
ATA - Archers Training Assistant

Chris Raphael Mora-Jensen

Kongens Lyngby 2007



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk



Table of Contents

Preface.................................................................................................................................................7

1      Introduction.................................................................................................................................8
1.1 Aim............................................................................................................................................ 8
1.2 Target Group..............................................................................................................................9

2      Requirements............................................................................................................................ 10
2.1 Problem Definition.................................................................................................................. 10

3      Method...................................................................................................................................... 11
3.1 Iteration Plan............................................................................................................................11

4      Risk Management..................................................................................................................... 12
4.1 Personal Risks..........................................................................................................................12
4.2 Data Risks................................................................................................................................ 12
4.3 Programing to Hand held Devices, a hidden risk?...................................................................12
4.4 Hardware Risks........................................................................................................................12

5      Analysis.....................................................................................................................................13
5.1 Typical Training Sequence...................................................................................................... 13
5.2 Typical Tournament Sequence................................................................................................ 13
5.3 Use Cases.................................................................................................................................14

6      Design....................................................................................................................................... 24
6.1 Technology Choice.................................................................................................................. 24

6.1.1 PDA Definition................................................................................................................ 24
6.1.2 .NET.................................................................................................................................24
6.1.3 Compact Framework........................................................................................................24
6.1.4 Visual Studio 2005 .NET................................................................................................. 25

6.2 Considerations on programing to the PDA..............................................................................25
6.3 Design of the GUI for the Applications...................................................................................26

PDA...................................................................................................................................... 26
PC- Training......................................................................................................................... 31
PC- Tournament Control...................................................................................................... 31

6.4 File structure............................................................................................................................ 32

7      Test............................................................................................................................................34
7.1 TDD......................................................................................................................................... 34
7.2 At the Range............................................................................................................................ 34
7.3 At Home – The ATA PC Tool.................................................................................................34
7.4 Known bugs............................................................................................................................. 35

8      Conclusion................................................................................................................................ 36
8.1 Summary..................................................................................................................................36
8.2 Future improvements............................................................................................................... 36
8.3 Short Comings in the application as it is................................................................................. 37

Appendix...........................................................................................................................................38
Appendix A :Terms in archery.............................................................................................38
Appendix B : Implementation (short description of Classes and Methods (PDA).............. 39

Archer.cs..........................................................................................................................39
Calc.cs..............................................................................................................................40



DataCollector.cs.............................................................................................................. 40
DataCollectorForTraining.cs........................................................................................... 40
EnterName.cs...................................................................................................................41
FileIO.cs.......................................................................................................................... 41
FullFace.cs....................................................................................................................... 41
FullFaceScore.cs..............................................................................................................42
JustTest.cs........................................................................................................................42
PlotArrows.cs.................................................................................................................. 42
Practice.cs........................................................................................................................ 44
Program.cs....................................................................................................................... 44
Score.cs............................................................................................................................44
ScoreCard.cs.................................................................................................................... 44
Setup.cs............................................................................................................................44
SmallFace.cs.................................................................................................................... 45

SmallFaceScore.cs................................................................................................................45
Startup.cs......................................................................................................................... 45
TargetFaces.cs................................................................................................................. 46
TDDPractice.cs................................................................................................................46
TDDTest.cs......................................................................................................................46
TDDTournament.cs......................................................................................................... 47
Tournament.cs................................................................................................................. 47
TournamentScoreCard.cs................................................................................................ 49
TournamentSetup.cs........................................................................................................ 50

Appendix C : Implementation (short description of Classes and Methods (PC)................. 51
ArchersInTournament.cs................................................................................................. 51
FileConverter.cs...............................................................................................................51
frmAtaPcTools.cs............................................................................................................ 52
frmScoreCard.cs.............................................................................................................. 52
frmTournament.cs............................................................................................................52
Practice.cs........................................................................................................................ 53
Program.cs....................................................................................................................... 54
ptcSetup.cs....................................................................................................................... 54
TargetFaces.cs................................................................................................................. 54
TournamentClass.cs.........................................................................................................54

Appendix D:Use Case Diagrams..........................................................................................56
Appendix E: Sequence Diagrams.........................................................................................58
Appendix F: Class Diagrams................................................................................................63
Appendix G: Literature list...................................................................................................66



ATA – Archers Training Assistant   
Preface 7  

Preface
 This thesis reports on the development of an Archers Training Assistant (ATA). The assis-

tant  consists  of a PDA application and a PC application. The PDA application can be used by 
archers to track their skills, control a tournament or even as a bow-tuning reference. The PC appli-
cation can be used as a tool for reviewing saved training sessions. It is also possible to use the PC 
application to review tournaments or even as a part of the set of tools tournament staff could use.

The total timespan of this project has been 10 weeks and resulted in this report, a PDA ap-
plication and a PC application. The product is developed as a tool archers could use for tracking 
their  form  and  finding  areas  that  needs  improvement.  Several  archers  (including  danish  elite 
archers) has contributed with valuable information and shown great interest in especially the PDA 
application.



ATA – Archers Training Assistant
8 1      Introduction

1      Introduction
Compound archery is a very technical kind of archery and very new. The inventor, Hollus 

Wilbur  Allen,  patented  his 
invention,  which  he  called 
“Compound Bow” in the late 
1960's.  Compound bows are 
fitted with cables and string 
and pulleys,  their  sights  are 
sophisticated  ultra  fine  tun-
able equipment.  Arrow rests 
constructed  so  they  almost 
won't  touch the arrow when 
fired.  Arrows  with  weights 
and special vanes,  that  will 
rotate the arrow for a straight 
flight  Mechanical active sta-
bilizers  that  removes  vibra-
tion from the bow so it does-
n't  interfere  with  the  arrow 
and release aids that can trig-
gered any way you want. On 
the  most  basic  setup  on  a 
compound  bow,  there  are 
probably  10  different  knobs 
or screws that can be adjust-
ed.  Not  two  sets  of  equip-
ment are alike and there are 
as many setups  as there are 
archers. This means that if a 
bow isn't tuned to perform its 
best, there isn't a general way 

to tune it, it depends on the archer using the bow. And when tuning a bow the result is not likely to 
be visible after 1 or 2 shots or even 10 shots.

1.1 Aim
The aim of the application is to provide the archer with a tool which can be used to track 

progress in the performance and form of the archer and as a help to fine tune the bow. However the 
archer should bare in mind that the application is not the solution to everything. It cannot replace 
traditional tuning methods, but can provide useful information when tuning the Compound Bow.

Besides the tuning of the bow, the application should also be able to show arrow hit tenden-
cy. The goal of every archer is to make their arrows fly the same way, every time. Arrows fired 
from a compound bow travels with at least 250 km/h ( typical at 290 - 320km/h ) and are decelerat-
ed down to 0 km/h in less than 50 cm. Needless to say that all of this energy somehow affects the 

Compound Bow



ATA – Archers Training Assistant   
1      Introduction 9  

arrow, sometimes they are visible damaged, other times small invisible bends or invisible vane 
damage makes the arrow fly less than perfect. With the application it should be possible to find 
those invisible errors by tracking where the arrow hits. Faulty arrows tend to deviate from the flying 
path of healthy arrows. But only by recording hits over time will it be possible to find the arrow.

Archers uses many hours training for tournaments and in the weeks before an important 
tournament, many archers train the actual tournament distances and number of arrows used in the 
tournament. It is therefore useful with a tool that can act as a tournament program with selected dis-
tances and number of arrows. This tournament tool could even act as the scorecard used by archers 
at tournaments, if it could hold scores for several archers. Trainers could use it to keep track of dif-
ferent archers and their form.

When equipment is damage and replaced, the tuning of the new equipment is of course re-
quired, but it is also interesting to see if the new equipment fits the archer as good as the old equip-
ment. Many archers save their scorecards from training or a least the end result for this reason, but 
it would be even better if the exact data was available. By saving training sessions and tournament 
result and reviewing them on a PC later could provide the archer with information regarding how 
the equipment fits him or her, and makes it possible to test different setups and see the difference 
graphically instead of just by scores. 

1.2 Target Group
This set of applications is intended for the compound archer who competes and/or wants to 

keep track of the form, track progress with the equipment and compare different tunings of the bow 
or the various equipment setups.



ATA – Archers Training Assistant
10 2      Requirements

2      Requirements

2.1 Problem Definition
With the Aim paragraph as source the following is considered to be the main tasks to be 

solved.
As a training aid, it is desired to develop a PDA application, which should:

1. PDA
1. Be able to accept data from an archer after each shooting end 
2. Show various deviations
3.  Hold arrow count and score. 
4. Allow archers to save the collected data.

Besides the training "mode", two tournament settings should be constructed.
5. tournament with several archers, pre-decided distances, pre-decided number of arrows 

per round and pre-decided number of arrows in total.
6. tournament with one archer,  pre-decided distances, pre-decided number of arrows per 

round and pre-decided number of arrows in total.
7. Scorecards from tournaments should be saved.

As an extension to the PDA application a few PC tools should be implemented as well
2.  PC

1. review saved training sessions.
2. A tournament control tool to have an overview of a tournament, where archers 

scorecards can be reviewed and compared.



ATA – Archers Training Assistant   
3      Method 11  

3      Method
As a development method a combination suited my needs best, as initial method Test-Driv-

en-Development has been used. This gave me a solid foundation but is insufficient when moving on 
to the graphic user interface. The only prober way to test PDA applications, is by testing on the 
PDA. It is the only way make sure it behaves the way you want it to behave. It was therefore natural 
to combine it with an iterated development plan. The TDD implementation is implement into the it-
eration plan as the iteration 0. TDD is described later in the report.

To complicate it even more, a PC part is also proposed, but the PC part depends heavily on 
how the PDA functions and which kind of data the PDA is able to supply. This is the reason why 
the PC part is started later and follows its own iteration plan.

3.1 Iteration Plan
The table below is divided into 10 rows, each row representing one week of the 10 weeks of 

the project span.

Weeks Planned Progress details

1st Week Analysis (PDA, PC) Analysis  and  defining  rules  for  compound  bows 
scoring, research at archery range.

2nd Week Iteration 0 PDA using TDD Implementing basic functions through TDD, Itera-
tion 0 for the PDA contains the baseline for training 
and tournament.

3rd Week GUI First simple graphic user interface implemented for 
training  mode  on  the  PDA, short  discussion  with 
other archers.

4th Week Iteration 1 PDA, Iteration 0  PC
Emulator test

First simple graphic user interface implemented for 
tournament.  Iteration 1 for PDA is usable. Defin-
ing needs for the PC application. PC contains basic 
functionality, Iteration 0.

5th Week Iteration 2 PDA, Iteration 1  PC
PC test of UI, PDA emulator test of 
UI

Further  GUI implemented  and tested  Iteration  2. 
PC application contains useful functions, PC is now 
Iteration 1.  Report begins

6th  Week Report, Shooting range testing, code 
stop for PDA application, Iteration 3

Report, testing PDA application at shooting range, 
minor fixes, Iteration 3/Beta.

7th Week Report, test PC with real data. Code 
stop for PC application, Iteration 2

Report,  testing  PC  with  results  collected  from 
shooting range minor fixes PC, PC is now iteration 
2/Beta.

8th Week Report Report

9th Week Report Report, brief discussion with other archers as they 
was introduced the project. Interesting comments

10th Week Review and finalizing report. Report review and correction.



ATA – Archers Training Assistant
12 4      Risk Management

4      Risk Management
A range of different risks might arise during the project, some of them have little or no im-

pact while others might stall the project for some time. Below are described some of the major con-
cerns to this project.

4.1 Personal Risks
Personal Risks includes those risks that will prevent me from working on the project. Light 

illness isn't considered as a threat to the project but serious illness, might result in an extension of 
the deadline, until recovered.

4.2 Data Risks
Data Risks includes any risks as data loss, hardware failure or circumstances that interferes 

with the hardwares performance. The most serious of those is the data loss. To prevent data loss 
backups at least once a day is advised.

4.3 Programing to Hand held Devices, a hidden risk?
Although my experience in programing to hand held devices is very limited, it is not consid-

ered a risk that will result in bringing the project to a stand still. I suppose that problems in this area 
aren't to complex to be resolved by researching the Internet or creating a workaround. 

4.4 Hardware Risks
The hand held device makes use of different kind of graphic calculations and rendering, but 

it is assumed that these wont be to complex for the device available. Should it prove to be a problem 
possible solutions could either be, reducing the graphics to a device friendly level, or simply test it 
on a bigger device/newer device.



ATA – Archers Training Assistant   
5      Analysis 13  

5      Analysis
The use case scenarios is based on my own experience from training and from my very little 

experience in tournaments, I have only participated in one tournament so changes for these is not 
unlikely. The biggest problem with the tournaments however is not my lack of experience but the 
fact that none of the applications are very likely to be approved as legal tournament score recording 
application. With that in mind some aspects of the tournament application has been designed with 
the intended use in clubs and not for official tournaments. In big tournaments names aren't actually 
used but lane numbers instead and so on. The two following paragraphs are meant to give the reader 
an idea of the two typical scenarios, it is not meant to be interpreted as use cases or as  how it is 
done every time, archers have their own way of training and both are highly based on own experi-
ence. Both are sequences are before PDA application is involved.

5.1 Typical Training Sequence
This is the description of a typical training sequence. It doesn't show the more specialized 

sequences of how fine tuning of the bow or checking equipment is done.

First bow is assembled and checked with the rest of the equipment. Target face attached to 
the arrow stop. Archer takes stance and draws the bow, sight and other things like grip and anchor-
point is checked. If everything feels good, trigger is pulled, this is repeated until all arrows are fired 
and ready to be collected. When arrows are collected, score is noted. If the archer finds a general 
deviation (might not be possible to find a deviation) the sight is adjusted accordingly. When train-
ing is done scorecard or total score is saved for  tracking progress

5.2 Typical Tournament Sequence
Please note that this description is based on a single tournament experience. Archers are di-

vided into several groups. The number of groups depends on number of archers and number of 
shooting lanes available at the tournament. Each archer is then assigned to a lane, each lane is typi-
cally shared between 3 archers, one  archer from each group. First group is called to the shooting 
line, they shoot the pre-decided number of arrows for the end specified in the tournament descrip-
tion. When done next group of archers take their stand and shoots their arrows, and so on. After all 
groups  have shoot their arrows, all archers walks to their target face (each archer has his or her own 
target face) and meet with the archers they share their lane with. The archers now writes the score 
for this end, and tournament staff is given the scores so far. At tournament end total scores are cal-
culated, published and winner celebrated.



ATA – Archers Training Assistant
14 5      Analysis

5.3 Use Cases

Use Case 1 UCHP1: Practice in general

Description The general training session, no special goal to be achieved other than 
registering score.

Actors Archer

Assumption PDA application works 

Success end condi-
tion

Application registers plotted arrows successfully and archers saves ses-
sion successfully.

Failed  end  Condi-
tion

Nothing registered or not able to save session.

Steps  1 Archer starts application and selects training mode
 2 Archer enters, distance, number of arrows per end, face type and 

arrow size.
 3 Repeat until training session is over

 3.1 repeat for each arrow
 3.1.1 Archer plot arrows at end.
 3.1.2 Archer is asked if scores is right

 3.1.2.1 if score not accepted, arrow is replotted (3.1.1)
 3.1.3 score is added to scorecard and saved in memory with 

arrow coordinates
 4 Review scorecard
 5 save training session

Sub variations none



ATA – Archers Training Assistant   
5      Analysis 15  

Use Case 2 UCHP2: tuning sight

Description One of the more special uses of the application, not really a unique use 
case since many of the steps are similar to UCHP1, but still not a sub 
variation. Used to fine tune sight before

Actors Archer

Assumption PDA application works, archer is somewhat trained so data entered is re-
liable

Success end condi-
tion

Archer is able to tune sight

Failed  end  Condi-
tion

Application fails to provide useful information and sight isn't tuned cor-
rectly

Steps  1 Archer starts application and selects training mode
 2 Archer enters, distance, number of arrows per end, face type and 

arrow size.
 3 Repeat until sight is tuned

 3.1 repeat for each arrow
 3.1.1 Archer plot arrows at end.
 3.1.2 Archer is asked if scores is right

 3.1.2.1 if score not accepted, arrow is replotted (3.1.1)
 3.1.3 score is added to scorecard and saved in memory with 

arrow coordinates
 3.2 check end deviation tab page and set sight accordingly

 4 end of sight tuning.

Sub variations none



ATA – Archers Training Assistant
16 5      Analysis

Use Case 3 UCHP3: Check for bended arrows

Description Also a special use with many steps similar to UCHP1. Use case shows 
how the application can be used to find bad arrows.

Actors archer

Assumption PDA application works, archer is somewhat trained so data entered is re-
liable, arrows marked or numbered individual, archers shots the arrows 
in the same sequence each time.

Success end condi-
tion

Arrow straightness verified

Failed  end  Condi-
tion

PDA fails to show useful information for verifying arrows.

Steps  1 Archer starts application and selects training mode
 2 Archer enters, distance, number of arrows per end, face type and 

arrow size.
 3 Repeat until sufficient data is entered

 3.1 repeat for each arrow
 3.1.1 Archer plot arrows at end.
 3.1.2 Archer is asked if scores is right

 3.1.2.1 if score not accepted, arrow is replotted (3.1.1)
 3.1.3 score is added to scorecard and saved in memory with 

arrow coordinates
 4 read total deviation page

Sub variations none



ATA – Archers Training Assistant   
5      Analysis 17  

Use Case 4 UCHT1: Single archer tournament

Description Shows the usage of the PDA application when used in training for a tour-
nament

Actors archer

Assumption Application works

Success end condi-
tion

Tournament training  completed

Failed  end  Condi-
tion

Application fails to record tournament scores

Steps 1. Archer starts application and selects tournament mode.
2. Archer enters name and proceeds to tournament setup
3. Archer selects wanted distances and number of  arrows in total 

and per end. Starts tournament
4. Scores are recorded for each distance
5. when tournament completed it is saved.

Sub variations none



ATA – Archers Training Assistant
18 5      Analysis

Use Case 5 UCHT2: Multiple archers tournament

Description Shows the application usage when as a non official tournament, eg in the 
local club

Actors archers

Assumption Application works

Success end condi-
tion

Application is able to record scores for each individual archer competing 
in the tournament.

Failed  end  Condi-
tion

Scores not recorded, no winner found

Steps 1. Archer in charge of registering scores, starts application and se-
lects tournament mode.

2.  Archer enter names of competing archers and proceeds to tour-
nament setup

3. Archer selects wanted distances and number of  arrows in total 
and per end. Starts tournament

4. scores are recorded at each end for each archer at the correct dis-
tance.

5. Winner found at tournament end.

Sub variations      5a. Winner found at tournament end and tournament results are   
           saved



ATA – Archers Training Assistant   
5      Analysis 19  

Use Case 6 UCHT3: Score collector for one or several lanes 

Description The proposed usage at an actual tournament. However it is very unlikely 
this application will be used for anything else than unofficial score track-
ing since its not approved by neither FITA or DBSF. This use case sce-
nario extends to UCPT2

Actors Tournament official responsible for collecting scores, archers

Assumption PDA application works

Success end condi-
tion

Scores recorded successfully and submitted to tournament control

Failed  end  Condi-
tion

Fails to record scores or save scores at end

Steps 6. Tournament staff in charge of registering scores, starts application 
and selects tournament mode.

7.  Staff enter names of competing archers and proceeds to tourna-
ment setup

8. Staff selects distances decided for the tournament and number of 
arrows in total and per end. Starts tournament

9. scores are recorded at each end for each archer at the correct dis-
tance.

10. Tournament is saved and saved files are handed over to tourna-
ment control (UCPT2).

Sub variations



ATA – Archers Training Assistant
20 5      Analysis

Use Case 7 UCPP1:Review Training

Description Review training saved, various information can be found by analyzing the 
data.

Actors Archer

Assumption Application works, training file available

Success end condi-
tion

Training session loaded.

Failed  end  Condi-
tion

File damaged, unable to load training

Steps 1. ATA PC Tool started and user selects training
2. User selects the correct training file at the File Dialog
3. training review can be begin

Sub variations



ATA – Archers Training Assistant   
5      Analysis 21  

Use Case 8 UCPP2:Compare Training

Description Can be used to compare several training sessions, and check progress

Actors Archer

Assumption Application works, training files available

Success end condi-
tion

Training sessions loaded.

Failed  end  Condi-
tion

Files damaged, unable to load training sessions

Steps 4. ATA PC Tool started and user selects training
5. User selects the correct training file at the File Dialog
6. training session is loaded.
7. User clicks training button at the main ATA PC Tool application 

and selects the training session to be compared at the File Dialog.
8. New training session is loaded in a new window

Sub variations Steps 4 and 5 can be repeated if more sessions are needed for compari-
son.



ATA – Archers Training Assistant
22 5      Analysis

Use Case 9 UCPT1:Tournament Compare Single Archer

Description Used to track an archers progress in training for a tournament.

Actors archer

Assumption Tournament files available, application works

Success end condi-
tion

Tournament files loaded successfully

Failed  end  Condi-
tion

Files damaged, unable to load training

Steps 9. ATA PC Tool started and user selects tournament
10.User selects the correct tournament file at the File Dialog
11. tournament is loaded and user can load another tournament into 

the control

Sub variations



ATA – Archers Training Assistant   
5      Analysis 23  

Use Case 10 UCPT2:Tournament Control

Description Usage  of  the  PC  application's  tournament  tool  if  used  to  display  all 
archers total score at a tournament

Actors Tournament official, or tournament staff in charge of scores

Assumption Tournament files available, application works

Success end condi-
tion

Multiple archers scores loaded

Failed  end  Condi-
tion

Files damaged and unable to load them, unable to display wanted data

Steps 12.ATA PC Tool started and tournament staff selects tournament
13. tournament staff loads one file submitted by the lane staff.
14. tournament is loaded and tournament staff can load another tour-

nament file into the control, files added to the tournament until all 
lanes loaded into the control.

15.Winner found, tournament can be saved for later use or website 
publication...

Sub variations      4a  Several archers has the same score, tournament officials review 
          scores in detail for  the archers in question by clicking on them in 
          the tournament control application.

Use Case diagrams can be found in the appendix



ATA – Archers Training Assistant
24 6      Design

6      Design

6.1 Technology Choice

6.1.1 PDA Definition
PDA's are small digital devices that can be used as an extension of the PC. They can be syn-

chronized with your in box, calender and likewise, but as mentioned they are an extension. They are 
not meant to be used independently of a PC. They have small processors, limited storage, no actual 
mouse, no graphics card to handle CPU heavy graphic calculations ( some newer PDA's are fitted 
with a kind of graphics card), limited screen size not only in area but also in resolution and they 
only have a, on screen keyboard for writing. These facts has heavily affected the choice of technolo-
gy and development tool.  In earlier projects, I have faced the same problem and the best experience 
has been with Microsoft because their tools offer it all in one package where it all works together. 
Another possibility would be programing it in Java and running it on a virtual machine on the de-
vice; however Java isn't actually available on the device involved in this project, not natively to my 
knowledge. Third party Java solutions might be available.

With this in mind it is narrowed down to the Microsoft .NET Framework and development 
tools. Since my experience with these tools has been in the C# language, C# was also the natural 
choice.

6.1.2 .NET
The .NET Framework is Microsoft's development tool for Windows applications. It gives 

users the ability to quickly and fairly easy create Windows applications and online solutions. It 
handles  many  subjects  that  could  make  any  programming  assignment  tedious,  such  memory 
management and some hardware specific instructions that could be different from hardware vendor 
to vendor.  All  the supported languages are,  when compiled,  translated into an IL (Intermediate 
Language) which not only means that the programmer has a wide range of languages to choose 
from without considering if one language might be a better choice than another for his specific 
programming job. It also gives great freedom in choosing language and new programmers that are 
new to .NET can easily find a language that resembles their preferred programing language. The 
translation into the IL ensures that all applications act the same or functions the same regardless of 
the language.

6.1.3 Compact Framework
The Compact  Framework contains a subset  of the .NET Framework. Besides the subset 

some special items are also available. These special items makes use of features which is only avail-
able on hand held devices.



ATA – Archers Training Assistant   
6      Design 25  

6.1.4 Visual Studio 2005 .NET
Visual Studio 2005 is the latest development tool from Microsoft. It makes use of the .NET 

Framework and has integrated emulators for more or less any type of compatible device. It supports 
several languages where C# and VB are the two most commonly used. Its built-in designer is easy 
to use and allows the user to see the application even before it can run, and changes to the design 
can easily be applied. It can be used with Microsoft Visio for reverse engineering and documenta-
tion. This is only a few features in Visual Studio 2005 but the combination of these features, among 
others, makes it a very powerful development tool.

6.2 Considerations on programing to the PDA
When writing applications for a PDA, programmers must pay attention to the way applica-

tions behave when users push the close button in the top right corner. On a PC, clicking the close 
button on the top right of the form, will result in the application shutting down and releasing re-
sources.. However, on a PDA, clicking the close button, only closes the form, the application is still 
running in the background. This means that any information or data entered, is still active and will 
be shown the next time the application is started. So special attention is needed in handling the clos-
ing procedures. Does the user want it to have all the data available the next time he or she powers 
up the application? Most likely the user are about to start a new independent session, and have no 
use for old data or at least, the user don't want to write new data on to the active session. To avoid 
this all data must be flushed or deleted when exiting the application. It behaves like this because 
PDA's are small digital devices and their purpose is to be available when users push the “on” but-
ton. When the “on” button is  pushed on the PDA it is because the user want the calender now! Or 
the email now! And because they lack CPU power it is feasible to have programs running in the 
background after they are closed, instead of closing it completely and then spent time on loading the 
program next it is activated. The user will probably access that program again, and access the same 
data again. However the intended use of ATA is not to access old training sessions. Archers proba-
bly wont need old sessions if anything, they want to keep the sessions apart.

Besides the behavior of programs on the PDA, attention to the user interface is needed. A 
PDA is not much more than a screen, and this screen is nothing like the screen on the desktop or 
laptop PC. PDA screens are rarely bigger than 4” and has a typical resolution on 240 x 320. there is 
no a mouse and there is no keyboard by default. All inputs go through the touch screen by using the 
stylus, which can be used as a mouse. The stylus is also used when interacting with the on-screen 
keyboard. The keyboard is accessed by clicking the small keyboard icon in the bottom of the screen 
when it  is available.  A small on-screen keyboard pops up and it  is used by using the stylus to 
tap/click the appropriate letters. It doesn't calls for high efficiency but it works fine for small notes 
and likewise but it shouldn't be considered as a primary input option.

This is why parts of the application is designed to accept values without using the keyboard, 
all values can be entered with out using the keyboard. Another reason why you have to consider if 
the keyboard is needed: when activating the keyboard, almost half the screen is hidden behind the it, 
so if it is needed, make sure you don't place anything you might use where the keyboard pops up.



ATA – Archers Training Assistant
26 6      Design

6.3 Design of the GUI for the Applications

PDA

Several parts of the application is designed to accept values without using the keyboard, all 
values can be entered without using the keyboard (except names for the archers). The reason for this 
is first of all because it is annoying to activate and tab your way trough the needed data but also 
because, when activating the keyboard, almost half the screen is hidden behind the keyboard. If it 

turns out that it is needed, steps has been taken to avoid that 
anything wont be placed where the keyboard pops up.

Illustration 1 shows the Start Screen, this screen is kept 
very  simple,  two  but-
tons takes the user ei-
ther to the training ses-
sion  or  to  the  tourna-
ment.  Instead  of  two 
buttons,  two  separate 
applications  could 
have  been  made,  but 
for keeping it together 
as one project a single 
entry point was decid-
ed. The exit  button in 
the  bottom  part  exits 
the  application  com-
pletely. It doesn't close 
the  application  the 

way applications normally are closed on PDA's where they 
remain active in the memory. This button closes the applica-
tion and releases all resources. Because this is the decided 
behavior, the default close button in the top right corner has 
been removed. 

Illustration 2 shows the setup screen for training, the top drop down list allows the user to 
select some predefined distances, these distances are the most typical dis-
tances used, first solution was a text box where the archer could enter any 
distance, but testing of the GUI showed that it was annoying to activate the 
keyboard for entering a distance. This is also the case with the number of 
arrows per end, so a numericUpDown proved to be a better solution.

If  the  archer  fails  to  enter  one  or  several  setting  items  a  simple 
message  box  (illustration  3)  pops  up  notifying  the  archer  to  check  the 
settings. The program will not proceed before everything is entered correct

Illustration 1: Start Screen

Illustration 2: Setup screen

Illustration 3: Error 
in settings



ATA – Archers Training Assistant   
6      Design 27  

The first (Illustration 4 and 5) tab page is used to plot the arrows. The ring in the top left cor-
ner shows the arrow size and the archer can drag the ring to 
the exact location of the 
arrow. 
The  number  in  the  top 
right corner shows what 
arrow the archer should 
plot, and is changed af-
ter  each  approved  plot, 
when number of arrows 
per  end  is  reached  it 
rolls  over  and  starts 
from 1 again. The num-
ber  at  the  bottom right 
shows the total  number 
of arrows plotted. 

When  the  stylus 
is lifted, the coordinates 
are  recorded  and  the 
distance from the center 

is  calculated.  The  distance  is  used  to  determine  the  score. 
When a score is calculated a message box ( illustration 6 ) is used to confirm that the arrow was 

plotted correctly. If the the archer accepts the score, meaning the arrow 
was correctly plotted, the score and the coordinates are saved. If result 
isn't accepted, score and coordinates are released and archers can re plot 
the arrow.

Illustration 4: Small face aka triple 
face Illustration 5: Full face

Section of SSD for plotting a score. Full SSD and Class Diagrams can be 
found in the appendix

Illustration 6: Accept  
score Messagebox



ATA – Archers Training Assistant
28 6      Design

The “Deviation” tab page looks like the front tab-page, but it doesn't allow 
any input from the archer, instead it shows the arrows plotted this end 
with dark green dots and the mean deviation of those as a light green 
dot. This page doesn't allow user inputs and it looks like the front tab 
page 

The “All Arrows” tab page shows how  each arrow is behav-
ing individually in total  the purple dot show the total overall devia-
tion. This page doesn't allow user inputs either and also looks like the 

front tab page.
A small menu in the bottom of the screen allows the archer to either save the results or flush 

all the results.
The last tab page “Score” shows which scores has been 

recorded during the session, the data grid acting as a score-
card, add rows when needed. The top part is a text box for 
small notes if needed. It is placed at the top because when the 
on  screen  keyboard  is 
activated, it fills up the 
bottom  part  of  the 
screen  and  hides  what-
ever is behind it.

The  screen  in  illustra-
tion  10  appears  when 
archers  wants  to  save 
the training session, it is 
the  standard  save  file 
dialog box provided by 
Visual Studio.
The save file dialog for 
tournament  is  exactly 

the same, except that the file type is a tournament file *.tnm.

Illustration 7:  
Deviation Illustration 8:  

All Arrows

Illustration 9: Score Tab

Illustration 10: Save file dialog



ATA – Archers Training Assistant   
6      Design 29  

If  users  chooses the tournament button at  the startup 
screen, he/she is prompted with a screen where archers can be 
added ( illustration 11 ) to the tournament. The application ac-
cepts single archers.

Next screen is the tour-
nament  setup  screen. 
All distances are FITA 
distances.  The  setup 
shown  here  is  known 
as  a  FITA  outdoor 
round.
Because  archery  con-
test  are  derived  from 
warfare all tournaments 
starts  with  the  longest 
distance and moving to 
the  shorter  distances 
one by one, resembling 
the enemy getting clos-

er and closer, therefore are distances by default saved with 
the longest first  and short-
est last.
The next button will load the tournament with the archers and dis-
tances entered.

If the user fails to enter any distances or leaves out to enter 
anything in the arrow boxes 
a  message box will  pop up 
and  further  progress  is  de-

nied until problem is solved.
Illustration 14 shows the screen where the tournament 

scores are registered, the two gray boxes in the top shows the 
the archer and distance in focus, any scores entered are added 
to this archers scorecard. Bellow these is the scorecard, repre-
sented  by  a  datagrid,  for  the  archer  and distance  in  focus. 
When another archer or distance is selected, text boxes on top 
are updated and scores loaded accordingly.
Below the scorecard another two text box are shown, the one 
to the left shows the total score for the distance in focus and 
the box to the right shows the total for the tournament so far, 
for the archer in focus.
Below these text boxes, a line of buttons are placed. These 
buttons will each add the score shown on them to the score 
card. Each colored accordingly to the color the score holds on 
the target face. In the bottom are two list boxes one containing 
the archers entered in the tournament and one containing the distances selected for the tournament. 
These are used to switch the focus from one to another simply by tapping the archer or distance 

Illustration 11: Add Archers

Illustration 12: Tournament Setup

Illustration 13: Setup error

Illustration 14: Tournament Screen



ATA – Archers Training Assistant
30 6      Design

wanted. Finally a menu in the bottom gives the user two options. One: save the tournament, and 
two: exit the tournament.

All  screen  dumps is  taken from the  emulator;  the application executed  on PDA has  a  slightly 
different color due to the screen. The screen on tested PDA's seems to have a little warmth in them.

SSD section for creating Tournament with archers and distances and adding scores. Full SSD and 
Class Diagrams can be found in the appendix



ATA – Archers Training Assistant   
6      Design 31  

PC- Training

Like the PDA the PC application could have been divided 
into two separate projects, but again a single entry point was cho-
sen. It is quite simple it consist of only two buttons, one will acti-
vate the practice review session, and the other opens the tourna-
ment control board.

When selecting  the  practice  button,  an  open file  dialog 
opens up, and user is prompted to select a saved file of the session 

to be reviewed. When file 
selected  the  review  form 
opens.  The  review  form 
shows the user the scores 
recorded  during  training. 
Different check boxes al-
lows  the  user  to  turn  on 
and  off  different  arrows 
and  deviations.  It  is  also 
possible  to  open  another 
session  and  compare 
them. The opacity of the 
form  can  be  reduced  so 
several  sessions  can  be 
compared on top of each 
other.

PC- Tournament Control

When clicking the  Tournament button in the PC Tool main form an open file dialog opens 
up, and user is prompted to select a saved tournament. The tournament is loaded in to the tourna-
ment control form. It shows the archers in the tournament, their total score and what distances was 

used in the tourna-
ment.  If  wanted, 
another  tournament 
file can be added if 
it has the same set-
up. The newly com-
bined  tournament 
can the be saved.

The PC tool main form.

Review application.

Tournament control



ATA – Archers Training Assistant
32 6      Design

When clicking on an archer on the control form a detailed 
scorecard pops up showing every score at every distance, 
end totals and distance totals

6.4 File structure
The applications makes use of some custom made files for the saving and loading of both 

training and tournament. Limitations in the Compact Framework forced me to manually convert 
complex data types into much simpler data types and manually convert them back again to their 
original types. Every array or array list and object needed to be converted. The result is files that 
only contains integers and strings.

The training files:

Data Type Remarks
Number of arrows per end integer
Total arrows shot integer
Distance integer
Arrow size string Converted from enum
Scores string Converted from int array
Points string Converted from point array
Notes string
Choice integer

Detailed scorecard



ATA – Archers Training Assistant   
6      Design 33  

The tournament files:

Data Type Remarks Repeat
Number of arrows per end integer
Number of arrows per distance integer
Number of distances integer
Distances string Converted from int array
Number of archers integer
Archers name string Yes,  repeated for every 

archer
Score for distance string Converted from int array Yes,  repeated for every 

distance per archer



ATA – Archers Training Assistant
34 7      Test

7      Test
Testing the code ensures stability of the application. In the early stages tests has been con-

ducted by the use of a TDD framework, when GUI was implemented the built-in PDA emulator in 
Visual Studio 2005 was used. Earlier experience has shown that it isn't safe to trust the emulator, it 
is very important to test it on a real PDA. This is especially important when testing the users inter-
action with the User Interface. The emulator and the real device might look alike in their GUI but 
differences in their user interaction occurs as well as in their performance.

Finally the ultimate test is when the application is used in an actual environment. Many ex-
periences has been made at the shooting range that led to a change in the application.

7.1 TDD
Test Driven Development is a powerful development method, where code is tested without 

running the program. This means that modules, algorithms and functions can be tested independent-
ly of the executable program. This method was used with great success in the beginning of the 
project. The key elements in TDD is write a test (testing what you want of course) and implement 
the code that will provide passing test. When the test passes the code is done and you move on to 
next task. 

When enough function was implanted to use a GUI, I started using a more manual way of 
testing, still following the basic TDD processes, I implemented a form where I wrote my tests and 
displayed the result and validating the result myself. Not quite as fancy as the TDD Framework but 
just as effective and very important in the testing of the GUI.

When the GUI was advanced enough for actual live test a series of test was performed at the 
shooting range.

7.2 At the Range
Several test has been carried out at the range in real conditions. As a result of these real life 

test, a few design changes has been been made. The application works so well so I have recorded 
every shot I made since the end of January.

The application has been tested as it was developed because progress in the applications de-
velopment was dependent on well tested functionality before proceeding.

I have managed to find bended arrows with the application, the only thing that hasn't been 
tested properly is the sight tuning. This is mainly because the sight tuning really only apply when 
used at long distances, but it is indoor season at the moment. It has been tested at the short range 
and it is assumed that long ranges wont affect the result or that the use will need to be changed.

The tournament mode has been tested with both single and several archers. And it functions 
well when used correctly.

7.3 At Home – The ATA PC Tool
The PC Tool has been tested with the data collected from the real conditions tests. Much of 



ATA – Archers Training Assistant   
7      Test 35  

the PC application can be found in the PDA, several classes contains many of the same functions. 
Therefore has the testing of the PC not been as extreme as it has with the PDA. 

7.4 Known bugs
Following bugs has been discovered after code stop

When starting a tournament without entering any names the application crashes. Possible solution is 
simply a try-catch clause.

When choosing the full face in training the ring representing the arrow is black, this needs to be 
changed since ring 3 and 4 on the full face are black and the archer cant see the arrow ring. Solution 
would be to change the color of the ring to gray , light blue or any other color that isn't on the target 
face.

 The application needs some explaining labels from time to time.



ATA – Archers Training Assistant
36 8      Conclusion

8      Conclusion

8.1 Summary
The goal through out the project was to make an application that an archers easily could 

bring to the shooting range and use as part of tuning equipment and save various sessions and data 
with out using the small pieces of paper (scorecards) thats normally used. The PDA application ful-
fills this goal. Archers can save a higher level of data than by just saving the numbers on scorecards, 
and in detail investigate each training session. The PDA application requires a minimum of input 
through the keyboard without limiting the usability. The tournament part gives the archer the possi-
bility to train actual tournament conditions and save those for later comparison, or it can even be 
used as a part of a clubs tournament equipment, again removing the paper-scorecards with hand 
written scores.

The PC makes it easy for the archer to compare training sessions over time or different se-
tups without guessing or assuming. The complete data set is available for analyzing.

The tournament control gives a quick overview and accepts either values from several PDA's or 
files saved from different dates for comparison.  

The smallest device this application has been fully tested on is the Ipaq h1940. Which is a 
windows CE 4.20 PDA, it has a Samsung S3C2410 processor running at 266 MHz. The processor is 
an ARM based processor like the Intel X-scale processor, and since it makes use of the Compact 
Framework it should run any PDA with running Windows CE 4.20. The screen holds the standard 
specifications: screen resolution is 240 x 320 pixels with 64K color (65,536 colors, 16-bit). 

None of the application are designed in a way that requires special knowledge in their usage 
and there is no need for high performance specialized hardware.

8.2 Future improvements
There are plenty of ideas for future improvements, one of the most obvious would be the 

adding of recurve bow scores and some of the other disciplines found in archery such as “Field” for 
example. Archers that have reviewed the applications also has a lot of ideas, these however tend to 
address very personal problems. But some interesting ideas came up during a discussing.

At tournaments, archer has to fire their arrows within a certain time frame and special rules 
apply in this timing sequences. Typical a single beep tells the archer to approach the shotting line 
followed by two beeps, telling the archer to shoot the arrows, another two beeps signal a cease fire. 
This is repeated for each group of archers and ended by a long beep signaling archers to collect ar-
rows and note the scores. If a timer was implemented archers could train with time as a constraint 
like they would encounter at tournaments.

Another interesting improvement involves some hardware from one of the big bow equip-
ment manufactures (Easton). They have made a set of devices, which can be used to map a bows 
performance in numbers and measure the speed of the arrows when shot through a chronograph. An 
extension to the applications where archers records arrows hit tendency with PDA together with the 



ATA – Archers Training Assistant   
8      Conclusion 37  

speed measurements for an arrow in flight with the chronograph would strengthen the analyzing 
possibilities that already lies in this application. 

8.3 Short Comings in the application as it is
The device where the application has been tested contains the standard hardware for this 

version of Pocket PC operating system, and is also programmed to those exact specifications. But 
some PDA's with the same operating system are fitted with a higher screen resolution. If the appli-
cation is installed on these PDA's the Compact Framework will ensure that it runs on the device, but 
the application doesn't make use of the better screen. A suggested extension in the implementation 
is to let the application take full advantage of the better screen by letting the software be aware of 
the hardware available, and have all graphics drawn correctly instead of letting the Compact Frame-
work stretch the graphics to the screen size .

Another shortcoming in the project is the missing installation wizard. Installation for the PC 
is no problem, but creating an installation wizard for the PDA is a long and complicated process 
that involves editing of .ini files by hand and searching through the registry. But it would be consid-
ered a demand if the project should be released to the public.



ATA – Archers Training Assistant
38 Appendix

Appendix

Appendix A :Terms in archery

 Anchor-point The place where the hand pulling the arrow is “anchored” every time for a con-
sistent shot. Typical near the ear or jaw. 

Compound Bow The kind of bow this application is designed for. It comes in many shapes and 
sizes. In general a compound consists of a string, a cable and pulleys fitted on 
each limb. These items makes the bow just as hard to pull as a recurve or long-
bow but holding weight at full draw is much lower, often 35% or less of the pull 
weight. 

DBSF Danish Bow Shooters Association, the danish version of FITA.

FITA FITA is the international archery governing organization/federation (Federation 
Internationale de Tir a l'Arc)

Fps feet per second, archers quick conversion ( if you want it in kph ) multiply it 
with 1.1, eg. 250 fps * 1.1 = 275 kph (real conversion yields 274.32 kph).

Full face the original target face, consisting of 10 circles with score values from 1 to 10

limbs the flexible part of the bow

Longbow this the most primitive kind of bow, it is nothing more than a stick with a string

Recurve bow a bow derived from the longbow, as the name says, it is has curved limbs on 
each side of the handle

Small face See triple face

Target face The target. ( where the pointy end of the arrow goes) <- lame

Triple face a target face which has 3 separate target faces on but each one contains only the 
inner 5 circles from the original target face. These target faces are usually used 
by compound shooters  when  shooting  indoor,  because  compounds  bows  are 
high precision bows and by having one face per arrow, the chance of damaging 
you arrows is removed  

Vane The tail or back end of an arrow are fitted with feathers or plastic pieces, which 
has the same function as a rudder on an airplane, control the flight of the arrow.



ATA – Archers Training Assistant   
Appendix 39  

Appendix B : Implementation (short description of Classes and Methods (PDA)

The function of the PDA is to assist the archer at the shooting range. In its training mode it 
collects data of not only the score but also where the actual arrow hits the target face. This is valu-
able data for the top performing archer, it provides a quick overview of the deviation and makes 
easy to make the needed adjustments to bow and it can also be used to find bended arrows. The 
tournament settings allow you to setup any kind of tournament with one or several archers shooting 
at one or several distances. In the tournament mode it will only collect scores.

When the application is powered up the first screen is the startup screen. This is a very sim-
ple class it sole purpose is to present the user with the two options training or tournament. 

Below are a short description of each class in the PDA application.

Archer.cs
This class is used to represent an archer in a tournament. It is highly flexible since it accepts 

any kind of tournament, from full FITA round too single distance tournaments. From a logic point 
of view an archer in a tournament has a name and one or several distances, and each distance has a 
scorecard.

public Archer()
This the default constructor of the class

public int returnRow(int dist)
This returns the current row in the scorecard for the specified distance. It 
is used by the tournament screen and its function is to keep track of the 
archers “current cell” in the data grid representing the score card.

public int returnColumn(int dist)
Same as above but returns the column

public void setRow(int dist, int newvalue)
When a score is entered, the next cell is in focus. This updates the cur-
rent row for the specified distance.

public void setColumn(int dist, int newvalue)
Same as above but updates the column. This method and the 3 above en-
sures that the data grid always shows the correct current cell even if the 
user choose another archer.

public void SetNameAndSize(string name, int dist, int TArrows)
When  this is called, the archer is setup with a name and a scorecard for 
each distances.

public void AddScore(int dist, int arrow, int score)
Adds a score to the specified distances.



ATA – Archers Training Assistant
40 Appendix

public int calcScore(int dist)
Returns the total score for the specified distance.

public int[] scorearray(int indexdist)
Returns the complete array of scores for the specified distance

public void addToScore(int index, int score)
Adds the total score for one distance to an array of totals. 

public int returntotalscore()
Returns the grand total for the entire tournament

Calc.cs
This class is used by the training mode to perform calculations on Drawing.Points.

public static Point(Point[] al)
Returns the average point of the point in the array.

public static Point[] totalIndividualDeviation(Point[] total, int[] acc)
Returns an array of the average or deviation of each arrow in the shoot-
ing sequence (the average of all the first arrows, the average of all the 
second arrows and so forth) 

DataCollector.cs
The code in this file has slowly moved out of the class or has been re factored away. It only 

exist because of a TDD test. It should have been removed long time ago, but it somehow managed 
to survive.

public int MumberofArrows(Arraylist al)
Returns the number of arrows shoot

DataCollectorForTraining.cs
This form collects various information from the archer, such as distance, arrows fired each 

end, target face selection and arrow size.

public frmTrainingInput()
This is the constructor of the class, it initializes the various components 
of the form, such as buttons, text boxes, and other controls.

private void btnStartTraining_Click(object sender, EventArgs e)
Triggered by start  button,  it  validates  the  information  entered  by the 
user, before proceeding to the actual training. Some of the information is 
used in calculations, some are used in the graphic representations of the 



ATA – Archers Training Assistant   
Appendix 41  

arrows while others are purely used as information to the archer in later 
reviews. If any fields are left blank a message box will prompt the user 
and ask the user to check the settings. When everything is entered it pro-
ceeds to the next screen and calls public void kill()

public void kill()
This method closes this form.

EnterName.cs
This form is the first screen the user is presented when choosing the tournament mode. It 

collects the competing archers.

public EnterName()
Initializes the components of the form.

public void btnAdd_Click(object sender, Eventargs e)
Adds the entered archers name a list box.

public void btnSetupscreen_Click(object sender, Eventargs e)
Adds all archers from the list box to a string array before showing the 
setup screen for tournaments.

public void kill()
Closes the form.

FileIO.cs
This class handles conversions for the routines that saves either tournament or training. Ac-

tual file I/O doesn't take place here.

public static string convertPoints()
Converts the array of points collected in training, to a string

public static string convertScore()
Converts the score array to a string

public static string distTostring() 
Converts the array of distances to a string

public static string Sorefordist(string archer, int index)
Converts the score array for the specified archer at the specified distance 
to a string.

FullFace.cs
This is how the full face is represented in numbers and coordinates



ATA – Archers Training Assistant
42 Appendix

public override void targetface()
Overrides the method in the targetfaces.cs class

public override Graphics targetface(Graphics pea)
Draws the circle which the full face consist of. 

public override Graphics targetfaceTotal(Graphics pea)
Draws the deviation of the arrows on the target face.

public override Graphics targetface(Graphics pea, Array ar)
Draws the arrow hits and deviation for the last finished end

FullFaceScore.cs
Handles the calculation of the score based on the point of the arrow.

public int score(Point p)
Returns the score, found by calculating the distance from the center of 
the target face to the plotted point of the arrow.

JustTest.cs
Class used in very early iterations of the program to test various behaviors of the PDA, or 

acted as a shortcut for testing plot Arrows. This class should be removed before releasing the soft-
ware.

public justTest()
Initializes the few components on the form

public JustTest_Load(object sender, EventArgs e)
Empty method, earlier used to test graphics

public JustTest_MouseU(object sender, MouseEventArgs e)
Early method to test “mouse” behavior

private void button1_Click(object sender, EventArgs e)
Used to test one type of target face

Private void button2_Click(object sender, EventArgs e)
Used to test another type of target face

PlotArrows.cs
The plotArrows form is the interesting part of the training mode. This form is divided into 4 

tab-pages, each one used for one kind of specific information, the first page is the only page used 
actively by the archer, the following 2 pages provide graphic information on the deviation and the 
last page shows a scorecard and a text box for short notes if needed.



ATA – Archers Training Assistant   
Appendix 43  

public PlotArrows(int ch)
Initializes components

private void tbpPlotArrows_Paint(object sender, PaintEventArgs e)
Draws the the selected target face to the tab-page and as well as a ring 
representing the selected arrow size.

private void tbpDeviation_Paint(object sender, PaintEventArgs e)
Draws the selected target face, a dot showing each arrow from the latest 
end and a dot showing the deviation for this ends arrows.

private void tbpAllArrows_Paint(object sender, PaintEventArgs e)
This tab page shows the total of all arrows and the total of the sequence 
of arrows.

Private void PlotArrows_Load(object sender, EventArgs e)
Unused, content re factored away.

private void tbpPlotArrows_MouseUp(object sender, MouseEventArgs e)
Collects the point where the user plots the arrow, if score is accepted 
score is added to various array lists

private void tbpPlotArrows_MouseMove(object sender, MouseEventArgs e)
Moves the circle representing the arrow when the user moves the stylus 
across the screen. This helps the user to plot the arrows more precisely 
than just tabbing it in with the stylus.

private void tbpPlotArrows_MouseDown(object sender, MouseEventArgs e)
Redraws the screen in order to remove the arrow circle.

private void tbpScorecard_Paint(object sender, PaintEventArgs e)
Shows the scorecard tab-page with scores, totals and a notes field.

private void menuItem2_Click(object sender, EventArgs e)
Duplicate method

private void menuItem1_Click(object sender, EventArgs e)
Saves the current training session using the binary writer.

private void mniReset_Click(object sender, EventArgs e)
Resets all values back to null before closing the form.

private void PlotArrows_closing(object sender, CancelEventArgs e)
Unused event method removed release



ATA – Archers Training Assistant
44 Appendix

Practice.cs
This class holds the two array lists that contains the points of the arrows entered and the 

score entered when using the training mode.

Public static void AddArrowScoreP(Point[] arrows)
Adds the points of the arrows from the latest end to the array list holding 
these values.

Public static void AddArrowScore(int[] score)
Adds the scores of the arrows from the latest end to the array list holding 
these values.

Public static Arraylist printScore()
Returns the array list with scores

Public static Arraylist printPoints()
Returns the array list containing the points.

Public static void ResetScores()
Clears the array lists

Program.cs
The file containing the main method. Its got nothing in it besides the Main()

static void Main()
Main entry point for the application, shows the startup form.

Score.cs
Interface class 

Public interface Score
Interface for the classes containing the actual score calculations, target 
faces can have different ways to calculate the scores.

ScoreCard.cs
This form has been re factored away, removed before released

public ScoreCard()
Initializes the components on the form.

Setup.cs
This class collects the data from the training setup form and from the training progress as 

well. It the data is accessed through get/set methods.



ATA – Archers Training Assistant   
Appendix 45  

public static void resetSettings()
Resets all values back to zero.

SmallFace.cs
This is how the small target face (triple face) is represented in numbers and coordinates. It 

contains the same methods as fullFace.cs, only difference is the graphics of course.

public override void targetface()
Overrides the method in the targetfaces.cs class

public override Graphics targetface(Graphics pea)
Draws the circle which the full face consist of. 

public override Graphics targetfaceTotal(Graphics pea)
Draws the deviation of the arrows on the target face.

public override Graphics targetface(Graphics pea, Array ar)
Draws the arrow hits and deviation for the last finished end

SmallFaceScore.cs

Handles the  calculation of  the score  based on the point  of  the arrow, the same as  full-
FaceScore.cs

public int score(Point p)
Returns the score, found by calculating the distance from the center of 
the target face to the plotted point of the arrow.

Startup.cs
The startup form which allows the user to select between training or tournament. It is also 

the last form shown before exiting.

public Startup()
Initializes the few components on the form.

public static void btnTraining_Click(object sender, EventArgs e)
Starts the training session

public static void shutdown()
Unused method – removed before release.

public void sd()
Unused method – removed before release.

private void btnTournament_Click(object sender, EventArgs e)



ATA – Archers Training Assistant
46 Appendix

Starts a tournament session

Private void Startup_Closing(object sender, CancelEventArgs e)
Unused method – removed before release.

private void button1_Click(object sender, EventArgs e)
Exits the application and releasing all resources

TargetFaces.cs
Abstract class, slowly re factored into a strategy-like pattern

public abstract class TargetFaces

TDDPractice.cs
This class is a part of the TDD tests used by the nUnit framework, none of the TDD classes 

are used by the application. TDDPractice.cs is used to test some basic functions in the training 
mode

public void addScorePointsTest()
Used to test the storing of points from arrows.

public void ArraylistMemPoints(
Testing the array list of points. 

public void addScoreTest()
Used to test the storing of each individual score.

public void ArraylistMem()
Making sure the scores are available

TDDTest.cs
Early test class, many tests has been re factored away or scope changed making the tests un-

usable or obsolete.

public void ArrowsPerEnd()
Testing arrows per end.

public void ArrowAverage()
Empty method, but used to test the average calculation.

public void getsetArrows()
Testing some of the get and set methods. The arrows per end in this case.

public void getsetDistances()



ATA – Archers Training Assistant   
Appendix 47  

Empty test of the get/set  of the distance

public void getsetArrowSize()
Testing get/set of arrow size

public void getsetTotalArrows()
Empty method, tested the total arrows shot. 

TDDTournament.cs
This class is testing various parts of the tournament part.

public void Enternames()
Testing the method adding archers

public void retrievenames()
Testing the retrieve name function. This test is dependent on the Enter-
name() method above, test not really needed since this has already been 
tested in the method above.

public void enterdist()
Tests if it is possible to enter distances and retrieving them.

public void TAarray()
Testing the creation of an archer array.

Tournament.cs
The tournament class holds all the information concerning a tournament, distances, number 

of arrows, competing archers and for so on. In an earlier version it also contained scores, but this 
was moved to the archer.cs, because although scores are achieved through competing in an tourna-
ment, the score is unique for each archer. It besides the get/set methods it contains the following 
methods

public Tournament()
The default constructor of the class

public static void setArcherlength(int length)
Creates  two  arrays,  a  string  array  holding  the  names  of  the  entered 
archers and an archer array. Its only created at here, no values entered to 
any of the arrays.

public static void setDistanceLength(int length)
Creates an array for holding the distances.

public static void addArchers(string str, int index)
Adding archers to the archer to the specified position in the array.



ATA – Archers Training Assistant
48 Appendix

public static string Archer(int archer)
Return the archer at the specified position.

public static void addDistances(int dist, int index)
Adding distances to the distance-array

public static int returndist(int index)
Returns the distance at the specified index from the distance array.

public static void createArcherArray()
Doesn't really creates the array, it actually adds archer objects to the ar-
ray of archers and setting up scorecards for each distance as well.  

public static int returnarcherArrayLength()
As the name says, it returns the length of the archer-array.

public static void addscore(string name, int dist, int arrow, int score)
Adds the score for the specified archers at the specified distance at the 
specified place in at the scorecard.

public static int[] fetchArray(string name, int dist)
Returns an array of scores for the specified archer at the specified dis-
tance.

public static int[] SfetchArray(string name, int dist)
The same as above, the difference lies in the distance, the int dist in 
this case already represents the index of the distances. Should be re fac-
tored into something more compact since both methods do exactly the 
same.

public static void reset()
Flushes all values stored in arrays

public static int[] CCforArcher(string name, int dist)
Returns the current cell in the scorecard, for the specified archer at the 
specified distance.

public static void setCCforArcher(string name, int dist, int row, int column)
Sets the current cell for the specified archer at the specified distance.

public static void addtoscorearray(string name, int dist, int score)
Adds the total score for the specified distance to the archers score array 
of totals.

public static int getTotal(string name)
Gets the overall total score for the specified archer.



ATA – Archers Training Assistant   
Appendix 49  

TournamentScoreCard.cs
This form is the active form in the tournament mode. It is through this form the user enters 

scores for each archer.

public TournamentScoreCard()
Initializes the components on the form and setting up the data grid.

private void TournamentScoreCard_Load(object sender, EventArgs e)
Triggered by the load event, fills the list boxes with competing archers 
and distances.

private void lbxArchers_SelectedIndexChanged(object sender, EventArgs e)
Switch to another archers scorecard.

private void lbxDistances_SelectedIndexChanged(object sender, EventArgs e)
Switch to the scorecard for the selected distance.

private void setValue(int score)
Adds the score entered for the archer in focus at the distance in focus, to 
the archers scorecard.

private void UpdateDataGrid( bool valueset )
Updates the data grid and the current cell for the archers at the distance 
in focus.

private void dtgTournament_CurrentCellChanged(object sender, EventArgs e)
Changes focus to the cell selected in the data grid, mainly used if an en-
tered score needs to be changed.

private void btn10_Click(object sender, EventArgs e)
Adds the score represented by the button to the archer in focus' scorecard 
at the distance in focus. Score = 10.

private void btn9_Click(object sender, EventArgs e)
See above, score = 9.

private void btn8_Click(object sender, EventArgs e)
See above, score = 8.

private void btn7_Click(object sender, EventArgs e)
See above, score = 7.

private void btn6_Click(object sender, EventArgs e)
See above, score = 6.

private void btn5_Click(object sender, EventArgs e)



ATA – Archers Training Assistant
50 Appendix

See above, score = 5.

private void btn4_Click(object sender, EventArgs e)
See above, score = 4.

private void btn3_Click(object sender, EventArgs e)
See above, score = 3.

private void btn2_Click(object sender, EventArgs e)
See above, score = 2.

private void btn1_Click(object sender, EventArgs e)
See above, score = 1.

private void btnMiss_Click(object sender, EventArgs e)
See above, score = 0, archer failed to hit the target face.

private void mniSaveTournament_Click(object sender, EventArgs e)
Saves everything from the tournament to a binary file.

private void mniResetTournament_Click(object sender, EventArgs e)
Clears the values in the tournament and closes the tournament form.

TournamentSetup.cs
The form where the tournament is set up with distances and number of arrows

public TournamentSetup()
Initializes the components on the form.

private void btnStartTournament_Click(object sender, EventArgs e)
If everything needed to start a tournament is entered this form is closed 
and the tournament is started. If not user is prompted with a message box 
and asked to check the settings

private bool collectdistances()
Collects the chosen distances, if no distances selected a bool set to false 
is returned invoking the message box mentioned above. Selected dis-
tances are added to an array of distances.

private bool arrowsSettings()
Check the arrow settings. If settings doesn't comply, bool set to false is 
returned invoking the message box mentioned above.

public void kill()
Closes this form.



ATA – Archers Training Assistant   
Appendix 51  

Appendix C : Implementation (short description of Classes and Methods (PC)

The PC application isn't meant to be used actively in the same way as the PDA is used. 
Since you likely won't have the PC with you at the shooting range theres no need to be able to plot 
arrows when using the training. And it is not likely that the staff at a tournament would like to drag 
a PC to each and every target face when using the tournament mode. Instead it is used to get an 
overview of the saved tournament.

Below are a short description of each class in the PC application.

ArchersInTournament.cs
This class is very the much like the archer.cs class in the PDA application, many of the 

methods in the class are the same.

public ArchersInTournament()
Default constructor of the class

public void SetNameAndSize(string name, int dist, int TArrows)
Has the same function as the method of the same name in archer.cs

public int[] scorearray(int indexdist)
Returns the score array for the specified distance.

FileConverter.cs
This  class  contains  methods  used  when  converting  strings  from the  saved  training  and 

tournament files back to arrays, as well as saving tournaments.
public static int[] makescores(string scorestring, int ta)

Converts a string of scores to an array containing the scores used in 
training.

public static Point[] makePoints(string point, int ta)
Converts a string of points to an array containing the points, is used to 
plot the arrows.

public static int[] setDistances(string distances)
Converts the string of distances to an array used in tournaments.

public static int[] scoresfromfile(string scores)
Converts a string of scores to an array containing the scores used in tour-
naments.

public static string distTostring()
Converts an array of distances to a string, used when saving a tourna-
ment.

public static string Scorefordist(string archer, int index)



ATA – Archers Training Assistant
52 Appendix

Converts the array of scores for a specified archer at the specified dis-
tance to a string.

frmAtaPcTools.cs
Very simple form which guides the user to either tournament control or training review

public frmAtaPcTools()
Initializes the components on the form

private void btnOpenTraining_Click(object sender, EventArgs e)
Opens an open file dialog with a preselected file extension specific for 
training.

private void ofdTrainning_FileOk(object sender, CancelEventArgs e)
Triggered by the “ok” button on the file dialog, opens the training re-
view form with data from the selected file.

private void btnOpenTournament_Click(object sender, EventArgs e)
Opens an open file dialog with a preselected file extension specific for 
tournament.

private void ofdTournament_FileOk(object sender, CancelEventArgs e)
Triggered by the “ok” button on the file dialog, opens the tournament 
control form with data from the selected file.

frmScoreCard.cs
A form showing detailed scoring for an archer in a tournament.

public frmScoreCard(string name)
Initializes the components and sets the text on the form to the selected 
archers name.

private void frmScoreCard_Load(object sender, EventArgs e)
Fills  the data grid view representing the complete  scorecard with the 
scores for the archer.

frmTournament.cs
The tournament control form. Shows the distances in the tournament, archers and their total 

score from the selected tournament file.

public frmTournament()
Initializes the components on the form.

private void btnSave_Click(object sender, EventArgs e)



ATA – Archers Training Assistant   
Appendix 53  

Saves the tournament.

private void frmTournament_Load(object sender, EventArgs e)
Fills the data grid view on the form and the distance list box.

private void dgvOverview_CellContentClick(object sender, DataGridViewCellEventArgs e)

Opens a detailed scorecard form.

private void btnAddArchers_Click(object sender, EventArgs e)
Opens a open file dialog

private void ofdAddArchers_FileOk(object sender, CancelEventArgs e)
When a file is  selected,  archers  and their  score  form the file  will  be 
added to the tournament.

Practice.cs
This the review form for the saved training files, scores, arrows, various deviation calcula-

tions can be reviewed here. Several practice forms can be loaded with different training sessions for 
comparison.

public frmPractice(int index)
Initializes the components on the form

private void populatedgv(int Index)
Fills the data grid view with scores.

private void pnlTarget_Paint(object sender, PaintEventArgs e)
Paints the target face to the panel.

private void clbIndividualArrows_Click(object sender, EventArgs e)
Sets selected arrows for plotting on the target face.

public Graphics targetface(Graphics pea, int choice)
Draws the target face and plots the selected arrows.

private void clbIndividualArrows_SelectedIndexChanged(object sender, EventArgs e)
Adds or removes individual arrows to the target face

private void clbMeanOfArrows_SelectedIndexChanged(object sender, EventArgs e)
Adds or removes the mean of the individual arrows

private void cbxTotalDeviation_CheckedChanged(object sender, EventArgs e)
Adds or removes the dot indicating the total deviation

private void checkBox1_CheckedChanged(object sender, EventArgs e)
Reduces the forms opacity,  so the user can compare two training ses-



ATA – Archers Training Assistant
54 Appendix

sions by placing them on top of each other.

Program.cs
The file containing the main method. Its got nothing in it besides the Main()

static void Main()
Main entry point for the application.

ptcSetup.cs
This class is used when loading a saved training session, it is tied to a form with the loaded 

values, and really isn't worth describing in detail. All values from the binary writer is stored in here 
and read by the form it is tied to.

TargetFaces.cs
Class holding the target faces graphic routines.

private static Graphics Fullface(Graphics pea)
Draws the full face to the graphics object.

private static Graphics SmallFace(Graphics pea)
Draws the small face to the graphics object.

public static Graphics targetface(Graphics pea, int choice)
Method used to determine which kind of targetface is used for the select-
ed training.

TournamentClass.cs
This class is a smaller version the Tournament.cs in the PDA application, many of the meth-

ods are the same.

public static void setArcherlength(int length)
Creates  two  arrays,  a  string  array  holding  the  names  of  the  entered 
archers and an archer array. Its only created at here, no values entered to 
any of the arrays.

public static void addArchers(string str, int index)
Adding archers to the archer to the specified position in the array.

public static string Archer(int archer)
Return the archer at the specified position.

public static int returndist(int index)
Returns the distance at the specified index from the distance array.



ATA – Archers Training Assistant   
Appendix 55  

public static void createArcherArray(int index)
Doesn't really creates the array, it actually adds archer objects to the ar-
ray of archers and setting up scorecards for each distance as well.  

public static int getTotalScore(int index)
Gets the total score for the archer at the specified index.

public static int[] SfetchArray(string name, int dist)
Returns an array of scores for the specified archer at the specified dis-
tance.

public static void addscoreArray(int archer, int[,] convertedScores)
Adds the converted score array to the specified archer.

public static void resizeTournament(int newlength)
Resizes the arrays of archers.



ATA – Archers Training Assistant
56 Appendix

Appendix D:Use Case Diagrams

Archer

Tuning Sight

Practice in general

Chek for bended
arrows

Archer

Multiple Archer
Tournament

Single Archer
Tournament

Tournament lane staff

Score Collecting
at Tournament

Archer

Review Training

Compare Training

Archer

Comparing Single
Archer Tournament Training

Tournament control staff

Tournament Control

«uses»

«uses»

«uses»

«uses»

PDA Application PC Tool



ATA – Archers Training Assistant   
Appendix 57  

Archer :System

Training()

requestSetupValues(form)

setup(values)

PlotArrowsScreen(form)

plotArrows(coordinate)

Repeat

updatearrowcounts(component)

ShowScores()

showscores(form)

save()

ShowDeviation()

showDeviation(form)

UC1 (UC2, UC3)

FindTotalDeviation()

showTotalDeviation(form)

Archer :System

Tournament()

requestName(form)

Name(string)

setupScreen(form)

SetupValues(distances , Arrows)

scorecard(form)

Save()

Addscore(dist, archer, score)

UC4 (UC5, UC6)

Repeat

update(components)

This step is repeated
for UC5 and UC6

Applies to UC4 and UC6

Unique for UC2

Unique for UC1

Unique for UC3

Top Package::Archer :System

openTraining(file)

reviewScreen(form)

UC7 (UC8)

Top Package::Archer :System

loadTournament(file)

tournamentscreen(form)

Repeat if needed

reviewScoreCard(archer)

showDetailedScores(form)

saveCombinedTournament()

addTournament(file)

updateTournamentScreen(form)

UC9 (UC10)

Repeat for UC 8

This message only
applies to
use case 10



ATA – Archers Training Assistant
58 Appendix

Appendix E: Sequence Diagrams

PC Tournament Control -continued on next page



ATA – Archers Training Assistant   
Appendix 59  



ATA – Archers Training Assistant
60 Appendix

PC Training Session Review



ATA – Archers Training Assistant   
Appendix 61  

PDA training Session



ATA – Archers Training Assistant
62 Appendix

PDA Tournament Session



ATA – Archers Training Assistant   
Appendix 63  

Appendix F: Class Diagrams

PDA Training Class Diagram

#Dispose(in disposing : bool)
-InitializeComponent()
+Startup()
-btnTraining_Click(in sender : object, in e : EventArgs)
+shutdown()
-sd()
-btnTournament_Click(in sender : object, in e : EventArgs)
-Startup_Closing(in sender : object, in e : CancelEventArgs)
-button1_Click(in sender : object, in e : EventArgs)

-components : IContainer = null
-mnuMain : MainMenu
-btnTraining : Button
-btnTournament : Button
-btnExit : Button

Startup
-Main()

Program

Tournament

+Asize() : int
+Choice() : int
+Arrows() : int
+Distance() : int
+Size() : arrowsize
+TotalArrows() : int
+resetSettings()

-totalarrows : int
-arrows : int
-distance : int
-size : arrowsize
-choice : int

Setup

#Dispose(in disposing : bool)
-InitializeComponent()
+frmTrainingInput()
-btnStartTraining_Click(in sender : object, in e : EventArgs)
+kill ()

-components : IContainer = null
-mainMenu1 : MainMenu
-nudNumberOfArrows : NumericUpDown
-lblDistance : Label
-lblArrows : Label
-rbnSmallFace : RadioButton
-rbnFullFace : RadioButton
-lblFaceSize : Label
-btnStartTraining : Button
-cmbArrowSize : ComboBox
-lblArrowsize : Label
-cmbDistance : ComboBox

Gui::frmTrainingInput

#Dispose(in disposing : bool)
-InitializeComponent()
+PlotArrows(in ch : int)
-tbpPlotArrows_Paint(in sender : object, in e : PaintEventArgs)
-tbpDeviation_Paint(in sender : object, in e : PaintEventArgs)
-tbpAllArrows_Paint(in sender : object, in e : PaintEventArgs)
-PlotArrows_Load(in sender : object, in e : EventArgs)
-tbpPlotArrows_MouseUp(in sender : object, in e : MouseEventArgs)
-tbpPlotArrows_MouseMove(in sender : object, in e : MouseEventArgs)
-tbpPlotArrows_MouseDown(in sender : object, in e : MouseEventArgs)
-tbpScorecard_Paint(in sender : object, in e : PaintEventArgs)
-menuItem2_Click(in sender : object, in e : EventArgs)
-menuItem1_Click(in sender : object, in e : EventArgs)
-mniReset_Click(in sender : object, in e : EventArgs)
-PlotArrows_Closing(in sender : object, in e : CancelEventArgs)

-components : IContainer = null
-mnuPlotArrows : MainMenu
-tbcPlotArrows : TabControl
-tbpPlotArrows : TabPage
-tbpDeviation : TabPage
-tbpAllArrows : TabPage
-tbpScorecard : TabPage
-lblArrowStatus : Label
-dataGrid1 : DataGrid
-dgtsScore : DataGridTableStyle
-dgcColumn1 : DataGridTextBoxColumn
-dgcColumn2 : DataGridTextBoxColumn
-dgcColumn3 : DataGridTextBoxColumn
-dgcColumn4 : DataGridTextBoxColumn
-dgcColumn5 : DataGridTextBoxColumn
-dgcColumn6 : DataGridTextBoxColumn
-dgcColumnRowTot : DataGridTextBoxColumn
-dgcColumnAccScore : DataGridTextBoxColumn
-dgcColumnTotScore : DataGridTextBoxColumn
-lblTotalArrows : Label
-mnFile : MenuItem
-mniSave : MenuItem
-mniExit : MenuItem
-sfdSaveTraining : SaveFileDialog
-mniReset : MenuItem
-txbNotes : TextBox
+choice : int
-ar : int = 1
-ArrowsScore : int[] = new int[Setup.Arrows]
-ArrowsHit : Point[] = new Point[Setup.Arrows]
-a : Rectangle = new Rectangle(0,0,0,0)
-b : Rectangle = new Rectangle(0,0,35,35)
-grfxArrowsize : int = Setup.Asize

Gui::PlotArrows

+targetface()
+targetface(in pea : Graphics) : Graphics
+targetface(in pea : Graphics, in ar : Array) : Graphics
+targetfaceTotal(in pea : Graphics) : Graphics

UserGraphics::TargetFaces

+targetface()
+targetface(in pea : Graphics) : Graphics
+targetface(in pea : Graphics, in ar : Array) : Graphics
+targetfaceTotal(in pea : Graphics) : Graphics

UserGraphics::SmallFace

+targetface()
+targetface(in pea : Graphics) : Graphics
+targetface(in pea : Graphics, in ar : Array) : Graphics
+targetfaceTotal(in pea : Graphics) : Graphics

UserGraphics::FullFace

+score(in p : Point) : int
«interface»Score

+score(in p : Point) : int

FullFaceScore

+score(in p : Point) : int

SmallFaceScore

+convertPoints() : string
+convertScore() : string
+distTostring() : string
+Scorefordist(in archer : string, in index : int) : string

FileIO

+average(in al : Point[]) : Point
+totalIndividualDeviation(in total : Point[], in acc : int[]) : Point[]

Calc

+AddArrowScoreP(in arrows : Point[])
+AddArrowScore(in score : int[])
+printScore() : ArrayList
+printPoints() : ArrayList
+ResetScores()

-ArrowscoreP : ArrayList = new ArrayList()
-Arrowscore : ArrayList = new ArrayList()

Practice



ATA – Archers Training Assistant
64 Appendix

PDA Tournament Class Diagram

#Dispose(in disposing : bool)
-InitializeComponent()
+EnterName()
-btnAdd_Click (in sender : object, in e : EventArgs)
-btnSetupscreen_Click(in sender : object, in e : EventArgs)
+kill ()

-components : IContainer = null
-mainMenu1 : MainMenu
-lbxListofArcher : ListBox
-btnAdd : Button
-btnSetupscreen : Button
-tbxEnterName : TextBox
-lblAddName : Label

Gui::EnterName

#Dispose(in disposing : bool)
-InitializeComponent()
+TournamentScoreCard()
-TournamentScoreCard_Load(in sender : object, in e : EventArgs)
-lbxArchers_SelectedIndexChanged(in sender : object, in e : EventArgs)
-lbxDistances_SelectedIndexChanged(in sender : object, in e : EventArgs)
-setValue(in score : int)
-UpdateDataGrid(in valueset : bool)
-dtgTournament_CurrentCellChanged(in sender : object, in e : EventArgs)
-btn10_Click(in sender : object, in e : EventArgs)
-btn9_Click(in sender : object, in e : EventArgs)
-btn8_Click(in sender : object, in e : EventArgs)
-btn7_Click(in sender : object, in e : EventArgs)
-btn6_Click(in sender : object, in e : EventArgs)
-btn5_Click(in sender : object, in e : EventArgs)
-btn4_Click(in sender : object, in e : EventArgs)
-btn3_Click(in sender : object, in e : EventArgs)
-btn2_Click(in sender : object, in e : EventArgs)
-btn1_Click(in sender : object, in e : EventArgs)
-btnMiss_Click(in sender : object, in e : EventArgs)
-mniSaveTournament_Click(in sender : object, in e : EventArgs)
-mniResetTournament_Click(in sender : object, in e : EventArgs)

-components : IContainer = null
-mnuTournament : MainMenu
-lbxArchers : ListBox
-lbxDistances : ListBox
-btn10 : Button
-tbxDistTotal : TextBox
-tbxTournamentTotal : TextBox
-dtgTournament : DataGrid
-txbArcher : TextBox
-tbxDistanceShown : TextBox
-btn9 : Button
-btn7 : Button
-btn8 : Button
-btn3 : Button
-btn4 : Button
-btn5 : Button
-btn6 : Button
-btn2 : Button
-btn1 : Button
-btnMiss : Button
-mniFiles : MenuItem
-mniSaveTournament : MenuItem
-mniResetTournament : MenuItem
-mniExit : MenuItem
-sfdTournament : SaveFileDialog
-DC : DataGridCell = new DataGridCell(0,0)

Gui::TournamentScoreCard

#Dispose(in disposing : bool)
-InitializeComponent()
+TournamentSetup()
-btnStartTournament_Click(in sender : object, in e : EventArgs)
-collectdistances() : bool
-arrowsSettings() : bool
+kill()

-components : IContainer = null
-mainMenu1 : MainMenu
-cbx8M : CheckBox
-cbx12M : CheckBox
-cbx18M : CheckBox
-cbx25M : CheckBox
-cbx30M : CheckBox
-cbx40M : CheckBox
-cbx50M : CheckBox
-cbx60M : CheckBox
-cbx70M : CheckBox
-cbx80M : CheckBox
-cbx90M : CheckBox
-lblNumOfArrowsPerEnd : Label
-nudArrowsperEnd : NumericUpDown
-nudTotalArrows : NumericUpDown
-lblTotalArrowsperDist : Label
-panel1 : Panel
-panel3 : Panel
-btnStartTournament : Button

Gui::TournamentSetup

+Archer()
+returnRow(in dist : int) : int
+returnColumn(in dist : int) : int
+setRow(in dist : int, in newvalue : int)
+setColumn(in dist : int, in newvalue : int)
+SetNameAndSize(in name : string, in dist : int, in TArrows : int)
+AddScore(in dist : int, in arrow : int, in score : int)
+calcScore(in dist : int) : int
+scorearray(in indexdist : int) : int[]
+addToScore(in index : int, in score : int)
+returntotalscore() : int

-Name : string
-Scores : int[,]
-Totals : int[]
-row : int[]
-column : int[]

ATA::Archer

+convertPoints() : string
+convertScore() : string
+distTostring() : string
+Scorefordist(in archer : string, in index : int) : string

ATA::FileIO

-Main()

ATA::Program

#Dispose(in disposing : bool)
-InitializeComponent()
+Startup()
-btnTraining_Click(in sender : object, in e : EventArgs)
+shutdown()
-sd()
-btnTournament_Click(in sender : object, in e : EventArgs)
-Startup_Closing(in sender : object, in e : CancelEventArgs)
-button1_Click(in sender : object, in e : EventArgs)

-components : IContainer = null
-mnuMain : MainMenu
-btnTraining : Button
-btnTournament : Button
-btnExit : Button

ATA::Startup

+Tournament()
+Archers() : string[]
+Distances() : int[]
+ArrowsPerDist() : int
+ArrowsPerEnd() : int
+NumberOfDist() : int
+setArcherlength(in length : int)
+setDistanceLength(in length : int)
+addArchers(in str : string, in index : int)
+Archer(in archer : int) : string
+addDistances(in dist : int, in index : int)
+returndist(in index : int) : int
+returnnumofarchers() : int
+createArcherArray()
+returnarcherArrayLength() : int
+addscore(in name : string, in dist : int, in arrow : int, in score : int)
+fetchArray(in name : string, in dist : int) : int[]
+SfetchArray(in name : string, in dist : int) : int[]
+reset()
+CCforArcher(in name : string, in dist : int) : int[]
+setCCforArcher(in name : string, in dist : int, in row : int, in column : int)
+addtoscorearray(in name : string, in dist : int, in score : int)
+getTotal(in name : string) : int

-arrowsperdist : int
-arrowsperend : int
-archers : string[]
-numberofdist : int
-distances : int[]
-TournmentArchers : Archer[]

ATA::Tournament

Training

«uses»



ATA – Archers Training Assistant   
Appendix 65  

PC Tool Class Diagram

+makescores(in scorestring : string, in ta : int) : int[]
+makePoints(in point : string, in ta : int) : Point[]
+setDistances(in distances : string) : int[]
+scoresfromfile(in scores : string) : int[]
+distTostring() : string
+Scorefordist(in archer : string, in index : int) : string

ATA_PC_Tool::FileConverter

-Fullface(in pea : Graphics) : Graphics
-SmallFace(in pea : Graphics) : Graphics
+targetface(in pea : Graphics, in choice : int) : Graphics

ATA_PC_Tool::TargetFaces

#Dispose(in disposing : bool)
-InitializeComponent()
+frmAtaPcTools()
-btnOpenTraining_Click(in sender : object, in e : EventArgs)
-ofdTrainning_FileOk(in sender : object, in e : CancelEventArgs)
-btnOpenTournament_Click(in sender : object, in e : EventArgs)
-ofdTournament_FileOk(in sender : object, in e : CancelEventArgs)

-components : IContainer = null
-btnOpenTraining : Button
-btnOpenTournament : Button
-ofdTournament : OpenFileDialog
-ofdTrainning : OpenFileDialog
+setup : ptcSetup[] = new ptcSetup[1]
-ptcWindow : int = 0

ATA_PC_Tool::frmAtaPcTools

+ArrowsPerDist() : int
+ArrowsPerEnd() : int
+NumberOfDist() : int
+setArcherlength(in length : int)
+addArchers(in str : string, in index : int)
+Archer(in archer : int) : string
+Distances() : int[]
+returndist(in index : int) : int
+returnnumofarchers() : int
+createArcherArray(in index : int)
+getTotalScore(in index : int) : int
+SfetchArray(in name : string, in dist : int) : int[]
+addscoreArray(in archer : int, in convertedScores : int[,])
+resizeTournament(in newlength : int)

-arrowsperdist : int
-arrowsperend : int
-archers : string[]
-numberofdist : int
-distances : int[]
-TournamentArchers : ArchersInTournament[]

ATA_PC_Tool::TournamentClass

#Dispose(in disposing : bool)
-InitializeComponent()
+frmTournament()
-btnSave_Click(in sender : object, in e : EventArgs)
-frmTournament_Load(in sender : object, in e : EventArgs)
-dgvOverview_CellContentClick(in sender : object, in e : DataGridViewCellEventArgs)
-btnAddArchers_Click(in sender : object, in e : EventArgs)
-ofdAddArchers_FileOk(in sender : object, in e : CancelEventArgs)

-components : IContainer = null
-lbxDistances : ListBox
-btnAddArchers : Button
-dgvOverview : DataGridView
-btnSave : Button
-sfdTournament : SaveFileDialog
-dgvColumn : DataGridViewTextBoxColumn
-dgcScore : DataGridViewTextBoxColumn
-ofdAddArchers : OpenFileDialog
-distset : bool = false

ATA_PC_Tool::frmTournament

-Main()

ATA_PC_Tool::Program

«uses»

*

*

«uses»

#Dispose(in disposing : bool)
-InitializeComponent()
+frmScoreCard(in name : string)
-frmScoreCard_Load(in sender : object, in e : EventArgs)

-components : IContainer = null
-dgvDetailed : DataGridView
-tbxTotal : TextBox
-lblTotal : Label
-dgcDistance : DataGridViewTextBoxColumn
-dgv1 : DataGridViewTextBoxColumn
-dgv2 : DataGridViewTextBoxColumn
-dgc3 : DataGridViewTextBoxColumn
-dgc4 : DataGridViewTextBoxColumn
-dgc5 : DataGridViewTextBoxColumn
-dgc6 : DataGridViewTextBoxColumn
-dgcsubtotal : DataGridViewTextBoxColumn
-dgcTotalforDist : DataGridViewTextBoxColumn

ATA_PC_Tool::frmScoreCard

«uses»

+ArchersInTournament()
+scores() : int[,]
+SetNameAndSize(in name : string, in dist : int, in TArrows : int)
+scorearray(in indexdist : int) : int[]

-Name : string
-Scores : int[,]
-Totals : int[]
-row : int[]
-column : int[]

ATA_PC_Tool::ArchersInTournament

1

1..n

+ptcSetup()
+setAPE(in ape : int)
+getAPE() : int
+setTA(in ta : int)
+getTA() : int
+setD(in d : int)
+getD() : int
+setAS(in aS : string)
+getAS() : string
+setScAr(in scar : int[])
+getScAr() : int[]
+setPoAr(in p : Point[])
+getPoAr() : Point[]
+setN(in n : string)
+getN() : string
+setC(in c : int)
+getC() : int

-ArrowsPerEnd : int
-TotalArrows : int
-Distance : int
-ArrowSize : string
-Scores : int[]
-Points : Point[]
-Notes : string
-Choice : int

ATA_PC_Tool::ptcSetup

#Dispose(in disposing : bool)
-InitializeComponent()
+frmPractice(in index : int)
-populatedgv(in Index : int)
-pnlTarget_Paint(in sender : object, in e : PaintEventArgs)
-clbIndividualArrows_Click(in sender : object, in e : EventArgs)
+targetface(in pea : Graphics, in choice : int) : Graphics
-clbIndividualArrows_SelectedIndexChanged(in sender : object, in e : EventArgs)
-clbMeanOfArrows_SelectedIndexChanged(in sender : object, in e : EventArgs)
-cbxTotalDeviation_CheckedChanged(in sender : object, in e : EventArgs)
-checkBox1_CheckedChanged(in sender : object, in e : EventArgs)

-components : IContainer = null
-pnlTarget : Panel
-tbxNotes : TextBox
-clbMeanOfArrows : CheckedListBox
-dgvScorecard : DataGridView
-clbIndividualArrows : CheckedListBox
-cbxTotalDeviation : CheckBox
-lblMeanOfArrows : Label
-lblindividualArrows : Label
-txbDistance : TextBox
-txbTotalArrows : TextBox
-txbArrowsPerEnd : TextBox
-dgvcol1 : DataGridViewTextBoxColumn
-dgvcol2 : DataGridViewTextBoxColumn
-dgvcol3 : DataGridViewTextBoxColumn
-dgvcol4 : DataGridViewTextBoxColumn
-dgvcol5 : DataGridViewTextBoxColumn
-dgvcol6 : DataGridViewTextBoxColumn
-dgvcol7 : DataGridViewTextBoxColumn
-dgvcol8 : DataGridViewTextBoxColumn
-cbxReduceOpacity : CheckBox
-Index : int
-individual : bool[]
-meanforarrows : bool[]

ATA_PC_Tool::frmPractice

11..n

1

1..n

1

1

«uses»

«uses»



ATA – Archers Training Assistant
66 Appendix

Appendix G: Literature list

Beck, Kent; Test-Driven Development By Example; Addinson-Wesley; ISBN 0-321-14653-0

Hejlsberg, Anders & Wiltamuth, Scott & Golde, Peter; The C# Programing Language, 2nd Edi-
tion; Addinson-Wesley; ISBN 0-321-33443-4

Larman, Craig; Applying UML and Pattern, An Introduction to Object-Oriented Analysis and De-
sign and the Unified Process, Second Edition; ISBN 0-13-092569-1

Newkirk, James W. & Vorontsov, Alexei A.; Test-Driven Development in Microsoft .NET; Mi-
crosoft Press; ISBN 0-7356-1948-4

Petzold, Charles; Programming Microsoft Windows With C#; Microsoft Press; ISBN 0-7356-
1370-2

Online resources:

http://msdn2.microsoft.com 

http://msdn2.microsoft.com/

	Preface
	1      Introduction
	1.1	Aim
	1.2	Target Group

	2      Requirements
	2.1	Problem Definition

	3      Method
	3.1	Iteration Plan

	4      Risk Management
	4.1	Personal Risks
	4.2	Data Risks
	4.3	Programing to Hand held Devices, a hidden risk?
	4.4	Hardware Risks

	5      Analysis
	5.1	Typical Training Sequence
	5.2	Typical Tournament Sequence
	5.3	Use Cases

	6      Design
	6.1	Technology Choice
	6.1.1	PDA Definition
	6.1.2	.NET
	6.1.3	Compact Framework
	6.1.4	Visual Studio 2005 .NET

	6.2	Considerations on programing to the PDA
	6.3	Design of the GUI for the Applications
	PDA
	PC- Training
	PC- Tournament Control

	6.4	File structure

	7      Test
	7.1	TDD
	7.2	At the Range
	7.3	At Home – The ATA PC Tool
	7.4	Known bugs

	8      Conclusion
	8.1 Summary
	8.2	Future improvements
	8.3	Short Comings in the application as it is

	Appendix
	Appendix A :Terms in archery
	Appendix B : Implementation (short description of Classes and Methods (PDA)
	Archer.cs
	Calc.cs
	DataCollector.cs
	DataCollectorForTraining.cs
	EnterName.cs
	FileIO.cs
	FullFace.cs
	FullFaceScore.cs
	JustTest.cs
	PlotArrows.cs
	Practice.cs
	Program.cs
	Score.cs
	ScoreCard.cs
	Setup.cs
	SmallFace.cs

	SmallFaceScore.cs
	Startup.cs
	TargetFaces.cs
	TDDPractice.cs
	TDDTest.cs
	TDDTournament.cs
	Tournament.cs
	TournamentScoreCard.cs
	TournamentSetup.cs

	Appendix C : Implementation (short description of Classes and Methods (PC)
	ArchersInTournament.cs
	FileConverter.cs
	frmAtaPcTools.cs
	frmScoreCard.cs
	frmTournament.cs
	Practice.cs
	Program.cs
	ptcSetup.cs
	TargetFaces.cs
	TournamentClass.cs

	Appendix D:Use Case Diagrams
	Appendix E: Sequence Diagrams
	Appendix F: Class Diagrams
	Appendix G: Literature list




