrity of OS before starting it.

6.2.1 The implementation

The code of the main boot program is placed in boot.c. As described in section
5.3 central system information is gathered in the SPS. A central instance of this
structure is allocated on the stack as the first thing done by the boot function:

33

34 //Used to c o l l e c t in format ion about FLASH wr i t e e r ro r s .
35 int e r r o r I n f o ;
36

37 // Var iab l e s used by the SIB system . SIB Parameter S t ruc tu re
38 struct SPS sps= {
39 (struct SIB ∗) BEG ADDRESS, /∗Beginning address o f the

array ’ s i b s ’ . ∗/
40 0x0 , /∗Pointer to the l a t e s t v a l i d SIB or the d e f a u l t

SIB . ∗/
41 −1, /∗ Index o f t h eS i b in the array ’ s i b s ’ . ∗/
42 MAX NUM OF SIBs , /∗number o f SIBs in array ’ s i b s ’ . ∗/
43 0x0 , /∗Pointer to d e f a u l t SIB . ∗/
44 DEFAULT SIB /∗ temporary ve r s i on o f the SIB used during

a l t e r a t i o n o f va l u e s in the SIB ∗/
45 } ;
46 struct SPS ∗ theSps = &sps ;

84 Implementation details of the boot procedure

The most important information in the SPS is a pointer to the valid SIB. It is
called theSib. The pointer to the central instance of the SPS is called theSps.

Together with this a few status variables are also put on the stack. The extensive
’call by reference’ usage of these central variables reduce the stack usage to a
minimum.

As described in section 5.1 the system information which should be saved during
reboots is stored in SIBs. Therefore the task solved by the C program is to find
the most recent SIB and test its integrity.

51

52 i f (f indSIB (theSps) != 0)
53 /∗wri teLog (”Couldn ’ t f i n d any s i b . Use d e f a u l t ”) ∗/ ;
54

55 i f (testTheSib (theSps−>theS ib) != 0) {
56 /∗TODO: wri teLog (” s i b conta ins i n v a l i d data ”) ∗/ ;
57 f a i l s a f e (theSps−>theS ib) ;

If no valid SIB is found in the FLASH, the default configuration is used.

6.2.1.1 The silence period

The completion of the silence period just after launch is controlled by the
launchSilence function which is called from the main function

59

60 // I f f i r s t s t a r t
61 i f (theSps−>theSib−>launchBit > 0) {
62 //TODO: Set ho ld Flag to COMMpic
63 r e s u l t = launchS i l enc e (e r r o r I n f o , theSps−>idxOfTheSib) ;
64 //TODO: Remove ho ld f l a g from COMMpic

6.2.1.2 Boot counter test

The boot counter is inspected to determine whether the OS should be started
or the FS should be started instead.

72

73 //Test boot counter
74 i f (theSps−>theSib−>bootCounter == 0)

6.2 The second phase 85

6.2.1.3 Recording of boot attempt

At each boot attempt a new SIB should be written to record the boot attempt.
This storage operation is carried out as early as possible in the boot process to
ensure that the information about the attempt is stored in case of an uncon-
trolled reboot.

76

77 //Decrement boot counter
78 r e s u l t = decretBootC (theSps , (int ∗)&e r r o r I n f o) ;
79 i f (r e s u l t != 0)
80 f a i l s a f e (theSps−>theS ib) ;
81

82 i f (f indSIB (theSps) != 0)
83 f a i l s a f e (theSps−>theS ib) ;
84

85 i f (testTheSib (theSps−>theS ib) != 0)

6.2.1.4 The complete memory test

If the C stack not is placed in the external RAM a complete memory test is
carried out.

87

88 //Test RAM comp le t e l y f o r memory e r ro r s .
89 i f (s tackLimit < RAM1 BASE) {
90 r e s u l t = memTestC((datum ∗) RAM0 BASE, (s tackLimit −

RAM0 BASE)) ;
91 i f (r e s u l t != 0)
92 return r e s u l t ;
93 r e s u l t = memTestC((datum ∗) RAM1 BASE, RAM1 LENGTH) ;
94 i f (r e s u l t != 0)
95 return r e s u l t ;
96 }
97 else

If this memory test finds any flawed memory locations the FS software is started
instead of starting the OS i.e. bring the satellite in nominal mode.

86 Implementation details of the boot procedure

6.2.1.5 Testing validity of the OS image

The final operation which is to be carried out before the OS is started is to test
its integrity. This is done by calculating its checksum:

99

100 //Check checksum of OS be f o r e s t a r t
101 i f (crcCompute ((unsigned char ∗) theSps−>theSib−>eCosBeg , (

theSps−>theSib−>eCosEnd − theSps−>theSib−>eCosBeg)) ==
theSps−>theSib−>eCosCheck) ;

102 // s t a r t nominal mode .
103 else

If the test is passed the OS is started. The procedure for starting the OS has
not been clarified yet. The SIB contains a field where a pointer to an entry
point could be stored. The OS should reinitialise all memory usage as the stack
allocated for the boot and FS software is to small.

Chapter 7

Compilation and debugging

This chapter presents the programs and techniques used for building, debugging
and testing the boot and FS software for the DTUsat-2. Basically all programs
used are parts of the GNU GCC tool chain. The chapter will primarily describe
and discuss the techniques used for debugging and testing. The reason for this
is that the building process is automated by the GNU Make tool and therefore
should not be subject to any problems.

7.1 Building and compilation

The tool chain used in the build process is a GNU GCC based tool chain based
on GCC version 4.1.1. This tool chain is chosen because it is used to build the
OS used on the DTUsat-2. To ensure compatibility between the binary files
used on the satellite all programs will be built using the same tool chain.

7.1.1 Compilation of assembly modules

Some of the functions used early in the boot process are implemented in the
assembly language and compiled using the GNU Assembler (GAS). To be able

88 Compilation and debugging

to use the facilities of preprocessing i.e. primary text substitution, the assembly
files should be run through the GNU C preprocessor (CPP) before being assem-
bled by GAS. Unfortunately GAS does not call CPP during its working cycle.
Therefore it should be called manually before the file is processed by GAS.

This is done by a rule in the Makefile and the extension of the output file is ’s’,
where the input has the extension ’S’. This also means that changes should be
made to the file having a capital ’S’ as extension and not a lower case ’s’.

After that the GAS is called to process the output file.

7.1.2 Pitfalls during the building process

This section contains descriptions of some of the problems encountered during
the build process, and the solution found to avoid them. The section is thought
of as a way to hand over experiences from developer to developer and an inspi-
ration when other problems should be solved in connection with the building
process.

7.1.2.1 Handling floating point

The ARM7TDMI processor does not contain any floating point unit in its
core. Therefore all FP operations needs to be handled by software functions.
This is normally done by including a standard function library for example the
libgcc.a-library which contains the necessary functions.

If a program does not contain any usage of FP data types it does not need the
FP library function in order to compile.

For compatibility reasons the binary ARM format have the possibility of con-
taining both software based and hardware based FP handling, but not both in
the same binary. This is controlled by the “-msoft-float”- and “-mhard-float”-
flags of the compiler.

The principle for handling FP influence the call conventions of the binary why
all functions must use the same FP handling scheme. More precisely it influence
the Application Binary Interface (ABI).

Because the program contains objects assembled from assembly source code and
objects compiled from normal C-code both the assembler and compiler need to

7.2 The linker scripts 89

get the correct flags. Unfortunately the “msoft-float”- and “mhard-float”-flags
are unknown to the assembler. Instead the “-mfloat-abi=soft” construction
should be used which is known by both the GAS and the GCC.

7.1.2.2 Handling binaries containing both thumb and 32bit code

In order to make binaries which contain both 32-bit code and thumb code or
just contains calls to functions compiled into thumb code, the compiler needs a
certain flag: “-mthumb-interwork”. The IAP functions are compiled as thumb
code why any binary containing calls to the IAP functions should be compiled
with the flag in order to work correctly.

7.2 The linker scripts

The DTUsat-2 has an unique memory configuration. This configuration consists
of different ROM, FLASH and RAM areas where some are remapped.

The memory configuration also differs between the Olimex test board and the
flat-sat, and between the flat-sat and the flight configuration.

On the Olimex test board the memory configuration is straight forward: All
software related to the boot system (interrupt vectors, boot and FS software)
is placed in the internal FLASH memory from address zero. No remapping of
the interrupt vectors are done, because they are unused by the boot and FS
software.

On the flat-sat the 64 bytes containing the interrupt vectors and their checksum
are placed as the 64 first bytes in bank zero of the external memory interface.
This is because bank zero in the flight configuration will be connected to a ROM
containing the boot software and the FS software. To simulate this a ROM only
containing the interrupt vectors and their checksum is installed on the flat-sat.
The reset vector contains a branch instruction which branch to the beginning
of the second block of the internal FLASH. This block should then contain the
boot and FS software1. In the flight configuration all software related to the
boot system is placed in a ROM connected through bank zero on the external
memory interface.

Therefore three tailored linker scripts are necessary: one for the configuration

1The first block in the internal FLASH is allocated for the SIBs

90 Compilation and debugging

of the Olimex, one for the flat sat and one for the flight configuration.

Only the linker script for the Olimex development board is implemented. In this
script no texttt.section directives is given since they induced an error during the
linking process which could not be solved in this project.

7.3 Debugging and Test

The debugging and tests were carried out using the GDB version 6.5.0 together
with the Tcl/Tk based GUI Insight. Through these programs the program which
was subject to the test or debugging was executed on the ARM simulator which
is a part of GDB.

The Insight program is a graphical front end for GDB. The GUI gives the user
a better overview of the registers, memory and variable values during execution
and ease the placement of break points. This is primarily important during
debugging.

7.3.1 The assembly language implementation of the mem-
ory test

The memory test routine were called through a simple test harness also imple-
mented in the assembly language. The source code can be inspected in listings
F.18. The test harness is generic in the sense that it branches to a label called
main which is defined as global. If it is linked with any object file containing a
label called main it will branch to this during execution.

7.3.2 Using GDB command scripts

The GDB has a script system which works almost as the shell script concept. It
is possible to write scripts using the same commands which are available in the
command line interface. Besides that it has some extra commands which makes
it possible to write scripts containing conditionals and loops. See [gdb06, sec.
20] for the extra commands.

The scripts are used to automate tests and make them reproducible. Two
examples of used scripts will be given here to illustrate the used commands and

7.3 Debugging and Test 91

how they are combined.

7.3.2.1 Testing the value of registers

The first script which will be described is a simple test of the value of a range
of registers. It is used to test the initialisation part of the memory test function
implemented in assembly language:

define test1
#Test if values are correct initialised in the beginning
#of the function.

echo *** Test 1 *** \n
#Stop program if running.
kill
#Set temporary breakpoint.
tbreak TestMemory
#Start program.
r
echo Test 1:
#Test Base address of RAM0.
reg0 0
echo Test 1:
#Test highest valid address of RAM0.
reg1 0x1FFF
echo Test 1:
#Test pointer to current byte address.
reg2 0x1FFF
echo Test 1:
#Test Stack size
reg8 0x400

end

The lines starting with a hash mark (#) are comments. The functions called
’reg0’ to ’reg8’ are defined earlier in the source file (see appendix F.19 line 151
- 173) which show the ability to define and call functions just as this function
(test1) is defined.

The operating principle of this is first to define a break point, run the program
until the break point and test the values of the registers to ensure that they are
correct. The break point defined in this function is actually a temporary break

92 Compilation and debugging

point which means that it is removed automatically when the program pass it
the first time.

7.3.2.2 Fault injection during execution

The next script is more advanced and illustrates the ability to do fault injection.
This script is used to test the memory test functions fault tolerance by handling
a transient fault in the memory.

define test24
echo *** Test 24 *** \n

kill
tbreak WriNormIni
break wp1Test24
r
c
c 13
set $r11 = 0x25
c
c 10
echo Test 24:
memByte 0xf2 0x1ff2
echo Test 24:
memByte 0xf1 0x1ff1
echo Test 24:
memByte 0xf0 0x1ff0
echo Test 24:
memByte 0xef 0x1fef
echo Test 24:
memByte 0xee 0x1fee
echo Test 24:
memByte 0xed 0x1fed
echo Test 24: \n
x /40xb 0x1fe0
clear wp1Test24

end

The operating principle of this script is to define two break points. The first is
temporary and only used as initialisation of the script. The second is used during
the fault injection where the first is passed twelve times and the thirteenths time
the program is stopped. Then the value of register 11 is changed which is the

7.3 Debugging and Test 93

fault injection and the break point is passed ten times again. After that the
values of a row of memory addresses are tested to see that the program has
continued correctly. Finally a dump of 40 memory addresses starting at 0x1fe0
is done and the break point is removed. The memory dump is only done as a
service to the operator who then can inspect the memory area where the fault
was injected.

As it can be seen in both the mentioned examples absolute values are used in
the scripts. A better solution would have been to assign the basic values as base
address of the memory areas to some variables and then calculate the needed
values from these during the execution of the test. This would have made it
much easier to adapt the test to another environment for example if the memory
boundaries are changed. As the scripts are implemented right now it is necessary
to do some search and replace in the scripts before they can test systems with
a different memory setup.

94 Compilation and debugging

Chapter 8

The timed models

8.1 Introduction

This chapter contains descriptions and analysis of two formal models. The first
is a model of the basic communication between the OBC and the beacon module
of the radio subsystem (COMM).

The second model is a model of the functionality of the memory test carried
out during the boot of the DTUsat-1. This second model does not model any
concurrency or parallel issues. Instead it models the functionality and behavior
of a sequential assembler routine which carry out a simple memory test.

Both models are built in the formal modelling language Uppaal. The two main
arguments for using formal models are:

1. A formal model makes it possible to reason precisely about the properties
of a system and it makes it possible to prove certain properties of the
system.

2. A formal model makes it possible to concentrate on the central aspects of
the functionality and behavior of the system putting less important issues
in the background.

96 The timed models

8.1.1 The Uppaal Modelling language

An Uppaal model consist of a network of connected processes. Each process
is a timed automaton described as a state diagram consisting of places and
edges (see examples in appendix H). The places represent the individual states
and the edges represent the transitions between the states. An edge can be
guarded by a logical expression which needs to be fulfilled for the edge to be
fired i.e. used as path from one state to another. The edges can also contain
actions which should be carried out when the edge is fired. The places can
contain invariants which should always be fulfilled when an automaton is in
that particular state. The processes are connected directly through channels,
which is a primitive invented to synchronise two processes. The processes are
also connected indirectly through reading and writing of global variables. The
Uppaal modelling language is further described in [BDL04] and on its homepage:
[UA].

8.2 Communication between OBC and COMM

The boot and FS software is kept as simple as possible. This means that any
means which could add unpredictability or complexity are avoided. Besides the
interrupt system which raise the unpredictability of the system, any concurrency
are also avoided. Therefore both the boot and FS software is programmed in a
purely sequential fashion.

There is one area where concurrency and the unpredictability it gives cannot be
avoided: the communication between the different subsystems. The majority
of this communication is handled by standard bus systems as the CAN or SPI
bus which ensures high predictability even in this asynchronous context. These
buses will not be considered further.

Besides that it is also necessary to establish some simple direct communication
between the OBC and beacon module of the COMM subsystem. The first model
which is described in this chapter analyse this issue.

The COMM subsystem has not been described earlier, why a short description is
presented here. The COMM subsystem has not been designed or implemented
yet but following information can be considered predefined why a potential
design should comply with it.

The COMM subsystem is essentially a radio. It consists of a transmitter, a

8.2 Communication between OBC and COMM 97

receiver and some control logic. It is both capable of sending data provided by
the OBC and generate its own data packets. The last kind of packets are some
simple beacon packets which only contain basic information about the state of
the satellite.

The COMM module works by sending beacon packets periodically if it does not
get any other commands from the OBC. The possible other commands are a
silence command which asks the COMM to stop sending beacon packets and a
send command which asks the subsystem to send some data provided by the
OBC. Finally it is also capable of receiving data packets from the ground station.

The COMM subsystem is an autonomic subsystem, which means that it con-
tains its own micro controller. This concept entails that the only provision
which needs to be satisfied for the COMM subsystem to operate is that it is
supplied with power. The operation of the module is thus not dependent of the
OBC being in an operational condition or directly controlled by it. It will there-
fore operate in parallel to the OBC. This also entails that the communication
between the OBC and the COMM is based on a communication protocol with
some timing constraints being observed by both systems.

8.2.1 Communication protocols

Communication protocols often relies on a specific timing which is a part of the
protocol description. If the sender or receiver violates the timing constraints
described in the protocol the consequence is failure of the communication. In
worse cases the receiver, the sender or both are led into an illegal state caus-
ing a deadlock in either one or both of the modules. Therefore the time-wise
properties should always be verified when a new protocol is designed.

A formal model of the communication between the sender and the receiver
should be built. This model should then be used to simulate and verify the
temporal properties of the communication using a model checker.

The communication protocol used between the OBC and the COMM is designed
for this specific communication set up only and should therefore be verified to
ensure that it is flawless.

98 The timed models

8.2.2 The modelled system

The OBC and the COMM are connected through two different connections: A
SPI bus between the OBC and the COMM which is used for data transmission
and command signaling, and a direct link using four pins of the GPIO port.
The last connection is used during the boot phase and in nominal mode.

The connection through the GPIO is connected to the beacon module of the
COMM subsystem. The beacon module sends status beacons from the satellite
announcing the state and condition of the satellite. It is able to send two
different kinds of beacons: One type contains the temperature of the satellite
only. This type of message only requires the EPS, COMM and beacon module
to be in operational condition. The second type contains more information.
This information is collected by the OBC and therefore rely on the OBC being
in operational condition.

When the satellite is launched it needs to be silent for the first fifteen minutes
after launch. It is also necessary that the OBC can turn off the beacon module
while it use the radio. This is signaled through the connection made through
the GPIO.

The connection through the GPIO consist of four wires. Three of them are
signaling the mode of the satellite. The three wires carry the same value. They
are triplicated for redundancy. The fourth wire is a serial data connection trans-
ferring status information from the OBC to the beacon module. A schematic
figure of the connection configuration is presented in figure 8.1.

Beacon

module
OBC

Radio

SPI

Data wire

Mode wires

Figure 8.1: Schematic illustration of the wire connection between the OBC
and the beacon module of the COMM subsystem. All unnecessary details are
discarded.

8.2 Communication between OBC and COMM 99

The connection can be in three different modes: silence mode, FS mode and
nominal mode. The individual wires can be in three different states: low (carry-
ing a zero (0)), high (carrying a one (1)) and undefined (carrying an undefined
floating value (X), optionally a well defined data signal). In table 8.1 the indi-
vidual configurations of the wires are given for the three modes.

Wires/Mode Silence FS mode Nominal
Wire 0 0 0 1
Wire 1 0 0 1
Wire 2 0 0 1
Data wire 1 0 X

Table 8.1: Table showing value configurations of the wires in the OBC-beacon-
module connection. “X” means undefined or serial data.

8.2.3 The model

The model is built from nine processes each representing a part of the system.
The nine processes are made from six process templates. They are intercon-
nected as shown in figure 8.2.

The individual processes are shown in appendix H.1. Below is a description of
some of the processes and the issues encountered during the implementation of
them.

8.2.4 The wire

As part of the system the wires are modelled too. The easiest way to model the
wire is as a global variable. This solution is however too simple for our purpose.
The reason for this is that this model should contain the possibility for fault
injection on the wire.

Therefore the wire is modelled as a simple process containing two locations.
In order to ensure that the signal is propagated instantly from the OBC to
the COMM it is necessary to synchronise the edges through urgent channels.
Channels do not have any equivalents in the real world and the model therefore
uses abstract objects that cannot be implemented in the real world. On the
other hand a simple wire can be considered urgent except from loading time
deriving from capacitive properties of the wires which should not be considered
in this model.

100 The timed models

O
B

C

W
D

TO
B

C
W

ir
e1

C
o
n
tr

o
l

W
ir

e

W
ir

e0

W
ir

e2

W
ir

eD
at

a

C
O

M
M

C
O

M
M

W
D

T

k
ic

k
C

O
M

M
W

D
T

to
C

O
M

M
en

ab
le

C
O

M
M

w
d
t

C
o
n
tr

o
l

D
at

a

W
D

T
to

O
B

C

k
ic

k
O

B
C

en
ab

O
B

C
w

d
t

O
B

C
o
u
tS

y
n
c(

L
/H

)

W
ir

eS
y
n
c(

L
/H

)[
1
]

W
ir

eS
y
n
c(

L
/H

)[
0
]

O
B

C
d
at

a(
L

/H
)

W
ir

eS
y
n
cH

[3
]

W
ir

eS
y
n
c(

L
/H

)[
2
]

C
O

M
M

in
[1

]

C
O

M
M

in
[2

]

C
O

M
M

in
[0

]

C
O

M
M

in
[3

]

Figure 8.2: Figure showing the interconnections between the processes in the
OBC-COMM model. Solid lines represent channel connections and dashed lines
represent connections through global variables. Only the important intercon-
nections are showed.

To solve this issue the wires are synchronised using urgent channels when the
OBC changes its state output and the wires are updating an boolean value in
COMM reflecting the state of the wire.

No fault injection is actually implemented in this model but the ability to do it

8.2 Communication between OBC and COMM 101

later is kept open.

8.2.5 The OBC

The model of the OBC is simple and illustrates that the boot procedure is a
simple sequence with only a minimum of branching.

8.2.6 Modeling a reset of one of the subsystems

The Uppaal modelling language lacks primitives which support simple modelling
of reset operation which will bring the system back to initial state instantly no
matter which location and state it may be in.

This problem also applies to the ability to model exception handling capabilities
of the modelled system.

The only way to simulate this is by make a new location e.g. called ’reset’ and
connect it to all locations. This is a quite cumbersome way to do it which will
make a big model even more unclear. If a fault injection mechanism also should
be able to reset the system at arbitrary times this add another ’reset’ net besides
the ’real’ reset net. To reduce the number of places and edges in the model the
reset tree is extended to do any kind of fault injection resulting in a reset of the
system. This is simply done by implementing a fault injection process which
also synchronise the OBC over the ’reset’ channel.

8.2.7 Setting up hold mode

The COMM needs to have an initial delay to wait for the OBC to setup the
control lines between the two. If they are not setup correctly before they are read
by the COMM they would be in an undefined state which could be interpreted
as safe mode. This would initiate transmission of safe mode beacons. This is
an illegal operation in the first 900 seconds and therefore be avoided.

Another solution could be to let the COMM setup the wires itself as a part
of its initiation. After that the OBC could change it when ready. This would
solve the timing problem making the system tolerant to changes in the timing
of the OBC’s initiation phase. This solution was modelled successfully. It is not
known at the moment whether this solution can be implemented or not. The

102 The timed models

problem comes from the fact that the COMM needs to write to its own input
registers which may be impossible due to the way the hardware is designed.

Another major problem concerning this solution is that it possesses a potential
race condition. This results in a situation where the input of the COMM could
be put into an undefined state if both the OBC and the COMM try to write to
the input at the same time. This last concern should result in that this solution
is abandoned.

8.2.8 Open issues

In the present version the model is unable to reason precisely about the com-
munication between the OBC and the COMM. The reason for this is lack of
information. All timing values are still unavailable and need to measured on the
flat sat and incorporated in the model before the model gets useful. It has not
been possible to gather any of the relevant values because the hardware is not
ready yet.

A way to simplify the model is to parameterise all timing values by having a
global clock speed as a constant and then let the dependent variable values
be the product of a multiplication between this global clock and an individual
parameter. This will also ease adaption of the model to changes in the hardware.

8.2.9 Conclusion

A model of the communication set up between OBC and the COMM beacon
module has been designed and implemented. Some parameters and values still
needs to be adjusted.

During development of the model it was found out that the time it takes to
send a beacon or data packet of course should be shorter than the timeout of
the WDT. This result has been found using the simulator on early versions of
the model.

The model has been verified not to deadlock in its present version.

8.3 Modelling the memory test of DTUsat-1 103

8.3 Modelling the memory test of DTUsat-1

The purpose of the model of the memory test used in the initialisation phase of
the DTUsat-1 is to verify whether this part of the software is able to go into an
infinite loop or not. The following block of assembly code should be modelled:

167 Write : /∗ r0=base , r1=h i g e s t v a l i d address ,
168 ∗ r2=po in t e r to a c t ua l address ,
169 ∗ r3=tmp , r8=0x00000000 ,
170 ∗ r9= 0xFFFFFFFF, r10=STACK SIZE ∗/
171

172 str r9 , [r2] /∗ save HIGH in mem ∗/
173 ldr r3 , [r2] /∗ read pa t t e rn back again ∗/
174 cmp r9 , r3 /∗ t e s t ∗/
175 bne Fa i l
176 str r8 , [r2] /∗ save LOW in mem ∗/
177 ldr r3 , [r2] /∗ read pa t t e rn back again ∗/
178 cmp r8 , r3 /∗ t e s t ∗/
179 bne Fa i l
180 sub r3 , r1 , r2 /∗ space from po in t e r to top ∗/
181 cmp r10 , r3 /∗ compare wi th needed s t a c k space ∗/
182 b l e CRTSetup /∗ se tup s t a c k i f enough space ∗/
183 sub r2 , r2 , #4 /∗ sub 4 from address ∗/
184 cmp r2 , r0 /∗ compare po in t e r to base ∗/
185 movlt pc , r14 /∗ re turn i f a c t ua l address was be low base

addr . ∗/
186 b Write
187 Fa i l : mov r1 , r2
188 b Write

As it can be seen the software which should be verified is already implemented.
This entails big constraints on the model since it should be so close to the actual
implementation that it can reason about its behavior.

Therefore a ’precautionary principle’ has been applied which simply demands
the model to be as close to the actual implementation as possible. The imple-
mentation of this principle has been done by letting each instruction of assembly
code be represented in the model by one or two edges. In figure 8.3 the connec-
tions between the individual edges and assembler instructions are presented.

Another reason for precision in the model is that only a very small but very
important modification needs to be carried out in order to remove the fault
from the implementation. To be able to demonstrate how little change it is the
model needs to be quite detailed.

104 The timed models

success

End

CRTSetup

Start

ins = 0

ins = 0

memory[r2][1] ==1

memory[r2][1] ==1

r2 >= r0

ins = 0

r2 < r0

ins = 0

r2 = r2 - 1, ins = 0

r3 != r10
ins = 0

r3 == r10
ins = 0

branchWrite?

r3 != r8
branchFail!

r3 = r1 - r2, ins = 0

r3 == r8
ins = 0

r3 = memory[r2][0]

memory[r2][1] == 0
memory[r2][0] = r8

branchWrite?

r3 != r9

branchFail!r3 == r9
ins =0

r3 = memory[r2][0]

memory[r2][1] == 0
memory[r2][0] = r9

str r9, [r2]

ldr r3, [r2]

cmp r9, r3
bne Fail

cmp r9, r3

str r8, [r2]

ldr r3, [r2]

bne Fail

sub r3, r1, r2

cmp r8, r3

cmp r10, r3

cmp r10, r3

sub r2, r2, #4

cmp r2, r0

cmp r8, r3

Figure 8.3: Figure showing connection between edges and assembler instructions
in model of memory test on DTUsat-1.

8.3 Modelling the memory test of DTUsat-1 105

8.3.1 The temporal issues in the model

The assembly code which should be modelled is executed on a single processor
in a linear fashion. It does not use any kind of clocks either. This removes all
concurrency and temporal issues of the model since no race conditions could
occur. Therefore it could be argued that it is unnecessary to model the function
using UPPAAL. On the other hand the UPPAAL tool gives a good view of
what is happening during the execution. It could also be argued that not using
clocks in any of the processes converts UPPAAL to a tool verifying systems of
interconnected state machines.

It is possible to use UPPAAL in this way if special precautionary measures
are used: Because UPPAAL is developed to simulate and verify models which
consist of timed automatons, time will always be taken into consideration in the
verification of a model. This means that if a model gets into a stable state and
no invariants in any of the active places contains time constraints which force
the model to the next state, it can stay in that stable state forever. The solution
to this is to make almost all places urgent or committed.

If a state of the system contains any urgent place, the time is not allowed to
pass before the urgent place is left. This forces the model to continue to the
next state all the time because all states of the system contains urgent places.

If a state contains a committed place, time is not allowed to pass and the
verifier should always fire an edge which goes out from a committed place when
continuing to the next state. This rule also forces the model to continue all the
time and it forces the model to choose an edge from a committed place if it can
choose between an edge comming from a committed place and one coming from
an urgent place. If a state contains more than one committed place the verifier
is allowed to choose any of the legal edges from any of the committed places.

Another precautionary measure which should be used, is the ability to limit the
number of edges that can be fired in one automaton before an edge of another
automaton should be fired. It is necessary to consider this issue because the
fault injection automaton for instance is not directly connected to any other au-
tomatons through channels and it is not connected indirectly through any global
variables either. This gives the verifier the ability to let this automaton circle
through its states forever without firing any of the edges of the other automa-
tons in the model. The solution to this problem is to connect the considered
automaton to the other automatons through a global variable. This variable
is used as a counter which is incremented by all edges in one automaton and
reset by all edges in another automaton. The incrementing edges should also be
guarded with a limit of the value of the counter. In this way the incrementing

106 The timed models

automaton is allowed only to fire the number of edges the limit of the counter
gives before the other automaton is allowed to run and thereby resetting the
counter.

8.3.2 Fault injection

The fault injection used in the model is quite simple even though it is able
to model both transient and permanent faults. The fault injection is done by
extending the model with a fault injection process which is shown in figure
8.4. This process first injects a fault by changing the value of the memory cell
being examined by the memory test function. After that it decides whether the
fault should be marked as permanent or not. The result is written in an extra
field in the array modelling the memory. The two decisions are of course made
randomly.

memory[r2][1] = 1

memory[r2][0] = 25

Figure 8.4: The process handling fault injection in the memory test model.

8.3.3 The test case

The fault in the assembly code entails that the test loop will get caught in
an infinite loop if a permanent fault is found. Therefore a permanent fault is
induced in the memory array at the second location in the array. This is done
to show that the code runs correctly until the fault is met.

8.3 Modelling the memory test of DTUsat-1 107

Query Without permanent fault With permanent fault
A2 not deadlock property is not satisfied property is satisfied
A2 Write.success property is not satisfied property is not satisfied

Write.Start → property is not satisfied property is not satisfied
Write.success

A3 Write.success property is not satisfied property is not satified
E3 Write.success property is satisfied property is not satified

Table 8.2: Queries and result of the tests of the model of the OBC ↔ COMM
interaction.

8.3.4 The results

In table 8.2 the queries together with the results of the tests are presented.

If the memory test should work satisfactorily the second query “A2 Write.success”
should be satisfied since this query requires that the process will always end in
the “success” place. This will happen if the C stack is initialised correctly or
the whole memory area is read without finding any proper areas for the stack.
The verifier is able to find a counter example where the model is trapped in an
infinite loop.

Only the weakest query is fulfilled (E3 Write.success). This is because the fault
injection is able to induce transient faults such that the model is kept in the
upper loop in an infinite loop, see figure 8.5. It is most unlikely that this should
happen. The reason is that it requires a lot of transient faults to occur on the
same memory address in long period of time. On the other hand it shows that
the model contains a potential risk to go into an infinite loop.

As it can be seen not even the weakest property is satisfied if a permanent fault
is present in the memory, (see table 8.2). This means that the test will get
caught in an infinite loop if it detects the fault type it is designed to find. The
model is trapped in an infinite loop in the upper loop of the ’Write’-process as
illustrated in figure 8.5.

The solution to the fault is quite simple: The address counter needs to be
decremented in the top of the routine. If a sub instruction was placed in the
top of the routine, it would work correctly, but since it does not decrement the
address counter if a permanent fault is encountered the routine is trapped in an
infinite loop.

The experience with this assembly routine resulted in that all code which was
copied from the code base of the DTUsat-1 project was inspected closely and

108 The timed models

success

End

CRTSetup

Start

ins = 0

ins = 0

memory[r2][1] ==1

memory[r2][1] ==1

r2 >= r0

ins = 0

r2 < r0

ins = 0

r2 = r2 - 1, ins = 0

r3 != r10
ins = 0

r3 == r10
ins = 0

branchWrite?

r3 != r8
branchFail!

r3 = r1 - r2, ins = 0

r3 == r8
ins = 0

r3 = memory[r2][0]

memory[r2][1] == 0
memory[r2][0] = r8

branchWrite?

r3 != r9

branchFail!r3 == r9
ins =0

r3 = memory[r2][0]

memory[r2][1] == 0
memory[r2][0] = r9

Figure 8.5: Ill. showing the infinite loop in the ’Write’-process.

only if it was totally clear and simple to explain what the code did it was actually
used in the DTUsat-2 project.

Also during the implementation of the memory test implemented in assembly
language in the DTUsat-2 a lot of attention and emphasis was put into ensuring
that no infinite loops were possible in this code. The approach used on DTUsat-1
where the top of the potential stack area is moved down every time a permanent
fault is encountered is copied in the DTUsat-2 but it is ensured that the top is
actually moved down below the flawed memory address.

Conclusion

Summary

This report has presented the work of my master’s project. An overview of
dependability theory and some of the available means and tools to raise the
overall dependability of system was given in chapter 1.

An analysis of the boot procedure, resulting in some requirements to the software
has been performed. This analysis revealed that the memory test of the system
before setting up a C stack needed special care why a dedicated analysis of this
was done.

On the basis of these analysis a boot program was designed and implemented.
The boot program is divided in two parts: A part implemented in assembly
which handle the tasks which needs to be carried out before a C stack can be
established: interrupt disabling, WDT configuration and start, and some more
hardware and memory configurations.

The other part of the software is implemented in C. This part handles the silence
period, the system information handling and boot attempt control, ensuring that
the change from FS to nominal mode is only performed if the satellite is in a
state where it is able to run the OS fault free.

These two parts of the boot program constitutes an implementation of the boot
software which complies to the demands outlined in chapter 3.

The memory test implemented in assembly code has two main features: If any

110 The timed models

fault is found the type is identified and if any fault free memory area large
enough to host the C stack exists on the system it is found. The memory
test has been tested systematically using an automated test utilising the GDB
script language. This memory test implements a fault tolerance technique which
ensures that faults in the RAM are handled in a controlled way.

The FS software of the DTUsat-1 has been updated and modified in order to
work together with the new version of the boot program for DTUsat-2.

Two formal models have been designed and implemented in the Uppaal mod-
elling language. The first models the communication between the OBC and the
COMM subsystems. This model has only been designed and implemented.

The second model models a part of the assembly code of the boot program used
on the DTUsat-1. This model verifies that the code possesses the ability to get
caught in an infinite loop if a fault in the memory is detected.

8.4 Main contributions

The following main contributions have been contributed to the DTUsat-2 project:

• Extended memory test.

• Redesign of the boot procedure and the system information block

• Adaption of the FS software from the DTUsat-1 to the DTUsat-2

8.5 Future work

The boot and FS software has not been tested systematically and they both lacks
some functionality primary due to lack of information about the hardware. The
code which has been developed in this project is considered operational when it
has been tested.

The FS software has nor been tested functionally together with the communi-
cation application ’FSTerm’.

A procedure for start of the OS has not been developed why it needs to developed
and implemented. The supplied fields in the system information block should

8.6 Final conclusion 111

ease this task however.

In the present program the WDT is only fed/kicked during the silence period.
The worst case execution time of the memory tests should be measured and the
calls of the WDT kicking function should be added at relevant places in the
code.

The linker scripts for the flat sat and the flight configuration has not been
implemented yet, why this task also needs to be carried out.

In the section describing the FLASH driver for the internal FLASH some de-
sign preconditions are described. These preconditions should be tested on the
FLASH and the drivers corrected according to the results.

8.6 Final conclusion

Index

BlankTestArea
proto type, 163
source code, 165

boot
proto type, 177
source code, 151

boot program
terminology, 23

cclk, 20
crcCompute

proto type, 179
source code, 183

crcInit
proto type, 179
source code, 182

decretBootC
proto type, 156
source code, 158

eraseSector
proto type, 163
source code, 170

findSIB
proto type, 156
source code, 157

IAP
compilation, 89

IAPblankChkSectors
proto type, 164
source code, 172

IAPcompare
proto type, 164
source code, 173

IAPcopyRAMtoFLASH
proto type, 164
source code, 171

IAPeraseSectors
proto type, 164
source code, 171

IAPprepSectors
proto type, 164

IAPrdBootCodeVer
proto type, 164
source code, 172

IAPreadPartID
proto type, 164
source code, 172

initDefaultSib
proto type, 156

initTempSIB
proto type, 156
source code, 159

Internal FLASH, 21

launchSilence
source code, 153

MAM, 21

INDEX 113

memTestAddressBus
proto type, 184
source code, 186

memTestC
proto type, 184
source code, 188

memTestDataBus
proto type, 184
source code, 185

memTestDevice
proto type, 184
source code, 187

pclk, 20
PLL, 20
prepDataArray

proto type, 163
source code, 165

prepDataArraySIB
proto type, 156
source code, 159

printRemainderTable
proto type, 179
source code, 183

simpleInitRtc
source code, 175

storeSib
proto type, 156
source code, 160

System clock, 20

testTheSib
proto type, 156
source code, 157

waitMinRtc
source code, 176

writeDataArrayToFLASH
proto type, 163
source code, 166

writeImageFromRAM
proto type, 163
source code, 169

writeSector
proto type, 163
source code, 167

114 INDEX

Appendix A

Schematic of the satellite

116 Schematic of the satellite

Figure A.1: The schematic system layout of DTUsat-2. Created by Jonas
Bjarnøe.

Appendix B

Solutions used in report
generation

As the reader may have noticed this report is generated using LATEX. This ap-
pendix describes how different issues have been solved during report generation
using various LATEX-packages.

This appendix has been written to inspire future developers to document and
list their code in and simple, easy readable way which only demands a minimum
of work.

B.1 Source listing

All source listing in the report and appendices have been done using the package
Listings version 1.3c. This package has been chosen for its many supported
languages, simple addition of code to handle new languages, many features and
nice output.

Before any listings can be included in the document the following line should
be added to the preamble of the document:

118 Solutions used in report generation

\usepackage{listings}

As it can be seen no parameters are given during initialisation of the package but
the configuration is carried out as a part of the individual listings commands.

To include a file containing source code a listings command should be given at
the place where one wants the listing placed in the document:

\lstinputlisting[numbers=left,numberstyle=\tiny,{language=C},
label=lst:app:sysInfoh,caption={Header file for the System Information
Block (SIB) functions.}]{../../Source/DTUsat2/Lib/sysInfo.h}

This line tells which file to include, which language the file is written in a various
other things which influence the look of the listing.

B.1.1 Listing of assembly code

The ARM assembler language was not supported by the Listings package why a
definition of the keywords and comment identifiers etc. needed to be added to
the system. This definition is added to the preamble of the document:

\lstdefinelanguage[arm7tdmi]{Assembler}{
morekeywords={add,and,b,beq,bgt,bl,bne,cmp,cmpeq,eor,ldmia,ldr,ldrb,
mov,moveq,movlt,movs,mrs,msr,mvn,nop,stmfd,stmia,str,strb,sub,subs},
morekeywords=[2]{.arm,.align,.end,.global,.long,.section,.text,.word},
alsoletter=.,
sensitive=false,
morecomment=[l]@,
morecomment=[s]{/*}{*/}
}[keywords,comments]

As it can be seen the language and the dialect is given on the first line after that
two groups of key words are defined. Only the instructions used in source code
are listed here in this version. To make the package use different typography of
different key words they are defined in two different groups.

B.1 Source listing 119

B.1.2 Adding entries to the table of contents and the in-
dex

A need feature of the Listings package is the possibility to include LATEXcode in
the source files and let the LATEXengine interpret it as such. This feature for
example allows the author to include entries pointing to the individual functions
declarations into the table of content. To use this feature a
lstset{escapeinside={/**}{*/}} declaration needs to be included in the doc-
ument above the place where the source code is included. This declaration de-
fine a set of LATEXcode identifiers in the source code, which should surround the
LATEXcode in the source file. As it can be seen here the identifiers are defined
based on the comment identifiers of the C-language. This is done so to make
the C-compiler ignore the LATEXcodes when the source file is compiled.

In the source file normal LATEXcode can now be included:

/**\index{findSIB!\textit{source code}}*/
int findSIB(struct SPS *sps) { /** \label{lst:app:sysInfoc:findSib}
\addcontentsline{toc}{section}{findSIB()}*/
int index = 0;

B.1.3 Referencing lines in source code

As it can be seen in the source listing in section B.1.2 a label declaration is also
included in the LATEX code. This is done to make possible to make references
to the individual code lines of the source code. If a
ref{} is made inside the document it will return the line number of the that
listing.

B.1.4 Presenting source blocks in the text

The Listings package is also able to make listings inside the text. This simply
done by specify the first and last line number and file name:

\lstinputlisting[numbers=left,numberstyle=\tiny,
{language=[arm7tdmi]Assembler},label=lst:intVec,firstline=43,lastline=54]
{../../Source/DTUsat2/Boot/init.S}

120 Solutions used in report generation

Appendix C

Pseudo code of the memory
test implemented in Assembly

Input: base address, top address, stack size
Output: top address of stack area
initialise pattern -1 ;1

initialise byte counter to top address ;2

for (top address - current address) < stack size do3

if current address ≥ base address then4

increment value of pattern ;5

filter out 24 highest bits of pattern ;6

write pattern to byte address ;7

decrement byte counter ;8

else9

start register based FS ;10

end11

end12

reset pattern to -1 ;13

reset byte counter to top address ;14

Figure C.1: To be continued in figure C.2.

122 Pseudo code of the memory test implemented in Assembly

for (top address - current address) < stack size do1

increment value of pattern ;2

filter out 24 highest bits of pattern ;3

read byte value stored at address of byte counter ;4

if read value 6= pattern then5

write pattern to byte address ;6

increment byte counter by one;7

invert pattern ;8

filter out the 24 highest bits ;9

if byte address == top of RAM then10

subtract stack size from byte address ;11

write pattern to byte address ;12

add stack size to byte address ;13

invert pattern ;14

filter out the 24 highest bits ;15

decrement byte by one ;16

read byte value stored at address of byte counter ;17

end18

else19

write pattern to byte address ;20

invert pattern ;21

filter out the 24 highest bits ;22

decrement byte counter by one ;23

read byte value stored at address of byte counter ;24

end25

if read value 6= pattern then26

align present address ;27

top address = current address - 1 ;28

reset pattern to initial state ;29

restart test ;30

end31

end32

decrement byte counter ;33

end34

Figure C.2: First part of the memory test algorithm used during the init phase.

123

reset pattern to stored (pattern - 1) ;1

reset byte counter to top address ;2

for (top address - current address) < stack size do3

increment value of pattern ;4

inverse pattern ;5

filter out 24 highest bits in pattern ;6

write pattern to byte address ;7

decrement byte counter ;8

end9

reset pattern ;10

reset byte counter to top address ;11

Figure C.3: To be continued in figure C.4.

124 Pseudo code of the memory test implemented in Assembly

for (top address - current address) < stack size do1

increment value of pattern ;2

inverse pattern ;3

filter out 24 highest bits of pattern ;4

read byte value stored at current address ;5

if read value 6= pattern then6

write pattern to byte address ;7

decrement byte counter by one;8

invert pattern ;9

filter out the 24 highest bits ;10

if byte address == top of RAM then11

subtract stack size from byte address ;12

write pattern to byte address ;13

add stack size to byte address ;14

invert pattern ;15

filter out the 24 highest bits ;16

decrement byte by one ;17

read byte value stored at address of byte counter ;18

end19

else20

write pattern to byte address ;21

invert pattern ;22

filter out the 24 highest bits ;23

decrement byte counter by one ;24

read byte value stored at address of byte counter ;25

end26

if read value 6= pattern then27

align current address ;28

top address = current address - 1 ;29

restart test;30

end31

end32

if (top address - present address) = stacksize then33

start C part of boot process;34

end35

decrement byte counter ;36

end37

start register based FS software ;38

Figure C.4: Second part of the memory test algorithm used during the init
phase.

Appendix D

Test cases and results from
the memory test function

D.1 The structural test

126 Test cases and results from the memory test function

Test no. Description
1 Test initialisation of address values and stack size

during initialisation of the function.
2 Test initialisation of pattern and byte counter during

first initialisation.
3 - 5 Test correct reset of values before start of writing and compare

values in memory.
6 - 9 Test that counters are incremented or decremented in loops.

10 Test that function returns if base address is passed.
11 - 16 Test that sub-functions branch to next sub-function when

stack size is reached.
17 Test that correct patterns are written to byte addresses, when

normal pattern is written.
18 Test that pattern is correctly repeated every 256 bytes.
19 Test that correct patterns are written to byte addresses, when

inverted patterns are written.
20 Test that inverted pattern is correctly repeated every 256 bytes.
21 Injecting a permanent fault in the memory and test that the test

is restarted at next word address. It is found during test of
normal patterns.

22 Injecting a permanent fault in the memory and test that the test
is restarted at next word address. It is found during test of
inverted patterns.

23 - 24 Test that if a transient fault is identified the function will
continue without doing anything.

Table D.1: Description of the groups of tests carried out.

Parameter register Test number
name 1 2

RAM0 BASE r4 0x0 0x0
RAM0 LENGTH r5 0x00002000 0x00002000

RAM1 BASE r6 0x00003000 0x00003000
RAM1 LENGTH r7 0x00004000 0x00004000

STACK SIZE r8 0x400 0x400

Table D.2: Values passed to the memory test function during test.

D.1 The structural test 127

No. Place identifier in code Exp. state Found state Result
1 label: TestMemory (1st pass) r0: 0x0 0x0 OK

r1: 0x1FFF 0x2000 OK
r2: 0x1FFF 0x2000 OK
r8: 0x400 0x400 OK

2 label: WriNormFor (1st pass) r2: 0x2000 0x2000 OK
r3: 0xffffffff 0xffffffff OK

3 label: TestNormFor (1st pass) r2: 0x2000 0x2000 OK
r3: 0xffffffff 0xffffffff OK

4 label: WriInvFor (1st pass) r2: 0x2000 0x2000 OK
r3: 0xffffffff 0xffffffff OK

5 label: TestInvFor (1st pass) r2: 0x2000 0x2000 OK
r3: 0x0 0x0 OK

6 label: WriNormFor (2nd pass) r2: 0x1fff 0x1fff OK
r3: 0x0 0x0 OK

7 label: TestNormFor (3nd pass) r2: 0x1ffe 0x1ffe OK
r3: 0x1 0x1 OK

8 label: WriInvFor (4nd pass) r2: 0x1ffd 0x1ffd OK
r3: 0x2 0x2 OK

9 label TestInvFor (5th pass) r2: 0x1ffc 0x1ffc OK
r3: 0xfc 0xfc OK

10 break point: r0: 0x0 r0: 0x0 OK
memTest.S, r2: 0xffffffff r2: 0xffffffff OK
line 36 r3: 0xffffffff r3: 0xffffffff OK

11 label: TestNormPat r2: 0x1fff r2: 0x1fff OK
r3: 0x0 r3: 0x0 OK

12 label: WriInvIni r2: 0x1fff r2: 0x1fff OK
r3: 0x0 r3: 0x0 OK

13 label: WriInvIni r2: 0x1fff r2: 0x1fff OK
r3: 0x0 r3: 0x0 OK

14 label: TestInvPat r2: 0x1fff r2: 0x1fff OK
r3: 0x0 r3: 0x0 OK

15 label: SetupCstack r2: 0x1fff r2: 0x1fff OK
r3: 0xff r3: 0xff OK

16 label: SetupCstack r2: 0x1fff r2: 0x1fff OK
r3: 0xff r3: 0xff OK

17 label: TestNormPat incrementing byte See app. OK
pattern starting G.1
at 0x1fff

Table D.3: List of tests carried out to inspect reset of values of counters and
filter.

128 Test cases and results from the memory test function

No. Place identifier in code Exp. state Found state Result
18 label: TestNormPat incrementing byte See app. OK

pattern restarting G.1
at 0x1eff

19 label: TestInvPat decrementing byte See app. OK
pattern starting G.1
at 0x1fff

20 label: TestInvPat decrementing byte See app. OK
pattern restarting G.1
at 0x1eff

21 label: WriNormFor decrementing byte See app. OK
pattern restarting G.1
0x1fef

22 label: WriNormFor decrementing byte See app. OK
pattern restarting G.1
0x1fef

23 label: wp1Test23 decrementing byte See app. OK
pattern starting G.1
at 0x1fff

24 label: wp1Test24 decrementing byte See app. OK
pattern starting G.1
at 0x1fff

Table D.4: Second part of table showing tests and results from them.

Appendix E

DTUsat-1 related material

E.1 Source code

E.1.1 init.S

#inc lude ” i n i t . i n c ”

OBC i n i t i a l i z a t i o n
Boot−group

.a l ign 4

.global r e s e t

.global micro de lay

.section ” . v e c t o r s ” ,” ax”

r e s e t :
b r e s e t /∗ r e s e t ∗/

undefvec :
ldr pc , .unde fvec /∗ Undef ∗/

swivec :
ldr pc , . sw iv e c /∗ SW ∗/

130 DTUsat-1 related material

pabtvec :
ldr pc , .pabtvec /∗ P abt ∗/

dabtvec :
ldr pc , .dabtvec /∗ D abt ∗/

rsvdvec :
ldr pc , . r s vdvec /∗ r e se rved ∗/

i r qv e c :
ldr pc , . i r q v e c /∗ i r q ∗/

f i q v e c :
ldr pc , . f i q v e c /∗ f i q ∗/

. r e s e t :
.word 0

.unde fvec :
.word unde fvec

. sw iv e c :
.word sw ivec

.pabtvec :
.word pabtvec

.dabtvec :
.word dabtvec

. r s vdvec :
.word r svdvec

. i r q v e c :
.word i r q v e c

. f i q v e c :
.word f i q v e c

end v e c t o r s :

.section .text

unde fvec :
sw ivec :
pabtvec :
dabtvec :
r svdvec :
i r q v e c :
f i q v e c :

/∗ IRQ and FIQ shou ld probab l y be d i s a b l e d here to
prevent r e c u r s i o n . . ∗/

stmfd sp ! ,{ r0−r12 , r14 }
mrs r0 , cpsr
stmfd sp ! ,{ r0 }

E.1 Source code 131

mov r1 , sp
ldr r0 , =(15∗4)
bl except i on hand l e r

exc ep t i on l oop : /∗ Wait f o r the WD to reboo t the
system ∗/
b exc ep t i on l oop

r e s e t :
/∗ Disab l e IRQ and FIQ (they shou ld be d i s a b l e d

by a H/W rese t , but b e t t e r s a f e than sorry) . ∗/

mrs r0 , CPSR
ldr r1 , =CPSR IRQ DISABLE | CPSR FIQ DISABLE
mvn r1 , r1
and r0 , r0 , r1
msr CPSR, r0

/∗ Setup memory ∗/

ldr r10 , PtEBITable /∗ ge t the address o f the ch ip
s e l e c t r e g i s t e r image ∗/

movs r0 , pc , LSR #20 /∗ pc > 0x100000 ∗/

moveq r10 , r10 , LSL #12 /∗ Mask the 12 h i g h e s t b i t s o f
the address ∗/

moveq r10 , r10 , LSR #12

/∗ Copy Chip S e l e c t Reg i s t e r Image to Memory
Con t ro l l e r and command remap ∗/

ldmia r10 ! , { r0−r9 , r11−r12 } /∗ l oad the complete
image and the EBI base ∗/

stmia r11 ! , { r0−r9 } /∗ s t o r e the complete image
wi th the remap command ∗/

mov pc , r12 /∗ jump and break the p i p e l i n e ∗/

PtEBITable :
. long EBITable /∗ Table f o r EBI i n i t i a l i z a t i o n ∗/

EBITable :

132 DTUsat-1 related material

. long 0x01002122 /∗ 0x01000000 −−−∗/

. long 0x03002122 /∗ 0x03000000 −−−−∗/

. long 0x02003121 /∗ 0x02000000 , 16MB, 0 h ∗/

. long 0x30000000 /∗ unused ∗/

. long 0x40000000 /∗ unused ∗/

. long 0x50000000 /∗ unused ∗/

. long 0x60000000 /∗ unused ∗/

. long 0x70000000 /∗ unused ∗/

. long 0x00000001 /∗ REMAP command ∗/

. long 0x00000000 /∗ 4 memory reg ions , s tandard
read ∗/

. long EBI BASE /∗ EBI Base address ∗/

. long PostRemap

PtMEMTable :
. long MEMTable

MEMTable :
. long RAM0 BASE /∗ r4 ∗/
. long RAM0 LENGTH−4 /∗ r5 ∗/
. long RAM1 BASE /∗ r6 ∗/
. long RAM1 LENGTH−4 /∗ r7 ∗/
. long 0x00000000 /∗ r8 ∗/
. long 0xFFFFFFFF /∗ r9 ∗/
. long STACK SIZE /∗ r10 ∗/

PostRemap :
/∗ S ta r t wacthdog ∗/

#i f n d e f DISABLE WATCH DOG
ldr r10 , PtWDTable /∗ ge t the address o f the

watchdog image ∗/
ldmia r10 , { r0−r4 } /∗ Load data to r e g i s t e r s ∗/
str r1 , [r0 , #0] /∗ Disab l e WD ∗/
str r2 , [r0 , #4] /∗ Setup Clock Mode Reg i s t e r ∗/
str r3 , [r0 , #8] /∗ Restar t t imer ∗/
str r4 , [r0 , #0] /∗ Enable watchdog ∗/

#end i f

DoCopyVectors :
mov r0 ,#0
ldr r1 ,= r e s e t
ldr r2 ,= end v e c t o r s

E.1 Source code 133

vec to r copy :
ldr r3 , [r1] ,#4
str r3 , [r0] ,#4
cmp r1 , r2
bne vec to r copy

/∗ Do simple mem t e s t to f i nd space f o r s t a c k ∗/

DoMemTest :
/∗ Load memory v a r i a b l e s in t o r e g i s t e r s ∗/
ldr r11 , PtMEMTable ; load address o f p r e d i f i n ed va lue s
ldmia r11 , { r4−r10 } ; load p r ed i f i n ed va lue s in to

r e g i s t e r s

mov r0 , r4 ; move addr . o f s t a r t o f RAM0 to r0
add r1 , r4 , r5 ; r1 = RAM0 BASE + RAM0 LENGTH−4

f i nd end o f RAM0
mov r2 , r1 ; move addr . o f end o f RAM0 to r2
bl Write /∗ Test ram0 ∗/

mov r0 , r6 ; move addr . o f s t a r t o f RAM1 to r0
add r1 , r6 , r7 ; r1 = RAM1 BASE + RAM1 LENGTH−4

f i nd end o f RAM1
mov r2 , r1 ; move addr . o f end o f RAM1 to r2
bl Write /∗ Test ram1 ∗/

b DoPANIC /∗ No memory a v a i l a b l e ∗/

Write : /∗ r0=base , r1=h i g e s t v a l i d address ,
∗ r2=po in t e r to a c t ua l address ,
∗ r3=tmp , r8=0x00000000 ,
∗ r9= 0xFFFFFFFF, r10=STACK SIZE ∗/

str r9 , [r2] /∗ save HIGH in mem ∗/
ldr r3 , [r2] /∗ read pa t t e rn back again ∗/
cmp r9 , r3 /∗ t e s t ∗/
bne Fa i l
str r8 , [r2] /∗ save LOW in mem ∗/
ldr r3 , [r2] /∗ read pa t t e rn back again ∗/
cmp r8 , r3 /∗ t e s t ∗/
bne Fa i l
sub r3 , r1 , r2 /∗ space from po in t e r to top ∗/
cmp r10 , r3 /∗ compare wi th needed s t a c k space ∗/

134 DTUsat-1 related material

b l e CRTSetup /∗ se tup s t a c k i f enough space ∗/
sub r2 , r2 , #4 /∗ sub 4 from address ∗/
cmp r2 , r0 /∗ compare po in t e r to base ∗/
movlt pc , r14 /∗ re turn i f a c t ua l address was be low

base addr . ∗/
b Write

Fa i l : mov r1 , r2
b Write

PtWDTable :
. long WDTable /∗ Table f o r WD i n i t i a l i z a t i o n ∗/

WDTable :
. long WD BASE /∗ WD Base address ∗/
. long WDOMR(WD OMR DISABLE) /∗ Disab l e WD ∗/
. long WDCMR(0 xf ,WD CMR MCK1024) /∗ Clock mode

∗/
. long WD CR RESET /∗ Reset WD ∗/
. long WDOMR(WDOMRWDEN | WD OMR RSTEN |

WDOMREXTEN)
/∗ Enable WD, i n t .+e x t . r e s e t ∗/

/∗ The WD i s s e t up as f o l l o w s :
Clock mode r e s e t s to 0 x f f f f , c l o c k d i v i s i o n by 1024 .
This g i v e s a t o t a l scaledown o f 64K∗1024=64M.
@16.000Mhz t h i s g i v e s a time−out per iode o f 4 .19 s

∗/

CRTSetup :
/∗ I f we want to use excep t i on s tacks ,

we shou ld probab l y s e t them her e .
∗/

mov r0 ,#(CPSR IRQ DISABLE |CPSR FIQ DISABLE |
CPSR IRQ MODE) ; prepare opt ions and setup c o r r e c t
mode

msr cpsr , r0 ; move them to cpsr us ing s p e c i a l
i n s t r u c t i o n

mov sp , r1 ; update SP with the found one

mov r0 ,#(CPSR IRQ DISABLE |CPSR FIQ DISABLE |
CPSR FIQ MODE) prepare opt ions and setup c o r r e c t

E.1 Source code 135

mode
msr cpsr , r0 ; move them to cpsr us ing s p e c i a l

i n s t r u c t i o n
mov sp , r1 ; update SP with the found one

mov r0 ,#(CPSR IRQ DISABLE |CPSR FIQ DISABLE |
CPSR UNDEF MODE) ; prepare opt ions and setup c o r r e c t

mode
msr cpsr , r0 ; move them to cpsr us ing s p e c i a l

i n s t r u c t i o n
mov sp , r1 ; update SP with the found one

mov r0 ,#(CPSR IRQ DISABLE |CPSR FIQ DISABLE |
CPSR ABORT MODE) ; prepare opt ions and setup c o r r e c t

mode
msr cpsr , r0 ; move them to cpsr us ing s p e c i a l

i n s t r u c t i o n
mov sp , r1 ; update SP with the found one

/∗ The normal mode o f opera t ion (f o r eCos/ app l i c a t i o n)
i s s u p e r v i s o r . ∗/

mov r0 ,#(CPSR IRQ DISABLE |CPSR FIQ DISABLE |
CPSR SUPERVISOR MODE) ; prepare opt ions and setup
c o r r e c t mode

msr cpsr , r0 ; move them to cpsr us ing s p e c i a l
i n s t r u c t i o n

/∗ According to the eCos ARM−HAL, some l i b r a r y
rou t i n e s w i l l cause a ” r e s t o r e from SPSR” . ∗/
msr spsr , r0 ; move them to sps r us ing s p e c i a l

i n s t r u c t i o n

/∗ se tup s t a c k p o i n t e r s and r e g i s t e r s ∗/
mov r3 , r1
mov sp , r3 ; setup SP
sub s l , sp , #STACK SIZE ; s l (s tack l im i t) c a l c u l a t ed

and s to r ed in c o r r e c t r e g i s t e r r10
mov r2 , #STACK SIZE
mov fp , #0 ; r e s e t argument po in t e r to 0
mov r7 , #0 ; r e s e t another r e g i s t e r

mov r0 , #0 ; r e s e t another r e g i s t e r

136 DTUsat-1 related material

mov r1 , #0 ; r e s e t another r e g i s t e r

bl boot

DoPANIC:
/∗ PANIC − no memory a v a i l a b l e
∗ Blame i t on the hardware guys
∗/

/∗ Maybe we shou ld t r y to run in the i n t . ram anyway..
∗/

Loop : b Loop

micro de lay :
mov r0 , r0 , l s r #1
sub r0 , r0 , #2

mic ro de l ay l oop :
subs r0 , r0 , #1
bgt mic ro de l ay l oop
mov pc , l r

Appendix F

Source files of the DTUsat-2
implementation

F.1 init.S

Listing F.1: Assembly language source code of the init procedure.
1 #de f i n e WDMOD 0xE0000000
2 #de f i n e WDTC 0xE0000004
3 #de f i n e WDFEED 0xE0000008
4 #de f i n e WDTV 0xE000000C
5 #de f i n e PLLCON 0xE01FC080
6 #de f i n e PLLCFG 0xE01FC084
7 #de f i n e PLLSTAT 0xE01FC088
8 #de f i n e PLLFEED 0xE01FC08C
9 #de f i n e VPBDIV 0xE01FC100

10 #de f i n e BCFG0 0xFFE00000
11 #de f i n e BCFG1 0xFFE00004
12 #de f i n e BCFG2 0xFFE00008
13 #de f i n e BCFG3 0xFFE0000C
14 #de f i n e CPSR IRQ DISABLE 0x80
15 #de f i n e CPSR FIQ DISABLE 0x40
16 #inc lude ” boot .h ”
17 ***********************************
18 /∗ I n i t f i l e f o r the DTUsat−2 p r o j e c t ∗/

138 Source files of the DTUsat-2 implementation

19 /∗ by Esben Rugbjerg ∗/
20 /∗ Some par t s are copied from c r t . s ∗/
21 ***********************************
22

23 /∗ Stack S i z e s ∗/
24 . s e t UND STACK SIZE, 0x00000004 /∗ s t a c k f o r ” unde f ined

i n s t r u c t i o n ” i n t e r r u p t s i s 4 b y t e s ∗/
25 . s e t ABT STACK SIZE, 0x00000004 /∗ s t a c k f o r ” abor t ”

i n t e r r u p t s i s 4 b y t e s ∗/
26 . s e t FIQ STACK SIZE , 0x00000004 /∗ s t a c k f o r ”FIQ” i n t e r r u p t s

i s 4 b y t e s ∗/
27 . s e t IRQ STACK SIZE , 0X00000004 /∗ s t a c k f o r ”IRQ” normal

i n t e r r u p t s i s 4 b y t e s ∗/
28 . s e t SVC STACK SIZE , 0x00000004 /∗ s t a c k f o r ”SVC” supe r v i s o r

mode i s 4 b y t e s ∗/
29

30 /∗ Standard d e f i n i t i o n s o f Mode b i t s and In t e r rup t (I & F)
f l a g s in PSRs (program s t a t u s r e g i s t e r s) ∗/

31 . s e t MODE USR, 0x10 /∗ Normal User Mode
∗/

32 . s e t MODE FIQ, 0x11 /∗ FIQ Process ing Fast
I n t e r r u p t s Mode ∗/

33 . s e t MODE IRQ, 0x12 /∗ IRQ Process ing Standard
In t e r r u p t s Mode ∗/

34 . s e t MODE SVC, 0x13 /∗ Superv i sor Process ing
Sof tware I n t e r r up t s Mode ∗/

35 . s e t MODE ABT, 0x17 /∗ Abort Process ing memory
Fau l t s Mode ∗/

36 . s e t MODE UND, 0x1B /∗ Undefined Process ing
Undefined I n s t r u c t i o n s Mode ∗/

37 . s e t MODE SYS, 0x1F /∗ System Running Pr i v i l e d g e d
Operat ing System Tasks Mode ∗/

38

39 . s e t I BIT , 0x80 /∗ when I b i t i s se t , IRQ i s
d i s a b l e d (program s t a t u s r e g i s t e r s) ∗/

40 . s e t F BIT , 0x40 /∗ when F b i t i s se t , FIQ i s
d i s a b l e d (program s t a t u s r e g i s t e r s) ∗/

41

42 .a l ign 4
43 .text
44 .arm
45 p l l :
46 .long PLLCON
47 .long PLLCFG
48 .long PLLSTAT
49 .long PLLFEED
50 . s e t p l l c on , 0x0

F.1 init.S 139

51 . s e t p l l c f g , 0x4
52 . s e t p l l s t a t , 0x8
53 . s e t p l l f e e d , 0xC
54 vpbdiv :
55 .long VPBDIV
56 bc :
57 .long BCFG0
58 .long BCFG1
59 .long BCFG2
60 .long BCFG3
61 .long 0x10000444 @con f i g u r a t i on va lue o f EMC bank 0
62 .long 0x20000400 @con f i g u r a t i on va lue o f EMC bank 1
63 . s e t b0 , 0x0
64 . s e t b1 , 0x4
65 . s e t b2 , 0x8
66 . s e t b3 , 0xC
67 . s e t conf b0 , 0x10
68 . s e t conf b1 , 0x14
69

70 .global Reset Handler
71 .global s t a r tup
72 .global loop
73

74

75

76 @ Except ion Vectors
77 .section . v e c t o r s , ”x” /∗ unique s e c t i on making i t p o s s i b l e to

p l ace the excep t i on v e c t o r s c o r r e c t l y . ∗/
78 .a l ign 4
79 s t a r tup : /∗Entry po in t f o r code ∗/
80 ldr PC, Reset Addr
81 ldr PC, Undef Addr
82 ldr PC, SWI Addr
83 ldr PC, PAbt Addr
84 ldr PC, DAbt Addr
85 nop /∗ Reserved Vector (ho l d s

Ph i l i p s ISP checksum) ∗/
86 ldr PC, [PC,#−0xFF0] /∗ see page 71 o f ” I n s i d e r s

Guide to the Ph i l i p s ARM7−Based Mic ro con t r o l l e r s ” by
Trevor Martin ∗/

87 ldr PC, FIQ Addr
88

89

90 Reset Addr : .word Reset Handler /∗ de f ined
be low ∗/

91 Undef Addr : .word UNDEF Routine /∗ de f ined
be low ∗/

140 Source files of the DTUsat-2 implementation

92 SWI Addr : .word SWI Routine /∗ de f ined
be low ∗/

93 PAbt Addr : .word UNDEF Routine /∗ de f ined
be low ∗/

94 DAbt Addr : .word UNDEF Routine /∗ de f ined
be low ∗/

95 IRQ Addr : .word IRQ Routine /∗ de f ined
be low ∗/

96 FIQ Addr : .word FIQ Routine /∗ de f ined
be low ∗/

97 .word 0 /∗ rounds the
v e c t o r s and ISR addres se s to 64 by t e s
t o t a l ∗/

98

99 .section . s t a r t up , ”x”
100 . f un c s t a r tup /∗ only used when code i s assembled wi th

debugg ing turned on. ∗/
101 UNDEF Routine :
102 SWI Routine :
103 IRQ Routine :
104 FIQ Routine :
105 @Al l i n t e r r u p t s branches to r e s e t hand l e r . The reason i s t h a t

i f
106 @for some reason an i n t e r r u p t occurs during the execu t i on o f

the
107 @boot program i t r e tu rns to the beg inn ing and d i s a b l e the

i n t e r r u p t s .
108

109 @Set mode to supe r v i s o r mode to ensure t ha t we are not in any
i n t e r r u p t mode

110 ldr r0 , = s tack end
111 sub r0 , r0 , #SVC STACK SIZE
112 msr CPSR c , #MODE SVC| I BIT |F BIT /∗ supe r v i s o r mode

∗/
113 mov sp , r0
114

115 @ Reset Handler
116 Reset Handler :
117

118 /∗ Setup a s t a c k f o r each mode − note t ha t t h i s on ly s e t s up a
usab l e

119 ∗ s t a c k f o r User mode. Also each mode i s se tup wi th
i n t e r r u p t s i n i t i a l l y d i s a b l e d . ∗/

120

121

122 ldr r0 , = s tack end

F.1 init.S 141

123 msr CPSR c , #MODEUND| I BIT |F BIT /∗ Undefined
In s t r u c t i on Mode ∗/

124 mov sp , r0
125 sub r0 , r0 , #UND STACK SIZE
126 msr CPSR c , #MODEABT| I BIT |F BIT /∗ Abort Mode ∗/
127 mov sp , r0
128 sub r0 , r0 , #ABT STACK SIZE
129 msr CPSR c , #MODE FIQ | I BIT |F BIT /∗ FIQ Mode ∗/
130 mov sp , r0
131 sub r0 , r0 , #FIQ STACK SIZE
132 msr CPSR c , #MODE IRQ | I BIT |F BIT /∗ IRQ Mode ∗/
133 mov sp , r0
134 sub r0 , r0 , #IRQ STACK SIZE
135 msr CPSR c , #MODE SVC| I BIT |F BIT /∗ Superv i sor Mode

∗/
136 mov sp , r0
137 @ User mode i s not entered because we cannot re turn to a

p r i v i l e g e d
138 @ mode from user mode.
139 @ sub r0 , r0 , #SVC STACK SIZE
140 @ msr CPSR c , #MODE SYS | I BIT |F BIT /∗ User Mode ∗/
141 @ mov sp , r0
142

143

144 /∗ Enable watchdog. See lpc2200 user manual pp. 256 ∗/
145 mov r0 , #WDTC @Load r e g i s t e r wi th address o f WDTC.
146 mov r1 , #0xFFFFFFFF @Prepare t imer con s t an t .
147 str r1 , [r0] @Store t imer cons tant in WDTC.
148 mov r0 , #WDMOD @Load r e g i s t e r wi th address o f WDMOD.
149 mov r1 , #0x03 @Prepare enab l i ng p a t t e r n .
150 str r1 , [r0] @Enable WD.
151 mov r0 , #WDFEED @Load r e g i s t e r wi th address o f WDFEED.
152 mov r1 , #0xAA @Prepare f i r s t f e ed p a t t e r n .
153 str r1 , [r0] @Sta r t f e ed sequence o f WD.
154 mov r1 , #0x55 @Prepare second f eed p a t t e r n .
155 str r1 , [r0] @End feed sequence o f WD.
156

157 p l l : .long p l l
158 vpbdiv : .long vpbdiv
159 bc : .long bc
160

161

162 /∗ con f i g u r a t i on o f the PLL ∗/
163 ldr r4 , p l l @se t base address f o r cons tan t s
164 ldr r0 , [r4 , #p l l c f g] @Load the address o f PLLCFG in to the

r e g i s t e r .

142 Source files of the DTUsat-2 implementation

165 mov r1 , #0x23 @Prepare va lue o f c on f i g u r a t i on r e g i s t e r 0x23
= 0b100011.

166 mov r2 , #0xAA @Prepare f e ed 1 v a l u e .
167 mov r3 , #0x55 @Prepare f e ed 2 v a l u e .
168 str r1 , [r0] @Store va lue in con f i g u r a t i on r e g i s t e r .
169 ldr r0 , [r4 , #p l l f e e d] @load r e g i s t e r the address o f the

f e ed r e g i s t e r in t o the r e g i s t e r .
170 str r2 , [r0] @wr i t e f i r s t par t o f f e ed sequence .
171 str r3 , [r0] @Write second par t o f f e ed sequence .
172 /∗ enab l i ng o f the PLL ∗/
173 ldr r0 , [r4 , #p l l c o n] @Load r e g i s t e r wi th the address o f

PLLCON.
174 mov r1 , #0x1 @load r e g i s t e r wi th enab l i n g v a l u e .
175 str r1 , [r0] @s to r e enab l i ng va lue r e g i s t e r .
176 ldr r0 , [r4 , #p l l f e e d] @load r e g i s t e r the address o f the

f e ed r e g i s t e r in t o the r e g i s t e r .
177 str r2 , [r0] @wr i t e f i r s t par t o f f e ed sequence .
178 str r3 , [r0] @Write second par t o f f e ed sequence .
179 ldr r0 , [r4 , #p l l s t a t] @Load the address o f PLLSTAT in to

the r e g i s t e r .
180 p l l l o c k :
181 ldr r1 , [r0] @ge t va lue from PLLSTAT.
182 ands r1 , r1 , #(1<<10) @And va lue o f r e g i s t e r wi th a one on

the 10 th p l a c e .
183 beq p l l l o c k @return to beg inn ing o f the loop i f PLL has not

l o c ked y e t .
184

185 /∗ con f i g u r a t i on o f the VPB d i v i d e r ∗/
186 ldr r0 , vpbdiv @Load the address o f the VPBDIV in to the

r e g i s t e r .
187 mov r1 , #0x00 @The pc l k i s s e t to one f ou r t h o f the c c l k .
188 str r1 , [r0] @The va lue i s s t o r ed in VPBDIV.
189

190 /∗ Conf i gura t ion o f the EMC ∗/
191

192 /∗ Conf i gura t ion o f bank 0 − the e x t e r na l FLASH ∗/
193 ldr r4 , bc @load base address o f bank c on f i g u r a t i o n .
194 ldr r0 , [r4 , #b0] @Load the address o f the BCFG0 in to the

r e g i s t e r .
195 ldr r1 , [r4 , #conf b0] @Writing va lue to con t r o l r e g i s t e r .
196 str r1 , [r0] @s to r e con t r o l va lue in con t r o l r e g i s t e r
197

198 /∗ Conf i gura t ion o f bank 1 − the e x t e r na l s t a t i c RAM ∗/
199 ldr r0 , [r4 , #b1] @Load the address o f the BCFG0 in to the

r e g i s t e r .
200 ldr r1 , [r4 , #conf b1] @Writing va lue to con t r o l r e g i s t e r .
201 str r1 , [r0] @s to r e con t r o l va lue in con t r o l r e g i s t e r

F.2 memTest.S 143

202

203 /∗Continue to memory t e s t ∗/
204 b memoryTest
205

206

207 . end func
208

209 loop :
210 b loop
211

212 .end

F.2 memTest.S

Listing F.2: Assembly language source code of the memory test done before
initialisation of the C stack.

1 #inc lude ” boot .h ”
2

3 .global memoryTest
4 .global cStack
5

6 MEMTable :
7 .long RAM0 BASE /∗ r4 ∗/
8 .long RAM0 LENGTH−1 /∗ r5 ∗/
9 .long RAM1 BASE /∗ r6 ∗/

10 .long RAM1 LENGTH−1 /∗ r7 ∗/
11 .long STACK SIZE /∗ r8 ∗/
12 .long ONES /∗ r9 ∗/
13

14 PtMEMTable :
15 .long MEMTable
16

17

18 memoryTest :
19

20 DoMemTest : /∗ Modif ied ve r s i on o f f unc t i on from DTU−1 ∗/
21 /∗ Load memory v a r i a b l e s in t o r e g i s t e r s ∗/
22 ldr r11 , PtMEMTable @Load address o f p r ede f ined v a l u e s .
23 ldmia r11 , { r4−r9 } @Load prede f ined va l u e s in t o r e g i s t e r s .
24

25 mov r0 , r4 @Move addr . o f s t a r t o f RAM0 to r0 .
26 add r1 , r4 , r5 @r1 = RAM0 BASE + RAM0 LENGTH−1 f i nd end o f

RAM0.
27 mov r2 , r1 @Move addr . o f end o f RAM0 to r2 .
28 mov r12 , r1 @Move addr . o f end o f RAM0 to r12 .
29 add r12 , r12 , #1 @Fi r s t address above RAM0.

144 Source files of the DTUsat-2 implementation

30 bl TestMemory /∗ Test ram0 ∗/
31

32 wp1Test10 :
33 mov r0 , r6 @move addr . o f s t a r t o f RAM1 to r0
34 add r1 , r0 , r7 @r1 = RAM1 BASE + RAM1 LENGTH−1 f i nd end o f

RAM1
35 mov r2 , r1 @move addr . o f end o f RAM1 to r2
36 mov r12 , r1 @move addr . o f end o f RAM1 to r12
37 add r12 , r12 , #1 @f i r s t address above RAM1
38 bl TestMemory /∗ Test ram1 ∗/
39

40 b RegBased/∗ No memory a v a i l a b l e ∗/
41

42 TestMemory :
43 @r0 : base address
44 @r1 : h i g h e s t v a l i d address
45 @r2 : po in t e r to current (by t e) address
46 @r3 : pa t t e rn va lue
47 @r8 : s t a c k s i z e
48 @r9 : cons tant used during in v e r s i on o f b i t s .
49 @r10 : temporary va lue o f address counter
50 @r11 : va lue loaded from the memory which shou ld be

eva l ua t ed
51 @r12 : end address
52

53 WriNormIni :
54 mov r3 , #0 @I n i t i a l i s e p a t t e r n .
55 sub r3 , r3 , #1
56 mov r2 , r1 @I n i t i a l i s e by t e counter to top add r e s s .
57 add r2 , r2 , #1 @Increment by t e counter by one , to
58 @to compensate f o r decrementing i t
59 @in the beg inn ing o f the next l o o p .
60

61 WriNormFor :
62 @Current address po in t s to the h i g h e s t by t e t e s t e d .
63 sub r2 , r2 , #1 @Decrement by t e counter by one to po in t to

next
64 @unte s t ed add r e s s .
65 cmp r2 , r0 @Compare curren t address to base add r e s s .
66 movlt pc , r14 @return i f curren t address i s be low base

add r e s s .
67 add r3 , r3 , #1 @Increment f i l t e r by one.
68 strb r3 , [r2] @Store p a t t e r n .
69 sub r10 , r1 , r2 @Tested area (r10) = top address (r1) −

curren t address (r2) .
70 add r10 , r10 , #1 @Compensate f o r the f a c t t h a t the top

address

F.2 memTest.S 145

71 @a l s o s t o r e data why i t shou ld be inc luded
72 wp1Test11 : @in the l e n g t h .
73 cmp r10 , r8 @Tested area (r10) compared to s t a c k s i z e (r8) .
74 beq TestNormPat@Branch to t e s t i f s t a c k s i z e i s reached .
75 b WriNormFor @Branch back to s t a r t o f loop i f t e s t e d area
76 @i s too sma l l to hos t s t a c k .
77

78 TestNormPat :
79 mov r3 , #0 @I n i t i a l i s e p a t t e r n .
80 sub r3 , r3 , #1
81 mov r2 , r1 @I n i t i a l i s e by t e counter to top add r e s s .
82 add r2 , r2 , #1 @Increment by t e counter by one , to
83 @to compensate f o r decrementing i t
84 @in the beg inn ing o f the next l o o p .
85

86 TestNormFor :
87 sub r2 , r2 , #1 @Decrement by t e counter by one to po in t to

next
88 @unv e r i f i e d add r e s s .
89 sub r10 , r1 , r2 @Tested area (r10) = top address (r1) −

curren t address (r2) .
90 add r10 , r10 , #1 @Compensate f o r the f a c t t h a t the top

address
91 @a l s o s t o r e data why i t shou ld be inc luded
92 wp1Test12 : @in the l e n g t h .
93 wp1Test13 :
94 add r3 , r3 , #1 @Increment va lue o f p a t t e r n .
95 and r3 , r3 , #0x000000FF @F i l t e r out 24 h i g h e s t b i t s .
96 ldrb r11 , [r2] @Load by t e va lue s t o r ed at curren t add r e s s .
97 wp1Test21 :
98 wp1Test23 :
99 cmp r11 , r3 @Compare s t o r ed va lue to expec ted p a t t e r n .

100 cmpeq r10 , r8 @Compare t e s t e d area (r10) to s t a c k s i z e (r8)
i f above

101 wp2Test13 : @comparison repor t ed e q u a l i t y .
102 beq WriInvIni @Branch to t e s t us ing i n v e r t e d pa t t e rn s i f

s t a c k s i z e
103 @i s reached .
104 cmp r11 , r3 @Compare s t o r ed va lue to expec ted pa t t e rn

again to
105 @ensure co r r e c t CSPR s t a t e .
106 beq TestNormFor@I f t e s t was passed , branch back to t e s t

next by t e
107 strb r3 , [r2] @Store pa t t e rn at by t e add r e s s .
108 add r2 , r2 , #1 @Increment by t e counter by one.
109 eor r3 , r3 , r9 @Inve r t p a t t e r n .
110 and r3 , r3 , #0x000000FF @F i l t e r out 24 h i g h e s t b i t s .

146 Source files of the DTUsat-2 implementation

111 cmp r2 , r12 @compare by t e address to end o f RAM
112 subeq r2 , r2 , r8 @decrement by t e counter by s t a c k s i z e
113 strb r3 , [r2] @Store pa t t e rn at by t e add r e s s .
114 addeq r2 , r2 , r8 @increment by t e counter by s t a c k s i z e
115 eor r3 , r3 , r9 @Inve r t p a t t e r n .
116 and r3 , r3 , #0x000000FF @F i l t e r out 24 h i g h e s t b i t s .
117 sub r2 , r2 , #1 @Decrement by t e counter by one.
118 ldrb r11 , [r2] @Load by t e va lue s t o r ed at curren t add r e s s .
119 wp2Test21 :
120 cmp r11 , r3 @Compare s t o r ed va lue to expec ted p a t t e r n .
121 cmpeq r10 , r8 @Compare t e s t e d area (r10) to s t a c k s i z e (r8)

i f above
122 @comparison repor t ed e q u a l i t y .
123 beq WriInvIni @Branch to t e s t us ing i n v e r t e d pa t t e rn s i f

s t a c k s i z e
124 @i s reached .
125 cmp r11 , r3 @Compare s t o r ed va lue to expec ted pa t t e rn

again to
126 @ensure co r r e c t CSPR s t a t e .
127 beq TestNormFor@I f t e s t was passed , branch back to t e s t

next by t e
128 and r2 , r2 , #0xFFFFFFFC @Align address by f i l t e r i n g out the

two
129 @lowes t b i t s .
130 sub r2 , r2 , #1 @Decrement current address by one to f i nd

new top address
131 mov r1 , r2 @Set new top address as f l awed address minus

one.
132 b WriNormIni @Res tar t t e s t from new top add r e s s .
133

134 WriInvIni :
135 mov r3 , #0 @I n i t i a l i s e p a t t e r n .
136 sub r3 , r3 , #1
137 mov r2 , r1 @I n i t i a l i s e by t e counter to top add r e s s .
138 add r2 , r2 , #1 @Increment by t e counter by one , to
139 @to compensate f o r decrementing i t
140 @in the beg inn ing o f the next l o o p .
141

142 WriInvFor :
143 @Current address po in t s to the h i g h e s t by t e t e s t e d .
144 sub r2 , r2 , #1 @Decrement by t e counter by one to po in t to

next
145 @unte s t ed add r e s s .
146 add r3 , r3 , #1 @Increment f i l t e r by one.
147 eor r3 , r3 , r9 @Inve r t p a t t e r n .
148 strb r3 , [r2] @Store p a t t e r n .
149 eor r3 , r3 , r9 @Inve r t pa t t e rn again to ensure t ha t i t w i l l

F.2 memTest.S 147

150 @be incremented c o r r e c t .
151 sub r10 , r1 , r2 @Tested area (r10) = top address (r1) −

curren t address (r2) .
152 add r10 , r10 , #1 @Compensate f o r the f a c t t h a t the top

address
153 @a l s o s t o r e data why i t shou ld be inc luded
154 wp1Test14 : @in the l e n g t h .
155 cmp r10 , r8 @Tested area (r10) compared to s t a c k s i z e (r8) .
156 beq TestInvPat @Branch to t e s t i f s t a c k s i z e i s reached .
157 b WriInvFor @Branch back to s t a r t o f loop i f t e s t e d area
158 @i s too sma l l to hos t s t a c k .
159

160 TestInvPat :
161 mov r3 , #0 @I n i t i a l i s e p a t t e r n .
162 sub r3 , r3 , #1
163 eor r3 , r3 , r9 @Inve r t pa t t e rn as par t o f
164 @i n i t i a l i s a t i o n .
165 mov r2 , r1 @I n i t i a l i s e by t e counter to top add r e s s .
166 add r2 , r2 , #1 @Increment by t e counter by one , to
167 @to compensate f o r decrementing i t
168 @in the beg inn ing o f the next l o o p .
169

170 TestInvFor :
171 sub r2 , r2 , #1 @Decrement by t e counter by one to po in t to

next
172 @unv e r i f i e d add r e s s .
173 sub r10 , r1 , r2 @Tested area (r10) = top address (r1) −

curren t address (r2) .
174 add r10 , r10 , #1 @Compensate f o r the f a c t t h a t the top

address
175 wp1Test15 : @a l s o s t o r e data why i t shou ld be inc luded
176 wp1Test16 : @in the l e n g t h .
177 eor r3 , r3 , r9 @Inve r t pa t t e rn again to ensure
178 @tha t i t w i l l be incremented c o r r e c t .
179 add r3 , r3 , #1 @Increment va lue o f p a t t e r n .
180 eor r3 , r3 , r9 @Inve r t p a t t e r n .
181 and r3 , r3 , #0x000000FF @F i l t e r out 24 h i g h e s t b i t s .
182 ldrb r11 , [r2] @Load by t e va lue s t o r ed at curren t add r e s s .
183 wp1Test22 :
184 wp1Test24 :
185 cmp r11 , r3 @Compare s t o r ed va lue to expec ted p a t t e r n .
186 cmpeq r10 , r8 @Compare t e s t e d area (r10) to s t a c k s i z e (r8)

i f above
187 wp2Test16 : @comparison repor t ed e q u a l i t y .
188 beq SetupCstack@Branch to C s tac k i n i t i a l i s a t i o n i f

s t a c k s i z e
189 @i s reached .

148 Source files of the DTUsat-2 implementation

190 cmp r11 , r3 @Compare s t o r ed va lue to expec ted pa t t e rn
again to

191 @ensure co r r e c t CSPR s t a t e .
192 beq TestInvFor @I f t e s t was passed , branch back to t e s t

next by t e
193 strb r3 , [r2] @Store pa t t e rn at by t e add r e s s .
194 add r2 , r2 , #1 @Increment by t e counter by one.
195 eor r3 , r3 , r9 @Inve r t p a t t e r n .
196 and r3 , r3 , #0x000000FF @F i l t e r out 24 h i g h e s t b i t s .
197 cmp r2 , r12 @compare by t e address to end o f RAM
198 subeq r2 , r2 , r8 @decrement by t e counter by s t a c k s i z e
199 strb r3 , [r2] @Store pa t t e rn at by t e add r e s s .
200 addeq r2 , r2 , r8 @increment by t e counter by s t a c k s i z e
201 eor r3 , r3 , r9 @Inve r t p a t t e r n .
202 and r3 , r3 , #0x000000FF @F i l t e r out 24 h i g h e s t b i t s .
203 sub r2 , r2 , #1 @Decrement by t e counter by one.
204 ldrb r11 , [r2] @Load by t e va lue s t o r ed at curren t add r e s s .
205 wp2Test22 :
206 cmp r11 , r3 @Compare s t o r ed va lue to expec ted p a t t e r n .
207 cmpeq r10 , r8 @Compare t e s t e d area (r10) to s t a c k s i z e (r8)

i f above
208 @comparison repor t ed e q u a l i t y .
209 beq SetupCstack@Branch to C s tac k i n i t i a l i s a t i o n i f

s t a c k s i z e
210 @i s reached .
211 cmp r11 , r3 @Compare s t o r ed va lue to expec ted pa t t e rn

again to
212 @ensure co r r e c t CSPR s t a t e .
213 beq TestInvFor@I f t e s t was passed , branch back to t e s t next

by t e
214 and r2 , r2 , #0xFFFFFFFC @Align address by f i l t e r i n g out the

two
215 @lowes t b i t s .
216 sub r2 , r2 , #1 @Decrement current address by one to f i nd

new top address
217 mov r1 , r2 @Set new top address as f l awed address minus

one.
218 b WriNormIni @Res tar t t e s t from new top add r e s s .
219

220

221 SetupCstack :
222 b cStack @Branch to C s tac k i n i t i a l i s a t i o n .
223

224 RegBased :
225 b RegBased @I n f i n i t e loop to use f o r t e s t .

F.3 cStack.S 149

F.3 cStack.S

Listing F.3: Assembly language source code of the initialisation of the C stack.
1 *****************************
2 /∗ C s tack i n i t i a l i s a t i o n in ∗/
3 /∗ boot o f DTUsat−2 ∗/
4 /∗ by Esben Rugbjerg ∗/
5 *****************************
6 #inc lude ” boot .h ”
7 #de f i n e STACK SIZE 0x1000
8

9 .global boot
10 .global cStack
11

12 cStack :
13 /∗ Input : ∗/
14 /∗ r0 : base address o f RAM area ∗/
15 /∗ r1 : h i g h e s t v a l i d address o f ∗/
16 /∗ s t a c k area . ∗/
17 /∗Output : ∗/
18 /∗ r0 : Stack po in t e r ∗/
19 /∗ r1 : Stack Limit ∗/
20

21

22 and r1 , r1 , #0xFFFFFFFC @Align Address .
23 mov sp , r1 @move address f o r s t a c k po in t e r to co r r e c t

r e g i s t e r .
24 sub s l , sp , #STACK SIZE @ca l c u l a t e s t a c k l im i t (s l) and p l a c e s
25 @ in co r r e c t r e g i s t e r
26 mov r0 , sp @Copy s t a c k po in t e r to r0 .
27 mov r1 , s l @Copy s t a c k l im i t to r1 .
28

29 b boot @ Branch to C code .

F.4 boot.h

Listing F.4: Header file of the boot functions.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : boot . h
5 ∗
6 ∗ Descr ip t i on : Header f i l e f o r the boot program .

150 Source files of the DTUsat-2 implementation

7 ∗
8 ∗ Version : 1 .0
9 ∗ Created : 19/02/07 15 :16 :50 CET

10 ∗ Revis ion : none
11 ∗ Compiler : gcc
12 ∗
13 ∗ Author : Esben Rugbjerg () ,
14 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
15 ∗
16 ∗

===

17 ∗/
18

19 #define RAM0 BASE 0x40000000
20 #define RAM0 LENGTH 0x3FE0
21 #define RAM1 BASE 0x00003000
22 #define RAM1 LENGTH 0x00004000
23 #define ONES 0xFFFFFFFF
24

25 /∗ Memory requ i r ed by c−s t a c k ∗/
26 #define STACK SIZE 0x1000
27

28 #define IOSET 0xE0028004
29 #define IODIR 0xE0028008
30 #define IOCLR 0xE002800C
31 #define LCD LIGHT 0x00000400

F.5 boot.c

Listing F.5: C source code of the boot function.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : boot . c
5 ∗
6 ∗ Descr ip t i on : Functions to perform high l e v e l par t o f

boot proces s on DTUsat−2.
7 ∗
8 ∗ Version : 1 .0
9 ∗ Created : 25/01/07 10 :51 :10 CET

10 ∗ Revis ion : none
11 ∗ Compiler : gcc
12 ∗

F.5 boot.c 151

13 ∗ Author : Esben Rugbjerg () ,
14 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
15 ∗
16 ∗

===

17 ∗/
18

19 #include ” sy s I n f o . h”
20 #include ” in tF la sh . h”
21 #include ” r t c . h”
22 #include ”cMemTest . h”
23 #include ”boot . h”
24 #include ” . . / F a i l s a f e / f a i l s a f e . h”
25 #include ”intWDT. h”
26

27

28

29 boot (int s tackPointer , int s tackLimit) {
30 int r e s u l t = 0 ;
31

32 //Used to c o l l e c t in format ion about FLASH wr i t e e r ro r s .
33 int e r r o r I n f o ;
34

35 // Var iab l e s used by the SIB system . SIB Parameter S t ruc tu re
36 struct SPS sps= {
37 (struct SIB ∗) BEG ADDRESS, /∗Beginning address o f the

array ’ s i b s ’ . ∗/
38 0x0 , /∗Pointer to the l a t e s t v a l i d SIB or the d e f a u l t

SIB . ∗/
39 −1, /∗ Index o f t h eS i b in the array ’ s i b s ’ . ∗/
40 MAX NUM OF SIBs , /∗number o f SIBs in array ’ s i b s ’ . ∗/
41 0x0 , /∗Pointer to d e f a u l t SIB . ∗/
42 DEFAULT SIB /∗ temporary ve r s i on o f the SIB used during

a l t e r a t i o n o f va l u e s in the SIB ∗/
43 } ;
44 struct SPS ∗ theSps = &sps ;
45 r e s u l t = i n i tDe f a u l t S i b (theSps) ;
46

47 (∗ ((volat i le unsigned long ∗) IODIR)) |= LCD LIGHT;
48 (∗ ((volat i le unsigned long ∗) IOSET)) |= LCD LIGHT; //

l i g h t on
49

50 i f (f indSIB (theSps) != 0)
51 /∗wri teLog (”Couldn ’ t f i n d any s i b . Use d e f a u l t ”) ∗/ ;
52

53 i f (testTheSib (theSps−>theS ib) != 0) {

152 Source files of the DTUsat-2 implementation

54 /∗TODO: wri teLog (” s i b conta ins i n v a l i d data ”) ∗/ ;
55 f a i l s a f e (theSps−>theS ib) ;
56 }
57

58 // I f f i r s t s t a r t
59 i f (theSps−>theSib−>launchBit > 0) {
60 //TODO: Set ho ld Flag to COMMpic
61 r e s u l t = launchS i l enc e (e r r o r I n f o , theSps−>idxOfTheSib) ;
62 //TODO: Remove ho ld f l a g from COMMpic
63 }
64

65 //Ensure t ha t v o l t a g e l e v e l i s h igh enough
66 // to s t a r t s a t e l l i t e in nominal mode .
67 // i f (TODO: testPower () != 00) {
68 // f a i l s a f e (theSps−>t h eS i b) ;
69 //}
70

71 //Test boot counter
72 i f (theSps−>theSib−>bootCounter == 0)
73 f a i l s a f e (theSps−>theS ib) ;
74

75 //Decrement boot counter
76 r e s u l t = decretBootC (theSps , (int ∗)&e r r o r I n f o) ;
77 i f (r e s u l t != 0)
78 f a i l s a f e (theSps−>theS ib) ;
79

80 i f (f indSIB (theSps) != 0)
81 f a i l s a f e (theSps−>theS ib) ;
82

83 i f (testTheSib (theSps−>theS ib) != 0)
84 f a i l s a f e (theSps−>theS ib) ;
85

86 //Test RAM comp le t e l y f o r memory e r ro r s .
87 i f (s tackLimit < RAM1 BASE) {
88 r e s u l t = memTestC((datum ∗) RAM0 BASE, (s tackLimit −

RAM0 BASE)) ;
89 i f (r e s u l t != 0)
90 return r e s u l t ;
91 r e s u l t = memTestC((datum ∗) RAM1 BASE, RAM1 LENGTH) ;
92 i f (r e s u l t != 0)
93 return r e s u l t ;
94 }
95 else
96 f a i l s a f e (theSps−>theS ib) ;
97

98 //Check checksum of OS be f o r e s t a r t

F.5 boot.c 153

99 i f (crcCompute ((unsigned char ∗) theSps−>theSib−>eCosBeg , (
theSps−>theSib−>eCosEnd − theSps−>theSib−>eCosBeg)) ==
theSps−>theSib−>eCosCheck) ;

100 // s t a r t nominal mode .
101 else
102 f a i l s a f e (theSps−>theS ib) ;
103 while (1) ;
104

105 }
106

107 int l aunchS i l enc e (struct SPS ∗ theSps , int ∗ e r r o r I n f o) {
108 int i = 0 ;
109 int r e s u l t = 0 ;
110 int s ibBeg = −1;
111 unsigned char data [INT MIN WR SIZE] ;
112

113 /∗ i f i t impo s s i b l e to i n i t i a l i s e a temporary ve r s i on o f
the SIB => s t a r t FS ∗/

114 i f (initTempSIB(&(theSps−>tempSib) , theSps−>theS ib) != 0) ;
115 // s t a r t FS
116 f a i l s a f e (theSps−>theS ib) ;
117

118 /∗ s t a r t up RTC. I f i t f a i l s => s t a r t FS ∗/
119 i f (s imp l e In i tRtc () != 0)
120 // s t a r t FS
121 f a i l s a f e (theSps−>theS ib) ;
122

123 /∗Loop which counts the minutes ∗/
124 for (i = (theSps−>theSib−>launchBit)−1; i >= 0 ; i−−) {
125 i f (waitMinRtc () !=0)
126 // S ta r t FS
127 f a i l s a f e (theSps−>theS ib) ;
128 else
129 theSps−>tempSib . launchBit = i ;
130

131 kickWDT() ;
132 prepDataArraySIB (data , &theSps−>tempSib , (theSps−>

idxOfTheSib +1)∗ s izeof (struct SIB)) ;
133

134 //Find s t a r t p o s i t i o n o f SIB .
135 i f (theSps−>idxOfTheSib != −1){ /∗ i f SIB i s not the

d e f a u l t . ∗/
136 s ibBeg = (theSps−>idxOfTheSib + 1) ∗ s izeof (struct SIB) ;
137 // I f the SIB ove r f l ows the s i z e o f the s e c t o r :
138 //Place i t in the beg inn ing o f the s e c t o r .
139 i f (s ibBeg > ((MAX NUM OF SIBs − 1) ∗ s izeof (struct SIB)))
140 s ibBeg = 0 ;

154 Source files of the DTUsat-2 implementation

141 }
142 else // I f SIB i s the d e f au l t , s t a r t a t the beg inn ing
143 // o f the s e c t o r .
144 s ibBeg = 0 ;
145

146 r e s u l t = prepDataArraySIB (data ,&theSps−>tempSib , (s ibBeg
% INT MIN WR SIZE)) ;

147 i f (r e s u l t != 0)
148 return r e s u l t ;
149

150 r e s u l t = writeDataArrayToFLASH(\
151 (unsigned char ∗) ((INT FLASH BEG + sibBeg)−(

s ibBeg % INT MIN WR SIZE)) ,\
152 data , INT MIN WR SIZE , e r r o r I n f o) ;
153 i f (r e s u l t != 0)
154 return r e s u l t ;
155 //TODO: Kick WD
156 }
157 return 0 ;
158 }

F.6 sysInfo.h

Listing F.6: Header file for the System Information Block (SIB) functions.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : s y s In f o . h
5 ∗
6 ∗ Descr ip t i on : Header f i l e f o r the data s t r u c t u r e s and

f unc t i on s a s s o c i a t e d wi th the
7 ∗ System Informat ion Block (SIB) .
8 ∗
9 ∗ Version : 1 .0

10 ∗ Created : 25/01/07 17 :35 :18 CET
11 ∗ Revis ion : none
12 ∗ Compiler : gcc
13 ∗
14 ∗ Author : Esben Rugbjerg () ,
15 ∗ Company : DTU
16 ∗
17 ∗

===

F.6 sysInfo.h 155

18 ∗/
19 #ifndef s y s I n f o h
20 #define s y s I n f o h
21

22 #define MAGIC NUM 0xFEEDBEEF
23 #define MAX BOOTS 0x5
24 #define BEG ADDRESS 0x00030000
25 #define END ADDRESS 0x00031FFF
26 #define MAX NUM OF SIBs ((END ADDRESS − BEG ADDRESS)+1)/ s izeof

(struct SIB)
27 #define DEFAULT SIB {MAGIC NUM,0 x00000000 , 0 x00000000 , 0

x00000000 , 0 x00000000 , 0 x00000000 , 0 x00000000 , 0 x4B50E5B1}
28

29 /∗ The System Informat ion Block s t r u c t u r e ∗/
30 struct SIB {
31 int magicNum ; /∗Magic number : 0xFEEDBEEF ∗/
32 int launchBit ; /∗ i n i t i a l 15 . Decreased by 1 each minute .

0 the 15 minutes i s over ∗/
33 int bootCounter ; /∗Count the number o f boot a t tempts =

MAX BOOTS − boot a t tempts ∗/
34 unsigned long eCosBeg ; /∗32 b i t beg inn ing address o f

area con ta in ing eCos ∗/
35 unsigned long eCosEnd ; /∗32 b i t end address o f area

con ta in ing eCos ∗/
36 unsigned long eCosCheck ; /∗32 b i t CRC checksum of the

area con ta in ing eCos ∗/
37 unsigned long eCosP ; /∗ po in t e r to execu t i on

beg inn ing o f eCos ∗/
38 unsigned long checksum ; /∗32 b i t CRC checksum of the SIB

minus the checksum i t s e l f ∗/
39 } ;
40

41 /∗The s t r u c t u r e used to handle in format ion about the SIB
system in the boot and : ∗/

42 /∗FS so f tware : SIB Parameter S t ruc tu re (SPS∗/
43 struct SPS {
44 struct SIB ∗ s i b s ; /∗Pointer to array o f SIBs in FLASH. ∗/
45 struct SIB /∗@null@∗/ ∗ theS ib ; /∗Pointer to the l a t e s t

v a l i d SIB or the d e f a u l t SIB . ∗/
46 int idxOfTheSib ; /∗ Index o f t h eS i b in s i b s or RAM∗/
47 int arrayLength ; /∗Number o f SIBs in array ’ s i b s ’ . ∗/
48 struct SIB ∗ de f au l t S i b ; /∗Pointer to d e f a u l t SIB . ∗/
49 struct SIB tempSib ; /∗ S t ruc ture con ta in ing temporary va l u e s

o f SIB ∗/
50 } ;
51

52 /∗Function to f i nd the l o c a t i o n o f the most recen t SIB .

156 Source files of the DTUsat-2 implementation

53 ∗ Se t s the ’ theSIB ’ to po in t a t i t , and the va lue o f
idxOFtheSib . ∗/

54 int f indSIB (struct SPS ∗ sps) ;
55

56 /∗Function to decrement bootCounter and save new SIB . Returns
0 f o r succe s s . ∗/

57 int decretBootC (struct SPS ∗ sps , int ∗ e r r o r I n f o) ;
58

59 /∗Function to t e s t the v a l i d i t y o f t h eS i b by check ing the
checksum ∗/

60 int testTheSib (struct SIB ∗ theS ib) ;
61

62

63 //Function to prepare the 512 by t e s data array t ha t shou ld be
wr i t t en to

64 //FLASH.
65 //Returns 0 on succe s s and DATAARRAYOVERFLOW (22) on f a i l u r e

.
66 // Fa i l u re would be t ha t the SIB cont inues pas t the 512 th by t e .
67 int prepDataArraySIB (unsigned char data [] , struct SIB ∗ s ib ,

unsigned int begSIB) ;
68

69 //Function to i n i t i a l i s e temporary SIB with co r r e c t va l u e s .
70 int initTempSIB (struct SIB ∗ TempSib , struct SIB ∗ theS ib) ;
71

72 //Function which re turn the po in t e r o f the d e f a u l t SIB
73 int i n i tD e f a u l t S i b (struct SPS ∗ sps) ;
74

75 // Store s i b g i ven by argument on the next empty p l ace in the
array .

76 //Handles every t h ing about the FLASH.
77 int s t o r eS i b (struct SIB ∗ s ib , struct SPS ∗ sps , int ∗ e r r o r I n f o

) ;
78

79 #endif // s y s I n f o h

F.7 sysInfo.c

Listing F.7: C source code of the System Information Block (SIB) handling
functions.

1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : s y s In f o . c

F.7 sysInfo.c 157

5 ∗
6 ∗ Descr ip t i on : Functions to read and manipulate the

System Informat ion Block used
7 ∗ in the DTUsat−2 boot and FS so f tware .
8 ∗
9 ∗ Version : 1 .0

10 ∗ Created : 26/01/07 15 :50 :59 CET
11 ∗ Revis ion : none
12 ∗ Compiler : gcc
13 ∗
14 ∗ Author : Esben Rugbjerg () ,
15 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
16 ∗
17 ∗

===

18 ∗/
19 #include ” sy s I n f o . h”
20 #include ” in tF la sh . h”
21 #include ” crc . h”
22

23 /∗ The d e f a u l t c on f i g u r a t i on o f the SIB ∗/
24 struct SIB de f au l t S i b = DEFAULT SIB ;
25

26 /∗Function to f i nd the l o c a t i o n o f the most recen t SIB
27 ∗ Se t s the ’ theSIB ’ to po in t a t i t , and the va lue o f

idxOFtheSib . ∗/
28 int f indSIB (struct SPS ∗ sps) {
29 int index = 0 ;
30 for (index = sps−>arrayLength ; index > 0 ;) {
31 i f (sps−>s i b s [−− index] . magicNum == MAGIC NUM) {
32 sps−>idxOfTheSib = index ;
33 sps−>theS ib = &(sps−>s i b s [index]) ;
34 index = 0 ;
35 }
36 }
37 i f (sps−>idxOfTheSib >= 0)
38 return 0 ;
39 else
40 return 1 ;
41 }
42

43 /∗Function to t e s t the v a l i d i t y o f t h eS i b by check ing the
checksum ∗/

44 int testTheSib (struct SIB ∗ theS ib) {
45

46 //Compute checksum of t h eS i b

158 Source files of the DTUsat-2 implementation

47 unsigned int candidate = crcCompute ((unsigned char ∗)
theSib , s izeof (struct SIB)−4) ;

48

49 //Compare computed checksum to s t o r ed checksum
50 i f (candidate == theSib−>checksum)
51 return 0 ;
52 else
53 return 1 ;
54 }
55

56 /∗Function to decrement bootCounter and save new SIB . Returns
0 f o r succe s s . ∗/

57 int decretBootC (struct SPS ∗ sps , int ∗ e r r o r I n f o) {
58

59 unsigned char data [INT MIN WR SIZE] ;
60 int r e s u l t = 0 ;
61 unsigned int s ibBeg = −1;
62

63 r e s u l t = initTempSIB ((struct SIB ∗) &(sps−>tempSib) , (
struct SIB ∗) &(sps−>theS ib)) ;

64 i f (r e s u l t != 0)
65 // S ta r t FS
66 return r e s u l t ;
67

68 // f o r b e r ed data []
69

70 //Find s t a r t p o s i t i o n o f SIB .
71 i f (sps−>idxOfTheSib != −1){ /∗ i f SIB i s not the d e f a u l t . ∗/
72 s ibBeg = (unsigned int) ((sps−>idxOfTheSib + 1) ∗ s izeof

(struct SIB)) ;
73 // I f the SIB ove r f l ows the s i z e o f the s e c t o r :
74 //Place i t in the beg inn ing o f the s e c t o r .
75 i f (s ibBeg > (unsigned int) ((MAX NUM OF SIBs − 1) ∗ s izeof (

struct SIB)))
76 s ibBeg = 0 ;
77 }
78 else // I f SIB i s the d e f au l t , s t a r t a t the beg inn ing
79 // o f the s e c t o r .
80 s ibBeg = 0 ;
81

82 r e s u l t = prepDataArraySIB (data ,&(sps−>tempSib) , (s ibBeg %
INT MIN WR SIZE)) ;

83 i f (r e s u l t != 0)
84 return r e s u l t ;
85

86 r e s u l t = writeDataArrayToFLASH(\

F.7 sysInfo.c 159

87 (unsigned char ∗) ((INT FLASH BEG + sibBeg)−(s ibBeg %
INT MIN WR SIZE)) ,\

88 data , INT MIN WR SIZE , e r r o r I n f o) ;
89 i f (r e s u l t != 0)
90 return r e s u l t ;
91

92 return 0 ;
93 }
94

95 //Function to prepare the 512 by t e s data array t ha t shou ld be
wr i t t en to

96 //FLASH.
97 //Returns 0 on succe s s and 1 on f a i l u r e .
98 // Fa i l u re would be t ha t the SIB cont inues pas t the 512 th by t e .
99 int prepDataArraySIB (unsigned char data [] , struct SIB ∗ s ib ,

unsigned int begSIB) {

100 int i = 0 ;
101 int j = 0 ;
102 for (i = 0 ; i < INT MIN WR SIZE ; i++) {
103 i f (i < begSIB) {
104 data [i] = 0x00 ;
105 }
106 else i f (i == begSIB) {
107 for (j = 0 ; j < s izeof (struct SIB) ; j++, i++) {
108 i f (i == INT MIN WR SIZE)
109 return DATAARRAYOVERFLOW;
110 data [i] = ((unsigned char ∗) s i b) [j] ;
111 }
112 i f (i == INT MIN WR SIZE)
113 return DATAARRAYOVERFLOW;
114 data [i] = 0xFF ;
115 }
116 else {
117 data [i] = 0xFF ;
118 }
119 }
120 return 0 ;
121 }
122

123 //Function to i n i t i a l i s e temporary SIB with co r r e c t va l u e s .
Checksum shou ld

124 // be r e c a l c u l a t e d when a f i e l d i s changed .
125

126 int initTempSIB (struct SIB ∗tempSib , struct SIB ∗ theS ib) {
127 tempSib−>magicNum = theSib−>magicNum ;
128 tempSib−>launchBit = theSib−>launchBit ;

160 Source files of the DTUsat-2 implementation

129

130 i f (theSib−>bootCounter == 0)
131 tempSib−>bootCounter = 0 ;
132 else
133 tempSib−>bootCounter = (theSib−>bootCounter) − 1 ;
134

135 tempSib−>eCosBeg = theSib−>eCosBeg ;
136 tempSib−>eCosEnd = theSib−>eCosEnd ;
137 tempSib−>eCosCheck = theSib−>eCosCheck ;
138 tempSib−>eCosP = theSib−>eCosP ;
139 tempSib−>checksum = crcCompute ((unsigned char ∗) &tempSib ,

s izeof (struct SIB)−4) ;
140 }
141

142 int i n i tD e f a u l t S i b (struct SPS ∗ sps) {
143 sps−>theS ib = (struct SIB ∗) &de f au l t S i b ;
144 return 0 ;
145 }
146

147 // Store s i b g i ven by argument on the next empty p l ace in the
array .

148 //Handles every t h ing about the FLASH.
149 int s t o r eS i b (struct SIB ∗ s ib , struct SPS ∗ sps , int ∗ e r r o r I n f o

) {

150 unsigned char data [INT MIN WR SIZE] ;
151 int r e s u l t = 0 ;
152 unsigned int s ibBeg = −1;
153

154 i f (sps−>idxOfTheSib != −1){ /∗ i f SIB i s not the d e f a u l t . ∗/
155 s ibBeg = (unsigned int) ((sps−>idxOfTheSib + 1) ∗ s izeof

(struct SIB)) ;
156 // I f the SIB ove r f l ows the s i z e o f the s e c t o r :
157 //Place i t in the beg inn ing o f the s e c t o r .
158 i f (s ibBeg > (unsigned int) ((MAX NUM OF SIBs − 1) ∗ s izeof (

struct SIB)))
159 s ibBeg = 0 ;
160 }
161 else // I f SIB i s the d e f au l t , s t a r t a t the beg inn ing
162 // o f the s e c t o r .
163 s ibBeg = 0 ;
164

165 r e s u l t = prepDataArraySIB (data , s ib , (s ibBeg %
INT MIN WR SIZE)) ;

166 i f (r e s u l t != 0)
167 return r e s u l t ;
168

F.8 intFlash.h 161

169 r e s u l t = writeDataArrayToFLASH(\
170 (unsigned char ∗) ((INT FLASH BEG + sibBeg)−(s ibBeg %

INT MIN WR SIZE)) ,\
171 data , INT MIN WR SIZE , e r r o r I n f o) ;
172 i f (r e s u l t != 0) {
173 int z e ro s [] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;
174 r e s u l t = prepDataArraySIB (data , (struct SIB ∗) zeros , (

s ibBeg % INT MIN WR SIZE)) ;
175 i f (r e s u l t != 0)
176 return r e s u l t ;
177 r e s u l t = writeDataArrayToFLASH(\
178 (unsigned char ∗) ((INT FLASH BEG + sibBeg)−(s ibBeg %

INT MIN WR SIZE)) ,\
179 data , INT MIN WR SIZE , e r r o r I n f o) ;
180 }
181

182 return 0 ;
183

184 }

F.8 intFlash.h

Listing F.8: C source code of the FLASH handling functions for the internal
FLASH.

1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : i n tF l a sh . h
5 ∗
6 ∗ Descr ip t i on : Header f i l e f o r the FLASH dr i v e r o f the

i n t e r n a l FLASH of the
7 ∗ CPU chip on the DTUsat−2
8 ∗
9 ∗ Version : 1 .0

10 ∗ Created : 08/02/07 17 :34 :47 CET
11 ∗ Revis ion : none
12 ∗ Compiler : gcc
13 ∗
14 ∗ Author : Esben Rugbjerg () ,
15 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
16 ∗
17 ∗

===

162 Source files of the DTUsat-2 implementation

18 ∗/
19

20

21 //Clock f requency o f system c l o c k in KHz
22 #define SYS CLOCK FREQ 10000
23

24 #define INT FLASH BEG 0x20000000
25 #define INT FLASH END 0x2003FFFF
26 #define INT FLASH SIZE ((INT FLASH END − INT FLASH BEG) +1)
27 #define INT SECTOR SIZE NORM 0x2000
28 #define INT SECTOR SIZE LARGE 0x10000
29 #define INT L SECTOR BEG 8
30 #define INT L SECTOR END 9
31 #define INT NUM OF SECTORS 18
32 #define INT TOTAL ROOM IN FLASH (16 ∗ INT SECTOR SIZE NORM) +

(2 ∗ INT SECTOR SIZE LARGE)
33 #define INT MIN WR SIZE 0x200 //512 by t e s
34 #define IAP LOCATION 0 x 7 f f f f f f 1
35

36 //Command numbers o f IAP func t i on s
37 #define IAP PREP SECTORS 50
38 #define IAP WR RAM TO FLASH 51
39 #define IAP ERASE SECTORS 52
40 #define IAP BLANK CHECK SECTORS 53
41 #define IAP READ PART ID 54
42 #define IAP READ BOOT CODE VERSION 55
43 #define IAP COMPARE 56
44

45 //Error codes from IAP func t i on
46 #define CMD SUCCESS 0
47 #define INVALID COMMAND 1
48 #define SRC ADDR ERROR 2
49 #define DST ADDR ERROR 3
50 #define SRC ADDR NOT MAPPED 4
51 #define DST ADDR NOT MAPPED 5
52 #define COUNT ERROR 6
53 #define INVALID SECTOR 7
54 #define SECTOR NOT BLANK 8
55 #define SECTOR NOT PREPARED FOR WRITE OPERATION 9
56 #define COMPAREERROR 10
57 #define BUSY 11
58

59 //Error codes re turned by so f tware f unc t i on s .
60 #define INVALID SECTOR NUMBER 20
61 #define AREA NOT BLANK 21
62 #define DATAARRAYOVERFLOW 22
63 #define SECTOROVERFLOW 23

F.8 intFlash.h 163

64 #define FLASH OVERFLOW 24
65

66 typedef void (∗IAP) (unsigned long [] , unsigned long []) ;
67

68 //Function to t e s t i f an area o f the FLASH i s b lank i . e .
con ta ins noth ing

69 // but ones .
70 //Returns 0 f o r succe s s and 1 f o r f a i l u r e .
71 int BlankTestArea (unsigned char ∗ s ta r t , int numOfChars) ;
72

73

74 //Function to prepare a 512 by t e s data array t ha t shou ld be
wr i t t en to

75 //FLASH.
76 //Returns 0 on succe s s and DATAARRAYOVERFLOW (22) on f a i l u r e

.
77 int prepDataArray (unsigned char data [] , unsigned char input [] ,

int begPos , int numOfBytes) ;
78

79 //Function to wr i t e data to FLASH. Takes care o f prepara t ion
o f the s e c t o r

80 //Returns 0 on succe s s and some i n t d i f f e r e n t from zero in
case o f f a i l u r e .

81 int writeDataArrayToFLASH(unsigned char ∗ dest , unsigned char
∗ data , unsigned long numOfBytes , int ∗ Erro r In fo) ;

82

83 //Function to wr i t e s e c t o r s in the FLASH. This f unc t i on t ak e s
care

84 // o f e ra s ing and wr i t i n g the s e c t o r .
85 //Returns 0 on succe s s and o ther va l u e s on e r ro r s . These

va l u e s are
86 // de f ined above .
87 int wr i t eSe c to r (unsigned char padArray [] , int begByte , int

endByte , int secNum , int ∗ e r r o r I n f o) ;
88

89 //Function to wr i t e b inary image to the i n t e r n a l FLASH. This
f unc t i on

90 // tak e s o f a l l necessary s t e p s i n c l u d i n g e ra s ing the s e c t o r s
needed .

91 int writeImageFromRAM(unsigned char data [] , int numOfBytes ,
int s ta r tSec , int ∗ e r r o r I n f o) ;

92

93 //Function to erase i n d i v i d u a l s e c t o r s .
94 int e r a s eS e c t o r (int secNum) ;
95

96 //Wrapper func t i on f o r the IAP ’ Prepare s e c t o r (s) f o r wr i t e
opera t ion ’ −f unc t i on .

164 Source files of the DTUsat-2 implementation

97 int IAPprepSectors (int s ta r tSec , int endSec) ;
98

99 //Wrapper func t i on f o r the IAP ’Copy RAM to FLASH’ −f unc t i on .
100 int IAPcopyRAMtoFLASH(unsigned char ∗ dest , unsigned char ∗

source , int numOfBytes , int c lckFrq) ;
101

102 //Wrapper func t i on f o r the IAP ’ Erase s e c t o r (s) ’ −f unc t i on .
103 int IAPeraseSectors (int s ta r tSec , int endSec , int c lckFrq) ;
104

105 //Wrapper func t i on f o r the IAP ’ Blanck check s e c t o r (s) ’ −
f unc t i on .

106 int IAPblankChkSectors (int s ta r tSec , int endSec) ;
107

108 //Wrapper func t i on f o r the IAP ’Read Part ID ’ −f unc t i on .
109 int IAPreadPartID (int ∗ partID) ;
110

111 //Wrapper func t i on f o r the IAP ’Read boot code ve r s i on ’ −
f unc t i on .

112 int IAPrdBootCodeVer (int ∗ ve r s i on) ;
113

114 //Wrapper func t i on f o r the IAP ’Compare ’ −f unc t i on .
115 int IAPcompare (int ∗ dest , int ∗ src , int numOfBytes , int ∗

e r ro rLoca t i on) ;

F.9 intFlash.c

Listing F.9: C source code of the FLASH handling functions for the internal
FLASH.

1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : i n tF l a sh . c
5 ∗
6 ∗ Descr ip t i on : Driver f o r the i n t e r n a l FLASH of the CPU

chip LPC2294 . Contains
7 ∗ s p e c i a l f unc t i on s to handle System

Informat ion Blocks o f the
8 ∗ DTUsat−2.
9 ∗

10 ∗ Version : 1 .0
11 ∗ Created : 08/02/07 17 :32 :38 CET
12 ∗ Revis ion : none
13 ∗ Compiler : gcc
14 ∗

F.9 intFlash.c 165

15 ∗ Author : Esben Rugbjerg () ,
16 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
17 ∗
18 ∗

===

19 ∗/
20

21 #include ” in tF la sh . h”
22

23 // Dec la ra t i ons used by the IAP func t i on s .
24 unsigned long command [5] ; //Array con ta in ing commands to

the boot code
25 unsigned long r e s u l t [3] ; //Array con ta in ing s t a t u s and the

r e s u l t codes from the boot code
26 IAP iapEntry =(IAP) IAP LOCATION; // In i o f the po in t e r to

the boot code func t i on
27

28

29 //Function to t e s t i f an area o f the FLASH i s b lank i . e .
con ta ins noth ing

30 // but ones .
31 //Returns 0 f o r succe s s and 21 f o r f a i l u r e .
32 int BlankTestArea (unsigned char ∗ s ta r t , int numOfChars) {
33 int i = 0 ;
34 for (i = 0 ; i <= numOfChars ; i++) {
35 i f (∗ (s t a r t+i) != 0xFF)
36 //Return 1 i f anyth ing ones i s found .
37 return AREA NOT BLANK;
38 }
39 return 0 ;
40 }
41

42

43

44 //Function to prepare a 512 by t e s data array t ha t shou ld be
wr i t t en to

45 //FLASH.
46 //Returns 0 on succe s s and DATAARRAYOVERFLOW (22) on f a i l u r e

.
47 int prepDataArray (unsigned char data [] , unsigned char input [] ,

int begPos , int numOfBytes) {
48 int i = 0 ;
49 int j = 0 ;
50 for (i = 0 ; i < INT MIN WR SIZE ; i++) {
51 i f (i < begPos) {
52 data [i] = 0x00 ;

166 Source files of the DTUsat-2 implementation

53 }
54 else i f (i == begPos) {
55 for (j = 0 ; j <= numOfBytes ; j++, i++) {
56 i f (i == INT MIN WR SIZE)
57 return DATAARRAYOVERFLOW;
58 data [i] = input [j] ;
59 }
60 i f (i == INT MIN WR SIZE)
61 return DATAARRAYOVERFLOW;
62 data [i] = 0xFF ;
63 }
64 else {
65 data [i] = 0xFF ;
66 }
67 }
68 return 0 ;
69 }
70

71 //Function to wr i t e data to FLASH. Takes care o f prepara t ion
o f the s e c t o r

72 //Returns 0 on succe s s and some i n t d i f f e r e n t from zero in
f a i l u r e .

73 int writeDataArrayToFLASH(unsigned char ∗ dest , unsigned char
∗ data , unsigned long numOfBytes , int ∗ e r r o r I n f o) {

74

75

76 int sectorNum = 0 ;
77 int s e c t o r S i z e = 0 ;
78 int r e s u l t = 0 ;
79

80 sectorNum = (((int) &dest) − INT FLASH BEG) /
INT SECTOR SIZE NORM ;

81

82 //Test whether s e c t o r number i s v a l i d or not
83 i f (sectorNum > (INT NUM OF SECTORS −1))
84 return INVALID SECTOR NUMBER;
85

86 // Set s e c t o r number to the co r r e c t va lue .
87 i f (sectorNum < INT L SECTOR BEG) ;
88 else i f ((sectorNum >= INT L SECTOR BEG) && \
89 (sectorNum < (INT L SECTOR BEG + (

INT SECTOR SIZE LARGE/INT SECTOR SIZE NORM))))
90 sectorNum = INT L SECTOR BEG;
91 else i f ((sectorNum >= (INT L SECTOR BEG + (

INT SECTOR SIZE LARGE/INT SECTOR SIZE NORM))) \
92 && (sectorNum < (INT L SECTOR BEG + (

INT SECTOR SIZE LARGE/INT SECTOR SIZE NORM) ∗2)))

F.9 intFlash.c 167

93 sectorNum = INT L SECTOR END;
94 else
95 sectorNum = sectorNum − (2∗ (INT SECTOR SIZE LARGE/

INT SECTOR SIZE NORM)+2) ;
96

97 // I s the s e c t o r 8 KB or 64 KB ?
98 i f ((sectorNum == INT L SECTOR BEG) | | (sectorNum ==

INT L SECTOR END))
99 s e c t o r S i z e = INT SECTOR SIZE LARGE ;

100 else
101 s e c t o r S i z e = INT SECTOR SIZE NORM;
102

103 // Ca l l IAP func t i on through wrapper to prepare s e c t o r .
104 r e s u l t = IAPprepSectors (sectorNum , sectorNum) ;
105

106 i f (r e s u l t != 0)
107 return r e s u l t ;
108

109 r e s u l t = IAPcopyRAMtoFLASH(dest , data , numOfBytes ,
SYS CLOCK FREQ) ;

110

111 i f (r e s u l t != 0)
112 return r e s u l t ;
113

114 return IAPcompare ((int ∗) dest , (int ∗) data , numOfBytes ,
e r r o r I n f o) ;

115 }
116

117 //Function to wr i t e s e c t o r s in the FLASH. This f unc t i on t ak e s
care

118 // o f e ra s ing and wr i t i n g the s e c t o r .
119 //Returns 0 on succe s s and o ther va l u e s on e r ro r s . These

va l u e s are
120 // de f ined above .
121 int wr i t eSe c to r (unsigned char data [] , int begByte , int endByte

, int secNum , int ∗ e r r o r I n f o) {
122

123 unsigned char padArray [INT MIN WR SIZE] ;
124 int endSize = 0 ; // s i z e o f data chunk which needs to be

padded to f i t 512 by t e s
125 int dataIndex = 0 ; // index in array in RAM
126 int padIndex = 0 ; // index in 512 by t e array where the end

chunk o f data are padded to f i t 512 by t e s
127 int chunks = 0 ; //number o f 512 by t e s data chunks in

s e l e c t e d par t o f RAM.
128 int wrSize = 0 ; // v a r i a b l e con ta in ing number o f b y t e s which

shou ld be wr i t t en .

168 Source files of the DTUsat-2 implementation

129 int r e s u l t = 0 ; // re turn va lue from low l e v e l f unc t i on s .
130 int s e c S i z e = 0 ; // s i z e o f s e c t o r
131 int secBeg = 0 ; //Beginning address o f s e c t o r .
132

133 //Test b l anknes s o f s e c t o r .
134 r e s u l t = IAPblankChkSectors (secNum , secNum) ;
135 // I f not b lank i t i s erased .
136 i f (r e s u l t != 0) {
137 //Prep s e c t o r
138 r e s u l t = IAPprepSectors (secNum , secNum) ;
139 i f (r e s u l t != 0)
140 return r e s u l t ;
141 //Erase s e c t o r
142 r e s u l t = IAPeraseSectors (secNum , secNum ,SYS CLOCK FREQ) ;
143 i f (r e s u l t != 0)
144 return r e s u l t ;
145 //Test b l anknes s o f s e c t o r
146 r e s u l t = IAPblankChkSectors (secNum , secNum) ;
147 i f (r e s u l t != 0)
148 return r e s u l t ;
149 }
150

151 // I s the s e c t o r 8 KB or 64 KB ?
152 i f ((secNum == INT L SECTOR BEG) | | (secNum ==

INT L SECTOR END))
153 s e c S i z e = INT SECTOR SIZE LARGE ;
154 else
155 s e c S i z e = INT SECTOR SIZE NORM;
156

157 // check i f data i s l onge r than s e c t o r .
158 i f ((endByte − begByte) > s e c S i z e)
159 return SECTOROVERFLOW;
160

161 i f (secNum <= INT L SECTOR BEG)
162 secBeg = INT FLASH BEG + (secNum ∗ INT SECTOR SIZE NORM)

;
163 else i f (secNum == INT L SECTOR END)
164 secBeg = INT FLASH BEG + (8 ∗ INT SECTOR SIZE NORM) +

INT SECTOR SIZE LARGE ;
165 else
166 secBeg = INT FLASH BEG + ((secNum −2) ∗

INT SECTOR SIZE NORM) + 2 ∗ INT SECTOR SIZE LARGE ;
167

168 // Pad data wi th ones u n t i l a 512 by t e l im i t i s met .
169 endSize = (endByte − begByte) % INT MIN WR SIZE ;
170 i f (endSize > 0) {

F.9 intFlash.c 169

171 for (dataIndex = (endByte − endSize) , padIndex = 0 ;
dataIndex <= endByte ; dataIndex++, padIndex++)

172 padArray [padIndex] = data [dataIndex] ;
173

174 for (; padIndex < INT MIN WR SIZE ; padIndex++)
175 padArray [padIndex] = 0xFF ;
176 }
177

178 // Write data to s e c t o r
179 chunks = (endByte − begByte) / INT MIN WR SIZE ;
180 wrSize = chunks ∗ INT MIN WR SIZE ;
181

182 r e s u l t = writeDataArrayToFLASH ((unsigned char ∗) secBeg , (
unsigned char ∗) &(data [begByte]) , wrSize , e r r o r I n f o) ;

183

184 i f (r e s u l t != 0)
185 return r e s u l t ;
186 i f (endSize > 0)
187 return writeDataArrayToFLASH ((unsigned char ∗) (secBeg +

wrSize) , padArray , INT MIN WR SIZE , e r r o r I n f o) ;
188

189 return 0 ;
190 }
191

192 //Function to wr i t e b inary image to the i n t e r n a l FLASH. This
f unc t i on

193 // tak e s o f a l l necessary s t e p s i n c l u d i n g e ra s ing the s e c t o r s
needed .

194 int writeImageFromRAM(unsigned char data [] , int numOfBytes ,
int s ta r tSec , int ∗ e r r o r I n f o) {

195

196 int roomInFLASH = 0 ; //Room in FLASH from beg inn ing o f
s t a r t S e c to the end .

197 int secNum = 0 ; // Sec t ion number o f pre sen t s e c t i on .
198 int r e s u l t = 0 ; // Storage o f the re turn va lue o f c a l l e d

f unc t i on s .
199 int begByte = 0 ; //Beginning p o s i t i o n in data array f o r

pre sen t wr i t e opera t ion .
200 int endByte = 0 ; //End po s i t i o n in data array f o r pre sen t

wr i t e opera t ion .
201 int s e c S i z e = 0 ; // S i z e o f s e c t i on .
202

203 // Ca l cu l a t e a v a i l a b l e room in FLASH
204 i f (s t a r tS e c <= INT L SECTOR BEG)
205 roomInFLASH = INT TOTAL ROOM IN FLASH − (s t a r tS e c ∗

INT SECTOR SIZE NORM) ;
206 else i f (s t a r tS e c == INT L SECTOR END)

170 Source files of the DTUsat-2 implementation

207 roomInFLASH = INT TOTAL ROOM IN FLASH − ((
INT L SECTOR BEG ∗ INT SECTOR SIZE NORM) +
INT L SECTOR BEG) ;

208 else i f (s t a r tS e c > INT L SECTOR END)
209 roomInFLASH = INT TOTAL ROOM IN FLASH − ((2 ∗

INT SECTOR SIZE LARGE) + ((s t a r tS e c − 2) ∗
INT SECTOR SIZE NORM)) ;

210

211 //Return error i f t h e r e i s to l i t t l e room fo r data
212 i f (numOfBytes > roomInFLASH)
213 return FLASH OVERFLOW;
214

215 //Loop over b y t e s which needs to be wr i t t en .
216 for (secNum == sta r tS e c ; endByte < numOfBytes ; secNum++) {
217

218 // I s the s e c t o r 8 KB or 64 KB ?
219 i f ((secNum == INT L SECTOR BEG) | | (secNum ==

INT L SECTOR END))
220 s e c S i z e = INT SECTOR SIZE LARGE ;
221 else
222 s e c S i z e = INT SECTOR SIZE NORM;
223

224 //Calc end po s i t i o n candida te in data array f o r t h i s
s e c t o r .

225 endByte = begByte + s e cS i z e − 1 ;
226

227 //Correct endByte va lue i f over f l ow occurred .
228 i f (endByte > (numOfBytes − 1))
229 endByte = numOfBytes −1;
230

231 // Ca l l f unc t i on to wr i t e s e c t o r
232 r e s u l t = wr i t eSe c to r (data , begByte , endByte , secNum ,

e r r o r I n f o) ;
233

234 i f (r e s u l t != 0)
235 return r e s u l t ;
236

237 //Update begByte f o r next run .
238 begByte = endByte + 1 ;
239

240

241 }
242 return 0 ;
243 }
244

245 //Function to erase i n d i v i d u a l s e c t o r s .
246 int e r a s eS e c t o r (int secNum) {

F.9 intFlash.c 171

247

248 int r e s u l t = 0 ;
249

250 r e s u l t = IAPprepSectors (secNum , secNum) ;
251 i f (r e s u l t != 0)
252 return r e s u l t ;
253

254 return IAPeraseSectors (secNum , secNum ,SYS CLOCK FREQ) ;
255 }
256

257

258 //Wrapper func t i on f o r the IAP ’ Prepare s e c t o r (s) f o r wr i t e
opera t ion ’ −f unc t i on .

259 int IAPprepSectors (int s ta r tSec , int endSec) {
260

261 // Set up va l u e s in command array .
262 command [0] = IAP PREP SECTORS;
263 command [1] = s t a r tS e c ;
264 command [2] = endSec ;
265

266 // Ca l l f unc t i on .
267 iapEntry (command , r e s u l t) ;
268

269 //Return r e s u l t .
270 return r e s u l t [0] ;
271 }
272

273 //Wrapper func t i on f o r the IAP ’Copy RAM to FLASH’ −f unc t i on .
274 int IAPcopyRAMtoFLASH(unsigned char ∗ dest , unsigned char ∗

source , int numOfBytes , int c lckFrq) {
275

276 // Set va l u e s o f command to IAP fo r the wr i t i n g
277 // opera t ion
278 command [0] = IAP WR RAM TO FLASH;
279 command [1] = (unsigned long) des t ;
280 command [2] = (unsigned long) source ;
281 command [3] = numOfBytes ;
282 command [4] = clckFrq ;
283

284 iapEntry (command , r e s u l t) ;
285

286 return r e s u l t [0] ;
287 }
288

289 //Wrapper func t i on f o r the IAP ’ Erase s e c t o r (s) ’ −f unc t i on .
290 int IAPeraseSectors (int s ta r tSec , int endSec , int c lckFrq) {
291

172 Source files of the DTUsat-2 implementation

292 // Set va l u e s in the command array .
293 command [0] = IAP ERASE SECTORS;
294 command [1] = s t a r tS e c ;
295 command [2] = endSec ;
296 command [3] = clckFrq ;
297

298 iapEntry (command , r e s u l t) ;
299

300 return r e s u l t [0] ;
301 }
302

303 //Wrapper func t i on f o r the IAP ’ Blanck check s e c t o r (s) ’ −
f unc t i on .

304 int IAPblankChkSectors (int s ta r tSec , int endSec) {
305

306 // Set va l u e s in the command array .
307 command [0] = IAP BLANK CHECK SECTORS;
308 command [1] = s t a r tS e c ;
309 command [2] = endSec ;
310

311 iapEntry (command , r e s u l t) ;
312

313 return r e s u l t [0] ;
314 }
315

316 //Wrapper func t i on f o r the IAP ’Read Part ID ’ −f unc t i on .
317 int IAPreadPartID (int ∗ partID) {
318

319 command [0] = IAP READ PART ID ;
320

321 iapEntry (command , r e s u l t) ;
322

323 ∗partID = r e s u l t [1] ;
324

325 return r e s u l t [0] ;
326 }
327

328 //Wrapper func t i on f o r the IAP ’Read boot code ve r s i on ’ −
f unc t i on .

329 int IAPrdBootCodeVer (int ∗ ve r s i on) {
330

331 command [0] = IAP READ BOOT CODE VERSION;
332

333 iapEntry (command , r e s u l t) ;
334

335 ∗ ve r s i on = r e s u l t [1] ;
336

F.10 rtc.h 173

337 return r e s u l t [0] ;
338 }
339

340

341 //Wrapper func t i on f o r the IAP ’Compare ’ −f unc t i on .
342 int IAPcompare (int ∗ dest , int ∗ src , int numOfBytes , int ∗

e r ro rLoca t i on) {
343

344 command [0] = IAP COMPARE;
345 command [1] = (unsigned long) des t ;
346 command [2] = (unsigned long) s r c ;
347 command [3] = numOfBytes ;
348

349 ∗ e r ro rLoca t i on = r e s u l t [1] ;
350

351 return r e s u l t [0] ;
352 }

F.10 rtc.h

Listing F.10: C source code of the handling functions for real time clock.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : r t c . h
5 ∗
6 ∗ Descr ip t i on : Driver func t i on f o r the Real Time Clock o f

the LPC2294 ch ip . Only the
7 ∗ most important f unc t i on s are implemented .
8 ∗
9 ∗ Version : 1 .0

10 ∗ Created : 16/02/07 20 :04 :54 CET
11 ∗ Revis ion : none
12 ∗ Compiler : gcc
13 ∗
14 ∗ Author : Esben Rugbjerg () ,
15 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
16 ∗
17 ∗

===

18 ∗/
19

20 //Values needed to s e t up the p r e s c a l e r .

174 Source files of the DTUsat-2 implementation

21 //These are f o r the Olimex board us ing a 14.7456 Mhz c r y s t a l .
22 #define RTC PREINT VAL 0x1C1 // 449
23 #define RTC PREFRAC VAL 0
24

25 #define RTC ILR 0xE0024000
26 #define RTC CTC 0xE0024004
27 #define RTC CCR 0xE0024008
28 #define RTC CIIR 0xE002400C
29 #define RTC AMR 0xE0024010
30 #define RTC CTIME0 0xE0024014
31 #define RTC CTIME1 0xE0024018
32 #define RTC CTIME2 0xE002401C
33 #define RTC SEC 0xE0024020
34 #define RTC MIN 0xE0024024
35 #define RTC HOUR 0xE0024028
36 #define RTCDOM 0xE002402C
37 #define RTCDOW 0xE0024030
38 #define RTC DOY 0xE0024034
39 #define RTCMONTH 0xE0024038
40 #define RTC YEAR 0xE002403C
41 #define RTC ALSEC 0xE0024060
42 #define RTC ALMIN 0xE0024064
43 #define RTC ALHOUR 0xE0024068
44 #define RTCALDOM 0xE002406C
45 #define RTCALDOW 0xE0024070
46 #define RTC ALDOY 0xE0024074
47 #define RTC ALMON 0xE0024078
48 #define RTC ALYEAR 0xE002407C
49 #define RTC PREINT 0xE0024080
50 #define RTC PREFRAC 0xE0024084
51

52 //Function to i n i t i a l i z e the Real Time Clock j u s t to run .
53 //No co r r e c t i on o f the time i s done . Second are r e s e t though .
54 int s imp l e In i tRtc (void) ;
55

56 //Function re tu rn ing when one minute has e l ap s ed a f t e r i t was
c a l l e d .

57 int waitMinRtc (void) ;

F.11 rtc.c

Listing F.11: C source code of the handling functions for real time clock.
1 /∗
2 ∗

===

F.11 rtc.c 175

3 ∗
4 ∗ Filename : r t c . c
5 ∗
6 ∗ Descr ip t i on : Functions to con t r o l the Real Time Clock

o f the LPC2294 ch ip . Only
7 ∗ a minimum of f un t i on s are implemented .
8 ∗
9 ∗ Version : 1 .0

10 ∗ Created : 17/02/07 17 :04 :24 CET
11 ∗ Revis ion : none
12 ∗ Compiler : gcc
13 ∗
14 ∗ Author : Esben Rugbjerg () ,
15 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y
16 ∗
17 ∗

===

18 ∗/
19 #include ” r t c . h”
20

21 //Function to i n i t i a l i z e the Real Time Clock j u s t to run .
22 //No co r r e c t i on o f the time i s done . Second are r e s e t though .
23 int s imp l e In i tRtc (void) {
24 unsigned char ∗ tempPtr ;
25 unsigned int ∗ tempInt ;
26

27 //Ensure t ha t the RTC i s s topped .
28 tempPtr = (unsigned char ∗) RTC CCR;
29 ∗tempPtr = (unsigned char) 0x02 ;
30

31 // Disab l e i n t e r r u p t s
32 tempPtr = (unsigned char ∗) RTC AMR;
33 ∗tempPtr = 0xFF ;
34 tempPtr = (unsigned char ∗) RTC CIIR ;
35 ∗tempPtr = 0x00 ;
36

37 //Reset seconds counter to zero .
38 tempPtr = (unsigned char ∗) RTC SEC;
39 ∗tempPtr = 0x00 ;
40

41 //Setup p r e s c a l e r .
42 tempInt = (unsigned int ∗) RTC PREINT;
43 ∗ tempInt = RTC PREINT VAL;
44

45 tempInt = (unsigned int ∗) RTC PREFRAC;
46 ∗ tempInt = RTC PREFRAC VAL;

176 Source files of the DTUsat-2 implementation

47

48 // S ta r t RTC.
49 // (unsigned char ∗) CCR = 0x0 ;
50 }
51

52 //Function re tu rn ing when one minute has e l ap s ed a f t e r i t was
c a l l e d .

53 int waitMinRtc (void) {
54 //Value o f minute counter when p o l l i n g beg in s .
55 unsigned char minValue = 0x00 ;
56 //Value o f minute counter wh i l e p o l l i n g .
57 unsigned char temp = 0x00 ;
58 //Pointer used to po in t on the memory l o c a t i o n s o f the

r e l e v an t
59 // r e g i s t e r s in the RTC.
60 unsigned char ∗tempPtr ;
61

62 //Reset seconds counter to zero .
63 tempPtr =(unsigned char ∗) RTC SEC;
64 ∗tempPtr = 0x00 ;
65

66 // record minutes va lue
67 tempPtr = (unsigned char ∗)RTC MIN;
68 minValue = (∗ tempPtr) << 2 ;
69

70 // S ta r t RTC.
71 tempPtr = (unsigned char ∗) RTC CCR;
72 ∗tempPtr = 0x00 ;
73

74

75 tempPtr = (unsigned char ∗) RTC MIN;
76 temp = (∗ tempPtr) << 2 ;
77

78 while (temp == minValue)
79 temp = ∗tempPtr ;
80

81 //Stop the RTC.
82 tempPtr = (unsigned char ∗) RTC CCR;
83 ∗tempPtr = 0x02 ;
84

85 return 0 ;
86 }

F.12 intWDT.h

F.13 intWDT.c 177

Listing F.12: C source code of the handling functions for real time clock.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : intWDT. h
5 ∗
6 ∗ Descr ip t i on : Header f i l e f o r the watch dog t imer

f unc t i on s o f the i n t e r n a l WDT of
7 ∗ the LPC2292 ch ip
8 ∗
9 ∗ Version : 1 .0

10 ∗ Created : 09/04/07 22 :15 :40 CEST
11 ∗ Revis ion : none
12 ∗ Compiler : gcc
13 ∗
14 ∗ Author : Esben Rugbjerg () ,
15 ∗ Company : Technica l u n i v e r s i t y o f Denmark
16 ∗
17 ∗

===

18 ∗/
19 #define INTWDTWDMOD 0xE0000000
20 #define INT WDT WDTC 0xE0000004
21 #define INT WDT WDFEED 0xE0000008
22 #define INT WDT WDTV 0xE000000C
23

24

25 /∗Function to k i c k the WDT ∗/
26 void kickWDT(void) ;

F.13 intWDT.c

Listing F.13: C source code of the handling functions for real time clock.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : intWDT. c
5 ∗
6 ∗ Descr ip t i on : Function f o r managing the i n t e r n a l watch

dog t imer o f the LPC2292 ch ip

178 Source files of the DTUsat-2 implementation

7 ∗
8 ∗ Version : 1 .0
9 ∗ Created : 09/04/07 22 :21 :58 CEST

10 ∗ Revis ion : none
11 ∗ Compiler : gcc
12 ∗
13 ∗ Author : Esben Rugb jerg f () ,
14 ∗ Company : Technica l Un i v e r s i t y o f Denmark .
15 ∗
16 ∗

===

17 ∗/
18

19 #include ”intWDT. h”
20

21

22 void kickWDT(void) {
23 unsigned char ∗ tempPtr ;
24 unsigned int ∗ tempInt ;
25

26 //Ensure t ha t the RTC i s s topped .
27 tempPtr = (unsigned char ∗) INT WDT WDFEED;
28 ∗tempPtr = (unsigned char) 0xAA;
29

30 ∗tempPtr = (unsigned char) 0x55 ;
31 }

F.14 crc.h

Listing F.14: Header file for the CRC32 calculation functions.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : crc . h
5 ∗
6 ∗ Descr ip t i on : Header f i l e f o r the CRC ca l c u l a t i o n

f unc t i on s . The f unc t i on s are a l l
7 ∗ copied from ”Programming Embedded Systems”

by Michael Barr
8 ∗ (1999 , O’ R e i l l y) . So are the d e f i n i t i o n s

and pro to t ype s in t h i s f i l e .
9 ∗

10 ∗ Version : 1 .0

F.15 crc.c 179

11 ∗ Created : 30/01/07 14 :33 :16 CET
12 ∗ Revis ion : none
13 ∗ Compiler : gcc
14 ∗
15 ∗ Author : Esben Rugbjerg () ,
16 ∗ Company : Denmarks Technica l Un i v e r s i t y
17 ∗
18 ∗

===

19 ∗/
20

21

22 // CRC32 #de f i n e POLYNOMIAL 0x04C11DB7
23 #define POLYNOMIAL 0x04C11DB7
24 // CRC32 #de f i n e INITIAL REMAINDER 0xFFFFFFFF
25 #define INITIAL REMAINDER 0xFFFFFFFF
26 // CRC32 #de f i n e FINAL XOR VALUE 0xFFFFFFFF
27 #define FINAL XOR VALUE 0xFFFFFFFF
28

29 typedef unsigned long width ;
30

31 #define WIDTH (8 ∗ s izeof (width))
32 #define TOPBIT (1 << (WIDTH − 1))
33

34 #ifde f GEN CRC TABLE
35 void c r c I n i t (void) ;
36

37 /∗ Function to p r i n t the remainder t a b l e such t ha t i t can be
inc luded

38 ∗ in the source and compi led in t o the o b j e c t f i l e . ∗/
39 int printRemainderTable (void) ;
40 #endif
41

42 width crcCompute (unsigned char ∗ , unsigned int) ;

F.15 crc.c

Listing F.15: C source code of the CRC32 calculation functions.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : crc . c
5 ∗

180 Source files of the DTUsat-2 implementation

6 ∗ Descr ip t i on : C code f i l e f o r the CRC ca l c u l a t i o n
f unc t i on s . The f unc t i on s are a l l

7 ∗ copied from ”Programming Embedded Systems
” by Michael Barr

8 ∗ (1999 , O’ R e i l l y) .
9 ∗

10 ∗ Version : 1 .0
11 ∗ Created : 30/01/07 14 :49 :16 CET
12 ∗ Revis ion : none
13 ∗ Compiler : gcc
14 ∗
15 ∗ Author : () ,
16 ∗ Company :
17 ∗
18 ∗

===

19 ∗/
20

21 #include ” crc . h”
22

23 #ifde f GEN CRC TABLE
24 #include <s t d i o . h>
25

26 width crcTable [2 5 6] ;
27 #else
28 width crcTable [2 5 6] = {0x0 , 0x4c11db7 , 0x9823b6e , 0xd4326d9 , 0

x130476dc , 0x17c56b6b , 0x1a864db2 ,
29 0x1e475005 , 0x2608edb8 , 0 x22c9 f00 f , 0x2f8ad6d6 ,

0x2b4bcb61 , 0x350c9b64 , 0x31cd86d3 ,
30 0x3c8ea00a , 0x384fbdbd , 0x4c11db70 , 0x48d0c6c7 ,

0x4593e01e , 0x4152fda9 , 0 x5f15adac ,
31 0x5bd4b01b , 0x569796c2 , 0x52568b75 , 0x6a1936c8 ,

0x6ed82b7f , 0x639b0da6 , 0x675a1011 ,
32 0x791d4014 , 0x7ddc5da3 , 0x709f7b7a , 0x745e66cd ,

0x9823b6e0 , 0x9ce2ab57 , 0x91a18d8e ,
33 0x95609039 , 0x8b27c03c , 0x8fe6dd8b , 0x82a5fb52 ,

0x8664e6e5 , 0xbe2b5b58 , 0 xbaea46ef ,
34 0xb7a96036 , 0xb3687d81 , 0xad2f2d84 , 0xa9ee3033 ,

0xa4ad16ea , 0xa06c0b5d , 0xd4326d90 ,
35 0xd0f37027 , 0xddb056fe , 0xd9714b49 , 0xc7361b4c ,

0 xc3f706fb , 0xceb42022 , 0xca753d95 ,
36 0xf23a8028 , 0 x f6 fb9d9f , 0xfbb8bb46 , 0 x f f 79a6 f1 ,

0 xe13e f6 f4 , 0 xe5 f f eb43 , 0xe8bccd9a ,
37 0xec7dd02d , 0x34867077 , 0x30476dc0 , 0x3d044b19 ,

0x39c556ae , 0x278206ab , 0x23431b1c ,

F.15 crc.c 181

38 0x2e003dc5 , 0x2ac12072 , 0 x128e9dcf , 0 x164f8078 ,
0x1b0ca6a1 , 0x1fcdbb16 , 0x18aeb13 ,

39 0x54bf6a4 , 0x808d07d , 0xcc9cdca , 0x7897ab07 , 0
x7c56b6b0 , 0x71159069 , 0x75d48dde ,

40 0x6b93dddb , 0 x6f52c06c , 0x6211e6b5 , 0x66d0fb02 ,
0 x5e9f46bf , 0x5a5e5b08 , 0x571d7dd1 ,

41 0x53dc6066 , 0x4d9b3063 , 0x495a2dd4 , 0x44190b0d ,
0x40d816ba , 0xaca5c697 , 0xa864db20 ,

42 0 xa527fdf9 , 0 xa1e6e04e , 0xbfa1b04b , 0xbb60adfc ,
0xb6238b25 , 0xb2e29692 , 0x8aad2b2f ,

43 0x8e6c3698 , 0 x832f1041 , 0 x87ee0df6 , 0x99a95df3 ,
0x9d684044 , 0x902b669d , 0x94ea7b2a ,

44 0xe0b41de7 , 0xe4750050 , 0xe9362689 , 0 xedf73b3e ,
0xf3b06b3b , 0 xf771768c , 0 xfa325055 ,

45 0 xfe f34de2 , 0 xc6bc f05 f , 0xc27dede8 , 0 xcf3ecb31 ,
0 xcbf fd686 , 0xd5b88683 , 0xd1799b34 ,

46 0xdc3abded , 0xd8fba05a , 0 x690ce0ee , 0x6dcdfd59 ,
0x608edb80 , 0 x644fc637 , 0x7a089632 ,

47 0x7ec98b85 , 0x738aad5c , 0x774bb0eb , 0x4f040d56 ,
0x4bc510e1 , 0x46863638 , 0x42472b8f ,

48 0x5c007b8a , 0x58c1663d , 0x558240e4 , 0x51435d53 ,
0x251d3b9e , 0x21dc2629 , 0 x2c9 f00 f0 ,

49 0x285e1d47 , 0x36194d42 , 0x32d850f5 , 0 x3f9b762c ,
0x3b5a6b9b , 0x315d626 , 0x7d4cb91 ,

50 0xa97ed48 , 0 x e56 f 0 f f , 0 x1011a0fa , 0x14d0bd4d , 0
x19939b94 , 0x1d528623 , 0 x f12 f560e ,

51 0xf5ee4bb9 , 0xf8ad6d60 , 0 xfc6c70d7 , 0xe22b20d2 ,
0xe6ea3d65 , 0xeba91bbc , 0 xef68060b ,

52 0xd727bbb6 , 0xd3e6a601 , 0xdea580d8 , 0xda649d6f ,
0xc423cd6a , 0xc0e2d0dd , 0xcda1f604 ,

53 0xc960ebb3 , 0xbd3e8d7e , 0 xb9f f90c9 , 0xb4bcb610 ,
0xb07daba7 , 0 xae3afba2 , 0 xaafbe615 ,

54 0xa7b8c0cc , 0xa379dd7b , 0x9b3660c6 , 0 x9f f77d71 ,
0x92b45ba8 , 0 x9675461f , 0x8832161a ,

55 0x8cf30bad , 0x81b02d74 , 0x857130c3 , 0x5d8a9099 ,
0x594b8d2e , 0x5408abf7 , 0x50c9b640 ,

56 0x4e8ee645 , 0 x4a4 f fb f2 , 0x470cdd2b , 0x43cdc09c ,
0x7b827d21 , 0 x7f436096 , 0 x7200464f ,

57 0x76c15bf8 , 0x68860bfd , 0x6c47164a , 0x61043093 ,
0x65c52d24 , 0x119b4be9 , 0x155a565e ,

58 0x18197087 , 0x1cd86d30 , 0x29f3d35 , 0x65e2082 , 0
xb1d065b , 0 xfdc1bec , 0x3793a651 ,

59 0x3352bbe6 , 0 x3e119d3f , 0x3ad08088 , 0x2497d08d ,
0x2056cd3a , 0x2d15ebe3 , 0x29d4f654 ,

60 0xc5a92679 , 0xc1683bce , 0xcc2b1d17 , 0xc8ea00a0 ,
0xd6ad50a5 , 0xd26c4d12 , 0 xdf2f6bcb ,

182 Source files of the DTUsat-2 implementation

61 0xdbee767c , 0xe3a1cbc1 , 0xe760d676 , 0 xea23f0a f ,
0 xeee2ed18 , 0xf0a5bd1d , 0xf464a0aa ,

62 0xf9278673 , 0 xfde69bc4 , 0x89b8fd09 , 0x8d79e0be ,
0x803ac667 , 0x84fbdbd0 , 0x9abc8bd5 ,

63 0x9e7d9662 , 0x933eb0bb , 0 x97f fad0c , 0xafb010b1 ,
0xab710d06 , 0xa6322bdf , 0 xa2f33668 ,

64 0xbcb4666d , 0xb8757bda , 0xb5365d03 , 0xb1f740b4
} ;

65 #endif
66

67 #ifde f GEN CRC TABLE
68 void c r c I n i t (void) {
69

70 width remainder ;
71 width div idend ;
72 int b i t ;
73

74 /∗
75 ∗ Perform binary long d i v i s i on , a b i t a t a time .
76 ∗/
77 for (d iv idend = 0 ; d iv idend < 256 ; d iv idend++) {
78

79 /∗
80 ∗ I n i t i a l i z e the remainder .
81 ∗/
82 remainder = div idend << (WIDTH − 8) ;
83

84 /∗
85 ∗ S h i f t and XOR with th po lynomia l .
86 ∗/
87 for (b i t = 0 ; b i t < 8 ; b i t++) {
88 /∗
89 ∗ Try to d i v i d e the curren t data b i t .
90 ∗/
91 i f (remainder & TOPBIT) {
92 remainder = (remainder << 1) ˆ POLYNOMIAL;
93 }
94 else {
95 remainder = remainder << 1 ;
96 }
97 }
98

99 /∗
100 ∗ Save the r e s u l t in the t a b l e .
101 ∗/
102 crcTable [d iv idend] = remainder ;
103 }

F.16 cMemTest.h 183

104 } /∗ c r c I n i t () ∗/
105 #endif
106

107 width crcCompute (unsigned char ∗ message , unsigned int nBytes)
{

108 unsigned int o f f s e t ;
109 unsigned char byte ;
110 width remainder = INITIAL REMAINDER;
111

112 /∗
113 ∗ Divide the message by the polynomial , a by t e at a time .
114 ∗/
115 for (o f f s e t = 0 ; o f f s e t < nBytes ; o f f s e t++) {
116 byte = (remainder >> (WIDTH − 8)) ˆ message [o f f s e t] ;
117 remainder = crcTable [byte] ˆ (remainder << 8) ;
118 }
119

120 /∗
121 ∗ The f i n a l remainder i s the CRC r e s u l t .
122 ∗/
123 return (remainder ˆ FINAL XOR VALUE) ;
124 } /∗ crcCompute () ∗/
125

126 #ifde f GEN CRC TABLE
127 /∗ Function to p r i n t the remainder t a b l e such t ha t i t can be

inc luded
128 ∗ in the source and compi led in t o the o b j e c t f i l e . ∗/
129 int printRemainderTable (void) {
130 p r i n t f (” crcTable [2 5 6] = {0x%x” , crcTable [0]) ;
131

132 int i ;
133 for (i = 1 ; i < 256 ; i++)
134 p r i n t f (” , 0x%x” , crcTable [i]) ;
135

136 p r i n t f (”}”) ;
137 }
138 #endif

F.16 cMemTest.h

Listing F.16: Header file for the memory test functions.
1 /∗
2 ∗

===

3 ∗

184 Source files of the DTUsat-2 implementation

4 ∗ Filename : cMemTest . h
5 ∗
6 ∗ Descr ip t i on : Header f i l e f o r memory t e s t f unc t i on

implemented in C. The f unc t i on s
7 ∗ are copied from Programming Embedded

Systems in C and C++ by
8 ∗ Michael Barr . The source code i s g i ven on

page 66 to 73. The f unc t i on s
9 ∗ are changed such t ha t they re turn i n t e g e r s

.
10 ∗
11 ∗ Version : 1 .0
12 ∗ Created : 01/02/07 13 :38 :43 CET
13 ∗ Revis ion : none
14 ∗ Compiler : gcc
15 ∗
16 ∗ Author : Esben Rugbjerg () ,
17 ∗ Company : Denmark ’ s Technica l Un i v e r s i t y .
18 ∗
19 ∗

===

20 ∗/
21

22 typedef unsigned char datum ; /∗ Set the data bus width to 8
b i t s ∗/

23

24 //Test data bus by us ing a ’ wa lk ing one ’ on a s i n g l e address .
25 //Returns 0 on succe s s and the ’ or ’ ed ’ r e s u l t o f 0xDEAD0000

and the pa t t e rn which f a i l e d
26 // i f an error i s d e t e c t e d .
27 int memTestDataBus (volat i le datum ∗) ;
28

29 //Return 0 on succe s s and the address o f the d e f e c t i v e memory
l o c a t i o n

30 // i f an error i s d e t e c t e d .
31 datum ∗ memTestAddressBus (volat i le datum ∗ , unsigned long) ;
32

33 //Return 0 on succe s s and the address o f the d e f e c t i v e memory
l o c a t i o n

34 // i f an error i s d e t e c t e d .
35 datum ∗ memTestDevice (volat i le datum ∗ , unsigned long) ;
36

37 //Wrapper func t i on which c o l l e c t s a l l memory t e s t f unc t i on s .
The

38 //number o f b y t e s t e s t e d shou ld be more than 16.
39 int memTestC(datum ∗ begAddr , unsigned long numOfBytes) ;

F.17 cMemTest.c 185

F.17 cMemTest.c

Listing F.17: C source code of the memory test functions.
1 /∗
2 ∗

===

3 ∗
4 ∗ Filename : cMemTest . c
5 ∗
6 ∗ Descr ip t i on : Source code f o r memory t e s t f unc t i on

implemented in C. The f unc t i on s
7 ∗ are copied from Programming Embedded

Systems in C and C++ by
8 ∗ Michael Barr . The source code i s g i ven on

page 66 to 73.
9 ∗

10 ∗ Version : 1 .0
11 ∗ Created : 01/02/07 13 :44 :57 CET
12 ∗ Revis ion : none
13 ∗ Compiler : gcc
14 ∗
15 ∗ Author : () ,
16 ∗ Company :
17 ∗
18 ∗

===

19 ∗/
20 #include ” s t d i o . h”
21 #include ”cMemTest . h”
22

23 int memTestDataBus (volat i le datum ∗ address) {
24

25 datum pattern ;
26

27 /∗
28 ∗ Perform a walk ing 1 ’ s t e s t a t the g iven address .
29 ∗/
30 for (pattern = 1 ; pattern != 0 ; pattern <<=1) {
31 /∗
32 ∗ Write the t e s t pa t t e rn .
33 ∗/
34 ∗ address = pattern ;
35

36 /∗
37 ∗ Read i t back (immediat ly i s okay f o r t h i s t e s t)

186 Source files of the DTUsat-2 implementation

38 ∗/
39 i f (∗ address != pattern)
40 return (int) (pattern | | 0xDEAD0000) ;
41 }
42 return 0 ;
43 }
44

45 datum ∗ memTestAddressBus (volat i le datum ∗ baseAddress ,
unsigned long nBytes) {

46 unsigned long addressMask = (nBytes −1) ;
47 unsigned long o f f s e t ;
48 unsigned long t e s tO f f s e t ;
49

50 datum pattern = (datum) 0xAAAAAAAA;
51 datum ant ipa t t e rn = (datum) 0x55555555 ;
52

53 /∗
54 ∗ Write the d e f a u l t pa t t e rn at each o f the power−of−two

o f f s e t s . .
55 ∗/
56 for (o f f s e t = s izeof (datum) ; (o f f s e t & addressMask) != 0 ;

o f f s e t <<=1) {
57 baseAddress [o f f s e t] = pattern ;
58 }
59 /∗
60 ∗ Check f o r address b i t s s tuck h igh .
61 ∗/
62 t e s tO f f s e t = 0 ;
63 baseAddress [t e s tO f f s e t] = ant ipa t t e rn ;
64

65 for (o f f s e t = s izeof (datum) ; (o f f s e t & addressMask) != 0 ;
o f f s e t <<= 1) {

66 i f (baseAddress [o f f s e t] != pattern)
67 return ((datum ∗) &baseAddress [o f f s e t]) ;
68 }
69

70 baseAddress [t e s tO f f s e t] = pattern ;
71

72 /∗
73 ∗ Check f o r address b i t s s tuck low or shor t ed .
74 ∗/
75 for (t e s tO f f s e t = s izeof (datum) ; (t e s tO f f s e t & addressMask)

!= 0 ; t e s tO f f s e t <<= 1) {
76 baseAddress [t e s tO f f s e t] = ant ipa t t e rn ;
77

78 for (o f f s e t = s izeof (datum) ; (o f f s e t & addressMask) !=
0 ; o f f s e t <<= 1) {

F.17 cMemTest.c 187

79 i f ((baseAddress [o f f s e t] != pattern) && (o f f s e t !=
t e s tO f f s e t))

80 return ((datum ∗) &baseAddress [t e s tO f f s e t]) ;
81 }
82 baseAddress [t e s tO f f s e t] = pattern ;
83 }
84 return NULL;
85 } /∗ memTestAddressBus () ∗/
86

87 datum ∗ memTestDevice (volat i le datum ∗ baseAddress , unsigned
long nBytes) {

88 unsigned long o f f s e t ;
89 unsigned long nWords = nBytes / s izeof (datum) ;
90

91 datum pattern ;
92 datum ant ipa t t e rn ;
93

94 /∗
95 ∗ f i l l memory wi th a known pa t t e rn .
96 ∗/
97 for (pattern = 1 , o f f s e t = 0 ; o f f s e t < nWords ; pattern++,

o f f s e t++) {
98 baseAddress [o f f s e t] = pattern ;
99 }

100

101 /∗
102 ∗ Check each l o c a t i o n and i n v e r t i t f o r the second pass .
103 ∗/
104 for (pattern = 1 , o f f s e t = 0 ; o f f s e t < nWords ; pattern++,

o f f s e t++) {
105 i f (baseAddress [o f f s e t] != pattern)
106 return ((datum ∗) &baseAddress [o f f s e t]) ;
107

108 an t ipa t t e rn = ˜ pattern ;
109 baseAddress [o f f s e t] = ant ipa t t e rn ;
110 }
111

112 /∗
113 ∗ Check each l o c a t i o n f o r the i n v e r t e d pa t t e rn and zero i t

.
114 ∗/
115 for (pattern = 1 , o f f s e t = 0 ; o f f s e t < nWords ; pattern++,

o f f s e t++) {
116 an t ipa t t e rn = ˜ pattern ;
117 i f (baseAddress [o f f s e t] != ant ipa t t e rn)
118 return ((datum ∗) &baseAddress [o f f s e t]) ;
119

188 Source files of the DTUsat-2 implementation

120 baseAddress [o f f s e t] = 0 ;
121 }
122

123 return (NULL) ;
124 } /∗ memTestDevice () ∗/
125

126 //Wrapper func t i on which c o l l e c t s a l l memory t e s t f unc t i on s .
The

127 //number o f b y t e s t e s t e d shou ld be more than 16.
128 int memTestC(datum ∗ begAddr , unsigned long numOfBytes) {
129 int r e s u l t = 0 ;
130

131 r e s u l t = memTestDataBus (begAddr + 0xF) ;
132 i f (r e s u l t != 0)
133 return r e s u l t ;
134

135 r e s u l t = (int) memTestAddressBus (begAddr , numOfBytes) ;
136 i f (r e s u l t != 0)
137 return r e s u l t ;
138

139 return (int) memTestDevice (begAddr , numOfBytes) ;
140 }

F.18 testBench.S

Listing F.18: Assembly language source code of the test harness used to test the
memory test function implemented in assembler. The test harness is designed to
be generic and could be used with any assembly program having a label called
’main’ defined at program start and having it defined as ’global’.

/∗
−−

∗Except ion vec t ors
∗−−−

∗/

.text
.arm
.global memoryTest

s t a r t :
/∗ Vectors (8 t o t a l) ∗/
b r e s e t /∗ r e s e t ∗/

F.19 test01.gdb 189

b loop /∗ undef ined i n s t r u c t i o n ∗/
b loop /∗ so f tware i n t e r r u p t ∗/
b loop /∗ p r e f e t c h abor t ∗/
b loop /∗ data abor t ∗/
nop /∗ r e s e rved f o r the boo t l oade r checksum ∗/
b loop /∗ IRQ ∗/
b loop /∗ FIQ ∗/

/∗ s e c t i on which i s au t oma t i c a l l y c a l l e d as the f i r s t ∗/
r e s e t :

b memoryTest

.end

F.19 test01.gdb

echo This script is designed to test the memory test function \n

echo implemented in assembler. It should test the structural issues \n

echo of the function, as correct counter increment and such. \n

set logging file assMemTest.log

set logging on

echo set file. \n

file ../Boot/testBench.elf

echo Connect to target. \n

target sim

echo load file \n

load ../Boot/testBench.elf

tbreak TestMemory

r

#Functions to test register value and print result.

define reg0

if $r0 == $arg0

printf "register r0 == 0x%x " , $r0

echo Test passed.\n

else

printf "register r0 == 0x%x ", $r0

190 Source files of the DTUsat-2 implementation

echo Test failed.\n

end

end

define reg1

if $r1 == $arg0

printf "register r1 == 0x%x ", $r1

echo Test passed.\n

else

printf "register r1 == 0x%x ", $r1

echo Test failed.\n

end

end

define reg2

if $r2 == $arg0

printf "register r2 == 0x%x ", $r2

echo Test passed.\n

else

printf "register r2 == 0x%x ", $r2

echo Test failed.\n

end

end

define reg3

if $r3 == $arg0

printf "register r3 == 0x%x ", $r3

echo Test passed.\n

else

printf "register r3 == 0x%x ", $r3

echo Test failed.\n

end

end

define reg4

if $r4 == $arg0

printf "register r4 == 0x%x ", $r4

echo Test passed.\n

else

printf "register r4 == 0x%x ", $r4

echo Test failed.\n

end

end

define reg5

if $r5 == $arg0

printf "register r5 == 0x%x ", $r5

echo Test passed.\n

else

printf "register r5 == 0x%x ", $r5

echo Test failed.\n

end

F.19 test01.gdb 191

end

define reg6

if $r6 == $arg0

printf "register r6 == 0x%x ", $r6

echo Test passed.\n

else

printf "register r6 == 0x%x ", $r6

echo Test failed.\n

end

end

define reg7

if $r7 == $arg0

printf "register r7 == 0x%x ", $r7

echo Test passed.\n

else

printf "register r7 == 0x%x ", $r7

echo Test failed.\n

end

end

define reg8

if $r8 == $arg0

printf "register r8 == 0x%x ", $r8

echo Test passed.\n

else

printf "register r8 == 0x%x ", $r8

echo Test failed.\n

end

end

define reg9

if $r9 == $arg0

printf "register r9 == 0x%x ", $r9

echo Test passed.\n

else

printf "register r9 == 0x%x ", $r9

echo Test failed.\n

end

end

define reg10

if $r10 == $arg0

printf "register r10 == 0x%x ", $r10

echo Test passed.\n

else

printf "register r10 == 0x%x ", $r10

echo Test failed.\n

end

end

define reg11

192 Source files of the DTUsat-2 implementation

if $r11 == $arg0

printf "register r11 == 0x%x ", $r11

echo Test passed.\n

else

printf "register r11 == 0x%x ", $r11

echo Test failed.\n

end

end

define reg12

if $r12 == $arg0

printf "register r12 == 0x%x ", $r12

echo Test passed.\n

else

printf "register r12 == 0x%x ", $r12

echo Test failed.\n

end

end

define memByte

#Function to test value of memory location referenced as a byte.

#Location is type casted as char pointer and then the value

#is taken out by ’dereferencing’ it by using the ’*’-operator

#memByte has the syntax as the ARM ’ldr’ instruction: <value> <address>

if *((char*) $arg1) == $arg0

printf "Memory addr. 0x%x == 0x%x ", ((char *) $arg1), *((char *) $arg1)

echo Test passed. \n

else

printf "Memory addr. 0x%x == 0x%x ", ((char *) $arg1), *((char *) $arg1)

echo Test Failed. \n

end

end

define test1

#Test if values are correct initialised in the beginning

#of the function.

echo *** Test 1 *** \n

#Stop program if running.

kill

#Set temporary breakpoint.

tbreak TestMemory

#Start program.

r

echo Test 1:

#Test Base address of RAM0.

reg0 0

echo Test 1:

#Test highest valid address of RAM0.

reg1 0x1FFF

echo Test 1:

F.19 test01.gdb 193

#Test pointer to current byte address.

reg2 0x1FFF

echo Test 1:

#Test Stack size

reg8 0x400

end

define test2

echo *** Test 2 *** \n

kill

tbreak WriNormFor

r

echo Test 2:

#Test that byte counter was incremented

#previous to entering loop (write norm. loop).

reg2 0x2000

echo Test 2:

#Test correct initialisation of pattern.

reg3 0xFFFFFFFF

end

define test3

echo *** Test 3 *** \n

kill

tbreak TestNormFor

r

echo Test 3:

#Test that byte counter was incremented

#previous to entering loop (test norm. loop).

reg2 0x2000

echo Test 3:

#Test correct initialisation of pattern.

reg3 0xFFFFFFFF

end

define test4

echo *** Test 4 *** \n

kill

tbreak WriInvFor

r

echo Test 4:

#Test that byte counter was incremented

#previous to entering loop (write inv. loop).

reg2 0x2000

echo Test 4:

#Test correct initialisation of pattern.

reg3 0xFFFFFFFF

end

define test5

echo *** Test 5 *** \n

194 Source files of the DTUsat-2 implementation

kill

tbreak TestInvFor

r

echo Test 5:

#Test that byte counter was incremented

#previous to entering loop (test norm. loop).

reg2 0x2000

echo Test 5:

#Test correct initialisation of (inverted) pattern.

reg3 0x0

end

define test6

echo *** Test 6 *** \n

kill

tbreak TestMemory

break WriNormFor

r

#Continue until ’WriNormFor’ breakpoint.

c

#Continue and pass ’WriNormFor’ breakpoint

#once and stop at it when passing it again.

c 1

echo Test 6:

#Test that byte counter is decremented correctly.

reg2 0x1fff

echo Test 6:

#Test that pattern is incremented correctly.

reg3 0x0

#Remove breakpoint from system.

clear WriNormFor

end

define test7

echo *** Test 7 *** \n

kill

break TestNormFor

r

c 2

echo Test 7:

#Test that byte counter is decremented correctly.

reg2 0x1ffe

echo Test 7:

#Test that pattern is incremented correctly.

reg3 0x1

clear TestNormFor

end

define test8

echo *** Test 8 *** \n

F.19 test01.gdb 195

break WriInvFor

r

c 3

echo Test 8:

#Test that byte counter is decremented correctly.

reg2 0x1ffd

echo Test 8:

#Test that pattern is incremented correctly.

reg3 0x2

clear WriInvFor

end

define test9

echo *** Test 9 *** \n

break TestInvFor

r

c 4

echo Test 9:

#Test that byte counter is decremented correctly.

reg2 0x1ffc

echo Test 9:

#Test that pattern is incremented correctly.

reg3 0xfc

clear TestInvFor

end

define test10

#Test that the function returns if base address

#is passed.

echo *** Test 10 *** \n

kill

tbreak TestMemory

break WriNormFor

#Breakpoint placed where function returns to.

break wp1Test10

r

c

#set byte counter to base address.

set $r2 = $r0

c

echo Test 10:

#Test value of base address.

reg0 0x0

echo Test 10:

#Test value of byte counter.

reg2 0xffffffff

echo Test 10:

#Test value of pattern.

reg3 0xffffffff

196 Source files of the DTUsat-2 implementation

clear WriNormFor

clear wp1Test10

end

#Test 11 - 16 test that subfunctions call each other

#when stacksize is reached.

define test11

echo *** Test 11 *** \n

kill

tbreak TestMemory

#BP where tested length is changed.

break wp1Test11

break TestNormPat

r

c

#Set length of tested area to stacksize.

set $r10 = $r8

c

echo Test 11:

#Test byte counter.

reg2 0x1fff

echo Test 11:

#Test pattern.

reg3 0x0

clear wp1Test11

clear TestNormPat

end

define test12

echo *** Test 12 *** \n

kill

tbreak TestMemory

#BP where tested length is changed.

break wp1Test12

break WriInvIni

r

c

#Set length of tested area to stacksize.

set $r10 = $r8

c

echo Test 12:

#Test byte counter.

reg2 0x1fff

echo Test 12:

#Test pattern.

reg3 0x0

clear wp1Test12

clear WriInvIni

end

F.19 test01.gdb 197

define test13

echo *** Test 13 *** \n

kill

tbreak TestMemory

#BP where false values are introduced

break wp1Test13

#BP where length of tested area is set

#to stacksize and value from memory is

#kept false.

break wp2Test13

break WriInvIni

r

c

set $r10 = 0x25

set $r11 = 0x25

c

set $r10 = $r8

set $r11 = 0x25

c

echo Test 13:

reg2 0x1fff

echo Test 13:

reg3 0x0

clear wp1Test13

clear WriInvIni

clear wp2Test13

end

define test14

echo *** Test 14 *** \n

kill

tbreak TestMemory

break wp1Test14

break TestInvPat

r

c

set $r10 = $r8

c

echo Test 14:

reg2 0x1fff

echo Test 14:

reg3 0x0

clear wp1Test14

clear TestInvPat

end

define test15

echo *** Test 15 *** \n

kill

198 Source files of the DTUsat-2 implementation

tbreak TestMemory

break wp1Test15

break SetupCstack

r

c

set $r11 = $r3

set $r10 = $r8

c

echo Test 15:

reg2 0x1fff

echo Test 15:

reg3 0xff

clear wp1Test15

clear SetupCstack

end

define test16

echo *** Test 16 *** \n

kill

tbreak TestMemory

break wp1Test16

break wp2Test16

break SetupCstack

r

c

set $r10 = 0x25

c

set $r10 = $r8

set $r11 = 0x25

c

echo Test 16:

reg2 0x1fff

echo Test 16:

reg3 0xff

clear wp1Test16

clear SetupCstack

clear wp2Test16

end

define test17

#Test that correct patterns are written to

#correct addresses.

echo *** Test 17 *** \n

kill

tbreak TestMemory

tbreak TestNormPat

r

c

#Test that the function doesn’t write above

F.19 test01.gdb 199

#its address limit and the pattern below.

echo Test 17:

memByte 0x0 0x2000

echo Test 17:

memByte 0x0 0x1fff

echo Test 17:

memByte 0x1 0x1ffe

echo Test 17:

memByte 0x2 0x1ffd

#Print first 24 bytes to inspect patterns.

echo Test 17: \n

x /24xb 0x1ff0

end

define test18

#Test that the pattern is repeated every 256 bytes.

#Test three bytes before and three bytes after the

#border between the two repetitions.

echo *** 18 *** \n

kill

tbreak TestMemory

tbreak TestNormPat

r

c

echo Test 18:

memByte 0xfd 0x1f02

echo Test 18:

memByte 0xfe 0x1f01

echo Test 18:

memByte 0xff 0x1f00

echo Test 18:

memByte 0x0 0x1eff

echo Test 18:

memByte 0x01 0x1efe

echo Test 18:

memByte 0x02 0x1efd

echo Test 18: \n

x /40 0x1ee8

end

define test19

#Test That correct patterns are written to

#correct addresses when inverted patterns are written.

echo *** Test 19 *** \n

kill

tbreak TestMemory

tbreak TestInvPat

r

c

200 Source files of the DTUsat-2 implementation

#Test that the function doesn’t write above

#its address limit and the pattern below.

echo Test 19:

memByte 0x0 0x2000

echo Test 19:

memByte 0xff 0x1fff

echo Test 19:

memByte 0xfe 0x1ffe

echo Test 19:

memByte 0xfd 0x1ffd

#Print first 24 bytes to inspect patterns.

echo Test 19: \n

x /24xb 0x1ff0

end

define test20

#Test that the pattern is repeated every 256 bytes

#when inverted patterns are written.

#Test three bytes before and three bytes after the

#border between the two repetitions.

echo *** Test 20 *** \n

kill

tbreak TestMemory

tbreak TestInvPat

r

c

echo Test 20:

memByte 0x02 0x1f02

echo Test 20:

memByte 0x01 0x1f01

echo Test 20:

memByte 0x00 0x1f00

echo Test 20:

memByte 0xff 0x1eff

echo Test 20:

memByte 0xfe 0x1efe

echo Test 20:

memByte 0xfd 0x1efd

echo Test 20: \n

x /40 0x1ee8

end

define test21

#Test that memory test is restarted at next word

#address when a permanent fault is identified during

#test of normal pattern.

echo *** Test 21 *** \n

kill

tbreak WriNormIni

F.19 test01.gdb 201

break wp1Test21

r

c

c 13

set $r11 = 0x25

tbreak wp2Test21

c

set $r11 = 0x25

break WriNormFor

c

c 10

echo Test 21:

memByte 0x0d 0x1ff2

echo Test 21:

memByte 0x0e 0x1ff1

echo Test 21:

memByte 0x0f 0x1ff0

echo Test 21:

memByte 0x00 0x1fef

echo Test 21:

memByte 0x01 0x1fee

echo Test 21:

memByte 0x02 0x1fed

echo Test 21: \n

x /40xb 0x1fe0

clear wp1Test21

clear WriNormFor

end

define test22

#Test that memory test is restarted at next word

#address when a permanent fault is identified during

#test of inverted pattern.

echo *** Test 22 *** \n

kill

tbreak WriNormIni

break wp1Test22

r

c

c 13

set $r11 = 0x25

tbreak wp2Test22

c

set $r11 = 0x25

break WriNormFor

c

c 10

echo Test 22:

202 Source files of the DTUsat-2 implementation

memByte 0xf2 0x1ff2

echo Test 22:

memByte 0xf1 0x1ff1

echo Test 22:

memByte 0xf0 0x1ff0

echo Test 22:

memByte 0x00 0x1fef

echo Test 22:

memByte 0x01 0x1fee

echo Test 22:

memByte 0x02 0x1fed

echo Test 22: \n

x /40xb 0x1fe0

clear wp1Test22

clear WriNormFor

end

define test23

#Test that memory test is continued when a

#transient fault is identified during

#test of normal pattern.

echo *** Test 23 *** \n

kill

tbreak WriNormIni

break wp1Test23

r

c

c 13

set $r11 = 0x25

c

c 10

echo Test 23:

memByte 0x0d 0x1ff2

echo Test 23:

memByte 0x0e 0x1ff1

echo Test 23:

memByte 0x0f 0x1ff0

echo Test 23:

memByte 0x10 0x1fef

echo Test 23:

memByte 0x11 0x1fee

echo Test 23:

memByte 0x12 0x1fed

echo Test 23: \n

x /40xb 0x1fe0

clear wp1Test21

end

define test24

F.19 test01.gdb 203

#Test that memory test is continued when a

#transient fault is identified during

#test of inverted pattern.

echo *** Test 24 *** \n

kill

tbreak WriNormIni

break wp1Test24

r

c

c 13

set $r11 = 0x25

c

c 10

echo Test 24:

memByte 0xf2 0x1ff2

echo Test 24:

memByte 0xf1 0x1ff1

echo Test 24:

memByte 0xf0 0x1ff0

echo Test 24:

memByte 0xef 0x1fef

echo Test 24:

memByte 0xee 0x1fee

echo Test 24:

memByte 0xed 0x1fed

echo Test 24: \n

x /40xb 0x1fe0

clear wp1Test24

end

echo Set breakpoints and run tests. \n

test1

test2

test3

test4

test5

test6

test7

test8

test9

test10

test11

test12

test13

test14

test15

test16

test17

204 Source files of the DTUsat-2 implementation

test18

test19

test20

test21

test22

test23

test24

Appendix G

Test output

G.1 Output from test of memory test function

206 Test output

Appendix H

The timed models

H.1 OBC vs. COMM

H.1.1 Global declarations

Listing H.1: Global declaratoins of the OBC vs. COMM model.
1 // Place g l o b a l d e c l a r a t i o n s here .
2

3 // s t a t e o f i n d i v i d u a l po r t s on the modules
4 bool OBCout [4] ;
5 bool COMMin [4] ;
6

7 // used to s imu la t e low power problems
8 // i . e . on ly i f t rue enough power i s a v a i l a b l e to the system
9 bool power = true ;

10 // s i g n a l s when WDT i s enab led by OBC
11 bool enabOBCwdt = f a l s e ;
12 // s i g n a l s when WDT i s enab led by COMM
13 bool enabCOMMwdt = f a l s e ;
14

15 // channel to send OBC in to f a u l t−mode
16 chan OBCfault ;
17

208 The timed models

18 // channel to synchron i se wires h igh when s e t h igh by OBC
19 chan OBCoutSyncH ;
20

21 // channel to synchron i se wires low when s e t low by OBC
22 chan OBCoutSyncL ;
23

24 // channel to synchron i se data wire low when s e t low by OBC
25 chan OBCdataL ;
26

27 // channel to synchron i se date wire h igh when s e t h igh by OBC
28 chan OBCdataH ;
29

30

31 chan WireSyncH [4] ;
32 chan WireSyncL [4] ;
33

34

35

36 // channel to r e s e t OBC−WDT’ s counter to s t a r t va lue i . e .
k i c k i n g i t .

37 chan kickOBC ;
38

39 // channel to r e s e t COMM−WDT’ s counter to s t a r t va lue i . e .
k i c k i n g i t

40 chan kickCOMM;
41

42 // channel to s i g n a l r e s e t to OBC when WDT times out
43 chan WDTtoOBC;
44

45 // channel to s i g n a l r e s e t to COMM−PIC when WDT times out
46 chan WDTtoCOMM;
47

48 // channel to synchron i se OBC−WDT when OBC enab l e s i t
49 chan enableOBCwdt ;
50

51 // channel to synchron i se COMM−WDT when COMM−PIC enab l e s i t
52 chan enableCOMMwdt ;
53

54 // per iod o f OBC WDT
55 int OBCwdtPeriod = 600 ;
56

57 // per iod o f COMM WDT
58 int COMMwdtPeriod = 145 ;
59

60 // time needed to send sa f e beacon by COMM PIC
61 const int SafeBeaconPeriod = 140 ;
62

H.1 OBC vs. COMM 209

63 // i n i t i a l ho ld per iod f o r the system , i s 900 sec (15 min)
64 // cons t i n t ho ldPer iod = (15 ∗ 60 ∗ 1000) ;
65 const int holdPer iod = (15 ∗ 60) ;

H.1.2 System declarations

Listing H.2: System declaratoins of the OBC vs. COMM model.
1 // Place temp la te i n s t a n t i a t i o n s here .
2 OBC = OBCtem(WDTtoOBC, OBCfault) ;
3 ComPic = ComPicTem(WDTtoCOMM) ;
4 wire0 = wireTem (0) ;
5 wire1 = wireTem (1) ;
6 wire2 = wireTem (2) ;
7 wireData = wireTem (3) ;
8 //EPS = EPStem() ;
9 WDoBC = WDTtem(OBCwdtPeriod , kickOBC , WDTtoOBC, enableOBCwdt ,

enabOBCwdt) ;
10 WDcomm = WDTtem(COMMwdtPeriod , kickCOMM, WDTtoCOMM,

enableCOMMwdt , enabCOMMwdt) ;
11 WireCntrl = WireCntrlTem () ;
12 DataCntrl = DataCntrlTem () ;
13 //WDTobserver = WDTobsTem() ;
14

15

16 // L i s t one or more proce s s e s to be composed in t o a system .
17 system OBC, ComPic , wire0 , wire1 , wire2 , wireData , WDoBC,

WDcomm, WireCntrl , DataCntrl ;

H.1.3 Processes

210 The timed models

resetCollect

FSNominalMode

testOS

testMemory

locateStack

decrBootCounter

testSIB

testBootCounter

silence
launchBit>= 0

enterSilencePeriod

locateSIB

initStructures

enterCfunction

setupCstack

memTest

initPLL

initEMC

initWDT

disableIRQ

BootLoader run <= bootLoaderPeriod

Init

Reset

kickOBC!OBCoutSyncL!
setSafePattern()

OBCoutSyncH!
setNomPattern() kickOBC!

WDTtime >= (OBCwdtPeriod-3)

kickOBC!
WDTtime = 0,
launchBit--

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

WDTtoOBC?

launchBit == 0OBCoutSyncL!
setSafePattern()

bootCounter ==0

power == true
run =0

MEMtest=true

bootCounter--

bootCounter > 0

run = 0

launchBit == 0
OBCoutSyncL!
setSafePattern()

launchBit >0

OBCdataH!
setHoldPattern(),
run = 0

enableOBCwdt!

enabOBCwdt = true

run >= bootLoaderPeriod run = 0

run = 0

Figure H.1: The OBC process.

H.1 OBC vs. COMM 211

Init

Resetsender <= resetPeriod

subReset2

subReset1

nomSend
sender <= nomSendPeriod

initNom

TestSatMode

WaitForHold
WDTtime <= (COMMwdtPeriod - 3)

TransmitSafeBeacon
sender <= SafeBeaconPeriod

TestHoldComplete

Start

WDTtoCOMM?

enabCOMMwdt = true, WDTtime = 0

WDTtime >= (COMMwdtPeriod-3)
kickCOMM!
WDTtime = 0

sender =0

sender = 0

WDTtoCOMM?

WDTtoCOMM?

WDTtoCOMM?

WDTtoCOMM?

WDTtoCOMM?

WDTtoCOMM?

WDTtoCOMM?

enableCOMMwdt!
holdFlag = false

nomTimeOut >= maxCount

sender >= nomSendPeriod
kickCOMM! OBCTx()

nomTimeOut = 0,
sender =0

nomPattern()

safePattern()
sender = 0

!holdPattern() & holdFlag

wait >= holdPeriod
holdFlag = true

!holdFlag
wait = 0

sender >= SafeBeaconPeriod
kickCOMM!

holdFlag = 0

holdFlag
sender = 0

holdPattern() | !holdFlag

Figure H.2: The COMM process.

Init

RunKick

enabCOMMwdtenableCOMMwdt?

counter = 0

counter >= COMMwdtPeriod
WDTtoCOMM!
enabCOMMwdt = false

kickCOMM?

counter = 0

(a) The COMM WDT.

Init

RunKick

enabOBCwdtenableOBCwdt?

counter = 0

counter >= OBCwdtPeriod
WDTtoOBC!
enabOBCwdt = false

kickOBC?

counter = 0

(b) The OBC WDT.

Figure H.3: The WDTs.

212 The timed models

HighLow

WireSyncH[0]?

WireSyncL[0]?

WireSyncL[0]?
COMMin[0] = 0

WireSyncH[0]?
COMMin[0]=1

(a) The wire 0 process.

HighLow

WireSyncH[1]?

WireSyncL[1]?

WireSyncL[1]?
COMMin[1] = 0

WireSyncH[1]?
COMMin[1]=1

(b) The wire 1 process.

HighLow

WireSyncH[2]?

WireSyncL[2]?

WireSyncL[2]?
COMMin[2] = 0

WireSyncH[2]?
COMMin[2]=1

(c) The wire 2 process.

HighLow

WireSyncH[3]?

WireSyncL[3]?

WireSyncL[3]?
COMMin[3] = 0

WireSyncH[3]?
COMMin[3]=1

(d) The data wire process.

Figure H.4: The wire processes.

High
Low

OBCoutSyncH?

OBCoutSyncL?

WireSyncH[0]!

WireSyncL[2]!

WireSyncL[1]! WireSyncL[0]!

OBCoutSyncL?

WireSyncH[2]!

WireSyncH[1]!

OBCoutSyncH?

Figure H.5: The wire control process.

H.1 OBC vs. COMM 213

HighLow

WireSyncL[3]!
COMMin[3] = 0

OBCdataL?

OBCdataH?

WireSyncH[3]!
COMMin[3] = 1

OBCdataL?

OBCdataH?

Figure H.6: The data control process.

214 The timed models

H.2 Memory test of DTUsat-1

H.2.1 Global declarations

Listing H.3: Global declaratoins of the memory test model.
1 // Place g l o b a l d e c l a r a t i o n s here .
2 int r0 = 1 ; // base
3 int r1 = 7 ; // h i g h e s t v a l i d address
4 int r2 = 7 ; // po in t e r to a c t ua l address
5 int r3 = 25 ; //tmp
6

7 const int r8 = 11 ; // pa t t e rn 1
8 const int r9 = 33 ; // pa t t e rn 2
9 const int r10 = 3 ; // s t a c k s i z e

10

11 //memory array
12 // f i r s t f i e l d con ta ins the data and t e l l s whether the c e l l has

been damaged permantly or not :
13 //0 = not permanently damaged (but cou ld have a t r an s i e n t

f a u l t) and 1 = damaged permanently
14 int memory [8] [2] =

{{0 ,0} ,{0 ,0} ,{0 ,0} ,{0 ,0} ,{0 ,0} ,{0 ,0} ,{0 ,0} ,{0 ,0}} ;
15

16 chan branchWrite ; // branch to s t a r t o f Write
17 chan branchFai l ; // branch to s t a r t o f Fa i l

H.2.2 System declarations

// Place template i n s t a n t i a t i o n s here .
Write = WriteTem () ;
Fa i l = FailTem () ;
Fau l t I n j e c t i on = FaultInject ionTem () ;

// L i s t one or more p r o c e s s e s to be composed in to a system .
system Write , Fai l , Fau l t I n j e c t i on ;

H.2.3 Processes

H.2 Memory test of DTUsat-1 215

success

End

CRTSetup

Start

memory[r2][1] ==1

memory[r2][1] ==1

r2 >= r0 r2 < r0

r2 = r2 - 1

r3 != r10 r3 == r10

branchWrite?

r3 != r8
branchFail!

r3 = r1 - r2

r3 == r8

r3 = memory[r2][0]

memory[r2][1] == 0
memory[r2][0] = r8

branchWrite?

r3 != r9

branchFail!r3 == r9

r3 = memory[r2][0]

memory[r2][1] == 0
memory[r2][0] = r9

Figure H.7: The ’write’-function process

branchFail?

branchWrite!

r1 = r2

Figure H.8: The failure control process.

216 The timed models

memory[r2][1] = 1

memory[r2][0] = 25

Figure H.9: The fault injection process.

Bibliography

[ALR04] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Dependability
and its threats: A taxonomy. In R Jacquart, editor, Proceedings of the
Building the Information Society, pages 91–120. IFIP 18th World Computer
Congress, Kluwer Academic Publishers, August 2004.

[ARM] Technical support faqs: Estimating stack size requirements. http://www.

arm.com/support/faqdev/1444.html. Last visited 22th of March 2007.

[Bar99] Michael Barr. Programming Embedded Systems. O’Reilly and Associates,
first edition, 1999.

[Bar00] Michael Barr. Software-based memory testing - if ever there was a piece of
embedded software ripe for reuse it is the memory test. this article shows
how to test for the most common memory problems with a set of three
efficient, portable, public-domain memory test functions. Embedded Sys-
tems Programming, 13(7):28–40, 2000. http://embedded.com/2000/0007/

0007feat1.htm, last visited December 13th 2006. The article has also been
published as the section ’Memory Testing’ of [Bar99, chp. 6].

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on up-
paal. On the web: http://www.it.uu.se/research/group/darts/papers/
texts/new-tutorial.pdf., 2004.

[BLA05] Blast: Berkeley lazy abstraction software verification tool. http://mtc.

epfl.ch/software-tools/blast/. Last visited 22th of March 2007, 2005.

[esa00] C and c++ coding standards. Technical report, European Space Agency,
8-10, rue Mario-Nikis, 75738 PARIS CEDEX, France, 2000.

[Fur00] Steve Furber. ARM System-On-Chip Architecture. Addison-Wesley, 1. edi-
tion, 2000.

[Gan95] Jack G. Ganssle. Thanks for the memories. http://www.ganssle.com/

articles/aramrom.htm, last visited December 13th 2006. Also published in
Embedded Systems Programming, August 1995, 1995.

http://www.arm.com/support/faqdev/1444.html
http://www.arm.com/support/faqdev/1444.html
http://embedded.com/2000/0007/0007feat1.htm
http://embedded.com/2000/0007/0007feat1.htm
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
http://mtc.epfl.ch/software-tools/blast/
http://mtc.epfl.ch/software-tools/blast/
http://www.ganssle.com/articles/aramrom.htm
http://www.ganssle.com/articles/aramrom.htm

218 BIBLIOGRAPHY

[Gan97] Jack G. Ganssle. Ram tests. http://www.ganssle.com/articles/ramtest.
htm, last visited December 13th 2006. Also published in Embedded Systems
Programming, October 1997, 1997.

[gdb06] Debugging with gdb. http://sourceware.org/gdb/current/onlinedocs/

gdb.html#SEC Top, last visited March 15th 2007., 2006.

[GL02] Georges Gonthier and Jean-Jacques Lévy. Software robustness engineering
- robustness methodology survey. Technical report, INRIA Rocquencourt,
2002.

[HT05] Amy Hutputtanasin and Armen Toorian. CubeSat design specifica-
tion (cds). Design specification 9, Aerospace Engineering Department,
California Polytechnic State University, Aerospace Engineering Depart-
ment, California Polytechnic State University,San Luis Obispo, CA 93401,
2005. http://cubesat.atl.calpoly.edu/media/Documents/Developers/

CDS%20R9.pdf, last visited March 12th 2007.

[IHU99] Douglas Isbell, Mary Hardin, and Joan Underwood. Mars climate orbiter
team finds likely cause of loss. News bulletin, september 1999. http:

//mars.jpl.nasa.gov/msp98/news/mco990930.html. Last visited 22th of
March 2007.

[Int05] Intel(R), http://www.intel.com. Intel(R) Advanced+ Boot Block Flash
Memory (C3) -datasheet, 2005.

[Jay06] Jayasooriah. Lpc2000 boot loader internals – a tutorial introduction.
http://water.cse.unsw.edu.au/esdk/lpc2/boot-loader.html, last vis-
ited March 15th 2007., 2006.

[kis06] Kiss principle. http://en.wikipedia.org/wiki/KISS principle. Last vis-
ited the 18th of March 2007., 2006.

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language, Second
Edition. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[Lyn05] James P. Lynch. Arm cross development with eclipse. as PDF on the net,
2005.

[MCO99] Nasa’s mars climate orbiter believed to be lost. News bulletin, Septem-
ber 1999. http://mars.jpl.nasa.gov/msp98/news/mco990923.html. Last
visited 22th of March 2007.

[oli06] Product description of the lpc-e2294. http://www.olimex.com/dev/

lpc-e2294.html. Last visited 16th of March 2007., 2006.

[Phi03] Philips Semiconductors. LPC2119/2129/2194/2292/2294 USER MAN-
UAL, 2003.

[PP02] Jan Storbank Pedersen and Steen Ulrik Palm. Software robustness engi-
neering, design and coding constraints. Technical report, ESTEC, INRIA,
TERMA, 2002.

[sam04] 256kx16 bit high speed static ram(3.3v operating). operated at commercial
and industrial temperature ranges. datasheet 4, SAMSUNG Electronics
CO., LTD, 2004. The data sheet of the static RAM used on the Olimex
development board. Type: K6R4016V1D-TC10.

http://www.ganssle.com/articles/ramtest.htm
http://www.ganssle.com/articles/ramtest.htm
http://sourceware.org/gdb/current/onlinedocs/gdb.html#SEC_Top
http://sourceware.org/gdb/current/onlinedocs/gdb.html#SEC_Top
http://cubesat.atl.calpoly.edu/media/Documents/Developers/CDS%20R9.pdf
http://cubesat.atl.calpoly.edu/media/Documents/Developers/CDS%20R9.pdf
http://mars.jpl.nasa.gov/msp98/news/mco990930.html
http://mars.jpl.nasa.gov/msp98/news/mco990930.html
http://www.intel.com
http://water.cse.unsw.edu.au/esdk/lpc2/boot-loader.html
http://en.wikipedia.org/wiki/KISS_principle
http://mars.jpl.nasa.gov/msp98/news/mco990923.html
http://www.olimex.com/dev/lpc-e2294.html
http://www.olimex.com/dev/lpc-e2294.html

BIBLIOGRAPHY 219

[Sec] Secure Programming Group, University of Virginia, Department of Com-
puter Science, http://www.splint.org/downloads/manual.pdf. Splint
Manual, Version 3.1.1-1, 5 June 2003.

[spl] Secure programming lint. http://www.splint.org/. Last visited 22th of
March 2007.

[stA07] Stackanalyzer — stack usage analysis. http://www.absint.com/

stackanalyzer/. Last visited 22th of March 2007, 2007.

[UA] UPP and AAL. The uppaal model checker. http://www.uppaal.com. De-
veloped by Department of Information Technology at Uppsala University
(UPP) and the Department of Computer Science at Aalborg University
(AAL).

http://www.splint.org/downloads/manual.pdf
http://www.splint.org/
http://www.absint.com/stackanalyzer/
http://www.absint.com/stackanalyzer/
http://www.uppaal.com

	Introduction
	Background
	Status
	Problem
	Approach
	The report

	1 Dependability
	1.1 Dependability notions
	1.2 The KIS(S) principle
	1.3 Redundancy
	1.4 Graceful service degradation
	1.5 Available tools
	1.6 Coding rules
	1.7 Source code inspection tools

	2 System description
	2.1 The development board
	2.2 The externally connected peripherals
	2.3 The memory layout

	3 Requirement analysis of the boot procedure
	3.1 The choice of implementation languages
	3.2 Before launch
	3.3 After launch
	3.4 The system information block
	3.5 The fail safe mode

	4 The memory test
	4.1 Memory test - analysis
	4.2 Memory test - design
	4.3 Memory test - implementation
	4.4 Memory test - software test

	5 Software modules
	5.1 The SIB - design
	5.2 The SIB - implementation
	5.3 The SIB Parameter Structure
	5.4 FLASH driver - analysis
	5.5 FLASH driver - design
	5.6 FLASH driver - Implementation
	5.7 Real Time Clock - analysis
	5.8 RTC - design
	5.9 RTC - implementation

	6 Implementation details of the boot procedure
	6.1 The first phase
	6.2 The second phase

	7 Compilation and debugging
	7.1 Building and compilation
	7.2 The linker scripts
	7.3 Debugging and Test

	8 The timed models
	8.1 Introduction
	8.2 Communication between OBC and COMM
	8.3 Modelling the memory test of DTUsat-1

	Conclusion
	8.4 Main contributions
	8.5 Future work
	8.6 Final conclusion

	Bibliography
	Index
	Appendices
	A Schematic of the satellite
	B Solutions used in report generation
	B.1 Source listing

	C Pseudo code of the memory test implemented in Assembly
	D Test cases and results from the memory test function
	D.1 The structural test

	E DTUsat-1 related material
	E.1 Source code

	F Source files of the DTUsat-2 implementation
	F.1 init.S
	F.2 memTest.S
	F.3 cStack.S
	F.4 boot.h
	F.5 boot.c
	F.6 sysInfo.h
	F.7 sysInfo.c
	F.8 intFlash.h
	F.9 intFlash.c
	F.10 rtc.h
	F.11 rtc.c
	F.12 intWDT.h
	F.13 intWDT.c
	F.14 crc.h
	F.15 crc.c
	F.16 cMemTest.h
	F.17 cMemTest.c
	F.18 testBench.S
	F.19 test01.gdb

	G Test output
	G.1 Output from test of memory test function

	H The timed models
	H.1 OBC vs. COMM
	H.2 Memory test of DTUsat-1

