
Common Criteria Design Toolbox

Tore Bredal Nygaard

Kongens Lyngby 2007
IMM-MSC-2007-30

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

The Common Criteria framework was developed by different organizations to
create a common standard for improving comparability between the security of
IT products. The framework involves creating Protection Profiles (PP) which
are implementation independent security documents, describing security re-
quirements for a family of IT products. Each of these PPs follow a defined
structure that can be evaluated by PP evaluators.

This thesis presents the design and implementation of a prototype of a Toolbox
which purpose is to help PP developers develop PPs, following this uniform
structure.

Keywords: Common Criteria, Protection Profile, Security Target, Design, Tool-
box, TOE

ii

Resumé

Common Criteria frameworket blev udviklet af forskellige organisationer for at
lave en fælles standard, der kan forbedre sammenligningen mellem sikkerheden
af IT produkter. Dette framework involverer oprettelsen af Protection Profiles
(PP), disse er implementations uafhængige sikkerheds dokumenter der beskriver
sikkerhedskrav for en familie af IT produkter. Hver af disse PPer følger en
defineret struktur der kan blive evalueret af PP evaluatorer.

Denne afhandling præsenterer designet og implementeringen af en prototype af
en værktøjskasse, hvis m̊al det er at hjælpe PP udviklere med at udvikle PPer
der følger denne ensartede struktur.

Nøgleord: Common Criteria, Protection Profile, Security Target, Design, værk-
tøjskasse, TOE

iv

Preface

This thesis was prepared at Informatics and Mathematical Modelling at the
Technical University of Denmark in partial fulfillment of the requirements for
acquiring a M.Sc. thesis in Engineering.

The project was developed in the period from 1st of September 2006 to the 2nd
of April 2007 under the supervision of Robin Sharp and Michael R. Hansen.

Lyngby, April 2007

Tore Bredal Nygaard

vi

Acknowledgements

I would like to thank my two supervisors, Robin Sharp and Michael R. Hansen, I
would not have been able to make this possible without their help and guidance.

I would also like to thank all that contributed with mental support in times
everything felt overwhelming and my wife for her understanding and support
throughout the project. I would also like to thank the other students writing
their theses at IMM at the same time as me for the discussions on various
relevant and irrelevant topics.

viii

Contents

Abstract i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 2

1.3 Objective . 2

1.4 Thesis Overview . 3

2 Common Criteria 5

2.1 Introduction . 6

x CONTENTS

2.2 Protection Profile (PP) . 7

2.3 Security Target (ST) . 9

2.4 Security Functional Requirements (SFR) 10

2.5 Security Assurance Components (SAR) 12

2.6 Case Study . 13

2.7 Summary . 16

3 Problem Analysis 17

3.1 Consistency Checks . 17

3.2 External Relations . 18

3.3 Restrictions . 18

3.4 Summary . 19

4 Requirements Specification 21

4.1 Use Cases Overview . 22

4.2 Protection Profile . 24

4.3 Security Target . 30

4.4 Summary . 33

5 Design & Implementation 35

5.1 Environmental Requirements . 36

5.2 SFR structure . 36

5.3 SFR Catalogue . 37

5.4 Protection Profile . 44

CONTENTS xi

5.5 Common Criteria Design Toolbox 47

5.6 Verification . 49

5.7 Summary . 49

6 Discussion 51

6.1 Extending the Toolbox . 52

6.2 Development Integration . 52

6.3 Reflections . 53

6.4 External Relations . 53

6.5 Summary . 54

7 Conclusion 55

A 57

A.1 DTD Snippet . 58

A.2 IndexFormatter Snippet . 60

A.3 ProfileSchemeContents Snippet 62

A.4 ProtectionProfileContents Snippet 63

A.5 XML output of the PP from the Case Study 64

A.6 SPD SO Coverage Matrix online Viewer 66

A.7 Transformed SML code . 67

A.8 SML functions . 69

B Source Code - CD 71

xii CONTENTS

List of Tables

2.1 Security Problem Definition . 14

2.2 Security Objectives . 14

4.1 Use Case 0: Use Case Format . 22

4.2 Use Case Overview . 23

4.3 Use Case 1: Create new PP . 24

4.4 Use Case 2: Alter PP . 25

4.5 Use Case 3: Alter Security Problem Definition 26

4.6 Use Case 4: Alter Security Objectives 27

4.7 Use Case 5: Alter SFR . 28

4.8 CC Operations . 29

4.9 Use Case 6: Find Component . 29

4.10 Use Case 7: Validate PP . 30

4.11 Use Case 8: Import PP . 31

xiv LIST OF TABLES

4.12 Use Case 9: Create new ST . 32

4.13 Use Case 10: Import ST . 32

4.14 Use Case 11: Validate ST . 33

5.1 Regular expressions for the level of requirements 36

5.2 The scope of the three Abstract Formatter generalizations 41

List of Figures

2.1 Common Criteria Overview . 7

2.2 Relations between the security problem definition, the security
objectives and the security requirements 8

2.3 Coverage Matrix of SO covering SPD for Case Study 15

4.1 Overview of the connection between the Use Cases 23

5.1 SFR Type definitions . 37

5.2 SFR Mappings . 38

5.3 Catalogue Simple Types . 38

5.4 UML of the connections between the parsing, the formatting and
the presentation of SFRs . 39

5.5 SFR structures in C# . 40

5.6 Formatting . 41

5.7 Lookup . 43

xvi LIST OF FIGURES

5.8 Synonym search for ”safe” . 44

5.9 SML representation of a PP . 45

5.10 Adding a threat . 46

5.11 PP GUI representation . 47

A.1 Coverage Matrix of SO covering SPD for Case Study 66

Chapter 1

Introduction

In this chapter the reason for writing this thesis will be explained. First the
motivation behind the project will be presented, this is followed by a short
description of the background behind it. After the background description this
chapter describes the objective of what should be accomplished by this thesis.
Finally a short description of the chapters of the report will be presented.

1.1 Motivation

In the last years a lot of focus has been put on having secure IT products.
But what does it really mean to have a secure product? Currently it is a quite
difficult task to verify which of two products, that are the most secure. Therefore
it is important to use one standard that can be used by all product developers
to evaluate their products. This enables a comparison between different IT
products on equal terms in regard to security.

The development of security specifications can be a tedious and time consuming
process. Because of this it is important that the security specification develop-
ers have a tool that ease the development of these specifications. The use of
such tool can also ensure that all specifications follow the same guidelines and
structure.

2 Introduction

1.2 Background

Standards for defining secure systems have been developed by different institutes
to provide means for evaluating different sets of software or hardware. Some
years ago three standards merged into one called the Common Criteria, this was
done to get a mutual base for evaluating different IT products, up against each
other. One of the main ideas behind the Common Criteria is that it must reach
a wide range of users. This is in line with the motivation that a common goal
for security evaluation of IT products is needed. One of the problems with the
Common Criteria is that security policies developed with them can be difficult
to evaluate due to the structure, which the developers of them follow, can be
different. The basic structure of the security policies is essentially the same in
all policies being constructed by the Common Criteria, but the organizations
that use them often have their own way of representing them.

The Common Criteria Toolbox created by SPARTA1 gave developers a tool
that could be used for starting the development of security policies following the
Common Criteria. The aim of the CC Toolbox by SPARTA was partly to help
developers define skeletons of Security Targets for the products they offer and
partly to start the definition of Protection Profiles. According to SPARTA’s web
site, [SPARTA, 2007], their tool helped developers getting started by guiding
the users through interview based decisions. Sadly it was discontinued in the
beginning of 2004, this might be due to the problem that the output of the
Common Criteria Toolbox developed was a HTML file that, if changed, would
disallow for further development within the tool.

1.3 Objective

This project seeks to give developers a tool with which the process of making
comparable security specifications will be made less time consuming. As de-
scribed earlier the process of building security specifications is tedious and time
consuming. The idea of the tool developed in relation to this thesis is to ease
these bookkeeping processes while presenting the user with different relevant
choices. The tool must also give the user means for sharing the outputs from
the program with other users. In the remainder of this report the tool will be
referred to as the Common Criteria Design Toolbox (CCDT).

1SPARTA was founded in 1979 as a system engineering and advanced technologies company.

1.4 Thesis Overview 3

1.4 Thesis Overview

The thesis is divided into the following chapters:

Chapter 1 Introduction: Presents the idea behind the thesis.

Chapter 2 Common Criteria: Provides information about the Common Criteria.
This includes a definition of the terms used by the Common Criteria as well as
providing a case study for use throughout the report.

Chapter 3 Problem Analysis: In this chapter decisions about the scope of this
project are presented.

Chapter 4 Requirements Specification: Outlines the requirements to the tool
developed. The requirements are based on a presentation of Use Cases that
shows functionality that must be provided by the toolbox.

Chapter 5 Design & Implementation: Presents the decisions taken in the process
of designing and implementing the tool.

Chapter 6 Discussion: A discussion of the problems and needs associated with
the Common Criteria and the toolbox, as well as the functionality and usability
of the two.

Chapter 7 Conclusion: A short conclusion defining what has been achieved by
this thesis.

4 Introduction

Chapter 2

Common Criteria

This chapter gives a presentation of the content of the Common Criteria (CC).
The history of the CC will be presented, followed by a more thorough expla-
nation of the concepts within the CC. The chapter ends with a case study
describing how the CC are applied to a small example.

The information provided in this chapter comes from various sources, the main
source is the three parts presented in [Criteria, 2006], references to these parts
will in the following be written as CC part x, with x being either 1, 2 or 3. Also
the description of the toolbox developed by SPARTA, [SPARTA, 2007], and
the web site for the Common Criteria, [Portal, 2007], were used for background
information on the Common Criteria. Furthermore [Pfleeger and Pfleeger, 2003]
was used for background information about Computer Security.

The CC operate with the term Target of Evaluation (TOE) which will be used
to refer to what is to be evaluated, that being a software, firmware or hardware
product. The term TOE Security Functions (TSF), which is a set of the hard-
ware, software and firmware of the TOE that must be relied upon, will also be
used.

6 Common Criteria

2.1 Introduction

The Common Criteria were developed as a union of existing standards to work
towards a common platform for security evaluating products. They originated
from the European standard ITSEC, the Canadian standard CTCPEC and the
United States Department of Defense Standard, TCSEC. The Common Criteria
are being developed by organizations from the following countries: Australia,
Canada, France, Germany, Japan, Netherland, Spain, UK and the USA. The
CC has been accepted as ISO/IEC 15408 as evaluation criteria for IT security.

The CC have three different classes of users, these being:

• Consumers - are using the CC to view results of evaluation as well as
making Protection Profiles with the needed security requirements of their
organization,

• Developers - are constructing profiles that satisfy the needs of the con-
sumers and

• Evaluators - evaluate that the profiles made by the developers suit the
specified needs.

The CC are to be used as a guide for development, evaluation and securing of IT
products with security functionality. And as such it gives a basis for evaluation
that permits comparability between different and independent products. It is
important to note that the evaluation only has a meaning in its context and
therefore any evaluation must be compared up against the needs of the product
it must support.

The Common Criteria exist of multiple parts, one for defining how the security
within the TOE must work, and another that defines how to evaluate that the
TOE works as intended.

The Common Criteria are not by default limited to the three most commonly
known computer security aspects, confidentiality, integrity and availability, as
described in [Pfleeger and Pfleeger, 2003], but aspects not covered by these three
can be included by the applications of the CC.

Furthermore the Common Criteria deal with three scopes. One is to define
a general Protection Profile (PP) that can be applied to a wide range of IT
product types. The other scope is to define a Security Target (ST) that takes an
existing Protection Profile and tailors it to an implementation dependent specific

2.2 Protection Profile (PP) 7

identified product. The final scope is to create an implementation representation
where schematics for the actual product is provided.

Figure 2.1: Common Criteria Overview

Figure 2.1 shows an overview of how the Common Criteria is structured. The
PP/ST developer first creates an abstract PP that defines the security bounds
in which any product type following this PP must operate. The PP uses compo-
nents defined by the Common Criteria Part 2 to build its security Requirements.
When the PP has been defined it can be used to specify security needs for a more
clearly defined product. This builds the ST. Finally the ST can be implemented
together with a product into an Implementation Representation defining the
program design of the product. The items written in gray are items that are
inherited from the PP. More on each part of the PP and ST will be presented
in the following sections.

2.2 Protection Profile (PP)

The first of the Common Criteria schemes is a general one providing information
about what a family of products must comply with.

According to CC Part 1 a Protection Profile (PP) is ”an implementation-
independent statement of security needs for a TOE type.”

The idea of the PP is to make a specification that can be used by various software
or hardware developers.

The Protection Profile is divided into 6 sections, these being:

• PP Introduction

8 Common Criteria

• Conformance Claims

• Security Problem Definition (SPD)

• Security Objectives (SO)

• Extended Components Definition

• Security Requirements (SR)

The PP Introduction contains information about the usage and major security
features of the TOE as well as a PP reference that uniquely identifies the PP.
Furthermore the PP introduction must identify what line of components the
TOE belongs to. That could e.g. be antivirus programs or VPN1 devices.

The Conformance Claims section presents claims about what version of the CC
the PP follows.

Figure 2.2: Relations between the security problem definition, the security ob-
jectives and the security requirements

Figure 2.2 is taken from [Criteria, 2006] Part 1 page 62. It shows the relation-
ship between the Security Problem Definition, the Security Objectives and the
Security Requirements. The following will elaborate on each of the areas.

1VPN: Virtual Private Network

2.3 Security Target (ST) 9

The Security Problem Definition (SPD) section contains an identification of
all threats to the system, assumptions about the working environment and all
Organizational Security Policies (OSP) that exist in regard to the TOE. The
threats must be defined in terms of a threat agent, e.g. ”a hacker”, an asset,
e.g. ”the TOE” and an action, e.g. ”an intrusion”.

As seen on Figure 2.2 on the facing page the Security Objectives (SO) addresses
each defined Threat, Assumption and OSP. A Security Objective can either be
an objective on the TOE or on the working environment - a TOE objective
could be that the TOE must scan for viruses on a regular basis whereas an
Environmental Objective could be that nobody can access the TOE without
proper clearance. For each link that is created between a SPD item and a
SO item, a rationale describing why the SPD is covered by the SO, must be
provided.

The section with Extended Components Definition holds information about se-
curity requirements that are not defined by the Common Criteria. This is used
when the CC does not specify suitable components for the TOE.

The Security Requirements (SR) are selected from the set of security and assur-
ance components provided by the CC part 2 and 3. The structure and the scope
of these will be presented in Section 2.4 on the next page. For each item defined
in the Security Objectives at least one of the Security Functional Requirements
from the CC part 2 has to be selected, unless the SO item is already covered
by a component from the Extended Components Definition. Furthermore the
Security Requirements must hold a definition of all terms used within the SFR
components. The Security Functional Requirements often require the PP/ST
developer to do decisions on the specific application of the SFR components.
SFR components can be left incomplete to allow implementations of the PP to
tailor each to their needs.

2.3 Security Target (ST)

A Security Target (ST) is according to CC Part 1 ”an implementation-dependent
statement of security needs for a specific identified TOE.”. The ST follows the
same structure as the PP, in this section only the parts of the ST not covered
by the previous section will be explained.

In addition to the parts that exist in the PP, the ST holds an ST introduction
that specifies which PP it implements as well as the scope for it. It also holds
a TOE Summary Specification that identifies the TOE being implemented.

10 Common Criteria

The Security Requirements section of the ST must ensure that each of the SFRs
has been completed. For instance it is not allowed to specify a list of choices
that the SFR can fulfill, it has to be narrowed down to a list that it must fulfill.

2.4 Security Functional Requirements (SFR)

This section presents the Security Functional Requirements as defined by CC
part 2. The SFRs are divided into classes, each class contains a number of
families. Each family contains a number of components and each component
contains elements.

Each class short name starts with a F to identify that it is a Functional Re-
quirement, the F is followed by a two lettered code that is taken from the name
of the class. I.e. The class Security Audit will be named fau.

In the Common Criteria version 3.1 there exist 11 classes:

• Security audit (fau)

• Communication (fco)

• Cryptographic support (fcs)

• User data protection (fdp)

• Identification and authentication (fia)

• Security management (fmt)

• Privacy (fpr)

• Protection of the TSF (fpt)

• Resource utilization (fru)

• TOE access (fta)

• Trusted path/channels (ftp)

Each class contains a class introduction that describes the scope of the class and
between two and 14 families.

A snippet from the class introduction of class fia is:

2.4 Security Functional Requirements (SFR) 11

Families in this class address the requirements for functions to es-
tablish and verify a claimed user identity.

Within the class fia the naming of the families consist of the short name of
the class followed by a ” ” and a three lettered code, for the family ”User
Authentication” the family short name is fia uau.

A family consists of a family behavior describing the application of the family
and a number of components. An example of such a behavior is for the family
fia uau within the fia class:

This family defines the types of user authentication mechanisms sup-
ported by the TSF. This family also defines the required attributes
on which the user authentication mechanisms must be based.

And within the family the following components are found:

• Timing of authentication (fia uau.1)

• User authentication before any action (fia uau.2)

• Unforgeable authentication (fia uau.3)

• Single-use authentication mechanisms (fia uau.4)

• Multiple authentication mechanisms (fia uau.5)

• Re-authenticating (fia uau.6)

• Protected authentication feedback (fia uau.7)

The components all hold information about how they relate hierarchically to
each other, if a component relates hierarchically to another it means that it
offers more security than the one it is hierarchical to.

E.g. fau saa.2 is hierarchical to fau saa.1 so if fau saa.1 was
required to be used it is possible to use fau saa.2 instead.

Components often have other components as dependencies, if this is the case the
PP/ST developer has to include the depended component or a component that
is hierarchical to the dependency. A component also holds information about
when it applies, for instance the leveling information about fia uau.2 states:

12 Common Criteria

User authentication before any action (fia uau.2), requires that
users are authenticated before any other action will be allowed by
the TSF.

Furthermore the components holds tips in regard to what components from the
Security Management (fmt) class, as well as information about which audit
steps from the audit Security Audit (fau) class, should be considered in regard
to the component in question.

Each component also hold information about which elements it contains.

An example of an element is the element fia uau.2.1:

The TSF shall require each user to be successfully authenticated be-
fore allowing any other TSF-mediated actions on behalf of that user.

Other elements require that the PP/ST developer fills out ”blank” spots by
using the four SFR operations. As defined in the CC part 1 pages 77-80 the
four operations are:

• Iteration - ”Allows a component to be used more than once with varying
operations”

• Assignment - ”Allows the specification of parameters”

• Selection - ”Allows the specification of one or more items from a list”

• Refinement - ”Allows the addition of details”

2.5 Security Assurance Components (SAR)

These are similar to the Security Functional Requirements, but provides means
for assuring that the security of the TOE is investigated. The SARs are used
as grounds for confidence that a TOE meets the SFRs defined in its PP or ST.

The SARs have a structure similar to that of the SFRs. They are also grouped
into classes with subgroups of families. The SAR catalogue is presented in the
CC part 3 and in this there exist various different classes for assuring that a
TOE follows the security that it is defined to.

2.6 Case Study 13

The SARs are used for obtaining an Evaluation Assurance Level, EAL. The
point of the EAL is to make it possible to evaluate two products on more levels
than just what Security Functional Requirements they follow.

There is a fixed list stating which SARs must be added to the Security Re-
quirements for it to achieve a specific EAL. But in addition to those needed to
achieve a specific EAL, there exist additional SARs that can be used for adding
security choices to the PP or ST.

If two different products fulfil the same essential Security Functional Require-
ments then the one with the highest Evaluation Assurance Level is considered
to be the most secure. This flexibility that the two axis evaluation gives, i.e. the
evaluation of SFR and of the EAL, makes it possible for consumers to decide
what particular product suits the needs of the organization best.

2.6 Case Study

This section holds a formalization of a Case Study. The formalization will
start by defining the Security Problem Definition to some arbitrary device and
then be extended to specifying the objectives taken to cover the it. This case
study will be looked at in later chapters to provide the reader with means of
comprehending the development of Protection Profiles.

2.6.1 Protection Profile Definition

The scope of this Protection Profile is to specify a secure environment for a
TOE that is to be used by multiple users. The TOE in this example can be
considered as a box that is connected to a network. This case study concentrates
on a limited subset of the parts of the PP, these being the Security Problem
Definition, the Security Objectives and the Security Functional Requirements.

The PP will be kept on a simple basis to ensure that it can be comprehended
by the reader.

The Security Problem Definition within this PP can be presented as it is in
Table 2.1.

14 Common Criteria

Name Definition
Security Problem Definition
T.Unintended-
Access

A user may gain unintended access to the TOE

T.Virus A malicious agent may attempt to introduce a virus
to the TOE

A.NoEvil It is assumed that the administrators of the TOE
do not deliberately cause any evil

A.Physical The TOE is assumed to be placed somewhere that
requires identification to enter

P.Antivirus-
Definitions

It is dictated by the organization that antivirus def-
initions must be updated on a regular basis

Table 2.1: Security Problem Definition

The corresponding Security Objectives table is presented on Table 2.2. The
PP author must define these Security Objectives by looking at what means are
needed to counter the specified SPD.

Name Definition
Security Objectives
O.AntivirusUpdate The TOE will update Antivirus definitions on a reg-

ular basis
O.Virus The TOE will detect and take adequate actions

against viruses
O.TOEaccess The TOE must provide means of how it can be iden-

tified who accesses the TOE
OE.Physical The IT environment must ensure that nobody can

physically access the TOE without proper clearance
OE.NoEvil The IT environment where the TOE acts shall en-

sure that the administrators are non-hostile

Table 2.2: Security Objectives

Each of the issues presented on Table 2.1 must be countered by at least one
objective from Table 2.2. For each of the mappings between SPD items and
Security Objectives, a rationale describing why the particular objective covers
the SPD items is defined. For this case study it can be said that T.Virus
is partially covered by O.AntivirusUpdate with the rationale that up-to-date
antivirus definitions is a requirement for finding any viruses. It is also partially
covered by O.Virus with the rationale that means for detecting viruses is needed
to prevent viruses from doing harm.

2.6 Case Study 15

The coverage of the SO over the SPD can be added to a coverage matrix which
helps to illustrate that all SPD’s has been covered. Figure 2.3 shows the coverage
matrix to the case study.

Figure 2.3: Coverage Matrix of SO covering SPD for Case Study

After all Security Objectives have been defined and linked to the corresponding
SPD items each of these has to be linked to a Security Functional Requirement
as defined in the CC part 2.

The link from SOs into SFRs is similar to the way the SOs were linked to the
SPD items. In this example the fia uau.2 component covers the O.TOEaccess
since the user authentication provided by fia uau.2 is an important part of the
objective. fia uid.1 is a dependency to fia uau.2 and it must therefore also
be satisfied by the PP.

After each of the SOs has been mapped to corresponding SFRs, it is possible
to present this as another coverage matrix like the one presented earlier. This
matrix will not be presented here.

Adding a component to the Security Requirements is done by adding all elements
it contains as well as all dependencies it must specify. After that it is up to the

16 Common Criteria

PP/ST developer to either iterate, assign, select or refine the requirements.

2.7 Summary

This chapter presented the Common Criteria, including the relationships be-
tween the Protection Profile and the Security Target as well as the contents
of the two. The chapter also included a presentation of the structure between
classes, families, components and elements within the Security Functional Re-
quirements.

The chapter was concluded with a Case Study that presented how a small ex-
ample can be interpreted by the Common Criteria.

In the following chapter decisions on what topics from the Common Criteria
should be implemented in the Common Criteria Design Toolbox will be pre-
sented.

Chapter 3

Problem Analysis

This chapter presents a presentation of and a discussion on the decisions taken
in regard to the scope of this thesis. The chapter is divided into relevant sections
for illustrating the overall topics. The sections below address overall topics from
the development phase.

3.1 Consistency Checks

As defined by the Common Criteria there is some validation to be performed.

For a PP to be well formed it must consist of the six parts that were presented in
Chapter 2 on page 5. The program must ensure that all parts are filled out with
valid data. Within each part further checks must be performed, e.g. it must
be verified that the PP introduction holds a PP reference and a TOE overview
and that an assumption is never covered by a TOE Objective. It must also be
checked that all selected Security Functional Requirements indeed exist in the
Catalogue as well as no Security Objectives on the IT environment is covered
by SFR components.

18 Problem Analysis

3.2 External Relations

The PPs and STs developed by the toolbox must be stored in a format that is
widely known, commonly used and that can be shared between different plat-
forms and programs. This is due to the main idea of the Common Criteria,
that it must be possible for them to reach a wide audience. Since the document
about the Common Criteria was provided as an XML1 document it was decided
to use XML as the output format from the program. Using XML as output
format gives a wide range of application possibilities. An XML Schema, XSD,
can be defined to ensure that the format of the PP/STs follow the required
structure. And it is possible to define XML style sheets, XSLT, that transforms
the output from the program into relevant information. For some systems this
could be relevant for a subset of the PP/ST defined by the program, but it
could also be a stylesheet for transforming the PP/ST into a format used for
presenting the PP/ST as complete.

The CC part 2 defines SFR components that will be loaded into a catalogue that
can be used for performing searches. The mechanism for loading the components
into the system should be developed by looking at the structure of the SFR
components as provided by the CC as XML.

3.3 Restrictions

It was decided to focus on a subset of the sections of the PP since various of these
can be represented as mere text. The sections that should be implemented as
more than just a textual representation are the Security Problem Definition,
the Security Objectives and the Security Requirements. Furthermore
only the Security Functional Requirements part of the Security Requirements
will be implemented, this means that the program will not allow users to add
Security Assurance Components, and consequently that no EAL assignment can
be made.

One part that initially was considered out of the scope of this project is the
part with the Extended Components Definition, since this is left out in this
thesis it is not possible for PP/ST developers to use any components that is
not provided by the CC part 2 within the program. However this part is too
important to leave out completely, so the Chapter 5 on page 35 will present
basic design decisions about how to integrate it. The way to define the Extended
Components Definition is a project of its own and should be investigated.

1XML: Extensible Markup Language

3.4 Summary 19

Because of the above restriction to the Security Requirements section it was
decided not to offer support for browsing the Security Assurance Components
within the developed Catalogue.

Future versions of the toolbox should be extended to hold more complex imple-
mentations of the limited sections, or as minimum give means for referring to
locations where the parts not included can be found.

3.4 Summary

This chapter gave an overview of what was to be focused on in regard to the
development of the Common Criteria Design Toolbox. The need for a way
to share the output from the program was identified and it was decided to
handle this with XML. This chapter also outlined some basic restrictions to the
program, one of the biggest was the way of defining extended components within
the program. It was also decided to only deal with the aspect of the Security
Functional Requirements.

The following chapter will specify what should be accessible for a PP/ST devel-
oper within the developed program.

20 Problem Analysis

Chapter 4

Requirements Specification

This chapter presents the Requirements Specification to the Common Criteria
Design Toolbox developed in this thesis. Since the user of the program, the
Primary Actor, is typically a PP/ST developer the program must support the
requirements of such.

The intention of this program is to give PP/ST developers a tool that helps in
developing PPs and STs for their IT products. That could either be for the PP
developer to specify requirements for a TOE specifying a family of products or
for the ST developer to identify this TOE further within the requirements.

The requirement specification is built up as Use Cases. This is done to illustrate
what a user of the program should be able to expect. The Common Criteria
Design Toolbox must be structured so the Use Cases presented below are made
possible to access by the user.

The idea behind the structure of the Use Cases is as suggested by Alistair
Cockburn [Cockburn, 2007].

The program should only allow one user at a time and should be independent
on other processes, therefore only one actor will be used in the following.

In connection to the Use Cases the Case Study from Section 2.6 on page 13 is

22 Requirements Specification

being used. This is done to illustrate how and where the different parts of a
PP/ST is added.

4.1 Use Cases Overview

This section holds an overview presenting how the use cases are structured as
well as how they relate to each other.

The structure of the Use Cases is explained on Table 4.1.

UC.0 Use Case Format
Goal What will be accomplished upon success of the Use

Case
Level One of two:

User: Actions carried out by the user
Sub-function: Actions done by the system
If nothing else is specified the Level is User

Preconditions These conditions must hold before the steps in the
Use Case can be performed

Success conditions Describes a successful termination to the Use Case
Failure conditions Describes a failed termination to the Use Case
Steps
Step 1 Shows the steps needed to follow to get to the goal
Variations
Step 1a Shows any variations that might be to the point in

the named step
Step 1b There can be multiple variations to each step
Exceptions
Name If a Use Case yields wrong results, the step that can

go wrong as well as a description of what could be
wrong is written here

Return step And the step to proceed from in case of an exception
is labeled here

Table 4.1: Use Case 0: Use Case Format

On Table 4.2 a brief overview of the Use Cases is given.

4.1 Use Cases Overview 23

Use Case Overview
UC.1 New PP Creates a new PP
UC.2 Alter PP Alters the different sections of a PP
UC.3 Alter SPD Specifies the Security Problem Definition by adding

and/or modifying the Threats, Assumptions and
Organisational Policies in regard of the system

UC.4 Alter SO Specifies the Security Objectives by adding and/or
modifying the TOE and Environmental Objectives

UC.5 Alter SFR Specifies how the SFR Components for the Security
Requirements are added

UC.6 Find Compo-
nent

Locates SFR components in the Catalogue for use
with UC.5

UC.7 Validate PP Validates a PP internally in the system
UC.8 Import PP Imports an existing PP
UC.9 New ST Creates a new ST
UC.10 Import ST Imports an existing ST
UC.11 Validate ST Validates a ST internally in the system

Table 4.2: Use Case Overview

Figure 4.1: Overview of the connection between the Use Cases

Figure 4.1 shows how the Use Cases are connected as well as their connections
to the outside.

24 Requirements Specification

The Use Cases does not define how the ST is altered, this is intended to be in a
similar manner as the way the PP is altered, but with the limitations that are
on STs.

Some of the steps in the use cases are merely steps that require the user to enter
simple data. If this is the case no further description of the step is presented.
More complicated steps will be presented as an additional use case.

To better comprehend the use cases a small example will be presented in parallel
to these. The examples will be labeled for easier identification, each example
will be labeled as follows: ”Ex.[Relevant Use Case][Variation]”, i.e. an example
supporting Use Case 1 will be named ”Ex.1”.

4.2 Protection Profile

In this section the Use Cases supporting the creation of Protection Profiles will
be presented.

UC.1 New PP
Goal Create a new PP
Preconditions A loaded Catalogue exists
Success conditions A PP has been stored
Failure conditions No PP has been stored
Steps
Step 1 Create Protection Profile Skeleton
Step 2 UC.2 Alter PP
Step 3 Save PP
Variations
Step 3a1 UC.7 Validate PP
Step 3a2 Export PP
Exceptions
Name The PP does not validate
Return step Step 2

Table 4.3: Use Case 1: Create new PP

Table 4.3 illustrates that the user starts the program, creates a new Protection
Profile, modifies the default data and stores it either as a working edition or as
a validated exported version.

4.2 Protection Profile 25

Creating a PP skeleton creates a skeleton that follows the structure constraint
but does not hold any values.

Ex.1a: The user, a PP/ST developer, wants to create a new Protec-
tion Profile. After starting the program he creates a new skeleton
of a PP and begins filling out its sections.

Ex.1b: After entering information to all sections of the PP the user
saves it to the hard disk.

UC.2 Alter PP
Goal Alter the body of a Protection Profile
Preconditions A PP skeleton and a loaded catalogue exist
Success conditions All sections of the PP contain information
Failure conditions Not all sections contain information
Steps
Step 1 Alter PP introduction information
Step 2 Alter Conformance Claims
Step 3 UC.3 Alter Security Problem Definition
Step 4 UC.4 Alter Security Objectives
Step 5 Alter Extended Components Definition
Step 6 UC.5 Alter SFR
Exceptions
Name Each step is selfcontaining if any errors occur
Return step The step causing the error must be repeated

Table 4.4: Use Case 2: Alter PP

Step 1, 2, 3 and 5 from Table 4.4 may be done in any order the user desires,
the Use Case merely illustrates the most straightforward use. However, step 4
must follow step 3 and step 6 must follow step 4.

Ex.2a: The user fills out the PP introduction with a reference to
other PP’s that it elaborates upon as well as an overview of the
TOE.

Ex.2b: The Conformance claims are entered as conformance to the
used Common Criteria version. Which with the current version
would be Common Criteria v. 3.1 Revision 1 Part 2

26 Requirements Specification

The step 5 of Table 4.4 on the previous page should have a Use Case defining
how to develop new components that extend the repository of the CC part 2.
This was left out in this thesis on purpose. This is done since it is not a trivial
task to define new components that conform with the Common Criteria which
was also argued in Section 3.3 on page 18.

The Security Problem Definition is modified by either adding new SPD items
to the PP or by removing or modifying existing ones.

UC.3 Alter Security Problem Definition
Goal Specify the Security Problem Definition
Preconditions A Security Problem Definition skeleton exists
Success conditions At least one SPD item exists in the SPD
Failure conditions No SPD items exist in the SPD
Steps
Step 1 Add a SPD Item
Step 2 Repeat above step or variations until satisfied
Variations
Step 1a Modify a SPD Item
Step 1b Remove a SPD Item
Exceptions
Name The SPD Item that is sought removed is linked to a

SO Item
Return step Step 1b

Table 4.5: Use Case 3: Alter Security Problem Definition

Ex.3a: The user adds the threat ”T.UnintendedAccess” with the
definition ”A user may gain unintended access to the TOE” to the
SPD. He continues to add the remaining Threats, Assumptions and
Organizational Policies from Table 2.1 on page 13.

UC.4 Alter Security Objectives
Goal Specify the Security Objectives
Preconditions A Security Objectives skeleton exists
Success conditions At least one SO item exists in the SO
Failure conditions No SO items exist in the SO
Steps
Step 1 Add a SO Item

continued on next page

4.2 Protection Profile 27

UC.4 Alter Security Objectives
Step 2 Repeat above step or variations until satisfied
Variations
Step 1a Modify a SO Item
Step 1b Remove a SO Item
Exceptions
Name The SO Item that is sought removed is linked to a

SFR Component
Return step Step 1b

Table 4.6: Use Case 4: Alter Security Objectives

Ex.4a: The user adds the Objective ”O.TOEaccess” with the def-
inition ”The TOE must provide means of how it can be identified
who accesses the TOE” to the Security Objectives. The user adds
the remaining Objectives from Table 2.2 on page 14 and provides
rationale similar to the one before.

Ex.4b: After adding the objectives the user links first
”O.TOEaccess” to the threat ”T.UnintendedAccess” by stating the
rationale that ”O.TOEaccess ensures that nobody can access the
TOE without being identified”. Links are added for the remaining
objectives.

UC.5 Alter SFR
Goal Specify SFR Components for the Security Require-

ments
Preconditions A loaded Catalogue and a SFR skeleton exist
Success conditions One or more SFR’s has been found in the catalogue

and added to the SR section
Failure conditions No SFR Components added
Steps
Step 1 UC.6: Find Component
Step 2 Add Component
Variations
Step 1a Remove Component
Step 1b Alter Component
Exceptions

continued on next page

28 Requirements Specification

UC.5 Alter SFR
Name No found Components
Return step Step 1

Table 4.7: Use Case 5: Alter SFR

Ex.5a: The user locates a component that matches the Security
Objective items that was added earlier. The component is then
added to the Security Functional Requirements. This is repeated
until all Security Objectives has been covered.

Ex.6a: Using the Find component feature of the Catalogue, the
user enters the keyword ”identify” to search for a component that
matches ”O.TOEaccess”, he also chooses one of three search op-
tions, either exact, wild card or synonym search. The user performs
the search and sees that ”fia uid.2”, ”User identification before
any action”, matches the objective. The user then adds the SFR
component and states the rationale that ”fia uid.2” ensures that
before a user can use the TOE, he must be identified.

It should not be possible to link Environmental Objectives to SFRs since this
is not allowed by the CC.

After linking the SFRs to the Security Objectives it must be possible to apply
the four Operations allowed by the CC specification, see Table 4.8.

Ex.5b: After adding components, the user modifies them. This is
done by using one of the four operations specified in the CC part 1.

The usage of the operations is explained thoroughly in the CC Part 1 pages 77
to 80. The system should support all of these operations.

Name Input Output
IterateOperation Component Component-list
AssignmentOperation Component Component
SelectionOperation Component Component

continued on next page

4.2 Protection Profile 29

continued from previous page

Name Input Output
RefinementOperation Component Component

Table 4.8: CC Operations

UC.6: Find Component
Goal To locate a SFR component in the Catalogue
Preconditions A loaded Catalogue exist
Success conditions The desired SFR component has been found
Failure conditions The desired SFR component has not been found
Steps
Step 1 Open the catalogue
Step 2 Enter search criteria and search option
Step 3 Pick component
Exceptions
Name The Component was not found
Return step Step 2

Table 4.9: Use Case 6: Find Component

If the user does not find the component he is looking for, he can add a differ-
ent abstraction level to the search option by broadening his search to include
synonyms of the word as well as simple keyword matchings.

Alternatively to storing the PP, the user can decide to validate it and export
it as a working PP. Doing so will make it possible to import it later on for
elaborative work or for use as starting off an ST.

When validating the PP all sections must conform with the requirements pro-
vided by the CC.

In this thesis the focus has been put on validating the items presented on Ta-
ble 4.10.

UC.7 Validate PP
Goal Validate a PP
Level Sub-function
Preconditions SPD, SO, SFR exist
Success conditions All sections are valid

continued on next page

30 Requirements Specification

UC.7 Validate PP
Failure conditions At least one section does not comply with the check
Steps
Step 1 Check SPD items
Step 2 Check SO items
Step 3 Check that all SPD’s are covered by SO’s
Step 4 Check SFR components
Step 5 Check that all SO’s are covered by SFR’s
Exceptions
Name A section does not validate
Return step Exit with failure

Table 4.10: Use Case 7: Validate PP

The validations performed are:

• The SPD items must consist of a name and a definition.

• The SO items must consist of a name and a definition.

• Each SPD item must be covered by at least one SO item.

• The SFR components must exist in the SFR catalogue.

• Each SO item must be covered by at least one SFR component.

4.3 Security Target

After a PP has been created a user can initiate the development of a Security
Target.

The development of a ST starts by importing a PP. After the PP to be imported
has been selected it is validated by the system.

4.3 Security Target 31

UC.8 Import PP
Goal Importing an existing PP
Preconditions None
Success conditions A valid PP is loaded into the system
Failure conditions No PP is loaded
Steps
Step 1 Select PP
Step 2 UC.7 Validate PP
Exceptions
Name The PP does not validate
Return step Step 1

Table 4.11: Use Case 8: Import PP

In addition to importing the PP it is also possible to open it, the opening of a
PP will not cause any validation and therefore it will not be possible to start a
ST before the PP has been validated.

UC.9 New ST
Goal To create a new ST
Preconditions A loaded Catalogue exist
Success conditions A ST is stored
Failure conditions A ST is not stored
Steps
Step 1 UC.1 New PP
Step 2 Review and enter ST introduction information
Step 3 Review Conformance Claims
Step 4 Review Security Problem Definition
Step 5 Review Security Objectives
Step 6 Review Extended Components Definition
Step 7 UC.5 Alter SFR
Step 8 Save ST
Variations
Step 1a UC.10 Import ST
Step 1b Load ST
Step 1c UC.8 Import PP
Step 8a1 Validate ST
Step 8a2 Export ST
Exceptions

continued on next page

32 Requirements Specification

UC.9 New ST
Name Each step is selfcontaining if any errors occur
Return step The step causing the error must be repeated

Table 4.12: Use Case 9: Create new ST

Ex.9a: The user selects the PP that holds the basis for the ST via
the import mechanism Step 1c. This causes the PP to be validated
using UC.7.

Ex.9b: The user reviews all sections and sees that all data matches
the scope of the ST he is building.

Ex.9c: The user elaborates on the added components by modifying
them with the use of the previously presented four operations.

The modification is done until all components are completed, meaning that no
further information can be entered to each component.

Ex.9d: After all sections of the ST matches the desired, the user
exports the ST.

UC.10 Import ST
Goal Importing an existing ST
Preconditions None
Success conditions A valid ST is loaded into the system
Failure conditions No ST is loaded
Steps
Step 1 Select ST
Step 2 UC.11 Validate ST
Exceptions
Name The ST does not validate
Return step Step 1

Table 4.13: Use Case 10: Import ST

An alternative to importing a PP to use as base for an ST, it is possible to
start the construction of a ST by importing a previously exported one. UC.10

4.4 Summary 33

illustrates this procedure. There has not been defined any use cases on how to
alter the ST, this should be done in a similar way as that of the PP, but with the
limitations that everything from the PP is locked, it should however be possible
to apply the CC operations to the SFR components.

UC.11 Validate ST
Goal Validate a ST
Level Sub-function
Preconditions SPD, SO, SFR exist
Success conditions All sections are valid
Failure conditions At least one section does not comply with the check
Steps
Step 1 Check SPD items
Step 2 Check SO items
Step 3 Check that all SPD’s are covered by SO’s
Step 4 Check SFR components
Step 5 Check that all SO’s are covered by SFR’s
Step 6 Check that all SFR’s are completed
Exceptions
Name A section does not validate
Return step Exit with failure

Table 4.14: Use Case 11: Validate ST

The validation of a ST is similar to the one of validating the PP, in addition to
the validations done in the PP, it is necessary to verify that all SFR Components
are completed.

4.4 Summary

This chapter illustrated what should be expected for PP/ST developers to do
with the developed Common Criteria Design Toolbox. It used the approach of
using Use Cases for presenting functionality. The basic needs of the program
was that it should be possible to create a PP that could be exported to (or
imported from) an XML format that could be used for sharing the PP with
other tools using the same XML format. During the construction of the PP the
developer should be able to get help with finding which SFR components that
best suit the PP.

The following chapter provides decisions as well as implementation examples

34 Requirements Specification

from what was designed and implemented.

Chapter 5

Design & Implementation

This chapter presents the design and the implementation of the program devel-
oped in regard to this thesis work. The chapter is structured so that first the
tools developed for supporting the main program will be discussed, thereafter
decisions on the actual program will be presented, including how the different
parts relate to the developed supporting tools. Furthermore in each section
of this chapter first the design will be presented, this will be followed by the
decisions on the implementation.

Within this chapter some code snippets made in SML[Hansen and Rischel, 1999]
will be presented. These show how the various parts of the program is designed.
Within the SML some references exist to the DTD provided by the Common
Criteria. The DTD describing the Security Functional Requirements (SFR) can
be found in Appendix A.1 on page 58.

The program is divided into two main components. The first is a catalogue used
for looking up SFRs, the other is for designing the actual PP/ST. The PP/ST
component uses the SFR catalogue in its development. These components will
be described in the following.

36 Design & Implementation

5.1 Environmental Requirements

It was decided to develop the Common Criteria Design Toolbox in the Microsoft
.NET Framework Version 2.0 [Microsoft, 2007]. This means that the Microsoft
.NET Framework v. 2.0 must be installed on any system where the Common
Criteria Design Toolbox is desired to run. Furthermore it is required that Word-
Net 2.1[WordNet, 2007] is installed due to parts of the Toolbox are using the
dictionary functionality of this module. In addition to this it is also required
that the XML holding the Common Criteria document is accessible.

5.2 SFR structure

This section shows how the SFRs provided by the CC part 2 can be structured in
SML and how it is structured within the Toolbox. Figure 5.1 on the facing page
and Figure 5.2 on page 38 hold the SML representation of the SFR structure.

The simple types from Figure 5.1 on the facing page hold a definition for the data
type level, this is interpreted as information about what level any requirement
is on, this being either a class, a family, a component or an element. The string
holds its short name. In the implementation it was decided to make a method
that returned what level a requirement was on, based on its name to reflect
this data type. The regular expressions[REGEX, 2007] for the naming of the
different levels are shown on Table 5.1.

Level Regular Expression
Classes F[a-zA-Z]{2}
Families F[a-zA-Z]{2} [a-zA-Z]{3}
Components F[a-zA-Z]{2} [a-zA-Z]{3}.[0-9]
Elements F[a-zA-Z]{2} [a-zA-Z]{3}.[0-9].[0-9]

Table 5.1: Regular expressions for the level of requirements

Figure 5.2 on page 38 shows how the SML data type level is used as a map from
its name into its contents. The contents for each level are as defined earlier.

5.3 SFR Catalogue 37

1 (∗ SFR requirements ∗)
2 datatype l e v e l = Class of s t r i n g | Family of s t r i n g |
3 Component of s t r i n g | Element of s t r i n g ;
4 (∗ Def ines the d i f f e r e n t l e v e l s a requirement i s de f i ned on ∗)
5
6 type f c I n t r oduc t i on = s t r i n g ;
7 type f fBehav iour = s t r i n g ;
8 type f c oH i e r a r c h i c a l = s t r i n g ;
9 type f coDependenc ies = s t r i n g ;

10 type f c oL e v e l l i n g = s t r i n g ;
11 type fcoManagement = s t r i n g ;
12 type f coAudit = s t r i n g ;
13
14 datatype f op t i on =
15 s of s t r i n g
16 | FE of f op t i on l i s t
17 | FEA of f op t i on l i s t
18 | FES of f op t i on l i s t ;
19 (∗ Def ines the d i f f e r e n t par t s a SFR element ho l d s as ∗)
20 (∗ de s c r i b ed in the dtd ∗)
21 (∗ s corresponds to the CDATA ∗)
22 (∗ FE corresponds to the fe−i tem ∗)
23 (∗ FEA corresponds to the fe−assignment ∗)
24 (∗ FES corresponds to the fe−s e l e c t i o n

Figure 5.1: SFR Type definitions

5.3 SFR Catalogue

The Catalogue provides means for searching for classes, families and components
within the CC part 2. A search can be performed either by performing an
exact, a wildcard or a synonym search, depending on the needs of the user.
Furthermore the catalogue makes it possible to add SFRs to the PP being
developed.

Figure 5.3 on the next page shows the types used for designing the Catalogue.

Figure 5.4 on page 39 shows the relationship of the different components within
the Catalogue. Each of these components will be presented below.

38 Design & Implementation

1 type f e l ement = (l e v e l , f op t i on l i s t) Polyhash . ha sh tab l e ;
2 (∗ A map from a f−element name to i t s con ten t s ∗)
3
4 type fcomponentMap = (
5 l e v e l ,
6 f c oH i e r a r c h i c a l ∗ f coDependenc ies ∗ f c oL e v e l l i n g ∗
7 fcoManagement ∗ f coAudit ∗ f e l ement)
8 Polyhash . ha sh tab l e ;
9 (∗ A map from a f−component name to i t s content ∗)

10
11 type ffamilyMap = (
12 l e v e l ,
13 f fBehav iour ∗ fcomponentMap) Polyhash . ha sh tab l e ;
14 (∗ A map from a f−f ami l y name to i t s content ∗)
15
16 type fc lassMap = (
17 l e v e l ,
18 f c I n t r oduc t i on ∗ ffamilyMap) Polyhash . ha sh tab l e ;
19 (∗ A map from a f−c l a s s name to i t s content ∗)

Figure 5.2: SFR Mappings

1 (∗ Catalogue Types ∗)
2 datatype searchOption = Exact | Wildcard | Synonyms ;
3 type keyword = s t r i n g ;
4 type index = (keyword , l e v e l l i s t) Polyhash . ha sh tab l e ;

Figure 5.3: Catalogue Simple Types

5.3.1 Parser

For making the catalogue it was necessary to parse the XML provided by the
CC. The main idea is to structure the Common Criteria Security Functional Re-
quirements into a list of classes, where each class contains information about its
contents. The information from this parsing can then be formatted in different
ways to present it as best seen fit in the situation.

5.3.1.1 Design

The parsing must be based on the nodes defined by the DTD structure Ap-
pendix A.1 on page 58 and the output should be on a structural representation

5.3 SFR Catalogue 39

Figure 5.4: UML of the connections between the parsing, the formatting and
the presentation of SFRs

similar to that of the SML representation presented above.

5.3.1.2 Implementation

The Parser collects information about all Security Functional Requirements and
places it in the classMap as defined on Figure 5.2 on the facing page. In C#
this is implemented as shown on Figure 5.5 on the next page.

The parsing is performed in C# by calling a recursive function, parse. The
parse method is implemented as a switch case that hold all relevant XML tags
and act upon the different tags. The parsing is performed both for generating
the structure but also for entering the text that is needed to represent the
different parts of the CC. This text is then stored within the structure so that
the SFR structure presented above is preserved. The reason C# was chosen for

40 Design & Implementation

Figure 5.5: SFR structures in C#

performing the parsing was that it could then be done on the fly if the CC xml
was updated.

5.3.2 Formatter

This part deals with formatting the data that was parsed using the parse meth-
ods. The idea of the formatters is to provide the user of the program with
different means for formatting the CC part 2.

5.3.2.1 Design

The system should implement three different ways of formatting the parsed data,
one way should be to make it possible to perform searches within the parsed
data to identify relevant components for relevant Security Objectives. The other
is meant for presenting the found areas in an easy to read manner. And finally
the data should be formatted so it is possible to export the CC catalogue to
SML for future consistency checks and well-formedness evaluations.

5.3.2.2 Implementation

The structure of the classes for performing the formatting is presented on Fig-
ure 5.6 on the facing page.

The C# library LoadParseXML.dll holds the classes and methods for perform-
ing the parsing. The DLL consists of a Parser class, an AbstractFormatter class
and three generalizations of the Abstract Formatter. Each of the three general-
izations represents a different way of presenting the SFRs, the scope of each of
these is presented on Table 5.2 on the next page. The main idea is that different
parts of the program must present the data provided by the CC differently.

5.3 SFR Catalogue 41

Figure 5.6: Formatting

Generalization Scope
IndexFormatter Returns a Hashtable holding the result of a

gathering of all occurrences of all relevant words
within the CC part 2 and stores them in an in-
dex for fast lookup.

TextFormatter Returns a textual representation of the SFR at
the given location as well as a textual repre-
sentation of all sub elements to the looked up
location.

SMLFormatter Returns a SML representation of the SFR at the
given location as well as a SML representation of
all sub elements to the looked up location. The
SML follows the structure defined on Figure 5.2
on page 38.

Table 5.2: The scope of the three Abstract Formatter generalizations

Each of the formatters is initialized with a Hashtable holding the data that
was parsed by the Parser, as well as an initialization string, unique for each
formatter. The initialization string for the Index Formatter holds information
to be passed on to the Lookup mechanism. The initialization strings for both
the SML and the Text formatters is currently not used, but enables developers
to pass on lead-in information.

In addition to the initialization method they all hold a public method, format. In
the Index Formatter, the format method returns the index holding all locations
and occurrences of relevant words. The format method for the SMLformatter
returns an SML representation of all classes within the parsed information and
finally the TextFormatter returns either all classes represented as text or, if a
specific location is given, text representing that particular position.

42 Design & Implementation

Some restrictions were put on the words used for making the index so ordinary
words would not be added to it. This list of ”Stopwords” includes common words
as ”to”, ”of” and ”it”. Furthermore it was decided that only words occurring on
the Class, the Family and the Component level would be added. In addition to
the skipping of simple words, the IndexFormatter stores the stem of the words
being looked up, this is done so that later searches would be easier to perform,
e.g. the formatter finds an occurrence of the word ”securing”, the stem of this
word is ”secure” which is the word being stored. Later when the user tries to
perform a search, WordNet is again used to find the stem of the search keywords
the user states, so if he tries to look up either ”securing” or ”secure” he will
find this occurrence. In addition to storing the information about the context
that the words were found, it is also stored how many occurrences within the
context it has. Parts of the source code for the IndexFormatter is presented in
Appendix A.2 on page 60.

An alternative to auto generating the index is, that it could be built up by
security concepts defined by users. Due to the structure of the SFRs, that each
component is placed within a family that again is placed within a class, this
would not give as much value as the possibility of performing searches within
the document.

The parsed information about the CC part 2, as well as the index, are both
stored to a default folder and can be copied to this to avoid a large setup time.
If this is not done upon the first search within the Toolbox, it will automatically
scan through the CC.xml file and create a new parsed storage as well as a new
index.

5.3.3 Lookup functionality

There is various ways for performing searches in systems, one way would be
to scan the text for occurrences of words every time a search is initialized,
this way was considered infeasible since each user of the system would have to
search through the catalogue multiple times for each Security Objective that was
sought covered. To circumvent this, it was decided to create an index holding
all occurrences of the words used in the CC part 2 as well as the locations each
word exists in.

5.3 SFR Catalogue 43

5.3.3.1 Design

The structure of the index is presented on Figure 5.3 on page 38. And for this
the lookup function

Lookup : keyword list * searchOption -> level list

exists.

5.3.3.2 Implementation

Figure 5.7 shows how it was made possible to use different approaches for looking
up words within the index. One way, which is the one currently being used, is to
use the WordNet library to perform lookups on the stem of the input keywords.
Another way could be to gather a list of the most used words of a user, this
approach has not been implemented and is merely presented as a possibility for
future work.

Figure 5.7: Lookup

The WordNetLookup approach enables the user to in addition to searching for
the stem of the words he can search for a synonym of the word, so by searching
for e.g. ”safe” he would be able to find the occurrence of ”securing” that was
added earlier. The result for this search, as it is presented in the Toolbox, is
shown on Figure 5.8 on the following page.

This implementation also holds means for searching for a wildcard within the
Index, e.g. ”sec” would yield the same results as either ”securing” or ”secure”.

44 Design & Implementation

Figure 5.8: Synonym search for ”safe”

With the current implementation it takes approximately 15 minutes to go through
the parsed data gathering all relevant words and their locations. If the imple-
mentation would not have included the index created by the IndexFormatter
from above, but real time lookup, these 15 minutes would have been an over-
head that would have been carried out each time a lookup is performed. Lookups
within the implemented Index, takes less than a second.

5.3.4 Present Functionality

After performing the lookup on relevant keywords, the found locations are
passed on to the TextFormatter for making it possible to present the content of
the found locations.

5.4 Protection Profile

The main purpose of the Toolbox being developed is to create a PP, the creation
of a PP includes using the catalogue that was defined in the previous sections,
furthermore it requires some functionality to connect the different sections of it
together. This section will present how a PP is structured as well as how the
implementation of it has been performed.

5.4 Protection Profile 45

5.4.1 Design

Figure 5.9 presents how a Protection Profile is designed in SML. Line 36 shows
what parts that must be constructed to encompass the various parts of the PP.

1 (∗ P r o t e c t i o n P r o f i l e r e q u i r e m e n t s ∗)
2 type PPreference = s t r i n g ;
3 type TOEoverview = s t r i n g ;
4 type PPintroduction = PPreference ∗ TOEoverview ;
5
6 type CCconformanceClaim = s t r i n g ;
7 type PPclaim = s t r i n g ;
8 type ConformanceRationale = s t r i n g ;
9 type ConformanceStatement = s t r i n g ;

10 type ConformanceClaims = CCconformanceClaim ∗ PPclaim ∗
11 ConformanceRationale ∗
12 ConformanceStatement ;
13
14 datatype SPDname = T of s t r i n g | P of s t r i n g | A of s t r i n g ;
15 type SPDdef in i t ion = (SPDname , s t r i n g) Polyhash . hash tab l e ;
16
17 datatype SOname = O of s t r i n g | OE of s t r i n g ;
18 type SOde f in i t i on = (SOname , s t r i n g) Polyhash . hash tab l e ;
19 (∗ Bo th t h e two d a t a t y p e s SOname and SPDname a r e map p i n g s f r om ∗)
20 (∗ a member i n a d i s j o i n t s e t i n t o a s t r i n g d e f i n i n g i t ∗)
21
22 type Rationale = s t r i n g ;
23 type ExtendedComponentsDefinition = s t r i n g ;
24
25 type SORdef init ion = ((SPDname ∗ SOname) , Rat ionale)
26 Polyhash . hash tab l e ;
27 type Secur i tyOb j e c t i v e s = SOde f in i t i on ∗ SORdef init ion ;
28
29 type SRde f in i t i on = fcomponentMap ;
30 type Secur i tyRequirementsRat ionale = ((l e v e l ∗ SOname) ,
31 Rat ionale)
32 Polyhash . hash tab l e ;
33 type Secur ityRequirements = SRde f in i t i on ∗
34 Secur i tyRequirementsRat ionale ;
35
36 type Pro t e c t i o nP r o f i l e = PPintroduction ∗ ConformanceClaims ∗
37 SPDdef in i t ion ∗ Secu r i tyOb j e c t i v e s ∗
38 ExtendedComponentsDefinition ∗
39 Secur ityRequirements ;

Figure 5.9: SML representation of a PP

Creating a PP involves defining a Security Problem Definition by adding threats,
assumptions and organizational policies to the SPDdefinition map. It also in-
volves creating Security Objectives by adding TOE objectives and Environmen-
tal Objectives to the SOdefinition.

As indicated on Figure 5.9 a threat within a SPD is created as follows:

val spddef = mkPolyTable(10,error) : SPDdefinition;
val tSPDname = T "UnintendedAccess";
val tDefinition =

"A user may gain unintended access to the TOE";
insert spddef (tSPDname,tDefinition);

46 Design & Implementation

The same goes for the other members of the SPDname datatype and similar for
the SOname datatype.

When both the SPDdefinition and the SOdefinition have been constructed the
different items in both of them are linked together. This is done as follows:

val Rationale =
"Nobody can access the TOE without being identified";

insert sordef ((T "T.UnintendedAccess", O "O.TOEaccess"),
Rationale);

5.4.2 Implementation

The example from the design section where a threat was added to the SPD of
a PP happens similarly in the implementation. A threat in the implementation
consist of a Prefix, namely the ”T”, a Name, the ”UnintendedAccess” and a
Definition, ”A user may gain unintended access to the TOE”.

To the user this is presented as shown on Figure 5.10.

Figure 5.10: Adding a threat

When linking SOs to SPDs in the implementation an object, LinkConnected,
consisting of the SPD, the SO and a rationale linking the two is created, this
object is then added to a list containing all links within the PP.

The SML definition of a PP is in the implementation presented in two different
ways, the GUI part is shown on Figure 5.11 on the next page and the structure
behind is constructed so that everything the PP shares with the ST is defined
in one class, ProfileSchemeContents, and both the PP and the ST extends this
class. Therefore it can be said that the class ProtectionProfileContents Ap-
pendix A.4 on page 63 reflects the structure presented on Figure 5.9 on the
previous page.

5.5 Common Criteria Design Toolbox 47

Figure 5.11: PP GUI representation

5.5 Common Criteria Design Toolbox

The Toolbox is built as a GUI on top of a class structure defining the basis of
a PP and a ST. First a general scheme describing all commonalities between
the PP and the ST were defined, this was followed by both a PP and a ST
class that both implements the general scheme. By doing this it was easily
possible to XML serialize the different classes into their corresponding XML
documents. It is equally possible to de-serialize the XML files into the classes
whereafter the GUI implementation could update the view from either the PP
or the ST. Furthermore it makes it possible to import a PP into a ST by using
the name of the PP as the PP Conformance in the ST and then using all the
elements of the general scheme within the ST. The actual implementation in
regard to implementing a PP into a ST was left out of the program due to time
constraints.

If a stored version of the SFR catalogue does not exist the parser and formatter
described before are initiated.

The base location for the XML document holding the Common Criteria SFRs
can be changed in a settings file that is provided together with the executable.

Viewers can be implemented for presenting the XML, a prototype of such a
viewer has been created in PHP1. It takes an PP on the XML form and trans-
forms it with a XML stylesheet ”XSLT” for showing the coverage matrix of
the Security Objectives over the Security Problem Definition. The stylesheet is
just made as a sample of what can be implemented. The output of the simple
viewer is presented in Appendix A.6 on page 66. Besides this a stylesheet for
transforming the XML into SML code was created, the resulting SML can be

1PHP: Hypertext Preprocessor

48 Design & Implementation

executed in extension to the SML that defined the structure of the PP as well
as the SFRs. The resulting SML can be found in Appendix A.7 on page 67.
This SML code was then executed after the definition of all the simple types as
well as the SML functions defining the well-formedness of a Protection Profile.
Appendix A.8 on page 69.

A snippet of the transformed output corresponding to the example from above
is:

val fcompMap = Polyhash.mkPolyTable(10,error) : fcomponentMap;
val felementMap = Polyhash.mkPolyTable(10,error) : felement;
val secReqRat = Polyhash.mkPolyTable(10,error)

: SecurityRequirementsRationale;

and followed by

insert spddef (T "T.UnintendedAccess",
"A user may gain unintended access to the TOE");

Polyhash.insert sodef (O "O.TOEaccess", "The TOE must provide
means of how it can be identified who
accesses the TOE");

Polyhash.insert sordef ((T "T.UnintendedAccess", O "O.TOEaccess")
, "Nobody can access the TOE without being
identified");

val secObj = (sodef, sordef);
Polyhash.insert felementMap (Element "fia_uid.2.1", [s " The TSF

shall require each user to be successfully
identified before allowing any other TSF-mediated
actions on behalf of that user. "]);

Polyhash.insert fcompMap (Component "fia_uid.2",("FIA_UID.1", "",
"User identification before any action
(FIA_UID.2), requires that users identify
themselves before any other action will be
allowed by the TSF.", "the management of the
user identities.", "", felementMap));

Polyhash.insert secReqRat ((Component "fia_uid.2", O "O.TOEaccess"),
"fia_uid.2 ensures that before a user can use the
TOE he must be identified");

The snippet above shows how some items from the case study looks when the
exported XML is transformed into SML. This snippet can be used for applying
well-formedness functions to the Protection Profiles.

5.6 Verification 49

5.6 Verification

When testing IT software there are various ways of approaching it. One way
is internal testing where every single part of the program is tested, if all these
tests are completed with a successful result it is safe to argue that the pro-
gram is working as intended. Another approach is external testing, where it is
tested that all requirements are fulfilled. Besides these functional tests it is also
important to test that the system can be used for the purpose it is intended,
for instance to make user tests to verify that the program solves the problems
described in its objective.

One of the strengths with the way the CC Design Toolbox was put together is
that each of the crucial parts in it is module based. The CC Design Toolbox
loads different libraries that all can be tested independently.

Every library that was used for creating this Toolbox was informally tested to
verify that they gave the expected results. The WordNet library was tested in
regard to the lookup of stems and synonyms, a set of words were looked up both
in the WordNet application and in a test program that was created with the
intention to informally test each module. The results of looking up the words in
these two places yielded the same result, so it is assumed that the correctness
of the implementation of it in regard to this program is just as correct as the
one for the original program.

When testing the formatter focus was put on seing that the correct amount
of classes, families, components and elements were shown. It was also verified
that an arbitrary set of the components had the correct properties, i.e. correct
leveling, hierarchical, dependency information. If the result of this test yielded
a successful result, it is most likely that the parser providing the data also is
functioning correctly.

The Toolbox as a whole was not tested, but it was seen that loading a PP,
modifying it and exporting it again did not ruin the structure of it, nor did it
change data that was not changed after the import.

5.7 Summary

This chapter presented the Design and Implementation of the Common Criteria
Design Toolbox. The chapter showed the structure of the Toolbox and gave an
overview of which components that exist within it. The chapter also showed the

50 Design & Implementation

decisions on how to verify that each developed part did what it was supposed
to do.

The following chapter presents a discussion on the topics raised in relation to
this thesis work, as well as a status on what has been accomplished.

Chapter 6

Discussion

This chapter presents a discussion on the issues dealt with in this thesis. The
chapter will provide the status of the developed program as well as suggesting
improvements to the program, this will be followed by a discussion on different
approached on how to develop security documents. The chapter will also hold
a general discussion on the problems found while writing the thesis and finally
the program developed will be set in relation to the world it must act in.

The work behind this thesis, has resulted in a Toolbox that should be considered
as a good first step towards the development of Protection Profiles. The program
makes it possible to define a Security Problem Definition, the relevant Security
Objectives to the Security Problem Definition. Similarly it enables finding Se-
curity Functional Requirements that suit the Security Objectives. Furthermore
it can load the catalogue of Security Functional Requirements defined by CC
part 2 into the system. When the PP has been created it will export the result
to an XML file that can be plugged into different viewers or transformed into
code for external validation.

However, due to timing constraints, the Toolbox is yet to be extended with
a tool for applying the CC operations to the SFR components. This tool is
required before the Toolbox should be considered a complete prototype.

52 Discussion

6.1 Extending the Toolbox

Usually PPs are developed by more than one person, therefore a multiuser
system should be integrated in the program. Multiuser support could be done
with either CVS or Subversion, but it might be difficult to deal with, since the
output is represented as XML, a solution could be to write a version controller
that handles changes to different parts of the XML document. Otherwise it
could be solved by storing each XML element in the documents as a document
for itself and then keep track of which different parts exist in which PP. Another
option would be to store the different parts of the Protection Profile or Security
Target as mere text and save the XML transformation until they are considered
complete. The latter version might introduce other structural difficulties, these
will not be discussed here.

When PP/ST developers from an organization define new Security Problem
Definition items and Security Objectives these could be stored as name and
definition in a repository accessible by the entire organization. If this is done it
might make it easier to construct future PPs within the same organization.

6.2 Development Integration

This section presents thoughts about the way the Common Criteria are used in
relation to IT product development.

The creation with the Common Criteria themselves resembles a typical waterfall
model since after a PP has been developed, and the development of a ST is
started, it is not possible to change requirements stated within the PP without
redesigning it all over again. The development of the PP can be seen as an
incremental model since it is possible to redefine the Security Problem Definition
after the work on Security Objectives and Security Requirements has started.
Every change in the initial definition cause all dependent parts to be updated.

If the waterfall model was to be applied to the life cycle of an IT product
being developed by using the Common Criteria, the CC part 2 would be the
requirements phase, the specification, design and development phases would be
covered by the CC part 3. The evaluation part of the CC would correspond to
the test phase.

One advantage of the waterfall model in relation to the CC, is ironically an issue
that is often raised as a problem with the waterfall model. Namely that each

6.3 Reflections 53

phase of the development has to be carried out by designated professionals who
only know about the part that they are developing, as well as the parts preceding
it. For the CC this ensures that the strength of the PP is not compromised due
to knowledge of the desire from the implementation department to enforce their
usual development pattern.

One of the problems with the waterfall model is that a locked specification
sometimes forces the developers to come up with methods to work around the
specification [Sommerville, 2001].

6.3 Reflections

The idea of having a common criteria for evaluating IT products is good in
theory, however in practice the Common Criteria cannot hold all security aspects
that applies to IT products. To counter this the CC give openings for adding
Extended Components Definitions (ECD) that follow the exact same structure as
the SFR components from CC part 2. But one may ask if it is feasible for PP/ST
developers to specify ECDs each time they develop a new PP/ST. With the setup
it is possible to reuse previously defined components but the quality of these self-
defined components would require some sort of quality stamp, a conformance
certificate, to ensure that they are indeed concise and that they provide extra
information that does not exist in the SFR components already defined. A way
to accommodate this in the implemented program could be to treat the ECDs as
components pending certification, but to make it easy for the developers using
the developed Toolbox, a module holding all SFR components as well as ECD
components as a united components repository has to be developed. That way
all ECDs would, to the user of the program, be just as available as the SFRs.

Another issue with the Common Criteria is that it is constantly being developed,
this makes it difficult to keep up to date with the newest additions. In earlier
versions it was allowed to use SFRs to specify how it is ensured that SOs on
the IT environment (OE) are dealt with. In the most recent version this is no
longer allowed, this makes it difficult for evaluators to evaluate that the OEs
are solving the specified problem.

6.4 External Relations

PPs are often written with a different structure of the chapters, but all of them
contain the required items, with the output of the implementation as XML it

54 Discussion

is possible to create different viewers that can present the PP and ST precisely
as wanted. This makes it possible for the PP/ST developer to present the doc-
uments in the way they prefer reading it but it also allows the evaluators to
present the PP/ST in an easy to evaluate structure that is identical each time
a new PP/ST must be evaluated. Furthermore it makes it possible to make
different viewers for different parts of the PP/ST. For this thesis a dynamic in-
ternet page was created showing the coverage matrix of the coverage of Security
Objectives over the Security Problem Definition. The matrix was created by
transforming the relevant part of an XML document representing the PP from
the Case Study used in this thesis into a PHP array. Furthermore a stylesheet
transforming the XML output into SML code to be used for performing well-
formedness checks was developed. The output from the transformation can be
seen at Appendix A.7 on page 67. All viewers that would be developed for pre-
senting the various parts of the PP/ST must include means of evaluating that
the part it presents is indeed valid.

6.5 Summary

This chapter presented the developed prototype with functionality for develop-
ing Protection Profiles. Furthermore various extension models of the Toolbox
and the relationship between CC and the IT-development life cycle were dis-
cussed. Finally reflections on the limitations of the Common Criteria were
presented.

Chapter 7

Conclusion

This thesis presents a toolbox providing PP/ST developers with a generalized
document that follows a defined structure. The generalized document is pre-
sented in a well-known format that suits for sharing information between dif-
ferent systems. Additionally different viewers have been developed presenting
key aspects of the document. Finally the theory allowing for transforming out-
put into SML on to which well-formedness functions can be applied, have been
showed.

The essence of the Common Criteria is that it has to reach a wide audience. This
thesis has held this objective high throughout the development. This goal has
been reached through utilizing official document standards and by developing
the Toolbox in compliance with best practice of the industry.

One exciting topic that came up late in the development was how to handle the
Extended Components Definition. For these components to be usable within
any Protection Profile the construction of these must be unified as defined by
the CC. A tool that should be added to this toolbox would be such a tool that
helps the PP/ST developer to construct Extended Components in conformance
to the CC definition.

56 Conclusion

Appendix A

This Appendix presents different examples of source code as well as the snippets
of documents that relate to the development of the program. Furthermore it
also presents an example of the output from the program and transformations
on this.

58 Appendix A

A.1 DTD Snippet

This snippet shows the DTD describing the Security Functional Requirements.
Section 5.3 on page 37 has been made to describe how the DTD has been
interpreted in this thesis.

1
2 <!−−
3 F u n c t i o n a l Pa r ad i gm .
4 −−>
5
6 <!ELEMENT f−c l a s s (fc−in t roduct ion ,
7 fc−in format ive−notes ,
8 f−fami ly+)>
9 <!ATTLIST f−c l a s s name CDATA #REQUIRED

10 id ID #REQUIRED
11 patch IDREF #IMPLIED>
12
13 <!ELEMENT fc−i n t roduc t i on (%parasequence ;)>
14 <!ELEMENT fc−in format ive−notes (%parasequence ;)>
15
16 <!−− F u n c t i o n a l F am i l y −−>
17
18 <!ELEMENT f−fami ly (f f−behaviour ,
19 f f−app l i ca t i on−notes ? ,
20 f f−user−notes ? ,
21 f f−evaluator−notes ? ,
22 f−component+)>
23 <!ATTLIST f−fami ly name CDATA #REQUIRED
24 id ID #REQUIRED
25 patch IDREF #IMPLIED>
26
27 <!ELEMENT f f−behaviour (%parasequence ;)>
28 <!ELEMENT f f−app l i ca t i on−notes (%parasequence ;)>
29 <!ELEMENT f f−user−notes (%parasequence ;)>
30 <!ELEMENT f f−evaluator−notes (%parasequence ;)>
31
32 <!−− F u n c t i o n a l Component −−>
33
34 <!ELEMENT f−component (fco−h i e r a r c h i c a l ? ,
35 fco−dependencies ? ,
36 fco−r a t i o n a l e ? ,
37 fco−user−notes ? ,
38 fco−evaluator−notes ? ,
39 fco−l e v e l l i n g ,
40 fco−management∗ ,
41 fco−audit ∗ ,
42 f−element+)>
43 <!ATTLIST f−component name CDATA #REQUIRED
44 id ID #REQUIRED
45 patch IDREF #IMPLIED>
46
47 <!ELEMENT fco−h i e r a r c h i c a l EMPTY>
48 <!ATTLIST fco−h i e r a r c h i c a l fcomponent IDREF #REQUIRED
49 patch IDREF #IMPLIED>
50
51 <!ELEMENT fco−dependencies (fco−or | fco−dependsoncomponent)∗>
52 <!ATTLIST fco−dependencies patch IDREF #IMPLIED>
53
54 <!ELEMENT fco−or (fco−dependsoncomponent)+>
55 <!ATTLIST fco−or patch IDREF #IMPLIED>
56
57 <!ELEMENT fco−dependsoncomponent EMPTY>
58 <!ATTLIST fco−dependsoncomponent fcomponent IDREF #REQUIRED
59 patch IDREF #IMPLIED>
60
61 <!ELEMENT fco−r a t i o n a l e (%parasequence ;)>
62 <!ELEMENT fco−user−notes (%parasequence ;)>
63 <!ELEMENT fco−evaluator−notes (%parasequence ;)>
64 <!ELEMENT fco−l e v e l l i n g (%parasequence ;)>
65
66 <!ELEMENT fco−management (#PCDATA | x r e f)∗>
67 <!ATTLIST fco−management id ID #IMPLIED

A.1 DTD Snippet 59

68 equal IDREF #IMPLIED
69 patch IDREF #IMPLIED>
70
71 <!ELEMENT fco−audit (#PCDATA | x r e f)∗>
72 <!ATTLIST fco−audit l e v e l (minimal | bas i c | de t a i l e d) #REQUIRED
73 id ID #IMPLIED
74 equal IDREF #IMPLIED
75 patch IDREF #IMPLIED>
76 <!−−
77 F u n c t i o n a l E l emen t
78
79 Te x t w i t h i n a f u n c t i o n a l e l e m e n t d i f f e r s f r om t h e g e n e r a l
80 p a r a g r a p h i n t h a t i t i n c o r p o r a t e s w e l l s t r u c t u r e d t h e a l l o w e d
81 o p e r a t i o n s . We a l s o e x c l u d e t h e x r e f and f o o t n o t e w i t h i n t h e s e
82 p a r a g r a p h s . The L i s t e n t i t y c a n n o t b e u s ed , s i n c e i t h o l d s
83 g e n e r a l t e x t , s o a s i m i l a r F−E l e m e n t L i s t i s d e f i n e d .
84
85 −−>
86
87 <!ELEMENT f−element (#PCDATA| fe− l i s t | fe−assignment | fe−s e l e c t i o n)∗>
88 <!ATTLIST f−element id ID #REQUIRED
89 boldfrom IDREF #IMPLIED
90 patch IDREF #IMPLIED>
91
92 <!ELEMENT fe−assignment (fe−assignmentitem , fe−ass ignmentnotes ?)>
93 <!ATTLIST fe−assignment id ID #IMPLIED
94 patch IDREF #IMPLIED>
95
96 <!ELEMENT fe−assignmentitem (#PCDATA| fe− l i s t | fe−assignment | fe−s e l e c t i o n)∗>
97 <!ATTLIST fe−assignmentitem patch IDREF #IMPLIED>
98
99 <!ELEMENT fe−ass ignmentnotes (%parasequence ;)>

100
101 <!ELEMENT fe−s e l e c t i o n (fe−s e l e c t i o n i t em +, fe−s e l e c t i o nn o t e s ?)>
102 <!ATTLIST fe−s e l e c t i o n id ID #IMPLIED
103 ex c l u s i v e (YES|NO) ”NO”
104 patch IDREF #IMPLIED>
105
106 <!ELEMENT fe−s e l e c t i o n i t em (#PCDATA| fe− l i s t | fe−assignment | fe−s e l e c t i o n)∗>
107 <!ATTLIST fe−s e l e c t i o n i t em patch IDREF #IMPLIED>
108
109 <!ELEMENT fe−s e l e c t i o nn o t e s (%parasequence ;)>
110
111 <!ELEMENT fe− l i s t (fe−item)+>
112 <!ATTLIST fe− l i s t patch IDREF #IMPLIED>
113
114 <!ELEMENT fe−item (#PCDATA| fe− l i s t | fe−assignment | fe−s e l e c t i o n)∗ >
115 <!ATTLIST fe−item id ID #IMPLIED
116 patch IDREF #IMPLIED>

60 Appendix A

A.2 IndexFormatter Snippet

1 pub l i c c l a s s IndexFormatter : AbstractFormatter
2 {
3 List<s t r ing > stopWords ;
4 AbstractLookUp alu ;
5
6 Hashtable index ;
7 Hashtable c l a s sHashtab l e ;
8
9 ove r r i d e pub l i c void i n i t (s t r i n g i n i t S t r i n g , Hashtable c l a s s e s) {

10
11 c la s sHashtab l e = c l a s s e s ;
12
13 stopWords = new List<s t r ing >();
14
15 /∗
16 Code f o r a d d i n g s t o pWo r d s h e r e
17 ∗/
18
19 // I n i t i a l i z e t h e l o o k u p mechan i sm u s e d
20 alu = new WordNetLookUp () ;
21 alu . i n i t (i n i t S t r i n g) ;
22
23 }
24
25 ove r r i d e pub l i c ob j e c t format (s t r i n g po s i t i on)
26 {
27 index = new Hashtable () ;
28
29 fo reach (ob j e c t key in c la s sHashtab l e . Keys)
30 {
31 formatClass (key + ”” , (f c l a s s i n f o) c l a s sHashtab l e [key]) ;
32 }
33 return index ;
34 }
35
36 ove r r i d e i n t e r n a l s t r i n g formatElement (s t r i n g key , s t r i n g unformattedElement)
37 {
38 s t r i n g e lemInfo = ”” ;
39
40 /∗
41 ∗ No t h i n g n e e d e d f r om t h i s l e v e l
42 ∗/
43
44 return e lemInfo + Environment . NewLine ;
45 }
46 ove r r i d e i n t e r n a l s t r i n g formatComponent (s t r i n g key , fcomponentinfo f c o i)
47 {
48 s t r i n g i n t r o = f c o i . f c oL ev e l l i n g ;
49
50 i n t r o = removeSpecialChars (i n t r o) ;
51
52 fo reach (St r ing s1 in i n t r o . Sp l i t (” ” . ToCharArray ()))
53 {
54 addOccurence (s1 , key) ;
55 }
56 return ”” ;
57 }
58
59 ove r r i d e i n t e r n a l s t r i n g formatFamily (s t r i n g key , f f am i l y i n f o f f i)
60 {
61 s t r i n g i n t r o = f f i . f fBehav iour ;
62
63 i n t r o = removeSpecialChars (i n t r o) ;
64
65 fo reach (St r ing s1 in i n t r o . Sp l i t (” ” . ToCharArray ()))
66 {
67 addOccurence (s1 , key) ;
68 }
69
70 fo reach (s t r i n g fckey in f f i . fcomponent . Keys)
71 {
72 formatComponent (fckey , (fcomponentinfo) f f i . fcomponent [f ckey]) ;
73 }
74
75 return ”” ;

A.2 IndexFormatter Snippet 61

76 }
77
78
79 ove r r i d e i n t e r n a l s t r i n g formatClass (s t r i n g classShortName , f c l a s s i n f o f c i)
80 {
81 s t r i n g i n t r o = f c i . f c I n t r oduc t i on ;
82
83 i n t r o = removeSpecialChars (i n t r o) ;
84
85 fo reach (St r ing s1 in i n t r o . Sp l i t (” ” . ToCharArray ()))
86 {
87 addOccurence (s1 , classShortName) ;
88 }
89 fo reach (s t r i n g key in f c i . c f f am i l y . Keys)
90 {
91 formatFamily (key , (f f am i l y i n f o) f c i . c f f am i l y [key]) ;
92 }
93 return ”” ;
94 }
95
96 pr iva t e void addOccurence (s t r i n g key , s t r i n g po s i t i on)
97 {
98 s t r i n g s = key ;
99 s = alu . getShortestForm (s) ;

100
101 i f (! stopWords . Contains (s) && s . Length > 1)
102 {
103 i f (index . ContainsKey (s))
104 {
105 Hashtable ht = ((Hashtable) index [s]) ;
106 try
107 {
108 ht .Add(pos i t i on , 1) ;
109 }
110 catch (Exception)
111 {
112 int i = (Int32) ht [p o s i t i on]+1;
113 ht [p o s i t i on] = i ;
114 }
115 }
116 else
117 {
118 Hashtable ht = new Hashtable () ;
119 ht .Add(pos i t i on , 1) ;
120
121 index .Add(s , ht) ;
122 }
123 }
124 }
125 }

62 Appendix A

A.3 ProfileSchemeContents Snippet

1 [S e r i a l i z a b l e]
2 pub l i c struct f component in foLi s t
3 {
4 pub l i c s t r i n g f c oH i e r a r c h i c a l ;
5 pub l i c s t r i n g fcoDependencies ;
6 pub l i c s t r i n g f c oL ev e l l i n g ;
7 pub l i c s t r i n g fcoManagement ;
8 pub l i c s t r i n g fcoAudit ;
9 pub l i c List<Element> f e l ement ;

10 }
11 [S e r i a l i z a b l e]
12 pub l i c struct Element
13 {
14 pub l i c s t r i n g key ;
15 pub l i c s t r i n g value ;
16 }
17 [S e r i a l i z a b l e]
18 pub l i c struct LinkSPDSO
19 {
20 pub l i c s t r i n g SOname ;
21 pub l i c s t r i n g SPDname ;
22 pub l i c s t r i n g Rat iona le ;
23 }
24 [S e r i a l i z a b l e]
25 pub l i c struct LinkSOSFR
26 {
27 pub l i c s t r i n g componentName ;
28 pub l i c s t r i n g SOname ;
29 pub l i c s t r i n g Rat iona le ;
30 }
31 [S e r i a l i z a b l e]
32 pub l i c struct SFRcomponent
33 {
34 pub l i c s t r i n g ComponentShortName ;
35 pub l i c f component in foLi s t fComponentInfo ;
36 }
37 [S e r i a l i z a b l e]
38 pub l i c struct ConformanceClaims
39 {
40 pub l i c s t r i n g CCconformance ;
41 pub l i c s t r i n g PPclaim ;
42 pub l i c s t r i n g ConformanceRationale ;
43 pub l i c s t r i n g ConformanceStatement ;
44 }
45
46 [S e r i a l i z a b l e]
47 pub l i c struct Secur i tyOb j e c t i v e s
48 {
49 pub l i c List<Element> SOde f in i t i on ;
50 pub l i c List<LinkSPDSO> SORdef init ion ;
51 }
52 [S e r i a l i z a b l e]
53 pub l i c struct Secur ityRequirements
54 {
55 pub l i c List<SFRcomponent> SRde f in i t i on ;
56 pub l i c List<LinkSOSFR> Secur i tyRequirementsRat ionale ;
57 }
58
59 [XmlRootAttribute (” P r o f i l e ” , Namespace=”” , I sNu l l ab l e=f a l s e)]
60 pub l i c c l a s s Prof i leSchemeContents
61 {
62 pub l i c Prof i leSchemeContents () { }
63
64 pr iva t e ConformanceClaims conClaims ;
65 pr i va t e List<Element> spdDef ;
66 pr i va t e Secu r i tyOb j e c t i v e s secuObjec ;
67 pr i va t e Secur ityRequirements secReq ;
68
69 pub l i c ConformanceClaims ConformanceClaims
70 {
71 get { return conClaims ; }
72 s e t { conClaims = value ; }
73 }
74
75 pub l i c List<Element> SPDdef in i t ion

A.4 ProtectionProfileContents Snippet 63

76 {
77 get { return spdDef ; }
78 s e t { spdDef = value ; }
79 }
80
81 pub l i c Secu r i tyOb j e c t i v e s Secu r i tyOb j e c t i v e s
82 {
83 get { return secuObjec ; }
84 s e t { secuObjec = value ; }
85 }
86
87 pub l i c Secur ityRequirements Secur ityRequirements
88 {
89 get { return secReq ; }
90 s e t { secReq = value ; }
91 }
92 }

A.4 ProtectionProfileContents Snippet

1
2 [S e r i a l i z a b l e]
3 pub l i c struct PPintroduct{
4 pr iva t e s t r i n g PPrefer ;
5 p r i va t e s t r i n g TOEover ;
6
7 pub l i c s t r i n g PPreference
8 {
9 get { return PPrefer ; }

10 s e t { PPrefer = value ; }
11 }
12
13 pub l i c s t r i n g TOEoverview
14 {
15 get { return TOEover ; }
16 s e t { TOEover = value ; }
17 }
18 }
19 [XmlRootAttribute (” P r o t e c t i o nP r o f i l e ” , Namespace = ”” , I sNu l l ab l e = f a l s e)]
20 pub l i c c l a s s Pro t e c t i onPro f i l eConten t s : Prof i leSchemeContents
21 {
22 pub l i c Pro t e c t i onPro f i l eContent s () { }
23
24 pr iva t e PPintroduct ppIntro ;
25
26 pub l i c PPintroduct PPintroduction
27 {
28 get { return ppIntro ; }
29 s e t { ppIntro = value ; }
30 }
31 }

64 Appendix A

A.5 XML output of the PP from the Case Study

1 ı̈�¿<?xml version=” 1.0 ” encoding=”utf−8”?>
2 <Pro t e c t i o nP r o f i l e xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s tance ”
3 xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema”>
4 <ConformanceClaims>
5 <CCconformance>Common Cr i t e r i a v . 3 .1 Revis ion 1 Part 2 Conformant
6 </CCconformance>
7 <PPclaim>Does not conform with any other PP</PPclaim>
8 <ConformanceRationale>The PP does not use any extended components
9 </ConformanceRationale>

10 <ConformanceStatement />
11 </ConformanceClaims>
12 <SPDdef in i t ion>
13 <Element>
14 <key>T. UnintendedAccess</key>
15 <value>A user may gain unintended acce s s to the TOE</ value>
16 </Element>
17 <Element>
18 <key>T. Virus</key>
19 <value>A mal i c i ous agent may attempt to int roduce a v i ru s to the TOE</ value>
20 </Element>
21 <Element>
22 <key>A. NoEvil</key>
23 <value>I t i s assumed that the admin i s t ra to r s o f the TOE do not d e l i b e r a t e l y
24 cause any e v i l</ value>
25 </Element>
26 <Element>
27 <key>A. Phys ica l</key>
28 <value>The TOE i s assumed to be placed somewhere that r e qu i r e s i d e n t i f i c a t i o n
29 to enter</ value>
30 </Element>
31 <Element>
32 <key>P. Ant i v i r u sDe f i n i t i on s</key>
33 <value>I t i s d i c ta t ed by the o rgan i za t i on that an t i v i r u s d e f i n i t i o n s must
34 be updated on a r egu l a r ba s i s</ value>
35 </Element>
36 </ SPDdef in i t ion>
37 <Secur i tyOb j e c t i v e s>
38 <SOde f in i t i on>
39 <Element>
40 <key>O. AntivirusUpdate</key>
41 <value>The TOE w i l l update Ant iv i rus d e f i n i t i o n s on a r egu l a r ba s i s
42 </ value>
43 </Element>
44 <Element>
45 <key>O. Virus</key>
46 <value>The TOE w i l l de tec t and take adequate ac t i on s aga in s t v i r u s e s
47 </ value>
48 </Element>
49 <Element>
50 <key>O. TOEaccess</key>
51 <value>The TOE must provide means o f how i t can be i d e n t i f i e d who ac c e s s e s
52 the TOE</ value>
53 </Element>
54 <Element>
55 <key>OE. Phys ica l</key>
56 <value>The IT environment must ensure that nobody can phy s i c a l l y acc e s s
57 the TOE without proper c l ea rance</ value>
58 </Element>
59 <Element>
60 <key>OE. NoEvil</key>
61 <value>The IT environment where the TOE act s s h a l l ensure that the
62 admin i s t ra to r s are non−h o s t i l e</ value>
63 </Element>
64 </ SOde f in i t i on>
65 <SORdef init ion>
66 <LinkSPDSO>
67 <SOname>O. AntivirusUpdate</SOname>
68 <SPDname>P. Ant i v i r u sDe f i n i t i on s</SPDname>
69 <Rationale>The O. AntivirusUpdate ensures that the po l i c y from
70 P. An t i v i r u sDe f i n i t i on s i s hold</Rat ionale>
71 </LinkSPDSO>
72 <LinkSPDSO>
73 <SOname>O. AntivirusUpdate</SOname>
74 <SPDname>T. Virus</SPDname>
75 <Rationale>The O. AntivirusUpdate ensures that the recent Ant iv i rus

A.5 XML output of the PP from the Case Study 65

76 d e f i n i t i o n s i s downloaded and there by making i t p o s s i b l e f o r the TOE to
77 i d e n t i f y new v i r u s e s and act acco rd ing ly</Rat ionale>
78 </LinkSPDSO>
79 <LinkSPDSO>
80 <SOname>O. Virus</SOname>
81 <SPDname>T. Virus</SPDname>
82 <Rationale>The O. Virus enab les the TOE to take adequate ac t i on s whenever
83 a v i ru s i s d i s covered as we l l as scanning f o r v i r u s e s . </Rat ionale>
84 </LinkSPDSO>
85 <LinkSPDSO>
86 <SOname>OE. Phys ica l</SOname>
87 <SPDname>T. UnintendedAccess</SPDname>
88 <Rationale>No phys i ca l unintended acce s s can be granted to the TOE due to
89 the OE. Phys ica l</Rat iona le>
90 </LinkSPDSO>
91 <LinkSPDSO>
92 <SOname>OE. Phys ica l</SOname>
93 <SPDname>A. Phys ica l</SPDname>
94 <Rationale>By OE. Phys ica l i t i s ensured that nobody can acce s s the TOE
95 phy s i c a l l y without proper i d e n t i f i c a t i o n</Rat ionale>
96 </LinkSPDSO>
97 <LinkSPDSO>
98 <SOname>OE. NoEvil</SOname>
99 <SPDname>A. NoEvil</SPDname>

100 <Rationale>The assumption on the admin i s t ra to r s being we l l educated
101 ensures that the assumption A. NoEvil holds</Rat ionale>
102 </LinkSPDSO>
103 <LinkSPDSO>
104 <SOname>O. TOEaccess</SOname>
105 <SPDname>T. UnintendedAccess</SPDname>
106 <Rationale>Nobody can acce s s the TOE without being i d e n t i f i e d</Rat iona le>
107 </LinkSPDSO>
108 </ SORdef init ion>
109 </ Secur i tyOb j e c t i v e s>
110 <Secur ityRequirements>
111 <SRde f in i t i on>
112 <SFRcomponent>
113 <ComponentShortName> f i a u i d . 2</ComponentShortName>
114 <fComponentInfo>
115 <f c oH i e r a r c h i c a l>FIA UID .1</ f c oH i e r a r c h i c a l>
116 <f c oL ev e l l i n g>User i d e n t i f i c a t i o n be fo r e any act ion (FIA UID . 2) , r e qu i r e s
117 that use r s i d e n t i f y themselves be fo r e any other ac t ion w i l l be al lowed
118 by the TSF.</ f c oL ev e l l i n g>
119 <fcoManagement>the management o f the user i d e n t i t i e s .</fcoManagement>
120 <fcoAudit />
121 <f e l ement>
122 <Element>
123 <key> f i a u i d . 2 . 1</key>
124 <value>[s ” The TSF s h a l l r e qu i r e each user to be s u c c e s s f u l l y
125 i d e n t i f i e d be fo r e a l l owing any other TSF−mediated ac t i on s
126 on beha l f o f that user . ”]</ value>
127 </Element>
128 </ fe lement>
129 </ fComponentInfo>
130 </SFRcomponent>
131 </ SRde f in i t i on>
132 <Secur i tyRequirementsRat ionale>
133 <LinkSOSFR>
134 <componentName> f i a u i d . 2</componentName>
135 <SOname>O. TOEaccess</SOname>
136 <Rationale> f i a u i d . 2 ensures that be fo r e a user can use the TOE he
137 must be i d e n t i f i e d</Rat ionale>
138 </LinkSOSFR>
139 </ Secur i tyRequirementsRat iona le>
140 </ Secur ityRequirements>
141 <PPintroduction>
142 <PPreference>PP i l l u s t r a t i n g a s imple Case Study , Apr i l 2 , 2007.</PPreference>
143 <TOEoverview>The TOE con s i s t o f some part s</TOEoverview>
144 </PPintroduction>
145 </ P ro t e c t i o nP r o f i l e>

66 Appendix A

A.6 SPD SO Coverage Matrix online Viewer

Coverage Matrix http://tore.tinaogtore.dk/test/

1 af 1 29-03-2007 17:26

Coverage Matrix

Security Objective
Security Problem
Definition

Rationale

O.AntivirusUpdate P.AntivirusDefinitions
The O.AntivirusUpdate ensures that the policy

from P.AntivirusDefinitions is hold

O.AntivirusUpdate T.Virus

The O.AntivirusUpdate ensures that the recent
Antivirus definitions is downloaded and there
by making it possible for the TOE to identify
new viruses and act accordingly

O.Virus T.Virus
The O.Virus enables the TOE to take adequate
actions whenever a virus is discovered as well

as scanning for viruses.

OE.Physical T.UnintendedAccess
No physical unintended access can be granted
to the TOE due to the OE.Physical

OE.Physical A.Physical
By OE.Physical it is ensured that nobody can
access the TOE physically without proper
identification

OE.NoEvil A.NoEvil
The assumption on the administrators being
well educated ensures that the assumption
A.NoEvil holds

O.TOEaccess T.UnintendedAccess
Nobody can access the TOE without being
identified

SOSPD matrix

O.AntivirusUpdate X X

O.Virus X

OE.Physical X X

OE.NoEvil X

O.TOEaccess X

Figure A.1: Coverage Matrix of SO covering SPD for Case Study

A.7 Transformed SML code 67

A.7 Transformed SML code

1
2 val ppRef = ”PP i l l u s t r a t i n g a s imple Case Study ,
3 Apr i l 2 , 2007. ” : PPreference ;
4 val toeOv = ”The TOE con s i s t o f some part s ” : TOEoverview ;
5 val ppIntro = (ppRef , toeOv) : PPintroduction ;
6 val ccConCl = ”Common Cr i t e r i a v . 3 .1 Revis ion 1 Part 2
7 Conformant ” : CCconformanceClaim ;
8 val ppClaim = ”Does not conform with any other PP” : PPclaim ;
9 val conRati = ”The PP does not use any extended components

10 ” : ConformanceRationale ;
11 val conStat = ”” : ConformanceStatement ;
12 val conClai = (ccConCl , ppClaim , conRati , conStat
13) : ConformanceClaims ;
14 type SPDdef in i t ion = (SPDname , s t r i n g) Polyhash . hash tab l e ;
15 val spddef = Polyhash . mkPolyTable (10 , e r r o r) : SPDdef in i t ion ;
16 val sode f = Polyhash . mkPolyTable (10 , e r r o r) : SOde f in i t i on ;
17 val s o rde f = Polyhash . mkPolyTable (10 , e r r o r) : SORdef init ion ;
18 Polyhash . i n s e r t spddef (T ”T. UnintendedAccess ” , ”A user may
19 gain unintended acce s s to the TOE”) ;
20 Polyhash . i n s e r t spddef (T ”T. Virus ” , ”A mal i c i ous agent may
21 attempt to int roduce a v i ru s to the TOE”) ;
22 Polyhash . i n s e r t spddef (A ”A. NoEvil ” , ” I t i s assumed that
23 the admin i s t ra to r s o f the TOE do not
24 d e l i b e r a t e l y cause any e v i l ”) ;
25 Polyhash . i n s e r t spddef (A ”A. Phys ica l ” , ”The TOE i s assumed
26 to be placed somewhere that r e qu i r e s
27 i d e n t i f i c a t i o n to enter ”) ;
28 Polyhash . i n s e r t spddef (P ”P. An t i v i r u sDe f i n i t i on s ” , ” I t i s
29 d i c ta t ed by the o rgan i za t i on that
30 an t i v i r u s d e f i n i t i o n s must be updated
31 on a r egu l a r ba s i s ”) ;
32 Polyhash . i n s e r t sode f (O ”O. AntivirusUpdate ” , ”The TOE w i l l
33 update Ant iv i rus d e f i n i t i o n s on a
34 r egu l a r ba s i s ”) ;
35 Polyhash . i n s e r t sode f (O ”O. Virus ” , ”The TOE w i l l de tec t and
36 take adequate ac t i on s aga in s t v i r u s e s ”) ;
37 Polyhash . i n s e r t sode f (O ”O. TOEaccess” , ”The TOE must provide
38 means o f how i t can be i d e n t i f i e d who
39 a c c e s s e s the TOE”) ;
40 Polyhash . i n s e r t sode f (OE ”OE. Phys ica l ” , ”The IT environment
41 must ensure that nobody can phy s i c a l l y
42 acce s s the TOE without proper c l ea rance ”) ;
43 Polyhash . i n s e r t sode f (OE ”OE. NoEvil ” , ”The IT environment
44 where the TOE act s s h a l l ensure that
45 the admin i s t ra to r s are non−h o s t i l e ”) ;
46 Polyhash . i n s e r t s o rde f ((P ”P. An t i v i r u sDe f i n i t i on s ” ,
47 O ”O. AntivirusUpdate ”) ,
48 ”The O. AntivirusUpdate ensures that the
49 po l i c y from P. Ant i v i r u sDe f i n i t i on s i s hold ”) ;
50 Polyhash . i n s e r t s o rde f ((T ”T. Virus ” , O ”O. AntivirusUpdate ”)
51 , ”The O. AntivirusUpdate ensures that the
52 recent Ant iv i rus d e f i n i t i o n s i s downloaded
53 and there by making i t p o s s i b l e f o r the TOE
54 to i d e n t i f y new v i r u s e s and act acco rd ing ly ”) ;
55 Polyhash . i n s e r t s o rde f ((T ”T. Virus ” , O ”O. Virus ”) , ”The O. Virus
56 enab le s the TOE to take adequate ac t i on s
57 whenever a v i ru s i s d i s covered as we l l
58 as scanning f o r v i r u s e s . ”) ;
59 Polyhash . i n s e r t s o rde f ((T ”T. UnintendedAccess ” , OE ”OE. Phys ica l ”)
60 , ”No phys i ca l unintended acce s s can be
61 granted to the TOE due to the OE. Phys ica l ”) ;
62 Polyhash . i n s e r t s o rde f ((A ”A. Phys ica l ” , OE ”OE. Phys ica l ”) ,
63 ”By OE. Phys ica l i t i s ensured that nobody
64 can acce s s the TOE phy s i c a l l y without proper
65 i d e n t i f i c a t i o n ”) ;
66 Polyhash . i n s e r t s o rde f ((A ”A. NoEvil ” , OE ”OE. NoEvil ”) , ”The
67 assumption on the admin i s t ra to r s being we l l
68 educated ensures that the assumption
69 A. NoEvil holds ”) ;
70 Polyhash . i n s e r t s o rde f ((T ”T. UnintendedAccess ” , O ”O. TOEaccess”)
71 , ”Nobody can acce s s the TOE without being
72 i d e n t i f i e d ”) ;
73 val secObj = (sodef , s o rd e f) ;
74 val extComp=”” ;
75 val fcompMap = Polyhash . mkPolyTable (10 , e r r o r) : fcomponentMap ;
76 val felementMap = Polyhash . mkPolyTable (10 , e r r o r) : f e l ement ;

68 Appendix A

77 Polyhash . i n s e r t felementMap (Element ” f i a u i d . 2 . 1 ” , [s ” The TSF
78 s h a l l r e qu i r e each user to be s u c c e s s f u l l y
79 i d e n t i f i e d be fo r e a l l owing any other TSF−mediated
80 ac t i on s on beha l f o f that user . ”]) ;
81 Polyhash . i n s e r t fcompMap (Component ” f i a u i d . 2 ” , (”FIA UID .1 ” , ”” ,
82 ”User i d e n t i f i c a t i o n be fo r e any act ion
83 (FIA UID . 2) , r e qu i r e s that use r s i d e n t i f y
84 themselves be fo r e any other ac t ion w i l l be
85 al lowed by the TSF. ” , ” the management o f the
86 user i d e n t i t i e s . ” , ”” , felementMap)) ;
87 val secReqRat = Polyhash . mkPolyTable (10 , e r r o r)
88 : Secur i tyRequirementsRat iona le ;
89 Polyhash . i n s e r t secReqRat ((Component ” f i a u i d . 2 ” , O ”O. TOEaccess”) ,
90 ” f i a u i d . 2 ensures that be fo r e a user can use the TOE he must be
91 i d e n t i f i e d ”) ;
92 val pp = (ppIntro , conClai , spddef , secObj , extComp , secReqRat)
93 : P r o t e c t i o nP r o f i l e ;

A.8 SML functions 69

A.8 SML functions

1 (∗ An a s s u m p t i o n may n e v e r b e c o v e r e d b y a TOE O b j e c t i v e ∗)
2 fun assumptionTest [] = true
3 | assumptionTest ((A ,O) : :) = f a l s e
4 | assumptionTest (: : xs) = t e s t xs
5 ;
6
7 fun eKeyHelper [] = []
8 | eKeyHelper ((x1 , x2) : : xs) = x1 : : eKeyHelper xs ;
9

10 fun eKeyHelperRev [] = []
11 | eKeyHelperRev ((x1 , x2) : : xs) = x2 : : eKeyHelperRev xs ;
12
13 in f ix member
14 fun x member [] = f a l s e
15 | x member (y : : ys) = x=y orelse x member ys ;
16
17 in f ix cover
18 fun xs cover ys = Set . equal (Set . f romList xs , Set . f romList ys) ;
19
20 fun extractKeys def =
21 l e t val xs = Polyhash . l i s t I t em s def in
22 eKeyHelper xs
23 end ;
24
25 fun extractFirstKeyComp def =
26 l e t val xs = Polyhash . l i s t I t em s def in
27 eKeyHelper (eKeyHelper xs)
28 end ;
29
30 fun extractSecondKeyComp def =
31 l e t val xs = Polyhash . l i s t I t em s def in
32 eKeyHelperRev (eKeyHelper xs)
33 end ;
34
35 fun isInDom def n = n member extractKeys def ;
36
37 fun is wellFormedSPD (spd : SPDdef in i t ion) = true ;
38
39 fun is wellFormedSO spd ((sod , sord) : S e cu r i tyOb j e c t i v e s) =
40 extractFirstKeyComp sord cover extractKeys spd andalso
41 extractSecondKeyComp sord cover extractKeys sod andalso
42 assumptionTest (extractKeys sord)
43
44 ;
45 fun is wellFormedSR ((srd , s r r) : Secur ityRequirements) =
46 extractKeys srd cover extractFirstKeyComp s r r
47 ;
48 fun is wellFormedPP ((, spd , so , , s r) : P r o t e c t i o nP r o f i l e) =
49 is wellFormedSPD spd andalso
50 is wellFormedSO spd (so) andalso
51 is wellFormedSR sr
52 ;
53
54 fun is wellFormedPP ((, , spd , so , , s r) : P r o t e c t i o nP r o f i l e) =
55 is wellFormedSPD spd andalso
56 is wellFormedSO spd (so)
57 ;

70

Appendix B

Source Code - CD

The Source Code has been provided on the attached CD-rom.

72

Bibliography

[Cockburn, 2007] Cockburn, A. (2007). Alistair cockburn,
http://alistair.cockburn.us/.

[Criteria, 2006] Criteria, C. (2006). Common criteria for information technology
security evaluation. CCMB 2006-09-001 Version 3.1 Revision 1.

[Hansen and Rischel, 1999] Hansen, M. R. and Rischel, H. (1999). Introduction
to Programming using SML. Addison-Wesley, first edition.

[Microsoft, 2007] Microsoft (2007). Microsoft .net framework 2,
http://msdn2.microsoft.com/en-gb/netframework/default.aspx.

[Pfleeger and Pfleeger, 2003] Pfleeger, C. P. and Pfleeger, S. L. (2003). Security
in Computing. Prentice Hall, third edition.

[Portal, 2007] Portal, C. C. (2007). Common criteria
http://www.commoncriteriaportal.org/.

[REGEX, 2007] REGEX (2007). Regular-expressions.info, http://www.regular-
expressions.info/.

[Sommerville, 2001] Sommerville, I. (2001). Software Engineering. Addison-
Wesley, sixth edition.

[SPARTA, 2007] SPARTA (2007). Common criteria toolbox
http://cctoolbox.sparta.com/.

[WordNet, 2007] WordNet (2007). Wordnet, http://wordnet.princeton.edu/.

	Abstract
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Objective
	1.4 Thesis Overview

	2 Common Criteria
	2.1 Introduction
	2.2 Protection Profile (PP)
	2.3 Security Target (ST)
	2.4 Security Functional Requirements (SFR)
	2.5 Security Assurance Components (SAR)
	2.6 Case Study
	2.7 Summary

	3 Problem Analysis
	3.1 Consistency Checks
	3.2 External Relations
	3.3 Restrictions
	3.4 Summary

	4 Requirements Specification
	4.1 Use Cases Overview
	4.2 Protection Profile
	4.3 Security Target
	4.4 Summary

	5 Design & Implementation
	5.1 Environmental Requirements
	5.2 SFR structure
	5.3 SFR Catalogue
	5.4 Protection Profile
	5.5 Common Criteria Design Toolbox
	5.6 Verification
	5.7 Summary

	6 Discussion
	6.1 Extending the Toolbox
	6.2 Development Integration
	6.3 Reflections
	6.4 External Relations
	6.5 Summary

	7 Conclusion
	A
	A.1 DTD Snippet
	A.2 IndexFormatter Snippet
	A.3 ProfileSchemeContents Snippet
	A.4 ProtectionProfileContents Snippet
	A.5 XML output of the PP from the Case Study
	A.6 SPD SO Coverage Matrix online Viewer
	A.7 Transformed SML code
	A.8 SML functions

	B Source Code - CD

