

Expansion of Sharepoint department
portal with self-developed web part

Per Martin Klougart Mortensen

Kgs. Lyngby 2007
IMM - B. Eng. – 2007 - 10

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

The title of my examination project is: “Expansion of Sharepoint department portal with
self-developed web part”. It is the “second version” of the department portal I developed
during by training period in MAN Diesel A/S.

In my training period I observed that the possibilities to customize table/list controls in
Microsoft Sharepoint are limited. In the current Sharepoint versions no controls which
make the user capable of searching directly in a list exist. One is more or less force to use
the build-in search control which searches on the site itself and therefore not suitable for
exactly this purpose.

With this problem in mind, I analyze in my project the possibilities of developing my
own web part, which satisfy the user’s functional requirement of searching in a list.

In this project I will develop a web part to the department portal, which e.g. will make a
FAQ (Frequently Ask Question) list more practical in Sharepoint.

As a supplement to the development of the web part I will furthermore analyze the
possibility of using regression testing on the web part.

I will use the development process Unified Process and the software development tool
Visual Studio 2005 with programming language C#, plus ASP.NET and Windows
Sharepoint Service to develop the web part.

Keywords: Sharepoint, web part, Regression test

 ii

Resumé

Titlen på mit eksamensprojekt hedder: ”Udvidelse af Sharepoint afdelingsportal med
egen udviklede web part”. Det er ”anden version” af den afdelingsportal, jeg har udviklet
for MAN Diesel A/S i min praktikperiode.

I min praktikperiode observerede jeg at mulighederne i Microsoft Sharepoint for at
tilpasse en tabels/listes kontroller er begrænset. I de nuværende Sharepoint udgaver
findes der f.eks. ikke en kontrol, som gør brugeren i stand til at søge direkte i en liste.
Man er derfor tvunget til at bruge den indbyggede Sharepoint søge kontrol som findes på
selve siden, og den er ikke særlig velegnet til lige præcis dette formål.

På baggrund af denne observation undersøger jeg i mit projekt mulighederne for at
udvikle egne web parts som opfylder brugerens funktionelle krav.

I projektet vil jeg udvikle en web part til afdelingens web portal, som fx gør en FAQ
(Frequently Ask Question) liste mere brugbar i Sharepoint.

Som supplement til udviklingen af en web part undersøger jeg i mit projekt ligeledes
muligheden for at bruge regressionstest til at teste web parten.

Jeg benytter mig af udviklingsprocessen Unified Process og software udviklings
programmet Visual Studio 2005 med programmeringssproget C#, samt ASP.NET og
Windows Sharepoint Service til at udvikle web parten.

Nøgleord: Sharepoint, Web part, Regressionstest

 iv

Preface

This project is my leaving project at IMM DTU before fulfilling the requirements for
acquiring the B.Eng. degree in engineering within the field of Information Technology.
The task of this exam project has been made in cooperation with MAN Diesel A/S.

This project describes the development of a web part for MAN Diesel A/S department
9580’s Sharepoint web portal and the use of regression testing on my web part.

This project consists of a report and a CD with the code for the web part which were
written during the period 15.January-23.Marts 2007.

Lyngby, Marts 2007

Per Martin Klougart Mortensen

 vi

Acknowledgements

Throughout this project I have had the pleasure to discuss my project with many people. I
want to thank all these people and particular the following.

 Peter Falster – my DTU adviser who guided me about the structure and content
of this report, while reminding me of the delivery dates.

 Jens Chemnitz – my company adviser who participated in the early phases of the

project with identifying the requirements of the web part.

 Torkil Pedersen – who guided me in the use of the UP development process, and
for his many fine inputs on how I could improve my web part.

 Lars Nikolajsen – who always were available for questions and packed with

good suggestions, when I needed it, during the implementation.

 Per Klougart Mortensen (Senior) – who read and commented my report and
helped me reformulate and rewrite my sometimes cryptic and bad phrases and
sentence.

 viii

Table of contents

SUMMARY I

RESUMÉ III

PREFACE V

ACKNOWLEDGEMENTS VII

TABLE OF CONTENTS 9

1 INTRODUCTION 13
1.1 Project Description..13
1.2 Project Scope ...14
1.3 Project Delimitation ..15
1.4 Abbreviations...16
1.5 Document Outline ...17

2 PROJECT PLANNING 20
2.1 Development Process...20
2.2 Unified Process ..20
2.3 Project Plan..24
2.4 Summary..24

3 USER REQUIREMENT SPECIFICATION 26
3.1 System Requirements..26
3.2 Use-Case Model ...27
3.3 Supplementary Specification..31
3.4 Iteration Plan...32
3.5 Summary..32

4 TECHNOLOGIES 34
4.1 Sharepoint..34
4.2 Development Tools ..42
4.3 Summary..43

TABLE OF CONTENT 10

5 ANALYSIS 45
5.1 Approaches ..45
5.2 Use Cases..47
5.3 Conceptual-Model ...61
5.4 Summary..62

6 DESIGN 64
6.1 From Analysis to Design ...64
6.2 Patterns ..64
6.3 Interaction Diagram..65
6.4 Class Diagram..67
6.5 Logical Architecture ...68
6.6 Summary..69

7 IMPLEMENTATION 71
7.1 Implementing the Design ..71
7.2 Summary..82

8 TEST 84
8.1 Purpose...84
8.2 VS05.NET TS Test Tools ..84
8.3 Unit Test...85
8.4 Search Performance..87
8.5 Summary..89

9 DEPLOYMENT 91
9.1 Adding the Search Web Part to Sharepoint..91
9.2 Presentation of the Search Web Part...92

10 CONCLUSION 99
10.1 Purpose...99
10.2 Summing up...99
10.3 Evaluation ..100
10.4 Perspective ...101
10.5 Future Improvements ...101

11

11 LITERATURE LIST 103

APPENDIX A 105
Guidance for Use Case Template ...105

APPENDIX B 109
Interaction diagram Use Case 2 ...109
Interaction diagram Use Case 3 ...110
Interaction diagram Use Case 4 ...111
Interaction diagram Use Case 5 ...112
Interaction diagram Use Case 6 ...113

APPENDIX C 114
Test..114

APPENDIX D 115
Contracts ..115

Chapter 11

Introduction

13

1 Introduction

1.1 Project Description
MAN Diesel A/S has for the last couple of months been working on replacing the
corporation’s old intranet with a new and more up-to-date intranet solution. To do this
MAN Diesel A/S has decided to use Microsoft Office Sharepoint Portal Server 2003,
which is a Microsoft product that allows the creation of enterprise web portal solutions.

As with all web portals, it contains a number of web sites, which with the help of
Sharepoint is very easy made. However the main reason MAN Diesel A/S has chosen
Sharepoint to create their new corporation intranet with, is due to the fact that with the
product comes a number of web applications also called web parts. Some of these web
parts allow companies to keep track of documents, projects, tasks etc. Each web part can
be configured to have certain behaviours.

The fact that Sharepoint provides these free web parts saves MAN Diesel A/S a lot of
time and resources that otherwise would have been used on developing their own
solutions.

Although Sharepoint in many ways provide MAN Diesel A/S with a much better
alternative to the old intranet there are situations where some of the web parts aren’t
enough to solve a specific problem. In this situation it can be necessary to customize or
create your own web part to solve the problem.

The purpose of this project is to create a web part which allows users to search directly in
a list, which is one of the many web parts which Sharepoint provide.

A list is a web part, which can show data, i.e. list of projects e.g. which gives an overview
of all ongoing projects in MAN Diesel A/S department 9580. Furthermore a list has a
number of controls, which allow users to add, delete, edit, sort items and subscribe to an
entire list among other.

As seen on figure 1, the project list contains a number of columns. Each columns contain
some data which in this case show the status of a project, the phase the project is-in,
which person who has the primary responsibility, the projects number and a link to the
project web site.

INTRODUCTION 14

Figure 1 – Project list.

Although a list provides all these nice features it has come to our attention that when a list
grows beyond a certain level, when users add items, it becomes increasingly difficult for
a user to keep track of items.

Take a “Frequently Ask Question” list, such a list can contain hundred of items/answers
and if a user has to find a specific item in this list it will take a long time. This is
particular problematic since many of the lists eventually will grow beyond a size that is
manageable for the user. Sharepoint does however provide a way to search on the portal,
but this functionality is not very helpful, since the Sharepoint search often create a lot of
“garbage” results, which you then need to filter from the result you actual can use.

Besides finding a solution to searching in a list, the purpose of this project is to look into
regression testing techniques and use it on my web part. Regression testing is a method to
capture regression bugs which occur during the implementation process.

In my report I have decided to make a section about Sharepoint since I have experienced
that to completely understand the issue concerning lists, it might be necessary to have
worked with Sharepoint before. This is why the report contains section 4.1 Sharepoint to
give a more comprehensive introduction to Sharepoint.

1.2 Project Scope
The end result of this project consist of two elements; the first element, which is primary
for this project, is a web part which can search in a Sharepoint list and give users a more
friendly approach to finding items in the list.

15

Figure 2 – Environment of Search web part.

The second element of this project is to examine regression testing techniques and to use
some of them on my web part.

Although I take some space in the report to describe the Unified Process, it is not
performed as a study itself, I merely write this section in chapter 2 - Project Planning to
explain the reason for choosing this development process.

1.3 Project Delimitation
The main limitation for this project is the given time-frame. This fact will of course have
influence on the final result. Therefore when gathering requirements for the web part I
will determine which are most crucial for the project. With the most important
requirements in mind I will create a functional prototype and gradually describe the other
requirements in greater details and implement these on the prototype. More about this
matter in chapter 2 - Project Planning.

Since regression testing can be quite a big topic of it own and the development of the web
part is primary for this project, MAN Diesel A/S department 9580 and I have decided to
delimit this part of the project. The task will be to look into Visual Studio 2005 Team
Suite’s test environment to see if the test tools provided can be used to uncover regression
bugs.

INTRODUCTION 16

1.4 Abbreviations

MD - MAN Diesel A/S

UP - Unified Process

DEPT 9580 - Department 9580

FAQ - Frequently Ask Question

VS05.NET TS - Visual Studio .NET 2005 Team Suite

UML - Unified Modeling Language

SPS - Sharepoint Portal Server

WSS - Windows Sharepoint Services

CAML - Collaborative Application Markup Language

17

1.5 Document Outline
This project is organized as followed;

Abstract
 Summarize the topic of this project.

1. Introduction

Introduces the reader to the project and explains the background for the user
requirement specification found in chapter 3.

2. Project Planning

Introduces the reader to the development process I use in my project and a
sketched plan for the project.

3. User Requirement Specification

Gives the reader an overview of functional and non-functional requirements for
the project and provides the reader with a risk-list and iteration plan.

4. Technologies

Gives the reader a little introduction to Sharepoint and a description of the
development tool I use.

5. Analysis

Each of the Use Cases is analyzed and possible solutions for creating a web part
are explored. A conceptual model is created which provide reader with a high
level abstract of the system.

6. Design

Use Case goes through realization and a design model is establish by creating
interaction diagrams, a class diagram and a package diagram.

7. Implementation

Software classes are described in detail.

8. Test

Regression test tools in VS05.NET TS are explored and the test types are used on
the web part. A performance test is made on the web part.

9. Deployment

This chapter is used to present the web part and a description of how the web part
is added to the Sharepoint environment is included.

INTRODUCTION 18

10. Conclusion
The project is summarized, future improvements and the perspective of the web
part is analyzed.

11. Literature list
 Contains reference to papers and literature.

Appendix

Contains additional text and information to the project.

CCHHAAPPTTEERR 22

Project Planning

PROJECT PLANNING 20

2 Project Planning
2.1 Development Process
In the earliest days of software development the process of developing a software
solution only contained two steps; Write some code and fix the problems in the code, also
known as - The code-and-fix model. As software solutions became increasingly bigger
and more complicated this model made it clear that planning and preparation tasks in the
early phases were needed. It became increasingly important from the start to define and
describe a project in a well-defined software development process. Today there exist
numerous of software development processes.

For this project I have chosen to build my development process upon the Unified Process
(UP) or Rational Unified Process (RUP), the only distinctive between the two processes
lies in the fact whether you are using Rational software or not. As I do not use Rational
software for this project, I use the expression Unified Process or UP throughout the
report.

2.2 Unified Process
The UP is a well-known iterative and incremental software development process which is
Use Case driven and relies a great deal on the Unified Modeling Language (UML).
However to fully define and understand it, one should think of it as an extensible
framework which contains a number of artifacts that can describe disciplines of a project
[3].

The UP is not a framework which one should followed out-of-the-box, it is more a
framework which users can customize and adapt to their project, a best practices guide
[1, page 18]&[2]. Neither is it my intention to follow all the workflow steps in UP step by
step. At the end of the day this would only generate a lot of material which would add
little of no value to my project.

2.2.1 Iterative and evolutionary development
The basic idea behind iterative and evolutionary development is developing a software
system incrementally. Development is organized into series of small projects called
iterations, where each of these iterations includes its own requirement, analysis, design,
implementation and testing discipline.

The philosophy behind this idea lies in the fact that project evolves and changes during
the development process because of unforeseen events. Consider the user requirements
they often change during a project, due to unforeseen events, to reflect this reality it is

21

necessary with a development process that is flexible. There is no idea in trying to define
all requirements and analyze them before moving on to the next discipline (design) in a
project when it is highly likely that changes to the requirement will occur.

Such an approach where one discipline must be completed before moving on to a new
discipline can cause significant problems later on in the project. Especially the fact that
testing is left late in a project this can cause unexpected bugs or unforeseen risks to
threaten the deadline or the entire project.

Therefore software systems should be incremented in smaller pieces according to
iterative development [1, page 19] where the most important requirements are designed,
implemented and tested first. This will also give the developer early on in the project an
idea of significant risk and whether to continue the project. The possibility of
implementing functionality in later iterations, if it isn’t possible within the given time-
frame, gives a flexibility that the Waterfall Model can’t provide.

 Figure 3 - Iterative development

After each of the iteration a review is made where latest changes to the project is updated.
From the prototype created in the first iteration, a new iteration can begin where some of
the changes to the project or lower risk requirement can be implemented, see figure 4. It
is worth adding that these feedbacks/reviews are what separate evolutionary development
from incremental development [1, page 19].

PROJECT PLANNING 22

Figure 4 - Requirements evolve over iterations [1, page 28]

As with the Waterfall Model, UP contains a number of disciplines. However apart from
this detail, in the UP all disciplines are more or less performed at the same time as seen
on figure 5. Although some disciplines gets more attention in certain phases than others.

Figure 5 - UP disciplines [1, page 36]

It is my ambition to adapt the iterative and evolutionary methods which is implemented
in the UP to my project plan, because as Martin Fowler state [1, page 17]:

“You should use iterative development only on

projects that you want to succeed”

23

2.2.2 Unified Process phases
In an UP project all work and iterations is organized into four phases [1, page 33] & [2].

Inception is the phase where the project scope is established, where potential risk is
estimated and where the most important requirements are captured by critical evaluating
Use Cases. Furthermore an early architecture and estimation of the plan for the entire
project is sketched.

Elaboration is the phase which perhaps is the most important one, where a project goes
from being a low cost risk project to a high cost risk project with the possibility of major
bureaucracy inactivity. In this phase a better understanding of risks is established which
leads to a more stable architecture through the implementation of a prototype that exposes
the top technical risk of the project. Furthermore a more reliable project plan is sketched
which give a better idea of the amount of iterations it takes to complete the project.

Construction is normally the longest phase because it is where the remaining Use Cases
and other requirements are described, implemented and tested in a series of iterations
where each of the iteration brings a new release.

Transition is the last phase before the final production release. This phase mainly goes
with testing, doing minor adjustment and ensuring that software is available to users.

Due to the fact that my project has a short time-frame on 10 weeks the phases will be
rather small, and it is likely that not all requirements will be implemented which means
that the project will only parse through the three first phases – Inception, Elaboration and
Construction.

2.2.3 UML & Use Cases
The Unified Modeling Language is a standard diagramming notation which it used to
visualize a reality that otherwise would be difficult to understand. Models drawn from the
notation of UML help specify and construct a software system.

Use Cases are an UML notation which is ideal for finding functional requirements with.
Furthermore it provides a useful tool for the software developer to help explain users
sometimes complicated areas of a system under development.

PROJECT PLANNING 24

2.3 Project Plan
The dates on the project plan below illustrates when phases of the project should be
finished, however changes can still occur after this date. It’s merely my estimation to
keep the project on right track. The project starts 15 January 2007 and ends 23 March
2007.

During the project I must arrange at least one meeting with my DTU adviser which I
intend to hold around halfway through the project.

Although the objectives of this project are defined before the project start and a project
plan is more or less established I intend to use some of the first week on writing report
about these matters.

Phases Action Date Week
User Requirement
Specification

Requirements are defined and
reviewed.

02. February 2007 3

Analysis & Design An analysis of problems is
created and a system design is
proposed. Analysis and design
are reviewed.

09. February 2007 4

Implementation The system design is
implemented and code is
reviewed

02. March 2007 7

Test Test of the implementation
should be finished.

09. March 2007 8

Deployment System should be deployable
and user guide created.

16. March 2007 9

Report Report must be completed and
ready for delivery.

23. March 2007 10

Meetings Action Date Week
Colloquium Talk to DTU adviser. 12. February 2007 5

2.4 Summary
In this chapter I stated that I will be working with the Unified Process. Furthermore I
used the chapter to explain the principles behind the UP, which is an iterative and
evolutionary process, and I establish a plan for the project.

CCHHAAPPTTEERR 33

User Requirement
Specification

USER REQUIREMENT SPECIFICATION 26

3 User Requirement Specification
3.1 System Requirements
When defining the requirements of a system it is common [1, page 57] to divide them
into two categories; Functional requirements or Non-functional requirements.
Where functional requirements describe the behaviour of a system, i.e. a calculation or
some other task, non-functional requirements describe every other type of requirements.

In the UP requirements are categorized according to the FURPS+ model. However it is
optional which system of requirement-categorization one uses in an UP project. I intend
to use must of the categories in the FURPS+ model.

In the FURPS+, according to [1, page 65] & [4], the ‘F’ category describe the functional
requirements and the remaining “URPS+” categories describe the non-functional
requirements.

 Functional requirements

o Functional
 Non-functional requirement

o Usability
o Reliability
o Performance
o Supportability
o +
o Implementation
o Interface
o Operations
o Packaging
o Legal

I intend to describe the functional requirements with the Use Case Model and the
supplementary requirements in section 3.3 Supplementary specification.

27

3.2 Use-Case Model

3.2.1 Identification of Use Cases
Seven Use Cases has been identified; six in the Search domain and one in the Admin
domain.

The search domain consists of a main Use Case which is extended by five other Use
Cases. ‘Search in List’ is extended by ‘Search Pattern’, ‘Clear display’, ‘Search in
All Columns’, ‘Search in Attached File’ and ‘Select Columns to Search in’, because
these Use Cases depend on what happens in the ‘Search in List’ Use Case.

 Search in List
o Make user capable of searching in a list – one column per. search.

 Search Pattern
o Allow user to type more inputs in the search field.

 Clear
o Clears the filter after a search and exposes all items again.

 Search in Attached File
o Allows user to search in a file which is attached to an item.

 Search in All Columns
o Allow user to search in all columns.

 Select Columns to Search in
o Allow user to search in an undefined numbers of columns.

The admin domain consists of one Use Case – ‘Setup Search’.

 Setup Search
o Admin setup the search web part so it works on a Sharepoint list.

Use Cases are analyzed in greater detail in chapter 5 – Analysis.

3.2.2 Identification of actors
I have identified two actors in the system. The first actor is the MD employee who needs
to be able to search, to find an item in a list, in a more friendly approach and the MD
Admin who setup and configures the web part.

USER REQUIREMENT SPECIFICATION 28

3.2.3 Use case diagram

MAN Diesel employee

Search in List

Clear

Search Pattern

Search in Attached
File

MAN Diesel Admin

Search in All
Comlumns

Select Columns to
Search in

Search

Setup Search

Admin

29

3.2.4 Use Case ranking
To get an idea of which Use Cases to implement first I rank the requirements. I have
rated the requirements after the following ratings:

1. Key requirement.
2. General requirement.
3. Nice-to-have requirement.

Use Case

ID
Requirement Rank Risk Comments

UC1 Search in List 1 High This Use Case is the most
important one since it is the
basic core of the system and will
exposes potential high risk.

UC2 Search Pattern 1 High This Use Case is important
because it will enable searching
with multiple inputs. The risk
involved implementing this
feature I consider to be high
because it is related with some
uncertainties that can have major
affect on the solution.

UC3 Search in
Attached File

2 High This Use Case enables the user
to search in attached files and is
considered to be an advanced
feature. The risk implementing
this feature is considered high
because of similar uncertainties,
as the ‘Search Pattern’ Use Case.

UC4 Clear 3 Low This Use Case is a nice-to-have
feature which will clear the filter
after a search automatically. This
Use Case shouldn’t possess any
risk and therefore low.

UC5 Setup Search 1 Medium This Use Case is important
because it is close related to
‘Search in List’’; admin needs
to setup the web part before the
employees can use it. Risk is
considered moderate and
shouldn’t cause big problems.

USER REQUIREMENT SPECIFICATION 30

Use Case

ID
Requirement Rank Risk Comments

UC6 Search in All
Columns

2 Medium This Use Case is considered
to be a general requirement,
which is an advanced feature
on the search that will allow
searching in all columns. The
risk involved implementing
this feature is considered
medium.

UC7 Select Columns
to Search in

3 Medium This Use Case is a nice to
have feature which allow
admin to select particular
columns. This risk is
considered moderate, since
implementing ‘Search in All
Columns’ should have
exposed the most critical risk
in this context.

31

3.3 Supplementary Specification

3.3.1 Usability
The term Usability implies how easy the tool is to use. When looking at the idea behind
developing a Search web part it was to make the process of finding an item in a list more
user-friendly. The answer for this problem was provided by the implementation of the
search web part. However the web part itself must be easy to use, the user should without
much knowledge intuitive master the web part.

3.3.2 Reliability
The term Reliability implies how stable a system is. The web part must work no matter
what Sharepoint list it is chosen to search in and the search results must be accurate.

3.3.3 Performance
The term Performance implies how well a system performs. User shouldn’t wait to long
for a response from the web part.

3.3.4 Supportability
The term Supportability implies how easy it is too modify or maintain the typical usage
or change scenarios of the web part. The web part must be able to work on other
Sharepoint list without the need for additional programming.

3.3.5 Implementation
The term Implementation in this context implies to everything that surround the coding.
The web part will be developed with Visual Studio 2005 .NET Team Suite and in C#.
The platform for the development of web parts is the Windows Sharepoint Services and
coding and comments must be in English. More about Windows Sharepoint Services in
section 4.1 Sharepoint.

3.3.6 Interface
The term Interface in this context implies to which external item a system must interact
with. Considering that a Sharepoint list can have attached file to it, these can be
considered external items that the Search web part must be able to interact with.

3.3.7 Design
The term Design in this context implies which constrains there is in designing a system.
Which in the context of the web part, means that the look and feel of the web part should
fit into the environment of the Sharepoint site? Buttons and colours shouldn’t be entirely
opposite of the theme of the Sharepoint sites.

USER REQUIREMENT SPECIFICATION 32

3.4 Iteration Plan
The iteration plan only tries to describe a single iteration in advance. The first iteration
starts after the Inception phase. As the project evolves from iteration to iteration new
iterations will be added in the iteration plan. During the project changes to the plan might
occur because of new insight, some requirement may change rank. The iteration plan
should be seen as the iterations it has taken to implement features of the search web part.

Iteration Iteration goal Date

1 Create the prototype of the search web
part. It involves implementing UC1,
UC2 & UC5.

29. January 2007 –
9. February 2007

2 Implement some of the advanced
features. UC3 & UC6

12. February 2007 –
27. February 2007

3 Implement the nice-to-have features.
UC4

2. March 2007 –
4. March 2007

3.5 Summary
In this chapter I established the requirements for the search web part. Each of the
requirements were rank according to risk involved implementing them and how important
they are for the project.

CCHHAAPPTTEERR 44

Technologies

TECHNOLOGIES 34

4 Technologies
4.1 Sharepoint

4.1.1 What is Sharepoint?
It is a term that can refer to three Microsoft products: Sharepoint 2001, Sharepoint 2003
and Sharepoint 2007. The product that I have been working with is Sharepoint 2003. I
therefore intend to explain what Sharepoint is from the perspective of the Sharepoint
2003 release.

Sharepoint 2003 or Microsoft Office Sharepoint Portal Server 2003 is a portal based
collaboration and document management system that is based on the Windows
Sharepoint Services (version 2) platform, which is a free Windows server component.

Figure 6 – The Sharepoint 2003 environment

35

Basically what Sharepoint does is that it provides a tool for companies to easy and
quickly establish their own web portal, on the World Wide Web, which can provide all
kind of services for its visitors.

Sharepoint 2003 consists of two components: Sharepoint Portal Server 2003 (SPS) and
Windows Sharepoint Services v2 (WSS). Both components provide a collection of
services for Microsoft Windows Server 2003.

It is not my intention to explain all the services in WSS and SPS but just to give a short
introduction to some of the most important ones. More can be found on the following
web sites.
WSS - http://www.microsoft.com/technet/windowsserver/sharepoint/v2/default.mspx.
SPS - http://www.microsoft.com/office/sharepoint/prodinfo/default.mspx.

4.1.2 Windows Sharepoint Services v2
One of the services that WSS provides is the possibility of creating web part pages.

Web part page & web part
A web part page is an average web site which contains small independent web
applications.

With WSS come a number of ready-to-use web parts such as a list, document library,
discussion board, calendar and survey.

Sharepoint allow the users to very quickly create a web site by simply dragging and
dropping web parts onto the web site without the user having any programming
experience what so ever. In this way is it possible for the user to create an advanced web
site. A web part might be a calendar which show a users appointment, another might be a
graph showing sale figures, a third could be a web part showing a list of news, it could
even be a web part showing today’s weather.

The best way to understand how web parts works, if not familiar with this phenomenon,
is taken a visit to www.google.dk. Google has something called a Personal site where it is
possible to add a lot of web part to your own personal site. The following URL would
normally show the personal site http://www.google.dk/ig?hl=da.

TECHNOLOGIES 36

Figure 7 – Google and web parts

Every web part in Sharepoint has a tool pane with some tool parts which in design mode
allow the user to modify the appearance of the web part. Height and width of the web part
among other can be changed without the user having to be a programmer.

Figure 8 – In design mode, the tool pane in the right side of the screen.

37

Figure 9 – Tool pane of news list/web-part

List
A list is a web part which basically is used to show some data. In Sharepoint a number of
pre-defined list have been made.

 Link
 Announcement
 Contact
 Event
 Task
 Issue

Figure 10 - Task List

On figure 10 is a task list which not shockingly can be used to keep track of tasks. The
task list contain a number of columns where it is possible to see what priority the task
has, what status it has, which date the task is due to, how much of it is completed and so
on.

Besides the basic features of adding, deleting and editing an item, a list can also have
multiple views. Figure 11 shows the page where all the views for a specific list can be

TECHNOLOGIES 38

found. A view can be changed so that it sorts the list in a special way or filter the list so
only some items appear in the list. It is practical with all these views because you can
have a view where only your tasks appears, another view which show all items and a
third view which only show high priority tasks.

Figure 11 – Page which show all the task list views

When you want to create a new view in the task list you go to the page which shows all
the task views and press on the link ‘Modify settings and columns’ which can be found
under ‘actions’ – see figure 11. This will provide the user with a site where views,
columns, list permissions and many other things can be customized.

39

Figure 12 – Customization site for columns and views

In the Views section two views appear (figure 12): All Items and Front Page view. It is
possible to create a new view on this site.
By pressing on one of the created views I will get a new site where the selected view can
be modified. All views is made up of a SPview class which among other control how the
view sort, filter, group and which columns appear on the list view.

TECHNOLOGIES 40

Figure 13 – Modified a specific view

4.1.3 Sharepoint Portal Server 2003
SPS is built on top of the WSS which means that all features in WSS are available in the
SPS. However SPS provides some additional features which can not be found in WSS.

The main purpose of the SPS is to create the portal and to connect the web part pages
which are created with the WSS.

Some of the features that SPS provide are the possibility of having personal sites,
searching functionalities that allow to search on sites that resides outside the site from
which the search was invoked and a Single Sign On service which allow web parts to
automatically sign on to its enterprise application without prompting the user for
password.

41

4.1.4 Collaborative Application Markup Language
Collaborative Application Markup Language (CAML) is a XML based language which is
used by Sharepoint to define all aspect of a Sharepoint site from link structure to
available web parts. [6]

It is the CAML language which is used to present data in Sharepoint, through the use of
query-strings against Sharepoint list data, so that items in the list can be found and
displayed dynamically based on a variety of criteria’s.

A CAML query could look this way;

<Where>

<Or>
<Contain>

<FieldRef Name=”Title” />
<Value Type “test” />

</Contain>
<Contain>

<FieldRef Name=”Title” />
<Value Type “test2” />

</Contain>
</Or>

</Where>

Such a query-string would filter the list so that the items in the column ‘Title’ with name
‘test’ and ‘test2’ would be displayed.

More about CAML and CAML queries can be found on the following sites.
http://en.wikipedia.org/wiki/Collaborative_Application_Markup_Language
http://msdn2.microsoft.com/en-us/library/ms467521.aspx

TECHNOLOGIES 42

4.2 Development Tools
For this project I intend to use the development tool called Microsoft Visual Studio 2005
.NET Team Suite (VS05.NET TS) which is an environment for creating windows and
web-applications that is executed on the Microsoft .NET Framework 2.0.
VS05.NET TS environment allow the user to code in programming language like C#,
C++, Visual Basic or J#.
For this project I use C# since it is the preferred language in MD DEPT 9580.

When I use VS05.NET TS it is because it provides an easy way to create a HTML user
interface and because it has a good test environment.
Instead of spending a lot of my time on creating the user interface, VS05.NET TS
environment allow me to very easy drag the needed controls on to my web part and spend
more time on other issues concerning the search web part.

Figure 14 – Creating user interface

The test environment in VS05.NET TS has integrated a number of test types such as unit,
load, web and manual test.

Figure 15 – Test types

43

4.3 Summary
I used this chapter to give a short introduction to Sharepoint since the issue I deal with in
my project can be complicated to understand if the reader has no experience with
Sharepoint. A short introduction to the development tool I intend to use in my project can
be found.

CCHHAAPPTTEERR 55

Analysis

45

5 Analysis
5.1 Approaches
I see three possible approaches for creating the search web part. Each of these approaches
has its strengths and weaknesses. However I will describe each of them to find the right
approach for this project.

I have chosen to define the three approaches in the following three categories;

 Data grid
 Connection
 View

5.1.1 Data grid
This approach was the first I heard of since it was used in an earlier project in DEPT
9580. The idea behind the data grid approach is to retrieve the data from the Sharepoint
list and create your own data grid where the data can be manipulated without having to be
concerned about how Sharepoint works.
As I mention in the chapter 4 – Technologies, all aspect of a Sharepoint site is made up of
CAML. CAML is a language based on XML elements. So all I need is to get the XML
for the list, I want to search in, and sort or filter this data and then show it in my own data
grid.

The main advantages behind this approach lies in the fact that you are not affected by the
limits of the Sharepoint architecture. You can create your own data grid which you can
do what ever you want with.

The biggest drawback is that it is time-consuming to make a data grid which can do half
of what the existing Sharepoint list can do.

5.1.2 Connection
This approach evolves using a technique in Sharepoint where you can connect web-
parts/lists with other web-parts/lists. The idea behind the connection approach is to create
a search web part which uses a connection interface that is capable of connecting to the
Sharepoint list. There are four connection types;

 ICell - Provider provides a single value to Consumer
 IRow - Provider provides a single or multiple rows of values to the

Consumer.
 IList - Provider provides an entire list to the Consumer.

ANALYSIS 46

 IFilter Provider provides a filter value to the Consumer.

The search web part will act as a provider web part which provides information to the
Sharepoint list which is an ‘IRow’ consumer.

The main advantages are that the original Sharepoint list to present data is used and all of
the features that comes with it.

The biggest drawback is that there exist different connections types and that these
connection types can not be changed on the consumer Sharepoint list. This will affect
how advanced the search web part can become.

5.1.3 View
This approach evolves using the Sharepoint list views. During the creation of a view it is
possible to filter, sort and group items in a list. What happens is that when users make
changes to the view a query-string is generated that sets the values of the views (SPview)
query property [5]. The SPView class represents a view of the data contained in a list on
a Sharepoint site.
It is possible to programmatically write to this query property and perform the same
actions as when user creates CAML queries through the dialog interaction.

The main advantage of the view approach is that it is possible to work with the original
Sharepoint list and use all its features.

The biggest drawback is that the search web part will only work on the page which
displays all the views since the view’s query is access from this site.

5.1.4 Choosing the right approach
The data grid approach would have worked fine and been a good solution. However it
was very early on in the project decided that a potential solution should use the existing
Sharepoint lists. The time used on creating a data grid, which would give the same
features as a Sharepoint list, would only have taken away time from what was consider
the scope of this project.

An approach with connecting web parts with web parts I decided to abandon after a
couple of weeks, this solution turn out to be complicated and full of problems due to way
Sharepoint works. A potential solution would have been too small, and not very user-
friendly, since it would only have been possible to search in one column.

The approach I have decided to go a head with is the view approach. It will allow me to
create a search web part that allow user to dynamically edit the SPView.Query property.

47

The solution will be using the original Sharepoint lists to display results after a search and
fulfil the users requirement of a solution with allow the user to search in all columns and
in attached files.

5.2 Use Cases
In chapter 3 – User Requirement Specification I establish a number of Use Cases. To
analyze these Use Cases I follow the template which DEPT 9580 has developed for
making Use Cases. The guidance for the template can be found in Appendix A.

5.2.1 UC1 - Search in List

Use
 Case ID:

Domain

UC1 - Search in List
Search

Created By: PMM Last Updated
By:

PMM

Date Created: 23. January 2007 Date Last Updated: 06. February 2007

Actors: MAN Diesel employee
Description: This Use Case represents the basic core of the Search web part.

The web part should be able to search in a custom made list (FAQ
list etc.). The search web part should only work on one list and the
core search itself is in one column.
An important detail is that search results should be displayed in the
Sharepoint list since this is preferred by user.

Trigger: User needs to find a specific item in the list.
Pre-conditions: Web Part is visible

Post-conditions:
Normal Flow: 1. User enter search input in the search text box

2. User selects a column to search in.
3. User hits the search button
4. System generates a query-string
5. System update Sharepoint view query.
6. The Sharepoint list is filtered, and user gets search

results.
Alternative Flows:

Exceptions:
Includes:
Priority: High

Frequency of Use: Daily
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part must be attached to a Sharepoint list.

Notes and Issues:

ANALYSIS 48

Figure 16 – How I imagine the interface of the simple search

MAN Diesel employee System

selectColumn(selectedColumnIndex)

enterUserInput(userInputString)

submit search()

Sharepoint

queryString:=generateQueryString()

updateViewQuery(queryString)

search results

Figure 17 – System sequence diagram of Use Case 1

The system sequence diagram show input and output events related to the system.

49

5.2.2 UC2 - Search Pattern

Use
 Case ID:

Domain

UC2 - Search Pattern
Search

Created By: PMM Last Updated
By:

PMM

Date Created: 26. January 2007 Date Last Updated: 06. February 2007

Actors: MAN Diesel employee
Description: When entering data in the search textbox it shouldn’t be necessary

to fill-in the hold word to get a match. Selecting a search condition
in a drop-down list should allow the user to retrieve search results
that contain parts of the word or start with it.
Furthermore it should be possible to enter more than one search
input in the search textbox. By separating the words with the ‘+’
sign more inputs can be added to search text box.

Trigger: User needs to have more than one search input or be able to search
on parts of the word

Pre-conditions: Web Part is visible
Post-conditions:

Normal Flow: 1. User enter multiple search inputs by using the ‘+’ sign.
2. User selects a column.
3. User selects a search condition, deciding which user

input should be retrieve.
4. User hits the search button.
5. System split the user input string, so it can be used to

generate a valid query-string.
6. System generates a query-string
7. System update Sharepoint view query.
8. The Sharepoint list is filtered, and user gets search

results.
Alternative Flows:

Exceptions:
Includes:
Priority: High

Frequency of Use: Daily
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part must be attached to a Sharepoint list.

Notes and Issues:

ANALYSIS 50

Figure 18 – How I imagine the interface when search pattern is added

MAN Diesel employee System

selectColumn(selectedColumnIndex)

enterUserInput(userInputString)

submit search()

Sharepoint

queryString:=generateQueryString()

updateViewQuery(queryString)

search results

selectSearchConditions(selectedSearchCondtionIndex)

tokenizeInputString(userInputString)

Figure 19 – System sequence diagram of Use Case 2

51

5.2.3 UC3 - Search in Attached File

Use
 Case ID:

Domain

UC3 – Search in Attached File
Search

Created By: PMM Last Updated
By:

PMM

Date Created: 10. February 2007 Date Last Updated: 18. February 2007

Actors: MAN Diesel employee
Description: A Sharepoint list can have attached files. It should be possible to

search in these files.
Trigger: User need to search in files.

Pre-conditions: Web Part is visible
Post-conditions:

Normal Flow: 1. User enter search input in the search text box
2. User checks the small box below the search box, to

search in the attached files.
3. User hits the search button.
4. System split the user input string so it can be used to

generate a valid query-string, however only if user-
input contained multiple search inputs.

5. System generates a query-string
6. System update Sharepoint view query.
7. The Sharepoint list is filtered, and user gets search

results.
Alternative Flows:

Exceptions:
Includes:
Priority: Medium

Frequency of Use: Daily
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part must be attached to a Sharepoint list.

Notes and Issues:

ANALYSIS 52

Figure 20 – How I imagine the interface when search in attached files is added.

MAN Diesel employee System

enterUserInput(userInputString)

submit search()

Sharepoint

queryString:=generateQueryString()

updateViewQuery(queryString)

search results

selectSearchInAttachedFiles()

tokenizeInputString(userInputString)

Figure 21 – System sequence diagram of Use Case 3

53

5.2.4 UC4 - Clear

Use
 Case ID:

Domain

UC4 – Clear
Search

Created By: PMM Last Updated
By:

PMM

Date Created: 24. February 2007 Date Last Updated: 28. February 2007

Actors: MAN Diesel employee
Description: When searching in the Sharepoint list what really happens is that a

filter is created, therefore a button that clears the filter on the view
and allows user to se all items in the list again is needed.

Trigger: To perform a new search user must clear the lists filter
Pre-conditions: Web Part is visible

Post-conditions:
Normal Flow: 1. User hits the clear button

2. System generates a query-string that is empty which
clears the filter on the Sharepoint view.

3. System update view query.
4. The Sharepoint list filter is cleared, and all items in the

list are visible.
Alternative Flows:

Exceptions:
Includes:
Priority: Low

Frequency of Use: Daily
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part must be attached to a Sharepoint list.

Notes and Issues:

ANALYSIS 54

Figure 22 – How I imagine the interface when search the clear button is added

MAN Diesel employee System Sharepoint

queryString:=generateQueryString()

updateViewQuery(queryString)

search results

clear()

Figure 23 – System sequence diagram of Use Case 4

55

5.2.5 UC5 – Setup Search

Use
 Case ID:

Domain

UC5 – Setup Search
Admin

Created By: PMM Last Updated
By:

PMM

Date Created: 26. January 2007 Date Last Updated: 06/02/2007

Actors: MAN Diesel Admin
Description: To setup the search web part admin must give the name of the list to

the web part, which admin will be searching in. Furthermore a view
must be created called “Search” in the Sharepoint list and the
appropriate user rights to filter a list must be given to the employee.

Trigger: User needs to search in some custom made list
Pre-conditions:

Post-conditions:
Normal Flow: 1. User enters the name of the list in the tool pane.

2. User saves data in the tool pane.
3. System retrieves lists from Sharepoint view site.
4. System validates the list name.
5. Entered list name exist. System fills the drop-down list.

Alternative Flows: 5a. Entered list name doesn’t exist. Message printed to user.
Exceptions:

Includes:
Priority: High

Frequency of Use: Rare
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part is added to the Virtual Server Gallery in

Sharepoint.
Notes and Issues:

ANALYSIS 56

In Sharepoint a tool pane will emerge if you
choose “Modified Shared Web Part”, in this tool
pane a textbox should be added so Admin can
select which list the search should be working
on.

Figure 25 – Search view

The FAQ list must have a view called ‘Search’,
since the web part will work on this view on the
FAQ.

Figure 24 – Text box added to tool pane

System SharepointMAN Diesel Admin

enterList(listName)

lists:=retrieveLists()

validateListName(listName)

saveListName()

status

Figure 26 – System sequence diagram of Use Case 5

57

5.2.6 UC6 – Search in All Columns

Use
 Case ID:

Domain

UC6 – Search in All Columns
Search

Created By: PMM Last Updated
By:

PMM

Date Created: 9. February 2007 Date Last Updated: 17. February 2007

Actors: MAN Diesel employee
Description: Instead of searching in one column at the time, to limit the result

which is brought back from a search, user should be able to search
in all columns and get all the matches in the Sharepoint list.

Trigger: User needs to search in all columns
Pre-conditions: Web Part is visible

Post-conditions:
Normal Flow: 1. User enter a search input in the search textbox

2. User selects the ‘All Column’ index from the drop-
down list.

3. User selects a search condition deciding which user
input should be retrieve.

4. User hits the search button.
5. System split the user-input string, so it can be used to

generate a valid query-string, if user-input contain
multiple search inputs.

6. System generates a query-string
7. System update Sharepoint view query.
8. The Sharepoint list is filtered, and user gets search

results.
Alternative Flows:

Exceptions:
Includes:
Priority: Medium

Frequency of Use: Daily
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part must be attached to a Sharepoint list.

Notes and Issues:

ANALYSIS 58

Figure 27 – How I imagine the interface when user needs to search in all columns

Figure 28 – System sequence diagram of Use Case 6

59

5.2.7 UC7 – Select Columns to Search in

Use
 Case ID:

Domain

UC7 – Select Columns to Search in
Search

Created By: PMM Last Updated
By:

PMM

Date Created: 22. February 2007 Date Last Updated: 27. February 2007

Actors: MAN Diesel employee
Description: User can select more than one column to search in without having

to select the ‘All Columns’ in the drop-down list.
Trigger: User needs to search in more than one column, and not all of them.

Pre-conditions: Web Part is visible
Post-conditions:

Normal Flow: 1. User enter search input in the search text box
2. User selects the columns by checking the box in drop-

down list.
3. User selects a search condition, deciding which user

input should be retrieved.
4. User hits the search button
5. System split the user input string, so it can be used to

generate a valid query-string, if user-input contain
multiple search criteria.

6. System generates a query-string
7. System update Sharepoint view query.
8. The Sharepoint list is filtered, and user gets search

results.
Alternative Flows:

Exceptions:
Includes:
Priority: Low

Frequency of Use: Rare
Business Rules:

Special Requirements: See section 3.3 Supplementary specification
Assumptions: Search web part must be attached to a Sharepoint list.

Notes and Issues:

ANALYSIS 60

Figure 29 – How I imagine the interface when user needs to search in some columns

MAN Diesel employee System

selectTheseColumns()

enterUserInput(userInputString)

submit search()

Sharepoint

queryString:=generateQueryString()

updateViewQuery(queryString)

search results

selectSearchConditions(selectedSearchCondtionIndex)

tokenizeInputString(userInputString)

Figure 30 – System sequence diagram of Use Case 7

61

5.3 Conceptual-Model

5.3.1 Identification of conceptual classes and attributes
To get a better understanding of the system I have identified a number of conceptual
classes and attributes by going through my Use Cases and perform linguistic analysis,
which is identifying the nouns and noun phrases and consider them as candidate for
conceptual classes and attributes. It has provided me with the following conceptual
classes and attributes;

Figure 31 – Conceptual classes with attributes.

5.3.2 Association
To aid the understanding of the conceptual model or domain I establish associations
between the conceptual classes. The associations are establish between the conceptual
classes which have some relationship, e.g. the Search class can tell the Query class to
generate a query-string and the web part access the Sharepoint-view. See figure 32.

ANALYSIS 62

5.3.3 Conceptual model diagram
From the identification of the conceptual classes, their attributes and how they are
connected a domain model is created, which show a high level abstraction of the system.

Sharepoint-viewWeb Part

-User-input
Search

-Query-string
Query

1

*

Perform

1

1

1 1

Generate

Access

Figure 32 – Domain model

It is important to state that the conceptual classes is not software classes I merely perform
this task to get a better understanding of the system I am trying to develop. However the
conceptual classes can be of great help when I later begin to implement the system and
the attributes can help give me an idea of what information these conceptual classes hold.

5.4 Summary
The purpose of this chapter was to look into possible approaches and try finding the right
approach for creating the search web part.
Each of the Use Case found in the ‘User Requirement Specification’ phase was analyzed
in detail and a conceptual model which describes the system at a high level abstraction
was established.

CCHHAAPPTTEERR 66

Design

DESIGN 64

6 Design
6.1 From Analysis to Design
Where I in the latter sections tried to understand the problem of this project and tried to
find the right approach the design phase sets out to understand the approach that I decided
to go a head with.
The process from a high level abstraction with conceptual classes to real software classes
goes through what is called a Use Case realization. Use Case realization is created with
help from sequence/interaction and class diagrams. The interaction diagrams show the
flow in the software and the class diagram is used to show the content of a class and its
connection to other classes.

By looking at the conceptual model diagram created in chapter 5 – Analysis I identified
possible software classes. This however does not mean that all conceptual classes
necessarily become software classes in the software program, and it doesn’t mean that
there can’t be more software classes than there are conceptual classes. Which of the
conceptual classes that becomes software classes is really first established during coding.

6.2 Patterns
For this project I have intentionally not used many patterns since it would only make the
project more complicated and many of the patterns would simply be pointless to use.

6.2.1 Singleton
The singleton pattern is used in situations where only one instance of a class is needed.
All object that need an instance of this class will use the same instance. To create a
singleton pattern the class must keep an instance of itself as a private static member.
Furthermore you need to add a constructor which is private, and the last step is to make a
property which returns the instance. The following code show how it is implemented.

class Singleton
{
 private static Singleton instance = new Singleton();

 private Singleton() { }

 public static Singleton Instance

{
 get { return instance; }
}

}

65

6.3 Interaction Diagram
Earlier in the report I made some system sequence diagrams to show the interaction
between user and system. Where system sequence diagrams showed the communication
on a high level abstract the Interaction diagrams shows the interaction between software
classes.

 Figure 33 – Interaction diagram for Use Case 1

Figure 33 shows the flow in the software classes when the user hits the button. On the
figure user has selected to search in one column before hitting the button. This
information is passed to the function ‘performThisSearch()’, which takes a integer as
parameter which tell the Query class which query-string is must create.

Now the SearchUserControl class uses one of the Search classes method
‘performSearch()’ to perform a search. What happens is that the ‘SearchUserControl’

DESIGN 66

class passes all the data, from the different drop-down list, search textbox and
information about which search type is requested, to the ‘Search’ class.

In the other Use Cases the Search class will now split the user-input string so it is
readable. Since Use Case 1 is not the advanced search web part, which will take multiple
user inputs, the tokenize method aren’t seen used on this interaction diagram.

Now the Search class creates the query-string ‘createQueryString()’ by passing all the
value received from the ‘SearchUserControl’ and the ‘tokenized’ user-input to the Query
class.

The Query class generates a query-string which is returned to the ‘SearchUserControl’
class. To see how the query-string is generated look on the CD where I have placed the
code.

With the used of delegates the generated query-string is send to the web part. The reason
I need the delegates is because the ‘SearchUserControl’ is a precompiled component
which doesn’t know about the existent of the web part.

The ‘SearchWebPart’ class will through the SharepointAccess class access the SPview
class on the Sharepoint site. The SharepointAccess class takes care of all communication
with Sharepoint. When the SharepointAccess class have received the generated query-
string the web part first checks whether admin have setup the web part correct. The web
part must be attached to a list.
Now the SharepointAccess class call some of the SPView class methods and properties
and sets the Query on a SPView object. Afterward the Query is updated so the changes
take effect.

The rest of my interaction diagrams can be found in appendix B.

Use Case 7 has been dropped which why no interaction diagram for this Use Case has
been made. I agreed with MD DEPT 9580 that this features is unnecessary to implement
since the search in all column feature will work just fine in the situation where user needs
to search in more than one column.

67

6.4 Class Diagram

Figure 34 – Class diagram

The class diagram is constructed from the analysis and the conceptual model. After the
implementation I have made reverse engineering on the finish class hierarchy and the
above class diagram reflects the final result.
In the left side of the class diagram is symbol description which explain the attributes and
methods, type, parameter value and access status.

DESIGN 68

The class diagram shows both the ‘SearchWebPart’ class and the ‘SearchUserControl’
class taking an instance of the ‘Search’ class, which is why I need to implement the
singleton pattern to prevent the creation of multiple instance of the ‘Search’ class.

6.5 Logical Architecture
To organize the software classes I have decided to aim at dividing my classes into a three
layered architecture. The reason I need three layers is because I want to separate user
interface, business logic and data access from each other.

The layers should be organized so a data access layer and a business logic layer know
nothing of the user interface layer, and the data access layer knows nothing of the
business layer.

Although I aim a creating a layer architecture which follows the above rules it is related
with some limits due to the way Sharepoint and web parts work. Often when creating
web parts it is quite normal to have the data access layer in the web part which also is the
user interface. However it is my goal to separate the user interface, business logic and
data access from each other within the limits of Sharepoint.

The architecture I am going for in my project is a relaxed layered architecture[1, page
200], which basically means that higher layers can call upon several lower layers, unlike
a strict layered architecture, where the top layer only calls upon the layer directly below
it.

The top layer is my user interface or presentation layer where the web part and the web
control class lies. Actually the web part and web control could be considered to be two
layers since the web control doesn’t know of about the existing of the web part. The user
control is a pre-compiled component added to the web part.

The middle layer is my business layer, and the bottom layer is my data access layer.

69

Figure 35 – Package diagram

6.6 Summary
In this chapter I made the transition from analysis to design, or from the conceptual
model to a concrete software specification, with the use of interaction diagrams and class
diagrams. Furthermore I establish a structure for the software classes and which design
pattern to implement. Use Case 7 was dropped as we found it unnecessary and because
Use Case 6 would cover it more or less.

CCHHAAPPTTEERR 77

Implementation

71

7 Implementation
7.1 Implementing the Design
The following chapter is used to describe the implementation of the proposed design in
chapter 6 - Design. I intend to give a description of each method, properties and attributes
in the software classes in the class diagram.

7.1.1 SearchWebPart
The ‘SearchWebPart’ class is responsible for creating the search web part. The class
inherits from the ‘WebPart’ class. The ‘WebPart’ contain a number of methods which
control the behaviour the web part.

IMPLEMENTATION 72

Table of attributes/fields:
Name Type Parameter Description
defaultPropertyText string The value of the textbox in the tool

pane
listName string The value of the list name given by

user.

Table of properties:
Name Type Parameter Description
ListName string Saves the name of the list entered by

user.

Table of functions:
Name Type Parameter Description
SearchWebPart Constructor
CreateChildControls void This function is overridden to create

my own composite control which is a
group of controls, such as a button or a
textbox, put together to create a user
interface.

GetToolParts ToolPart[] This function is overridden to create
my own tool pane. The function
determines which tool parts are
displayed in the tool pane and the
order in which they are displayed. The
tool pane is the box which emerges
when a web part is in design mode.

RenderWebPart void HtmlTextWriter This function is overridden, to get the
function to display my composite
control in the web part.

OnLoad void EventArgs This function is overridden because
the delegates need to be set
immediately when the browser is
loaded.

fillDropDownList void This function tells the user control to
fill the drop-down list with the column
names from the Sharepoint list.

attachedFilesWithSearchInput List<int> This function retrieves the item IDs
from the Sharepoint list which has a
match between the user-input and the
content in the attached files.

getGeneratedQueryString void string This function retrieves the generated
query-string from user control.

73

7.1.2 CustomToolPart
The ‘CustomToolPart’ class add my toolpart(the textbox where user can add the name of
list) to the tool pane which emerge when the web part is in design mode. The class
inherits from the ‘ToolPart’ class.

Table of attributes/fields:
Name Type Parameter Description
inputListName string The attributes carries the value of the list

name.

Table of functions:
Name Type Parameter Description
CustomToolPart Constructor, when called set the name of

tool part and initialize the textbox control
customToolPart_Init void Object, EventArgs Function sets the attribute inputListName

equal to the value of the textbox by
referring to textbox ID.

ApplyChanges void This function is overridden so when user
enter a list name in the text box in the
tool pane and press the apply button, the
property in the SearchWebPart is set and
saved. If the list exists drop-down list
with column name is filled.

RenderToolPart void HtmlTextWriter This function is overridden to get the
function to display my tool part in the
tool pane.

IMPLEMENTATION 74

7.1.3 SearchUserControl
The ‘SearchUserControl’ class creates the controls in the web part. The class inherits
from the ‘UserControl’ class.

75

Table of attributes/fields:
Name Type Parameter Description
updateQueryDelegate void string Delegate which take the

getGeneratedQueryString() method
in the SearchWebPart class.

getAttachedFilesDelegate List<int> Delegate which take the
attachedFilesWithSearchInput ()
method in the SearchWebPart class.

CheckBox ID name of the check box
ColumnName_DropDownList ID name of the drop-down list which

contain all the column names in a
Sharepoint list

SearchCondition_DropDownList ID name of the drop-down list which
contain search conditions.
(Contain, Begin with)

ImageButtonClear ID name of the button which clears
the filter on the Sharepoint list

ImageButtonSearch ID name of the button which
launches a search

SearchTextBox ID name of textbox where user
enters the text to search for.

Panel ID name of the panel that contain the
other controls.

Table of functions:
Name Type Parameter Description
SearchUserControl Contructor
ImageButtonSearch_Click void Object,

ImageClickEventsArgs
When search button is click, this
function launches the appropriate
function based on the actions
perform in the web part.

ImageButtonClear_Click void Object,
ImageClickEventsArgs

When the clear button is click, this
function launches the methods that
eventually update the ‘Search’
view query with an empty query-
string that clears the filter on the
Sharepoint list.

performThisSearch string int This function passes the value of
the decided search scenario to
Search class, which perform the
search and retrieves the generated
query-string.

getAllColumns List<string> This function retrieves all the
column names in the
‘ColumnName_DropDownList’
list, except the entries which
doesn’t exist in the Sharepoint list.

IMPLEMENTATION 76

Name Type Parameter Description
getSelectedColumnValue string This function retrieves the specific

column which user wants to search
in.

addColumnName void ListItem This function adds the name of the
Sharepoint list columns to the
‘ColumnName_DropDownList’.

addColumnNameAllColumns void This function add the ‘All
Columns’ index to the
‘ColumnName_DropDownList’.

clearDropDownList void This function clears the
‘ColumnName_DropDownList’,
except for the index ‘--Select
Column --’.

77

7.1.4 Search
The ‘Search’ class performs the search and splits the user input string.

Table of attributes/fields:
Name Type Parameter Description
instance Search Carries an instance of the ‘Search’ class.
userInputString string The attributes carries the un-tokenized user

input string.

Table of properties:
Name Type Parameter Description
UserInputString string Saves the input string entered by the user.
Instance Search Saves an instance of the Search class.

Table of functions:
Name Type Parameter Description
Search Constructor
tokenizeUserInputString List<string> string This function split the user-input string, as

many inputs is allow by using the ‘+’ sign.
performSearch string int, List<string>,

string, int,
List<int>

This function performs the search by
calling the function in the Query class,
which generate a query-string. The function
also passes the necessary data to the Query
class, such as which query-string should be
created, which index in drop-down lists
have been selected, the tokenized user input
and all column names.

getTokenizedUserInput List<string> This function retrieves the tokenized user
input.

IMPLEMENTATION 78

7.1.5 Query
The ‘Query’ class performs the building of query-strings.

Table of functions:
Name Type Parameter Description
Query Constructor
createQueryString string int, List<string>,

string, int,
List<int>,
List<string>

This function stands for
generating the correct query-
string.

generateColumnSearchQueryString string List<string>,
string, int

This function generates the
query-string, when user has
selected to search in one
column.

generateAllColumnsSearchQueryString string List<string>,
List<string>, int

This function generates the
query-string, when user has
selected to search in all
columns.

generateAttachedFilesSearchQueryString string List<int> This function generates the
query-string, when user has
selected to search in attached
files.

generateSearchConditionNode string string, int This function generates the
search condition node in the
query-strings.

thisQueryStringWillNeverMatch string This function generates a
query-string, which will ‘never’
match. If user search in
attached files and no match
occur it needs to clear the
Sharepoint list for items.

79

7.1.6 SharepointAccess
The ‘SharepointAccess’ class controls all the access with Sharepoint.

Table of attributes/fields:

Name Type Parameter Description
httpContext HttpContext A Http context request

Table of properties:
Name Type Parameter Description
currentSPSite SPWeb The current Sharepoint site

Table of functions:
Name Type Parameter Description
SharepointAccess Constructor
SharepointAccess HttpContext Constructor which take a HTTP

request.
updateSPViewQuery void string, string Updates the query on Search view.
compareListsOnSPSiteWithListName bool string Compare the property ListName form

SearchWebPart class, with the entire
Sharepoint lists on site.

getFields ListItem-
Collection

string Get the entire field/column names
from the Sharepoint list.

getListItems List<int> string,
List<string>

Get all the items from the Sharepoint
list

userInputIsInFile bool string,
List<string>

This function returns a true, if user
input matches some of content in an
attached file.

IMPLEMENTATION 80

7.1.7 Implemented remarks
Of all the implementation I needed to make in this project I found the Query class to be
the most interesting to implement because I had to use e.g. recursive calls.

In the beginning when the search web part could only search in one column and take one
search input the methods that generated the query-string were fairly easy created.

<Where>
 <Contains>
 <FieldRef Name=”ColumnName1” />
 <Value Type “String1” />
 </Contains>
</Where>

However as soon as I began implementing new functionalities on the core search web
part and the query-string grew, I realises that the CAML query structure, made the query-
string a bit more complicated to make. The query structure elements (<Or>, <Contains>)
must contain two other elements.

Lets assume user have enters 2 input, the query-string would look as follow.
<Where>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String2</Value>
 </Contains>
 <Contains>
 <FieldRef Name=" ColumnName1"/>
 <Value Type="String">String1</Value>
 </Contains>
 </Or>
</Where>

A query-string with three inputs;
<Where>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String3</Value>
 </Contains>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String2</Value>
 </Contains>
 <Contains>
 <FieldRef Name=" ColumnName1"/>
 <Value Type="String">String1</Value>
 </Contains>
 </Or>
 </Or>
</Where>

81

A query-string with five inputs;
<Where>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String5</Value>
 </Contains>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String4</Value>
 </Contains>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String3</Value>
 </Contains>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String2</Value>
 </Contains>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String1</Value>
 </Contains>
 </Or>
 </Or>
 </Or>
 </Or>
</Where>

After implementing the ability to have multiple user-input I had to implement the Search
in “All Columns” Use Case which only made it more interesting since I had to make
some adjustments to the methods so that they could handle multiple ColumnNames in the
query-string. This is how it looks when user enters 2 inputs and is searching in all
columns (2 columns) in the list.

<Where>
 <Or>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String2</Value>
 </Contains>
 <Contains>
 <FieldRef Name="ColumnName1"/>
 <Value Type="String">String1</Value>
 </Contains>
 </Or>
 <Or>
 <Contains>
 <FieldRef Name="ColumnName2"/>
 <Value Type="String">String2</Value>
 </Contains>
 <Contains>
 <FieldRef Name="ColumnName2"/>
 <Value Type="String">String1</Value>
 </Contains>
 </Or>
 </Or>
</Where>

IMPLEMENTATION 82

When I implemented the “Search in Attached File” Use Case I couldn’t ask directly
which columns items had a match between user-input and the content in their attached
files, the same way I did when I search in the columns, so I had to make a work-around.

I solve the problem by first comparing the user input with all the attached files content. If
there was a match, I retrieve the ID for the item. A list has an ID as it has a column name.
With the ID’s I generated a query-string which I could filter the list with.

<Where>
 <Or>
 <Eq>
 <FieldRef Name="ID"/>
 <Value Type="String">1</Value>
 </Eq>
 <Eq>
 <FieldRef Name="ID"/>
 <Value Type="String">2</Value>
 </Eq>
 </Or>
</Where>

One of the requirements for the web part was that the results from the search was showed
in the Sharepoint list and that the features of Sharepoint list could be used, such as sort,
change the order of the columns and edit the column names. During the implementation I
came across a smaller problem because the column name (display name) showed in
browser was not the same as the name in database (internal name), so when I changed the
column name I couldn’t search in the column. I solve the problem by simply showing the
display names in the drop-down list and by using the internal name in query-strings.

The code for the web part can be found on the CD.

7.2 Summary
I used this chapter to describe all the software classes in detail what their methods,
properties and attributes do, and I described how I solve some of the implementation.

CCHHAAPPTTEERR 88

Test

TEST 84

8 Test
8.1 Purpose
Besides creating a web part which makes users capable of searching directly in a list,
MAN Diesel A/S asked me to look into regression test tools in Visual Studio 2005 .NET
Team Suite.
I intend to give a short description of each tool in VS05.NET TS and establish which of
the tools can be used to uncover regression bugs and use it on my web part project.

As I mention in the start of my report regression testing is a type of testing method which
tries to uncover regression bugs. Regression bugs can occur when you need to add new
functionalities to a system. Take the situation where I had to add further functionalities to
the core system web part. This situation will probably have the consequence that other
functionalities in the code cease to work after the implementation.

In the section 3.3 Supplementary Specification in chapter 3 I stated that the performance
of the search web part must have good response times since the main idea behind the web
part is to save time. Therefore I am going to make a small test of the search performance
it can be found in section 8.4.
In appendix C I have added a test which test for incorrect input from user on the web part.
In chapter 9 – Deployment I have made a presentation of the web part which shows the
cases when ‘correct’ input or actions have been entered/performed.

8.2 VS05.NET TS Test Tools
In VS05.NET TS you can perform 6 different tests.

 Load test
 Generic test
 Manual test
 Ordered test
 Unit test
 Web test

Load test is performed when you need to test the reliability of a system. Such a test is
typical used for multi-user system where you need to get an idea of how much pressure a
system can take when multiple users access the program’s services concurrently.
Generic test is performed when you need test an existing program or third party tool.
Manual test is performed when test couldn’t be automated.
Ordered test is performed when you want to run other test in a specific order.
Unit test is performed when you need to validate a part/unit of some source code is
working properly.

85

Web test is performed to test the functionality of web applications and to test web
application under load.

Of the test tools VS05.NET TS provides unit test is the only one which provides at way
to deal with regression bugs. In unit testing you isolate each part of the program from
each other and show that the individual parts are correct. This is why this test technique is
particularly well to find regression bugs because it is easy to identify where the bug
occurred and fix it.

I intend to use unit test on the classes which are difficult to implement and which surely
will create regression bugs.

8.3 Unit Test
During the implementation of the Query class I realises that this class would be ideal to
use unit test on, to validate that each methods generated the right piece of the query-
string. As I mention in 7.1.7 Implemented Remarks the methods in the Query class was
challenging and therefore lead to quite some bugs during the implementation, due to the
way CAML queries is structured.

I used a bottom-up approach during coding, where I wrote a part of the code and tested it,
then I wrote some more and tested the sum of its parts.

I have made operation contracts for each of the function in the Query class. The contracts
show input and expected output of the functions and help create the unit tests.

With the contracts written I have a sketch for the benefits and obligations of the functions
in the Query class. Now take the generateColumnSearchQuerystring() method this
function is expected to deliver a correct constructed CAML query which can search in
one column. As input it takes a user input list which contains the tokenized user input
string, the name of the column to search in and the search condition the user has selected
from the drop-down list

Contract Query: generateSearchConditionNode
Operation: generateSearchConditionNode(Search condition type: string, Selected search

condition index, integer)
Cross Reference: UC1 - Search in List, UC2 - Search Pattern & UC6 - Search in All Columns
Preconditions: User selects a search condition.
Postconditions: A start or end search condition node was created, which is to be attach to the

query-string.

On figure 36 is an example of a unit test on the generateSearchConditionNode() method,
which produced an error. This error tolled me that I had appended a wrong statement to
the query-string. I expected it to append the name <Contains> when it really was

TEST 86

appending the value <Contain>. A small and stupid error but an error which would have
maid the search failed since the query-string must be entirely correct generated.

Figure 36 – Unit test on the generateSearchConditionNode() function.

I have added the rest of the contracts in appendix D. The unit tests lies together with the
rest of my code on the CD.

87

8.4 Search Performance

8.4.1 Purpose

To test the performance of the search web part I have used VS05.NET TS web-test tool
which allow me check how along an action takes to perform.

For this performance-test I have chosen to create a test-list where I manual have entered
60 items in the list and afterward attached a file on each item.

The web test tool allow me to record an action perform in the browser, e.g. searching in
one column. The recorded action is then tested and the time it takes to perform the action
is displayed.

I intend to test the response time when searching in one column, all columns and attached
files, and I am going to get the response time for respectively 10, 30 and 60 items each
item having a file attached. Furthermore I am going to test for 1 or 4 user input in the
search textbox.
I intend to create a graph for one user-input and another graph with four user-input.

The response time for the selected search scenarios should be around 1-2 seconds for 60
items otherwise it will take to long time. The graph with 4 inputs should show a minor
increase in response time compared to the graph with one input.
I expect the search in all columns compared to the search in one column to take longer
time, due to the fact that more data will be process because the query-string is bigger.

TEST 88

8.4.2 Results
From the results generated in the web test I have made the following graphs and tables:

Search Performance (1xInput)

0,000

0,500

1,000

1,500

2,000

2,500

0 10 20 30 40 50 60 70

Items

R
es

po
ns

e
Ti

m
e

One Column

All Column

Attached Files

Search Performance (4xInput)

0,000

0,500

1,000

1,500

2,000

2,500

3,000

0 20 40 60 80

Items

R
es

po
ns

e
Ti

m
e

One Column

All Column

Attached Files

89

One Column One Column (4xInput)
Test 1 Test 2 Test 3 Average (sec) Items Test 1 Test 2 Test 3 Average (sec) Items

0,55 0,62 0,56 0,577 10 0,66 0,6 0,6 0,620 10
1,25 1,22 1,24 1,237 30 1,37 1,43 1,39 1,397 30
2,12 2,17 2,21 2,167 60 2,44 2,57 2,57 2,527 60

All Column (3 columns) All Column (4xInput) (3 columns)
Test 1 Test 2 Test 3 Average (sec) Items Test 1 Test 2 Test 3 Average (sec) Items

0,61 0,6 0,56 0,590 10 0,69 0,65 0,65 0,663 10
1,23 1,27 1,23 1,243 30 1,5 1,47 1,35 1,440 30
2,22 2,23 2,24 2,230 60 2,63 2,52 2,58 2,577 60

Attached Files Attached Files (4xInput)
Test 1 Test 2 Test 3 Average (sec) Items Test 1 Test 2 Test 3 Average (sec) Items

0,59 0,52 0,56 0,557 10 0,53 0,58 0,59 0,567 10
1,21 1,11 1,12 1,147 30 1,25 1,15 1,06 1,153 30
2,04 2,12 1,96 2,040 60 2,09 2,09 2,16 2,113 60

As the tables show I have generated 3 response times for each test scenario and the
average response times has been plotted on the graph with the number of items. The
results from the plotting show two graphs with a linear tendency.

The graph with 4 input show a minor increase in response time compared to the graph
with one 1 input and the search in all columns took a little longer to perform compared to
search in one column, which was as I expected. I have deliberately not tried to compare
the attached files search with the other searches since it was implemented in a different
way as I described in section 7.1.7 Implemented Remarks.

The graph and tables further show that a search with 60 items takes around 2 seconds, the
highest search times being 2,63 seconds in all columns test 1 which perhaps is little bit to
much.
Overall the search time is acceptable within this scale of 60 items, but on the same time I
must admit there is room for improvements.

8.5 Summary
I used this chapter to look-into VS05.NET TS to find a regression test tool. VS05.NET
TS contain the regression test tool unit test which I have used on the Query class in my
web part project. To create the unit test I used the UP artifact Contract to show the input
and output of the methods I tested. Furthermore I have tested the response time on the
web part.
I have added the contract in appendix D and the unit test can be found on the CD together
with the rest of the code.

CCHHAAPPTTEERR 99

Deployment

91

9 Deployment
9.1 Adding the Search Web Part to Sharepoint
To add the search web part to the Sharepoint environment there is number of things one
must do.

The first thing is to add the web parts assemblies to the Sharepoint BIN directory.

The next thing is to create a web part file (.dwp) which contain the following content.

<?xml version="1.0" encoding="utf-8"?>
<WebPart xmlns="http://schemas.microsoft.com/WebPart/v2" >
 <Title>Custom SPList Search</Title>
 <Description>Search for items in custom list</Description>
 <Assembly>SearchWebPart</Assembly>
 <TypeName>MD.GIE1.WebParts.SPListSearchPresentationLayer.SearchWebPart
</TypeName>
</WebPart>

The web part must be placed in the Sharepoint directory WPCATALOG and the pictures
for the buttons in WPRESOURCES.

The last thing before the web part is added is to tell Sharepoint that the web part is safe.
An entry in the in the Safe Control list in the WEB.CONFIG file must be added.

<SafeControl Assembly="SPListSearchWebPart"
Namespace="MD.GIE1.WebParts.SPListSearchPresentationLayer" TypeName="*"
Safe="True" />

Now the web part will appear in the Vitual Server Gallery.

DEPLOYMENT 92

9.2 Presentation of the Search Web Part
The web part now lies in the Virtual Server Gallery. To apply the web part there are some
basic rules which must be met.

Remember the web part must have a view called ‘Search’ and the web part must be
attached on the list’s Search view page. Furthermore the appropriate user rights to filter a
list must be given to the user.

To attach the web part to the list’s Search view page I append the following text
‘?ToolPartView=2’ to the end of the URL.

http://<servername>/sites/<sitename>/Lists/<List Name>/Search.aspx?ToolPaneView=2

93

This will show the web part tool pane from where web parts can be added to the page.

The web part lies in the Virtual Server Gallery. I now drag the web part called ‘Custom
SPList Search’ from the Web Part List onto the page.

When dragged onto the page a message appears (in red) which tell admin or user that the
search web part must be ‘attach’ to the list, in this case the FAQ (iMAN) list.

To ‘attach’ the list I must modify the web part. The web part is modified by selecting the
‘Modified Shared Web Part’ in the search bar. See picture above.

DEPLOYMENT 94

This will show the search web part tool pane. In the text box I need to add the name of
the list and apply before the search web part is ‘attach’ to the FAQ (iMAN) list.

Now the search web part has been ‘attached’ which can be seen by the fact that the
‘column’ drop-down list has been filled.
To search in one column I select the Question column from the drop-down list and select
a search condition (Contain or Start with). In this case I type the following input (“part”)
in the textbox and hit the ‘Go’ button.

95

This request resulted in all the items which contained the input “part” in the Sharepoint
list. To clear the list and see all items again I hit the clear button.

To search in more than one column I select the ‘All Columns’ and a search condition
from the drop-down lists. Of cause this is not possible in the ‘FAQ (iMAN)’ list since it
only contains one column. So instead I perform the search on a task list.

DEPLOYMENT 96

I type the input (“progress”) and hit the ‘Go’ button, and get a number of result in the
‘Status’ column and one result in the ‘Title’ column.

The last search options are to search in the items attached files. To do this I check the
small box (Search in attached files) below the text box and enter the input (“CADAM”).

This gave me the following result (see picture above) an item which contained a
document called - Drafting view tolerances.doc (see picture below).

97

From the picture below, it is clear that the input (“CADAM”) I gave the search web part
matches the content of the document.

CCHHAAPPTTEERR 1100

Conclusion

99

10 Conclusion
10.1 Purpose
The purpose of this project was to create a web part for MD DEPT 9580 which was able
to search directly in a Sharepoint list, which took care of the problems that occur when a
list reaches an unmanageable size.

Besides developing a web part MD DEPT 9580 asked me to look into the regression test
techniques in Visual Studio 2005 .NET Team Suite to see which tools the test
environment provides to find regression bugs.

10.2 Summing up
For this project I worked according to the UP process which is an iterative and
evolutionary process where functionalities gradually are implemented into the system.

Together with DEPT 9580’s requirements for the search web part was gathered and rated
according to their importance to the project.

A detail analysis of each requirement was performed with the help of UP artifacts such as
Use Cases text and system sequence diagrams, and a conceptual model was establish to
get a high level abstract of the system

With class diagram and interaction diagrams I made the transition from analysis to design
and created a more concrete software specification of the system.

System was implemented and software classes were described in detail. Use Case 7 was
not implemented as MD DEPT9580 and I found this feature unnecessary due to the fact
that Use Case 6 covered it more or less.

The different test tools in VS05.NET TS were analyzed to find a regression test tool,
which could be used on the web part. The unit test tools in VS05.NET TS was used on
the web part to find regression bugs and the unit test was created with help from the UP
artifact Contracts. The web test tool in VS05.NET TS was used to test the performance of
the web part.

CONCLUSION 100

10.3 Evaluation
In my opinion the search web part delivers a fine and concrete solution to a significant
problem in Sharepoint. A list, which reaches a certain size, will contain so many items
that users eventually will spend a long time on finding a specific item. This is not very
user-friendly and then you would think that the provided the search functionality in
Sharepoint would help, this I not the case, the search functionality in Sharepoint is a pain
and simply not good enough. Often when using the Sharepoint search you will experience
that you receive a lot of ‘garbage’ results which you then need to filter to actually find
some results which can be used.
With the search web part the “long” time previously spend on finding a specific item in a
list is over. My web part is attached to a list view which then allows users to search in an
exact list either by searching in one column, all columns or in the attached files of the list.

Concerning the supplementary requirements I have added explaining text in the web part
that should increase the usability, which already is fairly easy to master without much
knowledge. The web part works on the custom made lists and it even works on the pre-
defined list in Sharepoint.
In chapter 9 – Test, I made a performance test of the web part and it showed some
acceptable response times in the given test scenario, although it also illustrated that there
is room for improvement within this area.
To make the web part work on other lists the only thing admin must do is to change the
list name in the tool pane on the web part and insure the list to search in is placed on the
Sharepoint site. I have made the button and colour of the web part fairly anonym so the
web part seems like it is a part of the list.

The unit test tool in VS05.NET TS which can be used to find regression bugs was very
helpful when I implemented the Query class. It was very important that the query-strings
generated in Query class were created correct since it would otherwise have made the
Sharepoint list-view fail. Together with the debug tools I could tell how the actual query-
string generated in Query class looked like.

During the project I work according to the way UP proscribes which divide the
development process into a number of iterations. In 3.4 - Iteration Plan the number of
iteration it took me to implement the web part can be seen.

Although I aimed at organizing my software classes into a three layered architecture
where all business logic was in one layer and all user interface related functionalities in
another layer etc., it is clear from the code on the CD that it isn’t a completely separation.

101

10.4 Perspective
The perspective of the web part is, it in the moment is deployed on the DEPT 9580 portal
web site and is going to be until MD decides to upgrade to Sharepoint 2007. When this
occur the web part might need some adjustment to work properly on Sharepoint 2007.

10.5 Future Improvements
Of the future improvements I have in mind a total separation of the code in a user
interface layer, a business layer and a data access layer is something which I rate high.

Beside this I believe that the following improvements should be added in the future;

 Sharepoint 2007 – When MD in a likely near future goes from Sharepoint
2003 to 2007 I imaging that it might be necessary to make some
adjustment to the web part.

 Search performance – To improve the search web part their might be
seconds to gain by employing asynchronous techniques in the web part.

 Search result priority – The results received from a search should be
sorted so the most viewed result appears in the top of the list.

 User right independent – Due to the way Sharepoint works you need
certain rights to filter a list. The web part shouldn’t depend on which user-
rights an employee has. When user hits the button he must be given the
appropriate rights in that moment.

 View independent – The web part shouldn’t be restricted to only work on
one of the lists view pages, or on a view called ‘Search’. In the tool pane
where the list name is set it should be possible to set name of the view.

Literature list

103

11 Literature list

(1) Applying UML and Patterns

An introduction to Object-Oriented Analysis and
Design and Iterative Development
Third Edition
Craig Larman

(2) Unified Process

http://en.wikipedia.org/wiki/Unified_Process
(January 2007)

(3) Using RUP/UP: 10 Easy Steps
 A Practical Guide
 Software Development Best Practics
 http://www.x-tier.com/public/RUPUPIn10EasySteps.doc

(January 2007)

(4) What, no supplementary specification
 FURPS+

http://www-128.ibm.com/developerworks/rational/library/3975.html
 (January 2007)

(5) Using SharePoint's SPView Class and CAML as a Query Language
http://www.devx.com/dotnet/Article/31762?trk=DXRSS_LATEST
(January 2007)

(6) Collaborative Application Markup Language

http://en.wikipedia.org/wiki/Collaborative_Application_Markup_Language
(January 2007)

Appendix

105

Appendix A
Guidance for Use Case Template

Document each use case using the template shown in the Appendix. This
section provides a description of each section in the use case template.

Use Case Identification

Use Case ID
Give each use case a unique integer sequence number identifier.
Alternatively, use a hierarchical form: X.Y. Related use cases can be
grouped in the hierarchy.

Use Case Name
State a concise, results-oriented name for the use case. These reflect the
tasks the user needs to be able to accomplish using the system. Include an
action verb and a noun. Some examples:

• View part number information.
• Manually mark hypertext source and establish link to target.
• Place an order for a CD with the updated software version.

Use Case History

Created By
Supply the name of the person who initially documented this use case.

Date Created
Enter the date on which the use case was initially documented.

Last Updated By
Supply the name of the person who performed the most recent update to
the use case description.

Date Last Updated
Enter the date on which the use case was most recently updated.

APPENDIX 106

Use Case Definition

Actors
An actor is a person or other entity external to the software system being
specified who interacts with the system and performs use cases to
accomplish tasks. Different actors often correspond to different user
classes, or roles, identified from the customer community that will use the
product. Name the actor that will be initiating this use case and any other
actors who will participate in completing the use case.

Trigger
Identify the event that initiates the use case. This could be an external
business event or system event that causes the use case to begin, or it
could be the first step in the normal flow.

Description
Provide a brief description of the reason for and outcome of this use case,
or a high-level description of the sequence of actions and the outcome of
executing the use case.

Preconditions
List any activities that must take place, or any conditions that must be true,
before the use case can be started. Number each precondition. Examples:

1. User’s identity has been authenticated.
2. User’s computer has sufficient free memory available to launch task.

Postconditions
Describe the state of the system at the conclusion of the use case
execution. Number each postcondition. Examples:

1. Document contains only valid SGML tags.
2. Price of item in database has been updated with new value.

Normal Flow
Provide a detailed description of the user actions and system responses
that will take place during execution of the use case under normal, expected
conditions. This dialog sequence will ultimately lead to accomplishing the
goal stated in the use case name and description. This description may be
written as an answer to the hypothetical question, “How do I <accomplish
the task stated in the use case name>?” This is best done as a numbered
list of actions performed by the actor, alternating with responses provided
by the system. The normal flow is numbered “X.0”, where “X” is the Use
Case ID.

107

Alternative Flows
Document other, legitimate usage scenarios that can take place within this
use case separately in this section. State the alternative flow, and describe
any differences in the sequence of steps that take place. Number each
alternative flow in the form “X.Y”, where “X” is the Use Case ID and Y is a
sequence number for the alternative flow. For example, “5.3” would indicate
the third alternative flow for use case number 5.

Exceptions
Describe any anticipated error conditions that could occur during execution
of the use case, and define how the system is to respond to those
conditions. Also, describe how the system is to respond if the use case
execution fails for some unanticipated reason. If the use case results in a
durable state change in a database or the outside world, state whether the
change is rolled back, completed correctly, partially completed with a known
state, or left in an undetermined state as a result of the exception. Number
each alternative flow in the form “X.Y.E.Z”, where “X” is the Use Case ID, Y
indicates the normal (0) or alternative (>0) flow during which this exception
could take place, “E” indicates an exception, and “Z” is a sequence number
for the exceptions. For example “5.0.E.2” would indicate the second
exception for the normal flow for use case number 5.

Includes
List any other use cases that are included (“called”) by this use case.
Common functionality that appears in multiple use cases can be split out
into a separate use case that is included by the ones that need that
common functionality.

Priority
Indicate the relative priority of implementing the functionality required to
allow this use case to be executed. The priority scheme used must be the
same as that used in the software requirements specification.

Frequency of Use
Estimate the number of times this use case will be performed by the actors
per some appropriate unit of time.

Business Rules
List any business rules that influence this use case.

Special Requirements
Identify any additional requirements, such as nonfunctional requirements,
for the use case that may need to be addressed during design or

APPENDIX 108

implementation. These may include performance requirements or other
quality attributes.

Assumptions
List any assumptions that were made in the analysis that led to accepting
this use case into the product description and writing the use case
description.

Notes and Issues
List any additional comments about this use case or any remaining open
issues or TBDs (To Be Determineds) that must be resolved. Identify who
will resolve each issue, the due date, and what the resolution ultimately is.

109

Appendix B
Interaction diagram Use Case 2

APPENDIX 110

Interaction diagram Use Case 3

111

Interaction diagram Use Case 4

APPENDIX 112

Interaction diagram Use Case 5

113

Interaction diagram Use Case 6

APPENDIX 114

Appendix C
Test
During the phase where user has drag the web part onto the site, and hasn’t type anything
in tool pane, and tries to hit the go and clear button nothing is supposed to happen in the
list, as the search web part isn’t attach to the list.

As expected nothing occurs in list below. If user enters a list name which doesn’t exist
the same will occur. A message is printed in the web part which tells the user that the
web part hasn’t been attached to the list.

When the web part has been attach correct, and if user tries to enters some text, but hasn’t
selected a column or checked the ‘Search in attach files’, nothing should occur.

As nothing occurs in list, since a column hasn’t been selected.

115

Appendix D
Contracts
Contract Query: createQueryString
Operation: generateColumnSearchQueryString(Selected query-string : integer, Columns :

List<string>, Selected column value : string, Selected search condition index :
integer, ID list : List<int>, User input list : List<string>)

Cross Reference: UC1 - Search in List, UC2 - Search Pattern, UC3 - Search in Attached Files,
 UC6 - Search in All Columns.
Preconditions: User needs to search.
Postconditions: A query-string which follows the CAML query structure is created to search.

Contract Query: generateColumnSearchQueryString
Operation: generateColumnSearchQueryString(User input list : List<string>,
 Column name : string, Selected search condition index : integer)
Cross Reference: UC1 - Search in List, UC2 – Search Pattern.
Preconditions: User needs to search in one column.
Postconditions: A query-string which follows the CAML query structure was created to search

in one column.

Contract Query: generateAttachedFilesSearchQueryString
Operation: generateAttachedFilesSearchQueryString(ID list : List<int>)
Cross Reference: UC3 - Search in Attached Files.
Preconditions: User needs to search in the attached files.
Postconditions: A query-string which follows the CAML query structure was created to search

in the attached files.

Contract Query: thisQueryStringWillNeverMatch
Operation: thisQueryStringWillNeverMatch()
Cross Reference: UC3 - Search in Attached Files.
Preconditions: User enters some input which doesn’t match the content in the attached files.
Postconditions: An empty query-string was created.

Contact Query: generateAllColumnsSearchQueryString
Operation: generateAllColumnsSearchQueryString (User input list: List<string>,
 Columns : List<string>, Selected search condition index : integer)
Cross Reference: UC2 – Search Pattern, UC6 - Search in All Columns.
Preconditions: User needs to search in all columns.
Postconditions: A query-string which follows the CAML query structure was created to search

in all columns.

	
	Summary
	Resumé
	Preface
	Acknowledgements
	Table of contents
	1 Introduction
	1.1 Project Description
	1.2 Project Scope
	1.3 Project Delimitation
	1.4 Abbreviations
	1.5 Document Outline
	
	Chapter 2

	2 Project Planning
	2.1 Development Process
	2.2 Unified Process
	2.2.1 Iterative and evolutionary development
	2.2.2 Unified Process phases
	2.2.3 UML & Use Cases

	2.3 Project Plan
	2.4 Summary
	
	Chapter 3

	3 User Requirement Specification
	3.1 System Requirements
	3.2 Use-Case Model
	3.2.1 Identification of Use Cases
	3.2.2 Identification of actors
	3.2.3 Use case diagram
	3.2.4 Use Case ranking

	3.3 Supplementary Specification
	3.3.1 Usability
	3.3.2 Reliability
	3.3.3 Performance
	3.3.4 Supportability
	3.3.5 Implementation
	3.3.6 Interface
	3.3.7 Design

	3.4 Iteration Plan
	3.5 Summary
	Chapter 4

	4 Technologies
	4.1 Sharepoint
	4.1.1 What is Sharepoint?
	4.1.2 Windows Sharepoint Services v2
	4.1.3 Sharepoint Portal Server 2003
	4.1.4 Collaborative Application Markup Language

	4.2 Development Tools
	4.3 Summary
	Chapter 5

	5 Analysis
	5.1 Approaches
	5.1.1 Data grid
	5.1.2 Connection
	5.1.3 View
	5.1.4 Choosing the right approach

	5.2 Use Cases
	5.2.1 UC1 - Search in List
	5.2.2 UC2 - Search Pattern
	5.2.3 UC3 - Search in Attached File
	5.2.4 UC4 - Clear
	5.2.5 UC5 – Setup Search
	5.2.6 UC6 – Search in All Columns
	5.2.7 UC7 – Select Columns to Search in

	5.3 Conceptual-Model
	5.3.1 Identification of conceptual classes and attributes
	5.3.2 Association
	5.3.3 Conceptual model diagram
	

	5.4 Summary
	
	Chapter 6

	6 Design
	6.1 From Analysis to Design
	6.2 Patterns
	6.2.1 Singleton

	6.3 Interaction Diagram
	6.4 Class Diagram
	6.5 Logical Architecture
	6.6 Summary
	Chapter 7

	7 Implementation
	7.1 Implementing the Design
	7.1.1 SearchWebPart
	7.1.2 CustomToolPart
	7.1.3 SearchUserControl
	7.1.4 Search
	7.1.5 Query
	7.1.6 SharepointAccess
	7.1.7 Implemented remarks

	7.2 Summary
	Chapter 8

	8 Test
	8.1 Purpose
	8.2 VS05.NET TS Test Tools
	8.3 Unit Test
	8.4 Search Performance
	8.4.1 Purpose
	8.4.2 Results

	8.5 Summary
	Chapter 9

	9 Deployment
	9.1 Adding the Search Web Part to Sharepoint
	9.2 Presentation of the Search Web Part
	Chapter 10

	10 Conclusion
	10.1 Purpose
	10.2 Summing up
	10.3 Evaluation
	10.4 Perspective
	10.5 Future Improvements

	11 Literature list
	 Appendix A
	Guidance for Use Case Template
	Use Case Identification
	Use Case ID
	Use Case Name
	Use Case History
	Created By
	Date Created
	Last Updated By
	Date Last Updated
	Use Case Definition
	Actors
	Trigger
	Description
	Preconditions
	Postconditions
	Normal Flow
	Alternative Flows
	Exceptions
	Includes
	Priority
	Frequency of Use
	Business Rules
	Special Requirements
	Assumptions
	Notes and Issues

	 Appendix B
	Interaction diagram Use Case 2
	Interaction diagram Use Case 3
	Interaction diagram Use Case 4
	Interaction diagram Use Case 5
	Interaction diagram Use Case 6

	 Appendix C
	Test

	 Appendix D
	Contracts

