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Abstract—It has been previously observed that spatial 

independent component analysis (ICA), if applied to data pooled 
in a particular way, may lessen the need for spatial alignment of 
scans in a functional neuroimaging study. In this paper we seek 
to determine analytically the conditions under which this 
observation is true, not only for spatial ICA, but also for 
temporal ICA and for principal component analysis (PCA). In 
each case we find conditions that the spatial alignment operator 
must satisfy to ensure invariance of the results. We illustrate our 
findings using functional magnetic-resonance imaging (fMRI) 
data. Our analysis is applicable to both inter-subject and intra-
subject spatial normalization. 
 

Index Terms—fMRI, Image Registration, Independent 
Component Analysis, Neuroimaging. 
 

I. INTRODUCTION 
N functional neuroimaging it is standard practice to use 
spatial transformations to bring all the images into 

approximate spatial correspondence prior to their analysis [1].  
This process, sometimes known as spatial normalization, is 
usually a necessary pre-processing step, because most 
analytical techniques assume that corresponding voxels in 
different images refer to the same location within the brain. 
Considerable attention is paid to minimizing inherent errors in 
the anatomical normalization process, and one can never say 
with certainty that intersubject normalization has been entirely 
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successful. Therefore, it may be desirable in certain types of 
studies to do away with spatial normalization. In this paper, 
we consider some situations in which this might be possible. 
 Svensén, et al., [2] have mentioned that spatial independent 
component analysis (ICA) does not require spatial alignment, 
but they did not study the issue.  In [3], we observed that 
temporal ICA may be invariant to spatial alignment 
operations, but we did not investigate the question either.  
There have been many papers based on different ways of 
forming the data matrix in ICA and PCA (e.g.,[3]-[7]), some 
of which may obviate the need for spatial alignment.  
However, to our knowledge, the specific conditions under 
which spatial ICA, temporal ICA, and principal component 
analysis (PCA) may be invariant to spatial alignment have not 
been studied. 
 In this paper, we investigate the conditions under which 
spatial normalization may be unnecessary when PCA or ICA 
is used to analyze the data. We show that, under some 
conditions, the temporal patterns obtained by PCA and ICA 
are invariant to spatial alignment transformations, and that 
these transformations have no effect on the spatial patterns 
except to align them. We present experimental data supporting 
our mathematical conclusions for one kind of PCA and one 
specific ICA algorithm. 

In this paper, we will focus on functional magnetic-
resonance imaging (fMRI) data; however the concepts apply 
equally to other functional-imaging modalities in which 
images are acquired in a time series, such as dynamic positron 
emission tomography (PET) or magnetoencephalography 
(MEG).  We anticipate that the methods studied in this paper 
may be particularly appropriate for MEG, where spatial 
normalization prior to analysis is sometimes difficult. 

The remainder of the paper is organized as follows. In the 
next section we discuss issues of data pooling in the context of 
PCA and ICA.  In Sect. III, we discuss a matrix representation 
of the spatial-normalization transformation and sufficient 
conditions for invariance of the analysis. In Sect. IV, we 
examine these conditions for some basic spatial 
transformations. Comparisons of experimental PCA and ICA 
results with and without alignment are presented in Sect. V. 
Conclusions are given in Sect. VI. 
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II. DATA MATRIX AND THE SPATIAL NORMALIZATION 
TRANSFORMATION 

Let us assume that a sequence of  images is acquired for 
each of two subjects or two runs of the same subject.   (We 
confine our attention to this case for notational simplicity; 
however, our analysis can readily be extended to more than 
two sets of images.)  Let the two images at discrete time i be 
denoted by  and , , which are column vectors 
formed by lexicographic ordering of the voxel values. Let  
and  denote data matrices formed from these image vectors 
as follows: 

N

ix iy 1, ,i = … N
X

Y
[ ]1 2 N=X x x x"  and 

[ ]1 2 N=Y y y y" . 
To analyze these data sets simultaneously, it is common in 

neuroimaging to pool the data into a single data matrix as 
follows [7]-[10]: 
 

[ ]
[ 1 2 1 2N

=

=

Z X Y

x x x ]Ny y y" "
(1) 

 
In this case, spatial normalization is necessary because all 

the values within a given row of Z are assumed to refer to the 
same spatial location.  

In this paper we will analytically study alternative ways of 
forming the data matrix Z  [2], which we will denote by 1Z  

and , so that either:  2Z
 

1= =
⎡ ⎤
⎢ ⎥⎣ ⎦

X
Z Z

Y
 , (2) 

 
or 
 

2

T T= = ⎡ ⎤⎣ ⎦Z Z X Y  . (3) 

 
It is important to note that these two representations are 

simply transposes of one another, i.e., .   While these 
two representations are equivalent when PCA is applied; in 
ICA the data matrix in (2) yields temporal ICA, while the data 
matrix in (3) produces spatial ICA.  

1

T=Z Z 2

⎟

In this paper, we will consider spatial-normalization 
transformations that can be expressed as a linear 
transformation  of the voxel values, typically having the 
form 

R

 

X

Y

=
⎛ ⎞
⎜
⎝ ⎠

R 0
R

0 R
, (4) 

 
in which  and  are transformations that spatially 
transform the data in  and , respectively, usually to a 

standard template. 

XR YR
X Y

It is important to note that we are not assuming that the 
transformation operator  is linear in terms of the spatial 
coordinates in the image domain; it only must be linear in 
terms of the voxel values.  Thus, so-called “nonlinear 
warping” methods are not excluded by this assumption.  
However, our assumption does require that linear interpolation 
be used when implementing these warping transformations.   

R

When using the data matrix in (2), the operation of spatial 
alignment is denoted by: 

 

A =Z RZ  ; (5) 
 
whereas, when using the data matrix in (3), spatial alignment 
is represented as: 

 
T T

A =Z Z R  . (6) 
 
Here, and throughout the paper, variables with subscript  
signify quantities associated with post-aligned data. 

A

We point out that the same setup can be used to analyze the 
effect of temporal transformations (e.g. phase shift) on data 
pooled along the temporal direction. In this case matrix  
represents temporal transformations and the transformed data 
are written as . Applying ICA on  yields 
temporal independent components and, as above, ICA of 

 yields spatial independent components.  

R

A =Z ZR A =Z ZR

T T

A =Z R Z
In the next section, we will show that, using the data matrix 

formulations in (2) and (3), PCA and ICA are invariant to 
certain kinds of spatial transformations. Specifically, we will 
show that, in these situations, the temporal patterns are 
unaffected by alignment procedures.  We also show that, 
while these transformations serve to align the spatial patterns 
of the subjects, they do not otherwise change the essential 
nature of the spatial patterns. 

 

III. INVARIANCE TO ALIGNMENT TRANSFORMATIONS 
We will consider analysis methods that decompose the data 

matrix into a spatial matrix G  and a temporal matrix T , i.e., 
=Z GT . Among the best known decompositions of this type 

are PCA [11] and ICA [12]. 

A. Principal Component Analysis (PCA) 
The two data representations defined in (2) and (3) are 

simply transposes of one another; thus, in regards to PCA, the 
difference between the two representations is merely one of 
notation.  Therefore, in the following analysis of the PCA 
method we will only consider the arrangement in (2).   

Let T=Z U VΛ  denote a singular value decomposition 
(SVD) of . Given that, in neuroimaging,  typically has 
many more rows than columns (more voxels than time 
samples), we will consider the reduced SVD of , in which 

Z Z

Z
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the diagonal matrix  contains only the nonzero singular 
values of , and the matrices  and  are formed from the 
corresponding left and right singular vectors, respectively. 
Then the rows of  are formed from the rows of the matrix 

, and the spatial patterns are the columns of the matrix 

Λ
Z U V

T
TV
 

X

Y

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

U
G U

U
Λ Λ . (7) 

 
Note that the spatial patterns obtained via PCA are always 
mutually orthogonal, i.e., 2T =G G Λ  is a diagonal matrix. 

 With the data arranged as in (2), the temporal patterns 
obtained by PCA are unaffected by certain spatial 
transformations, and the resulting spatial patterns are simply 
aligned versions of the patterns that would be obtained 
without pre-alignment.  This is easily shown as follows. 
Applying the spatial transformation R  to the data, we obtain: 

 
T

A = = =Z RZ RU V G VΛ T

A

A

, (8) 
 

where 
 

A =G RUΛ . (9) 
 

Equation (8) shows the representation of the aligned data in 
which temporal patterns are the same as those obtained from 
the unaligned data by the PCA.  Equations (7) and (9) show 
that the spatial patterns in (8) are simply aligned versions of 
the spatial patterns in , i.e.,  G

 

A =G RG . (10) 
 
Now let us denote the SVD of  as . 

From (8) it can be seen that we will have  provided 
that the following condition is met: 

AZ T

A A A=Z U VΛ

A =V V

 

( ) ( )T T T λ= =RU RU U R RU I .  (11) 
 

where λ >0 is an arbitrary constant. Moreover, in such a case 

we have A λ=Λ Λ  and /A λ=U RU .  
The condition in (11) requires that  be a unitary 

transformation (up to an arbitrary scale factor) on the 
subspace spanned by the left singular vectors of Z  (i.e., the 
range space of ). Of course, this condition is easily met if 

R

U
 
T λ=R R I .  (12) 
 
However, it should be noted that the condition in (12) is 

much more restrictive than that in (11) since, in neuroimaging, 

the dimension of  is much lower than the number of rows 
of . Even so, we demonstrate that the condition in (12) is 
satisfied by some general geometric transformations. 

U
Z

To summarize, PCA is essentially unaffected by spatial 
alignment so long as the alignment transformation (expressed 
in terms of the voxel values) can be represented by a matrix 

 obeying property (11).  In Sect. IV, we will show that 
important types of transformations either exactly or 
approximately satisfy this requirement.  Next we consider the 
effect of spatial normalization on ICA. 

R

B. Independent Component Analysis (ICA)  
ICA refers broadly to a collection of techniques that aim to 

decompose data into components that are statistically 
independent. Because statistical independence of a random 
sequence is a strong statement, one usually cannot fully 
specify or guarantee independence in practice.  Instead, the 
usual approach is to seek components that optimize some 
manifestation of independence using measures such as lagged 
correlation [13], mutual information [12], negentropy [12], or 
kurtosis [12].  

In general, the ICA data model is  
 
=Z AS , (13)  

 
where  is the data matrix,  is the so-called mixing matrix, 
and  is a matrix of statistically independent sources. ICA is 
often referred to as blind source separation, because the 
mixing matrix  and the source matrix S  are assumed to be 
unknown.  In spatial ICA, the sources are spatial patterns; in 
temporal ICA, they are temporal patterns. 

Z Λ
S

A

 Because the two data representations in (2) and (3) lead 
to temporal  and spatial ICA respectively, we analyze them 
separately. 

C. Spatial ICA  
Using the data matrix in (3) in conjunction with (13) yields 

a spatial ICA, i.e., an analysis in which it is assumed that brain 
activation is driven by a set of statistically independent spatial 
patterns, weighted by time factors contained in the mixing 
matrix . A

In this formulation, if a spatial transformation  is applied 
to the image data, then the ICA model in (13) becomes: 

R

 

( )T T

A = = =Z ZR ASR A SRT

)

]T

. (14)  

 
Now we ask the following:  Is (  a valid matrix of 

independent spatial patterns? The answer is affirmative. That 
is, we have , and the mixing matrix A is unchanged. 
To see this, write  as 

TSR

T

A =S SR
S

 

1 2[ T T T

m=S s s s" , (15) 
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where js , 1, ,j m= … , are row vectors denoting the 

independent spatial components of . Then, Z
 

1

2

T

T

T

T

m

=

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

s R

s R
SR

s R

#
⎥ . (16) 

  
Clearly, the rows of this matrix remain independent 

provided that the rows of  are independent.  However, note 
that in order to obtain S  from 

S

AS , the matrix R  must be 
invertible.   

 Thus, in general, invariance of spatial ICA results 
requires only the invertibility of .  However, we will see 
later, the requirements on  may be more strict for any given 
computational algorithm for performing ICA. 

R
R

D. Temporal ICA  
The data matrix in (2) yields a temporal ICA, in which 

brain activation is modeled as a mixture of independent 
temporal components, each weighted by a corresponding 
spatial pattern contained in the mixing matrix . A

Now let us consider the effect of spatial normalization on 
temporal ICA.  If a spatial transformation  is applied to the 
image data, then the ICA model in (13) becomes: 

R

 

A = =Z RZ RAS . (17)  
 
Thus, the original ICA model in (13) has been transformed 

to a new ICA model, which can be expressed as: 
 

A A=Z A S , (18)  
 

wherein  and the source matrix S  is preserved.  
Since ICA imposes no further conditions on the matrices, (18) 
demonstrates that the spatial transformation  can be applied 
before or after the analysis with identical results, provided that 

 is invertible.  Therefore, in principle, it appears that this 
kind of ICA is essentially invariant to spatial alignment 
transformations as well; however, as we will see next, this 
may not be the case for any given ICA algorithm. 

A =A RA

R

R

E. Molgedey-Schuster ICA Algorithm 
It is important to note that the goal of ICA (to find 

statistically independent components) is never precisely 
achieved in practice, because independence is a statement 
about probability density functions of all orders 1, ,n = ∞… , a 
condition that cannot be discerned by any realizable numerical 
algorithm.  In practice, ICA algorithms merely seek to 
optimize some signature of independence; therefore, the 
peculiar characteristics of any given ICA algorithm may lead 
to results that are not invariant to the same broad class of 

spatial transformations.  To investigate this possibility, we 
next consider one specific algorithm, known as the Molgedey-
Schuster (M-S) method [13],[14].  We choose to study this 
particular algorithm because it is a simple non-iterative 
method, which makes our analysis tractable, and because it 
has been applied successfully in the past [14],[3],[15]. 

ICA algorithms use various manifestations of independence 
to find components that are purportedly independent.  In the 
M-S method, sources are considered to be independent if their 
lagged cross correlation is zero.   In concept, the M-S 
algorithm consists of two steps: a whitening followed by a 
rotation. In the whitening step, a PCA transformation is 
applied to the data.  This yields components that are 
uncorrelated, but not necessarily independent.  In the rotation 
step, the time-lagged covariance matrix of the basis vectors is 
diagonalized in an effort to obtain independent sources.   

Now let us consider temporal ICA implemented using the 
M-S algorithm.  In the Appendix, we show that the temporal 
M-S ICA algorithm is equivalent to computing the mixing 
matrix  by solving the following eigenvector equation: A

 
( )( ) ( )2 T

Z Sτ τ− =C U U A ACΛ , (19) 

 
in which ( )Z τC  and ( )S τC  are the time-lagged 
autocorrelation matrices of the data and the sources, 
respectively.  It should be noted that ( )S τC  is a diagonal 
matrix. 

 Let us suppose that we implement (19) using spatially 
aligned data AZ  in place of the original data .  In this case, 

the time-lagged covariance matrix of 

Z

AZ  is related to that of 
 by: Z
 

( ) ( )
A

T

Z Zτ τ=C RC R . (20) 

 
Now let us write the reduced SVD of AZ  as . 
Then, the eigenvector equation for the mixing matrix 
becomes: 

T

A A A=Z U Λ VA

 
( )( ) ( )2

A

T

Z A A A A A Aτ τ− =C U U A A CΛ , (21) 

 
where ( )A τC  is the time-lagged autocorrelation matrix of the 
(new) sources. 

Now suppose that the transformation R  satisfies the 

condition in (11). Then, we have A λ=Λ Λ  and 

/A λ=U RU .  Substituting these relations into (20) and 
(21), we obtain: 
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( )

( )

21 1 1T T

Z A

A A

τ
λλ λ

T

τ

− =

=

⎛
⎜
⎝

RC R RU Λ U R A

A C

⎞
⎟
⎠

A A

. (22) 

 
Upon further algebraic manipulation, we obtain 
 
( )( ) ( )2 1 1T

Z Aτ τ− − −=C UΛ U R A R A C . (23) 

 
Thus,  

 

A =A RA . (24) 
 
Therefore, the mixing matrix computed from the aligned 

data is simply an aligned version of what would have been 
found from the original data (up to permutation and sign 
changes).   

Note that, to obtain (23), it is assumed that the 
transformation  is invertible and satisfies the condition in 
(11). 

R

Now we consider the effect of spatial normalization on the 
temporal patterns (sources).  As we discuss in the Appendix, 
the Molgedey-Schuster method determines the sources as 

, where Q  is the eigenvector matrix of the time-
lagged covariance matrix of V .  We have already shown in 
Sect. III.A that  is invariant to the spatial transformation  
provided that it satisfies the condition in (11), therefore 

.  Since Q  is derived solely and uniquely from , it 

immediately follows that .  Therefore, the sources 
derived from the aligned data are identical to those derived 
from the original data, i.e., .  

T=S QV

V R

A =V V V

A =Q Q

T T

A A A= = =S Q V QV S
Thus, we have demonstrated that the temporal M-S ICA 

algorithm is invariant to any spatial transformation R  that 
satisfies the condition in (11), which is more restrictive than 
what we might expect in principle for ICA, as shown in Sect. 
III.D.  However, it should be noted that if the number of time 
samples is greater than or equal to the number of voxels, then 
invariance of the M-S algorithm only requires that R  be 
invertible, which is the same condition we found for ICA in 
general.  However, this less-restrictive case is not often of 
interest in neuroimaging. 

 

IV. PROPERTIES OF THE ALIGNMENT TRANSFORMATION 
In the previous section we considered conditions under 

which PCA and ICA are essentially unaffected by spatial 
alignment transformations.  Next we examine whether these 
conditions are met by actual transformations.   

For notational convenience, we will consider two-
dimensional images; however, the results can be readily 
extended to three-dimensional images. Furthermore, we will 
assume that the image functions of interest are elements of 2L  

(the space of square-integrable functions). Consider an image 
function ( ),f x y  of continuous spatial variables x  and , 

and let  denote the operator on 

y

R� ( , )f x y  corresponding to 

either spatial transformation  or  in (2).  Let XR YR ( ),Af x y  

denote ( ),f x y  after application of , i.e., R�

( ) ( )[ ],A ,f x y f x y= R� . For clarity, we emphasize that  is 

a linear operator defined on image functions in 

R�

2L ; in the case 
of discrete images, this operator is represented in matrix form 
as in our discussions in the previous section.  

A. Affine Transforms 
In its most general form, an affine transform can be 

represented as 
 

1 2 1

3 4 2

'

'

a a bx x

a a by y
=

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

+ , (25) 

 
where ( ),x y  and ( ),x y′ ′  are spatial coordinates before and 

after the transformation, respectively, and  and , ia jb

1, 2, 3, 4i = , 1, 2j = , are transform parameters.  Recall that 
the affine transform describes combinations of anisotropic 
scaling, shear, rotations, and translations. 

For any two images ( ) ( ) 2, , ,f x y g x y L∈ , it can be 
shown, subject to the transformation in (25), that the 
following identity holds: 

 

1 4 2 3

( , ), ( , ) ( , ) ( , )

( , ), ( , )

A A A A

D

f x y g x y f x y g x y dxdy

a a a a f x y g x y

=

= −

∫∫
, (26) 

 
where  ,⋅ ⋅  denotes an inner product.  Consequently, for an 

affine transformation , we have R�
  

1 4 2 3

T a a a a= −R R I� � ,  (27) 
 

where  denotes the adjoint operator of R , and the scalar 
factor 

TR� �

1 4 2 3a a a a−  corresponds to the area ratio associated 
with the transform. For transformations involving only 
rotation and/or translation this factor is equal to 1 since these 
operations do not change the size of the brain region 
corresponding to each pixel. If the image is scaled by factors  

xs  and ys  in x and y directions respectively, the factor is 

equal to x ys s .  Therefore, the property in (12) holds for any 

combination of global anisotropic scaling, shear, rotation, and 
translation. 
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B. Neuroimaging Alignment Transformations 
Of course, neuroimaging alignment transformations are not 

restricted to affine transformations [16],[9]. Nevertheless, it is 
always possible to approximate a given spatial transformation 
using piecewise affine transforms over small regions. Indeed, 
in the Talairaich coordinate system, the brain can be divided 
into regions, to which affine transforms can be fit separately 
[17].  

Of course, an issue that arises from the use of piecewise 
affine approximation is that the factor 1 4 2 3a a a a−  in the 
identity in (20) now may differ for the different pieces. 
However, in practice we expect that while such variations will 
exist, their extent will be limited and may cause a negligible 
effect on the analysis, as will be seen from our experiments. 

  A similar issue is that so far we have limited the spatial 
transformation to a single image. However, in (2) the 
transformation  involves two images, each of which is 
associated with its own spatial transform. Nevertheless, one 
can see that 

R

T λ=R R I  also holds approximately in such a 
case, provided that the factor 1 4 2 3a a a a−  is not significantly 
different for the two spatial transforms.  

C. Discrete Images 
In the above derivations we have treated images as 

functions of continuous spatial variables. However, in practice 
we work with their discrete samples. One may wonder if the 
properties of the spatial transformation  would hold equally 
for discrete samples. The answer is affirmative, which we 
justify below.  

R

Consider an image function ( , )f x y . Let   [ , ]f m n  denote 
its sampled version, i.e.,  

 
[ ] (, , )f m n f m x n y= ∆ ∆ , (28) 
 

where ,x y∆ ∆   are the sampling intervals in the x and  

directions, respectively. Similarly, let 

y

[ ],g m n  denote the 

sampled version of another image function 2( , )g x y L∈ . Now 
let us assume that the images are properly sampled so that no 
aliasing occurs. Then from sampling theory the following 
identity can be derived: 

 
[ ] [ ] [ ] [ ]

,

, , , , ,

1
( , ) ( , )

1
( , ), ( , ) .

m n

D

f m n g m n f m n g m n

f x y g x y dxdy
x y

f x y g x y
x y

=

=
∆ ∆

=
∆ ∆

∑

∫∫  (29) 

 
Based on (29) we can see that the identity (27) is equally 
applicable for discrete images with the operator  now 
represented as a matrix. 

R

We point out that the identity in (29) is based on the 
assumption that both image functions ( , )f x y  and ( ),g x y  
are sampled without aliasing (i.e., without violating the 
Nyquist condition). Of course, this condition could potentially 
be violated when an image is scaled by an exceedingly large 
factor during alignment. However, in practice the inter-subject 
variation doesn’t seem to have much impact, as illustrated in 
our experiments (Experiment 1).  In addition, non-ideal 
interpolation is often used in practice because of its simplicity 
(as in our experiments), but our experimental results seem to 
suggest that it has little effect. Finally, we point out all the 
derivation results still hold for images square or not. 

 

V. EXPERIMENTAL RESULTS 
In this section we investigate the effect of spatial alignment 

transformations by comparing the results of analyses based on 
aligned and misaligned fMRI images, using PCA and 
temporal ICA.  In the first experiment we used two runs of an 
fMRI study for the same subject, then deliberately applied 
random spatial transformations to one of the runs to create 
severely distorted and misaligned data.  In this way we 
eliminated confounding effects of intersubject functional 
variations and were able to study the effects of extreme 
misalignments.  In the second experiment we used the fMRI 
data from two subjects and compared the results of PCA and 
ICA analyses of the original (misaligned) and aligned data.  

A. Experiment 1: two runs of the fMRI data for the same 
subject 
The images were obtained while a right-handed volunteer 

performed two runs of a static force task, alternating six rest 
and five force periods per run (44 s/period; 200, 400, 600, 
800, 1000g force levels between thumb and forefinger, 
pseudo-randomized across force periods and maintained with 
visual feedback) [18].  Images were corrected for within-
subject motion and spatially aligned as described in [10], and 
the data matrix  was doubly centered (to have zero mean).   Z

We applied PCA and temporal M-S ICA to the two runs of 
fMRI data in two ways: first with the images spatially aligned, 
then again after the images were deliberately transformed 
spatially to simulate intersubject misalignment.  Intersubject 
misalignment was modeled by a rotation by random angle θ , 
translation by a random vector ( , )x y∆ ∆  and independent 
scale parameters  and b  in the horizontal and vertical 
directions respectively, which permitted fairly extreme 
changes in the aspect ratio of the brain between the two fMRI 
runs. The transformation parameters were drawn from 
independent Gaussian distributions. The statistics  (mean, 
standard deviation) of 

a

θ , ,x y∆ ∆ ,  and b  were, respectively, 
, (0 pixels, 5 pixels), (0 pixels, 5 pixels), and (1, 0.2) 

for both a  and .  Example scans from 10 realizations of this 
random spatial transformation are shown in Fig. 1. 

a
(0 ,30 )° °

b
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a
u
c
a
p
r

these comparisons are given in Table I.  As expected, all the 

F  
t  
a  
a

 CORRELATION BETWEEN PATT
SPATIA

Method Component Tem
1 0
2 0PCA 
3 0
1 0
2 0ICA 
3 0.998 ± 0.002 0.999 ± 0.000 
ig. 1. Example scans from one run of fMRI data after random spatial

ransformations were introduced to simulate misalignments and intersubject
natomical variations, consisting of random changes of aspect ratio, rotations
nd translations. 
Next, we applied PCA and Molgedey-Schuster ICA to the 
ligned and misaligned data sets, then compared the results 
sing correlation and visual inspection. A quantitative 
omparison of the temporal patterns computed from aligned 
nd misaligned data was made by computing the Pearson 
roduct-moment correlation between the patterns for 10 
ealizations of the misalignment transformation. The results of 

correlations are nearly one. 
The approximate invarian

from the example temporal
which the solid curves wer
data and the dashed curve
data.  The curves are virtu
show the spatial patterns ob
patterns obtained from the o
transformed for ease of com

Fig. 2. First th
random chang
data.  Spatial 
that is quantif
TABLE I 
ERNS COMPUTED WITH AND WITHOUT 
L ALIGNMENT  
poral patterns Spatial patterns 

.975 ± 0.016 0.983 ± 0.012 

.995 ± 0.004 0.992 ± 0.006 

.999 ± 0.001 0.998 ± 0.002 

.983 ± 0.012 0.971 ± 0.023 

.992 ± 0.006 0.948 ± 0.005 
  
ce of the results can also be seen 

 patterns shown in Fig. 2 (left), in 
e computed from spatially aligned 
s were obtained from misaligned 
ally identical. In Fig. 2 (right) we 
tained in this example. The spatial 
riginal data analysis were spatially 
parison. 
 
ree temporal and spatial patterns computed with and without pre-alignment of the data by PCA and ICA.  In this case, misalignments consisted of
es in aspect ratio (anisotropic scaling), rotations, and translations.  Solid curves were computed from aligned data, dashed curves from misaligned 
patterns were spatially transformed for ease of comparison.  Spatial alignment appears to have virtually no effect on the results, an observation 
ied by the correlation values in Table I. 
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B. Experiment 2: fMRI data for two subjects 
In the next experiment we compare the results of PCA and 

ICA analyses on the fMRI data of two subjects with and 
without spatial normalization. This dataset was obtained while 
the subjects performed a visual and auditory task. During the 
study four task periods of 32 seconds were alternated with 
five rest periods of 20 seconds for the total duration of 228 
seconds during which a total of 118 images were obtained. 
During the first task period, 8 images of the Wada objects 
were back projected onto a screen at the rate of one every four 
seconds. Simultaneously, the subject heard the name of the 
object repeated via earphones.  During the second and third 
task periods, the subject was shown a series of eight images 
consisting of some that he/she has seen in the first task period 
(targets) and some unfamiliar ones (foils).  The subject also 
heard the names of the objects.  During the fourth task period, 
the subject was shown a series of eight unfamiliar objects.  
The subject was instructed to squeeze a pneumatic bulb when 
he/she recognized an object that was presented during the first 
task period. During the rest periods, the subjects were 
instructed to fixate their eyes on a white cross hair pattern. 
The imaging parameters were: TR/TE = 2000ms/40ms, FOV= 
24cm, 7mm slice thickness, and 1-2mm interslice gap 
resulting in an 64 x 64 pixel image matrix and 24 coronal 
slices and voxel size of 3.75mm x 3.75mm x 7mm.  

Prior to the analysis the data was pre-processed in the 
following way. The first four scans as well as one transitional 
scan from the beginning and end of each task/rest period were 

discarded reducing the number of volumes per subject to 98. 
Each voxel time course was then made zero mean and unit 
variance. Finally, a 3D Gaussian smoothing kernel with the 
full with at half maximum (FWHM) of 8mm in each direction 
was applied to each volume. Data was then spatially 
normalized using the SPM5 software to the EPI template 
resulting in a 99 x 89x 115 voxel volumes and voxel size of  
2mm x 2mm x 2mm.  

In Fig. 3 we compare the first six temporal patterns 
obtained by PCA and ICA from original and spatially aligned 
data. Solid curves correspond to temporal patterns obtained 
from the original data while dotted curves correspond to 
temporal patterns obtained from the aligned data. These first 
six principal components account for more then 60% of the 
total variance in the data. The correlation coefficients between 
the patterns obtained with and without spatial normalization 
are given in Table II. As expected the correlation coefficients 
are very high although not as high as in the previous 
experiment where the two-dimensional data of the same 

TABLE II 
 CORRELATION BETWEEN PATTERNS COMPUTED WITH AND WITHOUT SPATIAL 

ALIGNMENT FROM THE AUDIO-VISUAL TASK DATASET 
Method Component Correlation 

Coefficient 
Component Correlation 

Coefficient 
1 0.95951 4 0.82366 
2 0.95713 5 0.88809 PCA 
3 0.80616 6 0.89993 
1 0.96778 4 0.98098 
2 0.96742 5 0.82355 ICA 
3 0.82755 6 0.88493 

 

 
Fig. 3.  The results of PCA and ICA analyses of the original and spatially normalized (aligned) data. The first six principal components account for more then 
60% of the total variance in the data. Principal component 4 shows the highest correlation with the experimental paradigm. 
 



TMI-2006-0887 9

 
Fig. 4.  Two-dimensional histograms comparing the spatial patterns obtained from the original and spatially aligned data analyses. The horizontal axes 
corresponds to the voxel values obtained from the analysis of spatially aligned data. The vertical axis correspond to the voxel values of the volumes obtained by 
spatially normalizing the results of original data analysis. 
 

subject was deliberately misaligned using an affine 
transformation. Temporal patterns corresponding to the 4th 
principal component have the highest correlation with the on-
off experimental paradigm. 

To compare the spatial patterns obtained with and without 
spatial normalization we again used the SPM software to 
normalize the original data results to the same spatial 
template. The voxel values obtained in this way together with 
the voxel values obtained by the analysis of the aligned data 
are used to construct the two-dimensional histograms shown 
in Fig. 4 These histograms again show a high degree of 
correlation: 0.7985 (subject 1) and 0.85851 (subject 2) for the 
PCA and 0.82214 (subject 1) and 0.80866 (subject 2) for the 
ICA. In Fig. 5 and Fig. 6 we show the “pre-alignment” spatial 
patterns obtained from the spatially normalized data and 
“post-aligned” spatial patterns obtained by spatially 
normalizing the results of the original data analysis. These 
images clearly show an activation in the occipital lobe.  

VI. CONCLUSION 
In this paper we investigated the effects of spatial alignment 

transformations on PCA and ICA image analysis. We found 
simple conditions under which the patterns obtained by PCA 
and ICA are essentially unaffected by spatial transformations, 
meaning that spatial normalization of images may not be 
necessary, or can be applied after analysis if a common 
coordinate system is desired for the spatial patterns. 

Our analysis can also be interpreted in a different way.  It 
can be argued that analysis without pre-alignment of the 
images may be just as valid as the standard approach, because 
it is based on the original data, and does not depend on the 
accuracy or dependability of any alignment algorithm.  
Nevertheless, our preliminary experimental results appear to 
indicate that the results obtained with and without alignment 
are virtually identical. 

In future work, we will consider the effects of more-
complicated warping procedures across a wider range of data 
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sets to further verify our conclusions.  We will also study 
application of this approach to MEG, where spatial alignment 
of the original data can be difficult.  

 

 

 
Fig. 5. The spatial patterns obtained from the PCA analysis of the original and spatially normalized (aligned) data for both subjects. The spatial patterns on the left 
are obtained from the analysis of spatially aligned data. The spatial patterns on the right are obtained by spatially normalizing the results of the original data 
analysis. 
 

APPENDIX 

DERIVATION OF THE ONE-STEP TEMPORAL MOLGEDEY-
SCHUSTER ICA ALGORITHM 

In concept, the Molgedey-Schuster ICA algorithm consists 
of two steps:  a whitening operation (PCA), followed by a 
rotation operation to induce independence of the components.  
Here we show that these two steps can be represented more 
simply in a single combined operation.   

As before, let T=Z U VΛ denote the reduced SVD of . 

Now let  be the matrix operator that rotates the PCA basis 
vectors in  to transform them into ICA source vectors.  
Thus, the source matrix becomes  

Z
TQ
V

 
T=S QV .   (A.1) 

 
Equating the SVD of Z  with the ICA of , i.e., 

, it immediately follows that the mixing matrix is 
given by 

Z
T =U V ASΛ
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Fig. 6. The spatial patterns obtained from the ICA analysis of the original and spatially normalized (aligned) data for both subjects. The spatial patterns on the 
left are obtained from the analysis of spatially aligned data. The spatial patterns on the right are obtained by spatially normalizing the results of the original data 
analysis. 
 

T=A U QΛ . (A.2) 
 
From (A.1) it immediately follows that the time-lagged 

autocorrelation matrix of the sources is given by: 
 
( ) ( ) T

S Vτ τ=C QC Q . (A.3) 
 
In the Molgedey-Schuster algorithm, the aim is to enforce 

independence by causing the time-lagged cross correlation of 
the sources to be zero, i.e.,  ( )S τC  must be diagonal.  Here 
the data are assumed to be statistically stationary. Therefore, 

(A.3) is an eigenvector equation, which defines the orthogonal 
matrix  as the eigenvector matrix of TQ ( )V τC , i.e.,  

 
( ) ( )T T

V Sτ τ=C Q Q C . (A.4) 
  

From T=Z U VΛ , we have . Thus, the time-
lagged autocorrelation matrices of  and  are related by:  

1 T−=V UΛ Z
V Z

 
( ) ( )1 1T

V Zτ τ− −=C U C UΛ Λ . (A.5) 
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Substituting (A.5) into (A.4), we obtain: 

( )

1 1

2

2

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T T T

Z S

T T T

Z

T

Z S

τ τ

Sτ τ

τ τ

− −

−

−

=

=

=

U C U Q Q C

C U U U Q U Q C

C U U A AC

Λ Λ

Λ Λ Λ

Λ

 (A.6) 

 
The last equation in (A.6) is an eigenvector equation that can 
be used to calculate the mixing matrix  directly in one step. A
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