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Abstract

The present thesis strives to estimate the geographical location (geolocation)
and movement of demersal �sh based on tidal data extracted from electronic
data storage tags (DSTs).

The theory of the underlying di�usion model is presented with emphasis on the
connection between the partial di�erential equation governing its time evolution
and a homogeneous random walk. The paradigm of a hidden Markov model is
applied to the DST data considering the global coordinates as the hidden states
furnishing the observable tidal output. A Bayesian �lter o�ers a straightforward
framework for maximum likelihood estimation of model parameters. The most
probable sequence of hidden states, i.e. the Most Probable Track, is found by
employment of the Viberti algorithm.

A simulation study is conducted to examine the method performance in terms
of computation time and parameter estimation. Furthermore it is sought to
elucidate the �ltering step in greater detail and evaluate the in�uence of spatial
variation in environmental variables such as depth. Conclusively, the maximum
likelihood estimator is tested for bias and precision followed by an analysis of
the optimal track representation.

The dataset considered in the project consists primarily of depth and tempera-
ture records from Atlantic cod (Gadus morhua) tagged in the southern North
Sea and eastern English Channel. The initial data preprocessing extracts the
pertinent tidal information and depth to be transferred to the �ltering algo-
rithm. The variance structure of the observed time series is assessed by means
of stationary tags at known geographical positions.
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The geolocation method is implemented in the Matlab v. 7.0 computing en-
vironment that o�ers a �exible presentation of the geolocation. Animating the
time evolution of the marginal posterior distributions in an avi-�le gives a de-
tailed visualisation of the uncertainty in each discrete time step. The Most
Probable Track images the mode of the joint posterior distribution and is a rep-
resentation that can be contained in a single �gure thereby easing interpretation
of the results. Explicit estimation of the joint posterior distribution is unique
for the method and opens for a wide range of applications.

The presented results concurred with the general pattern of previous studies
of the data but excelled in terms of detail and computation time. The method
showed �exibility and was prone to extensions of which some were implemented
in simpli�ed forms for illustrative purposes.

The estimated �sh behaviour is based on statistical rigor and can serve as sub-
stantial argumentation in future decisions related to stock assessment and �sh-
eries management.

KEYWORDS: Geolocation, di�usion process, Atlantic cod, data storage tags,
hidden Markov model, maximum likelihood estimation, Most Probable Track



Resumé

Dette eksamensprojekt tilstræber at estimere den geogra�ske position (geolo-
kalisering) og bevægelse af demersale �sk på baggrund af tidevandsdata fra
elektroniske dataopsamlingsmærker (DSTs).

Teorien for den underliggende di�usionsmodel præsenteres med vægt på forbind-
elsen mellem den partielle di�erentialligning, der beskriver dens tidsudvikling,
og en homogen random walk. Antagelserne i en hidden Markov model anven-
des på DST-data, ved at opfatte den globale position som den skjulte tilstand,
der giver anledning til det observerbare tidevandssignal. Et Bayesiansk �lter
er et værktøj, der er velegnet til efterfølgende maximum likelihood estimation
af modelparametre. Den mest sandsynlige sekvens af skjulte tilstande, dvs. det
Mest Sandsynlige Spor, �ndes ved anvendelse af Viterbi-algoritmen.

Et simulationsstudie udføres for at undersøge metodens ydeevne mht. bereg-
ningstid og parameterestimation. Ydermere tilstræbes det at belyse selve �l-
treringen og at evaluere ind�ydelsen af den rumlige variation i omgivelsernes
karakteristika, såsom dybden.

Det, i projektet anvendte, datasæt består hovedsageligt af dybde- og tempe-
raturmålinger fra eksemplarer af den Atlantiske torsk (Gadus morhua), mærket
med DSTs i den sydlige del af Nordsøen og i den østlige del af Den Engelske
Kanal. Den initielle datapræprocessering udtrækker den relevante tidevandsin-
formation og dybde, som skal overføres til �lteralgoritmen. Variansstrukturen
af den observerede tidsrække bestemmes ved analyse af stationære mærker på
kendte geogra�ske positioner.

Geolokaliseringsmetoden implementeres i beregningsværktøjet Matlab v. 7.0,
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hvor en �eksibel præsentation af geolokaliseringen er mulig. Ved at animere tids-
udviklingen af den marginale posteriorfordeling i en avi-�l opnås en detaljeret
visualisering af usikkerheden i hvert diskret tidsskridt. Det Mest Sandsynlige
Spor viser modus i den simultane posteriorfordeling og er en repræsentation, som
kan være indeholdt i en enkeltstående �gur og dermed letter resultatfortolknin-
gen. Eksplicit estimation af den simultane posteriorfordeling er enestående for
metoden og muliggør en lang række applikationer.

De præsenterede resultater var i overensstemmelse med de generelle tendenser
set i tidligere studier af samme data, men excellerede mht. detaljegrad og bereg-
ningstid. Metoden viste sig �eksibel og nem at udvide, hvilket blev illustreret
gennem simple implementationer.

Den estimerede �skeadfærd bygger på statistisk stringens og kan anvendes som
tungtvejende argumentation i fremtidige beslutninger angående bestandsvurde-
ring og �skeristyring.
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Chapter 1

Introduction

This introductory chapter deals with the background and motivation for the
thesis. It describes the previous studies related to estimation of geographical lo-
cation (geolocation) of marine animals using various available technology. This
work mainly comprises conventional tags and data storage tags (DSTs). Tradi-
tional methods employed to estimation of the position and movement of the �sh
are examined brie�y. Conclusively, the aims for the present study are outlined
along with an overview of the structure of the thesis.

1.1 Motives of geolocation

As technology became available the e�ciency of �shing improved through the
twentieth century. Along came a need to control the �shing e�ort in order to
retain the depleting stocks of particular species that were of signi�cant commer-
cial interest. Recent examples of this endangerment of species are the Oceanic
Whitetip Shark (Carcharhinus longimanus) and the Angel Shark (Squatina
squatina) that are mostly caught as bycatch by pelagic �sheries and bottom
trawl. This inconvenient situation has put the species on the �Red List of
Threatened Species� published by the organisation �International Union for Con-
servation of Nature and natural resources�, (IUCN, 2006).
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Another example is the Haddock (Melanogrammus aegle�nus) that su�ered from
over�shing in the 1960s and up until recent years, but has now due to a series of
regulations recovered its stock to some extent (FAO, 2004). The Haddock draws
a lot of similarities to the Atlantic cod (Gadus morhua), see Figure 1.1 (Bloch,
1785), both in taste and looks and unfortunately fate as well. The northwest At-
lantic cod was during the early 1990s severely over�shed which caused the stock
to collapse leaving only relatively few specimens (FAO, 2004). This unnatural
low stock resulted in other species taking the role as top predator now feeding
on the Atlantic cod hence making it even harder for the species to recover.

The stock of the northeast Atlantic cod has recently diminished in size for-
cing experts of the �International Council for Exploration of the Sea� (ICES) to
recommended a full stop of cod �shing in the North Sea.

Figure 1.1: The Atlantic cod (Gadus morhua).

The way to avoid scenarios as the ones mentioned goes through regulation of
�shing e�orts and an intelligent use of marine protected areas. In order to do so,
informations on location of biomass, spawning grounds and �sh behaviour must
be assessed. Geolocation can supplement this assessment and hopefully be an
aid to replenish the reduced stocks and extend our knowledge of �sh behaviour.
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1.2 History of tag based geolocation

Tagging of �sh is a wide spread technique to gain information of behaviour and
to obtain global positional estimates of the tagged individual.

1.2.1 Conventional tags

A tagging experiment consists of mounting simple markers on �sh in a way that
has the least possible e�ect on the behaviour and growth (Righton et al., 2006).
A batch of �sh is released into the sea with the intention that some percentage is
recaptured and their tag recovered. This type of mark/recapture experiments,
or �conventional tagging�, were initially a mean to asses the mortality of �sh
by evaluating the return rate of the tags. As a side product, the experiments
also supplied information of the recapture positions that gave rise to tag based
geolocation.

Conventional tagging methods yield only a sparse dataset per returned tag,
and therefore requires extensive tagging for major conclusions on the distribu-
tion of individuals to be made. Fortunately the procedure is associated with
low costs and has been carried out since the mid sixties up until the present
day, hence a substantial amount of data is available (Daan, 1978; Righton et al.,
2007). However, the number of returns from a given geographical area is largely
in�uenced by the �shing e�ort, thus diminishing the statistical power of the data.

The present thesis focuses on the Atlantic cod - henceforth referred to as cod -
and the habitats of the North Sea and the English Channel. Figure 1.2 shows
a map of the ICES areas that are contained in the considered domain. Previ-
ous work has shown that cod released in the southern North Sea tend to either
stay in a limited area close to the release position or migrate north (Righton et
al., 2007). Migration is often performed in an annual cycle bringing the cod to
the central part of the North Sea (ICES IVb) in the summer, before returning
south during the winter (Righton et al., 2007). This behaviour is con�rmed
by research based on DTSs (Righton et al., 2000). No annual migration cycle
has so far been proven by conventional tagging for cod released in the English
Channel. In fact, not much can be said about cod released in VIId besides that
the majority was recaptured close to the release location regardless of its time
at liberty (Righton et al., 2000; Righton et al., 2007).

The obvious drawback of conventional tagging is the scarce amount of data
returned from one tag, rendering it di�cult to deduce the behaviour whilst at
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Figure 1.2: Map showing the ICES areas.

liberty. A cod recaptured close to its release position could possibly have made
large excursions in the intervening period. It was therefore a great advance for
the �eld of geolocation when DSTs where introduced as data collectors.

1.2.2 Data Storage Tags

DSTs come in a variety of types and sizes (see Section 5.2) and have in their
short history been used for geolocation of many kinds of marine animals. For
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cod, the tagging procedure itself has developed as well, to cover both external
and internal tagging of the �sh (Righton et al., 2006). Compared to conventional
mark/recapture tagging, the DST experiments have substantial added costs. It
is therefore of great interest to extract maximal information from a successfully
returned tag.

In the tagging procedure emphasis is put on minimising the traumatisation
of the individual. The cod is either caught by line or by trawl and brought to
the surface slowly to avoid swimbladder rupture. Here they are anaesthetised
before the tag is mounted, either externally next to the �rst dorsal �n, or in-
ternally in the peritoneal cavity along with an external marker (Righton et al.,
2006).

When the �sh is released into the sea the DST logs information of the envi-
ronment such as depth, light, temperature or salinity. The choice of measure
depends in general on the species and its immediate environment. For example
in the Baltic Sea, tagging experiments have been performed mostly with DSTs
measuring depth, temperature and salinity exploiting the, in some areas, large
gradients of these quantities (Neuenfeldt et al., 2006).

In the Paci�c Ocean for tracking bigeye tuna, DSTs measuring ambient light
have been used. The uncertainty of the light based geolocation is very seasonal
dependent and increases especially around the equinox (Musyl et al., 2001).

Another type of DST used for geolocation is a pop-up satellite archival tag
(PSAT). The tag self-releases from the animal at a preprogrammed time and
transmits the data via satellite when reaching the surface. Due to the transmis-
sion process the PSAT has a large battery requirement compared to a DST and
the amount of retrievable data is in general limited.

PSATs are normally used for animals that are not targeted by commercial �sh-
ermen, and therefore satellite transmission is the only way of retrieving the
data. Among the applications are investigations of the dive behaviour and post-
release mortality following interactions with longline �shing gear of olive ridley
sea turtles (Lepidochelys olivacea) (Swimmer et al., 2006), and geolocation of
Greenland sharks (Somniosus microcephalus) (Stokesbury et al., 2005).

Pressure measurements from demersal species have a great potential for geoloca-
tion. When the �sh dwells at the sea bed for a longer period of time, the pressure
recorded by the DST is constant except for variations following the tide. This
tidal signal is compared to a numeric tidal forecast system and the possible posi-
tions can be found. A greater study using tidal patterns for geolocation was con-
ducted successfully on plaice (Pleuronectes platessa L.) in the North Sea (Hunter
et al., 2004). Tidal location work in progress focus also on other demersal species
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such as sole (Solea solea) and ray (Raja clavata), aiming to clarify migration
routes and seasonal behaviour etc. Likewise, the Atlantic cod has been subject to
ongoing DST research of which some results are presented in Turner et al. (2002);
Righton et al. (2007).

1.3 Methods

The geolocation work based on electronic tagging experiments is extensive and
covers a wide range of methodology and approaches. The �rst heuristic meth-
ods such as the Tidal Location Method (Metcalfe and Arnold, 1997), assesses
the position of the �sh by direct comparison of environmental variables with
observations. The data analysis are to some extent in�uenced by subjectivity
and the manual workload of data comparison can be very time consuming.

Later a state-space approach was presented in Sibert et al. (2003), that used
the Kalman �lter for tracking of bigeye tuna. This statistically well-founded
method lead to straightforward estimation of model parameters by a maximum
likelihood approach. Position estimates were given by the conditional mean and
its error. The Gaussianity assumption of the method will in general be violated
for �sh swimming close to dry land, which is the case for many marine animals
of commercial interest.

Nielsen (2004) suggested applying an extended Kalman �lter as a solution to
this, but a more �exible approach is the particle �lter that does not rely on
distribution assumptions or linearisations. Applications of the particle �lter in-
clude a simulation study of light based geolocation (Nielsen, 2004), geolocation
of cod in the Baltic (Andersen et al., 2007), tracking blue�n tuna in the At-
lantic (Royer et al., 2005) to name a few. Major drawbacks of the method are
the substantial computational e�orts required by the �lter and the numerical
issues that arise in the smoothing step.

1.4 Aims of the present study

This thesis aims to build upon the above mentioned experiences and contribute
to the �eld of geolocation by developing a method with emphasis on practical
applications.

A hidden Markov model with a homogeneous di�usion process describing the
movement, is assumed. The hidden positions are estimated by application of a
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Bayesian �lter to the DST observations. The �lter handles arbitrary distribu-
tions, but avoids some of the numerical issues of the particle �lter by considering
the time evolution of the distribution itself, instead of representing it as parti-
cles. The reconstructions obtained from the Bayesian �lter are smoothed in a
backwards sweep yielding estimates of position conditioned on the whole set of
observations.

The posterior distribution for the position, explicitly expresses its uncertainty
and enables the method to output many interesting summary statistics. The
thesis explores the concept of the �Most Probable Track�, that is a valuable
representation of the joint posterior distribution. Also, an illustrative represen-
tation of the results is given in the form of an �Animated Marginal Posterior
Distribution� that sequentially displays the estimated distribution in an avi-�le.

The presented methods are evaluated both in a simulation model and in a study
of data from tagged �sh in the North Sea (cod and ray).

1.5 Thesis outline

The thesis is partitioned into three parts and should be read in sequence.

Part I: Fundamentals and theory of geolocation. The basic model as-
sumptions and their supporting theory is introduced along with the �ltering
method, where especially the smoothing step is described in detail. Also the
basic methodology with regards to likelihood estimation of the parameter(s)
and determination of the Most Probable Track of the joint posterior distribu-
tion. This part ends with a simple simulated experiment that aims to verify the
assumptions made in the modelling process via statistical hypothesis testing.

Part II: Geolocation of North Sea �sh. A stochastic geolocation model
based on depth measurements and their inherent tidal pattern is constructed
in analogy with the simulation model of Part I. The model is tested on sta-
tionary DSTs from minipods for precision and validation before applying the
method to data from North Sea �sh. When possible the results are compared
to previous research. Finally, model extensions are proposed based on the ex-
periences made with the method, and their relevance is evaluated via simpli�ed
implementations.
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Part III: Outlook and conclusion. Here the main results are discussed
with a view into relevant topics for improvement and expansion of the presented
method. The thesis is rounded o� in a conclusion of the work.

Enclosed CD-ROM. The enclosed CD-ROM contains pdf-�les and Mat-
lab �g-�les containing plots of the real data sets used in the thesis. Also,
is included animations of the results. The �les are also found on the website
www.student.dtu.dk/∼s002087.

Important notice: The �les on the CD-ROM are not to be distributed without
permission from CEFAS.

1.6 Symbol overview

Data from a tag contains time series of depth and temperature. The time is
presented as a column vector

t = [t0, t1, . . . , ti, . . . , tn]T .

As default the sample rate of the tag, ti+1 − ti, is 0.00694 day (10 minutes) if
nothing else is stated.

The time series of depth is written

z = [z0, z1, . . . , zi, . . . , zn],

where zi = −a denotes a water column height of a m.

Another time scale that will be useful later, contains the days inherent in the
data i.e.

τ = [τ0, τ1, . . . , τj , . . . , τN ]T ,

where τ0 is the day of release and τN is the day of recapture. Note that j is
used as index for this time scale. The time step of the τ scale is

τj+1 − τj = k = 24 hours.

The reason for this 24 hour interval is given later in the thesis.

Temperature is measured four times a day and written

qj = [q1, q2, q3, q4].
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Subsamples of the depth time series from day j are subscripted also by the index
of the earliest point in the sample

zj,i = [zi, zi+1, . . . , zi, . . . , zi+m].

A geolocated track is given in an array containing the global positions at the
beginning of each day

xj = [xj,1, xj,2]T ,

where xj,1 is the longitudinal coordinate (abscissae) and xj,2 is the latitudinal
coordinate (ordinate) for day j. With this terminology the geolocated release
and recapture positions are written as x0 and xN respectively and their ob-
served (occasionally called reported) counterparts x† and x‡.

Stochastic variables are written in capital letters hence the stochastic variables
of the position is denoted Xj .

An entire track is written in a matrix

ξ = [X0 = x0, . . . , Xj = xj ]T .

To ease notation an observation matrix is de�ned as

Yj = [Y0 = y0, . . . , Yj = yj ]T ,

that contains the observations from τ0 up until time τj . This is not a matrix in
a strict mathematical sense, as the number of elements in yj varies depending
on j

yj =





[x†] for j = 0
[zj,bi]

T for j ∈ [1, . . . , N − 1]
[xT
‡ , zj,bi]

T for j = N
.

The same vector including temperature observations is denoted

Vj = [v0, . . . , vj ]T ,

where

vj =
{

[yj ] for j = 0
[yT

j , qj ]T for j ∈ [1, . . . , N ] .
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1.6.1 Additional notation

D Di�usivity of the �sh.
E White noise error.
e Tidal error.
ε Error in auto regressive model.
λ Weight in auto regressive model.
η Bathymetry roughness error.
ψj Normalisation constant for day j.
E(X) Expectation of the random variable X.
V(X) Variance of the random variable X.
P(X = x) Probability of the event X = x.
f(·) A function of not explicitly stated variables.

F(φ) = φ̂ Fourier transform of φ.

F−1
(
φ̂
)

= φ Inverse Fourier transform of φ̂.

X ∼ N (µ, σ2) X is Gaussian distributed with mean µ and variance σ2.
L(A) Likelihood of A.
` Log likelihood function.
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Fundamentals and theory of
the geolocation method





Chapter 2

Di�usion

In the model building process, reasonable assumptions are made to simplify rea-
lity to an extent that makes the descriptive and implementational task feasible.
The assumptions will always violate the true dynamics of the system and must
therefore be borne in mind when evaluating the results.

The concept of Brownian Motion (BM) has traditionally been used for descri-
bing movement of particles that perform an erratic random behaviour through
space. It was �rst observed by the botanist Robert Brown in 1828 and later
formalised in the famous paper, Einstein (1905), that introduced the connec-
tion between BM and di�usion. A more mathematical oriented approach is
found in Grimmett and Stirzaker (2001), whereas Okubo and Levin (2002) and
Berg (1993) emphasise biological aspects of the topic.

BM may not seem appropriate as a model for the movement of �sh as they
are neither erratic nor are their actions (entirely) random. When the move-
ment process is observed on a short time scale, this assertion is true. How-
ever, over a longer time period BM has proven to be a good descriptor of
�sh movement (Sibert and Fournier, 2001; Jonsen et al., 2003; Nielsen, 2004;
Andersen et al., 2007). The concept of BM has di�erent interpretations depend-
ing on �eld of research and it is therefore stressed that this thesis relies on the
mathematical understanding, i.e. a homogeneous random movement in space.
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For a particle performing a BM in d dimensions, the partial di�erential equa-
tion (PDE) governing the time evolution of the probability density function (pdf )
associated to the position of the particle is given by the di�usion equation

∂φ

∂t
= D

d∑

i=1

∂2φ

∂x2
i

, (2.1)

where −∞ < xi < ∞, i ∈ [1, . . . , d] and t > 0. D is the di�usivity parameter
and φ = φ(x1, . . . , xd, t) is the pdf of the position of the particle.

The key assumption of this thesis is, that the movement of a �sh causes the
probability density of its position to evolve in time according to (2.1). It is a
deliberate choice to omit an advection (drift) term, to maintain a simple model
with a minimal parameter space. Also, it is rarely the case that the bias in �sh
movement remain constant over time and therefore it cannot be described by a
simple advection model.

The present chapter shows three interpretations of the di�usion equation. This
involves an analytical solution by Fourier transform and a discretised solution.
A �nite di�erence solution to the di�usion equation is shown to be analogous
to a discrete random walk that in turn converges to the di�usion process when
temporal and spatial steps shrink towards zero.

2.1 Analytical solution of di�usion

The general solution to the d-dimensional di�usion equation (2.1) is found by a
vectorised combination of the separated one-dimensional solutions.

The solution in the one dimensional case of (2.1), ∂φ
∂t = D ∂2φ

∂x2 , can be ob-
tained through a Fourier transform (denoted by F) of the PDE with respect to
x (Asmar, 2004). This yields

F
(

∂φ

∂t

)
= F

(
D

∂2φ

∂x2

)

⇔ d

dt
φ̂(ω, t) = −Dω2φ̂(ω, t), (2.2)

where φ̂ denotes the Fourier transformed version of φ. Equation (2.2) is an
ordinary di�erential equation (ODE) in t when ω is �xed, with initial condition
φ(x, 0) = f(x). For the solution to be a probability distribution it must hold
for the initial condition that

∫
f(x)dx = 1 and that f(x) ≥ 0 for all x.
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Fourier transform of the initial condition gives

F(
φ(x, 0)

)
= F(

f(x)
)

⇔ φ̂(ω, 0) = f̂(ω).

The general solution to the �rst order ODE, is

φ̂(ω, t) = A(ω)e−Dω2t.

The transformed initial condition is used to �nd A(ω)

φ̂(ω, 0) = f̂(ω) = A(ω),

so that the speci�c solution to (2.2) becomes

φ̂(ω, t) = f̂(ω)e−Dω2t.

Applying the inverse Fourier transform, F−1, the solution to the di�usion equa-
tion (2.1) is obtained

φ(x, t) = f(x) ∗ F−1
(
e−Dω2t

)
, (2.3)

where ∗ is the convolution operator. The second term in (2.3) can be evaluated
and gives

H(x, t) = F−1
(
e−Dω2t

)
=

1
2
√

πDt
e−

x2
4Dt . (2.4)

This is recognised as the pdf of a Gaussian distribution with mean µ = 0 and
variance σ2 = 2Dt. In PDE terminology it is known as a Gauss kernel.

The convolution operator is de�ned as the integral

f(x) ∗ g(x) =
1√
2π

∫ ∞

−∞
f(x− y)g(y) dy.

With this de�nition (2.3) is rewritten as

φ(x, t) = H(x, t) ∗ f(x) =
∫ ∞

−∞
H(x− y, t)f(y) dy.

In general this can be written

φ(x, t) = H(x, t− s) ∗ φ(x, s) =
∫ ∞

−∞
H(x− y, t− s)φ(y, s) dy, (2.5)

where φ(x, s) is the density at time s and H(x, t− s) is the kernel for the time
step t− s.
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The conclusion is that the solution to the di�usion equation (2.1) is obtained
by a convolution of the initial condition, f(x), with a Gauss kernel, H(x, t).

The closing section of this chapter shows that (2.5) is the continuous analogue
to the solution of the discrete di�usion equation.

2.2 Discrete solution of di�usion

For a PDE to be solved numerically it must be discretised in some way to allow
for implementation. There exists many ways to perform this discretisation that
all have their pros and cons. PDE problems with geometric complex bound-
ary conditions, as the one considered here (islands, bays etc.), is preferably
solved with the Finite Element Method (FEM), which is a complex but power-
ful approach (Cook et al., 2001). The �nite di�erence method (Asmar, 2004),
is numerically simpler than FEM and will su�ce as an approximation. Issues
with complex boundaries are to some extent overcome implicitly by the nature
of the problem in that the recorded depth of a DST is always below the sea
surface. This restricts the possible positions of the �sh to the sea, and serves as
pseudo boundary conditions of the problem.

To obtain the �nite di�erence scheme, the one-dimensional case of the di�usion
equation is discretised by replacing di�erential quotients by di�erence quotients

φ(x, t + k)− φ(x, t)
k

= D

(
φ(x + h, t)− 2φ(x, t) + φ(x− h, t)

h2

)
,

which is rearranged to yield the recursive equation

φ(x, t + k) = rφ(x− h, t)− (1− 2r)φ(x, t) + rφ(x + h, t), (2.6)

with
r = Dk/h2, (2.7)

where k is the time step and h denotes the spatial step.

The solution to the di�usion equation is a probability distribution which in
its nature is bounded on an in�nite domain as its integral is one. For this con-
dition to hold for the discretised equation bounds are imposed on r. The future
value φ(x, t + k) receives a contribution from the present, φ(x, t), and the two
neighbouring cells, φ(x− h, t) and φ(x + h, t). The term �cell� refers to a posi-
tion in the discrete temporal and spatial domain grid. The proportion carried
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on from each cell is limited by (1−2r) which imply that 0 < r < 0.5 and further
2Dk

h2
< 1, (2.8)

when D > 0, h > 0 and k > 0. This is also known as the stability criteria for
the �nite di�erence solution (2.6).

The time updating equation (2.6) can be written as a vector multiplication
φ(x, t + k) = [φ(x− h, t), φ(x, t), φ(x + h, t)]×H,

that gives the solution φ(x, t + k) for all x, where
H = [r,−(1− 2r), r]T , (2.9)

is a 3× 1 one-dimensional convolution kernel, the discrete analogue of (2.4).

A real data model may lead to values of h, k and D that cause the �nite di�er-
ence scheme to become unstable due to (2.8). The solution to this is to perform
several time updates within one time step, e�ectively reducing the value of k.
This corresponds to a convolution of the distribution at t with an extended ker-
nel of size (2m + 1)× 1, where m is the number time updates performed within
one time step of length k. For the case m = 1 this is equal to (2.9).

The next section views the �nite di�erence scheme from an angle of stocha-
stic processes and shows the direct link to a homogeneous random walk.

2.3 Random walk approximation to di�usion

The continuous time stochastic process that describes a particle exercising Brown-
ian motion is the Wiener process. It is characterised by having independent and
Gaussian distributed increments which Section 2.1 showed to be a property of
φ(x, t).

Results in Chandrasekhar (1943); Okubo and Levin (2002) show that the Wiener
process can be approximated by a simple random walk process

Xj =
j∑

i=1

Ui,

where Ui is the movement in one time increment, k, and has the distribution

P(Ui = u) =





r for u = −h
1− 2r for u = 0
r for u = +h

. (2.10)
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The process, Xj , is a Markov process in that it has independent increments
and P(Xj+1 = xj+1|Xj , . . . , X0) = P(Xj+1 = xj+1|Xj). A popular description
says that for a Markov process it holds that �given the present, the future is
independent of the past�, referred to as the Markov property .

The Central Limit Theorem says that when k ↓ 0 and h ↓ 0, the distribution of
Xj will be Gaussian with mean zero and variance jV(Ui) = j(2rh2) = j(2Dk)
implying

Xj ∼ N (0, 2Dt),

which is equal to the Gauss kernel of (2.4), where t = jk is the elapsed time
interval.

The prediction or time-update of the process can be found by constructing the
probability transition matrix of the process. The state space of the process is
in principle in�nite but can be written on index form where the probability to
be in state x1 at time j is denoted P(Xj = x1). This probability is determined
by using the standard rule of average conditional probability

P(Xj+1 = x1) =
∑

x

P(Xj+1 = x1|Xj = x)︸ ︷︷ ︸
transition

P(Xj = x)︸ ︷︷ ︸
distribution

. (2.11)

Equation (2.11) is equal to the �nite di�erence scheme in (2.6) when the transi-
tion probability is given by (2.10) and x1−h ≤ x ≤ x1 +h is ful�lled. The term
P(Xj = x) is the distribution at the present and is equal to φ(x, t). Finally it is
noted that (2.11) is a convolution sum and the discrete counterpart of (2.5).

2.4 Conclusion

It can be concluded that the three interpretations of di�usion presented in this
chapter lead to identical calculations and results in continuous and discrete
space, respectively. It is a powerful observation to have in mind that enables
tools from a wide spectrum of mathematical �elds to work in synergy.



Chapter 3

Filtering and estimation

Given the assumed behaviour model the movements of the tagged individual
can be predicted. The estimated geolocations are obtained by numerical �lter-
ing that is described in this chapter. The method to be presented is closely
related to already known �ltering techniques such as the Kalman �lter and
state space modelling in general (Madsen, 2001), but relaxes their requirement
of Gaussianity. The �ltering problem is put into the framework of a hidden
Markov model (Cappé et al., 2005). The principle is sketched in Figure 3.1.

X
j−1

X
j

X
j+1

Y
j−1

Y
j

Y
j+1

Figure 3.1: Sketch of the hidden Markov model. X - hidden states (geolocations),
Y - observable outputs (depths).

The geolocation of the �sh is considered as the hidden state, written Xj . The
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observed depth record from the DST is the output from the model, marked with
Y in Figure 3.1. The objective is to process (�lter) the observed output to gain
estimates of the hidden states and their distribution.

3.1 Estimated positions

The �lter works as a recursive process that relies on successive predictions and
reconstructions of the position, Xj . A short-hand notation for the observations
up to time τj is

Yj = [Y0 = y0, . . . , Yj = yj ]T ,

where y0 is the observations related to day j (see also Section 1.6). The �lter
is initialised with the equation

P(X0 = x|Y0) =
{

1 for x = x†
0 for otherwise ,

where x† is the release position that here is assumed to be known without
uncertainty.

3.1.1 Prediction

The prediction step attempts to �nd P(Xj+1 = xj+1|Yj), i.e. the probability
of the position at the next time point given all preceding observations.

Using (2.11) and applying the Markov property, it is found that

P(Xj+1 = xj+1|Yj) =
∑
x

P(Xj+1 = xj+1|Xj = x,Yj)P(Xj = x|Yj)

=
∑
x

P(Xj+1 = xj+1|Xj = x)P(Xj = x|Yj). (3.1)

This step is also called the time-update of the states or the one-step prediction.
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3.1.2 Reconstruction

Whenever a new observation, yj+1, is introduced a reconstruction is performed
of the position using Bayes' rule

P(Xj+1 = xj+1|Yj+1)

= P(Yj+1 = yj+1|Xj+1 = xj+1,Yj)
P(Xj+1 = xj+1|Yj)
P(Yj+1 = yj+1|Yj)

. (3.2)

This step is also referred to as the data-update. After the reconstruction, the
geolocation is conditioned on all preceding observations and the present one,
yj+1.

In practice, the term P(Yj+1 = yj+1|Yj) can be considered a normalisation
constant and (3.2) is reformulated as

P(Xj+1 = xj+1|Yj+1)
= ψj+1 · L(Yj+1 = yj+1|Xj+1 = xj+1)P(Xj+1 = xj+1|Yj), (3.3)

where L(Yj+1 = yj+1|Xj+1 = xj+1) is the unnormalised conditional probability
of the observation given the position, henceforth (for convenience) known as the
likelihood for the observation given the position or �observational likelihood�.
The one-step prediction error, ψj+1 = P(Yj+1 = yj+1|Yj)−1, is equal to the
normalisation constant that ensures that the probability of the whole outcome
space sums to one.

3.2 Smoothed positions

A thorough presentation of the smoothing step is given as it is rarely considered
on this form in the literature. The aim is to �nd the distribution of Xj condi-
tioned on all observations, i.e. P(Xj = xj |YN ).

First consider the random variables A, B and C. Their dependence relations
are sketched in a Directed Acyclic Graph (DAG), see Figure 3.2.

A B C

Figure 3.2: Directed Acyclic Graph for the independence relations between A,
B and C. A and C is seen to be conditional independent given B, this is a
consequence of the Markov property.
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For clarity is introduced the notation P(·) meaning the probability of � ·�. Ac-
cording to Wasserman (2005) the Markov chain sketched in Figure 3.2 implies
the following independence relations

P(A = a|B, C) = P(A = a|B),

i.e. A and C are conditionally independent given B. Now the smoothing equa-
tion can be found

P(A = a|C) =
∑

b

P(A = a,B = b|C)

=
∑

b

P(A = a|B = b, C)P(B = b|C)

=
∑

b

P(A = a|B = b)P(B = b|C) (cond. independence)

=
∑

b

P(B = b|A = a)
P(A = a)
P(B = b)

P(B = b|C) (Bayes' rule)

= P(A = a)
∑

b

P(B = b|A = a)
P(B = b|C)
P(B = b)

. (3.4)

The sketch in Figure 3.3 seeks to give a more intuitive interpretation of (3.4)
as an update from P(A = a,B = b) to P(A = a,B = b|C) by multiplication
with the ratio between the marginal of B, with and without the new informa-
tion C. This is only valid due to the conditional independence of A and C given
B. Summing over B in P(A = a,B = b|C) then yields the desired P(A = a|C).

To accomplish the aim of this section de�ne

A = Xj .

B = Xj+1.

C = [Yj+1 = yj+1, . . . , YN = yN ]T .

P(·) = P(·|Yj),

where �·� means not explicitly stated variables. It is noted that P(A = a|C) =
P(Xj = xj |YN ), which is the objective of this �ltering step.

Applying the new de�nitions to (3.4) gives the smoothed estimate

P(Xj = xj |YN )

= P(Xj = xj |Yj)
∑
xj+1

P(Xj+1 = xj+1|Xj = xj)
P(Xj+1 = xj+1|YN )
P(Xj+1 = xj+1|Yj)

. (3.5)

The result is interpreted as the reconstruction, P(Xj = xj |Yj), at time τj mul-
tiplied by a time-update backwards in time of the ratio between the smoothed



3.3 Likelihood estimation 23

P(A = a)

P(B = b)

P(A = a,B = b)

P(A = a|C)

P(A = a,B = b|C)

P(B = b|C)

P(A = a,B = b)P(B=b|C)
P(B=b) = P(A = a,B = b|C)

rescaling

Figure 3.3: A sketch of how the distribution of A given C is obtained. The
joint distribution of A and B conditioned on C is given by a rescaling of the
joint distribution of A and B with the new information, C, via the marginal
distribution of B as indicated by the arrows. Summing over B in the conditional
joint distribution gives the marginal of A given C as wished.

position, P(Xj+1 = xj+1|YN ), and the predicted position, P(Xj+1 = xj+1|Yj)
at the time τj+1. The symmetric transition matrix, according to (2.10), implies
that forward and backward updates are identical calculations. The result of
(3.5) is often referred to as the marginal posterior distribution of Xj = xj given
YN .

The recursive scheme is initialised with the �nal reconstruction estimate, that
is also a smoothed estimate, in that it is conditioned on all observations

P(XN = xN |YN ).

The smoothing step is very important for weeding out geolocated dead ends
from the reconstruction step and generally makes the position estimates much
more precise.

3.3 Likelihood estimation

The model may contain several parameters relevant for estimation e.g. the dif-
fusivity, D, related to the swimming speed of the �sh. Others may be vari-
ance parameters in the determination of the observational likelihood, L(Yj =
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yj |Xj = xj).

The parameters, subject to estimation, are denoted by θ and are assumed to
remain constant in time. Hence, the likelihood is given by the joint pdf of the
observations, YN (Brockwell and Davis, 1987; Shumway, 1988). This is found
by recursive use of the standard formula P(A,B) = P(A|B)P(B) for events A
and B. The likelihood for θ is a function of the observations, YN , and becomes

L(θ; YN ) = P(YN = yN |YN−1; θ) · . . . · P(Y0 = y0; θ). (3.6)

The terms of (3.6) is recognised as the denominator of (3.2) and is therefore
regarded as the reciprocal of the normalisation constant, ψj , in (3.3). Hence
it is concluded that maximising the likelihood for θ is equal to minimising the
one-step prediction errors. The likelihood value for θ is therefore given by

L(θ; YN ) =
N∏

j=1

1
ψj

.

This result is very convenient, in that the likelihood for θ is implicitly calcu-
lated in the �ltering process and does not require further computation. For
parameter estimation in practice it is convenient to work with the logarithm of
the likelihood function (the log likelihood function) de�ned as

`(θ; YN ) = logL( θ; YN ).

This avoids the numerical problems associated to the very small numbers in the
computation of (3.6).

The maximum likelihood estimate (MLE), θ̂, of θ, is a function of the ob-
servations and is de�ned as

θ̂ = arg max
θ

`(θ; YN ).

Asymptotically, θ̂ is unbiased, e�cient (smallest variance) and Gaussian dis-
tributed. Further description of the ML estimation technique and its properties
is found in e.g. Rao (1965).

3.4 Sampling a random track

Evaluating the geolocation result solely based on the marginal posterior dis-
tributions, given by (3.5), does not su�ce for a complete description. In this
context, sampling a track from the joint posterior distribution of all positions,
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is a relevant supplement that will aid in assessing the possible routes of the �sh.
A track from the joint posterior distribution may reveal information that is not
immediately evident from the marginal posterior distributions.

Formally the joint posterior distribution for all positions (often referred to
merely as the joint posterior distribution) is de�ned as

P(ξ|YN ), (3.7)

where ξ = [X0 = x0, . . . , Xj = xj ]T denotes a track given by the positions at
all time steps.

Sampling from the joint posterior distribution is done recursively by apply-
ing Bayes' rule. The sampling scheme runs backwards in time, initialised by
sampling the terminal position at τN from the distribution

P(XN = xN |YN ),

and thereby obtaining xs
N , the sampled terminal position.

The position preceding τj+1 is sampled from

P(Xj = xj |YN , XN = xs
N , . . . , Xj+1 = xs

j+1).

This can be rewritten by applying theMarkov property and Bayes' rule to obtain

P(Xj = xj |YN , XN = xs
N , . . . , Xj+1 = xs

j+1)

= P(Xj = xj |Yj ,Xj+1 = xs
j+1)

= P(Xj+1 = xs
j+1|Xj = xj)

P(Xj = xj |Yj)
P(Xj+1 = xs

j+1|Yj)
. (3.8)

The formula (3.8) uses the reconstruction, P(Xj = xj |Yj), and updates it with
the information of the previous (in an iterative not temporal sense) sample
point P(Xj+1 = xs

j+1|Xj = xj). The term, P(Xj+1 = xs
j+1|Yj), is considered

a normalisation constant in the implementation that makes the distribution
sum to one. The Markov assumption is essential to this sampling method that
would otherwise require a more complex simultaneous sampling from the joint
distribution.

3.5 Finding the Most Probable Track

Another perhaps more interesting representation of the joint posterior distribu-
tion is the Most Probable Track (MPT). Previous studies employing the Kalman
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Filter (Sibert et al., 2003) or particle �lter technique (Nielsen, 2004) have sug-
gested using a track that connects the conditional mean of all time steps. In
the linear framework of the Kalman �lter, the choice is rational. However, the
potential multi modal distributions of a particle �ltering can produce erroneous
tracks in a nonlinear environment, possibly locating the most probable position
on dry land. An environment is termed �nonlinear� if it contains islands or
shores that cause the Gaussianity assumption to be violated.

The joint posterior distribution is given by (3.7). The mode in this distri-
bution is de facto the most probable of all possible tracks in the outcome
space and entitled the Most Probable Track. The non-trivial task of �nd-
ing this track is solved by application of the Viterbi algorithm (Viterbi, 1967;
Viterbi, 2006). The algorithm was developed for information theory and deep
space communication and have found wide applications most prominently in
speech recognition. It was later shown to be a computationally e�cient tech-
nique for determining the most probable sequence in a hidden Markov model
(Forney, 1973).

As it is a novel approach to track estimation in a geolocation context, the
technique is here presented in some detail.

A track ending at a given position x̃ at time τj , is written

ξ(x̃j) = [X0 = x0, . . . , Xj = x̃j ].

Furthermore the branch metric is de�ned

B(xj−1, xj ;yj) = P(Xj = xj |Xj−1 = xj−1)︸ ︷︷ ︸
transition probability

L(Yj = yj |Xj = xj)︸ ︷︷ ︸
observational likelihood

,

as a product of the likelihood for the observation yj , given the new position xj

and the transition probability for jumping from xj−1 to xj .

A likelihood measure for a track is de�ned as

L[ξ(x̃j)] = B(xj−1, x̃j ; yj)
j−1∏

k=1

B(xk−1, xk;yk),

which is proportional to the probability of ξ(x̃j).

The state metric at a position, x̃ at time τj , is given by

S(x̃j) = max
exj

L[ξ(x̃j)],

meaning the likelihood of the most probable track leading to x̃j .
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As a consequence of the Markov property the maximisation can be done re-
cursively

S(x̃j) = max
exj−1

{S(x̃j−1)B(x̃j−1, x̃j ; yj)}.

The algorithm sequentially �nds the current state metric by maximising the
product of the previous state metric and the attached branch metric. For all x̃j ,
S(x̃j) contains the likelihood of the most probable track leading to x̃j . Logging
the most probable track, in each recursion, for each x̃j is a simple way to obtain
the Most Probable Track, ξ̂. The track leading to x̂N = arg maxxN S(xN ) is
ξ̂.
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Chapter 4

Geolocation of simulated
�sh

Before applying the �lter methods described in Chapter 3 to a real dataset, the
performance of the method is investigated in a simulation study. Emphasis is
put on clari�cation of bias and uncertainty on the parameter estimation of D.
The track representation of a geolocation result is evaluated by determining a
mean track, a mode track and the Most Probable Track according to Section 3.5.

The simulation model is not an attempt to make an entirely realistic model
of reality, it is merely a mean to assess and illustrate the properties of the
�ltering technique.

4.1 Construction of the model

The simulated geolocation will rely on depth measurements in an arti�cial do-
main. Environmental variables such as light, temperature and tidal information
add a complexity to the model that is unwanted in this simulation and are
therefore not included.
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4.1.1 Bathymetry

The domain is constructed in close resemblance to the bathymetry of a real
life situation e.g. with islands and varying depth gradient in order to achieve a
non-trivial simulation.

The arti�cial lake that is used for most simulations is constructed in Mat-
lab based on the surface created by the command peaks. This is modi�ed by
means of simple arithmetic operations to become a lake as shown in Figure 4.1.
The lake is discretised with 101× 101 grid points.

Figure 4.1: Bathymetry for simulation.

The domain contains three small islands that serves as a test for the handling of
nonlinearities. The lake has very shallow areas close to the border of the domain
and deeper areas near the middle. These gradients in depth and their e�ect on
the uncertainty of the geolocation will be revealed from this bathymetry as well.

4.1.2 Simulation of random walk in the domain

The movement model for the �sh is a two dimensional homogeneous random
walk with transition probabilities according to (2.10) for each coordinate di-
rection. The value of r is assumed to be constant in time. With this scheme
each coordinate can maximally increase with h over a time step of k. For this
simulation, the values of the increment parameters for time and space are for
simplicity de�ned as

k = 1,

h = 1.
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The nonlinearities of the domain such as islands must be accounted for in the
random walk simulation as it is not allowed for the �sh to go ashore. This is
handled by rejection sampling of the position.

4.1.3 Model for depth measurements

The �sh is assumed to be demersal (at the sea bed) at all times resulting in an
observed depth

Zj = Dj + Ej ,

where Dj is the true depth extracted directly from the bathymetry at the simu-
lated position, and Ej is the measurement error that is uniformly distributed
with zero mean and range [−δ; +δ].

Figure 4.2 shows an example of a simulated time series of depth measurements
with δ = 2.
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Figure 4.2: Example of a simulated time series of depth measurements and the
true depth. Note that the axes have no unit as they are measured in the standard
space and time units h and k respectively.

4.2 Likelihood estimation of D

An in�uential parameter of the simulation model is the di�usivity, D. It is
related to the maximal swimming speed of the �sh and generally adds to the
understanding of the behaviour of the species. This �biomarker� may enable
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direct comparison of individuals.

The performance of the ML estimator is evaluated with respect to the following
subjects.

� Validity of the likelihood ratio con�dence interval for D, i.e. is the likeli-
hood function of D behaving according to theory?

� Bias on the ML estimator via a t-test of empirical mean.

� Empirical standard deviation and the standard deviation of a single esti-
mate computed from the Fisher Information via an F -test.

From the simulation model, 100 estimates of D were generated and used as
dataset for the tests. The estimates were generated based on 500 step simula-
tions with an observation uncertainty of δ = 4.

In the remainder of this section the short notation `(D) is used instead of
`(θ; YN ), where θ = D.

4.2.1 Likelihood Ratio tests

For each of the 100 estimates, a 95% con�dence interval is constructed based on
a Likelihood Ratio Test (Wasserman, 2005). The test is de�ned with the two
hypotheses

H0: D0 = D̂, versus H1: D0 6= D̂,

where D0 is the hypothesised (true) value of D, and D̂ is its ML estimate. The
likelihood ratio test statistic is computed in the following way

ZLR = 2`(D̂)− 2`(D0). (4.1)

Under H0, ZLR is asymptotically χ2-distributed with one degree of freedom (one
parameter). Based on (4.1) it is possible to create a 95% con�dence interval for
the parameter D

χ2
0.95(1) = 2`(D̂)− 2`(D0)

⇔ `(D0) = `(D̂)− 0.5χ2
0.95(1). (4.2)
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Figure 4.3: Example of a negative log-likelihood function for the di�usivity pa-
rameter D.

Equation (4.2) has two solutions for D0 which can be seen graphically in the
example in Figure 4.3, where a line is drawn at the likelihood value of (4.2).

For this example the true value, D = 0.145, is inside the con�dence limits
and consequently H0 cannot be rejected.

4.2.1.1 Conclusion to Likelihood Ratio tests

The test was conducted by simulating 100 con�dence intervals for D. Analysis of
the results showed that 6 did not contain the true value of D. According to the
signi�cance level, α = 0.05, it was expected that 5 of the 100 tests rejected H0.
The deviation from the expected number is small and acceptable for application
purposes. No strong evidence of bias in the ML estimator could be found.

4.2.2 Test of empirical mean

The 100 estimates were evenly distributed around the empirical mean of 0.14533
which is shown in a histogram in Figure 4.4. The asymptotic Gaussianity of the
ML estimate calls for a t-test (Madsen and Holst, 2000) to assess whether it can
be rejected that the empirical mean of D = 0.14533 is equal to the true value
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Figure 4.4: Histogram of 100 simulated estimates of D.

D0 = 0.145. The problem is formulated as hypotheses

H0: D = D0, versus H1: D 6= D0,

The test statistic is
Zt =

D −D0

s/
√

n
= 0.1609,

where s is the empirical standard deviation and n = 100 is the number of
estimates. The critical region at the α = 0.05 level of signi�cance is {zt <
−1.984 ∨ zt > 1.984} implying that H0 can not be rejected.

This test result shows that there is no provable indication of bias on the ML
estimate of D.

4.2.3 Test of empirical variance

The variance of D̂ is determined in two ways. By the inverse of the observed
Fisher information of D̂, and by computing an empirical variance of the results
from numerous repetitions of the estimation procedure. The latter method is
the de�nition of the variance concept and therefore converges to the true vari-
ance as the number of repetitions approach in�nity. For the parameter D, the
observed Fisher information corresponds to the second derivative (curvature) of
the likelihood function. Comparison of this variance estimate with the empirical
is done in an F -test (Madsen and Holst, 2000) with the hypotheses
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H0: s2 = s̃2, versus H1: s2 6= s̃2,

where s2 is the empirical variance of the 100 estimates of D and s̃2 is the mean
of the individual variance estimates, s2, of D.

The test statistic for the F -test is given by

ZF =
s2

s̃2
,

that under H0 has the distribution ZF ∼ F (99,∞).

With the estimated values s2 = 0.020262 and s̃2 = 0.018732 the test statis-
tic becomes

ZF = 1.1701.

H0 is rejected at a α = 0.05 level of signi�cance if ZF is in the critical region:
{zF < 0.769 ∨ zF > 1.30}. The test statistic proves to be insigni�cant hence it
can not be rejected that the two variances are equal.

This result is taken as argument for using the Fisher information to estimate
the variance of D̂ in cases where it is needed.

4.3 Experimenting with the model

The �lter is implemented in the Matlab v. 7.0 software package with emphasis
on functionality and ease of implementation rather than speed.

4.3.1 Brownian bridge

Validation of the simulation is done by considering a simple situation without
observations of depth

YN = [x†, x‡]T . (4.3)

For this situation the resulting joint posterior distribution can be computed
analytically and is known as a Brownian bridge.

It is known that the position, Xj , of a �sh performing Brownian motion in one di-
mension given the initial position x0, has a Gaussian distribution, N (x0, 2Djk),
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according to (2.4). The recapture position, XN , must then have the distribu-
tion N (x0, 2DNk). The conditional distribution of Xj given XN is obtained by
conditioning in the joint distribution of the two, which is

[
Xj

XN

]
∼ N

([
x0

x0

]
,

[
2Djk 2Djk
2Djk 2DNk

])
,

where Cov(Xj , XN ) = Cov(Xj , Xj + (XN − Xj)) = Cov(Xj , Xj) = 2Djk be-
cause Xj is disjoint from Xj −XN and therefore Cov(Xj , XN −Xj) = 0. The
parameters in the conditional distribution becomes

E(Xj |XN ) =x0 +
j

N
(XN − x0), (4.4)

V(Xj |XN ) =2Djk

(
1− j

N

)
, (4.5)

according to standard formula for conditioning in a Gaussian distribution. The
conditional of a Gaussian distribution is also Gaussian so Xj |XN is Gaussian dis-
tributed with mean given by (4.4) and variance given by (4.5), when 0 ≤ j ≤ N .

A simulation of the brownian bridge with N = 1000 yielded the result shown in
Figure 4.5.

Figure 4.5: The simulation behaves as a Brownian bridge when the depth is
equal over the domain. The color map denote the probability of the position.
Blue is least probable, red is most probable. Green triangle: release position.
Red triangle: Recapture position. Yellow circle: The simulated position at the
current time point.

The simulation results follow the analytical, with the mean moving linearly
from the release position to the recapture position. The variance increases until
j = 0.5N where it tops and afterwards reduces to zero at j = N .

This example illustrates the importance of the smoothing step. In general,
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a solution consisting of predictions relying purely on past observations is not
constrained by the recapture position and becomes signi�cantly more uncertain
in time.

4.3.2 Tracks

This subsection presents and evaluates the various tracks that may be used to
illustrate the result of a geolocation. The tracks considered are

� A track connecting the mean of the marginal posterior distributions at
each time instant, termed a mean track.

� A track connecting the mode of the marginal posterior distributions at
each time instant, termed a mode track.

� The Most Probable Track.

These are compared to the true simulated track. A high di�usivity was chosen,
to simulate an active �sh.

4.3.2.1 Brownian bridge

A simulation of 25 steps on a �at bathymetry (equal depth over domain) was
performed, along with an estimation of the mean track and the MPT. The
observation vector reduces to (4.3) as depth measurements hold no useful infor-
mation (no depth gradient in bathymetry). The estimated posterior distribution
behaves as a Brownian bridge as in Subsection 4.3.1.

The mean track, shown in Figure 4.6, follows for each coordinate the theo-
retical expression in (4.4), simply a straight line from the initial position to the
terminal position.

In this example there exists many tracks that have the highest obtainable pro-
bability. Figure 4.6 shows one of the possible MPTs arbitrarily chosen by the
algorithm. In this case rounding the mean track to closest integer coordinates
also gives a MPT. All tracks, having 4 positive jumps in the x1-direction, 2 nega-
tive in the x2-direction and 19 zero jumps, have equal probability and are MPTs.

This test con�rms that the Viterbi algorithm �nds a track that, due to the
simplicity of the problem, is known to be a MPT.
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Figure 4.6: Simulation result of a random 25 step track on a �at bathymetry
along with estimated mean track and MPT.

4.3.2.2 Linear environment

A track of 200 steps was simulated on the peaks bathymetry and plotted in
Figure 4.7 along with the estimated mean track, mode track and MPT. The �sh
movement is only moderately in�uenced by the islands resulting in a track that
is well estimated by all three estimators. It is noted however that the mode
track occasionally shows an excessive erratic behaviour in contrast to the mean
track that mostly has small jumps.

4.3.2.3 Nonlinear environment

The second simulation generated a 250 step track of a �sh swimming in a non-
linear environment, see Figure 4.8. Very conspicuous is the behaviour of the
mean and mode track that yield erroneous estimates when the �sh swims close
to the island. At the website, www.student.dtu.dk/∼s002087 and on the en-
closed CD-ROM, is shown the �Animated Marginal Posterior Distribution� for
this simulation. When inspecting an AMPD it should be borne in mind that the
color scale is not constant in time. The bimodal distributions of the marginals,
result in the mode track jumping between two competing suprema repeatedly,
causing the estimated track to move across the island. The mean track esti-
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Figure 4.7: Estimated tracks for a simulated �sh (200 steps) with little in�uence
from islands. All track estimates are quite accurate and follows the general trend
of the simulated track.

mates the �sh to be located on the island and proves to be very misleading in
a nonlinear environment. The MPT follows the general trend of the simulated
track.

Sampling of 1000 random tracks from the joint posterior distribution gave the
estimate that the �sh moved east of the island with 64% probability. It is
questions of this type that a sample of multiple random track can clarify.

4.3.3 In�uence of δ

The uncertainty of the observations is one of the main in�uences on the uncer-
tainty of the geolocation. This is illustrated in Figure 4.9.

The variance of the distribution clearly diminishes as δ decreases. At δ = 0.1
the position of the �sh is known without uncertainty except for the resolution of
the discretisation. The e�ect is especially evident in the top row of Figure 4.9,
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Figure 4.8: Estimated tracks for a simulated �sh (250 steps) swimming near an
island. The mean track estimates positions on dry land, the mode track indicates
crossing dry land, whereas the MPT shows a likely general trend.

where the �sh is swimming in a shallow area with little variation in the sea �oor
depth. This is contrary to the bottom row where quite precise geolocations are
obtained even for large δ.

The results con�rm what is fairly intuitive and stress that the power of the
geolocator (depth observations) depends on its spatial gradient in the domain.
When the data collection is planned this is an important note to keep in mind,
especially for choice of DTS type. Areas such as the Baltic Sea contains large
gradients of salinity but almost no tidal variation, in contrast to the North Sea
that has the opposite properties.

4.4 Conclusion summary of simulation study

The simulation study illustrated several important aspects of the �lter and es-
timation procedure.

The Brownian bridge example showed the importance of the smoothing step
and how it restrains the uncertainty of the geolocation considerably. The max-
imum likelihood estimation of D could not be proved to be biased. This was
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Figure 4.9: Simulation of 500 steps here shown at j = 250 with various values
of δ = [0.1, 2, 5, 10]. Explanation of markers: Green: Release position, Yel-
low: Position at time of geolocation, Red: Recapture position. Top row shows
the geolocation in a shallow area (little depth variation) near the border of the
domain. The bottom row shows the geolocation near a larger depth gradient.

concluded based on 100 likelihood ratio tests of D̂ and in a t-test of the empirical
mean. The empirical variance of the 100 parameter estimates and the variance
on single estimates computed from the observed Fisher information showed con-
currence in an F -test. Finally the track comparison indicated that the MPT is
the most rational representation of the joint posterior distribution compared to
a track of the mean or mode of the marginal posterior distributions.
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Part II

Geolocation of North Sea �sh





Chapter 5

Introduction to tidal based
geolocation

The method of tidal based geolocation relies on the spatial variation in tide.
The complex amphidromic system of the North Sea make up an environment
well-suited for this method. The North Sea habitat is described in Section 5.1.

The other main requirement for tidal based geolocation is a depth record from a
DST. It is essential that the �sh of interest is a demersal species that habitually
visits the sea bed for a longer period of time (several hours). Being stationary
causes the mounted DST to record the oscillating depth following the tidal vari-
ations of the sea thereby identifying its position. Description of the DSTs used
for this study is given in Section 5.2

In short the technique compares the observed tidal signal from the DST with a
prediction at a given position computed by a numerical model. The quality of
the �t between the two signals decides the likelihood for the observation given
this position. This allows for a rather unique determination of the position. The
method is elaborated in Chapter 6.

The DST datasets and environmental databases for this study were provided by
CEFAS. The time series considered in the thesis are plotted in separate Matlab
fig-�les located on the enclosed CD-ROM.
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Important notice: The �les on the CD-ROM are not to be distributed without
permission from CEFAS.

5.1 Habitat of the North Sea

Geolocation relies on gradients in environmental variables measured by the DST.
The amphidromic system of the North Sea has proven to be a very powerful
geolocator because of the great variations in tide especially near the English
channel.

The North Sea is somewhat shallow, with depths in the range 30-70 m in most
places. Slightly deeper areas are located to the north with depths in the range
150-200 m, see Figure 5.1 top left. Though the overall depth range is moderate
some areas contain signi�cant local variations with holes of e.g. 75 m in other-
wise shallow areas. These areas make up great environments for �sh to reside
and therefore obvious places to do commercial �shing.

In contrast to the Baltic Sea, tidal variations are very pronounced in the North
Sea and especially in the English Channel. The tidal wave originates in the
Atlantic Ocean by the gravitational drag of the moon and sun and propagates
through the English Channel and north of the British Isles into the North Sea.
The tide has the largest amplitude near the shores and in bays and gulfs, indi-
cated in Figure 5.1 bottom left. The bathymetry of the North Sea (including
coast lines) results in a tidal system with two amphidromic points that are lo-
cated in the south and eastern parts of the sea, see Figure 5.1 bottom right or
left. These are areas where almost no tidal variation occurs.

Another important environmental variable of the North Sea is the temperature
that shows much temporal and spatial variation. The shallow areas are subject
to the largest temperature range over a year whereas the deep areas have only
minor variations at the sea bed level. In the winter period the water column is
mixed with a constant temperature in the range 6-9◦C. In the summer months
a vertical gradient exist with 6-9◦C at the sea bed and up till 25◦C at the sea
surface near the shores.
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Figure 5.1: Habitat of the North Sea. Top left: Bathymetry of the North Sea.
Top right: Sea bed temperature the 18th of July 2001 in ◦C. Bottom left: Ampli-
tude of the M2 tidal constituent i metres. Bottom right: Phase of the M2 tidal
constituent in radians.

5.2 Data Storage Tags

It has within the last 10-15 years become possible to construct DSTs in a size
that can satisfactorily be applied to �sh of length 50-70 cm, such as cod. There
exists at this point various types of DSTs. The ones used by CEFAS to create
the data analysed in this thesis are listed here in a short summary. In Figure 5.2
is shown examples of the tags.

5.2.1 Star-oddi centi

Manufactured by Star-Oddi. Due to its size is most suited for external tagging.
Dimensions are 46× 15 mm (length× diameter) and weighs 19 g in air and 12 g
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in water. The resolution of depth measurements on the tag depends on its full
measuring range but lies at approximately 0.03-0.075 m. The accuracy of the
measured depth is ±(0.4-1) m. The temperature range is −1◦C to 40◦C with a
resolution of 0.032◦C and an accuracy of ±0.1◦C.

5.2.2 Star-oddi milli

Manufactured by Star-Oddi. Somewhat similar to Star-oddi centi but smaller.
Can be used for both internal and external tagging. Dimensions are 38.4× 12.5
mm (length× diameter) and weighs 9.2 g in air and 5 g in water. The resolution
of depth measurements on the tag depends on its full measuring range but lies at
approximately 0.03-0.09 m. The accuracy of the measured depth is ±(0.4-1.2)
m. The temperature range is −1◦C to 40◦C with a resolution of 0.032◦C and
an accuracy of ±0.1◦C.

5.2.3 LTD 1200 (Mk3C)

An older tag from 2001 at the time manufactured by LOTEK but now by CEFAS.
Dimensions are 57× 23 mm (length× diameter) and weighs 17 g in air and 1.8
g in water. The resolution of depth measurements on the tag is approximately
0.05 m. The accuracy of the measured depth is ±1 m. The temperature range
is 0◦C to 30◦C with a resolution of 0.05◦C and an accuracy of ±0.1◦C.

Figure 5.2: Various types of DSTs used for geolocation. Left: Star-oddi centi,
Center: Star-oddi milli, Right: LDT 1110 (similar to 1200).

Experience with the various tags say that the accuracy of the tag should be
interpreted as a bias on the measurements that is �de�ned� when the tag is
manufactured. This bias is constant for the life time of the tag and the only
uncertainty of the tag lies in its resolution.

Examples of depth measurements from a DST is shown in the following chapter
in Figure 6.1.



Chapter 6
Statistical analysis of depth

record

This chapter explains how the observational likelihood is obtained from the DST
depth record. The subject has many aspects that are decided upon based on
objective statistical analysis when possible.

Recall from Section 3.1 that the observational likelihood is written as

L(Yj = yj |Xj = xj),

that is the likelihood of observing yj given the position xj . The evaluation of
the likelihood varies depending on the type of information found in the depth
record at the time point, τj . Either the �sh rests at the sea bed and records
a tidal signal or it performs a behaviour that does not record a tidal signal of
su�cient quality. In Section 6.1 details are given as to how tidal information
in the depth record is detected and extracted. This results in a classi�cation
algorithm for the entire set of depth observations.

When the depth record has been successfully classi�ed into tidal/non-tidal in-
tervals, the observational likelihood can be determined. For the case �tidal
information available� the observations Yj = yj is assumed to follow an m-
dimensional Gaussian distribution

Yj ∼ Nm

(
ẑj(xj),Σ(xj)

)
, (6.1)
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where m is the number of observations, ŷj(xj) is the database prediction and
Σ(xj) is the covariance matrix at the position xj . Section 6.2 describes how the
database prediction of the tide given the position is calculated. The structure
of the covariance matrix is estimated by analysis of separate contributions in
Sections 6.3, 6.4 and 6.5. More speci�cally, Section 6.3 deals with white noise,
Section 6.4 assesses the database resolution error and Section 6.5 investigates
the error that arise from small scale movements of the �sh.

The results are summarised in Section 6.6 which explicitly states how the ob-
servational likelihood is determined for observations with or without tidal infor-
mation.

6.1 Extraction of tidal information from data

Many aspects must be taken into consideration as to how tidal information can
be extracted e�ciently from the measured time series of pressure. The charac-
teristic wave form caused by the tide is relatively easy detectable by eye, see
Figure 6.1, but comes in many forms varying both across the life of a single
individual and between individuals.

Figure 6.1.1 shows a smooth tidal signal where the �sh is resting at the sea
�oor for a longer period without any disturbances. For cod, a tidal signal this
clean is rarely seen for periods longer than 24 hours.

In Figure 6.1.2 the tidal signal is very evident but perturbed with noise possibly
due to small scale foraging behaviour. This type of disturbances can also be due
to environmental conditions such as storms or currents.

Figure 6.1.3 shows a stationary �sh that occasionally makes small excursions
up into the water column either for foraging or in some cases for relocation in
the surroundings.

Figure 6.1.4 is a more extreme version of Figure 6.1.3, where the cod is active
during the night time and rests in the daylight period. This kind of behaviour
is also noted in Righton et al. (2000). The behavioural pattern could also be an
indication of tidal stream transport where the �sh swims along the tidal wave
and obtains a swimming speed that would not otherwise be possible.

A time series of depth is written z = [z0, . . . , zn] (depth measurements are
given by the negative water column height) corresponding to the time vector
t = [t0, . . . , tn]T . The examined data were sampled at varying rates but all
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Figure 6.1: Some types of tidal information all found in tag #2255. See text for
description.

converted to the standard sample rate of 10 minutes i.e.

ti+1 − ti = 10 minutes,

which is used throughout the remainder of the thesis if not stated otherwise.

6.1.1 De�nition of the applied linear model

Creating an e�cient algorithm that can detect and extract all types of tidal
information is an extensive signal processing and curve �tting task that exceeds
the scope of this thesis. Instead a simple method with reasonable e�ciency is
chosen inspired by the one described in Hunter et al. (2003).

A set of observations, zi = [zi, . . . , zi+m], is extracted from z. The observa-
tions are assumed to follow a linear model on the form

Zi = wiβi + Ei, (6.2)
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where Ei is a Gaussian white noise error, βi = [ai bi ci]T is the parameter vector
and

wi =




1 cos(ωti) sin(ωti)
...

...
...

1 cos(ωti+m) sin(ωti+m)


 , (6.3)

is the design matrix where ω is the angular frequency. The value of ω is in
principle unknown and time dependent because zi is a superposition of all tidal
constituents that have varying frequencies. It is here assumed that ω = 12.14
rad/day, equal to the angular frequency of the dominating tidal constituent,
M2. See Section 6.2 for explanation of tidal constituents.

The maximum likelihood estimate of βi is found by solving the normal equations

β̂i = (wT
i wi)−1wT

i zi.

The model �t yields various summary statistics that can be used to evaluate if
the model matches the data and is suited for geolocation.

The extraction procedure iterates by sliding a window of m data points across
the data and collecting for each ten minute interval the relevant summary sta-
tistics. With this information, appropriate criteria can be set up in order to
determine intervals where the �sh has dwelled at the sea bed. If the interval is
accepted as a tidal signal, it is stored and used later for comparison with the
database prediction. It is crucial that the tidal extraction algorithm does not
falsely identify a tidal signal as this will lead to very wrong geolocations and
maybe even terminate the process.

The value of m has great in�uence on the performance of the algorithm. Cod
are rarely at the sea bed for a straight 24 hour period and even an m-value of
108 (18 hours) is probably too long for most cod and will certainly miss some
intervals with tidal data. On the other hand a too short interval has a higher
probability of misclassi�cation and therefore large uncertainties will be attached
to intervals of correctly classi�ed tidal information.

After some experimentation it was found that m = 60 was a good choice of
interval length, corresponding to 10 hours.

6.1.2 Classi�cation of depth record

The following three summary statistics were used to classify the recorded signal
in intervals that contained a tidal pattern and in ones that did not contain a
tidal pattern.
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6.1.2.1 The standard error of the �t

This is the root mean square of the residuals (rmse) given by

S =

√√√√ 1
m− p

i+m∑

k=i

(zk − ẑk)2,

where p is the number of estimated parameters, in this case p = 3 and wiβ̂ =
[ẑi, . . . , ẑi+m] is the prediction of zi. This parameter measures the deviation
between the observed and �tted curve, and will be large if the observed data
does not conform to a sine wave.

The unit of S is that of zi and therefore S dependents on the magnitude of
the tidal range in zi that varies over z because of the phenomena high high
tides and low high tides. These are results of the shifting positive and negative
interference between the many tidal constituents. It is therefore di�cult to de-
�ne a limit value for S that in all cases e�ectively separates a tidal signal from
a non-tidal signal. An example of a classi�cation based only on S is shown in
Figure 6.2.
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Figure 6.2: Examples of tidal classi�cation. Green intervals have a rmse below
the limit 0.42 m. Left: Tidal information correctly classi�ed n. Right: Tidal
information falsely classi�ed. Both from tag #2255.
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6.1.2.2 The R2 of the �t

The intervals wrongly classi�ed as tidal data by S can be constrained by a
requirement on the R2 as well. This, �coe�cient of determination�, denotes the
proportion of the variance in the observations that is explained by the �tted
curve. This should preferably be close to 1. In such a case the observed data
has a smooth wave form. The R2 statistic is independent of the magnitude of
the tidal range.

6.1.2.3 The amplitude of the �t

A horizontal line is represented very well by the linear model in (6.2) i.e. with
amplitudes close to zero and a in β equal to the value of the line. Such mea-
surements arise either when the �sh dwells close to an amphidromic point or
when it swims at a constant depth. To avoid this plausible possibility for mis-
classi�cation a constraint is put on the amplitude, A =

√
b2 + c2. For the tidal

signal to be con�dently used for geolocation A must be above some limit value.
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Figure 6.3: Examples of tidal classi�cation. Classi�ed using the S, R2 and the
amplitude A. Compared to Figure 6.2 the right pane is now correctly classi�ed.

Figure 6.3 indicates the performance of the extraction algorithm. The limit
values used was

S < 0.42 m,

R2 > 0.85,

A > 0.6 m.



6.2 POL environment database 55

These values were applied to all DTS data used in this thesis.

6.1.3 Preprocessing and additional notation

For reasons of computational speed and numerical stability the �lter runs in
intervals of 24 hours. Based on this discretisation a new time vector is de�ned

τ = [τ0, . . . , τj , . . . , τN ]T .

See Figure 6.4 for a sketch of the time line. For τ it holds that
τ0 = t0, and τN = tn,

and that τj , j ∈ [1, . . . , N − 1] is the time one minute past midnight on the
intervening Julian days. One temporal increment holds 144 observations and
corresponds to

k = τj+1 − τj = 24 hours, j ∈ [1, . . . , N − 2].

When all useful tidal information in the time series is detected, an indicator
array, I = [I0, . . . , Ij , . . . , IN−1], is created where

Ij =
{

1 if tidal criteria are ful�lled for at least one of [zj,i, . . . , zj,i+144]
0 otherwise ,

where j ∈ [0, . . . , N − 1]. The best �t, de�ned as the one with the lowest
standard error within each Ij , is found and chosen as representative for Ij . This
is written more explicitly for the interval j as

îj = arg min
i

Sj(i), s.t. Ij = 1,

where Sj(i) is the standard error of the i'th �t contained in the time interval
[τj , τj+1]. The îj 's are assembled in a vector

î = [̂i0, . . . , îN−1].

The depth record of the optimal �t is referred to as zj,bi.

The reader is referred to Section 1.6 for a summary of the notation.

6.2 POL environment database

There exists tidal models that can predict the tide at any given time with some
precision. Such models split the tide into a number of constituents that rep-
resent di�erent modes with varying frequencies. A superposition of all modes
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Figure 6.4: Sketch of the time line for a DST time series. The �sh is released
at τ0 and recaptured at τN .

yields the resulting wave that approximates the one observed in practice.

The tidal behaviour is very dependent on the global position. The tide ob-
served in the North Sea is a result mainly of a tidal wave propagating from the
Atlantic Ocean both through the English Channel and north of the British Isles
creating a complex tidal pattern with two amphidromic points as mentioned
earlier, see Figure 5.1.

The tide is dominated by the M2 tidal component (where �M� stands for Moon
and �2� stands for two periods a day), which has a period of 12.42 hours as a
result of Earth's rotation and the orbit of the Moon.

6.2.1 Description

The database provided by CEFAS was originally acquired at the Proudman
Oceanographic Laboratory (POL), which is a scienti�c research institution fo-
cusing on oceanography encompassing global sea-levels and geodesy, numerical
modelling of continental shelf seas and coastal sediment processes1.

The database has a grid of 1/9◦ latitude and 1/6◦ longitude which is a re-
solution of approximately 12×12 km. The area covered is from 48.17◦ to 59.95◦

latitude, and −11.75◦ to 7.92◦ longitude, equal to a grid of 119× 107 cells.

As a consequence of the spherical coordinates given in the database the re-
quirement of a rectangular grid is no longer ful�lled i.e. the spatial step h varies
across the domain. E�ectively this causes the di�usivity to be dependent on the
spatial position. The range of the value of h in the POL domain is from 9.33

1For further information see www.pol.ac.uk
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km to 12.42 km, which is a substantial variation. It is however not considered
too large to invalidate the method if D is kept at a constant value. Moreover,
a single individual is expected to stay within a signi�cantly smaller area than
the one spanned by the entire domain thereby supporting the choice of a con-
stant value. The value of h is set to 10.88 km, the average value of the extremes.

The database contains the bathymetry of the region as well as seven tidal con-
stituents: M2, S2, N2, K2, O1, K1, M4. It was created in 1994 and is based on a
storm surge model and meteorological data. Little is known of the uncertainties
of the database other than quali�ed guesses from people experienced with the
database.

It is certain that the maximal uncertainty is found at the shores where the tide
is extreme and that, at open sea and at a distance from amphidromic points,
the database should be reliable to within 10 cm on the tidal prediction.

6.2.2 Tidal prediction

The tidal variation for a single constituent at a given position is calculated in
the simple way

z = fA(x) cos[ωt− θ(x) + G],

where A(x) and θ(x) are amplitude and phase respectively that depends on po-
sition, x. The constants f and G are calibration parameters that are calculated
separately and depends on the tidal constituent and the t = 0 de�nition. The
prediction of the seven constituents given by the database are summed to yield
the complete tidal prediction at the given position.

6.3 Analysis of stationary tags

For the observational likelihood to be calculated, a model that describes the
possible random variations in a tidal pattern, must be formulated. When a
tidal pattern is observed in the depth record, the �sh is assumed to be station-
ary at the sea �oor. It is therefore relevant to study stationary tags to assess
the uncertainties that are non �sh related e.g. tidal prediction uncertainty, tag
measurement uncertainty, in�uences of weather etc. Tags are kept stationary
by so called minipods.
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6.3.1 Analysis of tidal noise

A change in weather conditions will impose �uctuations on the depth record even
at the sea bed level. This is con�rmed in an examination of the depth measured
by the stationary tag #1536, that shows a period of increased noise, Figure 6.5.
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Figure 6.5: Measurements of depth and temperature from Tag #1536 at the 9th
of August, 2001. The depth has increased �uctuations and the temperature drops
approximately a degree at the time.

According to the Danish Meteorological Institute2 low pressure, 995 hPa, was
observed in western Jutland at the 9th of August 2001, leading to increased
wind speeds of >17 m/s on the main land. The harsh weather conditions seem
to a�ect the data recorded by the stationary tag, see Figure 6.5. The depth is
measured with signi�cantly increased noise due to waves and the temperature
is seen to drop about 1 ◦C possibly because of mixing with surrounding colder
water.

From Figure 6.5 there are obviously two types of variation in the observed
depth. Variation following the tide which has the approximate period of 12.4
hours and the superposed white noise type variation from the waves that varies
at a frequency higher than the tag sample rate of 1 minute. The observations
are assumed to follow the stochastic process

Zi = Di + Ei,

2www.dmi.dk
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where Ei is white noise i.e. Ei ∼ N (0, σ2
E), and Di is a slowly varying process

that comprises the mean depth, the tidal variation and storm surge. A one-
di�erencing of the process is performed to remove the slow process leaving the
superposed noise

Vi = Zi+1 − Zi = (Di + Ei)− (Di−1 + Ei−1) ' Ei − Ei−1.

The white noise variance, σ2
E , is estimated as half of the empirical variance of

Vi

σ2
E =

1
2
V(Vi).

The green intervals in Figure 6.5, consists of 800 data points and cover the
period where the storm is at its highest. The standard deviation of the white
noise is found to

σ̂E =
√

0.5 · 0.072763 = 0.19074m.

This type of variation in depth cannot be predicted by the tidal model and must
therefore be incorporated in the error model.

The assumption of Gaussianity of Vi and thereby Ei, can be checked by a Q-Q
plot of the quantiles of the Gaussian distribution to quantiles of the empirical
distribution of data. A Q-Q plot for Vi is displayed in Figure 6.6 along with the
autocorrelation function (acf ) for Vi.
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Figure 6.6: Statistical analysis of Vi. Left pane: Q-Q plot for Vi. Right pane:
acf for Vi. The process shows apparent Gaussianity as assumed.

The Q-Q plot shows that the quantiles of Vi have strong agreement with the
quantiles of a standard Gaussian distribution. The theoretical autocovariance
function for a di�erenced white noise process is given by

Cov(Vi, Vi+∆) = E(ViVi+∆)− E(Vi)E(Vi+∆).
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The process has zero expectancy hence the last term can be omitted and after
some computation it is found that

E(ViVi+∆) =





2σ2
E for ∆ = 0

−σ2
E for ∆ = 1
0 otherwise

.

Normalisation of this autocovariance function by 2σ2
E gives an acf similar to

the estimated shown in Figure 6.6 right pane.

Finally, a test for distribution is performed. The one, commonly recognised
as the most powerful, is the Anderson-Darling test (D'Agostino and Stephens,
1986). This is similar in methodology to the Kolmogorov-Smirnov test (Conover,
1971) but allows for the parameters of the test distribution to be estimated from
the data. The hypotheses are

H0: The data comes from a Gaussian distribution.
H1: The data does not come from a Gaussian distribution.

The result was that the H0 hypothesis is rejected at a signi�cance level of
α = 0.05, but not at the α = 0.025 level with a test statistic of 0.75731. It
should be noted that the Anderson-Darling test assumptions of independent
observations in Vi were violated because of the correlation. Even so, the test
passed at an acceptable signi�cance level to allow for practical implementation.

It is concluded based on the above analysis that changes in weather conditions
can lead to a white noise e�ect on the depth measurements with a standard
deviation of at least σ̂E = 0.19074 m. This noise covers also the uncertainty
inherent in the resolution of the tag and other unknown non-�sh related white
noise sources. Inspection of the observations tells that the variance of the white
noise is time varying but is for simplicity modelled here with this constant value.

6.3.2 Tidal prediction uncertainty

The POL database has a resolution of approximately 12× 12 km on the bathy-
metry as well as on the amplitude and phase of the tide. An arbitrarily �ne
grid of the tide can be obtained by interpolation but this is not appropriate for
the bathymetry. Therefore it has no meaning to re�ne the resolution with the
intention to get a more precise geolocation.

It may be worthwhile, though, to interpolate the phase and amplitude to check



6.4 Uncertainty due to database resolution 61

the tidal prediction at the exact location of a stationary tag to get an impression
of how the optimal prediction looks. Tag #1536 of the above analysis is reused
here. In Figure 6.7 is shown a plot of the measured depth at 55.24◦ latitude,
2.57◦ longitude, and its predicted depth with the mean subtracted.
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Figure 6.7: Observed tide and predicted tide at exact location for tag #1536.

The predicted pattern �ts well to the observed. Deviation from the predic-
tion is explained by the white noise of the previous section. Later in the time
series, a change in conditions seems to have moved the minipod slightly and
introduced a bias (approx. 20 cm) in the depth (not shown). An assessment of
the tidal prediction uncertainty is given in the next section.

6.4 Uncertainty due to database resolution

As mentioned, the resolution of the POL database introduces errors in the pre-
dictions if the actual location is not perfectly on top of a grid cell. Comparison
of an observed tide at one position with a predicted tide at another results in
residuals with an oscillating structure, see Figure 6.8. This type of error must
be assessed and accounted for when observations are compared with predictions.

6.4.1 Tidal error

The tidal variation with respect to tidal range and times of high and low tide
varies as a function of the position and consequently the error of the database
must be a function of the position as well. A new term is introduced called
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Figure 6.8: Tidal prediction from two adjacent grid cells close at 52.5◦ latitude,
1.75◦ longitude. A position with relatively large tidal variation close to the shore.

tidal roughness. It is a quadratic measure for the di�erence in tidal prediction,
ẑ(x) from a position x to the predictions at its adjacent positions in the grid,
ẑ(x + ∆x), where x + ∆x denotes one of the 8 adjacent positions. The tidal
roughness is proportional to the variance, σ2

e(x), of the tidal prediction error
for a position. The variance has a slight temporal variation but is here assumed
to be constant given x.

The tidal prediction for two adjacent positions in the southern North Sea are
shown in 6.8. The di�erence between the two predictions has a wave form with
a period time equal to that of the two predictions.

The tidal roughness for a cell is estimated as the maximal empirical variance of
the di�erences with its adjacent positions in the database grid i.e.

σ̂2
e(x) = max

∆x
V[ẑ(x)− ẑ(x + ∆x)].

For the example shown in Figure 6.8 it was found that σ̂e(x) = 0.175 m.

The map of σ̂e(x) is shown in Figure 6.9. The largest roughness is observed
at shores and at narrow passages e.g. the English Channel whereas the mid
North Sea has very little variation. Amphidromic points are local minima be-
cause the amplitude of the tide is diminished.

The error ẑ(x) − ẑ(x + ∆x) for �xed x and x + ∆x, is a function of time.
The error is assumed to follow a N (0, σ2

e) distribution with an oscillating cor-
relation structure in accordance to Figure 6.8. The estimated acf of this error,
shown in Figure 6.10, which explicitly expresses the correlation structure of this
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Figure 6.9: Map of σ̂e(x) across the domain. Note that σ̂e(x) of 0.2 m and
above is indicated by one contour. These high values occur at the shores whereas
the open sea has little tidal variation particularly at the amphidromic points.

semidiurnal variation. It consist of a pure sine wave that can be expressed as

ρi,i+δ = cos
(

2π

p
δ

)
, (6.4)

where ρi,i+δ is the autocorrelation at lag δ and p is the period time that is
de�ned as the period of the dominating M2 tidal constituent which is 12.42
hours or p = 74.52 ten-minute intervals.

6.4.2 Bathymetry error

The bathymetry of the North Sea is stored in a discrete grid with resolution
12× 12 km which is far too coarse to capture all variation of the sea bed. This
imposes an uncertainty on the data in the database that in�uences the predicted
depth of a given position.

The bathymetry uncertainty is position dependent and is particularly large in
areas with a considerable variation in depth e.g. at shores or banks. A conserva-
tive method is used to assess the uncertainty for each position in the bathymetry.
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Figure 6.10: Autocorrelation function for ẑ(x) − ẑ(x + ∆x) at for �xed x and
x + ∆x. The acf has a period of approximately 72 lags i.e. 12 hours (when the
sample rate is 10 min).

The depth given in the database at position z(x) is assumed to be uniformly
distributed in an interval of length ∆z and therefore has the variance

σ2
η(x) = V[z(x)] =

∆z2

12
,

where
∆z = max

∆x
z(x + ∆x)−min

∆x
z(x + ∆x).

Here x + ∆x refers to one of the 8 adjacent positions. Performing this calcula-
tion for the entire domain yields the result shown in Figure 6.11.

Figure 6.11 shows that the roughness is increased at the shores and around
banks whereas the �at eastern North Sea has almost zero roughness.

6.5 Error from �sh movement

Small scale movements of the �sh will impose bias on the recorded depth signal
and thereby causing it not to conform to the correlation structure in (6.4). For a
�sh the change in depth within a 10 minute interval can be fairly large especially
in sloped or rocky areas that are often favorite habitats for �sh to linger.

It is not directly possible to estimate the correlation structure that arise in
the depth measurements when this kind of behaviour is present, hence an intu-
itive model is provided. For a depth record the future time step, Zi+1, must be
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Figure 6.11: Map of σ̂η(x) across the domain. Note that σ̂e(x) of 15 m and
above are all shown as red.

equal to the present, Zi, times a weight plus a random error. When all other
contributions are removed e.g. mean depth, tidal variation etc., the AR(1) model
is written as

Zi = λZi−1 + εi, (6.5)

where εi ∼ N (0, σ2
ε) by assumption and the weight |λ| < 1. The values of the

parameters, σ2
ε and λ, require detailed knowledge of individual �sh movement

at the microscopic level to assess and will probably still have a large interindi-
vidual variation.

The formulation in (6.5) gives rise to a covariance structure of the measure-
ments given by

Cov(εi, εi+δ) = σ2
ελ|δ|,

with heuristic estimates of the parameters set to σ2
ε = 0.05 m and λ40 = 0.05.

6.6 Likelihood for observation

This section describes how the observational likelihood given the position, i.e.
the term L(Yj = yj |Xj = xj), is determined.
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6.6.1 Demersal behaviour

At time intervals where tidal information is present, a likelihood for the obser-
vation given the position, xj , is calculated based on how well the observation,
yj , �ts to the prediction, ẑj(x). The assumed model (6.1) was

Yj ∼ Nm

(
ẑj(xj),Σ(xj)

)
.

Deviations in the database predictions from the observed depths will follow the
error schemes outlined in Sections 6.3, 6.4 and 6.5. These are used to construct
an estimate of Σ(xj). Listed here in summary they are

Ei � White noise term that describes the error caused by the sensor resolution
of the tag, by noise from environmental in�uences such as storms and
currents and other unknown sources that invoke white noise. The white
noise variance becomes

Cov(Ei, Ei+δ) =
{

σ2
E for δ = 0
0 for δ 6= 0 .

ei � This describes the periodic error that is caused by the resolution of the
tidal database. It contributes to the covariance structure with

Cov(ei, ei+δ) = σ2
e cos

(
2π

p
δ

)
.

ηi � The error term that accounts for the fact that the bathymetry has a low
resolution compared to the detail level of the sea �oor. This results in a
constant term a�ecting the whole covariance matrix

Cov(ηi, ηi+δ) = σ2
η.

εi � Small scale movements of the �sh may cause minor changes in the depth
and thereby perturb the tidal signal. This can be modelled as an AR(1)
process with covariance structure

Cov(εi, εi+δ) = σ2
ελ|δ|.

An illustration of the contributions is shown in Figure 6.12.

The pdf for Yj is written here explicitly for the sake of clarity

fYj (yj |Xj = xj)

=
1

(2π)m/2
√

detΣ(xj)
exp

(
−1

2
[yj − ẑj(xj)]T Σ(xj)−1[yj − ẑj(xj)]

)
, (6.6)
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Figure 6.12: Illustration of the correlation structure of the four contributions to
Σ(xj). Each matrix is m×m (60× 60). The color scales are: σ2

E - white is 1,
black is zero. σ2

e - white is 1, black is −1. σ2
η - gray is 1. σ2

ε - white is 1, black
is zero.

for j ∈ [1, . . . , N − 1]

The observational likelihood is found by considering (6.6) as a function of the
position xj

L(Yj = yj |Xj = xj) = P
[
Yj = yj |Xj = xj ; ẑ(xj),Σ(xj)

]
. (6.7)

Calculating the observational likelihood for the entire domain yields a unnor-
malised probability distribution (hence likelihood) for the observation, parame-
terised by the position.

6.6.2 Pelagic behaviour

So far, only time intervals containing tidal information have been considered.
When a tidal signal cannot be extracted from the time series the behaviour of
the �sh is unknown. Here it is conservatively assumed that the �sh is pelagic,
e.g. migrating or foraging in the water column, away from the sea bed.

In the absence of a tidal signal there is still some information in the time series
that can be used for geolocation. A very strict model would say that the �sh
cannot be in shallow waters if a large depth is measured. This is true, but with
the limited resolution of the database bathymetry, the possibility of the �sh
being in some position cannot be ruled out based solely on the depth. Instead,
the bathymetry uncertainty (Subsection 6.4.2) is used to calculate a reasonable
likelihood for the observation given the position.
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An indicator variable, Ij(x), is de�ned where

Ij(x) =
{

1 if Dj(x) < zj

0 if otherwise , for z(x) < 0,

where zj is the maximal depth recorded in zj and Dj(x) is a random variable
that follows a truncated Gaussian distribution i.e. Dj(x) ∼ N (

z(x), σ̂η(x)
)

where z(x) < 0. The value z(x) is the depth at the position x given by the
database. The likelihood of a position is assigned as the expectation of the
indicator of the position

L(Yj = yj |Xj = xj) = E[Ij(x)]
= P[Dj(x) < zj ], (6.8)

for j ∈ [1, . . . , N − 1]. De�ning Φ as the cumulated density function (cdf ) of a
standardised Gaussian distribution with the constraint (truncation)

zj < 0, and z(x) < 0.

Now (6.8) can be written as

L(Yj = yj |Xj = xj) = Φ
(

zj − z(x)
σ̂η(x)

)
Φ

(−z(x)
σ̂η(x)

)−1

, (6.9)

which is the cdf evaluated at zj normalised by the cdf -value at the zero-crossing
as a consequence of the truncation. The likelihood will decline according to the
cdf and approach zero as zj−z(x) → −∞ (remember that depth measurements
are negative). The sketch in Figure 6.13 illustrates the calculation performed in
(6.9).

6.6.3 Recapture position

The equations (6.7) and (6.9) assess only the likelihood in the time interval
τ1, . . . , τN−1. Experience from past tagging experiments say that the terminal
position cannot be assumed to be known without uncertainty and must enter
into the likelihood for the observation, yN . Though uncertain, the recapture
position is of particular importance if no tidal information is present close to τN .

The terminal position, X‡, has the assumed distribution

X‡ ∼ N (x‡, σ2
NI),

where I is the 2× 2 identity matrix and σN = 20 km based on experience from
past experiments. The observational likelihood for the �nal time step when tidal



6.6 Likelihood for observation 69

06/07 07/07
−120

−110

−100

−90

−80

−70

−60

−50

Time

D
ep

th
, m

1

Observed depth
Max depth

0 0.2 0.4 0.6 0.8 1
−120

−110

−100

−90

−80

−70

−60

−50

Likelihood

2

Cell cdf
Cell depth
Max depth

Figure 6.13: 1: Observed depth at 6th of July 2001 of tag #2255. 2: Principle
in calculation of the likelihood at a position (55.8◦ latitude, −0.25◦ longitude).
The deepest observation in the record is −92.8 m. This is compared to the depth
value of the grid cell, −88 m, by evaluation of the expression in (6.9). In this
example the likelihood becomes 0.30.

information is present is given by

L(YN = yN |XN = xN ) = P(X‡ = xN )P(ZN,bi = zN,bi|XN = xN ).

where ZN,bi follows the distribution given in (6.1). In the case no tidal informa-
tion is extracted the observational likelihood becomes

L(YN = yN |XN = xN ) = P(X‡ = xN )Φ
(

z(x)− zN

σ̂η(x)

)
Φ

( −zN

σ̂η(x)

)−1

.

These results are due to the conditional independence of X‡ with the depth
observations given XN = xN .

Finally it should be stressed that the position of the release of the �sh is known
without uncertainty and therefore needs no data-update.
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Chapter 7

Results

This chapter presents the results obtained when the theory and methods de-
scribed in the previous chapters are applied to data from DSTs mounted on �sh.

The presented tags are chosen to emphasise important aspects of the method
and serve as validation and evaluation with a view to improving the model
further. Some of the tags have been subject to investigation by CEFAS in
the recent years. Selected results have been published (Hunter et al., 2005;
Righton and Mills, 2007) and are used for comparison in this study.

The analysis has focused on the following six tags

� #1209, stationary tag, Section 7.1.

� #2255, cod, Section 7.2, (Righton and Mills, 2007).

� #1186, cod, Section 7.3.

� #2324, thornback ray, Section 7.4, (Hunter et al., 2005).

� #1432, cod, Section 7.5.

� #6448, cod, Section 7.5.
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Figure 7.1: Reported release and recapture positions for DSTs.

In Figure 7.1 is shown the reported release and recapture positions of the tags.



7.1 Stationary tag, #1209 73

For each tag an animation is generated, which is an avi-�le, showing the evolu-
tion of the marginal posterior distributions in time. The abbreviation AMPD
for �Animated Marginal Posterior Distributions� is used henceforth. The an-
imations are found at the web site www.student.dtu.dk/∼s002087 and on the
enclosed CD-ROM. The animations was created with Matlab's avifile com-
mand and compressed with the Cinepak AVI codec to limit the �le size. This
compression results in some loss of detail especially in the plot of the depth
record and the tidal intervals. It is therefore recommended to inspect these
from the printed plots or from the Matlab fig-�les on the CD-ROM.

Important notice: The �les on the CD-ROM are not to be distributed without
permission from CEFAS.

7.1 Stationary tag, #1209

As a �rst check, a tag from a minipod is geolocated and compared to its actual
known global position. This will reveal, to some extent, the uncertainty and
bias of the method and give an impression of how well a stationary �sh can be
geolocated. The tag type was LTD 1200 (see Section 5.2).

7.1.1 Inspection of the data

The minipod was deployed at the coordinates 55.47◦ latitude and 2.42◦ longi-
tude, see Figure 7.1. The depth time series of the stationary tag #1209 is shown
in Figure 7.2.

Most of the data is marked in green colour indicating that tidal information
could be extracted. It would be expected for a stationary tag that the entire
data set showed a tidal pattern. Apparently, a change in the weather condi-
tions at the 8th of August and again towards the end, imposed noise onto the
observations and locally rendered the signal useless for tidal comparison.

7.1.2 Results

The AMPD show that the geolocation algorithm �nds the tag to be positioned
in a grid cell adjacent to the reported true position, indicating a minor bias.
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Figure 7.2: Time series from tag #1209, released 28th of June 2001 and recap-
tured 22nd of August 2001. Tidal information intervals are marked in green.

A number of other stationary tags have been analysed with a similar result
although no consistency in bias could be detected. All available tags were de-
ployed in the same geographical area and within a time period of a few days. It
is not possible to make strong conclusions based on such a sparse data set that
furthermore were in�uenced by changing weather.

The overall conclusion is that the stationary tag are geolocated satisfactory.

7.2 Cod #2255

This tag contained a very high quality data set, perfectly suited for tidal based
geolocation. For this reason the tag has undergone a thorough study at CEFAS
using the the Tidal Location Method (Hunter et al., 2003, explains the TLM).
Hence, the overall behavioural pattern is known, along with geolocated positions
at time instances with strong tidal information. These results can be used for
cross validation with the method described in this thesis and help to uncover
deviations and pinpoint potential errors in the present model.

7.2.1 Inspection of the data

The tag type was LTD 1200. The cod was released at the 3rd of April 2001
at 52.44◦ latitude, 1.78◦ longitude and recaptured the 6th of February 2002 at
52.00◦ latitude, 2.85◦ longitude (see Figure 7.1).
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Figure 7.3: Time series from tag #2255, released 3rd of April 2001 and recap-
tured 6th of February 2002. Tidal information intervals are marked in green.

The entire time series of the tag is shown in Figure 7.3. The time series lasts for
311 days which is one of the longer data set obtained from cod in the North Sea.
Moreover does it hold much tidal information and of impressing high quality,
at times more smooth than the data measured by the stationary tags. Tidal
information is present both at the day of release and day of recapture, which
enables the reported positions to be cross validated with the geolocations and
unveil possible uncertainties of both.

7.2.2 Results

The data is processed by the geolocation �lter and the smoothed position esti-
mates, P(Xj = xj |YN ) for j ∈ [0, . . . , 311], are obtained, where τ0 is the 3rd of
April 2001 and τ311 is the 6th of February 2002.

7.2.2.1 Estimation of D

The MLE of D for tag #2255 was found to

D̂ = 22.4 km2/day,

with a standard deviation of 2.7 km2/day estimated from the observed Fisher
information. The estimate of D represents the average di�usivity that �ts the
model best given the depth record. The di�usivity is a measure for how active
the �sh was during its time at liberty.
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In the two dimensional space the di�usivity is related to the average swimming
speed of the �sh in the way

D =
ρv2

2
, (7.1)

where v is the constant speed of the �sh and ρ is the decorrelation time of this
swimming speed, e.g. Visser and Thygesen (2003).

The value of ρ is not known and is not immediately possible to estimate based
on the data. Instead a conservative value of ρ = 12 hours, is chosen. This means
that the acf of the velocity has decreased to insigni�cant values after 12 hours.

The maximal average swimming speed for an interval of 24 hours is selected
to be 0.5 body lengths per second. Breen et al. (2004) and its references provide
a reasonable fundament for this decision. Among the cod considered in this
study, lengths were in the range 50-70 cm, corresponding to maximal speeds in
the range 22-30 km/day. The conservative value of 30 km/day is chosen and
results in a maximal value for the di�usivity of

Dmax = 225 km2/day.

Comparing this value to the MLE for #2255, D̂ = 22.4 km2/day, the activity
level of this cod appears to be low on average.

7.2.2.2 Animated marginal posterior distributions

When inspecting an AMPD it should be borne in mind that the color scale
is not constant in time. The AMPD reveal time intervals of low uncertainty
where the �sh is stationary. These are typical at times when tidal extraction
was possible. The low activity intervals were mostly present in the summer
months where the �sh stayed near the eastern shore of England in the middle
North Sea. This type of cod behaviour is also reported in Turner et al. (2002);
Righton et al. (2007). The �sh had a high level of activity in the initial and
�nal part of its time at liberty, migrating north and south respectively. The
behaviour displayed by this cod seems to conform very well to general trends
shown in past tagging experiments.

7.2.2.3 Most Probable Track

To visualise the result of the geolocation, the MPT is calculated from the esti-
mated joint posterior distribution, see Figure 7.4 right pane.
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Figure 7.4: Comparison of geolocation methods. Left pane: CEFAS's results
based on a modi�ed TLM. Right pane: MPT computed from the estimated joint
posterior distribution of #2255.

The cod was captured and released close to Lowestoft (eastern England) and,
according to the MPT, immediately began a migration to the north, settling
down a month later at approximately the 1st of May at 54.5◦ latitude, −0.5◦

longitude. Here it stayed for a month before relocating a bit further north to
an area around 55◦ latitude, −1◦ longitude, where it stayed for a longer period
until late September. Then activity level gradually increased (also evident from
the Figure 7.3) and eventually a southwards migration brought the cod to a
position at 51.75◦ latitude, 2.5◦ longitude, around the 9th of January and was
recaptured a month later at approximately this position.

Figure 7.4 left pane shows the result obtained with CEFAS's TLM method
supplemented by temperature measurements Righton and Mills (2007). The
coloured areas are pseudo pdfs that are calculated based on a MCMC algo-
rithm. The two plots show largely identical movement patterns of the �sh.
There are minor deviations due to the di�erence in method most evidently in
the �nal southern migration.

It was found that the most probable recapture position is estimated to di�er
signi�cantly (p < 0.0001) from the reported recapture position, see also Fig-
ure 7.4 and the AMPD. The deviation cannot be explained purely by a possible
bias in geolocation and it is therefore concluded that the reported recapture
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position must be encumbered with uncertainty. In contrast, the release position
is geolocated precisely based on the tidal pattern observed by the tag after only
a short time at liberty (7 hours). This supports the geolocation method and
decreases the faith in the correctness of the reported recapture position.

7.2.2.4 Bathymetry roughness

A close inspection of the data shows some curiosities that may be interesting to
examine further. At the 10th of April, the �sh visits a depth of −75 m and re-
turns to around −20 m within a short time interval of approximately 10 hours,
see Figure 7.5. First of all, this is interesting for a biologist as it requires a
great e�ort from the �sh to perform a depth change of this magnitude, that is
unlikely to be carried out purely by regulation of its swimbladder (Harden Jones
and Scholes, 1985).
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Figure 7.5: Sample from the depth record of tag #2255, at the 10th of April.
The �sh stays at −20 m of depth until 15:00 and then swims to a depth of −75
m and returns around midnight to −20 m. The geolocation estimates its position
to be in the Silverpit.

In terms of the geolocation method, this occurrence is interesting because the
closest location with a depth of −75 metres is at least 200 km away from the
release position according to the bathymetry. The �sh reaches this position
within seven days, that is from the release at the 3rd of April to the 10th of
April. Travelling a distance of this magnitude requires a very determined mi-
gration of the cod with a constant high activity for all days. The depth record,
however, does not indicate a constant migration behaviour at a high speed.

Apparently it is a mystery but fortunately a part of the interval also holds



7.3 Cod #1186 79

tidal information that can be used for geolocation, see Figure 7.5. It turns out
that the �sh is crossing an area called the Silver Pit, which is a submerged val-
ley located east of the English shore at Spurn Head. The geolocation method
�nds the position in the Silver Pit despite no depth of the observed magnitude
is present here according to the bathymetry. This proves the importance of the
bathymetry error that compensates for the coarse resolution of the database.

7.2.3 Discussion of results

The results found in this section opens for some topics that need to be discussed.

First of all, is a new geolocation method at all necessary when the Tidal Loca-
tion Method yields a similar result? Yes, and for several reasons. It is by far
preferable to assess the geolocation based on a rigorous statistical framework
that excludes subjectivity and opens for an automated process that eventually
can be formed into a Matlab applet for easy access. The method gives results
both with and without a tidal signal and adjusts the uncertainty thereafter. The
estimation of a �biomarker� (the di�usivity) and its uncertainty makes compar-
ison of individuals a straightforward procedure.

The tag revealed that the resolution of the database may occasionally limit
the applicability of the model. The omission of deep areas such as the Silver
Pit reduces con�dence in the bathymetry. Fortunately, the bathymetry error
accounts for the e�ect but a more realistic uncertainty assessment should de�-
nitely be possible with an improved bathymetry resolution.

The behaviour of the cod was observed to shift in intervals between migra-
tion and a resting/foraging, i.e. a high and low activity level. Modelling the
�sh with a constant di�usivity over the time at liberty may yield uncertainty
estimates that are unrealistically high or low. This is subject is addressed in
Chapter 8.

7.3 Cod #1186

This cod was released in the eastern English channel in order to verify a long
time claim of �shermen, that cod in this area remain largely stationary.
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7.3.1 Inspection of the data

The tag type was Star-Oddi centi. The cod was released at the 11th of March
2005 at 50.3◦ latitude, 0.5◦ longitude and recaptured the 20th of January 2006
approximately at 53◦ latitude, 4◦ longitude. The depth record for the tag is
presented in Figure 7.6 along with the estimated tidal information intervals.
The reported release and recapture positions are shown in Figure 7.1.
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Figure 7.6: Time series from tag #1186, released 11th of March 2005 and recap-
tured 20th of January 2006. Tidal information intervals are marked in green.

The record lasts for 317 days and is very di�erent from #2255, most notably be-
cause the cod came from a di�erent population and another ICES management
area (VIId), see Figure 1.2. From its release in March, the cod travels towards
deeper waters and settles at a depth of 120 metres in mid June. It stays there
until December where it ascends and eventually is caught at 25 metres of depth.
The recapture position is quite close to an amphidromic point which is also
evident from the depth record of the last ten days where only a very vague tidal
signal is measured.

Much of the tidal information present in the record have perturbations that
can be explained by small scale movements of the �sh. This noise causes the
extraction algorithm to fail frequently. The tidal wave can occasionally be spot-
ted by the eye. However, the superposition of the movement noise requires a
much more advanced �tting algorithm to extract the wave form in an automated
process.
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7.3.2 Results

The MLE for the di�usivity was 118.9 km2/day with a standard deviation of
18.9 km2/day. On average a much more active �sh than #2255.

7.3.2.1 Animated marginal posterior distributions

The AMPD show again that the cod has a behaviour that is seasonal depen-
dent. After its release it spends until late May travelling west to its favorite
location at the mouth of the English Channel. This location is called the Hurd
Deep. It resides in the area at a constant depth for six months before making a
rapid migration through the Channel to its recapture position in the southern
North Sea. There is no tidal information in the last month of the record and the
geolocated �nal migration is therefore mainly a result of the reported recapture
position.

In the six stationary months, the depth record contains plenty of tidal infor-
mation but the marginal posterior distributions have considerable uncertainty.
The �sh moves at an iso depth contour where also the phase of the tide is con-
stant thus the marginal posterior distribution is in�ated. Another source for
increased uncertainty is the amplitude and phase both showing little spatial
variation at the position.

7.3.2.2 Most Probable Track

The MPT is shown in Figure 7.7 and is very interesting from a �sh management
point of view. The �gure also shows the ICES areas that each are assigned
individual �shing regulations with respect to the species they are inhabiting.
Therefore it is interesting to observe that #1186 visits four di�erent ICES areas
(VIIh, VIIe, VIId and IVc) in its time at liberty (see Figure 1.2). This result
contradicts the claim of the �shermen and shows that the regulation of individual
ICES areas should be executed with this type of biomass movement in mind. It
may be, that in spring months the cod are found in the English channel, but
in the last part of the year they inhabit areas further to the west imploring a
segmented regulation.
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Figure 7.7: Most Probable Track for #1186. The cod is seen to visit four di�er-
ent ICES management areas within its time at liberty.

7.3.3 Discussion of results

The main input to the model evaluation given by these results, is the con�r-
mation of the behavioural change also observed in the #2255 tag. The �nal
migration to the recapture position forces the di�usivity estimate to increase
and therefore the uncertainty estimates in the periods with low activity is arti�-
cially increased. Fortunately much tidal information is usually present in these
time periods enforcing a narrow distribution.
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The results emphasise the importance of gradients in the environmental vari-
ables. This cod spent time in an area with a small tidal range and synchronised
tidal phase resulting in a less precise estimate of its position.

The large migrations shown by this cod bring much more detailed informa-
tion to attention compared to what the same study with conventional tagging
data would. The tag gives strong evidence of a biomass that moves between
regulation areas which should de�nitely be accounted for when �sh quotas are
decided upon.

7.4 Thornback ray #2324

The previous two tags have given a strong a�rmation of the validity of the
method and the supporting theory. The present tag has been chosen to chal-
lenge the model with a highly active depth record. The tag was mounted on a
thornback ray (raja clavata) which is, like the cod, a demersal species that often
dwells at the bottom.

Until recent years, the study of elasmobranchii has been limited to conven-
tional mark/recapture experiments that have only shown minor dispersal of the
thornback ray in the southern North Sea. Research has focused on the area
around the Thames Estuary that is known as a preferred spawning ground for
the species. Results have shown that release and recapture were often in close
proximity to each other (Walker et al., 1997). The electronic tagging inves-
tigation of Hunter et al. (2005) presents a di�erent result revealing migratory
behaviour that could not be assessed by conventional methods.

7.4.1 Inspection of the data

The tag type was LTD 1200. The ray was released at the 6th of October 1999
at 51.63◦ latitude, 1.14◦ longitude and recaptured after 504 days at liberty at a
position reckoned to be 53.4◦ latitude, 4.14◦ longitude, see Figure 7.1. Battery
depletion caused the recording to end after 425 days. The recorded depth for
the ray is shown in Figure 7.8.

The vertical behaviour of the ray is more erratic than the two cod tags con-
sidered so far (#2255 and #1186), and it has remarkably fewer periods of tidal
information. Only in August 2000 does it seem to settle at the sea bed for a
longer period of time with only few vertical excursions.
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Figure 7.8: Time series from tag #2324, released 6th of October 1999, battery
depleted the 2nd of December 2000. Tidal information intervals are marked in
green.

A close inspection of the time series tells that it is essential to perform the
tidal extraction in relatively short time intervals e.g 8-12 hours. The animal
displays many periods of nocturnal behaviour and occasionally also indications
of tidal stream transport. Very few tidal patterns last for a full 24 hour cycle
in contrast to the #2255 tag.

7.4.2 Results

The MLE for the di�usivity was 155.3 km2/day with a standard deviation of
23.5 km2/day. The high value of the di�usivity indicates a high average level
of activity in agreement with the depth record.

7.4.2.1 Animated marginal posterior distributions

The resulting geolocation has intervals containing multi modal distributions, see
Figure 7.9, which is interesting from a modelling point of view. This empha-
sises the power of this direct solution of the PDE in comparison with the linear
results obtained from a Kalman �ltering.

In the right pane of Figure 7.9 the �sh swims close to the eastern amphidromic
point causing the geolocation to su�er an increase in uncertainty despite that
tidal information was extracted. It illustrates the in�uence of the amphidromic
point and the ambiguity that it imposes on the geolocation.
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Figure 7.9: Highly non-Gaussian marginal posterior distribution for #2324. Left
pane: the 24th of December 1999. Right pane: 27th of September 2000. Red is
most probable white is least probable.

7.4.2.2 Most Probable Track

The MPT is shown in Figure 7.10 along with a track connecting the mean of
the marginal posterior distributions.

Interestingly, the tracks di�er signi�cantly. The MPT is without the entire
branch to the north of the recapture position which is seen in the mean track.
This interval belongs to the �nal part of the record where tidal information was
scarce thus making the geolocation very uncertain due to the large value of D̂.

The MPT sketches a route that, based on the AMPD, would not be expected to
be the most probable. This emphasises the fact that the MPT gives the mode
of the joint posterior distribution for all positions at all time steps, which can
be very di�erent from the track connecting the mean or mode of the marginals.
The deviation in tracks happens mostly in time intervals with highly uncertain
geolocations, i.e. no tidal information.

7.4.3 Discussion of results

This geolocation shows that the uncertainty is inversely proportional to the
amount of tidal data found in depth record. Moreover was it con�rmed that the
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Figure 7.10: Comparison of track representations for tag #2324. Left pane:
Track connecting the mean of the marginal posterior distributions. Right pane:
MPT.

precision of the geolocation is largely in�uenced by amphidromic points, evident
from the AMPD.

Analysis of the data by the TLM gave the same overall results as presented
here (Hunter et al., 2005). The �sh leaves the Thames Estuary in the winter
and relocates further east to an area o� the Dutch shore before it returns to
spawn in a period from May to July 2000.

The presented MPT seems unlikely judging from the animation of the AMPD or
the mean track displayed in Figure 7.10. The MPT was, in the simulation study,
shown to be preferable as representative for the joint posterior distribution. It
is, however, doubtful whether this conclusion is directly transferable to a real
data model. It is a general problem in signal processing and time series analy-
sis to assess the bias introduced in estimates when the data generating system
(in this case the �sh) di�ers in behaviour from the assumed model. Extensive
research could be done on this subject but it is not within the scope of this thesis.

Conducting a �eld study to verify a MPT is not feasible with the currently
available means. In theory it could be done by mounting an acoustic tag along
with a a data storage tag on a �sh and follow its movements with acoustic
tracking devices. Comparison of the observed path with the estimated MPT
from the DST observations yields a measure for the accuracy of the estimate.
Such a study spanning possibly months has immense economical costs, which is
why the use of powerful statistical methods should be applied to gain maximal
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knowledge from the DST data.

For a tag encumbered with this kind of substantial uncertainty, expressing the
geolocation as a track may have little relevance. Inspection of the AMPD gives
much more detailed information of the geolocation e.g. the varying uncertainty
of the position dependent on the presence of tidal signal.

7.5 Cod #1432 and cod #6448

The tag type was LTD 1200 and Star-Oddi milli for #1432 and #6448 respec-
tively. In Figure 7.11 is shown the depth record for tag #6448 and in Figure 8.4
for tag #1432.
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Figure 7.11: Time series from tag #6448, released 11th of November 2004 and
recaptured 20th of November 2005. Tidal information intervals are marked in
green.

The geolocations of these tags support the hypothesis that population conclu-
sions can be made based on electronic tagging experiments. The two cod show
a behaviour similar to that of #2255 and #1186. The MPT for both is shown
in Figure 7.12.

7.5.1 Results #6448

The cod was released on the 11th of November 2004 at 50.87◦ latitude, 0.70◦

longitude, and recaptured the 20th of November 2005 at 50.77◦ latitude, 0.38◦

longitude, having a total of 376 days at liberty, see Figure 7.1. The MLE of D
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Figure 7.12: MPT for, left pane: tag #1432. Right pane: #6448. Tag #1432
show a path very similar to #2255 and #6448 show a path similar to #1186.

was 36.6 km2/day with standard deviation 5.0 km2/day.

It is interesting that the cod was recaptured in immediate vicinity of its re-
lease position, apparently indicating a stationary �sh. The geolocated track
however unveils an intervening migration towards the west similar to that of
#1186. In the �rst period after the release the cod inhabits the eastern English
Channel. Around early May 2005 it migrates west to the Hurd Deep and stays
there during the summer months before returning in early November 2005.

7.5.2 Results #1432

The cod was released on the 30th of March 1999 52.38◦ latitude, 1.79◦ longitude,
and recaptured the 8th of November 1999 52.68◦ latitude, 2.3◦ longitude, having
a total of 225 days at liberty, see Figure 7.1. The MLE of D was 77.6 km2/day
with standard deviation 12.8 km2/day.

The cod is highly active until mid May where it is geolocated just west of
the Dogger Bank where it stays until mid October. Here the �sh increases its
activity level again and the tidal signal is lost. The recapture position was for
this tag chosen to be without uncertainty, forcing the geolocation to reach the
reported recapture in the �nal time step.
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7.5.3 Discussion of results

It was previously hinted that the recapture position can be incorrectly reported
and should not be considered a �xed point in the likelihood update. Objective
assessment of the uncertainty of the recapture position is not possible and there-
fore its variance is manually de�ned. For #1432 the recapture position is very
important due to the lack of tidal signal in the �nal period of the observations.
This leads to the conclusion that the geolocated recapture is entirely dependent
on the uncertainty of the recapture position.

The overall pattern of #1432 is similar to #2255 with respect to behaviour
and choice of location. The track supports the hypothesis that cod from the
southern North Sea tend to migrate north to a summer habitat where they stay
until the winter.

The cod captured and released in the English Channel, #6448, agrees with
the behaviour estimated from the #1186 tag. Apparently the Hurd Deep makes
up an attractive environment for a cod to inhabit in the latter six months of the
year.

The results presented in this section demonstrate that reproducible results are
indeed obtainable by DST geolocation. Generalisation of behaviour to popula-
tion level can be done with great con�dence based on relatively few tag returns
compared to a study based on conventional tagging data.

7.6 Summary of the main �ndings

The results presented in this chapter showed a stochastic geolocation with a pre-
cision that surpass that of previous geolocation methods (Hunter et al., 2003;
Nielsen, 2004). Direct comparison is not immediately possible (or fair) due
to di�erence in species and in the environmental variables used for geoloca-
tion. That being said, the presented method yields a much more detailed result
quanti�ed by an animation of the marginal posterior distributions and the Most
Probable Track. The importance of an AMPD increases when tidal data is
scarce in the recorded depth because the MPT does not express the time de-
pendent uncertainty of the geolocations.

As the particle �lter, the method does not rely on a Gaussianity assumption
in contrast to most applications of the Kalman �lter. The uncertainty of the
geolocation is therefore best viewed by considering the estimated marginal pos-
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terior distributions. Di�erent from the particle �lter, the method estimates the
marginals via direct solution of the di�usion equation thus avoiding the need for
an excessive amount of particles. The price is a loss of �exibility if one wishes
to extend the space of hidden states.

Estimation of the joint distribution for the positions at all discrete time in-
stances, opens for sampling of random tracks or assessment of the MPT via
the Viterbi algorithm. These tracks serve as illustration of possible routes and
di�er from the mean track when the marginal posterior distributions are highly
non-Gaussian.

The geolocations presented here relied purely on depth measurements and re-
lease and recapture positions. The combination of demersal �sh and an environ-
ment with a signi�cant tidal variation makes a perfect setting for this type of
geolocation. When the extraction algorithm fails to �nd a tidal pattern the un-
certainty increases dramatically. To encompass an accurate geolocation even in
these intervals, the method needs complementary observations of e.g. tempera-
ture, salinity of light. This subject is explored in Chapter 8 where temperature
observations are experimentally included in the model.

The ML estimates of D are summed up in Table 7.1.

Tag D̂ sd(D̂) 95% C.I.
#1209 5.6 1.1 [3.4;7.8]
#2255 22.4 2.7 [17;28]
#1186 118.9 18.9 [81;157]
#2324 155.3 23.5 [108;202]
#1432 77.6 12.8 [52;103]
#6448 36.6 5.0 [47;57]

Table 7.1: Maximum likelihood estimates and approximate 95% con�dence inter-
vals of the di�usivity parameter D for all considered tags. All units are km2/day.
sd(·) means standard deviation estimated from the observed Fisher information.

The values of D are anticipated to lie within the interval [0; 225] km2/day to
accommodate the maximal swimming speed of a cod. The estimates of D span
the entire available spectrum and no general trends can be drawn.

The stationary tag, #1209, shows that the resolution of the database imposes
a lower limit on D that is di�erent from zero.

The estimate of D is a measure for the average activity over the entire period
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the �sh was at liberty. This includes both migratory and resident behaviour in
one variable. Judging from the AMPD, the behaviour of most of the considered
�shes is split in intervals of high and low activity respectively. Therefore, the
single parameter representation seems insu�cient for a fair description of the
activity level. Doubtless, the introduction of a dual parameter model will yield
more realistic uncertainty estimates of the geolocations and give values of D
that are easier interpretable. This subject is explored in Chapter 8.
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Chapter 8

Model extensions

This chapter addresses some improvements and extensions of the tidal based
geolocation model presented in the previous chapters. The extensions are im-
plemented for illustrative purposes and are in some cases simpli�ed to keep the
problem tractable. The aim is to sneak peak at some straightforward extensions
and to show the versatile structure of the model.

Creating a simple regime model for the activity of the �sh is hoped to give
more realistic uncertainty estimates where behaviour changes of the �sh are
accounted for. Another important subject is the use of temperature data to im-
prove the precision of the geolocation. This implementation also corroborates
that the �ltering technique is applicable to other environmental variables.

The results of the extensions are presented in the �nal section to give a compact
overview of the important features.

8.1 Regime model

As discussed, the behaviour of the geolocated �sh tends to be divided into in-
tervals of high and low activity. This observation has been subject to previous
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investigation in Turner et al. (2002) where DTSs were used to prove a sea-
sonal dependent behaviour. Modelling this behaviour with a single constant
di�usivity forces the model to, in some parts overestimate and in other parts
underestimate the uncertainty of the geolocation. This issue is unwanted and
can be remedied by introducing a new state that describes the activity level of
the �sh.

The activity state is a time dependent indicator function that on a daily basis
describes the activity of the �sh as high or low. The state is in principle hidden
(not directly observable), which extends the estimation problem of the hidden
Markov model immensely. It is therefore sought to classify the activity state
before the subsequent �ltering and estimation by a preprocessing of the depth
record.

8.1.1 Classi�cation of behaviour

The depth record alone has in previous studies proven to hold much information
about the activity level of the �sh (Righton et al., 2000). In the following analy-
sis, emphasis is put on minimising the probability of misclassi�cation. Two types
of error can be committed: a) classifying high di�usivity as low, b) classifying
low di�usivity as high. Error type a) is critical and could lead to a completely
erroneous geolocation and maybe even render the algorithm unstable. The ar-
ti�cially increased variance of the geolocation that a type b) error would result
in, is on the other hand more acceptable.

For each of the 24 hour intervals the classi�cation can be formulated as a hy-
pothesis test where

H0: The �sh has a high level of activity (large value of di�usivity).
H1: The �sh has a low level of activity (small value of di�usivity).

Only when H0 is rejected at a su�ciently high level of signi�cance can the small
value of di�usivity be applied.

The test determining whether H0 can be rejected is a more subtle subject.
An algorithm considering the skewness and range of the depth within a 24 hour
period was tried. A �sh swimming in mid water with occasional excursions to
the sea �oor shows a negatively skewed distribution of depth and a �sh showing
a large depth range and a skew around zero is probably migrating as well. The
algorithm was rejected for being too individual speci�c and for having a high
probability of misclassi�cation.
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Instead focus was turned to an algorithm that considered the quality of a sine
wave �t within the 24 hour interval. Very similar to the linear model in (6.2)
used for tidal extraction but with the di�erence that the interval length, m, of
the �t needs to exceed 10 hours. When a �sh performs tidal stream transport
it is possible that it rests at the sea bed for a longer period, waiting for the tide
and then swims at a high speed for a period. Intervals of this type should be
modelled with a high value of di�usivity.

Heuristic experimentation with the �tting algorithm resulted in the choice of
m = 96, that corresponds to a 16 hour �t. This proved as a value that rejected
apparent migratory behaviour but allowed for occasional small scale movements.

8.1.1.1 Pruning outliers

A �sh resting at the sea bed may make small vertical excursions into the water
column, creating �outliers� that deviate signi�cantly from the pattern of the
tidal signal. It takes only few of these outliers to make the extraction method
of (6.2) fail to see an otherwise clear tidal pattern. Pruning of outliers was
unwanted for the purpose of tidal extraction but is essential here in order to
capture all relevant intervals with low activity.

Maverick observations can be spotted by considering in�uence statistics such
as Cook's D, DFBETAS, DFFITS and covariance ratios.
The call influence.measures in R1 returns the potentially in�uential observa-
tions with regards to the �tted model. Further description of the function is
found in the R reference manual and the references therein.

The observations classi�ed as outliers are suppressed and a new model is �t-
ted based on the updated dataset. It is assumed that outliers in the initial
model can be regarded as outliers in the updated model. From the new �t the
summary statistics S (rmse) and R2 are extracted.

8.1.1.2 Classi�cation

The hypothesis, H0, is rejected if both of the following criteria are ful�lled

S < 0.42 m,

R2 > 0.85.

1R is a free software environment for statistical computing and graphics, www.r-project.org.
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If H0 cannot be rejected the high di�usivity must be accepted.

The 16 hour window is slid across the time series in steps of 10 minutes analo-
gous to the classi�cation technique described in Section 6.1. This results in an
indicator array, BH, for the behaviour for which it holds

BHj =
{

1 if H0 is accepted for at least one of [zj,i, . . . , zj,i+144]
0 otherwise .

Remember a 24 hour period contains 144 observations, see Figure 6.4. The value
of BHj determines whether the the prediction P(Xj+1 = xj+1|Yj) is computed
from a high or low di�usivity behaviour model.

8.1.2 ML estimation of D

The parameter space of the model is now extended to D = [D0 D1], where D0

and D1 are low and high di�usivity respectively. The ML estimation of D con-
stitutes a two-dimensional minimisation problem of the negative log-likelihood
function, −`(D).

The problem is handled with the Matlab function fmincon, that is found
in the Optimization toolbox. The function �nds a minimum of a constrained
nonlinear multivariable function. The imposed constraints are the disallowance
of negative values in D and the maximal swimming speed limit of 225 km2/day.

For this medium-scale problem, fmincon applies an algorithm based on Se-
quential Quadratic Programming, Quasi-Newton and line-search. Thorough
documentation of the fmincon function is found in the help-�le for the Opti-
mization toolbox which also includes references.

The results of the implementation is found in Section 8.3.

8.2 Temperature

Installed in some DSTs is a sensor that measures the ambient temperature, qj

at time τj . These observations, when added to the observation vector yj , con-
tribute to the data-update of the �ltering step.
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To ease notation de�ne

vj =
{

[yj ] for j = 0
[yT

j , qj ]T for j ∈ [1, . . . , N ] ,

and
Vj = [v0, . . . , vj ]T ,

which contains all observations before and including time τj .

8.2.1 POM database

The Princeton Ocean Model (POM) covers a smaller region but with an im-
proved resolution compared to the POL model. More speci�cally, this is 1/30◦

latitude and 1/20◦ longitude which is a resolution of approximately 3.3 × 3.7
km. The covered area is from 51.02◦ to 56.48◦ latitude and −3.93◦ to 9.53◦

longitude on a 165× 270 grid. Tidal information was obtained from an interpo-
lation of the POL model. A detailed description of the POM database is found
in Young (2002).

8.2.1.1 Temperatures

The database package used in this thesis contained temperature predictions
for the years 1999-2003 for the North Sea. The temperature predictions are
strati�ed in the water column at six so called sigma levels. A sigma level is a
constant percentage of the total depth at the position. For all sigma levels, the
temperature is predicted at four points in time on a daily basis, 0:00, 6:00, 12:00
and 18:00 hours. To reduce this very large data set (3.4 billion database entries),
only the sigma level at the sea bed was used. According to CEFAS experts this
will su�ce for illustrative purposes under the assumption that cod stay near
the sea bed at summer times, and further that the water is mixed in the winter
period and therefore has approximately equal temperature at all sigma levels.
A full scale implementation of temperature should naturally include all sigma
levels.

8.2.2 Analysis of stationary tags

Analysis of temperature records from the stationary tags aid to the understand-
ing of the errors that measurements and database predictions are encumbered
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Figure 8.1: Temperature prediction along with the temperature record from three
stationary tags that were deployed at the same position. Time range is 1.5
months.

with. In Figure 8.1 is shown the temperature record from three tags deployed
at the same position, and the corresponding database prediction.

The tag measurements seem to have negligible error compared to the data-
base prediction uncertainty. For this position the bias is approximately 1◦C
and the empirical standard deviation of the residuals is 0.06◦C. Apart from the
bias, the temperature is predicted quite precisely. However, the analysis of the
remaining stationary tags revealed no consistency in the bias. The experiment
was conducted in the summer period where the vertical temperature gradient
peaks. This could possibly explain the observed bias at the sea bed level.

The bias was investigated further with the result that it appears consistent
at a given position but varies between positions. A complete mapping of this
spatial variability in bias is a task too comprehensive for this thesis and is de-
parted here. Instead it is accounted for by increasing the error variance on the
observations.

8.2.3 Likelihood for observation

With the addition of the temperature the reconstruction in (3.3) is now changed
to

P(Xj+1 = xj+1|Vj+1)
= ψj+1 · L(Vj+1 = vj+1|Xj+1 = xj+1)P(Xj+1 = xj+1|Vj), (8.1)
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where

L(Vj = vj |Xj = xj) = L(Qj = qj |Xj = xj)L(Yj = yj |Xj = xj),

due to the assumed conditional independence of Qj and Yj given Xj = xj .

The new term L(Qj = qj |Xj = xj) is found in a way similar to the one
described in Section 6.6. The temperature observations are divided into inter-
vals of 24 hours and subsampled (by taking average) at the times 0:00, 6:00,
12:00 and 18:00 hours. The observation at time τj is assumed to be given by
the linear model

qj(x) = q̂j(x) + Ej ,

where q̂j(x) is the predicted temperature from the database at the position x.
To keep the parameter space at a minimum, the error Ej is assumed to be
Gaussian white noise i.e. Ej ∼ N4(0, σ2

E), with standard deviation

σE =
{

2.5◦C if the �sh is at the bottom
3◦C otherwise . (8.2)

The choice of values is based on analysis of the stationary tags. The tidal ex-
traction algorithm is used to determine if the �sh is at the bottom.

This error structure should account for, only using sea bed temperatures, di-
urnal variation in temperature, bias on prediction, measurement noise. It is
important to emphasise that the main geolocating variable is still the tidal in-
formation, the temperature merely serves to aid this, especially at times when
the �sh shows a high activity level.

In Figure 8.2 is given an example of L(Qj = qj |Xj = xj) calculated from
tag #2255 at the 18th December of May, 2001.

The results of the implementation is found in Section 8.3.

8.3 Results of model extensions

This section holds the results of the theory from Sections 8.1 and 8.2 applied
to the data of cod #2255 and #1432 that both contained temperature sensing
devices.
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Figure 8.2: Left pane: Likelihood for a temperature observation over all positions
at the 18th of December 2001. Blue least likely, red most likely. Likelihood for
the temperature of 7.24◦C, measured by tag #2255.

8.3.1 Cod #2255 extended

The �ner discretisation and the second-order optimisation task increase the to-
tal computation time signi�cantly. The AMPD have changed remarkably and
shows high precision at times of low activity which is quite abundant for this
�sh. At times of high activity, particularly in the latter part of the record, the
uncertainty of the geolocation is increased. The impact of this implementation
is pointed out in Figure 8.3. The shown plots has not included temperature
observations.

A view of the AMPD for the geolocation, including both temperature and activ-
ity regime, shows a jerky distribution at shifts in activity level. To reduce this
e�ect it may be advantageous to change the prediction horizon from 24 hours
to 6 hours and obtain a more smooth animation.

The ML parameter estimate was

D̂ = [1.17, 83.4] km2/day,

which is Gaussian distributed with the covariance matrix

j(D̂)−1 =
[

0.182 −0.29
−0.29 14.12

]
,

where j(D̂) is the observed Fisher information determined from the estimated
Hessian. The ML estimate is converted to average swimming speed via an
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Figure 8.3: Comparison of the basic and regime model for tag #2255. Top row:
Marginal posterior distribution at the 12th of May 2001, low activity, 1: old
model, 2: regime model. Bottom row: Marginal posterior distribution at the
18th of December 2001, high activity, 3: old model, 4: regime model. This
calculation has not included temperatures.

assumed decorrelation time of ρ = 12 hours and (7.1), yielding

v̂ = [2.2, 18.3] km/day.

For comparison, the univariate parameter estimation of Section 7.2 resulted in
v̂ = 9.5 km/day.

It is tested in a Likelihood Ratio Test (Wasserman, 2005) whether the im-
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plementation of the regime model has a signi�cant e�ect on the results. The
hypotheses are formulated

H0: D0 = D1, versus H1: D0 6= D1.

This essentially tests if a two-di�usivity model improves the likelihood of the
MLE signi�cantly compared to a one-di�usivity model. The test statistic is
found to

ZLR = 2[`(D̂)− `(D̂0)] = 185,

where D̂0 is the MLE under H0 and D̂ is the MLE under H1.

The test statistic, ZLR, is χ2 distributed with one degree of freedom result-
ing in a p-value for the test of p < 10−41, which is highly signi�cant at all
reasonable levels. This result provides evidence that #2255 switches its activity
level in a way that is well estimated by the classi�cation algorithm of Subsection
8.1.1. It is concluded that the regime model is a considerable improvement with
respect to the uncertainty of the geolocation.

8.3.2 Cod #1432 extended

The in�uence of temperature observations is illustrated clearly by tag #1432.
The depth record lack tidal information in the initial and �nal part, see Fig-
ure 8.4, and therefore the basic geolocation model relied heavily on the reported
release and recapture positions.

It is expected that temperature observations will reduce the in�uence of the
recapture position. Figure 8.4 shows that the temperature observations ini-
tialises around 7 ◦C and rises steadily to 13.6 ◦C over a period of 2.5 months.
Here it drops abruptly to 8 ◦C and then continue to rise now more erratic until
mid October where a sudden rise of 2 ◦C occur. Thereafter the temperature
slowly declines ending at 12.2 ◦C at recapture.

The ML estimate of D was

D̂ = [0.85, 82.0] km2/day,

with the estimated covariance matrix

j(D̂)−1 =
[

0.132 −0.014
−0.014 10.42

]
.
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Figure 8.4: Depth and temperature record for #1432. Intervals where a tidal
signal was used for geolocation are marked in green. Time range is 30th of
March to 8th of November 1999.

The ML estimate is converted to average swimming speed

v̂ = [1.8, 18.1] km/day.

The estimate of D seems more realistic compared to the basic geolocation model
that gave v̂ = 17.6 km/day as average di�usivity.

Again a Likelihood Ratio Test is performed to assess if the two-di�usivity model
has improved the uncertainty estimates signi�cantly (for details see Subsection
8.3.1). A highly signi�cant p-value of p < 10−33 was found.

Now, apart from having a similar route, the two tags #2255 and #1432 also
agree in parameter estimates. Even based on few data it seems reasonable to
expect future estimates of D to be in the same order of magnitude.

The change in the geolocations following the inclusion of temperature obser-
vation is best displayed by the AMPD. However, also the MPT has changed
signi�cantly. For the basic model, the migrations were assumed to happen over
a longer period of time due to the lack of tidal signal. The new estimated MPT,
see Figure 8.5, shows that the �sh stays in close proximity to its release posi-
tion for two months before travelling north. The path chosen for this migration
di�ers as well. The new MPT estimates a route crossing over the shallow area
closer to the shores instead of swimming around, as the old MPT suggests. The
return migrations are initialised at contemporary time steps but di�er slightly
in path.



104 Model extensions

8.4 Discussion of model extension results

The basic model framework presented in Chapter 6 proved to have much room
for expansion of which two important issues were implemented here in a simpli-
�ed version. However, the change in results was substantial and should not be
overlooked.

Parameter estimates of the two component di�usion regime were realistic and
resulted in a sensible improvement of the AMPD and their variances. The
Likelihood Ratio Tests showed that the change in likelihood was statistically
signi�cant and proved that a two-mode regime model is reasonable description
of cod behaviour. The parameter D is now independent of the amount of tidal
information in the depth record and has the interpretation as the level of activ-
ity in each regime. This makes individuals more comparable and future tagging
experiments may open for parallels to be drawn from the di�usivity to the phys-
iology and biology of the �sh.

The temperature proved particularly useful in time periods without tidal signal
where it contributed with a coarse estimate of the position. In this way the
migration route was determined more precisely which in the end means that the
MPT is more reliable. The added price for a temperature sensing tag is minimal
compared to the potential gain in accuracy. The temperature had only little
in�uence on the computation time of a geolocation. One unclari�ed subject is
the is error assessment of the database that seemed much more complex than
modelled here. Perhaps inclusion of all sigma levels and further investigation of
a larger dataset from stationary tags will improve the understanding of this.
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Figure 8.5: Comparison of the MPT for tag #1432 calculated from the basic
model (left column) and the updated model (right column).
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Part III

Outlook and conclusion





Chapter 9

Discussion and future work

This chapter discusses the major contributions of the dissertation and elabo-
rates on the potential of the important matters and erudition that was brought
to attention during the work.

Within the �eld of geolocation it is a classic assumption that the movements
of the �sh are random, possibly with a bias. The choice is conservative and
simpli�es the �ltering step thus increasing the tractability of the geolocation
problem. The validity of this assumption is widely discussed. Critics claim that
it is fundamentally wrong to assume a behaviour model that predicts the �sh
not to move i.e. zero expectancy of the change in position. Furthermore the
�sh acts to survive and spawn in ways that depend on the environment and the
internal biological state, and not randomly as modelled. The argumentation is
valid, but at present the simplifying assumptions are a necessity for the geolo-
cation algorithm due to a lack of su�ciently detailed data.

The use of an involved model requires great con�dence in its validity and can
lead to erroneous estimates if violated. There is no doubt that model complex-
ity can be increased, but is it bene�cial? In the present study the advection
term was deliberately omitted from the behaviour model. Surely a �sh is more
advective than di�usive at times but direction and velocity are perturbed with
temporal variation appealing to a model with time varying parameters. In future
work this is an extension worth implementing. Advection could, experimentally,
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be included in a seasonal regime model obeying migration trends inferred from
previous tagging research. One should be wary though, as this may inhibit the
model's ability to discover new trends. The safe choice is therefore the basic
di�usion model that comprises any behaviour of the �sh, and only restricts its
maximal swimming speed by adjustment of the di�usivity parameter.

A large scale implementation of the geolocation method should consider de-
parting the, in some aspects limited, �nite di�erence solution of the di�usion
equation. A rectangular discretisation of the domain is required for the convo-
lution operation which inhibits a shift to a continuous representation. Complex
boundary geometry, as the one present in the North Sea, is not easily imple-
mented in a �nite di�erence scheme. The land areas were here not implemented
in the �nite di�erence scheme meaning the �sh in principle could move freely
in the domain. The data-update step was used to prevent geolocations on dry
land. This can in some cases cause the distribution to be arti�cially repulsed
from land areas and thereby introduce a bias in the geolocation. The correct
boundary model is re�ecting, which keeps the �sh o� dry land and conserves,
without renormalisation, the probability mass in the domain.

The method encompassing the aims, not reachable by the �nite di�erence so-
lution, is the Finite Element Method. The method is readily applicable to an
arbitrary shaped domain and delivers possibly continuous output result based
on local interpolation functions in the elements. The discrete grid can have an
arbitrary spatial structure that may be re�ned in regions of speci�c interest to
obtain a more precise solution. FEM relies on heavy linear algebra operations
that is likely to increase computation time, the main drawback of the method.
Furthermore, the method rely on more advanced theory which increases com-
plexity in the implementation phase.

For the basic model, computational requirements were not an issue of severe
interest. However, with the added complexity of model extensions and esti-
mation of an expanded parameter space, a move to a computational e�cient
programming language is on a longer term preferable. The need for fast linear
algebra operations and a multi-dimensional minimum �nding function leads to
Fortran as the recommended language. It is widely used within scienti�c com-
puting for demanding tasks and possesses much of the functionality of Matlab
along with modules for minimisation. Another advantage of Fortran is the
possibility of parallelisation of the geolocation code that would further reduce
computation time. Implementation in Fortran is a considerable task but will
surely turn out bene�cial with respect to computational performance.

An illustrative and intuitive presentation of the results is sought in order to
communicate broadly the essential �ndings of the geolocation. Track repre-
sentations comprising the mean track, the mode track and the Most Probable
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Track were evaluated here. It was argued that the MPT is the rational choice
for this �ltering technique mainly because of its robustness. The computations
leading to the MPT are somewhat tedious due to the immense magnitude of the
optimisation problem. Variants of the method exists, such as the Lazy Viterbi
algorithm, that intelligently reduces computation time but may in rare cases
lead to an erroneous track. This may be applied to obtain a fast estimate of the
MPT.

A track representation of the results does not describe the uncertainty of the geo-
location and may in some cases be very misleading. Optimally, results are given
by a MPT combined with an animation of the marginal posterior distributions,
possibly supplemented by a sample of random tracks. Probabilities of speci�c
�sh behaviour can be directly estimated by such a sample, e.g. the probability
of the �sh entering a marine protected area or swimming east/west of an island.
Immediate access to the estimated joint posterior distribution makes such as-
sessments straightforward to determine for the presented geolocation method.

It was shown that simple inclusion of temperature measurements in the ob-
servational likelihood resulted in a signi�cant change in the geolocations. A fu-
ture full scale implementation of temperature should include all available sigma
levels. Moreover is it advisable to conduct a thorough study of the error of
the provided forecast model that proved to be perturbed with an inconsistent
bias. Some DST dataset include observations of light intensity that could add
extra precision to the geolocation. Especially precision of the latitudinal coordi-
nate may bene�t from light information and can enhance estimates of migration.

The current tidal extraction algorithm relies on the �t of a linear model to
the observations. A high quality �t implies that a tidal pattern is present and
that the �sh is assumed to rest at the sea bed. The algorithm rarely misclassi�es
a non-tidal pattern as a tidal pattern but occasionally tidal patterns obvious for
the eye are overlooked by the algorithm. Preprocessing of the time series, e.g.
by low pass �ltering to remove small scale movement noise, may improve results.
However, one should act with prudence as chances of misclassi�cation may in-
crease. Certainly, advanced signal processing tools should be applied in further
development of the algorithm to ensure that maximal information is extracted
from data.

An approximation of the spherical coordinate system of the database was here
made as a simpli�cation. The relatively narrow latitude range covered by the
North Sea keeps the committed error small. Application of the geolocation
method to species in the Atlantic or Paci�c oceans might bene�t from a map-
ping of the spherical grid to a rectangular grid to keep D constant in space.

Results of the tidal based geolocation indicated that the recapture position
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is encumbered with some uncertainty. Probably, the �sh considered here are
caught from trawl �shing where determination of the exact recapture position
is di�cult. The results of tag #2255 showed in the �nal time step a deviation
from the reported recapture position that was too large to be explained purely
by the uncertainty of the geolocation (p < 0.01). This �nding was supported
by the tag #6448. The importance of an accurately reported recapture position
depends on the amount of tidal data in the �nal part of the record. For some
tags (#1432 and #1186) the recapture position and its uncertainty becomes
decisive for the geolocation in the end period of the time at liberty. In such
a situation the uncertainty of the recapture position has large in�uence on the
ML estimate of D in particular for highly migratory �sh.

The presented method has expanded the �eld of tidal based geolocation and
has proven to give results of convincing quality for cod data. Future work
should consider applying the method to other demersal species in the North
Sea. Also, experimenting with data from other environments and species such
as sea turtles, tuna or sharks, can reveal potential areas of application on the
longer term.



Chapter 10

Conclusion

The aim of the project was to create a method capable of estimating the pro-
bability distribution of the position of a marine animal based on a log �le from
a data storage tag. For this to be possible the following requirements must be
met

� The ambient environment of the marine animal must have su�cient spa-
tial and possibly temporal variation to allow for di�erentiation between
positions.

� Access to prediction models that for a given position can forecast the value
of the environmental descriptor chosen as geolocator.

� Access to electronic data storage tags equipped with sensory devices for
measuring the relevant quantities.

These characteristics were implemented in a simulation study to assess the per-
formance of the geolocation method. No bias on the maximum likelihood esti-
mate of the di�usivity, D̂, could be proved based on a t-test. An F -test showed
that the variance of D̂ is well approximated by the inverse of the observed Fisher
information of D̂. Several track representations were investigated. A track con-
necting the mean of the marginal posterior distributions, a track connecting the
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mode of the marginal posterior distributions and a track termed the Most Prob-
able Track determined by the Viterbi algorithm. The mean and mode tracks are
easy to compute but not suited for possibly multi modal distributions. The Most
Probable Track is computationally demanding but, of the three, was shown to
give the best representation of the track.

Depth records extracted from DSTs was used as basis for tidal based geolo-
cation. The quality of a least squares �t of a linear model was used to locate
tidal patterns in the observations of depth. The extracted tidal data was used
as primary geolocator for the method by comparison with tidal predictions ob-
tained from a numerical forecast model created by Proudman Oceanographic
Laboratory. Formally, a spatial likelihood distribution for the observation as a
function of time, was determined by assuming a linear model for the data. The
variance structure of the model was estimated by inspection of stationary DSTs
at known locations and by examination of the resolution of the forecast model.

The geolocation method was applied to dataset from four cod and one thornback
ray tagged in the southern North Sea and eastern English channel. Estimated
marginal posterior probability distributions of the position were presented in
the form of an animation. Also, Most Probable Tracks were determined along
with estimates of the di�usivity and their standard deviations. For two tags, the
cod #2255 and the thornback ray #2324, results were compared with previous
�ndings obtained from the Tidal Location Method. The conclusion was an over-
all concurrence but the present geolocation method showed improvements with
respect to level of detail, e.g. by track representation and uncertainty assessment.

The work with the geolocation method spawned many new ideas for future
extensions of which some where implemented with simpli�cations. During the
work an alternative forecast model became available that included temperature
predictions on a high resolution grid (approx. 3.5 × 3.5 km). A linear model
for the temperature with Gaussian white noise error were assumed for calcula-
tion of the spatial likelihood distribution. The temperature proved in�uential
but should in the simpli�ed case only be considered a supplement to the more
powerful tidal information.

The basic geolocation results lead to the conclusion that the behaviour of the
�sh has large temporal variation. A regime model using high and low values of
di�usivity was chosen to comply with this �nding. The results of the extended
model gave more realistic uncertainty measures and resulted in di�usivity esti-
mates that were independent of the amount of tidal information in the tag. A
likelihood Ratio Test showed a signi�cant increase in the model likelihood thus
providing statistical proof of shifts in the behaviour.

The statistical basis of the method allows, potentially, for generalisation of mul-
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tiple concurring geolocation results in a population model. The results presented
here showed interindividual reproducibility that agreed with trends seen in con-
ventional tagging experiments. On the longer term these results can aid in the
determination of marine protected areas and seasonal �sh stock assessment.

Overall, the work resulted in a functional geolocation method that can pro-
vide detailed information of the position of a �sh based on its depth record.
Analysis of DST data recorded in the North Sea proved the method's potential
and relevance for application in future geolocation tasks.



116 Conclusion



List of Figures

1.1 The Atlantic cod (Gadus morhua). . . . . . . . . . . . . . . . . . 2

1.2 Map showing the ICES areas. . . . . . . . . . . . . . . . . . . . . 4

3.1 Sketch of the hidden Markov model. X - hidden states (geoloca-
tions), Y - observable outputs (depths). . . . . . . . . . . . . . . 19

3.2 Directed Acyclic Graph for the independence relations between A,
B and C. A and C is seen to be conditional independent given
B, this is a consequence of the Markov property. . . . . . . . . . 21

3.3 A sketch of how the distribution of A given C is obtained. The
joint distribution of A and B conditioned on C is given by a
rescaling of the joint distribution of A and B with the new in-
formation, C, via the marginal distribution of B as indicated by
the arrows. Summing over B in the conditional joint distribution
gives the marginal of A given C as wished. . . . . . . . . . . . . . 23

4.1 Bathymetry for simulation. . . . . . . . . . . . . . . . . . . . . . 30

4.2 Example of a simulated time series of depth measurements and the
true depth. Note that the axes have no unit as they are measured
in the standard space and time units h and k respectively. . . . . 31



118 LIST OF FIGURES

4.3 Example of a negative log-likelihood function for the di�usivity
parameter D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Histogram of 100 simulated estimates of D. . . . . . . . . . . . . 34

4.5 The simulation behaves as a Brownian bridge when the depth is
equal over the domain. The color map denote the probability of
the position. Blue is least probable, red is most probable. Green
triangle: release position. Red triangle: Recapture position. Yel-
low circle: The simulated position at the current time point. . . . 36

4.6 Simulation result of a random 25 step track on a �at bathymetry
along with estimated mean track and MPT. . . . . . . . . . . . . 38

4.7 Estimated tracks for a simulated �sh (200 steps) with little in-
�uence from islands. All track estimates are quite accurate and
follows the general trend of the simulated track. . . . . . . . . . . 39

4.8 Estimated tracks for a simulated �sh (250 steps) swimming near
an island. The mean track estimates positions on dry land, the
mode track indicates crossing dry land, whereas the MPT shows
a likely general trend. . . . . . . . . . . . . . . . . . . . . . . . . 40

4.9 Simulation of 500 steps here shown at j = 250 with various values
of δ = [0.1, 2, 5, 10]. Explanation of markers: Green: Release
position, Yellow: Position at time of geolocation, Red: Recapture
position. Top row shows the geolocation in a shallow area (little
depth variation) near the border of the domain. The bottom row
shows the geolocation near a larger depth gradient. . . . . . . . . 41

5.1 Habitat of the North Sea. Top left: Bathymetry of the North
Sea. Top right: Sea bed temperature the 18th of July 2001 in
◦C. Bottom left: Amplitude of the M2 tidal constituent i metres.
Bottom right: Phase of the M2 tidal constituent in radians. . . . 47

5.2 Various types of DSTs used for geolocation. Left: Star-oddi centi,
Center: Star-oddi milli, Right: LDT 1110 (similar to 1200). . . . 48

6.1 Some types of tidal information all found in tag #2255. See text
for description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



LIST OF FIGURES 119

6.2 Examples of tidal classi�cation. Green intervals have a rmse be-
low the limit 0.42 m. Left: Tidal information correctly classi�ed
n. Right: Tidal information falsely classi�ed. Both from tag #2255. 53

6.3 Examples of tidal classi�cation. Classi�ed using the S, R2 and
the amplitude A. Compared to Figure 6.2 the right pane is now
correctly classi�ed. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Sketch of the time line for a DST time series. The �sh is released
at τ0 and recaptured at τN . . . . . . . . . . . . . . . . . . . . . . 56

6.5 Measurements of depth and temperature from Tag #1536 at the
9th of August, 2001. The depth has increased �uctuations and
the temperature drops approximately a degree at the time. . . . . 58

6.6 Statistical analysis of Vi. Left pane: Q-Q plot for Vi. Right pane:
acf for Vi. The process shows apparent Gaussianity as assumed. . 59

6.7 Observed tide and predicted tide at exact location for tag #1536. 61

6.8 Tidal prediction from two adjacent grid cells close at 52.5◦ lati-
tude, 1.75◦ longitude. A position with relatively large tidal vari-
ation close to the shore. . . . . . . . . . . . . . . . . . . . . . . . 62

6.9 Map of σ̂e(x) across the domain. Note that σ̂e(x) of 0.2 m and
above is indicated by one contour. These high values occur at the
shores whereas the open sea has little tidal variation particularly
at the amphidromic points. . . . . . . . . . . . . . . . . . . . . . . 63

6.10 Autocorrelation function for ẑ(x)− ẑ(x + ∆x) at for �xed x and
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