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Preface

This thesis was prepared at the institute of Informatics and Mathematical Mod-
elling (IMM), the Technical University of Denmark (DTU) in partial fulfillment
of the requirements for acquiring the M.Sc. degree in engineering. The work
started on September 1, 2006.

This thesis deals with pharmacokinetic and pharmacodynamic modeling based
mixed-effects models using stochastic differential equations. A prototype has
been implemented in Fortran 95.

The thesis comprises a report and a population stochastic pharmacokinetic and
pharmacodynamic modeling prototype implemented in Fortran 95.

Lyngby, February 28, 2007

Andreas Sidelmann Christensen
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Abstract

This thesis describes the development of a software prototype implemented in
Fortran 95 for population pharmacokinetic/pharmacodynamic (PK/PK) mod-
eling based on non-linear mixed-effects models using stochastic differential equa-
tions (SDEs). An advantage of using SDEs is that it allows residual errors to
be separated into two fundamentally different types of noise, namely (1) corre-
lated system noise attributed to unmodelled dynamics of the system, and (2)
uncorrelated observation noise.

A maximum likelihood method for estimating the fixed- and random-effects pa-
rameters in the model is adopted. The likelihood function is approximated
numerically using a First-Order Conditional Estimate (FOCE) method and
Kalman filtering. The prototype handles linear time-invariant and linear time-
varying models.

The choice of Fortran 95 as programming language is motivated by high com-
putational speed, availability of scientific software packages and support of
OpenMP shared-library multiprocessing API for parallel computing. With the
intent of aiding future model extensions and modifications, the thesis attempts
to provide extensive documentation of the program interface and, at the same
time, raise awareness of known weaknesses in the implementation.

KEYWORDS: stochastic differential equation (SDE); non-linear mixed-effects;
FOCE approximation; Kalman filter; maximum likelihood estimation; pharma-
cokinetic; pharmacodynamic; PK/PD modeling.
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Resumé

Dette eksamensprojekt omhandler konstruktionen af en software prototype im-
plementeret i Fortran 95 til populations farmakokinetik/farmakodynamik (PK/
PD) modellering for ikke-lineære mixed-effekt modeller baseret p̊a stokastiske
differentialligninger (SDEer). En fordel ved at anvende SDEer er, at de muliggør
opsplitning af residualer i to fundamentalt forskelling fejltyper, nemlig (1) kor-
releret systemstøj, der stammer fra modelmangler eller egentlige tilfældige æn-
dringer i systemet, og (2) ukorreleret m̊alestøj.

En maksimaliseringsmetode anvendes til estimering af faste og tilfældige effekter
i modellen. Maksimaliseringsfunktionen tilnærmes numerisk ved hjælp af en
første-ordens betinget estimeringssmetode og Kalman filtrering. Prototypen er
i stand til at h̊andtere lineære tidsinvariante og lineære tidsvarierende modeller.

Valget af Fortran 95 som programmeringssprog støttes af hurtig beregning-
shastighed, adgang til videnskabelige software-pakker, samt understøttelse af
OpenMP fælles-bibliotek multiprocessor API til parallelisering. Med henblik p̊a
at støtte fremtidige udvidelser og modifikationer af prototype forsøger opgaven
at yde udførlig dokumentation for programinterfacet, samt at bringe fokus p̊a
kendte svagheder ved implementeringen.

STIKORD: stokastiske differentialligninger (SDEer); ikke-lineær mixed-effekter;
første-ordens betinget estimeringsmetode; Kalman filter; maximum likelihood
estimering; farmakokinetik; farmakodynamik; PK/PD modellering.



vi



Acknowledgements

I would like to thank my supervisors Bernd Dammann, Henrik Madsen and Niels
Rode Kristensen for your support, your interest in the project and motivating
discussions. Without Bernd Dammann’s irreplaceable expertise and readiness
to assist in moments of model development crises, I would have been indeed ill
positioned. Thank you!

Likewise, I would like to thank Stig Mortensen and Søren Klim for your valuable
insights on the theory and helpful assistance with the model development. It has
been very much appreciated, thank you. I wish to thank Hans Bruun Nielsen for
help with the implementation of the parameter optimization package ucminf.

The project in many aspects opened up a world of challenges, which for the most
part were new to me. From high performance computing considerations, rela-
tively large scale model development to the theory of pharmacokinetic and phar-
macodynamic modeling and stochastic differential equations. I would therefore
like to emphasize that successful accomplishment are accredited the intellectual
capacities of my supervisors. Any prone errors in the model implementation or
lacks of theoretical understanding are solely ascribable to my own inadequacies.

On a personal note, I would like to thank my parents, my brothers and friends
for your love and kind support. Keep it coming. I love you right back.



viii



Symbols and Abbreviations

List of symbols and list of abbreviations are presented in Table 1 and 2 respec-
tively.

Table 1: List of symbols

Symbol Type Description

eij Rl Measurement noise at time tij

ηi Rs Individual random-effects

φi Rp Individual parameters

θ Rq Population fixed-effects

Πw Rs×s Magnitude of system noise

∆ – Hessian operator

∇ – Vector differential operator

Ωi Rs×s Random-effects covariance

Σi Rl×l Measurement noise covariance

εij Rl Innovation at time tij

f(·) Rl Non-linear function describing the relation between
the states and the observations (NL model)

Continued on next page. . .



x Symbols and Abbreviations

Symbol Type Description

g(·) Rn Non-linear function describing the dynamics of the
state (NL model)

h(·) Rp Structural type parameter model describing the dy-
namics of the individual parameters φi

l N\{0} Dimension of outputs yij

lp,i R Approximate individual a posteriori log-likelihood
loge(Lp,i)

m N Dimension of inputs uit

n N\{0} Dimension of states xit

ni N\{0} Number of observations for patient i

p N\{0} Dimension of individual parameters φi

q N\{0} Dimension of fixed-effects θ

r N Dimension of covariates zi

s N Dimension of random-effects ηij

tij R Time of jth observation for individual i

uij Rm Inputs at time tij

x̂i(t|j) Rn Updated state given observations at time tij

yij Rl Outputs at time tij

ŷi(j|j−1) Rl Output prediction at time tij given observations at
time ti(j−1)

zi Rr Covariates for individual i

Yij – Yij = [yi1, . . . ,yij ] represents all observations until
time tij for individual i

L R Approximate population likelihood

A(·) Rn×n Coefficients for xit in state equation (LTI/LTV)

B(·) Rn×m Coefficients for uit in state equation (LTI/LTV)

C (·) Rl×n Coefficients for xij in output equation (LTI/LTV)

D(·) Rl×m Coefficients for uij in output equation (LTI/LTV)

Kij Rn×l Kalman gain at time tij

Lp,i R Approximate individual a posteriori likelihood

Continued on next page. . .
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Symbol Type Description

N N\{0} Number of patients

Ps R Scaling factor for initial state covariance P 0

P i(t|j) Rn×n State covariance given observations at time tij

Ri(j|j−1) Rl×l Output prediction covariance at time tij given obser-
vations at ti(j−1)
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Table 2: List of abbreviations

Abbreviation Description

APL Approximate population likelihood

CSV Comma-separated values

CTSM Continuous time stochastic modeling

DTU Technical University of Denmark

FDA Food & Drug Administration

FOCE First-order conditional estimation

EKF Extended Kalman filter

IM Intramuscular

IMM Informatics and Mathematical Modelling

IV Intravenous

KF Kalman filter

LTI Linear time-invariant

LTV Linear time-varying

ML Maximum likelihood

NL Non-linear

NLME Non-linear mixed-effects

ODE Ordinary differential equation

PD Pharmacodynamic

PK Pharmacokinetic

PSM Population stochastic modeling

SDE Stochastic differential equation

SSM State space model

SSSM Stochastic state space model
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Chapter 1

Introduction

In recent years, population pharmacokinetic/pharmacodynamic (PK/PD) mod-
eling has become an increasingly important tool for analyzing the dose-exposure-
effect relationship of drugs in humans and animals.

Generally speaking, the main interest in population PK/PD studies is twofold,
namely (1) to identify the overall tendency of the parameters across an entire
population, and (2) to describe departures from the population trend among
subgroups of individuals [3]. Subgroups may be identified by the factorial levels
of a set of covariates defined by, for example, demographics, genetic information,
co-medication, environmental aspects and disease states [13]. By recognizing
that subgroups may not respond similarly to the same treatment, population
PK/PD modeling makes it possible to indicate individualized optimal levels of,
for example, dose-regimen for one or several subgroups associated with certain
characterics.

Recognizing that different subgroups of patients within a population may require
different dosing strategies, the Danish Medicines Agency’s1 ”Working group
on clinical pharmacy” in 2005 recommended that clinical pharmacists perform
pharmacokinetic services. Referencing to several studies, the authors argued
that individualized medial treatment based on PK data may improve clinical
benefits and savings on hospitalisation [19].

1The Danish Medicines Agency: Lægemiddelstyrelsen (da.)
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Furthermore, the use of PK/PD modeling in pharmaceutical development has
lately received increasing regulatory awareness. In 1999, the U.S. Food & Drug
Administration (FDA) published the ”Population Pharmacokinetics” guidance
for the pharmaceutical industry [4], which motivates the integration of PK/PD
analysis as a part of clinical trials.

Population PK/PD analysis is often accomplished using non-linear mixed-effects
(NLME) models, since it allows modeling of data from several patients by decom-
posing the intra-individual variability into inter-individual and intra-individual
variability. NLME models are typically combined with ordinary differential
equations (ODEs) with uncorrelated residuals. This technique, however, in-
herits several limitations. For example, correlations between residuals are not
uncommon in population PK/PD analysis and, secondly, deficiencies in the
structural model are not appreciated [12].

Recently, several publications have given evidence to the benefits of using stochas-
tic differential equations (SDEs) in population PK/PD modeling. SDEs in state
space models (SSM) make it possible to separate system noise from measure-
ment noise. Furthermore, correlated system variability is allowed in SDEs.

Applying SDEs to PK/PD analysis based on NLME models allows decomposi-
tion of the intra-variability into (1) system noise caused by unmodelled dynamics
or true random fluctuations in the system and (2) non-correlated measurement
noise.

In 2006, Mortensen and Klim [10] presented a novel software prototype named
”PSM”2 for population PK/PD analysis based on NLME models using SDEs.
The PSM prototype was implemented in Matlab R© using the maximum likeli-
hood method for parameter estimation suggested by Overgaard [12].

This thesis pursuits the development of a new PSM prototype in a high-level
scientific programming language with particular attention to optimal computa-
tional efficiency and speed.

Emanating from the successful Matlab R© implementation and the extensive ex-
periences with stochastic state-space modeling (SSSM) at the Department of
Informatics & Mathematical Modelling at DTU, the vision is to provide the
first steps of a new generation of software for population PK/PD analysis that
may contribute to improved medical treatment of patients and better tools for
pharmaceutical drug development.

2PSM: acronym of ”Population Stochastic Modelling”
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1.1 Objectives

The objectives of this thesis are formally expressed here:

1. To develop a prototype for population PK/PD modeling based NLME
models with SDEs.

2. To choose a functional programming language that ensures:

• High computational speed
• Availability of efficient procedures for numerical manipulations
• Parallelization (future work)

3. To formulate a conceptual design that provides a flexible, transparent and
generic program interface. Importantly, the model construction should
facilitate the needs of future model modifications and development.

In agreement with the broadly formulated goals above, a set of specifications
for the proposed prototype were explicitly defined in Table 4.1 in Chapter 4.
The specifications were imposed with the intent of ensuring that the project was
completed in due course.

The final section of this chapter briefly outlines the rest of this thesis.

1.2 Outlines

This report consist of the following parts:

Chapter 2 explains the fundamental terminology of population PK/PD mod-
eling and describes existing software for PK/PD modeling with reference to the
current program development.

The theory for NLME models based on SDEs is expressed mathematically in
Chapter 3. The two-stage hierarchical model and the Kalman filtering algo-
rithm are formulated mathematically. Finally, the population likelihood method
for estimating the parameters in the population models is formally introduced.

Chapter 4 presents the design and structure of the proposed prototype for
population PK/PD analysis. The major program units, procedure interfaces
and program flowcharts are documented.
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Details of the model implementation are emphasized in Chapter 5 . Validation
results are provided for the individual-level modeling part of the population
PK/PD prototype.

Chapter 6 specifies the input and output interface of the proposed prototype.
The chapter accounts for all steps involved in declaring, building and running a
model.

Chapter 7 discusses the results of the model implementation, which gives rise
to a set of recommendations for future work.

Chapter 8 states the main points in the discussion and concludes on the thesis
objectives.



Chapter 2

PK/PD Modeling

This chapter presents an overview of the characteristics of pharmacokinetic and
pharmacodynamic (PK/PK) analysis and introduces the general terminology.

Pharmacokinetics constitute the part of pharmacology concerned with the move-
ment of pharmaceutical drug entities in the body, whereas pharmacodynamics
relate to the effects of pharmaceuticals and the mechanisms of their actions and
elimination. General terms used in PK/PD analysis are described shortly in
Section 2.1.

Section 2.2 concludes the introduction to PK/PD modeling by giving a short
summary of existing software based on non-linear mixed-effects (NLME) models
for PK/PD analysis .

2.1 Terms in PK/PD modeling

Pharmacokinetics

Pharmacokinetics (PK) describes the relationship between the drug availability
in the body, especially at the sites where the drug is active, and drug admin-
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istration. The availability of drugs is typically expressed in terms of the drug
concentration and is concerned with three types of processes, namely absorption,
distribution and elimination1.

Essentially, PK analysis seeks to identify the factors that influence the dose-
concentration relationship. The information gathered from PK studies is used
to identify appropriate dose-regimen in clinical practise.

Pharmacodynamics

Pharmacodynamics (PD) defines the study of the relationships between con-
centration and the magnitude of the biological or physiological effect of a drug
[7].

The inter-individual variations in drug concentrations due to individual PK
properties only partly explains why individuals experience different responses
to medical treatment. In other words, reponses vary across a population of
individuals who are exposed the same drug concentrations. PD analysis stud-
ies the exposure-effect relationship within individuals and its variability among
individuals in a population of interest.

Figure 2.1 illustrates the biological processes affecting the PK/PD drug prop-
erties.

Population PK/PD modeling

The purpose of population PK/PD modeling is to make inference on the mech-
anisms governing individual profiles of repeated measurements of the response
and how the individual profiles vary across a population.

Attention is devoted to identification of subgroups of patients within a popula-
tion that, based characteristic covariate patterns, show identical response.

Population PK/PD analysis are commonly carried out by means of NLME mod-
els, which allow for simultaneous estimation of inter- and intra-individual vari-
ability (random-effects). An important advantage of NLME models is that it
enables analysis of PK/PD data obtained from both scattered observations and
unbalanced study designs [16].

1Elimination: may be achieved by degradation, chemical alteration as a natural part of
the metabolism or through excretion.
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In Figure 2.1 the differences between PK and PD and the three phases are
illustrated.

Pharmacodynamics

Pharmacokinetics

Oral
Subcutaneous
Rectal

Intravenous

Dose Absorption

Unbound
Drug

Unbound
Drug

Plasma

Bound
Drug

Binding

Binding

Tissue

Tissue bound
Drug

Distribution

Elimination

Metabolism Excretion

Efficacy Toxicity

Utility

Figure 2.1: Schematic representation of PK/PD. [Gabrielsson & Weiner 1997]

The modelling process uses mathematical and statistical tools combined with
biological and pharmacological knowledge resulting in a grey-box model. The
word grey-box refers to a mixture of empirical models based solely on data
(black-box) combined with theoretical physiological models (white-box).

2.1 Models

The models used in this thesis do not involve actual drugs instead it involves
hormones and substances already found in the body. The methods and models
from PK modelling can easily be transferred to the actual use. It also means
that the use of PK/PD principles in this report lies outside the general definition
of PK/PD modelling.

Figure 2.1: Illustration of the biological processes governing PK/PD prop-
erties [6].

Alternatively, the standard two-stage method may be used for population mod-
eling, but this approach is known to yield overestimated inter-individual vari-
ability. Onward, this thesis only considers PK/PD analysis based on NLME
models.

Figure 2.2 grahically shows an example of PK data from a study, where 12
patients received identical oral doses (mg/kg) of a drug (Theophylline). It il-
lustrates that the individual concentration profiles are similarly-shaped, while
maxima, gradients and durations of decay vary across the population. This
variability may be attributed to inter-individual variations in the PK processes
and, consequently, gives support to the need of population PK/PD modeling.

The following section focuses on the software available for PK/PD modeling.

2.2 Software for PK/PD analysis

Several commercial and non-commercial software packages exist for PK/PD
modeling. Their intended use generally depends on the type of model and
kind of information available in each case. This section briefly introduces two
existing software packages available for PK/PD analysis, namely NONMEM R©

and CTSM.
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The Setting

Theophylline study: 12 subjects, same oral dose (mg/kg)
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Figure 2.2: Illustration of concentration profiles for 12 subjects in a Theo-
phylline study receiving an identical oral dose (mg/kg) [2].

NONMEM R©

NONMEM is developed by the NONMEM Project at the University of Califor-
nia. Today, NONMEM is the de facto standard software package for population
PK/PD modeling. It is written and distributed in ANSI FORTRAN 77. The
”NONMEM” name is the acronym of ”NON-linear Mixed-Effects Models”.

NONMEM conducts non-linear mixed-effects modeling of population PK/PD
data based on ordinary differential equations, but Tornøe has previously demon-
strated how to formulate a population PK/PD models based on SDEs in NON-
MEM (version VI Beta) [17]. However, since NONMEM is a commercial soft-
ware based on proprietary source code, it naturally imposes several restrictions
to the flexibility of incorporating SDEs.

CTSM

CTSM, short name for Continuous Time Stochastic Modelling, is a program
for modeling of semi-physical dynamic systems [8]. CTSM is developed at the
Department of Informatics and Mathematical Modelling (IMM), DTU, and has
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served various applications such as modeling of PK/PD systems. It is written
in FORTRAN 77.

CTSM permits modeling of dynamic systems based on SDEs. The program han-
dles both linear and non-linear models. Furthermore, CTSM offers two methods
for parameter estimation, namely the maximum likelihood or the maximum a
posteriori methods. In PK/PK analysis, CTSM is limited to single subject
modeling.

In 2006, Mortensen and Klim [10] accomplished the implementation of a pro-
totype for population PK/PD modeling based on NLME models using SDEs.
The prototype was written in Matlab R© and provided evidence that the imple-
mentation of SDEs in a population PK/PD modeling framework was technically
possible.

This project represents the next step by, founded on the same theoretical princi-
ples, undertaking the implementation of a prototype in a programming language
that contrasted with Matlab offers higher computational speed and parallel com-
puting features.

The task of developing a new prototype is encouraged by the possibility of creat-
ing a more efficient model design for population PK/PD analysis based on SDEs.
Both NONMEM and CTSM share the common trait of having been developed
over several decades. Therefore, advances in mathematical and statistical the-
ory related to PK/PD modeling as well as developments within computational
capacities might not have been fully appreciated in the design of these soft-
ware packages. These consideration supported the choice of formulating the
prototype from scratch.

Allowing the program development to start from scratch makes it possible to
define an appropriate structure and interface, where dependence on redundant
features of earlier versions is avoided. Starting from scratch also makes it pos-
sible to exploit the object-oriented structure of modern high-level programming
languages, such as C and Fortran 95, which was not available in FORTRAN 77.

As a further matter, the development of the prototype aims to take into ac-
count the data workflow in clinical trials. This, for example, has led to a slight
modification of the data input interface compared to NONMEM.

On a final note, this work is motivated by the possibility providing improved soft-
ware tools for population PK/PD modeling that, so is the hope, ultimately will
lead to improved understanding about pharmaceutical compounds and treat-
ment of disease.
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Chapter 3

Population Modeling Theory

This chapter mathematically defines the non-linear mixed-effects (NLME) mod-
els based on stochastic differential equations (SDEs) for population pharmacoki-
netic and pharmacodynamic (PK/PD) modeling. The formulas presented in the
following sections define the mathematical framework for the proposed proto-
type, which will be discussed in the remaining chapters.

The theory presented here originates from Overgaard [12], Mortensen and Klim
[10], Tornøe [16] and Kristensen et al. [9]. The presentation pursues a rather
concise mathematical formulation of the model, as extensive descriptions of
the theoretical background and mathematical derivations are available in the
mentioned publications.

The chapter consists of six sections. First, Section 3.1 defines the notation
and terminology. Section 3.2 introduces the principles of NLME modeling and
explains how this gives rise to a two-stage hierarchical model structure.

The first-stage in the hierarchy, which models the intra-individual variability, is
formulated in Section 3.3 by means of stochastic state-space models (SSSMs).
The first-stage modeling is also denoted individual-level modeling part of the
analysis. Section 3.4 defines the recursive Kalman filter for estimating the states
in a stochastic state-space model.
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The second-stage model, which represents the population-level modeling part of
the analysis, is defined in Section 3.5.

Finally, Section 3.6 concludes the chapter with the definition of the likelihood
method suggested by Overgaard [12] for estimating the fixed- and random-effects
parameters in NLME model.

3.1 Notation and terminology

The following notation and terms apply

Individual index i = {1, . . . , N} identifies the ith individual in the model,
which contains N individuals.

Time index j = {1, . . . , ni} identifies the jth discrete time point tij for the ith

individual, where ni is the total number of observations for individual i.

Scalar expressions are written in italic font, e.g. lp,i.

Vectors are written in bold italic font using small letters, e.g. yij . All vectors
are defined as column vectors.

Matrices are written in bold italic font using capital letters, e.g. A.

For simplicity, an abbreviated nomenclature for the time-dependency of vari-
ables is, for example, defined by yi(tij) = yij , which identifies the jth observa-
tion obtained at time tij for individual i.

Predictions are indicated by hat-notation ”ˆ”, e.g. x̂i(j|j−1), where subscript
i(j|j − 1) refers to the jth prediction based on all j − 1 preceeding observations
for individual i. Yij = [yi1, . . . ,yij ] represents all observations until time tij for
individual i.

The symbol p(X) denotes the density of X and p(X|Y ) the conditional density
of X given Y.

Synonyms for the output variables (or outputs), which are used interchange-
ably, include response variables (or responses) and measurement variables (or
measurements).
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3.2 Non-linear mixed-effects models

Population PK/PD analysis is typically conducted using NLME modeling. NLME
models for repeated observations defines a hierarchical model structure, which
makes it possible to separate the variability in the reponses into inter- and
intra-individual components.

A two-stage1 hierarchical model is adopted. It allows simultaneous estimation
of (1) the random-effects associated with inter- and intra-individual variability
and (2) the fixed-effects parameters influenced by measured concomitant effects
or covariates.

The two-stage hierarchical structure of NLME models for estimating the pa-
rameters in population PK/PK analysis may in short be conveyed as follows

First-stage: Individual-level model for determining the intra-individual vari-
ability, e.g. attributed to individual processes in the body (absorption,
distribution and elimination).

Second-stage: Population-level model for identification of the inter-individual
variation, e.g. due to systematic variation in covariates or unexplained
variation across a population (represented by random-effects parameters).

The underlying assumption of the first-stage model is that the biological pro-
cesses acting on each individual are based on the same mechanisms [13]. As
illustrated in Figure 2.2, the assumption implies that individual profiles are
similarly-shaped, whereas individual variations in, for example, peak levels and
steepness of gradients are due to individual properties only.

In other words, biological processes such as absorption, distribution and elimi-
nation that govern pharmacokinetic profiles assumably follow the same mecha-
nisms.

The second-stage model is constructed upon the assumption that the individual
parameters responsible for the varying individual profiles can be regarded as
realizations from a second-stage probability function.

The next section briefly highlights the advantages of using NLME models based
on SDEs rather than ordinary differential equantions (ODEs).

1A Bayesian analysis requires the addition of a third-stage to account for the prior distri-
butions on the population parameters, see Sheiner and Wakefield [13].
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First-stage model based on SDEs

When using ODEs to formulate the structural model of a system, the intra-
individual variability is entirely modeled as residual noise. Applying SDEs to
NLME models extends the first-stage model by decomposing the intra-individual
variation into two fundamentally different types of noise, namely

1. System noise representing model deficiencies, e.g. if the model does not
capture the dynamics of the states or if true random fluctuations are
present in the system.

2. Measurement noise accounting for uncorrelated error, e.g. due to assay
error or if the observed concentration not correctly portraits the true con-
tration at the site of interest.

Based on the preceding introductory description of NLME models, the subse-
quent sections mathematically defines the two-stage NLME models based on
SDEs. The first-stage setup is stated in Section 3.3 with the stochastic state-
space filtering scheme given in Section 3.4. Section 3.5 expresses the second-
stage model.

3.3 Individual-level modeling

The NLME model postulated in this chapter handles outputs structured as

yij , i = 1, . . . , N ; j = 1, . . . , ni (3.1)

where yij ∈ Y ⊂ Rl is a vector of output variables at time tij for individual i
in the population of interest; N is the number of individuals in the population;
and ni the number of observations obtained for the ith individual.

The first-stage model is defined by a stochastic state-space model consisting of
SDEs for the states xit evolving in continuous time and a set of outputs yij

sampled a discrete time points, i.e.

dxit = g(xit ,uit , t,φi)dt + Πw(uit , t,φi)dwit (3.2)
yij = f(xij ,uij , tij ,φi) + eij (3.3)
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where for the ith individual, xit ∈ X ⊂ Rn is a vector of state variables, e.g.
the amount of drug in a PK model; uit ∈ U ⊂ Rm is a vector of input variables,
e.g. dose administration; t ∈ R is time; tij ∈ R is the jth measurement time;
φi ∈ Φ ⊂ Rp is the vector of individual parameters; Πwdwit is the system noise,
where Πw is a scaling term representing the magnitude of the system noise2 and
{wit} is an n-dimensional standard Wiener process3; {eij} is an l-dimensional
white noise process4 with zero mean and variance Σ; and finally, g(·) and f(·)
are non-linear vector functions describing the dynamics of the states and the
relationship between the state and the observations, respectively.

The notation dxit/dt in equation (3.2) is not applicable, since the time derivative
of the standard Wiener process dw/dt is poorly defined. Here, the Itô-method
is adopted for numerical computation the integrals.

It is noted that the equation (3.2) simplifies to an ordinary differential equation
in the case where the magnitude of the system noise term reduces to zero, Πw =
0. In that case, all intra-individual variability is contained in the measurement
error covariance Σ.

Equations (3.2) and (3.3) are called the state equation and the observation
equation, repectively, and specify the general, non-linear structural model for
the intra-individual data.

At present, the proposed prototype exclusively handles linear models, which is
a subset of the non-linear models. These will formally be defined next.

Special case: Linear time-varying model

The following notation applies for linear time-varying (LTV) stochastic state-
space model

2In PK/PD literature, the magnitude of the system noise Πw is also commonly defined by
the symbol σw. In this thesis, the symbol Πw has been chosen in order to comply with the
general bold-face capital letter notation of matrices.

3Standard Wiener process: (also called Brownian motion) is a continuous time Gaussian
process, which for each increment (wt1 −wt2 ) is characterized by mean E[wt2 −wt1 ] and
variance V [wt2 −wt1 ]:

E[wt2 −wt1 ] = 0

V [wt2 −wt1 ] = |t2 − t1|I

4White noise process: independent and identically distributed Gaussian measurements
noise with zero mean and covariance Σ.
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dxit = (A(xit ,uit , t,φi)xit + B(xit ,uit , t, φi)uit)dt

+ Πw(uit , t,φi)dwit (3.4)
yij = C(xij ,uij , t,φi)xij + D(xij ,uij , t,φi)uij + eij (3.5)

where for the ith individual, the explanations of t, tij , xit , uij , φi, Πw, dwit

and eij remain unchanged. A ∈ Rn×n and B ∈ Rn×m are coefficient matrices
in the state equation for the states and the outputs, respectively; C ∈ Rl×n and
D ∈ Rl×m are correspondingly cofficient matrices in the observation equation.

Special case: Linear time-invariant model

Similarly, the linear time-invariant (LTI) stochastic state-space model is ex-
pressed by:

dxit = (A(φi)xit + B(φi)uit)dt

+ Πw(φi)dwit (3.6)
yij = C(φi)xij + D(φi)uij + eij (3.7)

where for the ith individual, the explanations of t, tij , xit , uij , φi, Πw, dwit

and eij are the same. A ∈ Rn×n and B ∈ Rn×m are coefficient matrices in
the state equation for the states and the outputs, respectively; C ∈ Rl×n and
D ∈ Rl×m are cofficient matrices in the observation equation.

The Kalman filter, which in thesis is the preferred method for modeling the
states of the systems, is defined in the following section.

3.4 Kalman filter

The objective of state-space modeling is to estimate the unobservable states xit

for a series of responses {yij}, j = 1, 2, . . . , ni, influenzed by unknown variability.
This section presents the Kalman filter technique for state-space modeling.

The Kalman filter is a recursive minimum variance-covariance estimator for
the states of dynamic systems. Given a set of individual parameters φi and
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the initial conditions of the state x̂i0 and P i0, the Kalman filter algorithm
recursively estimates the current state and state covariance of the system [1].

In the general case of non-linear evolution in the states and/or responses, i.e.
when f(·) and g(·) in equations (3.2)-(3.3) are non-linear, the extended Kalman
filter (EKF) is applicable. Essentially, the extended Kalman filter creates a
linearization around the current states through computation of the Jacobian
matrix5 using an appropriate ODE-solver.

At this moment, the proposed prototype only permits specification of linear
time-varying (LTV) or linear time-invariant (LTI) models as defined in equations
(3.4)-(3.5) and (3.6)-(3.7), respectively. Since, by assumption, the system and
measurement noise are independent of the states, the extended Kalman filter
reduces to an ordinary Kalman filter (KF).

The ordinary Kalman filtering scheme for the first-stage model, expressed as a
linear stochastic state-space model, is the topic of the remainder of this section.
The theory is based on ”CTSM Math Guide” by Kristensen and Madsen [8],
which should be consulted if additional theoretical insight is desired.

The Kalman filter formally consists of two parts called the updating and the
prediction part. In prediction part, predictions of the states, covariance and
observation at time point tij are derived from the current state and covariance
given observations at time point tij−1. In the updating part, the Kalman filter
updates the estimate of the states and covariances in presence of new observa-
tions.

To initiate the recursive Kalman filter, the initial state x̂i(1|0) = x̂i0 and state
covariance P i(1|0) = P i0 must be defined for all i = 1, . . . , N individuals.

Initial states and covariances

Initial conditions for the recursive Kalman filter are defined by

x̂i(1|0) = x̂i0 (3.8)

P i(1|0) = Ps

∫ t2

t1

eAitsΠwΠw
T (eAits)T ds = P i0 (3.9)

5Jacobian matrix: matrix of first-order partial derivatives.
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where Ps is an arbitrary scaling factor, which punishes for unknown uncertainty
of the initial estimate for the state prediction covariance.

Output prediction equations

The prediction equations identifies the one-step output prediction ŷi(j|j−1) and
corresponding output prediction covariance matrix Ri(j|j−1)

ŷi(j|j−1) = Cx̂i(j|j−1) + Duij (3.10)

Ri(j|j−1) = CP i(j|j−1)C
T + Σ (3.11)

Given output prediction ŷi(j|j−1), the innovation εij at time tij indicates the
residual difference between the incoming observation yij and the output prection
ŷi(j|j−1) derived at the preceding time point tij−1, i.e.:

εij = yij − ŷi(j|j−1) (3.12)

State updating equations

The state updating part of the Kalman filter describes the situation, when a
new observation yij is obtained at time point tij . Given of new information,
the state prediction x̂i(j|j−1) can be updated. For this purpose the Kalman gain
Kij is defined

Kij = P i(j|j−1)C
T R−1

i(j|j−1) (3.13)

The Kalman gain Kij dictates to which the extend the updated states x̂ij

should rely on the new observations. The state updating equations are given by

x̂i(j|j) = x̂i(j|j−1) + Kijεij (3.14)

P i(j|j) = P i(j|j−1) −KijRi(j|j−1)K
T
ij (3.15)
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From equation (3.13) noted that the Kalman gain is proportional to the state
covariance P i(j|j−1) and inverse proportional to the output covariance Ri(j|j−1).
Thus, for relatively larger state covariances the Kalman gain becomes larger,
indicating that the updated state x̂i(j|j) in equation (3.14) should rely more on
the incoming observation.

4.3 Extended Kalman Filter 29

The optimal state estimate at time j denoted by x̂i(j|j) is equal to the best
state prediction x̂i(j|j−1) before the measurement is taken plus a correction
term consisting of an optimal weighting value times the difference between the
measurement yij and the one-step prediction of its value. For measurements
with a large variance Σ, the Kalman gain becomes small and the measurement
is weighted lightly due to the little confidence in the noisy measurement. In
the limit as Σ → ∞, the Kalman gain becomes zero and the infinitely noisy
measurement is completely ignored in the update. When the system noise is
dominant implying uncertainty in the output of the system model, the measure-
ment is heavily weighted. In the limit when σw →∞ and P →∞, the Kalman
gain will approach 1 and the updated state will be equal to the measurement
[52].

The EKF algorithm specified above and illustrated in Figure 4.3 is recursive by
repeating the calculations of the one-step state and output prediction equations
in Eqs. (4.21)–(4.28) as well as the state update equations in Eqs. (4.29)–(4.31)
for each individual measurement.

Prediction Updating

1. State prediction equations 1. Kalman gain

2. Output prediction equations 2. State update equations
+ σwσT

w

Pi(t|0) = Pi0

x̂i(t|0) = xi0

dx̂i(t|j−1)
dt

= g(x̂i(t|j−1), di, φi)

dPi(t|j−1)
dt

= AitPi(t|j−1) + Pi(t|j−1)AT
it

ŷi(j|j−1) = f(φi, x̂i(j|j−1))

Ri(j|j−1) = CijPi(j|j−1)CT
ij + Σ

Kij = Pi(j|j−1)CT
ijR−1

i(j|j−1)

x̂i(j|j) = x̂i(j|j−1) + Kij
(
yij − ŷi(j|j−1)

)

Pi(j|j) = Pi(j|j−1) −KijRi(j|j−1)KT
ij

Figure 4.3: Schematic illustration of the EKF algorithm [87].

The EKF, being a linear filter, is sensitive to non-linear effects, which may result
in the approximation being too crude [28]. One might consider to use subsam-
pling1 where the EKF equations are linearized at each subsampling instant to
obtain a better approximation [47].

Several other more sophisticated statistical techniques (e.g. higher-order filters,
1The time interval between two measurements is divided into several subsampling instants.

Figure 3.1: Illustration of the Kalman filtering algorithm for non-linear
models. The following variations in notation applies: individual index i is
omitted; time index k; magnitude of system noise σ [18].

State prediction equations

Finally, the one-step state prediction equations are expressed as the evolution
in the states for t ∈ [tij , tij+1]:

dx̂i(t|j)

dt
= Ax̂i(t|j) + Buit , t ∈ [tij , tij+1] (3.16)

dP i(t|j)

dt
= AP i(t|j) + P i(t|j)A

T + ΠwΠw
T , t ∈ [tij , tij+1] (3.17)

where the abbreviated notation for the linear time-varying (LTV) and the linear
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time-invariant (LTI) case are represented in equation (3.18) and (3.19), respec-
tively:

A = A(x̂i(t|j−1),uit , t,φi), B = B(x̂i(t|j−1),uit , t,φi)
C = C (x̂i(t|j−1),uit , t,φi), D = D(x̂i(t|j−1),uit , t,φi) (3.18)

Πw = Πw(uit , t,φi), Σ = Σ(uit , t, φi)

A = A(φi), B = B(φi)
C = C (φi), D = D(φi) (3.19)

Πw = Πw(φi), Σ = Σ(φi)

Figure 3.1 illustrates the Kalman filtering algorithm for a non-linear stochastic
state-space model.

Solutions to SDEs

This section defines the mathematical equations for solving the SDEs of the
state prediction equations expressed in equations (3.14)-(3.15). No derivations
are stated, as the purpose is solely to define the equations involved in the im-
plementation of the prototype.

Again, the mathematical equations presented here originates from Kristensen
and Madsen [8], where detailed information of the mathematical derivations and
theoretical background is found.

Expressing the state prediction equations (3.16) and (3.17) with respect to dis-
crete time and integrating yields

x̂i(j+1|j) = E{xi(tij+1)|xi(tij)}

= eA(tij+1−tij)x̂i(j|j) +
∫ tij+1

tij

eA(tij+1−s)Busds (3.20)
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P i(j+1|j) = E{xi(tij+1)x
T
i(tij+1)

|xi(tij)}

= eA(tij+1−tij)P i(j|j)

(
eA(tij+1−tij)

)T

+
∫ tij+1

tij

eA(tij+1−s)ΠwΠw
T

(
eA(tij+1−s)

)T
(3.21)

Defining the time step between two on each other following time points, τs =
tij+1 − tij as well as the matrix exponential Ψs = eAτs , equations (3.20) and
(3.21) can be expressed as

x̂i(j+1|j) = Ψsx̂i(j|j) −
∫ τs

0
eAssdsBα

+
∫ τs

0
eAsdsB(ατs + uij) (3.22)

P i(j+1|j) = ΨsP i(j|j)Ψs
T +

∫ τs

0
eAsΠwΠw

T
(
eAs

)T
ds (3.23)

where α defines the hold on the inputs:

α =
uij+1 − uij

tij+1 − tij
(3.24)

Zero-order hold is defined by α = 0, while first-order hold is given by α $= 0.
Currently, the proposed prototype computes state predictions x̂i(j+1|j) based
on zero-order hold only.

The matrix exponential Ψs = eAτs as well as the integral in equation (3.21)
is computed simultanously by means of a Padé approximation with repeated
scaling and squaring

exp
([
−A ΠwΠw

T

0 AT

]
τs

)
=

[
H1(τs) H2(τs)

0 H3(τs)

]
(3.25)

from which is found:



22 Population Modeling Theory

Ψs = HT
3 (τs) (3.26)

∫ τs

0
eAsΠwΠw

T (eAs)T ds = HT
3 (τs)H2(τs) (3.27)

The state prediction P i(j+1|j) is, thus, completely expressed by application of
equations (3.26) and (3.27) to equation (3.23).

In the case of singular matrix A, singular value decomposition (SVD) of A and
Ψs is needed to compute the integrals in equation (3.22), i.e.

Ã = UΣV T = UT AU =
[
Ã1 Ã2

0 0

]
(3.28)

Ψ̃s = UΣV T = UT ΨsU =

[
Ψ̃s

1
Ψ̃s

2

0 I

]
(3.29)

The prototype treats two special cases for computations of the state predictions
x̂i(j+1|j), namely

1. Case A: Singular A, zero-order hold on inputs

2. Case B: Non-singular B, zero-order hold on inputs

Mathematical treatment of the two special cases A and B terminates the pre-
sentation of the ordinary Kalman filtering scheme applied in the prototype.

Case A: State prediction for singular A, zero-order hold

For singular matrix A and zero-order hold on the inputs (α = 0), the state
prediction x̂i(j+1|j) identified by:

x̂i(j+1|j) = Ψsx̂i(j|j) −U

∫ τs

0
eÃsdsUT Buij (3.30)

∫ τs

0
eÃsds =

[
Ã
−1
1

(
Ψ̃

1
s − I

)
Ã
−1
1

(
Ã
−1
1

(
Ψ̃

1
s − I

)
− Iτs

)
Ã2

0 Iτs

]
(3.31)
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Case B: State prediction for non-singular A, zero-order hold

For non-singular matrix A and zero-order hold on the inputs (α = 0), the state
prediction x̂i(j+1|j) identified by

x̂i(j+1|j) = Ψsx̂i(j|j) +
∫ τs

0
eAsdsBuij (3.32)

∫ τs

0
eAsds = A−1(Ψs − I) (3.33)

This completes the mathematical formulation of the Kalman filtering algorithm
for modeling the states in the structural model.

Section 3.5 defines the structural type model for the individual parameters,
which comprise the population-level modeling part of the hierachical NLME
model structure.

3.5 Population-level modeling

The second-stage model describes the inter-individual variations. In this thesis,
the individual parameters φi is modeled as a function of the fixed-effects θ, the
individual covariates zi and random-effects ηi, i.e.

φi = h(θ,zi) exp(ηi), i = 1, . . . , N (3.34)

where h(·) denotes the structural type parameter model; θ ∈ Θ ⊂ Rq is a vector
of fixed-effects parameters; zi is a r-dimensional covariate vector of the ith indi-
vidual; and ηi ∼ N(0,Ω) are vectors of individual random-effects parameters.
This model formulation restricts the random-effects ηi from changing the sign
of h(θ,zi).

The presentation of the individual-level modeling part in Sections 3.3 and 3.4
and the population-level modeling part expressed here concludes the mathemat-
ical formulation of the two-stage hierarchical model.
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The final section defines mathematical setup for estimating the fixed- and random-
effects parameters in the population PK/PK model using NLME models based
on SDEs.

3.6 Parameter estimation

This thesis adopts the maximum likelihood method for estimating the entire set
of population parameters (θ, ηi) in the NLME model based SDEs, which was
first proposed by Overgaard [12]. This section presents the maximum likelihood
theory in short.

When the intra-individual model contains correlated residuals, the first-stage
joint probability density must be approximated by the product of probability
densities conditional on both the individual parameters φi and the previous
observations.

Without further introduction, application of Bayes rule P (A∩B) = P (B|A)P (A)
gives rise to the following definition of the first-stage condition density function

p1(Yini |φi,ui) =




ni∏

j=2

p(yij |Yi(j−1),φi,ui)



 p(yi1|φi,ui) (3.35)

where Yij = [yi1, . . . ,yij ] represents all observations until time tij for individual
i.

The first-stage likelihood function Li for the ith individual is defined as the
product of the probabilities of the individual observations yij , j = 1, . . . , ni, so
that

Li(φi|Yini) = p1(Yini |φi,ui) (3.36)

Assuming that the first-stage conditional densities are Gaussian distributions,
the quasi-likelihood function can be derived subsequently. When modeling, this
assumption should readily be tested, e.g. using standardized residuals.

The approximate Gaussian conditional densities are completely described by
means of the conditional mean and covariance of the outputs



3.6 Parameter estimation 25

ŷi(j|j−1) = E(yij |Yi(j|j−1),φi,ui) (3.37)
Ri(j|j−1) = V (yij |Yi(j|j−1),φi,ui) (3.38)

The one-step prediction error εij at time tij is given by:

εij = yij − ŷi(j|j−1) ∈ N(0,Ri(j|j−1)) (3.39)

Using the preceding formulas, the Gaussian approximation of the first-stage
density function given in equation (3.35) is expressed as

p1(Yij |φi,ui) ≈
ni∏

j=1

exp
(
− 1

2εT
ijR

−1
i(j|j−1)εij

)

√
|2πRi(j|j−1)|

(3.40)

which is exact in the special case of linear models. Inserting in equation (3.40)
into (3.36) and taking the logarithm yields the individual log-likelihood

li(φi|Yij) ≈ −1
2

ni∑

j=1

(
εT

ijR
−1
i(j|j−1)εij + |2πRi(j|j−1)|

)
(3.41)

The individual log-likelihood li constitutes the objective function first-stage
model. The optimal set of individual random-effects parameters η̂ i maximize
the objective function.

arg max
ηi

li(φi|Yini) (3.42)

The second-stage density p2(ηi|Ω) is assumed a multivariate Gaussian density,
which is identical to the assumption when modeling based on ODEs. The pop-
ulation likelihood L is derived through combination of the second-stage proba-
bility density with the first-stage probability density p1(Yij |φi,ui) using Bayes
theorem
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L(θ,η |Y) ∝
N∏

i=1

∫
p1(Yij |φi,ui)p2(ηi|Ω)dηi (3.43)

=
N∏

i=1

∫
exp(lp,i)dηi (3.44)

where η = {η1,η2, . . . ,ηN}; Y = {Y1n1 ,. . .,YNnN }; and lp,i is the approximate
individual a posteriori log-likelihood for the ith individual based on one-step
prediction errors εij , namely

lp,i = −1
2

ni∑

j=1

(
εT

ijR
−1
i(j|j−1)εij + log|2πRi(j|j−1)|

)

−1
2
ηT

i Ω−1ηi −
1
2
log|2πΩ| (3.45)

The approximate population likelihood function L defined in equation (3.44)
cannot be solved analytically. Numerical approximation using a second-order
Taylor expansion is given equation (3.46).

The First-Order Conditional Estimation (FOCE) method (using only first-order
derivatives) with expansion around the optimal set of random-effects η̂ i is used
to evaluate the approximate population likelihood L.

L(θ,η |Y) ≈
N∏

i=1

|∆lp,i|−
1
2 exp

[
lp,i −

1
2
∇lTp,∆l−1

p,i ∇lp,i

]
(3.46)

≈
N∏

i=1

|∆lp,i|−
1
2 exp (lp,i)

∣∣∣
η̂i

(3.47)

since the maximum individual log-likelihood is characterized by zero gradient,
∇li|η̂i

= 0, thus equation (3.46) reduces to (3.47).

Determination of the approximate population log-likelihood function L requires
evaluation of the individual log-likelihood function li. Using the Laplacian ap-
proximation, the Hessian matrix of the individual likelihood function ∆Li is
expressed by
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∆li ≈ −
ni∑

i=1

[
∇εT

ijR
−1
i(j|j−1)∇εij

]
−Ω−1 (3.48)

This concludes the description of the maximum likelihood principles for estimat-
ing the entire set of parameters in the population PK/PD setup using NLME
models based on SDEs.

In Chapter 4, the design of the Fortran 95 prototype is presented.
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Chapter 4

Design of Prototype

This thesis’ primary objective is to propose a prototype that – so is the vision
– could become the basis of a next generation software for population phar-
macokinetic and pharmacodynamic (PK/PD) modeling. In this chapter, the
implementation of such prototype in the programming language Fortran 95 is
presented.

From the very beginning of the model development, strict attention has been
given to the formulation of a favorable design that, at best, addresses the re-
quirements and challenges of future model extensions and, in the worst case, is
prevented from imposing any potential restrictions.

The prototype exploits features of the Fortran 95 language, for example derived
types1, to specify generic procedure interfaces that easily allow modifications
to data transfer without requiring changes to be made in the argument lists.
Modules constitute another capacity of the Fortran 95 language, which the im-
plementation makes much use of, as it supports a logical modular structure and
also extends the options for handling and protecting data.

The prototype is named ”PSM” being the acronym of ”Population Stochas-
tic Modeling”. Consequently, this thesis adopts the originally proposed by
Mortensen and Klim [10]. Per definition, the prototype provides a preliminary

1Derived type: in other object-oriented programming languages also refered to as objects.
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model for a next generation software for population PK/PD modeling. As such,
and motivated by the perspective of fueling future model developments, the fol-
lowing chapters aims at pinpointing possible shortcomings and give suggestions
for improvements of the current implementation.

Due to the size and, thus, relative complex nature of the PSM prototype, an
overall perspective is pursued in the descriptions of the invidual model compo-
nents. This approach is supported by the extensive interface documentation for
all procedures, derived types and include files supplied in appendix A. This, it is
hoped, will help new developers experience a quick start despite the complexity
of the model.

First, Section 4.1 restates the objectives and defines the particular specifications
for the PSM prototype development. Section 4.2 presents the programming
platform and the rationale for selecting Fortran 95 as programming language.
Section 4.4 provides an elaborate summary of the entire file tree structure and
model interface of the PSM prototype. Section 4.5 ends the chapter with a
presentation of the calling sequences illustrated by means of flowcharts.

4.1 Objectives and specifications

As conveyed in Chapter 1, the goals of this thesis are:

1. To develop a prototype for population PK/PD modelling based non-linear
mixed-effects models with stochastic differential equations.

2. To choose a functional programming language that ensures:

• High computational speed

• Availability of efficient procedures for numerical manipulations

• Parallelization (future work)

3. To formulate a conceptual design that provides a flexible, transparent and
generic program interface. Importantly, the model construction should
facilitate the needs of future model modifications and development.

Based on the objectives, a set of specifications were imposed to the model devel-
opment. Table 4.1 defines the model specifications and, additionally, indicates
the major restrictions to the PSM prototype.
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Table 4.1: Design specifications

Target Specifications Restrictions

Models Non-linear mixed-effects model based on
stochastic differential equations:

1) Linear time-varying (LTV)
2) Linear time-invariant (LTI)

Non-linear (NL)
not implemented

with state predictions estimated for:

1) Singular A
2) Non-singular A

using zero-order hold on inputs
(α = 0)

First-order hold
(α = 1)

Model

declaration

Models must be entirely specified by user
in a set of model files†. In addition, user
must specify:

1) Number of individuals
2) Number of rows in datafiles

Not automatically
identified

Data input Data is obtained from three datafiles,
which are specified at run-time:

1) inputs/outputs
2) doses
3) covariates

Doses not analyzed

Required: outputs
Optional: inputs, doses, covariates

Data should be complete No missing data

Individual number of observations (in-
put/output/doses) allowed.

Results Results are rendered to screen: No output files

1) Approx. population likehood L
2) Fixed-effects θ
3) Random-effects ηi

No graphical
display of results

Random-effects are printed in chronolog-
ical order starting with the individual no.
1 in datafiles.

† See Chapter 6 for detailed information on how to declare models.
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It is made clear that, although the prototype currently only permits declaration
of linear state-space models, the notation non-linear mixed-effects is kept with
reference to the general framework of PK/PD analysis. The ambition is that
the prototype will become subject for extensions, including the incorporation of
non-linear state-space models.

Considering the magnitude of the PSM prototype, it was decided to give rela-
tively higher priority to implementation rather than validation. Consequently,
individual model entities were validated on a routinely basis. In the end, how-
ever, the completion of the approximate population likelihood procedure (APL)
was favorized on the expense of outstanding validation of this part. Validation
is discussed in Chapter 5.

The proposed PSM prototype has been implemented in Fortran 95 and the
rationale herefore is addressed in Section 4.2.

4.2 Programming platform

The programming language of choice for the PSM prototype is Fortran 95.
Fortran is a standardized, procedural programming language particularly well-
suited for numerical computation and scientific computing.

The choice of Fortran 95 is motivated by:

• Availability of Sun Studio’s Sun Performance Library[15], which comprise
a set of optimized, high-speed mathematical subroutines for solving linear
algebra and other numerically intensive problems. The Sun Performance
Library is based on BLAS 1-3 2 and LAPACK 3 standard libraries.

• Availability of scientific packages implemented in Fortran for, for instance,
parameter optimization, procedures for matrix exponential and automatic
differentiation.

• Availability of OpenMP4 package, which is a shared-memory multiprocess-
ing API for developing parallel models. Multi-processor parallelization via

2BLAS: Basic Linear Algebra Subroutines are procedures for basic linear algebra opera-
tions, e.g. vector and matrix multiplication, and is written in FORTRAN 77.

3LAPACK: Linear Algebra Package is a software library for numerical computing written
in FORTRAN 77.

4OpenMP API: Open Multi-Processing Application Program Interface, see also: http:
//www.openmp.org

http://www.openmp.org
http://www.openmp.org
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OpenMP is encompassed by a set of meta tags and may be implemented
without significant modification of the serial source code.

• Fortran 90/95 provides object-oriented programming features and matrix
allocation options that were not available to FORTRAN 77.

The PSM prototype has been developed on a Unix platform running on Ultra-
SPARC-IV processors using the Sun Studio Fortran Compiler f955. The pro-
cessor settings are summarized in Table 4.2.

Table 4.2: Summary of CPU settings.

Informations on CPU:
CPU name: UltraSPARC-IV

clock: 1200
l1-assoc: 4

l1-linesize: 32
l1-size: 65536

l2-assoc: 2
l2-linesize: 128

l2-size: 8388608
tlb-entries: 16

tlb-size: 8192

4.3 File structure

The PSM prototype consists of a total of 19 files that comprise more than
6,000 lines of Fortran 95 code (not including external procedures). The files
are distributed in three directories, namely the main directory (’/’) and the two
sub-directories ’/INCLUDE’ and ’/USER’.

The files may be separated into three categories according to their respective
kind and function. The three parts are described by:

Format specification part: consists of a single Fortran 95 include file located
in the sub-library ’/INCLUDE’. Defines all input/output formats used PSM.

Model declaration part: contains 13 files which comprise an entire model
declaration. Model declaration files are uniquely located in the sub-directory
’/USER’ and should be modified appropriately by the user prior to model
building.

5For improved compilation speed, the most recent Sun Studio Express Fortran compiler
available on G-bar was accessed via the command ’init.ssxp’
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Source code part: defines the engine of the PSM program, that is, the entire
set of subroutines, functions, modules and makefile. Consisting of 5 files
placed in the main directory, these files should normally not be altered
when setting up models in PSM.

Figure 4.1 identifies the files in PSM and illustrates the location of the
files in the respective directories.

 /USER/

      AMAT

      BMAT

      CMAT

      DMAT

      IOSSTAT

      OMEGAMAT

      PARAMS

      PHIVEC

      PIMAT

      READSPEC

      SIGMAMAT

      THETAVEC

      X0VEC

 /INCLUDE/

      FORMAT

 /

      main.f95

      makefile

      matutil77.f

      matutil95.f95

      mods.f95

format specification

model declaration
(user specified)

source code

Figure 4.1: File tree structure with individual parts highlighted.

The architecture was chosen in order accommodate proper order and file main-
tenance. In particular, it was considered preferable to separate user-modifiable
model declaration files from the source code.

Later, if a Graphical User Interface (GUI) is implemented, the architectural
considerations may become irrelevant. In that case, the user may be given the
option of choosing specific directories for each model declaration file.
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4.4 Program units

The PSM prototype is composed by several individual units of different kinds.
Five modules define the major program units. The scope of the modules is to
define procedures, derived types and/or to hold data, which are considered the
minor entities of the program.

As indicated in the introduction of this chapter, the interface descriptions for all
procedures, derived types and include files are supplemented in appendix A. The
ambition in the following sections is, therefore, to provide a concise summary of
the program structure while largely sticking to a rather global perspective.

The modules will be defined next in Section 4.4.1. Secondly, the derived types
and procedures are listed in Sections 4.4.3 and 4.4.4, respectively.

4.4.1 Modules

A Fortran module is unit designed with the intention of making definitions, data
and procedures available to other units. Five modules with specific purpose and
properties have been defined, see Table 4.3.

Table 4.3: Summary of modules in PSM.

Name Description Location

MODATA Defines procedures for data acquisition and
displaying data.

mods.f95

MOIOS Defines input/output control parameters. mods.f95

MOPARAMS Defines major global parameters. mods.f95

MOPROCS Defines procedures written and/or modi-
fied for PSM†.

mods.f95

MOTYPES Defines the derived types applied in PSM. mods.f95

† Remaining external, non-modified procedures are located in
the source files matutil95.f95 and matutil77.f.

Modules are accessed through USE association, which makes available all module
definitions, data and procedures to the calling program unit. Alternatively, us-
ing the ’USE, ONLY:’ statement, specific units within a module may be accessed
while leaving others out. This feature is widely applied in PSM as means to



36 Design of Prototype

ensure proper data protection.

It is mentioned that bugs in the Sun Studio 11 Fortran compiler signficantly
increase compilation speeds, when applying ’USE, ONLY’. In order to avoid this,
latest Sun Studio Express compiler (beta-version) should be used.

The organization of components of similar kinds in separate modules, which is
good programming practice for large-scale programs, has been adopted in PSM.
For instance, MOTYPES is limited to defining the derived types, and MOPARAMS

is restricted to the definitions of global parameters. This arrangement helps
to provide intutive procedure interfaces and makes modifications simple and
intuitive.

The module MOPROCS contains the subroutines and functions written explicitly for
PSM. Furthermore, it contains the ucminf parameters optimization procedures,
which have been slightly modified in order to match the requirements of PSM.
Changes to ucminf are discussed in Section 5.3

The module MODATA defines input/output procedures. Currently, MOIOS only hold
a single input/output control parameter IOVAR. Displaying results has not been
throughly considered in this work. Therefore, future developers should decide
whether modifications to this setup should be made, i.e. if input/output control
is represented by a single parameter, it might possibly be included in MOPARAMS.

4.4.2 Global parameters

The major global parameters are defined during model declaration. Global
parameters are predominantly defined in the model declaration files PARAMS,
READSPEC and IOSSTAT.

Table 4.4 describes the global parameters based on the interface description of
PARAMS in Table A.8, READSPEC in Table A.11 and IOSSTAT in Table A.2.

It is noted that the prototype not automatically identifies neither the number
of patients in the input/output datafile nor the number of lines in the datafiles.
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Table 4.4: Summary of global parameters in PSM.

.

Name Description Location

NPHI Number of individual parameters p. PARAMS

NU Number of input variables m. PARAMS

NX Number of state variables n. PARAMS

NY Number of output variables l. PARAMS

NZ Number of covariates r. PARAMS

NETA Number of random-effects s. PARAMS

NTHETA Number of fixed-effects q. PARAMS

IMODEL Defines model for Kalman filtering proce-
dure (depends on data and model struc-
ture).

PARAMS

For population modeling:

= 0: LTI-model (linear time-invariant)
= 1: LTV-model (linear time-varying)

For individual modeling:

=10: LTI-model (linear time-invariant)
=11: LTV-model (linear time-varying)

PS Pre-specified initial state covariance scal-
ing factor Ps, see Eq. 3.9

LB Lower bounds for mapping of fixed-effects
parameters θ.

PARAMS

LU Upper bounds for mapping of fixed-effects
parameters θ.

PARAMS

IOVAR I/O control variable. IOSSTAT

= 0: No print of intermediate results
= 1: Print intermediate results

NID Number of patients N in model (must
be identical to number of individuals con-
tained in inputs/outputs datafile).

READDAT

NROWS_DATA Number of rows in inputs/outputs datafile. READDAT

NROWS_DATA Number of rows in dosing datafile. READDAT
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4.4.3 Data objects

Module MOTYPES is restricted to the definitions of derived types, also called data
objects. Table 4.5 summarizes the six types of objects encountered in PSM and
refers to the individual interface descriptions given in appendix A.3.

Table 4.5: Summary of data objects in PSM. All data objects are defined
in module MOTYPES

.

Name Description Interface

DOSE Data object for storing individual patient
data related to dose administration of phar-
maceutical compounds.

DOSE is part of the derived type PATIENT,
which contains data for a single patient.

Table A.15

ETAOBJECT Data object containing variables used for
computation of individual random-effects
ηi.

Table A.16

KALOBJ Data object containing variables used in
Kalman filtering.

Table A.17

OPTIMOBJECT Object containing variables used for param-
eter optimization of θ and ηi.

Table A.18

PATIENT Data object for storing individual patient
data.

Table A.19

THETAOBJECT Data object containing variables used for
computation of the fixed-effects θ.

Table A.20

Additionally, it is emphasized that:

• The data object PATIENT stores the information provided in input datafiles,
for example inputs, outputs, covariates and dosing data. No results are
stored in PATIENT. Data protection is therefore ensured using INTENT(IN)

attribute, which prevents data from being modified throughout the entire
program.
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• Acquisition and storage of dose data from input dose datafile is imple-
mented. Dose data is stored in derived type DOSE, which is a part of the
derived type PATIENT.

• Parameter estimation results for the fixed-effects θ and the random-effects
ηi, i = 1, . . . , N , are allocated in THETAOBJECT and ETAOBJECT, respectively.
A vector of N element of the type ETAOBJECT’s are generated in each model.

• The OPTIMOBJECT is used in the definitions of THETAOBJECT and ETAOBJECT.
It allows structuring of population/individual optimization data, which
may be derived from ucminf. Analysis of optimization data not yet in-
corporated in the current model, but may become an important tool for
increasing the speed of the parameter estimation procedures.

4.4.4 Procedures

Table 4.6 provides a complete list of the procedures written for the PSM proto-
type. The table provides a short description of each procedure. For additional
details, the interface descriptions supplied in appendix A.4 should be consulted.

Generally, importance has been given to ensure generic argument interfaces and
breaking computational tasks into separate procedures. The generic interfaces
contribute to the overall objective of creating a flexible program architecture,
where future extensions to the source code may be instituted without requiring
alterations of existing program entities.

Likewise, by splitting computational parts into independent building blocks it is
made easy to analyze, compare or replace particular computational operations.
For example, the calls to procedures for computing gradients numerically us-
ing the central difference method, namely CNTDIFF_APL and CNTDIFF_AIAPLL, may
easily be replaced by procedures based on alternative approximation methods such as
forward differencing.

Next, Section 4.5 illustrates the calling sequences by means of flowcharts.
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Table 4.6: Summary of procedures in PSM.

Name Purpose Interface

AIAPLL Compute approximate individual a posteriori log-
likelihood lp,i.

Table A.21

ALLOC_KALMANOBJECT Allocate Kalman object. Table A.22

APL Compute approximate population log-likelihood l. Table A.23

APLDAPL Compute approximate population log-likelihood l
and its gradient dl/dθ.

Table A.24

CNTDIFF_AIAPLL Compute gradient of approximate individual a pos-
teriori log-likelihood dlp,i/dηi using central differ-
ence scheme.

Table A.25

CNTDIFF_APL Compute gradient of approximate population log-
likelihood dl/dθ using central difference scheme.

Table A.26

DEXPM Double precision matrix exponentials Ψs = eAτs

and
R τs
0 eAsΠwΠw

T (eAs)T ds.
Table A.27

DISPLAY_RESULTS Display results of fixed-effects θ and random-effects
ηi.

Table A.28

ERRORSTAT Display error status. Table A.29

FAIAPLL Compute approximate individual a posteriori log-
likelihood lp,i given individual log-likelihood li.

Table A.30

FAPL Compute individual contribution to approximate
population log-likelikelihood L.

Table A.31

FIDNM Define identity matrix I. Table A.32

FOMEGA Define random-effects covariance matrix Ω. Table A.33

FPHI Define individual parameters φi. Table A.34

FPI Define magnitude of system noise matrix Πw . Table A.35

FSIGMA Define observation error covariance Σ. Table A.36

FTHETA Define fixed-effects θ. Table A.37

HESSIAN_AIAPLL Compute Hessian of approximate individual a pos-
teriori log-likelihood ∆lp,i.

Table A.38

INIT_ETAOBJECT Initialize random-effects data object ETAOBJECT. Table A.39

INIT_THETAOBJECT Initialize fixed-effects data object THETAOBJECT. Table A.40

LINEAR_MODEL Define coefficient matrices A, B, C and D in the
LTI and LTV state-space models.

Table A.41

LLDLL Compute individual log-likelihood li and its gradi-
ent dli/dηi.

Table A.42

LTI_KALMAN Kalman filtering procedure for linear time-invariant
(LTI) model.

Table A.43

LTV_KALMAN Kalman filtering procedure for linear time-varying
(LTV) model.

Table A.44

READDAT Reads data given three datafiles (dose and covari-
ates datafiles are optional).

Table A.45
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4.5 Flowcharts

This section concludes the presentation of the design and structure of the PSM pro-
totype by illustrating the calling sequences in the PSM prototype using flowcharts.

It has been chosen split the entire flowchart of the PSM prototype into two separate
the flowcharts, namely:

1. A flowchart for the program MAIN.

2. A flowchart for the parameter estimation algorithm starting in the approximate
population procedure APL.

This way, it is possible to draw attentention to details in the structure of MAIN. Op-
positely, and because of inherent complexity of the calling sequences of APL, details
has been extracted from the flowchart of the parameter estimation algorithm leaving
room for the procedure names only.

As mentioned previously, better understanding of the program may be achieved by
keeping track of the procedures’ interface descriptions supplied in the appendix A.4
while examining the flowcharts.

Flowchart of program MAIN

Figure 4.2 shows the flowchart6 of the program MAIN. The algorithm is briefly com-
mented here:

1. Initiating PSM, the READDAT acquires data from input datafiles and then allo-
cates data in a N -dimensional vector of the type PATIENT, where N is the number
of patients in the model. Datafiles are specified by the user during run-time.

2. Next, the a single THETAOBJECT and a N -dimensional vector of the type ETAOBJECT
are initialized. Initialization of ETAOBJECT is carried out so that the patient rep-
resented in first element in the ETAOBJECT-vector is the same as in the PATIENT-
vector.

3. Thirdly, the parameter estimation algorithm is invoked by calling one of the
following procedures, i.e.:

• APL procedure for estimating fixed- and random-effects

• AIAPLL procedure for estimating random-effects only

6A list of flowchart symbols in supplied in appendix C.
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MAIN

Sun Performance

Libraries

Modules

MOPARAMS

MOTYPES

MOIOS

MODATA

MOPROCS

INIT_THETA-
OBJECT

LOOP I

INIT_ETAOBJECT

I<NID

I=NID

IMODEL?

=1=0

READDAT

ERRORSTAT

APL(LTI_KALMAN,...) APL(LTV_KALMAN,...)

ERROR?

DISPLAY_
RESULTS

NO YES

END

AIAPLL(LTV_KALMAN,...)AIAPLL(LTI_KALMAN,...)

=10 =11

Figure 4.2: Flowchart for PROGRAM MAIN. Names stated in textboxes iden-
tifies the subroutines called by the program.

The model type, namely linear time-invariant or linear time-varying, is specified
in the argument list by indicating the name of the Kalman filtering procedure
to be used, i.e. LTI_KALMAN or LTV_KALMAN.

The model decision is based on the model specification parameter IMODEL, which
is defined in the model declaration file PARAMS.

4. Next step in the algorithm of PROGRAM MAIN is calling the error message proce-
dure ERRORSTAT. Error warnings are provided in Appendix B.

5. Finally, if no errors have been encountered, the results of the fixed-effects θ and
the individual random-effects ηi are displayed by calling DISPLAY_RESULTS.

An important characteristics of the model design appears in part 3), which shows
that the model selection takes place on a ”top-level” of the algorithm. The benefit
of this concept is that lower-level IF-constructs at each optimization step vanishes.
This potentially implies relativey higher computational speeds, particularly when the
number of subjects in the model increases.
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As implied in the PROGRAM MAIN flowchart in Figure 4.2, the model allows single sub-
ject modeling using the AIAPLL procedure. This temporary design has been chosen,
since the program currently only has been validated for AIAPLL, which computes the
individual random-effects.

The remainder of this section shortly summarizes the approximate population log-
likelihood procedure APL for estimating the fixed- and random-effects parameters in
the population model.

Flowchart of procedure APL

Figures 4.4 and 4.5 show the flowcharts for APL for the linear time-invariant (LTI) and
linear time-variant (LTV) case, respectively. The only distinction between the two
flowcharts lies within which Kalman filtering procedure is called, namely LTI_KALMAN
and LTV_KALMAN.

As emphasized in the description of the PROGRAM MAIN flowchart, the Kalman filter-
ing scheme is selected on the top-level of the algorithm. This is possible since the
LTI_KALMAN and LTV_KALMAN procedure share the same generic interface. The argu-
ment list of the LTV_KALMAN procedure is illustrated in Figure 4.3 and is identical to
that of LTI_KALMAN procedure, see Tables A.44 and A.43, respectively.

LTV_KALMAN(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO)

Individual log-
likelihood

Kalman 
object

Individual 
parameters

Random-
effects

Random-effects
covariance

Patient
object

Error
flag

Figure 4.3: Argument interface for LTV KALMAN procedure.

Since model specification entities, for example coefficient matrices, do not appear in
the argument lists, the prototype can easily be extented to handle non-linear models
by implementation of a non-linear Kalman filtering procedure based on an identical
interface.

The following paragraphs briefly describes the features of the algorithm for identify-
ing the parameters in the population model. Again, additional information on the
individual procedures is found in Appendix A.4.

The APL procedure identifies the optimal fixed- and random-effects using the approx-
imate population log-likelihood as objective function for the optimization procedure.
Both the fixed- and random-effects are found by means of the unconstrained non-linear
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minimization package ucminf, which requires evaluation of the Cholesky decomposition
(SPCHOL and CHKDFN) and soft line search (SLINE).

The parameter optimization procedure for the approximate population log-likelihood
UCMINF_APL takes APLDAPL as argument. APLDAPL computes the approximate pop-
ulation likelihood, its gradient with respect to the fixed-effects parameters and the
Hessian appoximation of the individual log-likelihood by looping over all individuals
in the model.

AIAPLL is called by APLDAPL and computes the approximate individual a posteriori
log-likelihood. For a particular set of fixed-effects parameters, the AIAPLL procedure
identifies random-effects. The individual log-likelihood function is the objective func-
tion. The individual log-likelihood is computed in the Kalman filtering procedure and
returned to the LLDLL subroutine, which also computes the gradient of the individual
log-likelihood with respect to the random-effects. LLDLL is called by UCMINF_AIAPLL.

Gradients of both the approximate population log-likelihood (CNTDIFF_APL) and the
individual log-likelihood (CNTDIFF_AIAPLL) are approximated numerically using a cen-
tral difference method.

The linear Kalman filtering procedures LTI_KALMAN and LTV_KALMAN call the same pro-
cedures, although several more evalutations are required for time-varying models. The
matrix exponentials are computes by means of expokit that uses a Padé approximation
with repeated scalin and squaring.

At each evaluation of the approximate population likelihood, the fixed-effects are stored
as a column vector in the THETA-array in THETAOBJECT. Similarly, historic estimates
of the random-effects are stored in ETA-array in ETAOBJECT, when the approximate
individual a posteriori log-likelihood is determined. Since dynamic re-allocation of
arrays is not possible in Fortran, the array size is defined explicitly by the integer
parameter IMAX=200 defined in the module MOTYPES.

This chapter presented the overall file structure and design of the PSM prototype.
Chapter 5 describes important aspects of the model implementation as well as vali-
dation of individual parts of the programs. As mentioned with regard to the thesis
objectives in Section 4.1, the approximate population log-likelihood procedure of esti-
mating the remains to be validated.
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Figure 4.4: Flowchart of the approximate population log-likelihood pro-
cedure APL based on the LTI Kalman filtering. Colored circles defines the
sequence of a particular number.
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Figure 4.5: Flowchart of the approximate population log-likelihood pro-
cedure APL based on the LTV Kalman filtering. Colored circles defines the
sequence of a particular number.



Chapter 5

Implementation and
Validation

Chapter 3 presented the theory of population PK/PD modeling based on non-linear
mixed-effects (NLME) models using stochastic differential equations (SDEs). Chapter
4 presented the design and composition of the PSM prototype with particular attention
to the underlying design concepts. Succeeding the formal introduction, this chapter
aims at highlighting particular implementation details.

The ambition of this thesis was to propose the first steps towards the construction
of a next generation software for population PK/PD modeling. Given the size and
complexity of the model, implementation was prioritized over validation. Section 5.1
presents selected validation results for the PSM prototype and, importantly, points at
the parts of the PSM algorithm that remains to be validated.

Section 5.2 briefly discusses aspects related to the implementation of the Kalman
filtering procedures. Features of the parameter estimation procedures used in this
work is the topic of Section 5.3. Finally, data protection issues and optimization
considerations are presented in Sections 5.4 and 5.5, respectively.
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5.1 Model validation

Due to time constraints, only the individual-level optimization of the PSM prototype
has been validated. Validation of individual-level optimization has been accomplished
by comparison of results from PSM and CTSM.

The individual-level modeling comprises the Kalman filtering procedures LTI_KALMAN
and LTV_KALMAN; the procedure for evaluating the approximate individual log-likelihood
and its gradient LLDLL; and the optimization procedure UCMINF_AIAPLL.

Tables 5.1 and 5.2 reports the objective function values obtained from linear time-
invariant (LTI) and a linear time-varying (LTV) Kalman filtering, respectively.

Table 5.1: Objective function for linear time-invariant (LTI) model ob-
tained from CTSM and PSM Fortran 95 prototype.

Model Objective function

CTSM –623.3686

PSM Fortran 95 –623.3564

For LTI Kalman filtering, the objective function value found in PSM (l1 = −623.3686)
deviates from its CTSM counterpart (l1 = −623.3564) on the fifth significant figure.
The result is considered acceptable and LTI_KALMAN valid.

For LTV Kalman filtering, the objective function value found in PSM (l1 = 9.357946)
deviates from its CTSM counterpart (l1 = 9.392968) on the third significant figure.

Table 5.2: Objective function values for linear time-varying (LTV) model
obtained from CTSM, PSM Fortran 95 and PSM MatlabR© prototypes.

Model Objective function

CTSM 9.392968

PSM Fortran 95 9.357946

PSM MatlabR© 9.357946

In order to support the validity of the LTV Kalman filtering procedure LTV_KALMAN,
a LTV Kalman filtering procedure was constructed in MatlabR© based on the PSM
prototype presented by Mortensen and Klim [10]. Here, the objective function (l1 =
9.357946) was found identical to that of PSM. Based on this results LTV_KALMAN is
considered valid, although additional analysis is recommended in later work.
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Table 5.3 summarizes the estimates of the individual parameters φ obtained from the
approximate individual log-likelihood optimization procedure UCMINF_AIAPLL using
a LTI Kalman filtering scheme. It appears that the PSM and CTSM results are
approximately identical. Both UCMINF_AIAPLL and LLDLL are consequently found valid.

Table 5.3: Estimates of individual parameters φ based on optimization
of individual log-likelihood for a linear time-invariant (LTI) model. Results
from CTSM and PSM Fortran 95.

PSM CTSM

φ(1) 1.3130E+01 1.3134E+01

φ(2) 2.5330E+01 2.5330E+01

φ(3) 1.0397E+02 1.0394E+02

φ(4) 9.6462E–01 9.6509E–01

φ(5) 2.0219E+00 2.0215E+00

φ(6) 4.9323E+01 4.9320E+01

φ(7) 5.0930E–01 5.0929E–01

φ(8) 1.0338E–02 1.0330E–02

As mentioned in Chapter 4 and illustrated in the flowcharts in Figure 4.4 and 4.5,
the choice of Kalman filtering procedure is passed from the PROGRAM MAIN to LLDLL.
Since both the LTI and LTV Kalman filtering procedures are called from LLDLL, it
follows that the validity of the parameter optimization procedure UCMINF_AIAPLL is
independent of the type of Kalman filtering performed.

Secondly, it is noted that although the population-level modeling has yet not been
validated, both the approximate population log-likelihood optimization procedure
UCMINF_APL and the procedure for evaluating the approximate population log-likelihood
(objective function) and its gradient APLDAPL are based on identical principles.

This concludes the validation part. In the next section, the implementation of the
Kalman filtering procedures is commented.

5.2 Implementation of Kalman filter

Two ordinary Kalman filtering procedures have been defined in accordance with the
mathematical theory presented in Section 3.4, namely an LTI Kalman filtering proce-
dure LTI_KALMAN and an LTV Kalman filtering procedure LTV_KALMAN, respectively.

The PSM prototype takes in the expokit by Sidje [14] for numerical computation of
matrix exponentials. Expokit uses a Padé approximation with repeated scaling and
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squaring. Matrix determinants are determined by means of the procedures DTRM and
ELGS, which uses a partial-pivoting Gaussian elimination scheme1.

The Kalman filtering procedure handles both singular and non-singular state coefficient
matrix A. Furthermore, the optimized Sun Performance Library procedure are used
extensively for numerical manipulations. The interface descriptions are given in Tables
A.43 and A.44.

Next, the parameter optimization is discussed thoroughly.

5.3 Parameter optimization

An unconstrained, non-linear quasi-Newton method based on a Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updating scheme is employed for estimating the parameters
in PSM. For this purpose, the software package ucminf has been implemented.

The optimal parameter estimate x∗ is found via minimization of the scalar objective
function F (x):

x∗ = arg min
x∈D

{F (x)} (5.1)

where F : Rn → R is a given, continously differentiable function and D defines the
proximity of x∗.

Given an initial guess for the parameters, the Newton’s method iteratively uses a
second-order Taylor expansion of the objective function to find a new parameter esti-
mate. The Newton’s method ensures quadratic convergence around a (local) minimum,
but requires evaluation of the gradient vector and the corresponding Hessian matrix.

Evaluating the Hessian matrix may be computational laborious, when not expressed
analytically. The quasi-Newton’s method gradually constructs a numerical approxi-
mation of the Hessian based on previous parameter estimates and, thus, reduces the
computational workload of each iteration step.

Finally, it has been reported that the BFGS method with soft line search, in general,
provides better convergence results compared to other updating methods [5].

1http://www.physics.unlv.edu/∼pang/comp3/code42.f90

http://www.physics.unlv.edu/~pang/comp3/code42.f90
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5.3.1 Fortran minimizer ucminf

In this work, estimation of both fixed- and random-effects parameters is performed
using the software package ucminf , which is a quasi-Newton method using BFGS
update, line search and trust-regions. For detailed introduction to ucminf , which is
written in FORTRAN 77, see Nielsen [11].

The ucminf package consists of five subroutines, namely the unconstrained, non-linear
optimization procedure UCMINF; the Cholesky decomposition procedures SPCHOL and
CHKDFN; the line search algorithm SLINE; and the procedure for outputting information
about individual optimization steps PRVCTR.

The choice of deploying ucminf is particularly motivated by

1. Quadratic convergence near objective function minimum

2. Robustness of the minimization algorithm

3. Available and modifiable source code

4. Customizable minimization conditions

When called, UCMINF allows specification of the initial (inverse positive-definite) Hes-
sian matrix. On exit, the final Hessian approximation is returned to the calling proce-
dure. In future work, it would be interesting to investigate whether enhanced computa-
tional speeds for the optimization of the individual random-effects may be achieved by
providing the final Hessian approximation obtained in a previous step as initial guess
of the Hessian in the succeeding optimization step. Possibly, some criteria on, for
example, the fixed-effects parameters may be required. Past optimization information
is currently not exploited in PSM.

The optimal set of parameters are found by minimization of the objective function.
Following the general notation defined in the beginning of Section 5.3, the parameter
estimation procedure is subjected to three stopping criteria:

‖dF (x)/dx‖∞ < c1 (5.2)

‖∆x‖2 < c2(c2 + ‖x‖2) (5.3)

ν ≥ νmax (5.4)

where (c1, c2) ∈ R2 are arbitrary constants; and νmax ∈ N\{0} is the maximum number
of iterations allowed.

Application of ucminf required some general modifications to the ucminf procedures.
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First, the hierarchic organization of the PSM prototype, where fixed- and random-
effects are estimated in multiple steps, made it necessary to expand the argument
list of ucminf procedures in order pass information between the individual-level and
population-level modeling. Consequently, MODEL, THETAOBJ, ETAOBJ, POBJ, OMEGA and
INFO was added to the argument list and the generic procedure interface for the Kalman
filtering procedure (MODEL) was defined.

Since FORTRAN 77 does not support derived types, it was, secondly, necessary to
update the entire ucminf package from FORTRAN 77 to Fortran 95. Validation of
the Fortran 95 ucminf was accomplished using a simple function for which the gradient
could be determined analytically.

Thirdly, with the goal of improving data protection, aidin future parallelization and
potentially customize the population-level and/or individual-level optimization algo-
rithm, two copies of the ucminf procedures were created.

The resulting individual-level and population-level minimizers are summarized in Table
5.4.

Table 5.4: Individual- and population-level miminization procedures.

Individual-level Population-level

UCMINF_AIAPLL UCMINF_APL

CHKDFN_AIAPLL CHKDFN_APL

SLINE_AIAPLL SLINE_APL

Sections 5.3.3 and 5.3.2 review the individual settings for the individual-level and
population-level minimizers based on ucminf . Stop criteria are based on the recom-
mendations of Mortensen and Klim [10].

5.3.2 Individual-level optimization

Individual-level optimization identifies the optimal individual random-effects parame-
ters η̂i. The dimension of the parameter space is defined by the number of random-
effects parameters.

The gradient of the individual log-likelihood dli/dηi is computed using the central dif-
ference method. The number of function evaluations required by a central difference
scheme is almost two-fold higher than that of the corresponding forward or backward
difference method. However, experience with ucminf suggests that the additional com-
putation time required by the central difference scheme is likely to regained through
a more accurate gradient approximation and, which then improves the iterative pro-
cedure for parameter optimization.
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The initial guess is defined by η = 0 and the stopping criteria

‖dli/dηi‖∞ < c1 (5.5)

‖∆ηi‖2 < c2(c2 + ‖ηi‖2) (5.6)

ν ≥ νmax (5.7)

where both c1 and c2 are set to 10−5.

As mentioned previously, ucminf allows definition of the initial guess for the inverse,
positive-definite Hessian matrix ∆0 in it argument list. If no guess is given, the
algorithm takes an identity matrix as the initial guess of the inverse Hessian ∆0 = I and
requries a minimum of s/2 iterations, where s is the number random-effects parameters,
before the approximation to the inverse Hessian is complete.
The choice of ucminf was, besides the fact that it is a robust open-source optimizer,
motivated by the possibility of aiding the optimization process by exploiting previous
optimization results. Given an appropriate criterion, it would be interesting to evaluate
the consequences of supplying optimum conditions for the random-effects obtained the
preceding step as initial guess at the following optimization step.

5.3.3 Population-level optimization

Population-level optimization estimates the optimal fixed-effects parameters θ̂. The
dimension of the parameter space is in this case defined by the number of fixed-effects
parameters.

As for the individual-level modeling, the gradient of the approximate population log-
likelihood dl/dθ derived by means of the central difference method.

The initial guess θ0 is defined by the user through modification of the model declaration
file THETAVEC, see also Section 6.1 in Chapter 6. The stopping criteria for the estimating
the fixed-effects are

‖dl/dθ‖∞ < c1 (5.8)

‖∆θ‖2 < c2(c2 + ‖θ‖2) (5.9)

ν ≥ νmax (5.10)

where both c1 and c2 are set to 10−4.

As indicated in Section 5.1, the population-level modeling awaits validation. Based
on experience with validation of the individual-level part of the PSM prototype, it is
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strongly recommended that careful attention is directed towards the iteration count
variable in the fixed-effects data object. It should be ensured that evaluation of the
gradients and Hessians does not increase the count variable, since these components
are essentially part of each iteration step. This aspect did create minor difficulties
during validation of the individual-level part of the PSM program, thus this warning.

5.4 Data protection

The INTENT-attribute in Fortran 95 is – as is good programming practice – used in
the declaration of all procedure arguments. For a given argument variable, it allows
specification of INTENT(IN), INTENT(OUT) or INTENT(INOUT), indicating whether the
argument variable remains constant, is created or changed within a procedure. Ex-
pections to the use of the INTENT-attribute are found in external procedures only,
namely the matrix exponential package expokit and the parameter optimization pack-
age ucminf .

As mentioned in Section 4.4.1, the derived type PATIENT only contains raw data.
Following data acquisition in READDAT, the derived type PATIENT is strictly defined
using the INTENT(IN). This protects raw data from being altered or deleted.

Modules are accessed through USE-association, which makes the available all module
definitions, data and procedures. Furthermore, the ’USE, ONLY:’ limits the range of
information visible to the USE-associated program unit. It has been used extensively
in order secure highest degree of data protection.

Finally, compilations via ’make’ are performed with compiler flag -C, which examines
array references for potential subscript violations and conformance.

Next, Section 5.5 terminates this chapter with comments on optimization issues and
considerations.

5.5 Optimization considerations

Standard linear algebraic computations comprise the majority of the numerical manip-
ulations in PSM. The optimized procedures made available by the Sun Performance
Library have been applied (almost) whenever possible.

The computations are predominantly carried out in the Kalman filtering procedures.
In comparison to CTSM, PSM contains separate Kalman filter procedures for the LTI
and LTV models, respectively. Thereby, IF-statements related to the identification of
the type of filtering are completely avoided.
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Furthermore, the design of the ”high-level” selection of the Kalman filterering proce-
dure expectedly contributes to enhanced computational speed. This was illustrated
in Figures 4.2–4.4, where the Kalman filtering procedure is transmitted from PROGRAM
MAIN to LLDLL.

Due to time constraints, neither manual tuning of the source code nor parallization of
the computational tasks have been set up. However, compiler optimization of source
code is achieved by invoking the flag ’-fast’ during compilation with ’make’.

This completes the description of validation and implementation issues. The final
piece of information related to the introduction of the PSM prototype in presented in
Chapter 6. Therein, the input/output interface is described.
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Chapter 6

Input/Output Interface

In the preceding chapters, the theoretical background, the design and implementation
of the PSM prototype has been presented. This chapter concludes the presentation
of the prototype with a description of the steps involved in setting up and building a
model in PSM.

Declaring a new model is accomplished in three major steps, namely:

1. Preparation of datafiles

2. Modification of model declaration files

3. Building model using make

The following sections go through each step with attention to both the flexibility and
limitation of the current model setup.

6.1 Datafiles

At Novo Nordisk A/S, experience with clinical trials encourages splitting (1) input and
output data, (2) dose information data and (3) covariate data into separate datafiles.
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The arrangement of three separate datafiles is expected to address the general organisa-
tion of clinical data in databases. This contrasts with the data formats in NONMEMR©,
where inputs, outputs, dose information and covariate are contained in a single input
file.

The following points must be fulfilled for proper data handeling:

• Each patients must supplied with a unique identifier represented by a character
string of maximum eight letters and/or numbers, for example ’PAT001’.

• Unique patient identifier must be stated in first column of all datafiles.

• Data must be comma-delimited.

• Dimensions of the datafiles should comply with the specifications in the model
declaration files PARAMS and READSPEC, see also the summary of global parame-
ters in Table 4.4.

The following paragraphs describe how each datafile should be prepared for correct
data input.

Input and output datafiles

Figure 6.1 illustrates an inputs/outputs datafile, in which observations for two sub-
jects (NID = 2). The model contain a single output variable (NY = 1) and two input
variables (NU = 2).

In brief, the unique patient identifier is stated in the left-most column in each line of
the datafile. The prototype allows individual number of observations. The prototype
handles both existing (NU > 0) and non-existing inputs (NU = 0).

The number of lines (NROWS_DATA)in the inputs/outputs datafiles must be supplied in
the file READDAT as a part of the model declaration.

Dose datafiles

The general format of the dose datafiles is defined by means of an example illustrated
in Figure 6.1. Particular attention should be given to the data sequence.

Definition of the pre-/post-sampling term, also named the dose identifier, and method
of administration is provided in the interface description of the derived type DOSE, see
Table A.15 on page 88.

The PSM prototype provides a flexible environment for handling dose data. Firstly,
an individual number of doses is allowed. Secondly, administration of doses to only
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PAT002,0,-3.2893,10.10,26.88

PAT002,1,-3.1129,27.83,25.19

PAT002,2,-4.4819,21.29,20.01

PAT001,0,-5.4833,15.91,22.58

PAT001,1,-6.0322,26.88,22.08

PAT001,2,-6.3898,11.82,21.56

PAT001,3,-7.1613,28.84,21.03

PAT001,4,-7.3020,38.70,20.62

PAT001,5,-7.2860,11.77,20.39

Patient ID
(unique identifier)

Time
Output 

variables
Input 

variables

Patient 
PAT001

Patient 
PAT002

Figure 6.1: Illustration of datafile containing input and output variables.

PAT001, 3,53.0,0,0,2,0

PAT001, 9,54.0,0,0,2,0

PAT001,23,58.0,0,0,2,0

PAT003, 2,64.0,0,0,2,0

PAT003, 8,68.0,0,0,2,0

PAT004, 5,65.0,0,0,2,0

Patient ID
(unique identifier)

Time

Amount

Compartment

Pre-/Post-dose sampling

Method of administration

Duration of administration

Patient PAT003

Patient PAT004

Patient PAT001

Figure 6.2: Illustration of datafile containing dose information.

a subgroup of patients within a population is allowed. In Figure 6.1, for example,
patient PAT001 has received three, patient PAT002 zero and patient PAT003 two doses.
Furthermore, doses are given on different times.

Just as for inputs/outputs datafiles, the total number of lines (NROWS_DOSE)in the dose
datafiles must be supplied in the file READDAT as a part of the model declaration.
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Covariate datafiles

As in the preceding paragraphs, the sequence of data appearance in covariate datafiles
is defined by an illustration, see Figure 6.3.

If present, the covariate file must contain covariate information for all individual. The
number of covariates (NZ) is defined in the model declaration file PARAMS. In Figure 6.3
three covariates are defined for each patient.

PAT001,0,28,78.8

PAT002,0,55,88.3

PAT003,1,47,59.9

PAT004,0,72,75.2

Patient ID
(unique identifier)

Covariates

Figure 6.3: Illustration of datafile containing covariates.

An important shortcoming of the current design is that all covariate information on
input is defined as the numeric data type REAL.

The PSM prototype automatically formats of data according to the dimensions of
the individual parameters. As mentioned previously, however, both the number of
patients in the model and the dimensions of the inputs/outputs and dose datafiles
must be supplied during model declaration. This setup was chosen for simplification.

In order to accommodate flexible transition from NONMEM to PSM, it is recommend-
able to develop a data filter procedure that is able to translate standard NONMEM
formats into PSM.

6.2 Model declaration

A complete model declaration requires specification of a total of 13 model declaration
files that must comply with standard Fortran 95 syntax. The model declaration files
are uniquely located in the ’/USER’ directory as illustrated in Figure 6.4.
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 /USER/

      AMAT

      BMAT

      CMAT

      DMAT

      IOSSTAT

      OMEGAMAT

      PARAMS

      PHIVEC

      PIMAT

      READSPEC

      SIGMAMAT

      THETAVEC

      X0VEC

 /INCLUDE/

      FORMAT

 /

      main.f95

      makefile

      matutil77.f

      matutil95.f95

      mods.f95

format specification

model declaration
(user specified)

source code

Figure 6.4: File tree structure with model declaraction part hightlighted.

Table 6.1 briefly summarizes the purpose of each model declaration file and supplies
reference to the interface descriptions located in Appendix A.2.

Given the extensive interface description for each model declaration file, setting up
models are rather straigth forward. Definitions of vectors and matrices must comply
with standard Fortran 95 syntax and are defined element-wise.

As indicated in the interface description of the model declaration file PARAMS, the PSM
prototype allows both single-subject and population modeling through specification
of the global parameter IMODEL. The choice single-subject modeling is given to allow
modeling of the validated part of the program.

Next, Section 6.3 completes the description of the declaring and building models with
PSM.
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Table 6.1: Summary of model declaration files, including references to the
file interfaces supplied in the appendix A.2.

Name Description Interface Ref. Eqns.

IOSTAT Defines input/output control. Table A.2 –

AMAT Defines coefficient matrix A in LTI
and LTV state equations.

Table A.3 (3.6), (3.4)

BMAT Defines coefficient matrix B in LTI
and LTV state equations.

Table A.4 (3.6), (3.4)

CMAT Defines coefficient matrix C in LTI
and LTV state equations.

Table A.5 (3.7), (3.5)

DMAT Defines coefficient matrix D in LTI
and LTV state equations.

Table A.6 (3.7), (3.5)

OMEGAMAT Defines variance-covariance matrix Ω
for the random-effects ηi.

Table A.7 (3.34)

PARAMS Defines global parameters and selects
type of model, LTI or LTV.

Table A.8 –

PHIVEC Defines individual parameter vector φ. Table A.9 (3.34)

PIMAT Defines magnitude of system noise ma-
trix Πw in LTI and LTV state equa-
tions.

Table A.10 (3.6), (3.4)

READSPEC Defines number of patients in model,
N , and indicates number of rows in in-
put/output and dosing datafiles.

Table A.11 –

SIGMAMAT Defines variance-covariance matrix Σ
for the measurement error e in obser-
vation equations.

Table A.12 (3.7), (3.5)

THETAVEC Defines the initial guess of the fixed-
effects parameters θ.

Table A.13 (3.34)

X0VEC Defines the initial guess of the state
variables x̂i(1|0).

Table A.14 (3.8)
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6.3 Building the model

Having completed the model declaration step by proper manipulation of the model
declaration files discussed in the preceding paragraph, the final step necessary for
running a particular model is to build the PSM prototype.

The PSM prototype takes advantages for the make utility for building the prototype.
Having specified the dependencies for each target, make generates the executable ./psm
file.

The model building is accomplished in following steps:

1. Complete modification of all model declaration files located in the ’/USER’ di-
rectory, see Section 6.2.

2. Verify that the formats of the inputs/outputs datafile, the dose information
datafile and covariates datafile are congruent with the specifications described
in Section 6.1.

3. Place the datafiles in main directory (’/’).

4. Initialize the latest Sun Studio Express f95 (on the DTU G-bar run ’init.ssxp’).

5. Run ’make realclean’, then ’make’.

6. After successful compilation, run PSM using the command ’./psm’ and enter
the datafile names in the mentioned order.

The command ’make realclean’ is required, since modification to include files, that
is, the model declaration files, are otherwise not evaluated.

6.4 Displaying results

A minimum of efforts has been put into the output features of PSM. Effectively, it
constitutes an entire new project to analyze optimal data rendering methods.

Prior to displaying results the error message flag INFO supplied to the procedure
ERRORSTAT. See Table B for a complete list of error messages returned by ERRORSTAT.
If no errors are present, the program proceeds to displaying the results.

Currently, output control is defined by the parameter IOVAR in the model declaration
file IOSSTAT.

IOVAR = 0: final results of the fixed-effects parameters θ and the random-effects pa-
rameters ηi are outputted to the screen.
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IOVAR = 1: intermediate and final results of the fixed-effects parameters θ and the
random-effects parameters ηi are outputted to the screen.

Results the following results are display on call to DISPLAY_RESULTS. From the population-
level optimization is given for each patient:

1. Fixed-effects parameters θ

2. Approximate population log-likelihood l

3. Number of iteration step

From the individual-level optimization is given:

1. Random-effects parameters ηi

2. Approximate individual a posteriori log-likelihood lp,i

3. Approximate individual log-likelihood li

4. Number of iteration step

In the case of IOVAR = 0, the iteration step indicates the final and total number of
iterations performed for both the population-level or individual-level optimizations.

This concludes the presentation of input/output features of the PSM prototype. Chap-
ter 7 discusses particular aspects of the implementation and brings forward a set of
recommendations for future work.



Chapter 7

Discussion and
Recommendations

In accordance with the thesis objectives, the construction of a prototype for population
PK/PD modeling based on non-linear mixed-effects (NLME) models using stochastic
differential equations (SDEs) has been achieved. In this chapter, issues related to
the current model implementation are discussed. The discussion gives rise to a set of
recommendations for future work, which are summarized in the end.

7.1 Discussion

The programming language of choice is Fortran 95. This choice was supported by
the availability of Sun Performance Library (optimized) as well as external software
packages for computing matrix exponentials and parameters optimization. Fortran
95, furthermore, supports OpenMP shared-library multiprocessing API for parallel
computing.

Due to the size and relative complex nature of the population PK/PD algorithm, the
implementation was accomplished on the cost of relatively limited validation measures.
Consequently, only the individual-level modeling part of the PSM prototype has been
validated. Validation was performed by comparing results obtained in PSM with cor-
responding outcomes derived in CTSM, which is a program for single-subject PK/PD
modeling based on NLME models using SDEs.
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A minor discrepancy between the PSM prototype and CTSM in the evaluation of
the approximate individual log-likelihood for the linear time-varying (LTV) case was
identified. A later implementation of a LTV Kalman filtering procedure in MatlabR©

based on the validated Kalman filtering routine for linear time-invariant (LTI) models
proposed by Mortensen and Klim [10] supported the function value obtained in PSM.
However, additional validation efforts are recommended.

At present, single-subject modeling has been made available in the model declaration,
thereby, creating a simple alternative to CTSM. This addition to the capacity of the
PSM prototype is motivated by the following reasons: firstly, it allows immediate use
of the validated part of the program; and secondly, it is instituted easily by replacing
in the main program the call to the approximate population likelihood procedure (APL)
by a call to the approximate individual a posteriori log-likelihood procedure (AIAPLL).
No modifications to the source code are required.

The next step with respect to the model development is to validate the population-
level modeling part for estimating the fixed-effects parameters. This move should
potentially be accompanied by the implementation of a mapping function with the
purpose of creating bound for the fixed-effects parameters. Mortensen and Klim [10]
recommended an inverse tangent (arc-tangent) mapping function fa(Xk) of the type
X̄k = fa(Xk), fa : R → [Xmin

k ; Xmax
k ], i.e.

X̄k = fa(Xk) =
arctan(Xk) + π/2

π
(Xmax

k −Xmin
k ) + Xmin

k (7.1)

where k is the vector index; Xk is the kth original parameter; X̄k is the kth mapped
parameter; and (Xmin

k , Xmax
k ) ∈ R2 are the corresponding lower and upper bounds,

respectively. It follows from equation (7.1) that Xmin
k < X̄k < Xmax

k . Compared with
a logistic mapping function, the inverse tangent mapping function results in smaller
gradients dX̄k/dXk, which holds the advantage of providing relatively more moderate
changes in the mapped parameter during parameter optimization.

Mortensen and Klim [10] did not find it necessary to map the random-effects parame-
ters in the PSM MatlabR© prototype. With the introduction of single-subject modeling
in the PSM Fortran 95 prototype, however, the need of mapping the individual pa-
rameters may rise. In CTSM, mapping of the individual parameters is accomplished
by means of a logarithmic mapping function fl so that

X̄k = fl(Xk) = ln

„
Xk −Xmin

k

Xmax
k −Xk

«
(7.2)

where the notation is unchanged. In comparison to CTSM, experience with the PSM
prototype indicates that it is relatively more fragile towards abrupt evolution in the
parameters. Therefore, as long as the population-part of the PSM algorithm remains to
be validated, it is recommended to institute mapping of the random-effects parameters.
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In this thesis, estimation of the fixed- and random-effects parameters in the population
PK/PD model is performed using a quasi-Newton method based on Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updating scheme for computing the inverse, positive-definite
Hessian matrix. This is accomplished by means of the unconstrained non-linear
mimization software ucminf , which deploys line search and trust regions.

As a part of its argument list, ucminf allows definition of the initial guess for the
inverse, positive-definite Hessian matrix. If no guess is given, the algorithm takes an
identity matrix as the initial guess of the inverse Hessian.
The choice of ucminf was, besides the fact that it is a robust open-source optimizer,
motivated by the possibility of aiding the optimization process by potentially taking
advantage of previous optimization information.

An interesting future task is, thus, to investigate the effects of setting initial conditions
for the random-effects at a given step equal to optimum conditions at the preceding
step. Probably, this should only be instituted for a given set of criteria, for example,
related to the difference between the current and the previous estimate of the fixed-
effects parameters. Basically, the rationale is that if the fixed-effects at one point are
approximately unchanged compared to a preceding estimate, then the random-effects
likely also to be approximately unchanged.

The recommendations expressed in this section are summarized and combined with
additional recommendations derived from experiences with the PSM prototype in Sec-
tion 7.2

7.2 Recommendations

Arising from the previous discussion as well as experience with the PSM prototype,
a set of recommendations for future work are listed below in a ”kind-of” prioritized
order:

1. Validation of the population-level modeling part of the PSM prototype should be
given highest priority. Special attention is required for determining the correct-
ness of the iteration step count for the iterative optimization of the approximate
population log-likelihood function.

2. Mapping function for fixed-effects parameters should be implemented to im-
prove the robustness of the PSM algorithm. Based on the recommendation of
Mortensen and Klim [10], the inverse tangent mapping function defined equation
(7.1) is suggested for mapping the fixed-effects.
Likewise, mapping of the random-effects should be analyzed. This may par-
ticularly be important when performing single-subject PK/PD analysis. It is
recommended to implement the logarithmic mapping function defined in equa-
tion (7.2).
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3. There are several parts of the PSM model that evidently encourage parallel
computing using OpenMP, e.g.:

(a) The computation of the optimal approximate individual log-likelihood

(b) The evaluation of the approximate population log-likelihood gradient

(c) The evaluation of the approximate individual a posteriori log-likelihood
gradient

For optimal performance, tuning of the serial source code should precede any
attempts of parallelizing the computational tasks.

4. Implementation of a data acquisition filter that reads input data structured
according to standard NONMEM formats is advised. Such a move may improve
the odds of attracting current NONMEM users to use PSM as time consuming
restructuring of data is eluded.

5. All gradients are currently evaluated using a central difference scheme as sug-
gested by the author of the parameter optimization software ucminf . Particu-
larly, computation of the gradient of the approximate population log-likelihood
constitute a significant computational burden. An assessment of the accuracy
versus computational speed is recommended for varying differencing methods.

6. No assessment has, this far, been made as to determine the relative compu-
tational efficency of ucminf compared to alternative optimizers. Here, it is
advocated that attempts to exploit the information obtained at previous opti-
mization steps should be pursued. For example, if two fixed-effects estimates
are approximately identical it may be possible to supply the final optimum con-
ditions returned in the preceding optimization step as input arguments in the
new optimization step, thereby increasing the speed of estimating the random-
effects.
Also, it is recommended to compare the ucminf with alternative optimizers in
terms of accuracy versus computational speed.

7. Currently, the PSM prototype offers very limited options for outputting results
of the analysis. An important task is to identify and construct a favorable output
interface.

8. Both the fixed-effects and random-effects objects are defined containing 200-
dimensional vectors for storing results obtained in each optimization step. With
gained experience, it may be advisable to adjust the vector dimensions with
respect to some average number of iterations.

9. On long-term basis, priority to the implementation of a Graphical User Interface
(GUI) should be given.

This concludes the recommendations for future work. Next, Chapter 8 concludes on
the objectives of the thesis.



Chapter 8

Conclusion

In accordance with the thesis objectives, the following results has been achieved:

• A prototype for population PK/PD modeling based on non-linear mixed-effects
models using stochastic differential equations has been proposed. The prototype
handles linear time-invariant and linear time-varying models. The individual-
level modeling has been validated, whereas the population-level algorithm awaits
validation.

• The prototype is implemented in Fortran 95, which has been chosen with con-
sideration to known high computational speed, availability of scientific software
packages and support of OpenMP shared-memory multiprocessing API for cre-
ating parallel programs.

• The design of the prototype has given high priority to the construction of generic
procedure interfaces.

• To assist future model extensions and modifications, interfaces for procedures,
model declaration files and definitions of data objects have been thoroughly
documented.

• A set of recommendations has been proposed for future development of the
prototype.
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Appendix A

Interface Description

Appendix A presents the interface descriptions found in the headers of each entity in
the PSM source code. In order to improve usability of the PSM prototype, detailed
commenting is found particularly in the headings of the model declaration files.

The contents of Appendix A are summerized here:

Appendix A.1 documents the header of the main program.

Appendix A.2 documents the headers of the model declaration files.

Appendix A.3 documents the interfaces of the derive types.

AppendixA.4 documents the interfaces of the source code files.
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A.1 Program interface

Table A.1: Interface description: MAIN

!---------------------------------------------------------------------!
! !
! POPULATION PHARMACOKINETICS/PHARMACODYNAMICS MODELLING !
! !
! Non-Linear Mixed-Effects (NLME) models using !
! Stochastic Differential Equations (SDEs) !
! !
!---------------------------------------------------------------------!
! !
! Department of Informatics and Mathematical Modelling (IMM) !
! Technical University of Denmark !
! Contact: Henrik Madsen, e-mail: hm[at]imm.dtu.dk !
! !
! Copyright 2007. All rights reserved. !
! !
! * NOT TO BE REPRODUCED OR DISTRIBUTED WITHOUT PERMISSION !
! FROM DEPARTMENT OF INFORMATICS & MATHEMATICAL MODELLING !
! (IMM), TECHNICAL UNIVERSITY OF DENMARK. !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM VERSION DATE NAME !
!COM------------------------------------------------------------------!
!COM 0.1 2007-02-01 Andreas S. Christensen !
!COM !
!COM !
!COM------------------------------------------------------------------!
!COM
!COM------------------------------------------------------------------!
!COM SPECIFICATIONS & CONSTRAINTS !
!COM------------------------------------------------------------------!
!COM !
!COM The prototype handles: !
!COM !
!COM - Multivariate inputs, outputs, covariates and states !
!COM - Multiple individuals !
!COM - Individual number of observations for each individual !
!COM !
!COM - Population modelling - linear models: !
!COM !
!COM 1) linear time-invariant (LTI) !
!COM 2) linear time-varying (LTV) !
!COM !
!COM - Individual modelling - linear models: !
!COM !
!COM 3) linear time-invariant (LTI) !
!COM 4) linear time-varying (LTV) !
!COM !

Continued on next page. . .
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Table A.1: Interface description: MAIN – Continued.

!COM------------------------------------------------------------------!
!COM !
!COM COMMENTS !
!COM !
!COM :: Population modeling part NOT validated. !
!COM !
!COM :: Optimization of individual parameters (single subject !
!COM modeling) allowed, since this part has been validated !
!COM for linear models (LTI/LTV). !
!COM !
!COM :: Not implemented: !
!COM !
!COM - Non-linear models !
!COM - Missing observations !
!COM - Mapping of population parameters (THETA) !
!COM - First-order hold !
!COM - Dose administration in evaluation of states !
!COM !
!COM------------------------------------------------------------------!
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A.2 Model declaration files interfaces

Table A.2: Interface description: IOSSTAT

!---------------------------------------------------------------------!
! !
! USER SPECIFICATIONS OF INPUT/OUTPUT CONTROL !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’IOSSTAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Module ’MOIOS’ !
!COM !
!COM PURPOSE !
!COM To specify I/O conditions during execution of PSM. !
!COM !
!COM PARAMETERS !
!COM IOVAR !
!COM I/O control variable of type INTEGER. !
!COM !
!COM =0: No print of intermediate results !
!COM !
!COM =1: Print intermediate results !
!COM !
!COM------------------------------------------------------------------!
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Table A.3: Interface description: AMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’A’ IN LINEAR MODELS (LTI/LTV) !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’AMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Subroutine ’LINEAR_MODEL’ !
!COM !
!COM PURPOSE !
!COM To define matrix A in the linear models (LTI/LTV): !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM A !
!COM State coefficient matrix in state eqn., see (#1) !
!COM - matrix dimension (NX,NX). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM PHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM U !
!COM Input variables vector - vector dimension (NU). !
!COM !
!COM X !
!COM State variables vector - vector dimension (NX). !
!COM !
!COM------------------------------------------------------------------!
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Table A.4: Interface description: BMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’B’ IN LINEAR MODELS (LTI/LTV) !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’BMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Subroutine ’LINEAR_MODEL’ !
!COM !
!COM PURPOSE !
!COM To define matrix B in the linear models (LTI/LTV): !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM B !
!COM Output coefficient matrix in state eqn., see (#1) !
!COM - matrix dimension (NX,NU). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM PHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM U !
!COM Input variables vector - vector dimension (NU). !
!COM !
!COM X !
!COM State variables vector - vector dimension (NX). !
!COM !
!COM------------------------------------------------------------------!



A.2 Model declaration files interfaces 77

Table A.5: Interface description: CMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’C’ IN LINEAR MODELS (LTI/LTV) !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’CMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Subroutine ’LINEAR_MODEL’ !
!COM !
!COM PURPOSE !
!COM To define matrix C in the linear models (LTI/LTV): !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM C !
!COM State coefficient matrix in observation eqn., !
!COM see (#2) - matrix dimension (NY,NX). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM NY !
!COM Number of output variables (dimension of Y). !
!COM !
!COM PHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM U !
!COM Input variables vector - vector dimension (NU). !
!COM !
!COM X !
!COM State variables vector - vector dimension (NX). !
!COM !
!COM------------------------------------------------------------------!
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Table A.6: Interface description: DMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’D’ IN LINEAR MODELS (LTI/LTV) !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’DMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Subroutine ’LINEAR_MODEL’ !
!COM !
!COM PURPOSE !
!COM To define matrix D in the linear models (LTI/LTV): !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM D !
!COM Output coefficient matrix in observation eqn., !
!COM see (#2) - matrix dimension (NY,NU). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM NY !
!COM Number of output variables (dimension of Y). !
!COM !
!COM PHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM U !
!COM Input variables vector - vector dimension (NU). !
!COM !
!COM X !
!COM State variables vector - vector dimension (NX). !
!COM !
!COM------------------------------------------------------------------!
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Table A.7: Interface description: OMEGAMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’OMEGA’ IN LINEAR AND NON-LINEAR MODELS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’OMEGAMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Function ’FOMEGA’ - part of Module MOPROCS !
!COM !
!COM PURPOSE !
!COM To define the matrix OMEGA, the variance-covariance !
!COM matrix of the random-effects ETA. The random-effects !
!COM vector ETA is expressed in the second-stage model: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Where: !
!COM !
!COM OMEGA = OMEGA(THETA) !
!COM !
!COM PARAMETERS !
!COM FOMEGA !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model, see (#1) - matrix !
!COM dimension (NETA,NETA). !
!COM !
!COM ETA !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM NETA !
!COM Number of random-effects (dimension of ETA). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NTHETA !
!COM Number of fixed-effects (dimension of THETA). !
!COM !
!COM NZ !
!COM Number of covariates (dimension of Z). !
!COM !
!COM FPHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM THETA !
!COM Fixed-effects vector - vector dimension (NTHETA). !
!COM !
!COM Z !
!COM Covariates vector - vector dimension (NZ). !
!COM !
!COM------------------------------------------------------------------!
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Table A.8: Interface description: PARAMS

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF GLOBAL PARAMETERS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’PARAMS’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Module ’MODATA’ !
!COM !
!COM PURPOSE !
!COM To define global parameters: NU, NX, NY, NZ, NTHETA, !
!COM NETA, NPHI, IMODEL and PS. !
!COM !
!COM PARAMETERS !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM NY !
!COM Number of output variables (dimension of Y). !
!COM !
!COM NZ !
!COM Number of covariates (dimension of Z). !
!COM !
!COM NETA !
!COM Number of random-effects (dimension of ETA). !
!COM !
!COM NTHETA !
!COM Number of fixed-effects (dimension of THETA). !
!COM !
!COM IMODEL !
!COM Defines model for Kalman filtering procedure (depends !
!COM on data and model structure). !
!COM !
!COM For population modeling: !
!COM !
!COM = 0: LTI-model (linear time-invariant) !
!COM = 1: LTV-model (linear time-varying) !
!COM = 2: NL-model (non-linear model) !
!COM !

Continued on next page. . .
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Table A.8: Interface description: PARAMS – Continued.

!COM For individual modeling: !
!COM !
!COM =10: LTI-model (linear time-invariant) !
!COM =11: LTV-model (linear time-varying) !
!COM =12: NL-model (non-linear model) !
!COM !
!COM PS !
!COM Pre-specified ’initial state covariance scaling !
!COM factor (see Eqn. (1.117) [CTSM 2.3 Math Guide, Dec. !
!COM 2003, Kristensen, N.R.]). !
!COM !
!COM------------------------------------------------------------------!
!COM !
!COM COMMENTS !
!COM :: NL-model not implemented [CHRISTENSEN,A.S.,2007-02-04]!
!COM !
!COM :: Dimension of data files must be specified in !
!COM ’/USER/READSPEC’ [CHRISTENSEN,A.S.,2007-02-04] !
!COM !
!COM------------------------------------------------------------------!
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Table A.9: Interface description: PHIVEC

!---------------------------------------------------------------------!
! !
! SPECIFICATIONS OF VECTOR ’PHI’ - INDIVIDUAL PARAMETERS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’PHIVEC’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Function ’FPHI’ - part of Module MOPROCS !
!COM !
!COM PURPOSE !
!COM To define the vector PHI, the individual parameters !
!COM vector. PHI is expressed in the second-stage model: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Where: !
!COM !
!COM OMEGA = OMEGA(THETA) !
!COM !
!COM PARAMETERS !
!COM FOMEGA !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model, see (#1) - matrix !
!COM dimension (NETA,NETA). !
!COM !
!COM ETA !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM NETA !
!COM Number of random-effects (dimension of ETA). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NTHETA !
!COM Number of fixed-effects (dimension of THETA). !
!COM !
!COM NZ !
!COM Number of covariates (dimension of Z). !
!COM !
!COM FPHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM THETA !
!COM Fixed-effects vector - vector dimension (NTHETA). !
!COM !
!COM Z !
!COM Covariates vector - vector dimension (NZ). !
!COM !
!COM------------------------------------------------------------------!
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Table A.10: Interface description: PIMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’PI’ IN LINEAR AND NON-LINEAR MODELS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’PIMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Function ’FPI’ - part of Module MOPROCS !
!COM !
!COM PURPOSE !
!COM To define matrix PI in the structural model. The linear !
!COM models (LTI/LTV) are defined by: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM FPI !
!COM Magnitude of system variability in state eqn., !
!COM see (#1) - matrix dimension (NX,NX). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM PHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM U !
!COM Input variables vector - vector dimension (NU). !
!COM !
!COM X !
!COM State variables vector - vector dimension (NX). !
!COM !
!COM------------------------------------------------------------------!
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Table A.11: Interface description: READSPEC

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF ’DATAFILES DETAILS’ !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’READSPEC’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Module ’MODATA’ !
!COM !
!COM PURPOSE !
!COM To specify the number of individuals in model, NID, and !
!COM dimensions of the data files: !
!COM !
!COM #1: inputs and outputs datafile !
!COM !
!COM #2: dosing datafile !
!COM !
!COM PARAMETERS !
!COM NID !
!COM Number of patients in model (must be identical to !
!COM number of individuals contained in inputs/outputs !
!COM datafile, namely ’datfil1’ in subroutine READDAT in !
!COM module MODATA. !
!COM !
!COM NROWS_DATA !
!COM Number of rows in inputs/outputs datafile (named !
!COM ’datfil1’ in subroutine READDAT in module MODATA). !
!COM !
!COM NROWS_DOSE !
!COM Number of rows in dosing datafile (named ’datfil2’ !
!COM in subroutine READDAT in module MODATA). !
!COM !
!COM------------------------------------------------------------------!
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Table A.12: Interface description: SIGMAMAT

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF MATRIX ’SIGMA’ IN LINEAR AND NON-LINEAR MODELS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’SIGMAMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Function ’FSIGMA’ - part of Module MOPROCS !
!COM !
!COM PURPOSE !
!COM To define matrix SIGMA, the measurement error variance- !
!COM covariance matrix, the in the observation eqn., see (#2) !
!COM The linear models (LTI/LTV) are defined by: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM FSIGMA !
!COM Measurement error variance-covariance matrix in !
!COM observation eqn., see (#1) - matrix dimension !
!COM (NY,NY). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NY !
!COM Number of output variables (dimension of Y). !
!COM !
!COM PHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM U !
!COM Input variables vector - vector dimension (NU). !
!COM !
!COM------------------------------------------------------------------!
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Table A.13: Interface description: THETAVEC

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF VECTOR ’THETA’ - INITIAL GUESS OF FIXED-EFFECTS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’THETAVEC’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Function ’FTHETA’ - part of Module MOPROCS !
!COM !
!COM PURPOSE !
!COM To define the vector THETA, the fixed-effects vector. !
!COM THETA is expressed in the second-stage model: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Where: !
!COM !
!COM OMEGA = OMEGA(THETA) !
!COM !
!COM PARAMETERS !
!COM FOMEGA !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model, see (#1) - matrix !
!COM dimension (NETA,NETA). !
!COM !
!COM ETA !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM NETA !
!COM Number of random-effects (dimension of ETA). !
!COM !
!COM NPHI !
!COM Number of individual parameters (dimension of PHI). !
!COM !
!COM NTHETA !
!COM Number of fixed-effects (dimension of THETA). !
!COM !
!COM NZ !
!COM Number of covariates (dimension of Z). !
!COM !
!COM FPHI !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM FTHETA !
!COM Fixed-effects vector - vector dimension (NTHETA). !
!COM !
!COM Z !
!COM Covariates vector - vector dimension (NZ). !
!COM !
!COM------------------------------------------------------------------!
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Table A.14: Interface description: X0VEC

!---------------------------------------------------------------------!
! !
! SPECIFICATION OF VECTOR ’X0’ - INITIAL STATE VECTOR !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’X0VEC’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/USER/’ !
!COM !
!COM INCLUDED IN !
!COM Function ’X0VEC’ - part of Module MOPROCS !
!COM !
!COM PURPOSE !
!COM To define the vector X0, the initial state variables !
!COM vector. The linear models (LTI/LTV) are defined by: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM PARAMETERS !
!COM FX0 !
!COM Initial state vector - vector of dimension (NX). !
!COM !
!COM NX !
!COM Number of state variables (dimension of X). !
!COM !
!COM !
!COM------------------------------------------------------------------!
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A.3 Data object interfaces

Table A.15: Interface of derived type DOSE

!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’DOSE’ - Derived type !
!COM !
!COM PURPOSE !
!COM Data object for storing individual patient data related !
!COM to dose administration of pharmaceutical compounds. !
!COM DOSE is part of PATIENT (the data object that contains !
!COM data for a single patient). !
!COM !
!COM PARAMETERS !
!COM NT !
!COM Number of doses administered for one patient. !
!COM !
!COM T !
!COM Time of dose administration. Vector of dimension !
!COM (DSNT) !
!COM !
!COM AMT !
!COM Amount of dose. !
!COM !
!COM CMT !
!COM Compartment to which dose is administered. !
!COM !
!COM =1: compartment no. 1 in the model. !
!COM =2: compartment no. 2 in the model, etc... !
!COM !
!COM DID !
!COM Dose identifier defines whether observations (if !
!COM defined on the exact same time as dosing) are !
!COM either pre-dose or post-dose observations. !
!COM !
!COM =0: pre-dose (observations made immediately !
!COM before administration of dose). !
!COM =1: post-dose (observations made immediately !
!COM after administration of dose). !
!COM !
!COM METH !
!COM Method of dose administration. !
!COM !
!COM =1: infusion !
!COM !
!COM =2: bolus-injection !
!COM !
!COM =3: intravenous injection !
!COM !
!COM DT !
!COM Duration of dose administration. !
!COM !
!COM = 0.0D0: instantanous (bolus dose). !
!COM > 0.0D0: infusion dose. !
!COM !
!COM------------------------------------------------------------------!
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Table A.16: Interface of derived type ETAOBJECT

!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’ETAOBJECT’ - Derived type !
!COM !
!COM PURPOSE !
!COM Data object containing variables used for computation of !
!COM eta (individual random effects vector). !
!COM !
!COM PARAMETERS !
!COM AIAPLL !
!COM Negative approximate individual a posteriori log- !
!COM likelihood value. Scalar. !
!COM !
!COM LL !
!COM Negative individual log-likelihood value. Objective !
!COM function for optimization of random-effects ETA. !
!COM Scalar. !
!COM !
!COM ETA !
!COM Individual random-effects vector. !
!COM !
!COM IETA !
!COM Count variable. Counts the number of optimizations. !
!COM !
!COM OPT !
!COM Object that stores parameters for optimization of !
!COM individual random-effects eta. !
!COM !
!COM------------------------------------------------------------------!
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Table A.17: Interface of derived type KALOBJ

!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’KALOBJ’ - Derived type !
!COM !
!COM PURPOSE !
!COM Data object containing variables used in Kalman filtering.!
!COM !
!COM !
!COM PARAMETERS !
!COM R !
!COM Output prediction covariance matrix - dimension !
!COM (NY,NY,NT). !
!COM !
!COM PF !
!COM Current state estimate covariance matrix - !
!COM dimension (NX,NX,NT). !
!COM !
!COM PP !
!COM State prediction covariance matrix - dimension !
!COM (NX,NX,NT). !
!COM !
!COM XF !
!COM Current state estimate vector - dimension (NX,NT). !
!COM !
!COM XP !
!COM State prediction vector - dimension (NX,NT). !
!COM !
!COM YPERR !
!COM Output prediction error vector - dimension (NY,NT). !
!COM !
!COM YP !
!COM Output prediction vector - dimension (NY,NT). !
!COM !
!COM------------------------------------------------------------------!
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Table A.18: Interface of derived type OPTIMOBJECT

!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’OPTIMOBJECT’ - Derived type !
!COM !
!COM PURPOSE !
!COM Object containing variables used for optimization proce- !
!COM dure for eta (individual random effects vector). !
!COM !
!COM PARAMETERS !
!COM DFMAX !
!COM Largest element in the absolute value of the gradi- !
!COM ent evaluated in X: MAX(ABS(F’(I)), I=1,2,... !
!COM !
!COM DX !
!COM DX(1): Initial radius (step size) supplied to the !
!COM optimization procedure ’UCMINF’. !
!COM !
!COM DX(2): Final radius (step size) returned from the !
!COM optimization procedure ’UCMINF’. !
!COM !
!COM HESSIAN !
!COM Lower triangle of inverse positive definite inverse !
!COM Hessian matrix obtained from the minimization pro- !
!COM cedure ’UCMINF’. !
!COM !
!COM DPOS !
!COM DPOS(1): Index for initial element of inverse Hes- !
!COM sian matrix returned by vector in ’UCMINF’. !
!COM !
!COM DPOS(2): Index for final element of inverse Hessian !
!COM matrix returned by vector in ’UCMINF’. !
!COM !
!COM EPS !
!COM Desired accuracy of parameter estimate. The !
!COM ’UCMINF’ procedure stops when either one of the !
!COM criteria is met: !
!COM !
!COM EPS(1) >= infinity-norm of the computed gradient. !
!COM !
!COM EPS(2)*(EPS(2)*2-Norm(ETA)) >= 2-Norm(ETA-ETA*). !
!COM !
!COM MAXFUN !
!COM Upper bound on number of calls to the FDF (i.e. !
!COM LLDLL or APLDAPL) procedure. !
!COM !
!COM DELTA !
!COM Step size used for numerical approximation of the !
!COM 1st order derivative. !
!COM !
!COM------------------------------------------------------------------!
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Table A.19: Interface of derived type PATIENT

!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’PATIENT’ - Derived type !
!COM !
!COM !
!COM PURPOSE !
!COM Data object for storing individual patient data. !
!COM !
!COM !
!COM PARAMETERS !
!COM CHID !
!COM Patient ID string (defined in data file). !
!COM !
!COM DOSE !
!COM Dose administration object (derived type DOSE). !
!COM !
!COM NT !
!COM Number of observations (dimension of T). !
!COM !
!COM NOID !
!COM Patient ID number (defined as the order of appeara- !
!COM nce in data file) between 1 and NID (total number !
!COM of patients). !
!COM !
!COM NU !
!COM Number of input variables (dimension of U). !
!COM !
!COM NY !
!COM Number of output variables (dimension of Y). !
!COM !
!COM NZ !
!COM Number of covariates (dimension of Z). !
!COM !
!COM T !
!COM Time of observation vector of dimension (NT). !
!COM !
!COM U !
!COM Input variables matrix of dimension (NT,NU). !
!COM !
!COM Y !
!COM Derived (output) variables matrix of dimension !
!COM (NT,NY). !
!COM !
!COM Z !
!COM Covariates vector - vector dimension (NZ). !
!COM !
!COM------------------------------------------------------------------!
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Table A.20: Interface of derived type THETAOBJECT

!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’THETAOBJECT’ - Derived type !
!COM !
!COM PURPOSE !
!COM Data object containing variables used for computation of !
!COM theta (the fixed-effects vector). !
!COM !
!COM !
!COM PARAMETERS !
!COM APL !
!COM Approximate population likelihood. !
!COM !
!COM ITHETA !
!COM Count variable. Counts the number of optimizations. !
!COM !
!COM OPT !
!COM Object that stores parameters for optimization of !
!COM fixed-effects THETA. !
!COM !
!COM THETA !
!COM Fixed-effects vector. !
!COM !
!COM------------------------------------------------------------------!
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A.4 Procedure interfaces

Table A.21: Interface of subroutine AIAPLL

!-----------------------------------------------SUBROUTINE AIAPLL-----!
!
!COM------------------------------------------------------------------!
!COM APPROXIMATE INDIVIDUAL A POSTERIORI LOG-LIKELIHOOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’AIAPLL’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Given data for a single patient and a set of fixed- !
!COM effects parameters, subroutine AIAPLL determines the !
!COM optimal set of random-effects and computes the correspon- !
!COM ding ’approximate individual a posteriori log-likelihood’,!
!COM i.e. ’AIAPLL’. !
!COM !
!COM The fixed-effects parameters ’THETA’ are contained in the !
!COM theta object ’THETAOBJ’ (derived type ’THETAOBJECT’). !
!COM The individual random-effects ’ETA’ and the approximate !
!COM individual a posteriori log-likelihood are stored in the !
!COM eta object ’ETAOBJ’ (derived type ’ETAOBJECT’). !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine APLDAPL !
!COM Subroutine CNTDIFF_APL !
!COM !
!COM CALLS !
!COM Subroutine UCMINF_AIAPLL !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE AIAPLL(MODEL,THETAOBJ,ETAOBJ,POBJ,OMEGA,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE MODATA, ONLY: NID !
!COM USE MOIOS !
!COM USE SUNPERF !
!COM IMPLICIT NONE !
!COM !

Continued on next page. . .
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Table A.21: Interface of subroutine AIAPLL – Continued.

!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !
!COM TYPE(THETAOBJECT),INTENT(IN) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(INOUT) :: ETAOBJ !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(INOUT) :: OMEGA(:,:) !
!COM !
!COM ARGUMENTS !
!COM ETAOBJ (input/output) !
!COM Random-effects object. On exit, ETAOBJ contains the !
!COM new set of optimal random-effects and corresponding !
!COM approximate individual a posteriori log-likelihood !
!COM ’AIAPLL’. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM KOBJ (input/output) !
!COM Kalman object (derived type ’KALOBJ’) containing !
!COM results from Kalman filtering. !
!COM !
!COM MODEL (module procedure) !
!COM Kalman filtering procedure, which depends on the !
!COM model specification. !
!COM !
!COM The parameter IMODEL dictates, which Kalman filter- !
!COM ing method should be used for modelling, i.e.: !
!COM !
!COM = 0: MODEL = LTI_KALMAN !
!COM = 1: MODEL = LTV_KALMAN !
!COM = 2: MODEL = NL_KALMAN !
!COM !

Continued on next page. . .
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Table A.21: Interface of subroutine AIAPLL – Continued.

!COM OMEGA (input) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !
!COM THETAOBJ (input) !
!COM Fixed-effects object (derived type THETAOBJECT). !
!COM Unchanged on exit. !
!COM !
!COM------------------------------------------------------------------!
!COM !
!COM COMMENTS !
!COM :: Default conditions for optimization: !
!COM !
!COM 1) Random variables : ETA = 0.0D0 !
!COM 2) Inverse Hessian : D = Identity matrix !
!COM 3) Step size : DX = 1.0D0 !
!COM !
!COM Consider inserting conditions for "improved" initial !
!COM conditions based on information on previous optimiza- !
!COM tion information stored in the thetaobject (and/or !
!COM etaobject). !
!COM !
!COM [CHRISTENSEN, A.S., 2007-02-01] !
!COM !
!COM------------------------------------------------------------------!
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Table A.22: Interface of subroutine ALLOC KALMANOBJECT

!-----------------------------------SUBROUTINE ALLOC_KALMANOBJECT-----!
!
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’ALLOC_KALMANOBJECT’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Allocates variables in the Kalman object (derived type !
!COM ’KALOBJ’) given the number of observations (NT) for a !
!COM patient. !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine INIT_ETAOBJECT !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM !
!COM USE MOTYPES !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(IN) :: NT !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM !
!COM PARAMETERS !
!COM KOBJ (output) !
!COM Kalman object (derived type ’KALOBJ’) containing !
!COM results from Kalman filtering. !
!COM !
!COM NT (input) !
!COM Number of observations for an individual patient. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM------------------------------------------------------------------!
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Table A.23: Interface of subroutine APL

!--------------------------------------------------SUBROUTINE APL-----!
!
!COM------------------------------------------------------------------!
!COM APPROXIMATE POPULATION LIKELIHOOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’APL’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Non-linear mixed-effects model based on stochastic !
!COM differential equations. !
!COM !
!COM Given data for a population of patients, subroutine APL !
!COM computes the optimal set of fixed-effects and random- !
!COM effects for each individual. !
!COM !
!COM The fixed-effects parameters ’THETA’ are contained in the !
!COM theta object ’THETAOBJ’ (derived type ’THETAOBJECT’). !
!COM The individual random-effects ’ETA’ and the approximate !
!COM individual a posteriori log-likelihood are stored in the !
!COM eta objects ’ETAOBJ’ (derived type ’ETAOBJECT’). !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Program MAIN !
!COM !
!COM CALLS !
!COM Subroutine UCMINF_APL !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE APL(MODEL,THETAOBJ,ETAOBJ,POBJ,OMEGA,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE MODATA, ONLY: NID !
!COM USE MOIOS !
!COM USE SUNPERF !
!COM IMPLICIT NONE !
!COM !
!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !

Continued on next page. . .
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Table A.23: Interface of subroutine APL – Continued.

!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !
!COM TYPE(THETAOBJECT),INTENT(INOUT) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(INOUT) :: ETAOBJ(:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ(:) !
!COM REAL(8),INTENT(OUT) :: OMEGA(NETA,NETA) !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM !
!COM ARGUMENTS !
!COM ETAOBJ (input/output) !
!COM Random-effects objects of dimension (NID). On exit, !
!COM ETAOBJ contains the optimal random-effects ETA and !
!COM corresponding approximate individual a posteriori !
!COM log-likelihood ’AIAPLL’. !
!COM ETAOBJ contains information obtained for each iter- !
!COM ation (’local’ optimum for fixed-effects THETA). !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM MODEL (module procedure) !
!COM Kalman filtering procedure, which depends on the !
!COM model specification. !
!COM !
!COM The parameter IMODEL dictates, which Kalman filter- !
!COM ing method should be used for modelling, i.e.: !
!COM !
!COM = 0: MODEL = LTI_KALMAN !
!COM = 1: MODEL = LTV_KALMAN !
!COM = 2: MODEL = NL_KALMAN !
!COM !
!COM OMEGA (output) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !

Continued on next page. . .
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Table A.23: Interface of subroutine APL – Continued.

!COM THETAOBJ (input/output) !
!COM Fixed-effects object (derived type THETAOBJECT). !
!COM On input, THETAOBJ contains the initial guess of !
!COM the fixed-effects parameter THETAOBJ%THETA(:,1). !
!COM On exit, THETAOBJ contains the optimal set of !
!COM fixed-effects THETA and corresponding approximate !
!COM population likelihood APL. !
!COM THETAOBJ stores historic results for THETA and APL. !
!COM !
!COM------------------------------------------------------------------!
!COM !
!COM COMMENTS !
!COM :: Currently, default conditions for optimization used. !
!COM !
!COM Consider inserting conditions for "improved" initial !
!COM conditions based on information on previous optimiza- !
!COM tion information stored in the thetaobject. E.g., !
!COM using previous Hessian matrix may increase optimiza- !
!COM tion speed. !
!COM !
!COM [CHRISTENSEN, A.S., 2007-02-01] !
!COM !
!COM------------------------------------------------------------------!
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Table A.24: Interface of subroutine APLDAPL

!----------------------------------------------SUBROUTINE APLDAPL-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION VALUE (APL) AND GRADIENT (DAPL) FOR APPROXIMATE !
!COM POPULATION LIKELIHOOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’APLDAPL’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Given a set of fixed-effects parameters TMP_THETA, sub- !
!COM routine APLDAPL computes the approximate population log- !
!COM likelihood (APL) and corresponding gradient DAPL, which !
!COM are required for the parameter mimimization procedure !
!COM UCMINF_APL. !
!COM !
!COM The fixed-effects parameters ’THETA’ are contained in the !
!COM theta object ’THETAOBJ’ (derived type ’THETAOBJECT’). !
!COM The individual random-effects ’ETA’ and the approximate !
!COM individual a posteriori log-likelihood are stored in the !
!COM eta objects ’ETAOBJ’ (derived type ’ETAOBJECT’). !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine UCMINF_APL !
!COM Subroutine CHKDFN_APL !
!COM Subroutine SLINE_APL !
!COM !
!COM CALLS !
!COM Function FOMEGA !
!COM Function FAPL !
!COM Subroutine MAPPING !
!COM Subroutine AIAPLL !
!COM Subroutine CNTDIFF_APL !
!COM Subroutine HESSIAN_AIAPLL !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE APLDAPL(N,TMP_THETA,GRAD_APL,APL,MODEL, !
!COM THETAOBJ,ETAOBJ,POBJ,OMEGA,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOIOS !
!COM USE MOPARAMS !
!COM USE MODATA, ONLY: NID !
!COM IMPLICIT NONE !
!COM !

Continued on next page. . .
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Table A.24: Interface of subroutine APLDAPL – Continued.

!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !
!COM INTEGER,INTENT(IN) :: N !
!COM REAL(8),INTENT(IN) :: TMP_THETA(:) !
!COM REAL(8),INTENT(INOUT) :: OMEGA(:,:) !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(OUT) :: GRAD_APL(:),APL !
!COM TYPE(THETAOBJECT),INTENT(INOUT) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(INOUT) :: ETAOBJ(:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ(:) !
!COM !
!COM ARGUMENTS !
!COM APL (output) !
!COM Negative approximate population log-likelihood, the !
!COM objective function for optimization of the fixed- !
!COM effects THETA. !
!COM !
!COM ETAOBJ (input/output) !
!COM Random-effects objects of dimension (NID). On exit, !
!COM ETAOBJ has been updated with the optimimization !
!COM information returned by UCMINF_APL. !
!COM !
!COM GRAD_APL (output) !
!COM Function gradient required by UCMINF_APL optimiza- !
!COM tion procedure, i.e. gradient of the approximate !
!COM population likelihood value. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM MODEL (module procedure) !
!COM Kalman filtering procedure, which depends on the !
!COM model specification. !
!COM !
!COM The parameter IMODEL dictates, which Kalman filter- !
!COM ing method should be used for modelling, i.e.: !
!COM !
!COM = 0: MODEL = LTI_KALMAN !
!COM = 1: MODEL = LTV_KALMAN !
!COM = 2: MODEL = NL_KALMAN !
!COM !

Continued on next page. . .
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Table A.24: Interface of subroutine APLDAPL – Continued.

!COM N (input) !
!COM Number of fixed-effects parameters (=NTHETA) !
!COM !
!COM OMEGA (output) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). On exit, OMEGA has !
!COM updated using the current guess for the fixed- !
!COM effects parameters TMP_THETA. !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !
!COM TMP_THETA (input) !
!COM Fixed-effects parameters for which the approximate !
!COM population likelihood ’APL’ and its gradient !
!COM GRAD_APL is computed. !
!COM !
!COM THETAOBJ (input/output) !
!COM Fixed-effects object (derived type THETAOBJECT). !
!COM On exit, THETAOBJ has been updated with the current !
!COM guess for the fixed-effects parameter TMP_THETA !
!COM supplied by the parameter optimization procedure !
!COM UCMINF_APL. !
!COM !
!COM------------------------------------------------------------------!
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Table A.25: Interface of subroutine CNTDIFF AIAPLL

!---------------------------------------SUBROUTINE CNTDIFF_AIAPLL-----!
!
!COM------------------------------------------------------------------!
!COM GRADIENT OF INDIVIDUAL LOG-LIKELIHOOD FUNCTION USING CENTRAL !
!COM DIFFERENCE METHOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM CNTDIFF_AIAPLL - Subroutine !
!COM !
!COM PURPOSE !
!COM Computes the gradient of the individual log-likelihood !
!COM ’DLL’ evaluated in ’TMP_ETA’ using a central difference !
!COM scheme. The module procedure MODEL must be passed as a !
!COM calling argument. !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine UCMINF_AIAPLL !
!COM !
!COM CALLS !
!COM Module procedure MODEL (LTI_KALMAN/LTV_KALMAN/NL_KALMAN) !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE CNTDIFF_AIAPLL(MODEL,DLL,TMP_ETA,THETAOBJ, !
!COM ETAOBJ,OMEGA,POBJ,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE SUNPERF !
!COM IMPLICIT NONE !
!COM !
!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !
!COM REAL(8), INTENT(IN) :: TMP_ETA(:),OMEGA(:,:) !
!COM REAL(8), INTENT(OUT) :: DLL(:) !
!COM INTEGER, INTENT(OUT) :: INFO !
!COM TYPE(THETAOBJECT),INTENT(IN) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(IN) :: ETAOBJ !
!COM TYPE(PATIENT), INTENT(IN) :: POBJ !
!COM !

Continued on next page. . .
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Table A.25: Interface of subroutine CNTDIFF AIAPLL – Continued.

!COM ARGUMENTS !
!COM DLL (output) !
!COM Numerical approximation of the 1st order derivative !
!COM of the individual log-likehood function. !
!COM !
!COM ETAOBJ (input) !
!COM Random-effects object (derived type ’ETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM MODEL (module procedure) !
!COM Subroutine computing the individual a posteriori !
!COM log-likelihood (either LTI_KALMAN, LTV_KALMAN or !
!COM NL_KALMAN). !
!COM !
!COM OMEGA (input) !
!COM Covariance matrix (NETA,NETA) for the individual !
!COM random effects vector ETA. !
!COM !
!COM POBJ (input) !
!COM Patient object of type(patient) containing used for !
!COM function evaluation of MODEL. !
!COM !
!COM THETAOBJ (input) !
!COM Fixed-effects object (derived type ’THETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM !
!COM TMP_ETA (input) !
!COM Current random-effects parameters for which the !
!COM approximate individual log-likelihood ’LL’ and its !
!COM gradient GRAD_LL is computed. TMP_ETA is supplied !
!COM the parameter optimization procedure UCMINF_AIAPLL. !
!COM !
!COM------------------------------------------------------------------!
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Table A.26: Interface of subroutine CNTDIFF APL

!------------------------------------------SUBROUTINE CNTDIFF_APL-----!
!
!COM------------------------------------------------------------------!
!COM GRADIENT OF APPROXIMATE POPULATION LIKELIHOOD FUNCTION USING !
!COM CENTRAL DIFFERENCE METHOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM CNTDIFF_APL - Subroutine !
!COM !
!COM PURPOSE !
!COM Computes the gradient of the approximate population !
!COM likelihood ’DAPL’ with respect to fixed-effects ’THETA’ !
!COM using a central difference scheme. The module procedure !
!COM MODEL must be passed as a calling argument. !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine UCMINF_APLDAPL !
!COM !
!COM CALLS !
!COM Module procedure MODEL (LTI_KALMAN/LTV_KALMAN/NL_KALMAN) !
!COM Function FOMEGA !
!COM Function FAPL !
!COM Subroutine INIT_THETAOBJECT !
!COM Subroutine INIT_ETAOBJECT !
!COM Subroutine AIAPLL !
!COM Subroutine HESSIAN_AIAPLL !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE CNTDIFF_APL(MODEL,DAPL,THETAOBJ,ETAOBJ,POBJ, !
!COM INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE SUNPERF !
!COM IMPLICIT NONE !
!COM !
!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !

Continued on next page. . .
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Table A.26: Interface of subroutine CNTDIFF APL – Continued.

!COM REAL(8), INTENT(OUT) :: DAPL(:) !
!COM INTEGER, INTENT(OUT) :: INFO !
!COM TYPE(THETAOBJECT),INTENT(IN) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(IN) :: ETAOBJ(:) !
!COM TYPE(PATIENT), INTENT(IN) :: POBJ(:) !
!COM !
!COM ARGUMENTS !
!COM DAPL (output) !
!COM Numerical approximation of the 1st order derivative !
!COM of the approximate population likehood. !
!COM !
!COM ETAOBJ (input) !
!COM Random-effects object (derived type ’ETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM MODEL (module procedure) !
!COM Subroutine computing the individual a posteriori !
!COM log-likelihood (either LTI_KALMAN, LTV_KALMAN !
!COM NL_KALMAN). !
!COM !
!COM POBJ (input) !
!COM Patient object of type(patient) containing used for !
!COM function evaluation of MODEL. !
!COM !
!COM THETAOBJ (input) !
!COM Fixed-effects object (derived type ’THETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM------------------------------------------------------------------!
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Table A.27: Interface of subroutine DEXPM

!------------------------------------------------SUBROUTINE DEXPM-----!
!
!COM------------------------------------------------------------------!
!COM MATRIX EXPONENTIAL AND MATRIX INTEGRAL !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’DEXPM’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Computes matrix exponential and matrix integral based on !
!COM Eqn. (1.47), (1.48) and (1.49) [CTSM 2.3 Math Guide, Dec. !
!COM 2003, Kristensen, N.R.]. !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE DEXPM(A,R1M,DT,H3T,R1SM,IDEG,INFO) !
!COM !
!COM USE SUNPERF !
!COM USE MOPARAMS !
!COM !
!COM INTEGER,INTENT(IN) :: IDEG !
!COM REAL(8),INTENT(IN) :: A(:,:),R1M(:,:),DT !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(OUT) :: H3T(NX,NX),R1SM(NX,NX) !
!COM !
!COM REFERENCE !
!COM Eqn. (1.47), (1.48) and (1.49) [CTSM 2.3 Math Guide, Dec. !
!COM 2003, Kristensen, N.R.]. !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine LTI_KALMAN !
!COM Subroutine LTV_KALMAN !
!COM !
!COM CALLS !
!COM Subroutine DGPADM !
!COM !
!COM ARGUMENTS !
!COM A (input) !
!COM Matrix A of the linear (LTI) model of dimensions !
!COM (NX,NX). !
!COM !
!COM R1M (input) !
!COM SIGMA*TRANSPOSE(SIGMA) matrix of dimensions (NX,NX). !
!COM !
!COM DT (input) !
!COM Time interval T(k)-T(k-1). Scalar. !
!COM !
!COM H3T (output) !
!COM Matrix exponential EXP(A*DT) computed by means of a !
!COM Pade approximation. Matrix of dimensions (NX,NX). !
!COM Reference: Eqn. (1.47) and (1.48) [CTSM 2.3 Math !
!COM Guide,Dec. 2003, Kristensen, N.R.]. !
!COM !

Continued on next page. . .
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Table A.27: Interface of subroutine DEXPM – Continued.

!COM R1SM (output) !
!COM Integral of EXP(A*DT)*R1M*TRANSPOSE(EXP(A*DT)) from !
!COM zero to DT. Matrix of dimensions (NX,NX). !
!COM Reference: Eqn. (1.47) and (1.49) [CTSM 2.3 Math !
!COM Guide,Dec. 2003, Kristensen, N.R.]. !
!COM !
!COM IDEG (input) !
!COM Pade approximation order used in DGPADM (order of 6 !
!COM is recommended by author of DGPADM). !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM------------------------------------------------------------------!
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Table A.28: Interface of subroutine DISPLAY RESULTS

!--------------------------------------SUBROUTINE DISPLAY_RESULTS-----!
!
!COM------------------------------------------------------------------!
!COM DISPLAY_RESULTS: WRITES RESULTS TO SCREEN !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’DISPLAY_RESULTS’ - Subroutine !
!COM !
!COM PURPOSE !
!COM To display the results for the fixed-effects and random- !
!COM effects. !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM ’/INCLUDE/FORMAT’ !
!COM !
!COM CALLED BY !
!COM Program MAIN !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE DISPLAY_RESULTS(THETAOBJ,ETAOBJ) !
!COM !
!COM IMPLICIT NONE !
!COM !
!COM TYPE(THETAOBJECT),INTENT(IN) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(IN) :: ETAOBJ(:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ(:) !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM !
!COM ARGUMENTS !
!COM ETAOBJ (input) !
!COM Random-effects object (derived type ’ETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !
!COM THETAOBJ (input) !
!COM Fixed-effects object (derived type ’THETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM------------------------------------------------------------------!
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Table A.29: Interface of subroutine ERRORSTAT

!--------------------------------------------SUBROUTINE ERRORSTAT-----!
!
!COM------------------------------------------------------------------!
!COM ERRORSTAT: IDENTIFIES INFORMATION TRANSFERRED BY INFO !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’ERRORSTAT’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Translates and outputs information transferred by ’INFO’. !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Program MAIN !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE ERRORSTAT(INFO) !
!COM !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(IN) :: INFO !
!COM !
!COM ARGUMENTS !
!COM INFO (input) !
!COM Integer value of INFO depends on type of error. If !
!COM no error, INFO equals zero, i.e.: !
!COM !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit !
!COM !
!COM------------------------------------------------------------------!
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Table A.30: Interface of subroutine FAIAPLL

!------------------------------------------------FUNCTION FAIAPLL-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION FAIAPLL: RETURNS NEGATIVE APPROXIMATE INDIVIDUAL A !
!COM POSTERIORI LOG-LIKELIHOOD ’AIAPLL’ !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FAIAPLL’ - Pure function !
!COM !
!COM PURPOSE !
!COM Returns the negative approximate individual a posteriori !
!COM log-likelihood value ’AIAPLL’ given the individual !
!COM maximum likelilood value ’LL’ obtained in the Kalman !
!COM filtering procedure (LTI_KALMAN/LTV_KALMAN/NL_KALMAN). !
!COM !
!COM REFERENCE !
!COM Eqn. (15), [Overgaard et. al., ’Non-linear mixed-effects !
!COM models with stochastic differential equations’, 2005] !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine AIAPLL !
!COM !
!COM CALLS !
!COM Subroutine DTRM !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) FUNCTION FAIAPLL(LL,ETA,OMEGA,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE SUNPERF !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: LL !
!COM REAL(8),DIMENSION(NETA),INTENT(IN) :: ETA !
!COM REAL(8),DIMENSION(NETA,NETA),INTENT(IN) :: OMEGA !
!COM !
!COM ARGUMENTS !
!COM ETA (input) !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM FAIAPLL (returned) !
!COM Negative approximate individual a posteriori log- !
!COM likelihood value. Scalar. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !

Continued on next page. . .
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Table A.30: Interface of subroutine FAIAPLL – Continued.

!COM OMEGA (input) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #3: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). !
!COM !
!COM LL (input) !
!COM Minus individual log-likelihood value. Objective !
!COM function for optimization of random-effects ETA. !
!COM Scalar. !
!COM !
!COM------------------------------------------------------------------!
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Table A.31: Interface of subroutine FAPL

!---------------------------------------------------FUNCTION FAPL-----!
!
!COM------------------------------------------------------------------!
!COM COMPUTATION OF INDIVIDUAL CONTRIBUTION TO THE NEGATIVE !
!COM APPROXIMATE POPULATION LOG-LIKELIHOOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FAPL’ - Function !
!COM !
!COM PURPOSE !
!COM Returns the contribution to negative approximate popu- !
!COM lation log-likehood value ’APL’ of an individual given !
!COM the approximate individual a posteriori log-likelihood !
!COM value ’AIAPLL’ and its Hessian matrix. !
!COM !
!COM REFERENCE !
!COM Eqn. (11), [Mortensen, S., ’NLME log-likelihood function’,!
!COM 2006-11-06] !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine APLDAPL !
!COM Subroutine CNTDIFF_APL !
!COM !
!COM CALLS !
!COM Subroutine DTRM !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) FUNCTION FAPL(AIAPLL,HESSIAN,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE SUNPERF !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: AIAPLL,HESSIAN(:,:) !
!COM INTEGER,DIMENSION(NETA) :: PIVETA !
!COM !
!COM ARGUMENTS !
!COM AIAPLL (input) !
!COM Negative approximate individual a posteriori log- !
!COM likelihood value. Scalar. !
!COM !
!COM FAPL (returned) !
!COM Individual contribution to negative approximate !
!COM population a posteriori log-likelihood value. Scalar.!
!COM !

Continued on next page. . .
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Table A.31: Interface of subroutine FAPL – Continued.

!COM HESSIAN (input) !
!COM The Hessian matrix corresponding to AIAPLL - matrix !
!COM of dimension (NETA,NETA). !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM------------------------------------------------------------------!
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Table A.32: Interface of subroutine FIDNM

!--------------------------------------------------FUNCTION FIDNM-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION IDMN: IDENTITY MATRIX !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FIDNM’ - Pure function !
!COM !
!COM PURPOSE !
!COM Creates an identity matrix of dimension ’N’ !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine LTI_KALMAN !
!COM Subroutine LTV_KALMAN !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) PURE FUNCTION FIDNM(N) !
!COM !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(IN) :: N !
!COM !
!COM ARGUMENTS !
!COM N (input) !
!COM Dimension of identity matrix. Unchanged on exit. !
!COM !
!COM------------------------------------------------------------------!
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Table A.33: Interface of subroutine FOMEGA

!-------------------------------------------------FUNCTION FOMEGA-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION FOMEGA: RANDOM-EFFECTS VARIANCE-COVARIANCE MATRIX !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FOMEGA’ - Pure function !
!COM !
!COM PURPOSE !
!COM Defines random-effects variance-covariance matrix ’OMEGA’,!
!COM where random-effects ETA ~ N(0,OMEGA). The random-effects !
!COM vector ETA is expressed in the second-stage model: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Where: !
!COM !
!COM OMEGA = OMEGA(THETA) !
!COM !
!COM REFERENCE !
!COM Eqn. (4), [Overgaard et. al., ’Non-linear mixed-effects !
!COM models with stochastic differential equations’, 2005] !
!COM !
!COM INCLUDES !
!COM ’/USER/OMEGAMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine APL !
!COM Subroutine APLDAPL !
!COM Subroutine CNTDIFF_APL !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) PURE FUNCTION FOMEGA(THETA) !
!COM !
!COM USE MOPARAMS !
!COM IMPLICIT NONE !
!COM !
!COM REAL(8),INTENT(IN) :: THETA(:) !
!COM !
!COM ARGUMENTS !
!COM THETA (input) !
!COM Fixed-effects vector - vector dimension (NTHETA). !
!COM !
!COM------------------------------------------------------------------!
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Table A.34: Interface of subroutine FPHI

!---------------------------------------------------FUNCTION FPHI-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION FPHI: INDIVIDUAL PARAMETERS VECTOR !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FPHI’ - Pure function !
!COM !
!COM PURPOSE !
!COM To define the individual parameters vector PHI, which is !
!COM expressed in the second-stage model: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Where: !
!COM !
!COM OMEGA = OMEGA(THETA) !
!COM !
!COM REFERENCE !
!COM Eqn. (4), [Overgaard et. al., ’Non-linear mixed-effects !
!COM models with stochastic differential equations’, 2005] !
!COM !
!COM INCLUDES !
!COM ’/USER/PHIVEC’ !
!COM !
!COM CALLED BY !
!COM Subroutine LLDLL !
!COM Subroutine HESSIAN_AIAPLL !
!COM Subroutine CNTDIFF_AIAPLL !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) PURE FUNCTION FPHI(THETA,ETA,Z) !
!COM !
!COM USE MOPARAMS !
!COM IMPLICIT NONE !
!COM !
!COM REAL(8),INTENT(IN) :: THETA(:),ETA(:) !
!COM REAL(8),INTENT(IN),OPTIONAL :: Z(:) !
!COM !
!COM ARGUMENTS !
!COM ETA (input) !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM THETA (input) !
!COM Fixed-effects vector - vector dimension (NTHETA). !
!COM !
!COM FPHI (returned) !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). !
!COM !
!COM Z (input, optional) !
!COM Covariates vector - vector dimension (NZ). !
!COM !
!COM------------------------------------------------------------------!
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Table A.35: Interface of subroutine FPI

!----------------------------------------------------FUNCTION FPI-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION FPI: DEFINES MAGNITUDE OF SYSTEM VARIABILITY MATRIX !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FPI’ - Pure function !
!COM !
!COM PURPOSE !
!COM Defines magnitude of system variability matrix ’PI’ !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM ’/USER/PIMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine LTI_KALMAN !
!COM Subroutine LTV_KALMAN !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) PURE FUNCTION FPI(PHI,T,U) !
!COM !
!COM USE MOPARAMS !
!COM IMPLICIT NONE !
!COM !
!COM REAL(8),INTENT(IN) :: PHI(:) !
!COM !
!COM ARGUMENTS !
!COM PHI (input) !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). Unchanged on exit. !
!COM !
!COM T (input, optional) !
!COM Time vector - dimension (NT). Optional, only appli- !
!COM cable for time-varying models. !
!COM !
!COM U (input, optional) !
!COM Input variable vector - dimension (NU). Optional, !
!COM only applicable for time-varying models. !
!COM !
!COM------------------------------------------------------------------!



120 Interface Description

Table A.36: Interface of subroutine FSIGMA

!-------------------------------------------------FUNCTION FSIGMA-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION FSIGMA: MEASUREMENT NOISE VARIANCE-COVARIANCE MATRIX !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FSIGMA’ - Pure function !
!COM !
!COM PURPOSE !
!COM Defines variance-covariance matrix ’SIGMA’ of measurement !
!COM noise term ’e’, where e~N(0,SIGMA). !
!COM !
!COM The linear models (LTI/LTV) are defined by: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM ’/USER/SIGMAMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine LTI_KALMAN !
!COM Subroutine LTV_KALMAN !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) PURE FUNCTION FSIGMA(PHI,T,U) !
!COM !
!COM USE MOPARAMS !
!COM IMPLICIT NONE !
!COM !
!COM REAL(8),INTENT(IN) :: PHI(:) !
!COM !

Continued on next page. . .



A.4 Procedure interfaces 121

Table A.36: Interface of subroutine FSIGMA – Continued.

!COM ARGUMENTS !
!COM PHI (input) !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). Unchanged on exit. !
!COM !
!COM T (input, optional) !
!COM Time vector - dimension (NT). Optional, only appli- !
!COM cable for time-varying models. !
!COM !
!COM U (input, optional) !
!COM Input variable vector - dimension (NU). Optional, !
!COM only applicable for time-varying models. !
!COM !
!COM------------------------------------------------------------------!
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Table A.37: Interface of subroutine FTHETA

!-------------------------------------------------FUNCTION FTHETA-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION FTHETA: DEFINES INITIAL GUESS OF FIXED-EFFECTS !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’FTHETA’ - Pure function !
!COM !
!COM PURPOSE !
!COM Defines initial fixed-effects parameters ’THETA’ !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM ’/USER/THETAVEC’ !
!COM !
!COM CALLED BY !
!COM Subroutine INIT_THETAOBJECT !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM REAL(8) PURE FUNCTION FTHETA() !
!COM !
!COM USE MOPARAMS !
!COM IMPLICIT NONE !
!COM !
!COM ARGUMENTS !
!COM - !
!COM !
!COM------------------------------------------------------------------!
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Table A.38: Interface of subroutine HESSIAN AIAPLL

!---------------------------------------SUBROUTINE HESSIAN_AIAPLL-----!
!
!COM------------------------------------------------------------------!
!COM HESSIAN_AIAPLL: COMPUTES HESSIAN MATRIX OF APPROXIMATE !
!COM INDIVIDUAL A POSTERIORI LOG-LIKELIHOOD ’AIAPLL’ !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’HESSIAN_AIAPLL’ - Subroutine !
!COM !
!COM PURPOSE !
!COM To compute the Hessian matrix of the approximate indivi- !
!COM individual log-likelihood ’AIAPLL’, which is used to find !
!COM the approximate population likelihood ’APL’. !
!COM !
!COM REFERENCE !
!COM Eqn. (19), [Overgaard et. al., ’Non-linear mixed-effects !
!COM models with stochastic differential equations’, 2005] !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Subroutine APLDAPL !
!COM Subroutine CNTDIFF_APL !
!COM !
!COM CALLS !
!COM Function FPHI !
!COM Module procedure MODEL (LTI_KALMAN/LTV_KALMAN/NL_KALMAN) !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE HESSIAN_AIAPLL(MODEL,HESSIAN,THETAOBJ,ETAOBJ, !
!COM OMEGA,POBJ,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE MODATA, ONLY: NID !
!COM IMPLICIT NONE !
!COM !
!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !

Continued on next page. . .
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Table A.38: Interface of subroutine HESSIAN AIAPLL – Continued.

!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(OUT) :: HESSIAN(NETA,NETA) !
!COM REAL(8),INTENT(IN) :: OMEGA(:,:) !
!COM TYPE(THETAOBJECT),INTENT(IN) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(IN) :: ETAOBJ !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM !
!COM ARGUMENTS !
!COM ETAOBJ (input) !
!COM Single random-effects object. Unchanged on exit. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM HESSIAN (output) !
!COM Hessian matrix for the approximate individual a !
!COM posteriori likelihood function ’AIAPLL’ - matrix !
!COM dimension (NETA,NETA). !
!COM !
!COM MODEL (module procedure) !
!COM Kalman filtering procedure, which depends on the !
!COM model specification. !
!COM !
!COM The parameter IMODEL dictates, which Kalman filter- !
!COM ing method should be used for modelling, i.e.: !
!COM !
!COM = 0: MODEL = LTI_KALMAN !
!COM = 1: MODEL = LTV_KALMAN !
!COM = 2: MODEL = NL_KALMAN !
!COM !
!COM OMEGA (input) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). Unchanged on exit. !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !
!COM THETAOBJ (input) !
!COM Fixed-effects object (derived type THETAOBJECT). !
!COM Unchanged on exit. !
!COM !
!COM------------------------------------------------------------------!
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Table A.39: Interface of subroutine INIT ETAOBJECT

!---------------------------------------SUBROUTINE INIT_ETAOBJECT-----!
!
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’INIT_ETAOBJECT’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Allocates variables in the random-effects object (derived !
!COM type ’ETAOBJECT’) given the number of random-effects !
!COM (NETA). !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Program MAIN !
!COM Subroutine CNTDIFF_APL !
!COM !
!COM CALLS !
!COM Subroutine ALLOC_KALMANOBJECT !
!COM !
!COM F95 INTERFACE !
!COM !
!COM USE MOTYPES !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(ETAOBJECT),INTENT(INOUT) :: ETAOBJ !
!COM !
!COM PARAMETERS !
!COM ETAOBJ (input/output) !
!COM Random-effects object (derived type ’ETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !
!COM------------------------------------------------------------------!
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Table A.40: Interface of subroutine INIT THETAOBJECT

!-------------------------------------SUBROUTINE INIT_THETAOBJECT-----!
!
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’INIT_THETAOBJECT’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Allocates variables in the fixed-effects object (derived !
!COM type ’THETAOBJECT’) given the number of fixed-effects !
!COM (NTHETA). !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Program MAIN !
!COM Subroutine CNTDIFF_APL !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM !
!COM USE MOTYPES !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM TYPE(THETAOBJECT),INTENT(INOUT) :: THETAOBJ !
!COM !
!COM PARAMETERS !
!COM THETAOBJ (input/output) !
!COM Fixed-effects object (derived type ’THETAOBJECT’) !
!COM containing results and optimization information. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM------------------------------------------------------------------!
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Table A.41: Interface of subroutine LINEAR MODEL

!-----------------------------------------SUBROUTINE LINEAR_MODEL-----!
!
!COM------------------------------------------------------------------!
!COM LINEAR_MODEL !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’LINEAR_MODEL’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Generates the linear model specified by user. !
!COM !
!COM The linear model is expressed by: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM For linear time-invariant (LTI) model: !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM For linear time-varying (LTV) model: !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM REFERENCE !
!COM Linear time-varying model: Eqn. (1.3)-(1.4) !
!COM Linear time-invariant model: Eqn. (1.5)-(1.6) !
!COM [CTSM 2.3 Math Guide, Dec. 2003, Kristensen, N.R.] !
!COM !
!COM INCLUDES !
!COM ’/INCLUDE/AMAT’ !
!COM ’/INCLUDE/BMAT’ !
!COM ’/INCLUDE/CMAT’ !
!COM ’/INCLUDE/DMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine LTI_KALMAN !
!COM Subroutine LTV_KALMAN !
!COM !
!COM CALLS !
!COM - !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE LINEAR_MODEL(PHI,A,B,C,D,T,X,U) !
!COM !
!COM USE MOPARAMS !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM !
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Table A.41: Interface of subroutine LINEAR MODEL – Continued.

!COM REAL(8),INTENT(IN) :: PHI(:) !
!COM REAL(8),INTENT(OUT) :: A(:,:),B(:,:),C(:,:),D(:,:) !
!COM REAL(8),INTENT(IN), OPTIONAL :: X(:),U(:),T !
!COM !
!COM ARGUMENTS !
!COM A (output) !
!COM State coefficient matrix in state eqn., see (#1) !
!COM - matrix dimension (NX,NX). !
!COM !
!COM B (output) !
!COM Output coefficient matrix in state eqn., see (#1) !
!COM - matrix dimension (NX,NU). Only defined when NU>0. !
!COM !
!COM C (output) !
!COM State coefficient matrix in observation eqn., !
!COM see (#2) - matrix dimension (NY,NX). !
!COM !
!COM D (output) !
!COM Output coefficient matrix in observation eqn., !
!COM see (#2) - matrix dimension (NY,NU). Only defined !
!COM when NU>0. !
!COM !
!COM PHI (input) !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). Unchanged on exit. !
!COM !
!COM T (input, optional) !
!COM Time vector - dimension (NT). Optional, only appli- !
!COM cable for time-varying models. !
!COM !
!COM U (input, optional) !
!COM Input variable vector - dimension (NU). Optional, !
!COM only applicable for time-varying models. !
!COM !
!COM X (input, optional) !
!COM State variable vector - dimension (NX). Optional, !
!COM only applicable for time-varying models. !
!COM !
!COM------------------------------------------------------------------!



A.4 Procedure interfaces 129

Table A.42: Interface of subroutine LLDLL

!------------------------------------------------SUBROUTINE LLDLL-----!
!
!COM------------------------------------------------------------------!
!COM FUNCTION VALUE (LL) AND GRADIENT (GRAD_LL) FOR APPROXIMATE !
!COM INDIVIDUAL LOG-LIKELIHOOD !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’LLDLL’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Given a set of random-effects parameters TMP_ETA, subrou- !
!COM tine LLDLL computes the approximate individual log-like- !
!COM lihood (LL) and corresponding gradient (GRAD_LL) required !
!COM by the parameter mimimization procedure UCMINF_AIAPLL. !
!COM !
!COM The fixed-effects parameters ’THETA’ are contained in the !
!COM theta object ’THETAOBJ’ (derived type ’THETAOBJECT’). !
!COM The individual random-effects ’ETA’ and the approximate !
!COM individual a posteriori log-likelihood are stored in the !
!COM eta objects ’ETAOBJ’ (derived type ’ETAOBJECT’). !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM ’/INCLUDE/FORMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine UCMINF_AIAPLL !
!COM Subroutine CHKDFN_AIAPLL !
!COM Subroutine SLINE_AIAPLL !
!COM !
!COM CALLS !
!COM Function FPHI !
!COM Module procedure MODEL (LTI_KALMAN/LTV_KALMAN/NL_KALMAN) !
!COM Subroutine CNTDIFF_AIAPLL !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE LLDLL(N,TMP_ETA,GRAD_LL,LL,MODEL,THETAOBJ, !
!COM ETAOBJ,POBJ,OMEGA,INFO) !
!COM !
!COM USE MOTYPES !
!COM USE MOPARAMS !
!COM USE MODATA, ONLY: NID !
!COM IMPLICIT NONE !
!COM !
!COM INTERFACE !
!COM SUBROUTINE MODEL(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM USE SUNPERF !
!COM USE MOTYPES,ONLY: DOSE,PATIENT,KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
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Table A.42: Interface of subroutine LLDLL – Continued.

!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM END SUBROUTINE MODEL !
!COM END INTERFACE !
!COM !
!COM INTEGER,INTENT(IN) :: N !
!COM REAL(8),INTENT(IN) :: TMP_ETA(:),OMEGA(:,:) !
!COM REAL(8),INTENT(OUT) :: GRAD_LL(:),LL !
!COM TYPE(THETAOBJECT),INTENT(IN) :: THETAOBJ !
!COM TYPE(ETAOBJECT),INTENT(INOUT) :: ETAOBJ !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM !
!COM ARGUMENTS !
!COM ETAOBJ (input/output) !
!COM Single random-effects object. On exit, ETAOBJ has !
!COM been updated with filtering information stored in !
!COM the Kalman object ’KOBJ’ (derived type KALOBJ). !
!COM !
!COM GRAD_LL (output) !
!COM Function gradient required by UCMINF_AIAPL optimi- !
!COM zation procedure, i.e. gradient of the approximate !
!COM individual log-likelihood value. !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM LL (output) !
!COM Function value required by UCMINF_AIAPLLoptimiza- !
!COM tion procedure, i.e. the approximate individual !
!COM log-likelihood value. !
!COM !
!COM MODEL (module procedure) !
!COM Kalman filtering procedure, which depends on the !
!COM model specification. !
!COM !
!COM The parameter IMODEL dictates, which Kalman filter- !
!COM ing method should be used for modelling, i.e.: !
!COM !
!COM = 0: MODEL = LTI_KALMAN !
!COM = 1: MODEL = LTV_KALMAN !
!COM = 2: MODEL = NL_KALMAN !
!COM !
!COM N (input) !
!COM Number of random-effects parameters (=NETA) !
!COM !
!COM OMEGA (input) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #1: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). Unchanged on exit. !
!COM !
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Table A.42: Interface of subroutine LLDLL – Continued.

!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. Unchanged on exit. !
!COM !
!COM TMP_ETA (input) !
!COM Current random-effects parameters for which the !
!COM approximate individual log-likelihood ’LL’ and its !
!COM gradient GRAD_LL is computed. TMP_ETA is supplied !
!COM the parameter optimization procedure UCMINF_AIAPLL. !
!COM !
!COM THETAOBJ (input) !
!COM Fixed-effects object (derived type THETAOBJECT). !
!COM Unchanged on exit. !
!COM !
!COM------------------------------------------------------------------!
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Table A.43: Interface of subroutine LTI KALMAN

!-------------------------------------------SUBROUTINE LTI_KALMAN-----!
!
!COM------------------------------------------------------------------!
!COM KALMAN FILTER FOR LINEAR TIME-INVARIANT MODEL !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’LTI_KALMAN’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Kalman filter for the linear time-invariant (LTI) model: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM Where !
!COM !
!COM A = A(PHI) B = B(PHI) !
!COM C = A(PHI) D = D(PHI) !
!COM PI = PI(PHI) SIGMA = SIGMA(PHI) !
!COM !
!COM REFERENCE !
!COM Eqn. (1.5) and (1.6) [CTSM 2.3 Math Guide, Dec. 2003, !
!COM Kristensen, N.R.]. !
!COM !
!COM INCLUDES !
!COM ’/INCLUDE/FORMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine CNTDIFF_AIAPLL !
!COM Subroutine LLDLL !
!COM !
!COM CALLS !
!COM Function FPI !
!COM Function FSIGMA !
!COM Function IDMN !
!COM Subroutine DEXPM !
!COM Subroutine LINEAR_MODEL !
!COM Subroutine DTRM !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE LTI_KALMAN(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM !
!COM USE SUNPERF !
!COM USE MOTYPES, ONLY: DOSE, PATIENT, KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM !
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Table A.43: Interface of subroutine LTI KALMAN – Continued.

!COM ARGUMENTS !
!COM ETA (input) !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM KOBJ (input/output) !
!COM Kalman object (derived type ’KALOBJ’) containing !
!COM results from Kalman filtering. !
!COM !
!COM OMEGA (input) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #3: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). !
!COM !
!COM PHI (input) !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). Unchanged on exit. !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. !
!COM !
!COM LL (output) !
!COM Minus log-likelihood value. Scalar. !
!COM !
!COM------------------------------------------------------------------!
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Table A.44: Interface of subroutine LTV KALMAN

!-------------------------------------------SUBROUTINE LTV_KALMAN-----!
!
!COM------------------------------------------------------------------!
!COM KALMAN FILTER FOR LINEAR TIME-VARYING MODEL !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’LTV_KALMAN’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Kalman filter for the linear time-varying (LTV) model: !
!COM !
!COM #1: dX = [A*X + B*U]dt + PI*dW !
!COM !
!COM #2: Y = C*X + D*U + e, e~N(0,SIGMA) !
!COM !
!COM Where !
!COM !
!COM A = A(X,U,t,PHI) B = B(X,U,t,PHI) !
!COM C = A(X,U,t,PHI) D = D(X,U,t,PHI) !
!COM PI= PI(U,t,PHI) SIGMA = SIGMA(U,t,PHI) !
!COM !
!COM REFERENCE !
!COM Eqn. (1.3) and (1.4) [CTSM 2.3 Math Guide, Dec. 2003, !
!COM Kristensen, N.R.]. !
!COM !
!COM INCLUDES !
!COM ’/INCLUDE/FORMAT’ !
!COM !
!COM CALLED BY !
!COM Subroutine CNTDIFF_AIAPLL !
!COM Subroutine LLDLL !
!COM !
!COM CALLS !
!COM Function FPI !
!COM Function FSIGMA !
!COM Function IDMN !
!COM Subroutine DEXPM !
!COM Subroutine LINEAR_MODEL !
!COM Subroutine DTRM !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE LTV_KALMAN(LL,KOBJ,PHI,ETA,OMEGA,POBJ,INFO) !
!COM !
!COM USE SUNPERF !
!COM USE MOTYPES, ONLY: DOSE, PATIENT, KALOBJ !
!COM USE MOIOS !
!COM IMPLICIT NONE !
!COM !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM REAL(8),INTENT(IN) :: PHI(:),ETA(:),OMEGA(:,:) !
!COM TYPE(PATIENT),INTENT(IN) :: POBJ !
!COM TYPE(KALOBJ),INTENT(INOUT) :: KOBJ !
!COM REAL(8),INTENT(OUT) :: LL !
!COM !
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Table A.44: Interface of subroutine LTV KALMAN – Continued.

!COM ARGUMENTS !
!COM ETA (input) !
!COM Random-effects vector - vector dimension (NETA). !
!COM !
!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM KOBJ (input/output) !
!COM Kalman object (derived type ’KALOBJ’) containing !
!COM results from Kalman filtering. !
!COM !
!COM OMEGA (input) !
!COM Variance-covariance matrix of the random-effects ETA !
!COM in the second stage model defined by: !
!COM !
!COM #3: PHI = h(THETA,Z)*EXP(ETA), ETA~N(0,OMEGA) !
!COM !
!COM Matrix of dimension (NETA,NETA). !
!COM !
!COM PHI (input) !
!COM Individual parameters vector - vector dimension !
!COM (NPHI). Unchanged on exit. !
!COM !
!COM POBJ (input) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. !
!COM !
!COM LL (output) !
!COM Minus log-likelihood value. Scalar. !
!COM !
!COM------------------------------------------------------------------!
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Table A.45: Interface of subroutine READDAT

!----------------------------------------------SUBROUTINE READDAT-----!
!
!COM------------------------------------------------------------------!
!COM READ INPUT DATA FROM FILE ’DATFIL1’, ’DATFIL2’ AND ’DATFIL3’ !
!COM------------------------------------------------------------------!
!COM !
!COM NAME !
!COM ’READDAT’ - Subroutine !
!COM !
!COM PURPOSE !
!COM Reads observation data (’datfil1’), dose administration !
!COM data (’datfil2’) and covariates data (’datfil3’). All !
!COM data are allocated in patient object ’POBJ’ (derived type !
!COM ’PATIENT’), which is returned to the calling procedure. !
!COM !
!COM REFERENCE !
!COM - !
!COM !
!COM INCLUDES !
!COM - !
!COM !
!COM CALLED BY !
!COM Program MAIN !
!COM !
!COM CALLS !
!COM Subroutine STRINGS !
!COM !
!COM F95 INTERFACE !
!COM SUBROUTINE READDAT(POBJ,DATFIL1,DATFIL2,DATFIL3,INFO) !
!COM !
!COM USE SUNPERF !
!COM USE MOIOS !
!COM USE MOPARAMS !
!COM IMPLICIT NONE !
!COM !
!COM TYPE(PATIENT),INTENT(INOUT) :: POBJ(:) !
!COM CHARACTER(LEN=20),INTENT(IN) :: DATFIL1,DATFIL2,DATFIL3 !
!COM INTEGER,INTENT(OUT) :: INFO !
!COM !
!COM ARGUMENTS !
!COM POBJ (input/output) !
!COM Patient object (derived type ’PATIENT’) containing !
!COM individual patient data. On exit, it contains all !
!COM data supplied in the datafiles. !
!COM !
!COM ’datfil1’ (input) !
!COM Name of patient data file (observations). !
!COM !
!COM ’datfil2’ (input) !
!COM Name of patient dose file (dose administration). !
!COM !
!COM ’datfil3’ (input) !
!COM Name of covariate data file. !
!COM !
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Table A.45: Interface of subroutine READDAT – Continued.

!COM INFO (output) !
!COM = 0: successful exit. !
!COM > 0: unsuccessful exit, see subroutine ’ERRORSTAT’. !
!COM !
!COM------------------------------------------------------------------!
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Table A.46: Interface of format file FORMAT

!---------------------------------------------------------------------!
! !
! USER SPECIFICATION OF FORMATS !
! !
!---------------------------------------------------------------------!
!
!COM------------------------------------------------------------------!
!COM !
!COM FILE NAME !
!COM ’FORMAT’ !
!COM !
!COM FILE DIRECTORY !
!COM ’/INCLUDE/’ !
!COM !
!COM INCLUDED IN !
!COM Subroutine ’READDAT’ !
!COM Subroutine ’DISPLAY_RESULTS’ !
!COM Subroutine ’LTI_KALMAN’ !
!COM Subroutine ’LTV_KALMAN’ !
!COM Subroutine ’LLDLL’ !
!COM !
!COM PURPOSE !
!COM To define input/output formats for files in PSM. !
!COM !
!COM PARAMETERS !
!COM - !
!COM !
!COM------------------------------------------------------------------!
!COM !
!COM COMMENTS !
!COM :: The current format settings do not take advantage of !
!COM Fortran’s ’tab’- and ’blank-’. A more refined format- !
!COM ting setup is recommended. !
!COM !
!COM [CHRISTENSEN, A.S.,2007-02-04] !
!COM !
!COM------------------------------------------------------------------!



Appendix B

Error Statements

Table B.1: Information transferred by INFO

Value Description

0 The Population Stochastic Modelling programme com-
pleted without errors.

10 Illegal model assignment. The model parameter must be
of the type:

= 0: Linear time-invariant model.
= 1: Linear time varying model.

21 Allocation error when attempting to allocate the eta-
parameter object!

22 Allocation error when attempting to allocate the theta-
parameter object!

23 Allocation error when attempting to allocate the kalman
object!

50 Allocation error occured during data acquisition from
datafiles

Continued on next page. . .
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Table B.1: Information transferred by INFO – Continued.

Value Description

51 Dellocation error occured during data acquisition from
datafiles

100 Allocation error occured in Kalman filtering procedure!

150 Computation of matrix exponential failed in Kalman fil-
tering procedure!

155 Computation of LU-factorization failed!

156 Not possible to compute matrix inversion of singular ma-
trix!

160 Computation of inverse matrix failed!

165 Computation of singular value decomposition failed!

202 THETA optimization failed to start in subroutine APL.
NTHETA ≤ 0.

204 THETA optimization failed to start in subroutine APL.
Step size DX too small.

205 THETA optimization failed to start in subroutine APL.
Stop criterion EPS ≤ 0.0.

206 THETA optimization failed to start in subroutine APL.
Maximum number of iterations allowed MAXFUN ≤ 0.0.

207 THETA optimization failed to start in subroutine APL.
Given Hessian matrix is not positive definite.

208 THETA optimization failed to start in subroutine APL.
The workspace is too small.

212 ETA optimization failed to start in subroutine AIAPLL.
NTHETA ≤ 0.

214 ETA optimization failed to start in subroutine AIAPLL.
Step size DX too small.

215 ETA optimization failed to start in subroutine AIAPLL.
Stop criterion EPS ≤ 0.0.

216 ETA optimization failed to start in subroutine AIAPLL.
Maximum number of iterations allowed MAXFUN ≤ 0.0.

Continued on next page. . .
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Table B.1: Information transferred by INFO – Continued.

Value Description

217 ETA optimization failed to start in subroutine AIAPLL.
Given Hessian matrix is not positive definite.

218 ETA optimization failed to start in subroutine AIAPLL.
The workspace is too small.

300 Mapping of fixed-effects THETA failed!

DEFAULT An error occured during execution.
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Appendix C

Flowchart Symbol List

LIBRARY_NAME

Libraries

Modules

MODULE_NAME

An oval indicates the start or stop of a program.

A parallelogram indicates an input/output operation.

A rectangle indicates a subroutine and/or computation.

A double-stroke rectangle indicates a reference to a 

subroutine, which is documented elsewhere.

A diamond indicates a decision point, where a decision 

between multiple alternatives is made.

Indicates the shared libraries available by the program.

Indicates the user-defined modules available by the 

program. 

Arrows indicate the direction of the program flow 

available by the program. 

Figure C.1: Definition of the symbols used for flowcharts.
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