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Summary

Every organization or company relies on data in one form or another both digital
data and physical data. One of the main challenges companies and organizations
face is securing data and other valuable assets. For some organizations security
is more important than others, e.g., a bank’s most valuable asset is its data,
transactions and other financial data. Defining security policies is a major task,
enforcing security policies an even bigger one.

Security policies should be defined to protect data from malicious attackers from
the outside world as well as from people that have inside knowledge of the inner
workings of the organization. Methods have been developed to secure the IT-
infrastructure from the outside world, but there is not much focus on securing
data from the inside.

In this thesis we address the problem of analyzing insider threats or the ”insider
problem” by using static program analysis methods. We develop a framework
for specifying real-world systems and develop methods for finding insider threats
in these systems.
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Preface

This thesis was prepared at the Informatics Mathematical Modelling depart-
ment, the Technical University of Denmark in partial fulfillment of the require-
ments for acquiring an M.Sc. degree in engineering.

The thesis deals with the use of static analysis for analyzing models of real-
world system for insider threats. In particular, we develop a tool capable of
analyzing system specification for insider threats. The tool is implemented in
F# and C#. The output of our tool can be used to find weaknesses in real-world
systems before an attack occurs, and also to guide the investigation of an attack
after an attack has happened.

Reykjavik, February 2007

Dagur Gunnarsson
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Chapter 1

Introduction

Generally, information security focuses on protecting against attack from outside
attackers, e.g. by use of fire walls. Little research focus has been on protecting
IT-infrastructures from insider attacks and dealing with insider attacks. The
main measure taken is still to audit log files after the attacks have been made to
the infrastructure. IT-security is getting more attention and regularly you hear
about breaches in IT-security that lead to financial loss or even worse a loss in
the creditability of companies.

The insider problem is extremely hard to deal with because the attacker is a
person with insider knowledge of the infrastructure, and knows how to utilize
holes in IT-systems. It is also hard to come up with policies that prevent
insider attacks as at some level employees are ”trusted” to perform actions in a
legitimum way.

1.1 Our Work

In this thesis we develop an implementable framework for doing insider analysis
and implement a tool for analyzing systems for insider threats. We extend the
work done by [16] and focused on creating an implementable framework with
three different insider analyses. The first analysis finds an over approximation
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of the data and locations an actor in a system can reach if he uses every single
option that he has in order to gain more access in the system. The second
analysis finds an over-approximation of the data and locations that an actor
can reach if he follows some sequence of actions in the system. The result will
be a smaller set than the first one, as the actor is no longer ”free” to do anything.
The final analysis is a more realistic version of the second analysis as it works
on a log file of events that happened in a system. The user of the tool must
specify log points and the analysis calculates an over-approximation of actions
taking place between log points. We evaluate our tool and find it to be a correct
implementation of the framework developed.

1.2 Thesis Organization

In the next chapter we discuss some theoretical background that is necessary
for following the rest of the thesis. We give an overview of the work done so
far in statically analyzing the insider problem, define the notion of insider and
insider threat, and discuss the Klaim family of process calculi.

Chapter 3 covers the development of the Insider Framework which is really the
design of a tool for doing static insider analysis. In this chapter we will present
a language for specifying systems and two insider analysis.

In Chapter 4 the Insider Framework will be extended to allow access points to
be logged and we will give the final insider analysis.

Chapter 5 will cover the implementation of our tool and in Chapter 6 we will
run the analyses on a few systems to demonstrate the correctness of our imple-
mentation. Finally Chapter 7 presents the conclusion of our work.



Chapter 2

Background

This chapter gives a brief theoretical background of the technologies we use in
analyzing the insider problem. The goal of the chapter is to provide the reader
with the necessary background to be able to follow the rest of the paper. The
rest of this section is organized as follows: Section 2.1 gives an introduction
to the Klaim family of process calculi, which is relevant for the analyses we
define. Section 2.2 gives a definition of the terms ”insider” and ”insider threat”.
Section 2.3 gives an overview of the work done so far in analyzing the insider
problem, and finally Section 2.4 gives an overview of the Flow Logic framework
[13].

2.1 Klaim

Distributed systems typically consist of a large number of heterogenous com-
putational entities that execute components of applications. Components of
distributed systems have to deal with unpredictable changes in the network en-
vironment over time, e.g., mobile components can disconnect from the network
and reconnect later at a different node.

Klaim(Kernel Language for Agents Interaction and Mobility) is a language
designed to model distributed systems consisting of several mobile components
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that interact through multiple distributed tuple spaces [4]. The focus is on pro-
cesses running in a WAN, where the overall structure of the WAN can change.
Processes in Klaim can change the spatial structure of the network, and local-
ities are first-class citizens that can be dynamically created and communicated
over the network. A tuple space is a multi-set (the same element can occur sev-
eral times in the set) of tuples that are sequences of information items. Tuples
are anonymous and picked up from tuple spaces by means of pattern-matching.
Interprocess communication is asynchronous; sender and receiver need not syn-
chronize their actions.

The Klaim programming paradigm emphasizes a clear separation between the
computational level and the network administrator level. Programmers design
individual processes, but administrators design nets (more on nets and processes
in the next section). Nets are clearly distinguishable from user processes, and
modeled explicitly.

Klaim is a family of process calculi and the most basic version is cKlaim or
Core Klaim, which can be seen as a variant of the π-calculus. µKlaim (Micro
Klaim), is an extension of cKlaim with tuples and pattern matching. acKlaim,
which will be used in Section 2.2, is an extension of µKlaim with access control
primitives and a reference monitor semantics. There are many other extensions
to cKlaim that we shall not cover here, but refer the interested reader to [4].

2.1.1 KlaimSyntax

The most basic version of Klaim is cKlaim; its syntax is listed in Figure 2.1.
The syntax is composed of four syntactic categories, Nets, Processes, Actions,
and Templates. Nets are finite collections of nodes where processes or data can
be located. Nodes can be referenced by their locality, l, which represents the
address of the node. Processes are the computational units in Klaim. The
special process nil denotes the empty process that does nothing. Processes
can run concurrently at the same location and they can execute four different
actions. A Process can also invoke a process by its process definition. It is
not possible to explicitly state the process definition, it is only assumed that
every process identifier, A, has a defining equation of the form A

4
= P. There are

four actions: out, which outputs a datum at the specified location, in, which
uses a template to select data from a tuple space, eval, which is used to model
mobility, and finally newloc, which creates a new location.
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N ::= NETS
l :: P single node

| l :: 〈l′〉 located datum
| N1 || N2 net composition

P ::= PROCESSES
nil null process

| a.P action prefixing
| P1 | P2 parallel composition
| A process invocation

a ::= ACTIONS
out(l′)@` output

| in(T )@` input
| eval(P )@` migration
| newloc(u) creation

T ::= TEMPLATES
` name

| !u formal
Figure 2.1: cKlaimsyntax

2.2 Insider problem

Bishop [5] calls the ”insider problem” the most difficult and critical problem in
computer security to deal with. The term is also coined ”the insider threat”.
An insider is especially dangerous because he has information and capabilities
not known to external attackers. The insider can cause catastrophic damage
as he has knowledge of both possible weak spots and assets in the company
infrastructure.

It is important that we define what we mean by ”insider threat” and ”insider”
to be able to define an analysis that can detect these kinds of threats. Bishop
[5] introduces different definitions of the problem. The RAND report [2] defines
the problem as malevolent actions by an already trusted person with access to
sensitive information and information systems, and the insider as someone with
access, privilege, or knowledge of information systems and services. Bishop
defines the term insider and insider threat as:

Definition 2.1 (Insider, Insider threat) An insider with respect to rules R
is a user who may take an action that would violate some set of rules R in
the security policy, were the user is not trusted. The insider is trusted to take
the action only when appropriate, as determined by the insider’s discretion.
The insider threat is the threat that an insider may abuse his discretion by
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taking actions that would violate the security policy when such actions are not
warranted.

From this definition it seems that the rules, R, consist of a set of access policies
and a set of ”trust” rules. The access granted to an actor could be limited to
a special kind of circumstances, e.g., a janitor is not allowed to enter the server
room in an organization unless there is fire in the server room. However, the
restriction does not really limit him to go there anyway, even if there is no fire.
He is ”trusted” not to go there under normal circumstances.

2.3 Insider Work

This section gives the reader an overview of the work done so far in formally
analyzing the insider problem. The main source of information is [16], which
addresses analyzing the insider problem, and this section will explain the ap-
proach taken by the authors. The original work is based on the acKlaim process
calculus, which is a member of the Klaim family of process calculi.

The goal of [16] is to analyze insider attacks by using program analysis tech-
niques [3, 10, 11]. Traditionally, these kinds of attacks are analyzed by auditing
log files after the attack has happened. In [16] a formal model of systems is
developed that can describe real-world scenarios. By using this formal model
we can specify the spatial structure, the actors, the access policies, and the data
in the system we want to model. The formal model consists of two parts: an
abstract, high-level system model based on graphs, and a process calculus called
acKlaim that provides the formal semantics for the abstract model. acKlaim is
an extension of µKlaim with access control primitives, named processes, and a
reference monitor semantics.

In order to analyze insider attacks in a system the abstract system specification
is mapped to an acKlaim program. While the authors of [16] describe the syntax
and semantics of the acKlaim calculus, there is no description how systems
(described using the formal model) are mapped to acKlaim programs. The
reason for the mapping is that acKlaim provides a formal semantics that is used
in the analysis, but the formal model of systems does not provide any semantics.

There are developed two analyses; The first is intended as a ”before-the-fact”
analysis that identifies week spots in systems. The analysis identifies which
actions may be performed by whom, at which location, accessing which data.
The goal is to discover a superset of incidents - before they occur. The second
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analysis is a control flow analysis that identifies insider threats given a sequence
of actions for each actor in the system. The latter analysis is thus intended as
an ”after-the-fact” analysis where the given sequences of actions can be thought
as actions reconstructed from a log file. The results of the latter analysis is more
precise as the actor is limited by the actions in the sequence.

2.3.1 The Abstract System Model

The abstract system model is a collection of mathematical structures that is
used to create an abstraction of a real-world system. The system model is
high-level and is used to model the spatial structure of the system, as well as
the location of data and actors in the system. When the abstract system has
been mapped to acKlaim, the semantics of acKlaim uses the abstract system to
evaluate the resulting net.

The first elements of the abstract model are the sets that define the spatial
structure of a system.

Definition 2.2 (Infrastructure, Locations, Connections) (Loc,Con) rep-
resents an infrastructure which is a directed graph, where Loc is a set of nodes
representing locations, and Con ⊆ Loc × Loc is a set of directed edges repre-
senting connections between locations. nd ∈ Loc is reachable from ns ∈ Loc,
if there is a path π = n0, n1, n2, . . . , nk with k ≥ 1 and ns = n0, nd = nk and
∀i 0 ≤ i ≤ k − 1 : ni ∈ Loc ∧ (ni, ni+1) ∈ Con.

Actors are the active entities in the system and can move along edges between
nodes. Each actor is bound to a domain in which he can perform actions.

Definition 2.3 (Actors, Domains) Let I = (Loc,Con) be an infrastructure,
Actors be a set. An actor α ∈ Actors is an entity that can move in I. Let Dom
be a set of unique domain identifiers. Then D : Loc → Dom defines the domain
d for a node n, and D−1 defines all the nodes that are in a domain.

Definition 2.4 (Data) Let I = (Loc,Con) be an infrastructure, Data be a set
of data items, and α ∈ Actors an actor. A data item d ∈ Data represents data
available in the system. Data can be stored at both locations and actors, and
K : (Actors ∪ Loc) → P(Data) maps an actor or a location to the set of data
stored at it.

Access control is modeled with a set of capabilities and restrictions that restrain
the mobility of the actors and protect sensitive data. Capabilities are associated
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with actors, and restrictions are associated with locations and data.

Definition 2.5 (Capabilities and Restrictions) Let I = (Loc,Con) be an
infrastructure, Actors be a set of actors, and Data be a set of data items. Cap is
a set of capabilities and Res is a set of restrictions. For each restriction r ∈ Res,
the checker Φr : Cap → {true, false} checks whether the capability matches the
restriction or not. C : Actors → P(Cap) maps each actor to a set of capabilities,
and R : (Loc ∪ Data) → P(Res) maps each location and data item to a set of
restrictions.

Finally, we give a definition of a system, which include all the elements in
Definition 2.2 through Definition 2.5.

Definition 2.6 (System) Let I = (Loc,Con) be an infrastructure, Actors a
set of actors in I, Data a set of data items, Cap a set of capabilities, Res a
set of restrictions, C : Actors → P(Cap) a mapping from actors to capabilities,
R : (Loc ∪ Data) → P(Res) a mapping from actors and locations to restrictions
and for each restriction r, let Φr : Cap → {true, false} be a checker. Then we
call S = 〈I,Actors,Data, C,R,Φ〉 a system.

2.3.2 acKlaim Security Policies

As mentioned earlier, acKlaim is an extension of µKlaim with access control
primitives, named processes, and a reference monitor semantics. This subsection
introduces the security policies of acKlaim, as defined in [16]. Locations and
data have to grant access to actors in order for the actor to perform actions in
the system. The access can be granted in three different ways, and the reference
monitor semantics ensures that these access policies are enforced. The access
can be granted based on:

• where an actor is (the location the access request is coming from),

• who the actor is (based on the actor that is performing the access request),

• what the actor knows (based on an actor’s knowledge of a secret, e.g., a
secret key).

In acKlaim there are five different access modes (i, r, o, e, n), corresponding
to the actions destructive read a tuple or pickup a tuple, non-destructive read a
tuple, output a tuple or produce a tuple, remote evaluate a tuple, and create a
new location.
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π ⊆ AccMode = {i, r, o, e, n}
κ ⊆ Keys = {unique key identifiers}

δ ∈ LocPolicy = (Loc ∪ Actors ∪ Keys ∪ {∗}) → P(AccMode)

Figure 2.2: Access control in acKlaim

The special symbol * is used to define default access policies (that are allowed
for locations, keys, and actors).

2.3.3 acKlaim syntax

The syntax of acKlaim is similar to the µKlaim syntax, extended with access
policies, a set of keys for each processes and named processes. The syntax con-
sists of three major classes of syntactic constructs: nets, processes and actions,
as shown in Figure 2.3 and Figure 2.4.

Nets are finite collections of nodes which can contain processes and data. A
node has a locality, l, and either a process or a datum. If the node is a process
node, the node is annotated with a LocPolicy, the name of an actor, and the
actors keys. On the other hand, if the node is a datum node, it is annotated
with a policy from LocPolicy, and contains a datum element. Finally, nets can
be the composition of two nets. Note that nets do not give any information on
how nodes are interconnected.

Processes are the active computational units of acKlaim. Processes execute by
performing sequences of actions, and processes run concurrently at either the
same location or at different locations in the system. A process can be the nil
process that does nothing, or a sequence of actions built up from the nil process.
A process can be the composition of two or more processes and can contain an
invocation to a named process definition. Using the syntax given in Figure 2.3
there is no way to specify process equations explicitly, and thus define a process
definition these equations are assumed to be available to the semantics.

There are five actions available. The out action produces a tuple and places it
at a given location. The in action destructively reads a tuple from the specified
location. The read action reads a tuple from a location in a non-destructive
manner. The eval action is used for processes to spawn a new process at a given
location, it is used to model mobility in the system. Finally the newloc action
creates a new location.

Tuples are the communicable objects in acKlaim and are sequences of actual
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fields. The actual fields are expressions, localities, and locality variables. The
expressions are deliberately not specified but contain at least values, V, and
value variables, x. Templates are sequences of actual and formal fields. Formal
fields are variables with an exclamation mark like (!x, !u) are used to bind
values. There are two ways to bind a variable in acKlaim; the action in(!x)@`.P
binds the variable x in P , and newloc(u)@`.P binds the variable u in P. When
tuple spaces are read by using either in or read, a tuple that matches the
input pattern (template) is read in an arbitrary way. For actions in and out
the templates must be evaluated before they are added to a tuple space. The
template evaluation consists of computing the value of the expressions occurring
in the template. Templates with variables in actual fields cannot be evaluated.
We use [[T]] to denote an evaluated template.

` ::= l locality
| u locality variable

N ::= l ::δ [P ]〈n,κ〉 single node with a named process
| l ::δ 〈et〉 located tuple
| N1 || N2 net composition

P ::= nil null process
| a.P action prefixing
| P1 | P2 parallel composition
| A process invocation

a ::= out(t)@` output
| in(T )@` input
| read(T )@` read
| eval(P )@` migration
| newloc(uπ : δ) creation

Figure 2.3: Syntax of nets, processes, and actions.

T ::= F | F, T templates
F ::= f | !x | !u template fields
t ::= f | f, t tuples
f ::= e | ` tuple fields

et ::= ef | ef , et evaluated tuple
ef ::= V | l evaluated tuple field
e ::= V | x | . . . expressions

Figure 2.4: Syntax for tuples and templates.
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2.3.4 acKlaim semantics

The operational semantics for acKlaim is given as a structural congruence on
nets and processes and with a reduction relation over nets. The structural
congruence ≡ identifies, which nets intuitively represent the same net. The
structural congruence relation simplifies presentation of the semantics and the
reasoning about processes. The relation is defined in Figure 2.5.

(Com) N1 || N2 ≡ N2 || N1

(Assoc) (N1 || N2) || N3 ≡ N1 || (N2 || N3)

(Abs) l ::δ [P ]〈n,κ〉 ≡ l ::δ [(P | nil)]〈n,κ〉

(Inv) l ::δ [A]〈n,κ〉 ≡ l ::δ [P ]〈n,κ〉 if A
4
= P

(Clone) l ::δ [(P1 | P2)]〈n,κ〉 ≡ l ::δ [P1]〈n,κ〉 || l ::δ [P2]〈n,κ〉

Figure 2.5: Structural congruence on nets and processes.

The (Com) rule represents the commutative law for nets - as a net does not
give any explicit structure of nodes, it does not matter in which order they are
presented in the net. The (Assoc) rule represents the associativity law for nets -
it says that the order of evaluation does not matter. That makes perfect sense,
as all processes in the net run concurrently. The (Abs) rule says that it is always
safe to add/remove a concurrent running nil process to a process P. The (Inv)
rule represents process invocation and says that when invoking a process named
A, the body of the process A, is substituted out for the name. The (Clone) rule
says that we can split a process that is running concurrently as one process into
two processes running at the same location with the same security labels, and
the other way around.

Access control is enforced by a reference monitor that is embedded in the op-
erational semantics of the calculus. The reference monitor checks that access
to data and localities is in accordance with their access policy. The reference
monitor is defined in Figure 2.6.

The reference monitor has three parts: The function grant (R1), the judgement
� (R2), and the judgement ; (R3). The grant function checks whether an actor
n at location l knowing κ may perform the action a on location l′. The action
a is allowed at l′, if any one of these conditions hold:

• the actor n is explicitly allowed to perform a at l′,
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(R1)

grant : Names× Loc× Data× AccMode× Loc → {true, false}

grant(n, l, κ, a, l′) =
{

true if a ∈ δl′(n) ∨ a ∈ δl′(l) ∨ ∃k ∈ κ : a ∈ δl′(k)
false otherwise

(R2a)

l = t

〈I, n, κ〉 � (l, t)

(R2b)

∃(l, l′) ∈ Con : grant(n, l, κ, e, l′) ∧ 〈I, n, κ〉 � (l′, t)
〈I, n, κ〉 � (l, t)

(R3)

grant(n, l, κ, a, t) ∧ 〈I, n, κ〉 � (l, t)
〈I, n, κ〉 ; (l, t, a)

Figure 2.6: Reference monitor for access control

• an actor knowing κ is allowed to perform a at l′,

• an actor located at location l is allowed to perform a at l′.

The judgement � (R2) decides whether an actor n at location l can reach a
location t by following the edges in the infrastructure I. An actor can reach
a location t from l if he is allowed to perform the action eval along some path
starting from l and finally reaching t. The actual path is not important, only
that there exists a path.

The judgement ; (R3) combines the other two rules and says that an actor n in
infrastructure I and knowing κ can perform action a at t if he is granted access
by the grant function, and he is able to reach the location t from his current
location l by a sequence of eval actions.

The reduction relation �−→I is defined in Figure 2.7 and is specified as a small
step operational semantics. The boxed part of each rule is the access-control
check performed by the reference monitor. The spatial structure of the system
is represented as I, and is assumed to be given.

The rule (OUT) says that an actor n can output a datum t at location l′, if
there exists a location l′ with a process P ′, and the actor n is allowed to perform
the action at l′. The rule (IN) says that an actor n can pick up a datum et at
location l′ if it matches the template T . The datum node is then reduced to a
nil process node l′, so that the location is not lost if there are no processes at
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(out)

[[t]] = et 〈I, n, κ〉 ; 〈l, l′, o〉

l ::δ [out(t)@l′.P ]〈n,κ〉 || l′ ::δ
′
[P ′]〈n

′,κ′〉 �−→I

l ::δ [P ]〈n,κ〉 || l′ ::δ
′
[P ′]〈n

′,κ′〉 || l′ ::δ
′
〈et〉

(in)

match([[T ]], et) = σ 〈I, n, κ〉 ; 〈l, l′, i〉

l ::δ [in(T )@l′.P ]〈n,κ〉 || l′ ::δ
′
〈et〉 �−→I l ::δ [Pσ]〈n,κ〉 || l′ ::δ

′
nil

(read)

match([[T ]], et) = σ 〈I, n, κ〉 ; 〈l, l′, r〉

l ::δ [read(T )@l′.P ]〈n,κ〉 || l′ ::δ
′
〈et〉 �−→I l ::δ [Pσ]〈n,κ〉 || l′ ::δ

′
〈et〉

(eval)

〈I, n, κ〉 ; 〈l, l′, e〉

l ::δ [eval(Q)@l′.P ]〈n,κ〉 || l′ ::δ
′
[P ′]〈n

′,κ′〉 �−→I

l ::δ [P ]〈n,κ〉 || l′ ::δ
′
[Q]〈n,κ〉 || l′ ::δ

′
[P ′]〈n

′,κ′〉

(new)

l′ 6 ∈ L bl′c = buc
L ` l ::δ [newloc(uπ : δ′).P ]〈n,κ〉 �−→I

L ∪ {l′} ` l ::δ[l
′→π] [P [l′/u]]〈n,κ〉 || l′ ::δ

′[l′/u] [nil]〈n,κ〉

(par)

L ` N1 �−→I L′ ` N ′
1

L ` N1||N2 �−→I L′ ` N ′
1||N2

(struct)

N ≡ N1 L ` N1 �−→I L′ ` N2 N2 ≡ N ′

L ` N �−→I L′ ` N ′

Figure 2.7: Operational Semantics for acKlaim

the location.

The rule (READ) is similar to the (IN) rule. It adds the datum et to the tuple
space of the actor n if the datum et matches the template T . The action does
not remove the datum from the location. The eval action takes a process Q as
an argument and is used to spawn a new process at given location. The (EVAL)
rule does this by adding the new process to the system, at the given location l′,
with the same access policies as were defined for l′. The newloc action creates
a new location u, and it takes three parameters: The variable u which will hold
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a reference to the new location, π which is the change in the current locations
access policy that applies to the new location, and finally δ′ which is the access
policy at the new location. The new location gets an arbitrary name l′ that is
substituted for the variable u in the process. The (PAR) rule states that if a part
of a net is reduced, the whole net is reduced accordingly. This makes the rules
for actions able to ”focus” on small parts of the net. The last rule (STRUCT)
relates the structural congruence and the reduction relation by saying that all
structural congruent nets can make the same reduction steps.

The final part of the semantics is the rules for template maching. The match
function takes two arguments and returns a substitution σ. The substitution
formalizes how a value should be substituted in a process term. For example,
P [l′/u] expresses that all occurrences of u should be substituted out for l′ in the
process term P . The match rule is defined in Figure 2.8.

match(V, V ) = ε match(!x, V ) = [V/x] match(l, l) = ε

match(!u, l′) = [l′/u]
match(F, ef ) = σ1 match(T, et) = σ2

match((F, T ), (ef , et)) = σ1 ◦ σ2

Figure 2.8: Semantics for template matching

2.3.5 Analysis

As mentioned before, an abstract model of a system is mapped to an acK-
laim program in order to analyze the insider properties of the system. In this
section two analysis on systems will be described. The first analysis determines
which locations in a system an actor with name n and keys κ can reach from
location l. This analysis gives us a map over which locations and data an in-
sider can reach. This analysis would be useful as a ”before-the-fact” analysis,
to identify vulnerabilities in the system. The analysis is graph-based and is
defined on the abstract spatial structure of the system, it does not use the
acKlaim semantics at all.

The second analysis is a control-flow analysis of the actors in the system. It
determines which data a specific actor may read and which location he may
reach, given a process definition for the actor. This analysis could e.g., be based
on log-files after an attack had been made. This analysis is done on an acK-
laim program where process equations are ”plugged into” the acKlaim program
to model the behavior of actors.
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2.3.5.1 Reachability Analysis

The first analysis is a reachability analysis where we are interested in a subset of
locations a given actor can reach. The analysis first calculates the set of locations
that each individual actor in the system can reach, by placing the actor at each
location in the system and then calculating the set of locations the actor can
reach from there. Then the result is combined to find the set of locations the
actor can possibly reach in the system. The result of the reachability analysis
can be used in computing which data an actor may access on system locations,
by evaluating which actions he can execute from the locations he can reach. The
analysis can be split into three parts:

1. For a given actor, find the set of locations he can reach for a given location,

2. for a given actor do 1) for each location in the system and create a union
of the results,

3. for all locations in 2) create a mapping from actions to locations that
represent the actions the actor can perform at those locations.

Each of the three parts have their own algorithm as described in Algorithm 1 -
Algorithm 3.

Algorithm 1 checkloc (Names × Loc × Keys × (Con × Loc) → P (Loc))
checkloc(n, l, κ, I) =
for all (l, l′) ∈ Con do

if 〈I, n, κ〉 � (l, l′) ∨ grant(n, l, κ, e, l′) then
return {l′} ∪ checkloc(n, l′, κ, I)

end if
end for

Algorithm 2 checksys (Names × Keys × (Con × Loc) → P (Loc))
checksys(n, κ, I) =

⋃
l∈Loc checklock(n, l, κ, I)

Algorithm 3 checkdata (Names × Keys × (Con × Loc) → P (AccMode ×
Loc))

checkdata(n, κ, I) =⋃
l∈checklock(n,l,κ,I){(a, l)|∃ a ∈ AccMode, (l, l′) ∈ Con : grant(n, l, κ, a, l′)}
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2.3.5.2 Control-Flow analysis

The second analysis takes into account what the actor actually does in the
system. The analysis works on the acKlaim program and a process definition
is substituted for the process call in the program. This analysis computes a
conservative approximation of all the possible flows into and out of all the tuple
spaces in the system and what values each variable can possible have during
execution. The analysis is specified in the Flow Logic framework, [13]. It is
specified with a number of judgements, one for each syntactic category. The
judgements determine whether or not a given analysis estimate is valid. The
Flow Logic specification does not directly calculate the analysis estimate but
can be used to generate constraints that can be solved by a constraint solver
to produce the analysis estimate. In the original work [16] only the Flow Logic
specification is given which is a common practise in language-based research.
The Flow Logic specification is modeled in Figure 2.9 and Figure 2.10.

(T̂ , σ̂, I) |=N l ::δ [P ]〈n,κ〉 iff (T̂ , σ̂, I) |=blc,n,κ
P P

(T̂ , σ̂, I) |=N l ::δ 〈et〉 iff 〈et〉 ∈ T̂ (blc)
(T̂ , σ̂, I) |=N N1 || N2 iff (T̂ , σ̂, I) |=N N1 ∧ (T̂ , σ̂, I) |=N N2

(T̂ , σ̂, I) |=l,n,κ
P nil iff true

(T̂ , σ̂, I) |=l,n,κ
P P1 | P2 iff (T̂ , σ̂, I) |=l,n,κ

P P1 ∧ (T̂ , σ̂, I) |=l,n,κ
P P2

(T̂ , σ̂, I) |=l,n,κ
P A iff (T̂ , σ̂, I) |=l,n,κ

P P if A
4
= P

(T̂ , σ̂, I) |=l,n,κ
P a.P iff (T̂ , σ̂, I) |=l,n,κ

A a ∧ (T̂ , σ̂, I) |=l,n,κ
P P

(T̂ , σ̂, I) |=l,n,κ
A out(t)@`′ iff ∀l̂ ∈ σ̂(`′) : (〈I, n, κ〉 ; (l, l̂, o) ⇒

σ̂[[t]] ⊆ T̂ (l̂))
(T̂ , σ̂, I) |=l,n,κ

A in(T )@`′ iff ∀l̂ ∈ σ̂(`′) : (〈I, n, κ〉 ; (l, l̂, i) ⇒
σ̂ |=1 T : T̂ (l̂) � Ŵ•)

(T̂ , σ̂, I) |=l,n,κ
A read(T )@`′ iff ∀l̂ ∈ σ̂(`′) : (〈I, n, κ〉 ; (l, l̂, r) ⇒

σ̂ |=1 T : T̂ (l̂) � Ŵ•)
(T̂ , σ̂, I) |=l,n,κ

A eval(Q)@`′ iff ∀l̂ ∈ σ̂(`′) : (〈I, n, κ〉 ; (l, l̂, e) ⇒
(T̂ , σ̂, I) |=l̂,n,κ

p Q)
(T̂ , σ̂, I) |=l,n,κ

A newloc(uπ : δ) iff {buc} ⊆ σ̂(buc)

Figure 2.9: Flow Logic Specification for Insider Analysis.
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σ̂ |=i ε : V̂◦ � V̂• iff {êt ∈ V̂◦||êt | = i} v V̂•
σ̂ |=i V, T : V̂◦ � Ŵ• iff σ̂ |=i+1 T : V̂• � Ŵ• ∧ {êt ∈ V̂◦|πi(êt) = V } v V̂•
σ̂ |=i l, T : V̂◦ � Ŵ• iff σ̂ |=i+1 T : V̂• � Ŵ• ∧ {êt ∈ V̂◦|πi(êt) = V } v V̂•
σ̂ |=i x, T : V̂◦ � Ŵ• iff σ̂ |=i+1 T : V̂• � Ŵ• ∧ {êt ∈ V̂◦|πi(êt) ∈ ˆσ(x)} v V̂•
σ̂ |=i u, T : V̂◦ � Ŵ• iff σ̂ |=i+1 T : V̂• � Ŵ• ∧ {êt ∈ V̂◦|πi(êt) ∈ ˆσ(u)} v V̂•
σ̂ |=i!x, T : V̂◦ � Ŵ• iff σ̂ |=i+1 T : V̂• � Ŵ• ∧ V̂◦ v V̂• ∧ πi(Ŵ•) v σ̂(x)
σ̂ |=i!x, T : V̂◦ � Ŵ• iff σ̂ |=i+1 T : V̂• � Ŵ• ∧ V̂◦ v V̂• ∧ πi(Ŵ•) v σ̂(x)

Figure 2.10: Flow Logic Specification for Insider Analysis.

2.4 Flow Logic

This section gives an overview of the Flow Logic framework, which is an ap-
proach to static analysis. Flow Logic is a formalism for static analysis based on
logic systems. It is similar to type systems and structural operational seman-
tics. Flow Logic focusses on specifying what it means for an analysis estimate
to be acceptable for a program. A Flow Logic specification is a set of rules
that specify what an acceptable analysis estimate should look like. For a given
language there is one judgement for each syntactic category and one rule for
each syntactic construct. There is a clear distinction between specifying what
is an acceptable analysis estimate and how to compute one, so a Flow Logic
specification does not say anything about how to compute an analysis estimate.
A schematic view of a Flow Logic specification and its use can be viewed in
Figure 2.11.

Figure 2.11: Flow Logic Specification

It is possible to specify Flow Logic specifications at different levels of abstrac-
tions, just as semantic specifications can be ”small step” and ”big step”. There
are two sets of styles for presenting Flow Logic specifications: abstract versus
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compositional, and succinct versus verbose. A compositional specification is
syntax-directed and is closer to an implementation than the succinct, like the
succinct is closer to the semantics of the language.

Flow Logic specifications can be used to generate analysis estimates. The
implementations generate constraints and then a constraint solving algorithm
solves these constraints and calculates a analysis estimate. Figure 2.12 gives an
overview of this procedure.

Figure 2.12: Using a Flow Logic Specification to Generate an Estimate

We provide Flow Logic specifications for our analysis but we do not use them to
generate constraints and solve them. We have decided to produce our analysis
results using graph-based algorithm and consider the implementation of con-
straint based solver to be future work. We refer to [13, 8] for more details on
the Flow Logic framework.



Chapter 3

The Insider Framework

This chapter describes our own work on analyzing the insider problem. We will
follow closely the method as described in [16] and this section contains pieces
from the original work as well as extensions to the original work. The goal
of this section is to analyze and design an implementable framework for doing
insider analysis. The first version of the framework we will extend [16] such that
data can be used as keys, and data has security annotations. We will also add
actions to encrypt and decrypt data.

3.1 Framework Requirements

Our goal is to be able to analyze insider-threats in real-world systems. The sys-
tem model should contain interconnected localities, actors that can move around
in the localities and perform actions, and data that can be moved around and
exchanged between actors. We would like to have some kind of access-control
mechanism to limit the mobility of actors and to control the access to data.
The system model should be high-level and easy to describe and understand for
people with limited process calculus knowledge.

We are interested in two kinds of insider analyses, an analysis of the spatial
structure of a system and an analysis that reconstructs sequences of actions
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based on log files recorded in the system. It should thus be possible to log each
access-control check in the system. When a system is modeled, access control
points should be marked if they should leave an entry in the log or not. We
will not focus on the logging of access-control points in the first version of our
framework, but add it to the framework in Chapter 4. First we want to focus
on actors exchanging information, e.g. if two actors are in the same room they
could possibly exchange some information, even knowledge of keys that can be
used to encrypt and decrypt data or access locations.

Finally we would like to implement a tool that can take a system specification
as an input and perform the desired analysis on it and report any insider threats
that can be found. The tool should also be able to take a log file as input and
use the log file to reconstruct a sequence of actions that possibly took place in
the system.

3.2 Insider Framework

We have chosen an approach that is similar to the approach taken in [16], i.e.,
to map a specification of an abstract, high-level system to a process calculus
program and then run the analysis on the program. The process calculus we
use is insCalc which is inspired by acKlaim. The reason for the mapping is that
insCalc has a formal semantics that is used to specify the analysis. Our approach
is more detailed than in [16] as we want do describe an implementable way of
performing insider analysis. The sequence of actions (pipeline) for performing
insider analysis is shown in Figure 3.1.

Figure 3.1: Sequences of actions during insider analysis

The term insider framework is used for the collection of technologies used in
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analyzing the insider problem and it consists of the following elements:

• An abstract system model: An abstraction used to model the systems
we want to analyze as mathematical objects,

• Syntax for specifying the abstract systems,

• Syntax of the insCalc process calculus,

• A mapping from abstract systems to insCalc programs: A formal
mapping of abstract system models to insCalc,

• Semantics of the insCalc process calculus,

• Analysis of systems: Analysis that finds insider threats in the systems,

• Implementation of a system: A tool for analyzing models for insider
threats.

3.3 Running Example

To make the discussion more concrete, new concepts will be demonstrated by
a running example system. The running example is inspired by [16] and is
shown in Figure 3.2. The system consists of four physical locations, a janitor’s
workshop, an user office with a computer and a waste basket, a printer room
with a printer, computer and waste basket, and finally a hallway interconnecting
the locations. The computers and the printer are connected, so the computers
can send data to the printer and between each other. There are two actors in
the system, a user and a janitor. Initially they are located in the office and
in the janitor’s workshop respectively. The actors in the system should have
to log into the computer, this constraint is modeled in Figure 3.2 by a lock on
each computer in the system. For security reasons there are cipher-locks on
the entrance of the office and printer room, and each user has to know some
PIN-code to be able to access these rooms. The janitor’s workshop is locked
with a ”normal” lock, modeled in Figure 3.2 with a lock on the door. The
janitor should have a key to open his own workshop, and the user should have a
PIN-code to access the office and the printer room. Data in this example could
be data coming from the printer, or lying in the waste basket. The janitor also
has the PIN-code to enter the printer room, but we assume that he is ”trusted”
to not go to the printer room unless there is something broken; e.g., a new toner
needed for the printer or a light bulb broken.
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Figure 3.2: The running example

3.4 Abstract systems

The first element in the insider framework is the abstract system model. We
define the model as a collection of mathematical constructs for creating an
abstraction of real-world systems. The reason for defining these mathematical
constructs is that we are going to need them later when we specify the semantics
of insCalc, our variation of the acKlaim calculus. The mathematical objects are
also convenient for an internal representation of our system when implementing
a tool for insider analysis.

The abstract system models real-world systems, e.g., with physical localities,
interconnected computers, actors that can move around in the physical localities,
and data that can be carried by actors or left at both computers or physical
localities. It should be possible for actors to exchange data. On top of this there
is a fine-grained access control mechanism that limits the mobility of actors, and
protects sensitive data. In the abstract system there is no means for explicit
movement of actors, but only a means of specifying what the initial structure
of the system looks like. That is, an abstract system specifies where actors are
located, where data is located, how locations are interconnected, and access
control in the system but there is no way to specify that an actor should move
to another location or do anything else.
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There is not much difference in our definitions from [16], but we will repeat the
definitions here for completeness. The first part of the system is an infrastruc-
ture, which is a directed graph that models the spatial structure of the system.
The graph is modeled as a set of nodes that represents locations and a set of
directed edges that represents connections.

Definition 3.1 (Infrastructure, Locations, Connections) (Loc,Con) rep-
resents an infrastructure, which is a directed graph, where Loc is a set of nodes
representing locations, and Con ⊆ Loc × Loc is a set of directed edges be-
tween nodes representing connections between locations. nd ∈ Loc is reach-
able from ns ∈ Loc, if there is a path π = n0, n1, n2, . . . , nk with k ≥ 1 and
ns = n0, nk = nd and ∀i 0 ≤ i ≤ k − 1 : ni ∈ Loc ∧ (ni, ni+1) ∈ Con.

Actors are the active entities in the system and can move along edges between
nodes. Actors model persons moving around in physical locations, or computer
programs that migrate from one network location to the next. We therefore say
that actors move in a particular domain, and we typically make a distinction
between the ”physical domain” and the ”digital domain”. PC’s are at the
boundary between these two domains, as an actor could start a program on a
computer that then migrates to another computer using the underlying network.
Actors cannot, of course, move across domains boundaries, but data can do so
as it might be uploaded to a computer, read from a screen or printed out. Data
can be located at locations and actors. It can be produced, picked up, and read
by actors.

Definition 3.2 (Actors, Domains) Let I = (Loc,Con) be an infrastructure,
Actors be a set. An actor α ∈ Actors is an entity that can move in I. Let Dom
be a set of unique domain identifiers. Then D : Loc → Dom defines the domain
d for a node n, and D−1 defines all the nodes that are in a domain. Finally
G : Actors → Loc defines the location at which each actor is located.

Definition 3.3 (Data) Let I = (Loc,Con) be an infrastructure, Data be a set
of data items, and α ∈ Actors an actor. A data item d ∈ Data represents data
available in the system. Data can be stored at both locations and actors, and
K : (Actors ∪ Loc) → P(Data) maps an actor or a location to the set of data
stored at it.

Access control is modeled with a set of capabilities and restrictions that restrain
the mobility of the actors and protects sensitive data. Capabilities are associated
with actors, and restrictions are associated with locations and data. Capabilities
of an actor is something that enables him to get access to data or locations.
Restrictions of data and locations are policies that limit access to the resource.
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Definition 3.4 (Capabilities and Restrictions) Let I = (Loc,Con) be an
infrastructure, Actors be a set of actors, and Data be a set of data items. Cap is
a set of capabilities and Res is a set of restrictions. For each restriction r ∈ Res,
the checker Φr : Cap → {true, false} checks whether the capability matches the
restriction or not. C : Actors → P(Cap) maps each actor to a set of capabilities,
and R : (Loc ∪ Data) → P(Res) maps each location and data item to a set of
restrictions.

Finally, we define a system which includes all the elements in Definition 3.1
through Definition 3.4.

Definition 3.5 (System) Let I = (Loc,Con) be an infrastructure, Actors a set
of actors in I, Data a set of data items, D : Loc → Dom a mapping from locations
to domains, Cap a set of capabilities, Res a set of restrictions, C : Actors →
P(Cap) a mapping from actors to capabilities, R : (Loc ∪ Data) → P(Res) a
mapping from actors and locations to restrictions, G : Actors → Loc a mapping
from actors to locations and for each restriction r, let Φr : Cap → {true, false}
be a checker. Then we call S = 〈I,Actors,Data,D,G, C,R,Φ〉 a system.

3.5 Access Policies

In the abstract system, access control is modeled by a set of capabilities and
a set of restrictions. We now specify what the access policies and restrictions
should look like. The definitions presented in this chapter are a part of the
insCalc syntax presented in Section 3.7.

We want to limit the access of actors to locations and data. This means that
a location or datum has to explicitly grant access to an actor in order for the
actor to perform actions on the datum or in the location. There are six different
access modes (i, r, o, e, m, d) corresponding to the actions destructive read a
tuple or pickup a tuple, non-destructive read a tuple, output a tuple or produce a
tuple, remote evaluate a tuple, move, and decrypt data. These modes are similar
to the modes in the original work on the insider problem, but we have removed
the new location, as we do not want to model actors creating new locations in
the system, and added the move and the decrypt access mode. The reason we
removed the new location is that it does not seem realistic that actors go around
and create new locations, locations are a static part of real-world systems. The
first five access modes apply to locations only, and the last one is intended for
data only. We do not have an access mode for encryption as we do not find it
realistic that a datum could make such a restriction on itself.
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The access to locations and data can be granted in three different ways, based
on:

• Where an actor is (the location the access request is coming from),

• Who the actor is (based on the actor that is performing the access re-
quest),

• What the actor knows (based on an actors knowledge of a secret, e.g., a
key).

π` ⊆ LocAccMode = {i, r, o, e,m}
πδ ⊆ DataAccMode = {d}

κ ⊆ Data = {data used as keys}
δ ∈ LocPolicy = (Loc ∪ Actors ∪ Data ∪ {∗}) → P{LocAccMode}
ρ ∈ DataPolicy = (Loc ∪ Actors ∪ Data ∪ {∗}) → P{DataAccMode}

Figure 3.3: Access control in the abstract system

Figure 3.3 shows the set of access modes for both locations and data and how
policies are defined. The special element * allows to specify a set of access modes
that are allowed by default. The Data element in LocPolicy and DataPolicy is
used to model keys, so there is no distinction between data and keys. As soon
as an actor picks up, reads or outputs a datum, it will be available to him as
a capability. This is different from [16], where there was a special domain for
keys and keys where fixed for each actor. There are two sets of access policies
one for locations, LocPolicy, and one for data, DataPolicy.

Locations define access policies to limit the movement of actors or protect access
to data. The access modes in the set LocAccMode are intended to be used for
specifying access policies for locations only. The location defines a policy that
explicitly allows actors, locations, or data access to the location and its data.
The r access mode is used to allow that data within the location can be read,
this would be an obvious choice for data that is written on a blackboard or data
that cannot move away from the location. If data can be moved, the i access
mode is a better choice. It may seem strange at first that a location could grant
a key access to read or pick up data, but imagine a vault that contains data and
is protected with a PIN-code. The policy for the vault would be something like

{PIN CODE : i, r}

Anyone with the knowledge of the PIN-code is allowed to open the vault and re-
trieve the data. The o access mode is used to allow output of data at a location.
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Most locations would probably allow a actor to output data, but a computer or
a terminal that is only used to display data might not allow anyone to insert
new information. The e access mode is used to allow actors to spawn a new
process in the system, and the m access mode controls the movement of actors
into the location. Locations that model, for example, PC’s and other devices
would not allow actors to move into them, but only to retrieve data from them.

Access policies for data are the modes in the DataAccMode set. Currently there
is only one mode in the set. Once an actor has picked up or read data, he is
free to move around with that data, so the only restriction the data can impose
is encryption. It does not make sense to have the other access modes for data
access. An access policy for data ρ can limit access to it by requiring the actor
to be at a specific location. That may seem strange at first, but imagine that
we want to model a decryption device that must be given encrypted data and
can then output the original data. In this case it makes perfect sense to model
this with a location restriction.

3.6 System Specification Language

The abstract system specification described in Section 3.4 is not well suited for
implementation (as it is a collection of mathematical definitions), thus we need
to define some kind of language for specifying systems. The language will make
it possible for the one implementing the framework to parse a specification writ-
ten in the language, and create an internal representation of systems, similar to
the definitions in Section 3.4.

This section presents a language for specifying systems. Although an abstract
specification will be mapped to an insCalc program, the syntax of the language
should be as close to the abstract specification as possible but not like insCalc.
The reason for this is that the user designing the system abstraction should not
have to know anything about insCalc in order to use the analysis tool. The
syntax of the specification language is given in Figure 3.4 and Figure 3.5.

Like the specification from Section 3.4 a system is composed of four major
syntactic categories: locations, connections, actors, and data. Locations consists
of a location name along with a list of restrictions that the location makes on
actions performed on it. Each restriction is a name (location, actor, data, or
star) and a list of actions that the name is allowed to perform at the location.
Each location also specifies the domain it is member of. The domain is simply a
name and must of course not conflict with names used for other purposes. The
list of locations is not allowed to be empty as any interesting system must have
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Spec ::= locations:Locations;
connections:Connections;
actors:Actors;
data:Data; specification

Locations ::= Location a single location
| Location, Locations a list of locations

Location ::= Loc{LocPolicyList}(Names) a location

LocPolicyList ::= ε empty policy list
| Policy a single policy
| Policy;LocPolicyList a policy list

Policy : ::= Names : LocAccList
| * : LocAccList

LocAccList ::= ε empty access list
| LocAccMode a single access mode
| LocAccMode;LocAccList an access mode list

LocAccMode ::= i destructive read
| r non-destructive read
| o output a datum
| e spawn a process
| m move

Figure 3.4: System Specification Language, part I

at least one location. The list of restrictions for a location, however, is allowed to
be empty on a location and the empty meaning that no restrictions are imposed
on the access of that location, written as: MyLocation{}. To model that no
access is allowed by anyone, the list of access modes should be left empty as in
MyLocation{*:}.

Connections are specified with a right-pointing arrow from a location A to an-
other location B meaning that there is an edge from A to B. The connections
are only in one direction not both directions. Both the locations in a connection
must be defined for the connection to be well-formed.

Actors is a list of actor names and the name of the location they are located
at initially. The set of actor names must be disjoint from the set of location
names for the specification to be well-formed. The location at which an actor
is located must be previously defined in the list of locations.
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Connections ::= ε empty connection list
| Connection a single connection
| Connection, Connections a list of connections

Connection ::= Loc->Loc a one way connection

Actors ::= ε empty actors list
| Actor a single actor
| Actor,Actors a list of actors

Actor ::= Actors@Loc an actor at a location

Data ::= ε empty data list
| Datum single piece of datum
| Datum,Data data list

Datum ::= Data{DataPolicyList}@Loc data at a location
| Data{DataPolicyList}@Actors data at an actor

DataPolicyList ::= ε empty policy list
| DataPolicy a single policy
| DataPolicy;DataPolicyList a data policy list

DataPolicy : ::= Names : DataAccMode
| * : DataAccMode

DataAccMode ::= ε empty access
| d decrypt

Figure 3.5: System specification language, part II

Data is a list of data elements annotated with access restrictions and information
on where they are located (either at an actor or at a location). The structure
of the data is one-dimensional, a single string. This could be extended to a
more complex tuple structure with nested tuples and so on, but we decided to
keep the data format simple, for ease of presentation, as complex data does not
give a more detailed analysis result. The same rules apply for the policies of
data as well as the policies of locations. If the list of restrictions is empty the
datum is assumed to be public, and if the list of access modes is empty for the *
element, the datum is unreadable for every actor in the system. The only access
restriction there is for data is decryption. Any actor is free to pick up or read
data (as long as he has location access to it) but to get the information that the
data holds he will have to have the necessary access to be able to decrypt it.
An actor can of course only pick up or read data that is located at a location,
not data that another actor holds.
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locations: HALL{*:m}(phys), JAN{key1:m}(phys),
OFF{1234:m}(phys),
SRV{4321:m}(phys), WASTE{SRV:i,r,o}(phys),
PC1{PC2:e; pass:e,i,r,o}(dig),
PC2{PC1:e; pass:e,i,r,o}(dig),
PRT{PC1:o; PC2:o; SRV:i,r}(dig);

connections: HALL->JAN, JAN->HALL,
HALL->OFF, OFF->HALL, HALL->SRV,
SRV->HALL, OFF->PC1, SRV->PC2,
SRV->WASTE, SRV->PRT, PC1->PC2,
PC2->PC1, PC2->PRT, PC1->PRT;

actors: USER@OFF, JANITOR@JAN;
data: 1234{}@USER, key1{}@JAN, 4321{}@JAN,

4321{}@USER, pass{}@USER;

Figure 3.6: The running example modeled in the system specification language

Figure 3.6 shows the running example specified in the syntax just described. The
specification is much more detailed than the initial system viewed in Figure 3.2,
as it shows which restrictions each location, and data imposes. The normal key
lock for the janitor’s workshop is controlled by a key that the janitor currently
holds and the cipher lock for the office is controlled by a PIN-code that the user
has. There is also a PIN-code for the printer room and both the janitor and the
user hold the PIN-code to this location. The m mode is used to model migration
or movement of actors, so HALL{*:m} means that every actor is allowed to move
to the hall. Both the PCs are protected by a password that only the user knows,
so that only the user in the system can log on them, but not the janitor. The
four data elements in the system, 1234, key1, 4321, and pass are all public and
are used as keys. The example can now be visualized as shown in Figure 3.7.

3.7 insCalc Syntax

In the previous sections we have described what systems should look like, and
using the systems specification language it should be easy to model those sys-
tems. We now move our attention to the insCalc process calculus, as we want
to map the abstract systems to insCalc analyse on the generated programs.
The syntax of insCalc is similar to acKlaim, but it has a more simple pattern
matching mechanism and some different actions.
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Figure 3.7: The running example as a graph

The syntactic categories are the same as for the Klaim family, i.e. localities,
nets, processes, and actions.

Localities can be a name or a locality variable. The locality variable can be used
to communicate a name of a location between actors, e.g., actors could decide to
meet at a given location and one of the actors communicates that to the other
actor by giving him a name of a location. Actors communicate by outputting
data, picking data up, or reading it.

Nets are a collection of nodes that represent the localities in the system. A
system is modeled by a net with nodes that hold either a process or a datum.
If a node has a non-nil process, the process is tagged with a name and a tuple
of data that can be used as keys. If the node contains a datum, the datum is
tagged with a security policy that restricts access to it. A locality containing
the nil process models a location with no actor and no data. It is not possible
to model the spatial structure of a system with the syntax of nets, and in the
semantics the spatial structure is assumed to be specified separately.

Processes are the active computational units of insCalc and they have the same
structure as in acKlaim. Processes execute by performing sequences of actions.
Processes run concurrently at the same location or at different locations in the
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system. A process can be the nil process that does nothing, or a sequence of
actions built up from the nil process. A process can be the composition of two
or more processes and can contain an invocation to a named process definition.
There is no way to specify process equations, and thus define a process definition,
with the syntax given in Figure 3.8, these equations are assumed to be available
to the semantics.

There are seven actions available. The out action produces a tuple and places it
at a given location. The in action destructively reads a tuple from the specified
location. The read action reads a tuple from a location in a non-destructive
manner. The location accessed by out, in and read is the current location of
the actor, or one of its neighbor-locations. As a result an actor cannot magically
output, read, or take a datum from a location that is not ’close’ to him. The
eval action is used to spawn new processes in the digital domain. Programs or
human actors can spawn a new process that runs in the digital domain. The
movement of actors is realized by the move action, that moves the actor to the
specified location.

It should not be possible for actors, in the physical domain, to perform the eval
action in the physical domain but only from the physical domain to the digital
domain. Actors in the digital domain should likewise not be able to perform the
eval action from the digital domain to the physical domain but only within the
digital domain. It should not be possible for any actor to move across domains,
but only in his current domain. That way programs executing on computers can
move themselves to another computer and resume execution and actors in the
physical domain can move to new locations. These constraints will be enforced
by the semantics.

The encrypt and decrypt actions are special actions that an actor can perform
to encrypt and decrypt data. Any data can be encrypted as long as the actor
has access to the data. We do not allow already encrypted data to be encrypted
again, and thus create a chain of encryption on the data for technical reasons.
As described in the abstract system, R maps a location or data to its set of
security restrictions, and to model the chain of encryption this mapping needs
to be more flexible. The set of security restrictions would have to be a list of
security restrictions where the ordering of restrictions would matter. We will
not try to solve this problem in this version of the framework but see this as
future work.

Decryption is only possible if the data allows the actor to perform the decryp-
tion, either through his location, his identity, or his keys. As mentioned before
decryption is the only access restriction a datum can make, as data can be
picked up and moved by any actor if the location gives the required access.
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The second part of the syntax is shown in Figure 3.9. Formal fields are variables
with an exclamation mark, and template fields can be formal fields, or tuple
fields. The formal fields (written as !x or !u) are used to bind variables to values.
The formal fields can be used with the in, read, encrypt, and decrypt actions,
and the use of them denotes that the actor ”consumes” some data without
knowing what it is. Tuple fields are locations, location variables, or expressions.
Expressions can then be values or data variables.

` ::= LOCALITIES
l locality

| u locality variable

N ::= NETS
l ::δ [P ]〈n,κ〉 single node with a named process

| l ::δ [nil] anonymous node with an empty process
| l ::δ 〈ef ρ〉 located tuple
| N1 || N2 net composition

P ::= PROCESSES
nil null process

| a.P action prefixing
| P1 | P2 parallel composition
| A process invocation

a ::= ACTIONS
out(t)@` output

| in(T )@` input
| read(T )@` read
| encrypt(t, ρ, F ) encryption
| decrypt(t, F ) decryption
| eval(n, P )@l spawning of new programs
| move(l) movement of processes

Figure 3.8: Syntax of localities, nets, processes, and actions.

F ::= !x | !u formal fields
T ::= F | t template fields
t ::= e | ` fields

ef ::= V | l evaluated field
e ::= V | x | . . . expressions

Figure 3.9: Syntax for template fields and fields.
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3.8 Mapping Abstract Systems to insCalc

In this section we define how specifications in the specification language can
be mapped to insCalc programs. The procedure is simple; we simply iterate
over each location defined in the locations section of our specification and
create a new process node in the resulting net. Each node gets the same name
and access control attribute as in the specification language and an anonymous
nil process. At the locations where an actors is present the process will be a
process variable that is named with the name of the actor and has the actors keys
available. There is no way to specify the spacial structure of a system with the
insCalc syntax so we cannot map the connections of the specification language to
anything useful. In a program implementing the insider framework the abstract
system will be constructed by parsing the specification. Our running example
expressed in the system specification language is given in Figure 3.10, and is
mapped to a insCalc program as listed in Figure 3.11.

locations: HALL{*:m}(phys), JAN{key1:m}(phys),
OFF{1234:m}(phys),
SRV{4321:m}(phys), WASTE{SRV:i,r,o}(phys),
PC1{PC2:e; pass:e,i,r,o}(dig),
PC2{PC1:e; pass:e,i,r,o}(dig),
PRT{PC1:o; PC2:o; SRV:i,r}(dig);

connections: HALL->JAN, JAN->HALL,
HALL->OFF, OFF->HALL, HALL->SRV,
SRV->HALL, OFF->PC1, SRV->PC2,
SRV->WASTE, SRV->PRT, PC1->PC2,
PC2->PC1, PC2->PRT, PC1->PRT;

actors: USER@OFF, JANITOR@JAN;
data: 1234{}@USER, key1{}@JAN, 4321{}@JAN,

4321{}@USER, pass{}@USER;

Figure 3.10: The Running Example Modeled in the System Specification Lan-
guage
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HALL ::〈∗→m〉 [nil] ||

JAN ::〈key1→m〉 [J]〈JANITOR,{key1,4321}〉 ||

OFF ::〈1234→m〉 [U]〈USER,{1234,4321,pass}〉 ||

SRV ::〈4321→m〉 nil ||

WASTE ::〈SRV→i,r,o〉 [nil] ||

PC1 ::〈PC2→e;pass→e,i,r,o〉 [nil] ||

PC2 ::〈PC1→e;pass→e,i,r,o〉 [nil] ||

PRT ::〈PC1→o;PC2→o;SRV→i,r〉 [nil]

Figure 3.11: The Running Example in insCalc

3.9 Semantics of insCalc

3.9.1 The Congruence Relation

The operational semantics of insCalc are given as a structural congruence on
nets and processes and with a reduction relation over nets. The structural
congruence ≡ identifies, which nets intuitively represent the same net. The
structural congruence relation which simplifies presentation of the semantics
and the reasoning about processes is defined in Figure 3.12

(Com) N1 || N2 ≡ N2 || N1

(Assoc) (N1 || N2) || N3 ≡ N1 || (N2 || N3)

(Abs) l ::δ [P ]〈n,κ〉 ≡ l ::δ [(P | nil)]〈n,κ〉

(Inv) l ::δ [A]〈n,κ〉 ≡ l ::δ [P ]〈n,κ〉 if A
4
= P

(Clone) l ::δ [(P1 | P2)]〈n,κ〉 ≡ l ::δ [P1]〈n,κ〉 || l ::δ [P2]〈n,κ〉

(Anonym) l ::δ [nil] ≡ l ::δ [nil]〈ε,∅〉

Figure 3.12: Structural Congruence on Nets and Processes.

The (Com) rule says that the order in which nodes in a net are presented does
not matter. The net does not define any explicit spatial structure of the net,
and thus the order of nodes in a net is irrelevant. The rule is the commutative
law for nodes in a net. The (Assoc) rule says that || is associative, that we
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can group nodes in anyway we want without creating a different net. The (Abs)
says that we can safely append the nil process to any process P and not result
in a different net. The (Inv) says that a process name A can be substituted
out for the body of the process definition, if there exists a process definition for
A. Thus an invocation of a process definition results in the body of the process
definition getting substituted out for the process variable. The (Clone) rule
says that a single process with two concurrent running parts at a single node
can be split into two nodes, running each part separately. This will intuitively
not create a different net, as the two process parts will be running at the same
location as before, with the same access restrictions. The (Anonym) rule says
that the anonymous nil process can be substituted out for a named nil process
with an empty name and an empty set of keys. The rule basically says that the
anonymous nil construct is ”syntactic sugar” for a named nil process with an
empty name and an empty set of keys.

3.9.2 The Reference Monitor

Access control is enforced by a reference monitor that is embedded in the oper-
ational semantics of the calculus. The reference monitor checks that access to
data and localities is in accordance with the access policy of the data or locality.
The reference monitor is defined in Figure 3.13 and Figure 3.14.

(1)

grant : Names× Loc× P(Data)× AccMode× Loc× LocPolicy →
{true, false}

grant(n, l, κ, a, l′, δ′) =

 true if δ′ = ∅ ∨ a ∈ δ′(n) ∨
a ∈ δ′(l′) ∨ ∃k ∈ κ : a ∈ δ′(k)

false otherwise

(2)

l = l′ ∨ ∃(l, l′) ∈ Con

〈I, n, κ〉 � (l, l′)

(3)

grant(n, l, κ, a, l′, δ′) ∧ 〈I, n, κ〉 � (l, l′)
〈S, n, κ〉 ; (l, l′, a)

Figure 3.13: Reference Monitor for Access Control, Part I
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(4)

decrypt : Names× Loc× P(Data)× Loc× Data → P(Data)

decrypt(n, l, κ, etρ) =


{et∅} if ρ = ∅ ∨ d ∈ ρ(n) ∨ d ∈ ρ(l) ∨

∃k ∈ κ : d ∈ ρ(k) ∨
∃l′′ ∈ {l′ | (l, l′) ∈ Con ∧ d ∈ ρ(l′)}

∅ otherwise

(5)

encrypt : Names× Loc× P(Data)× Data → P(Data)

encrypt(n, l, κ, etρ, ρ′) =
{
{etρ′} if decrypt(n, l, κ, etρ) = {et∅}
∅ otherwise

Figure 3.14: Reference Monitor for Access Control, Part II

The predicate grant takes an actor n, a location l where the actor is located, a
set of keys κ, the action a that the actor wants to perform, the location l′ that
the actor wants to perform the action on, and the access policy of that location
as parameters. It only answers the question whether the actor has access to a
specific location l′ but does not take into account if the actor can actually reach
the location l′ from his current location l. The type of the a is LocAccMode as
defined in Figure 3.3. The grant function is used to define the judgements ;

and �.

The � judgement specifies the conditions that must hold for an actor to be able
to reach a location l′ from l. The actor must be either at the location l′ or in
one of the neighboring location to l′. The ; judgement is then the reference
monitor for location access, it specifies the conditions that need to hold for an
actor n to be able to perform the action a in location l′ when he is located at
l. The conditions that must hold are that the actor is located in a neighboring
location to l′ and have access to perform the action a on the location l′. This
distinguishes the reference monitor for insCalc from the one used in [16]. In
the semantics in [16] the actors could magically perform actions on any location
they could reach, and the movement of actors was implicit. We have decided to
make the movement explicit, so an actor cannot perform an action on a location
l unless he is located at the location or in a location that has an edge from the
current location to l.

The decrypt function specifies the conditions that must hold for an actor n
located at location l holding a set of keys κ to be able to decrypt the data et
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which is encrypted by ρ. The function returns the decrypted data, i.e., the data
without any access restrictions attached to it, if access is granted, and the empty
set otherwise. The function decrypt is applied to data that is currently located
at an actor, data at other actors or locations cannot be decrypted. The decrypt
function checks if either the name of the actor, his location, one of the adjacent
locations, or any one of his keys have access to the given data. It also checks
if ρ is the empty set, as the empty security annotation means that the data is
public.

The encrypt function specifies the conditions that must hold for an actor n
located at l with keys κ to be able to encrypt the data etρ with a new key ρ′.
As mentioned before we have decided that the actors can only encrypt public
data, but not create a chain of encryptions on a datum. The encryption function
thus checks to see if the actor is allowed to decrypt the data, and if he is able to
do that the security annotation ρ is replaced with the new one ρ′. The function
thus makes an implicit decrypt before it encrypts the data with a new key.

3.9.3 The Reduction Relation

The operational (small-step) semantics [12] for insCalc is presented in Fig-
ure 3.15 and Figure 3.16, and we now comment the semantic judgements. The
judgements all have the form S ` N1 7−→ S ′ ` N2, where S is the abstract sys-
tem presented in Section 3.4. The reference monitor part of each rule is located
inside a box. Each judgement small-steps evaluates a net, and produces another
net. For the in, read, encrypt, and decrypt actions only data that match
the input templates are read. The matching is formalized in Figure 3.17. The
match function produces a substitution that is used in the semantic judgements.

The (OUT) rule says that if an actor, located at l, performs the out action
in location l′ the datum will be added to the tuple space of l′, if the following
conditions hold:

• the location l′ must exist in the abstract system,

• the security annotation of l′ is δ′,

• t evaluates to etρ,

• the actor n has the required access to perform the out operation on the
location l′. The ; relation ensures that the actor is either located at
location l′ or in a neighboring location.
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(out)

l′ ∈ Loc R(l′) = δ′ [[t]] = etρ 〈S, n, κ〉 ; 〈l, l′, o〉 K′ = K[l′ → K[l′] ∪ {etρ}]

S ` l ::δ [out(t)@l′.P ]〈n,κ〉 �−→ S ′ ` l ::δ [P ]〈n,κ〉 || l′ ::δ
′
〈etρ〉

(in)

match([[T ]], etρ) = σ 〈S, n, κ〉 ; 〈l, l′, i〉
K′ = K[l′ → K[l′] \ etρ, n → K[n] ∪ {etρ}]
S ` l ::δ [in(T )@l′.P ]〈n,κ〉 || l′ ::δ

′
〈etρ〉 �−→

S ′ ` l ::δ [Pσ]〈n,κ∪{etρ}〉 || l′ ::δ
′
[nil]

(read)

match([[T ]], etρ) = σ 〈S, n, κ〉 ; 〈l, l′, r〉 K′ = K[n → K[n] ∪ {etρ}]

S ` l ::δ [read(T )@l′.P ]〈n,κ〉 || l′ ::δ
′
〈etρ〉 �−→

S ′ ` l ::δ [Pσ]〈n,κ∪{etρ}〉 || l′ ::δ
′
〈etρ〉

(encrypt)

encrypt(n, l, κ, [[t]], ρ) = {etρ} match([[F ]], etρ) = σ R′ = R[et → ρ]

S ′ ` l ::δ [encrypt(t, ρ, F ).P ]〈n,κ〉 �−→ S ′ ` l ::δ [Pσ]〈n,κ∪{etρ}〉

(decrypt)

decrypt(n, l, κ, [[t]]) = {et∅} match([[F ]], et∅) = σ R′ = R[et → ∅]

S ` l ::δ [decrypt(t, F ).P ]〈n,κ〉 �−→ S ′ ` l ::δ [Pσ]〈n,κ∪et∅〉

Figure 3.15: Operational Semantics for insCalc, Part I

The rule uses the elements of S to verify the conditions and outputs a new
datum node at l′ if the conditions hold. The out action does not add a security
annotation to the data, but assumes that the actor has used the encrypt action
to specify the security restrictions. The K component of S, which is the mapping
of locations to data, is also updated by the rule in such a way that the data is
added to the set of data at l′. The S ′ in the result reflects that the K component
of S has been updated.

The (IN) says that an actor performing the in action reads and removes data
from a location l′. The template T is used as a pattern to find which data at l′

to retrieve. The match function creates a substitution, and the retrieved data
will be substituted out for the reference to it in the resulting process. The actor
will of course have to have access to perform the in action, and the rule uses the
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(move)

l′ ∈ Loc R(l′) = δ′ Dom(l) = Dom(l′) 〈S, n, κ〉 ; 〈l, l′,m〉 G′ = G[n → l′]

S ` l ::δ [move(l′).P ]〈n,κ〉 �−→ S ′ ` l ::δ [nil] || l′ ::δ
′
[P ]〈n,κ〉

(eval)

l′ ∈ Loc R(l′) = δ′ Dom(l′) = digital 〈I, n, κ〉 ; 〈l, l′, e〉 n′ 6∈ Actors

S ` l ::δ [eval(n′, Q)@l′.P ]〈n,κ〉 �−→ S ′ ` l ::δ [P ]〈n,κ〉 || l′ ::δ
′
[Q]〈n

′,κ〉

(par)

S ` N1 �−→ S ′ ` N ′
1

S ` N1 || N2 �−→ S ′ ` N ′
1 || N2

(struct)

N ≡ N1 S ` N1 �−→ S ′ ` N2 N2 ≡ N ′

S ` N �−→ S ′ ` N ′

Figure 3.16: Operational Semantics for insCalc, Part II

match(V, V ) = ε match(!x, V ) = [V/x]

match(u, u) = ε match(!u, `′) = [`′/u]

Figure 3.17: Semantics for template matching.

reference monitor semantics to check that the actor is in a neighboring location,
and that he has access to perform the in action on that location. When data is
removed from the location l′, the K component of S is updated to reflect that
the data has moved, and is now with the given actor. As the data node at l′

is removed from the net, an anonymous nil process is left at the location l′ to
ensure that the location does not disappear. This could happen if the data node
was the only node defined for the location, and that would make it disappear
from the net if we did not create a new node for it. Even though an actor has
”consumed” data using the in rule, it does not mean that he can decrypt it
and understand it. Although the user cannot understand the datum, it is added
to his key set. When the user performs a successful decrypt action on the
encrypted datum the decrypted datum, it will be available as a key to him and
added to his key set κ.

The (READ) rule is the semantic rule for the read action. An actor performing
the read action non-destructively reads data that is located at some location.
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The match function creates a substitution matching some template T that the
actor provides, and the substitution is applied on the remaining process. The
actor n performing the read action on location l will of course have to have
access to perform the read on l, and this condition is checked using the reference
monitor semantics. If the template is successfully matched and the actor has
the proper access, the datum etρ is added to the actor’s key set, and the K
component of S is updated. The datum is not removed from the location, so
the location node is left unchanged in the resulting net. As with the (IN) rule,
the actor is not guaranteed to be able to understand the read datum.

The encrypt action takes three arguments, a template field t, an access policy
ρ, and a formal F. The action will try to put the access policy ρ on t and
return the result to F. The (ENCRYPT) rule uses the encrypt function from
the reference monitor semantics to perform the encryption, and if it is successful
a substitution is created and applied to the remaining process. The R part of S,
which is the mapping of data to its access policy, is updated to the new access
policy ρ and the encrypted datum is added to the actor’s key set. The reference
monitor semantics will ensure that only data, which the actor has access to, can
be encrypted, so the actor cannot ”steal” data that is not intended for him. The
actor will neither be able to encrypt already encrypted data, the policy on the
data will be substituted for a new policy if the actor has the proper access.

The (DECRYPT) rule describes the semantics for the decrypt action. An
actor performing the decrypt action will only succeed if he has the necessary
access to the datum. Decryption of data will strip of all access restriction on
the data which will be added to the actor’s key set and become usable as a
key. If the decrypt function from the reference monitor semantics is successful,
it will return the datum without any security policy. A substitution will be
generated that substitutes all references to the decrypted data with its value in
the resulting process. The R component of S is updated in such a way that the
policy for et is the empty set.

For the actions move and eval rules there are two integrity checks that the
semantics must enforce when an actor is performing either move or eval. The
first check is that an actor can only move in one domain, never across domain
borders, as this would enable ”human” actors to become programs and computer
programs to become human. Both actors in the digital and the physical domain
are only allowed to move to another location within their domain. The second
check is that a new process/actor that is spawned by the eval action must be
located at the digital domain. Both computers and human actors can spawn
new processes, but all new processes must run on computers.

The (MOVE) rule describes how processes can move between locations in one
step. We have defined the reference monitor in such a way that actions can only
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be done on the current location of an actor or an adjacent location. This also
applies for the move action. For an actor n to be able to move to location l′

the following conditions must hold:

• the location l′ must exist in the set of nodes Loc,

• the access policy for l′ is δ′,

• the current domain of the actor l must be the same as the domain of l′,

• the actor must have access to move to l′ and be able to do so in one step.
The reference monitor rule ; will take care of these two conditions.

If all of these conditions hold, the G component of S, which is the mapping of
actors to locations, is updated to reflect that n is moved to l′. In the resulting
net an anonymous nil process is left at location l to ensure that the location
does not disappear from the net, as the process that moved could have been
the only element at the location. The process that moved will then continue
evaluation at l′.

The (EVAL) rule describes how to spawn new processes in the digital domain.
We have decided that new processes can only be created in the digital domain
to model the execution of programs. Actors in the digital domain and in the
physical domain can spawn new processes but the new location of the new
process has to be the digital domain. The following conditions must hold in
order for a process to be able to start a new process at a location l′

• the location l′ must exist in the set of nodes Loc,

• the access policy for l′ is δ′,

• the domain of the location the new process should run at l′ must be digital

• the actor must have access to perform the eval action on the given location
l′ and must be able to reach the location. The reference monitor semantics
; handles these two conditions.

If these conditions hold the new process will be added to the set of actors
Actors and be given a unique identifier. It is not possible to add an actor with
the same name twice. The new process will have the same key set κ as the
process that created it.

The (PAR) rule says that a semantic evaluation of a single node in the net will
result in the whole net being updated. This is the starting rule for a semantic
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evaluation where a scheduler is free to choose any node in the net and evaluate
it.

The last rule is (STRUCT). It relates the semantic reduction rules to the con-
gruence relation. The rule says that it is always safe to use a congruence rule
to change a single node, without changing the semantics of the whole net.

3.10 The Analysis

This section describes two insider analyses that we have defined for the frame-
work described so far. The analyses are the first of three analyses that we define
for the insider framework. For the third analysis, the framework will have to be
extended to enable logging of actions.

3.10.1 Reachability analysis (Analysis0)

The first analysis is defined on the spatial structure of the system and is a graph
based analysis. The idea is to calculate an over-approximation of the set of data
and locations the actors in the system can reach or access. The result of the
analysis should be the set of locations and the set of data each actor can reach,
i.e. locs : Actors → P(Loc) and data : Actors → P(Data). The analysis can
be viewed as a ”before-the-fact” analysis and used to ensure that the designed
system does not have any serious security flaws.

Finding an over-approximation of the set of locations a given actor can reach
is not as simple as it sounds. We could, of course, just define the sets as all
the locations and all the data in the system, but that would not be satisfactory,
as some locations would never become available to the actor along any path
whatever actions the actors might take. The challenge is that as an actor roams
a system he can pick up data, which can give him access to new locations and
so on. If we were extremely paranoid we would also take into account actions
performed by other actors in the system. An actor could leave a datum at a
location where another actor could pick it up and use as a key to reach another
location. In our analysis we do not take into account actions performed by other
actors, and the only data that matters to our analysis is the data that the actor
has available initially and the data lying at locations. Data at other actors will
be ignored. In later analyses we will take into account actions performed by
other actors, but it does not seem to be suitable in a ”before-the-fact” analysis.
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3.10.1.1 Algorithm for Analysis0

The analysis focuses on a single given actor and solves the problem for one
actor at a time. The analysis begins finding all reachable locations, for a given
actor, starting from his initial location. The algorithm uses the grant function
as defined in Figure 3.13 to check which location the actor can move to from a
given location. Our approach to solving the problem is to place the actor in his
initial location, recursively calculate to which locations he can move, and make
the actor read and decrypt all data that he finds along the way. Also the actor
must try to decrypt all encrypted data in his key set at each location, as he
might pick up a key or be located in a location that makes it possible to decrypt
a datum that is encrypted in his key set.

Figure 3.18: The running example as a graph

Because the actor can use data that he picks up as keys, the order in which he
visits the locations is important. We will thus have to repeat this process, each
time with a bigger key set, until his key set does not change anymore, i.e., κ
reaches a fixed-point. By repeating the process, the algorithm is simulating every
possible path that the actor could have taken and thus results in a superset of
the locations and data the actor can reach.

In the example presented in Figure 3.18 the algorithm should be able to calculate
that only the actor U can get the ”Secret” data that is stored in the vault.

The reachability analysis is defined by the algorithms listed in Algorithm 4 to
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Algorithm 6. analysis0 is the main loop of the algorithm, it places the actor
in his initial location and initializes the result sets, before calling the findLoc
function. The findLoc function is in charge of re-running the analysis for a
given actor at a given location, until the key set and location set reach a fixed
point. The checkLoc function is in charge of collecting information about where
the actor has been and which data he has possibly collected. It is a recursive
function and it keeps track of locations it has already visited to avoid being
stuck in a loop going back and forth between two location.

Algorithm 4 getLoc(Names × Loc × Keys × P(Loc) × System) →
(P(Loc),P(Data))
1: checkLoc(n, l, κ, locs,S) =
2: κ′ := decryptAll(n, l, κ)
3: locs′ := locs ∪ {l}
4: for all (l, l′) ∈ Con : l′ 6∈ locs′ do
5: if 〈S, n, κ′〉 ; (l, l′, i) ∨ 〈S, n, κ′〉 ; (l, l′, r) then
6: κ′ := κ′ ∪ K(l′) {get all data at l′ where n has ”input” access}
7: locs′ := locs′ ∪ {l′}
8: else if 〈S, n, κ′〉 ; (l, l′,m) then
9: (locs′, κ′′) := checkLoc(n, l′, κ′, locs′,S) {If the actor can reach another

location recursively continue}
10: locs′ := locs′ ∪ {l′}
11: κ′ := κ′′

12: end if
13: end for
14: return (locs′, κ′)
1: decryptAll(n, l, κ) =
2: κ′ := ∅
3: for all k ∈ κ do
4: κ′ = κ′ ∪ decrypt(n, l, κ, k)
5: end for
6: if κ′ 6= ∅ then
7: return κ′∪ decryptAll(n, l, a, κ ∪ κ′)
8: end if
9: return κ′

3.10.1.2 Running analysis0

We now run analysis0 on the system in Figure 3.18 for actor U. The first two
iterations of the algorithm processes are shown in Figure 3.19. This graph shows
that after the first two iterations the result for this user is already computed.
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Algorithm 5 findLoc(Names× Loc× Keys× System) → (P(Loc),P(Data))
1: findLoc(n, l, κ,S) =
2: (locations, κ’) := checkLoc(n, l, κ, {},S)
3: if κ′ != κ then
4: findLoc(n, l, κ′,S)
5: else
6: return (locations, κ′)
7: end if

Algorithm 6 analysis0(Names × Loc × Keys × System) → (P(Loc),P(Data))
1: analysis0(n, l, κ,S) =
2: (locs, data) := findLoc(n, l, κ,S)
3: return (locs, data)

The algorithm will continue with the other locations, of course, but no additional
data will be added to the result sets.

3.10.2 Control Flow Analysis (Analysis1)

The reachability analysis does not take into account what actions a given ac-
tor actually performs in the system, and is only intended to be a ”before-the-
fact” analysis. The second analysis we present takes into account the actions
performed by all actors in the system. The analysis will work directly on in-
sCalc programs in which we will provide a process definition for the actor’s
process variable. The process definition can be viewed as a sequence of actions
reconstructed from a log file after an incident has occurred. We assume that
every single action performed by an actor is recorded so the analysis will not
have to ”guess” any actions. We assume that the process definition will be
made available to our analysis, and it will be substituted out for the process
variable in the insCalc program. We do not allow the process definition to call
other process variables in the process definitions, so there is no way of calling
a process definition recursively. The reason for this is that there is no means
of storing the process definitions in the insCalc program and thus we can only
make ”inline” substitutions of process variables.
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Figure 3.19: The running example as a graph

3.10.2.1 Flow Logic Specification

We begin by giving a Flow Logic specification for the analysis, which we use to
implement an algorithm to compute an analysis estimate. We do not use the
specification in the traditional way, i.e., to create a set of constraints that are
solved by a solver. We consider this to be future work. Instead we will describe
an algorithm that is guided by both the semantics of insCalc and the Flow Logic
specification, and computes an analysis estimate. The analysis estimate for the
analysis should be a the set of data that a given actor can obtain by executing
the given sequence of actions and the set of locations that he can reach by
performing the given sequence of actions.

The Flow Logic specification is given as a number of judgements, one for each
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(T̂ , σ̂,S) |=N l ::δ [P ]〈n,κ〉 iff (T̂ , σ̂,S) |=l,n,κ
P P

(T̂ , σ̂,S) |=N l ::δ [nil] iff (T̂ , σ̂,S) |=l,n,κ
P nil

(T̂ , σ̂,S) |=N l ::δ 〈et〉 iff et ∈ T̂ (l)
(T̂ , σ̂,S) |=N N1 || N2 iff (T̂ , σ̂,S) |=N N1 ∧ (T̂ , σ̂, I) |=N N2

(T̂ , σ̂,S) |=l,n,κ
P nil iff true

(T̂ , σ̂,S) |=l,n,κ
P P1 | P2 iff (T̂ , σ̂,S) |=l,n,κ

P P1 ∧ (T̂ , σ̂,S) |=l,n,κ
P P2

(T̂ , σ̂,S) |=l,n,κ
P A iff (T̂ , σ̂,S) |=l,n,κ

P P if A
4
= P

(T̂ , σ̂,S) |=l,n,κ
P out(t)@`.P iff ∀l̂ ∈ σ̂(`) : (〈S, n, κ〉 ; (l, l̂, o) ⇒

σ̂[[t]] ⊆ T̂ (l̂)) ∧ (T̂ , σ̂,S) |=l,n,κ
P P

(T̂ , σ̂,S) |=l,n,κ
P in(T )@`.P iff ∀l̂ ∈ σ̂(`) : (〈S, n, κ〉 ; (l, l̂, i) ⇒

T̂ (l̂) ⊆ σ̂(`) ∧ (T̂ , σ̂,S) |=l,n,κ
P P

(T̂ , σ̂,S) |=l,n,κ
P read(T )@`.P iff ∀l̂ ∈ σ̂(`) : (〈S, n, κ〉 ; (l, l̂, r) ⇒

T̂ (l̂) ⊆ σ̂(`)) ∧ (T̂ , σ̂,S) |=l,n,κ
P P

(T̂ , σ̂,S) |=l,n,κ
P eval(n′, Q)@`.P iff ∀l̂ ∈ σ̂(`) : (〈S, n, κ〉 ; (l, l̂, e) ⇒

∧(T̂ , σ̂,S) |=l̂,n′,κ
p Q)(T̂ , σ̂,S) |=l,n,κ

P P

(T̂ , σ̂,S) |=l,n,κ
P encrypt(t, ρ, F ) iff ((enc = encrypt(n, l, κ, t, ρ) ∧ enc 6= ∅)

⇒ σ̂ |=1 F : T̂ (l̂) � Ŵ•) ∧
(T̂ , σ̂,S) |=l,n,κ

P P

(T̂ , σ̂,S) |=l,n,κ
P decrypt(t, F ).P iff ((dec = decrypt(n, l, κ, t) ∧ dec 6= ∅)

⇒ σ̂ |=1 F : T̂ (l̂) � Ŵ•) ∧
(T̂ , σ̂,S) |=l,n,κ

P P

(T̂ , σ̂,S) |=l,n,κ
P move@`.P iff ∀l̂ ∈ σ̂(`′) : (〈S, n, κ〉 ; (l, l̂, m) ⇒

(T̂ , σ̂,S) |=l̂,n,κ
P P )

Figure 3.20: Flow Logic Specification for Analysis1.

syntactic category of the insCalc language. For each syntactic construct there
is one inference rule that describes the conditions that must hold for an analysis
estimate to be correct. The information is collected in two components: T̂ and
σ̂. The T̂ records for every tuple space the set of tuples possibly located in that
tuple space at any given point in time. σ̂ tracks possible values that variables
may be bound to during execution. The Flow Logic specification is listed in
Figure 3.20 and Figure 3.21.

The clauses listed in Figure 3.20 define two judgements : |=N and |=P. The
clauses are syntax-directed and make decisions about the next step of evaluation
on the syntactical constructs it meets. The |=N judgement defines the rules for
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processing nets, and |=P defines the rules for processing processes. In order to
be able to keep the processing of nets going we need the sets T̂ and σ̂ to keep
track of data at locations and data at variables in the net.

σ |=1 V : V̂◦ � Ŵ• iff {e ∈ V̂◦ | e = V } v Ŵ•
σ |=1 l : V̂◦ � Ŵ• iff {e ∈ V̂◦ | e = l} v Ŵ•
σ |=1 x : V̂◦ � Ŵ• iff {e ∈ V̂◦ | e ∈ σ(x)} v Ŵ•
σ |=1 u : V̂◦ � Ŵ• iff {e ∈ V̂◦ | e ∈ σ(u)} v Ŵ•
σ |=1 !x : V̂◦ � Ŵ• iff V̂◦ v σ(x)
σ |=1 !u : V̂◦ � Ŵ• iff V̂◦ v σ(u)

Figure 3.21: Flow Logic Specification for Analysis1, Part II.

The clauses in the Figure 3.20 define the judgement |=1 for analyzing pattern
matching. The general form of a rule is σ |=1 pattern : V̂◦ � Ŵ•, where σ is
the variable environment, pattern is the pattern to be matched, V̂◦ is the tuple
space where the pattern should be matched, and finally Ŵ• is the result of the
matching. The first two rules say that if the pattern to be matched is data or
a location, the value must be present in the tuple space. The next two rules
say that if the pattern is a data variable or a location variable the result will
be all the values the variable can take which also are in the tuple space. The
final rules say that if the pattern is a formal field, a new variable, the variable
is added to σ and it is given all the values in the tuple space.

3.10.2.2 Language for Specifying Process Definitions

As we are interested in an implementable insider framework we must be able
to provide the process definition for all process variables in the generated in-
sCalc program, so we need a language for specifying the process sequence. Fig-
ure 3.22 and Figure 3.23 describe the syntax of the language in which the user of
our analysis tool can specify the process definition. There must be a definition
for each process variable defined in the system and there is no way of calling
other process definitions. The syntax is closely related to insCalc syntax the
syntax of patterns, and is basically a list of definition of process variables.

3.10.2.3 Algorithm for Calculating the Analysis Estimate

The algorithm we now describe uses the rules in the Flow Logic specification to
calculate an estimate for the data in T̂ and σ̂. It also calculates an estimate of
the data in each actor’s key set and an estimate of the locations visited by an
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DefList ::= Def a single definition
| Def ;DefList a list of definition

Def ::= Names := ProcessExpr a definition

ProcessExpr ::= nil the nil process
| Action.ProcessExpr an action
| ProcessExpr | ProcessExpr concurrent process

Action ::= out(Field)@Locality, the out action
| in(Template)@Locality the in action
| read(Template)@Locality the read action
| encrypt(Field,DataAccess,

Formal) the encrypt action
| decrypt(Field, Formal) the decrypt action
| eval(NAME, ProcessExpr)@NAME the eval action
| move(NAME) the move action

Figure 3.22: Language Specification for Process Definitions, Part I

Locality := ”Names” locality value
| Names locality variable

Formal := !Names formals

Template := Formal formals
| Field field

Field := Locality locality
| Expr variable

Expr := ”Names” data value
| Names data variable

DataAccess ::= ε empty policy list
| DataPolicy a single policy
| DataPolicy;DataAccess a data policy list

DataPolicy : ::= Names : DataAccMode
| * : DataAccMode

DataAccMode ::= ε empty access
| d decrypt

Figure 3.23: Language Specification for Process Definitions, Part II
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actor into the sets κ̂ and L̂ respectively. We are interested in a static analysis
that calculates the estimates, and cannot run the semantics of the program in
any way - only simulate the result. We must only use the semantics to guide
the collection of data into the result sets. The idea is to use the rules from the
Flow Logic specification to define an algorithm that processes insCalc programs
in witch the process variables have been substituted for process definitions.

The algorithm starts processing the net, one node at a time, and for each lan-
guage construct applies the appropriate rules similar to the ones in the Flow
Logic specification. At each rule, instead of checking for membership of data
in T̂ and σ̂, the algorithm adds data to the sets if the proper conditions are
fulfilled. To model all possible interleavings of actions taken by all actors, we
repeat the processing of the entire net until L̂, κ̂, T̂ , σ̂ reach a fixed-point. Each
time an actor reads data, takes data from a location, decrypts or encrypts data,
his keys set grows. The algorithm is listed in Algorithm 7 to Algorithm 11. The
function analysis1 is the main loop, and repeats the processing of the net until
the four sets reach a fixed point. The function N is responsible for processing the
nodes in the net, and there is a rule for each possible type of node. The function
P is responsible for processing a process and recursively processes one action at
a time. The processing of nets closely follows the Flow Logic specification. The
only thing that could seem strange is that when an actor inputs data, i.e., re-
moves data from a tuple space, the data is not removed in the algorithm. The
reason for this is that we do not know in which order the actors are reading and
outputting data in the system, and we cannot remove anything as some actor
could be able to read the data before the data was removed by another.

Algorithm 7 N((Loc×P(Data))×(Names×P(κ))×(Actors×P(Loc))×(Actors×
P(Data))×Net×System) → ((Loc×P(Data))× (Names×P(Data))× (Actors×
P(Loc))× (Actors× P(Data)))

1: N(T̂ , σ̂, κ̂, L̂,Net ,S) =
2: if net = ` ::δ [P ]〈n,κ〉 then
3: κ̂(n) := κ̂(n) ∪ κ
4: L̂(n) := L̂(n) ∪ {l}
5: return P(T̂ , σ̂, L̂, κ̂, n, P )
6: else if net = ` ::δ [nil]〈n,κ〉 then
7: return (T̂ , σ̂, L̂, κ̂)
8: else if net = ` ::δ 〈etρ〉 then
9: return (T̂ , σ̂, L̂, κ̂)

10: else if net = ` ::δ N1 || N2 then
11: (T̂ ′, σ̂′, L̂′, κ̂′) :=N(T̂ , σ̂, κ̂, L̂, N1)
12: return N(T̂ ′, σ̂′, κ̂′, L̂′, N2)
13: end if
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Algorithm 8 P((Loc × P(Data)) × (Names × P(Data)) × (Actors × P(Loc)) ×
(Actors×P(Data))×P(Data)×Loc×Actors×Proc×System) → ((Loc×P(Data))×
(Names× P(Data))× (Actors× P(Loc))× (Actors× P(Data)))

1: P(T̂ , σ̂, L̂, κ̂, l, n, proc,S) =
2: if proc = nil then
3: return (T̂ , σ̂, L̂, κ̂)
4: else if proc = P1 | P2 then
5: (T̂ ′, σ̂′, L̂′, κ̂′) := P(T̂ , σ̂, L̂, κ̂, l, n, P1)
6: return P(T̂ ′, σ̂′, L̂′, κ′, `, n, P2)
7: else if proc = out(t)@`.P then
8: for all l̂ ∈ σ̂(`) do
9: if (〈S, n, κ̂(n)〉 ; (l, l̂, o)) then

10: T̂ (l̂) := σ̂(t)
11: L̂ := L̂ ∪ {l̂}
12: end if
13: end for
14: return P(T̂ , σ̂, L̂, κ̂, l, n, P )
15: else if proc = in(T )@`.P then
16: for all l̂ ∈ σ̂(`) do
17: if (〈S, n, κ̂(n)〉 ; (l, l̂, i)) then
18: if T = !x or T = !u then
19: σ̂(T ) := σ̂(T ) ∪ T̂ (l)
20: κ̂(n) := κ̂(n) ∪ T̂ (l)
21: else if T = x or T = u then
22: κ̂(n) := κ̂(n) ∪ σ̂(T )
23: else if T = V or T = l then
24: κ̂(n) := κ̂(n) ∪ {T}
25: end if
26: L̂(n) := L̂(n) ∪ {l̂}
27: end if
28: end for
29: return P(T̂ , σ̂, L̂, κ̂, l, n, P )
30: end if

3.10.3 Running Analysis1

We will now run the analysis for a single process in the example presented in
Figure 3.18. We place the actor U in the USR location and place the process
for the actor in the USR location. The process is a simple sequence of actions
where the actor takes the key from his desk, moves to the server room, opens
the vault, reads the secret and returns to his desk. The insCalc net for this
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Algorithm 9 P((Loc × P(Data)) × (Names × P(Data)) × (Actors × P(Loc)) ×
(Actors×P(Data))×P(Data)×Loc×Actors×Proc×System) → ((Loc×P(Data))×
(Names× P(Data))× (Actors× P(Loc))× (Actors× P(Data)))) - Continued I

1: P(T̂ , σ̂, L̂, κ̂, l, n, proc,S) =
2: if proc = read(T )@`.P then
3: for all l̂ ∈ σ̂(`) do
4: if (〈S, n, κ̂(n)〉 ; (l, l̂, r)) then
5: if T = !x or T = !u then
6: σ̂(T ) := σ̂(T ) ∪ T̂ (l)
7: κ̂(n) := κ̂(n) ∪ T̂ (l)
8: else if T = x or T = u then
9: κ̂(n) := κ̂(n) ∪ σ̂(T )

10: else if T = V or T = l then
11: κ̂(n) := κ̂(n) ∪ {T}
12: end if
13: L̂(n) := L̂(n) ∪ {l̂}
14: end if
15: end for
16: return P(T̂ , σ̂, L̂, κ̂, l, n, P )
17: else if proc = eval(n′, T )@`.P then
18: for all l̂ ∈ σ̂(`) do
19: if (〈S, n, κ̂(n)〉 ; (l, l̂, e)) then
20: L̂(n) := L̂(n) ∪ {l̂}
21: ((T̂ , σ̂, L̂, κ̂)) := P(T̂ , σ̂, L̂, κ̂, l, n′, Q)
22: end if
23: end for
24: return P(T̂ , σ̂, L̂, κ̂, l, n, P )
25: end if

system will look like the on in Figure 3.25. The algorithm for analysis1 will
process each node in the order it is presented in the net. Before the algorithm
runs, the abstract system S must be established as the algorithm uses that to
find data at location and to check for access rights. The algorithm starts by
processing the node for the HALL location by splitting the net into the HALL
node and the rest of the net. Nothing interesting happens until the algorithm
starts processing the USR node which contains the process for the actor in the
system. Figure 3.24 shows the analysis result of processing each action. This
simple example is straight forward but would quickly become more complicated
with more actors and more locations. We shall run more interesting systems in
the chapter on evaluation.
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Algorithm 10 P((Loc×P(Data))× (Names×P(Data))× (Actors×P(Loc))×
(Actors×P(Data))×P(Data)×Loc×Actors×Proc×System) → ((Loc×P(Data))×
(Names× P(Data))× (Actors× P(Loc))× (Actors× P(Data)))) - Continued II

1: P(T̂ , σ̂, L̂, κ̂, l, n, proc,S) =
2: if proc = encrypt(t, ρ, T ).P then
3: enc := encrypt(n, l, κ̂(n), t, ρ)
4: if enc != ∅ then
5: if T = !x or T = !u then
6: σ̂(T ) := σ̂(T ) ∪ enc
7: end if
8: end if
9: return P(T̂ , σ̂, L̂, κ̂, l, n, P )

10: else if proc = decrypt(t, ρ, T ).P then
11: dec := decrypt(n, l, κ̂(n), t)
12: if enc != ∅ then
13: if T = !x ∨ T = !u then
14: σ̂(T ) := σ̂(T ) ∪ dec
15: end if
16: end if
17: return P(T̂ , σ̂, L̂, κ̂, l, n, P )
18: else if proc = move@`.P then
19: for all l̂ ∈ σ̂(`) do
20: if (〈S, n, κ̂(n)〉 ; (l, l̂,m)) then
21: L̂(n) := L̂(n) ∪ {l̂}
22: end if
23: end for
24: return P(T̂ , σ̂, L̂, κ̂, l, n, P )
25: end if

Algorithm 11 analysis1
1: analysis1(net,S) =
2: L̂;L̂′;κ̂;κ̂′;T̂ ;T̂ ′;σ̂;σ̂’ := {}
3: repeat
4: L̂ := L̂′

5: κ̂ := κ̂′

6: T̂ := t̂′

7: σ̂ := σ̂′

8: (T̂ ′, σ̂′, L̂′, κ̂′) := N(T̂ , σ̂, L̂, κ̂, net)
9: until L̂′ = L̂ ∧ κ̂ = κ̂′ ∧ T̂ ′ = T̂ ∧ σ̂′ = σ̂

10:
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Action σ̂ κ̂ L̂

input(!key) {U → {USR,
@DESK {key → {KEY }} {U → {KEY }} DESK}}

move.HALL {key → {KEY }} {U → {KEY }} {U → {USR,
DESK,HALL}}

move.SRV {key → {KEY }} {U → {KEY }} {U → {USR,
DESK,HALL,
SRV }}

input(!secret) {key → {KEY }, {U → {KEY, {U → {USR,
@VAULT secret → {Secret}} Secret}} DESK,HALL,

SRV, V AULT}}

move(HALL) {key → {KEY }, {U → {KEY, {U → {USR,
secret → {Secret}} Secret}} DESK,HALL,

SRV, V AULT}}

move(USR) {key → {KEY }, {U → {KEY, {U → {USR,
secret → {Secret}} Secret}} DESK,HALL,

SRV, V AULT}}

Figure 3.24: Running analysis1

HALL ::〈∗→m〉 [nil] ||

JAN ::〈J→m〉 [nil] ||

USR ::〈U→m〉 [input(!key)@DESK.move(HALL)
.move(SRV).input(!Secret)@VAULT.move(HALL).move(USR).nil]〈U,{}〉 ||

DESK ::〈U→i〉 〈KEY {}〉 ||

SRV ::〈∗→m〉 [nil] ||

VAULT ::〈∗→i,r〉 〈Secret{}〉 ||

Figure 3.25: The Running Example in insCalc



Chapter 4

Extensions to The Insider
Framework

In Chapter 3 we developed an insider framework for specifying systems and
performing insider analysis. In this chapter we extend the framework to allow
all actions to be logged. Each location or datum can now specify, which actions
on them are logged, and which are not logged. Some actions may therefore
go unnoticed. The extension does not effect the first analysis presented in the
previous chapter (Analysis0) but only the latter one. We do no longer have
perfect information about the actions taken by each actor, and will have to
extend the analysis accordingly. The log files will make the system more realistic,
and more importantly will make the analysis result more realistic. The idea is
that given a log file, after an incident has occurred, the new analysis will be
able to reconstruct a sequence of actions performed by the actors in the system,
and thus be able to find (or at least narrow down) the possibilities of finding
the insider. In this setting Analysis1 can be thought as an analysis where
every single action was logged, and the process definitions as a sequences of
actions reconstructed from such a log file. With the logged actions, the system
designer must explicitly mark each access mode at locations or data as being
logged, and the log file can thus contain ”holes” where the actions of actors
are not registered. The final analysis that we define will work on these log
files, reconstruct the sequence of actions performed by an actor, and fill in the
gap between log points to simulate every action that might have happened in
between log points.
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4.1 Abstract System with Logging

We begin by extending the abstract system with a log component. The abstract
system should now be extended with a global system clock T with the type N,
which is a global clock that enables us to give each entry in the log file a unique
label. The log file is modeled by a mapping Log : N × (Actors ∪ Data ∪ Loc) ×
Loc × Loc × (LocAccMode ∪ DataAccMode) −→ P(Res) and it collects log file
entries. The choice of the Log component will be described in Section 4.4. We
also add the logged actions to the set of restrictions Res. If we assume that R is
the set of restrictions in the system, then the set of access modes is now defined
as

Res =
⋃
{r, r̄ | r ∈ R}

where r̄ is the logged action for r. Our definition for a system is changed to

Definition 4.1 (Logged System) Let I = (Loc,Con) be an infrastructure,
Actors a set of actors in I, Data a set of data items, D : Loc → Dom a mapping
from locations to domains, Cap a set of capabilities, Res a set of restrictions,
C : Actors → P(Cap) a mapping from actors to capabilities, R : (Loc ∪Data) →
P(Res) a mapping from actors and locations to restrictions, G : Actors → Loc
a mapping from actors to locations and for each restriction r, let Φr : Cap →
{true, false} be a checker. Let T be a global clock with type N and Log :
N×(Actors∪Data∪Loc)×Loc×Loc×(LocAccMode∪DataAccMode) −→ P(Res)
be a logging component. Then we call S = 〈I,Actors,Data,D,G, C,R,Φ,T, Log〉
a logged system.

4.2 Access Modes

Having the log-file extension in place for the abstract system, we now look
at how to extend access modes in insCalc. To model the logging of actions,
we simply add a new logged access mode for each of the unlogged modes, to
represent that the action performed will be logged. It might seem strange to
add a logged decrypt mode, as decryption of data can be considered as a hard-
to-observe action that is performed privately by the actor, but in the case of
machines used for decryption of data it should be possible to offer logging of
decryption. Having introduced logged actions, we must ensure that a policy
does not contain a logged action along with its non-logged counterpart. The
new modes are given in Figure 4.1.
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LoggedLocMode = {̄i, r̄, ō, ē, m̄}
UnloggedLocMode = {i, r, o, e,m}
π` ⊆ LocAccMode = LoggedLocMode ∪ UnloggedLocMode
LoggedDataMode = {d̄}

UnLoggedDataMode = {d}
πδ ⊆ DataAccMode = LoggedDataMode ∪ UnLoggedDataMode

κ ⊆ Data = {data used as keys}
δ ∈ LocPolicy = (Loc ∪ Actors ∪ Data ∪ {∗}) → R,R ∈ P{LocAccMode}

such that ∀r ∈ R ⇒ r̄ 6∈ R ∨ ∀r̄ ∈ R ⇒ r 6∈ R
ρ ∈ DataPolicy = (Loc ∪ Actors ∪ Data ∪ {∗}) → R,R ∈ P{DataAccMode}

such that ∀r ∈ R ⇒ r̄ 6∈ R ∨ ∀r̄ ∈ R ⇒ r 6∈ R

Figure 4.1: Access Control with Logged Access Modes

4.3 Syntax of The System Specification Language

The update of the System Specification Language reflects the change in the
access modes and is straight forward, we simply add the new modes to the
syntax. The new modes have an underscore attached to them i.e., mode . The
underscore character is used to represent the bar above the mode. The changes
to the syntax are presented in Figure 4.2.

LocAccMode ::= i destructive read
| i destructive read, logged
| r non-destructive read
| r non-destructive read, logged
| o output a datum
| o output a datum, logged
| e spawn a process
| e spawn a process, logged
| m move
| m move, logged

DataAccMode ::= ε empty access
| d decrypt
| d decrypt, logged

Figure 4.2: System Specification Language Update
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4.4 Semantics

The semantics for the log-file extension is similar to the semantics described for
insCalc in Section 3.9. The main difference is the additional global timer T and
the logging component Log. The big question when designing the semantics is
how to model a realistic log file. We would want to log as much as we possibly
can, such as actor name, action, from location, to location, and of course time-
stamp. There should be no problem in logging all this information, as all the
information is available in each semantic rule. The question is how realistic it
is to register the actor in all cases, as an actor could have been granted access
based on something other than his identity. If an actor uses a PIN-code to move
to a location, in reality a cipher lock would probably only register the time and
possibly the key used for the access, as the lock would have no way of knowing
which actor was granted access. We will continue the extension by logging only
by which means the access was granted to keep the framework as realistic as
possible. We start by adding two helper functions, grantby and decryptby, listed
in Algorithm 12 and Algorithm 13, that provide the semantics with information
on how access was granted. The result can be any of four possible cases:

• Names represents that access was granted based on the identity of the
actor or that access was not restricted at all (the access policy was defined
with the * element),

• Loc represents that access was granted based on the current location of
the actor,

• Data represents that access was granted based on some knowledge of the
actor,

• ε represent that access was not granted.

Notice that in the cases where either a policy is defined with the star element,
or a resource is unrestricted, the functions grantby and decryptby return the
identity of the actor that is granted the access.

We can now re-factor our reference monitor semantics by restating grant and
decrypt in terms of the two new functions. The changes in the reference monitor
semantics are listed in Figure 4.3.

The semantics for the reduction relation is similar to the semantics in Figure 3.15
and Figure 3.16. The main addition is a global timer T and the global logging
component Log. We also have to add additional rules for the logged access
modes. The additional rules are listed in Figure 4.4 and Figure 4.4 and all the
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Algorithm 12 grantby(Names × Loc × P(Data) × LocAccMode × Loc ×
LocPolicy → (Names× Data× Loc× {ε})
1: grantby(n, l, κ, a, l′, δ′) =
2: if δ′ = ∅ then
3: return n {There is no restriction on access}
4: else if ∗ ∈ δ′−1(a) then
5: return n {The action is unrestricted for all actors (star property)}
6: else if a ∈ δ′(n) then
7: return n
8: else if a ∈ δ′(l) then
9: return l

10: else if ∃k ∈ κ : a ∈ δ′(k) then
11: return k
12: else
13: return ε
14: end if

Algorithm 13 decryptby(Names × Loc × P(Data) × DataAccMode × Data →
(Names× Data× Loc× {ε})
1: decryptby(n, l, κ, a, etρ) =
2: if ρ = ∅ then
3: return n {The data was completely public}
4: else if ∗ ∈ ρ−1(a) then
5: return n {The data is public for all actors (star property)}
6: else if a ∈ ρ(n) then
7: return n
8: else if a ∈ ρ(l) then
9: return l

10: else if ∃l′ ∈ {l′′|(l, l′′) ∈ Con ∧ a ∈ ρ(l′′)} then
11: return l
12: else if ∃k ∈ κ : a ∈ ρ(k) then
13: return k
14: else
15: return ε
16: end if

rules use the grantby or decryptby functions to discover by which means the
access was granted. Apart from the logging of the actions in the semantic rules,
they are exactly the same as their non-logging counterparts.
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(1)

grant : Names× Loc× P(Data)× LocAccMode× Loc× LocPolicy →
{true, false}

grant(n, l, κ, a, l′, δ′) =
{

true if grantby(n, l, κ, a, l′, δ′) 6= ε
false otherwise

(2)

decrypt : Names× Loc× P(Data)× DataAccMode× Data → P(Data)

decrypt(n, l, κ, a, etρ) =
{
{et∅} if decryptby(n, l, κ, a, etρ) 6= ε
∅ otherwise

Figure 4.3: Reference Monitor for Access Control

(out log)

l′ ∈ Loc R(l′) = δ′ [[t]] = etρ K′ = K[l′ → K[l′] ∪ etρ]
T < T′ 〈S, n, κ〉 ; 〈l, l′, ō〉 Log′ = Log[T 7→ (grantby(n, l, κ, ō, l′), l, l′, o)]

Log,T,S ` l ::δ [out(t)@l′.P ]〈n,κ〉 �−→ Log′,T′,S ′ ` l ::δ [P ]〈n,κ〉 || l′ ::δ
′
〈etρ〉

(in log)

match([[T ]], etρ) = σ K′ = K[l′ → K[l′] \ etρ, n → K[n] ∪ etρ]
T < T′ 〈S, n, κ〉 ; 〈l, l′, ī〉 Log′ = Log[T 7→ (grantby(n, l, κ, ī, l′), l, l′, i)]

Log,T,S ` l ::δ [in(T )@l′.P ]〈n,κ〉 || l′ ::δ
′
〈etρ〉 �−→

Log′,T′,S ′ ` l ::δ [Pσ]〈n,κ∪{etρ}〉 || l′ ::δ
′
[nil]

(read log)

match([[T ]], etρ) = σ K′ = K[n → K[n] ∪ etρ]
T < T′ 〈S, n, κ〉 ; 〈l, l′, r̄〉 Log′ = Log[T 7→ (grantby(n, l, κ, r̄, l′), l, l′, r)]

Log,T,S ` l ::δ [read(T )@l′.P ]〈n,κ〉 || l′ ::δ
′
〈etρ〉 �−→

Log′,T′,S ′ ` l ::δ [Pσ]〈n,κ∪{etρ}〉 || l′ ::δ
′
〈etρ〉

Figure 4.4: Extensions to the Operational Semantics for insCalc, Part I
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(decrypt log)

decrypt(n, l, κ, [[t]]) = {et∅} match([[T ]], et∅) = σ R′ = R[et → ∅]
T < T′ Log′ = Log[T 7→ (decryptby(n, l, κ, d̄, [[t]]), l, l, d)]

Log,T,S ` l ::δ [decrypt(t, T ).P ]〈n,κ〉 �−→ Log′,T′,S ′ ` l ::δ [Pσ]〈n,κ∪et∅〉

(move log)

l′ ∈ Loc R(l′) = δ′ Dom(l) = Dom(l′) G′ = G[n → l′] T < T′

〈S, n, κ〉 ; 〈l, l′, m̄〉 Log′ = Log[T 7→ (grantby(n, l, κ, m̄, l′), l, l′,m)]

Log,T,S ` l ::δ [move(l′).P ]〈n,κ〉 �−→ Log′,T′,S ′ ` l ::δ [nil] || l′ ::δ
′
[P ]〈n,κ〉

(eval log)

l′ ∈ Loc R(l′) = δ′ Dom(l′) = digital n′ 6∈ Actors

T < T′ 〈I, n, κ〉 ; 〈l, l′, ē〉 Log′ = Log[T 7→ (grantby(n, l, κ, ē, l′), l, l′, e)]

Log,T,S ` l ::δ [eval(n′, Q)@l′.P ]〈n,κ〉 �−→
Log′,T′,S ′ ` l ::δ [P ]〈n,κ〉 || l′ ::δ

′
[Q]〈n

′,κ〉

Figure 4.5: Extensions to the Operational Semantics for insCalc, Part II

4.5 Analysis with Logging (Analysis2)

In this section we describe the final analysis for the extended version of our
insider framework. In contrast to the previous analyses we have dropped the
unrealistic assumption that all actions in the system are logged, and will base
our analysis on a log file with incomplete information about actions performed
in the system. The analysis will have to take into account the actions that are
logged, and simulate all possible actions between log points for each and every
actor in the system. The system specification will not need to be mapped to
a insCalc program, as the analysis will run on the log file as input and not an
insCalc program. The analysis is a graph-based algorithm and not a syntax
directed as the one in Analysis1. However, the analysis still has to be guided by
the semantics of insCalc to be able to make the right decisions and to simulate
logged actions. The result of the analysis is the set of data each actor can obtain
in the system given a log file of events.
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4.5.1 Example System

We will start by presenting an example system with logged actions. Figure 4.6
shows a system where the janitor is initially located at the janitor’s workshop,
and a user is initially located at the user office. The janitor holds the key to
the vault, where some secret information is stored. The system only logs the
movement into the janitor’s workshop, into the user office, and into the server
room and, then the retrieval of the data located in the vault.

Figure 4.6: The running example

We assume that the following sequence of actions has occurred in the system:
The janitor enters his workshop, the user enters the server room, the secret data
item is taken from the vault, the user enters his office again, the secret data item
is placed on the desk in the user office. The log file is presented in Figure 4.7.
The log file shows only that the user was able to go to the server room, open
the vault, and retrieve the secret data, return to his office, and place the secret
item on his desk. The janitor returned to his workshop before the user entered
the server room to get the secret data. We assume that tk < tl if k < l. If
movement to the server room was not logged the janitor could have retrieved
the secret data and dropped it in the hall for the user to pick up or even just
read the secret data before giving the key to the user. But because the user is
the only actor that enters the server room he is the only one that could have
taken the secret data. The important part in this example is the non-logged
action, where the janitor gives the user the key to the vault, and that is exactly
the kind of information we want our analysis to find out.
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4.5.2 Algorithm for Analysis2

We now develop an algorithm for computing an over-approximation of the data
an actor can obtain in a system given a log file of events. In the algorithm we
need to keep track of three sets:

• data : {Loc → P(Data)} the set of data at each location,

• keys : {Actors × Loc → P(Data)} the key set of each actor at possible
locations,

• locs : {Actors → P(Loc)} the set of location that each actor can be at, at
a given time.

Initially the setdata is K(Loc), i.e., the data stored at each location. The set locs
is initialized with the current location of each actor, and the set keys is defined
as κ for each actor. The algorithm processes the log file in an ascending order
according to the time stamps. The algorithm simulates all actions that are not
logged, but accessible for every user. We call the locations where such actions
can take place log-equivalent locations. The analysis is listed in Algorithm 14
through Algorithm 17.

The algorithm starts with the function analysis2, which holds the main loop
for the algorithm. It initializes the three sets of information it keeps track of,
before it starts processing the log file one entry at a time. Before each entry in
the log file is processed, the function calls logEquivalent(), which simulates all
unlogged actions in the log-equivalent locations that exist.

The processLogEntry function processes a single entry in the log file. It discovers
by which means the access was granted, i.e., either by identity, key, or location,
and proceeds accordingly. If the function can identify a single user as the one
responsible for the log entry, his data structures are updated accordingly. If it
is not possible to identify a single actor causing the log file entry, the algorithm
simulates the action for all potential actors that could have caused the entry.

(t1, J,HALL, JAN ,m)
(t2, U,HALL,SRV ,m)
(t3,KEY ,SRV ,VAULT , i)
(t4, U,HALL,USR,m)
(t5, U,USR,DESK , o)

Figure 4.7: Log file
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The logEquivalent function simulates all unlogged actions for all actors repeat-
edly, until the values in the three sets do not change anymore, i.e., the sets reach
a fixed point. The reason for running the simulation repeatedly is to simulate
all possible interleavings of actors and actions. It is in fact a common pattern
in program analysis to repeat different paths of execution in order to find the
over-approximation of running all possible interleavings of the paths.

The simulateAction function is responsible for simulating an action, i.e., to
update the data structures according to the simulated action. If the action is
a move, the location that the actor moves to is added to his locs set, and his
key set at the given location is updated as well. As soon as he is moved to a
new location, the function tries to decrypt all the keys in his key set as there
could be encrypted keys that the user could decrypt in the given location. If
the action is an in or read action we have to assume that the actor reads all
data in the location, and thus we add all the data at the location to his key set.
The algorithm does never remove anything from the location, as it tries to be
as pessimistic as possible. As soon as the actor has consumed the new data,
the algorithm tries to decrypt every single data in his key set, as there could be
encrypted data that could be decrypted by the new data.

Algorithm 14 Analysis2
1: analysis2(logF ile,S) =
2: for all n ∈ Actors do
3: locs(n) := G(n)
4: for all l ∈ Loc do
5: keys(n,l) := K(l) {Keys is initialized to the actors key set}
6: end for
7: end for
8: for all l ∈ Loc do
9: data(l) := K(l)

10: end for
11: while logFile not empty do
12: logEquivalent()
13: processLogEntry(getNextEntry(logFile), S)
14: end while
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Algorithm 15 processLogEntry
1: processLogEntry((x, l, l′, a),S) =
2: if x ∈ Actors then
3: potentalActors := {x}
4: else if x ∈ Data then
5: potentalActors := {n | x ∈ keys(n, l) ∧ n ∈ Actors}
6: else if x ∈ Loc then
7: potentalActors := {n | x ∈ locs(n) ∧ n ∈ Actors}
8: end if
9: if potentialActors = {n} then

10: locs(n) := {l} {Move the actor to l}
11: for all l′′ ∈ locs(n) : l′′ 6= l do
12: keys(n, l′′) := K(n) {initialize his keys on other location}
13: end for
14: end if
15: for all n ∈ potentialActors do
16: simulateAction(n, l, l′, a, keys(n, l),S)
17: end for

Algorithm 16 logEquivalent
1: logEquivalent(S) =
2: repeat
3: changed := false
4: for all n ∈ Actors do
5: for all l ∈ locs(n) do
6: for all l′ ∈ Loc ∧ (l, l′) ∈ Con do
7: for all a ∈ unlogged : grant(n, l, a, keys(n, l), l′) do
8: changed := changed ∨ simulateAction(n, l, a, keys, l′)
9: end for

10: end for
11: end for
12: end for
13: until changed = false

4.5.3 Running the algorithm

We can now map the system in Figure 4.6 to the abstract system and run the
algorithm on the log file listed in Figure 4.7. The table has three columns:

1. Actor: showing which actor the rest of the line applies to,
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Algorithm 17 simulateAction
1: simulateAction(n, l, a, κ, l′) =
2: if a ∈ {m, e} then
3: if l′ 6∈ locs(n) then
4: locs(n) := locs(n) ∪ {l′}
5: keys(n, l′) := keys(n, l) ∪ decryptAll(n, l′, keys(n, l))
6: return true
7: end if
8: else if a = o then
9: changes := keys(n, l)

10: if changes 6⊆ data(l′) then
11: data(l′) := data(l′) ∪ changes
12: return true
13: end if
14: else if a ∈ {i, r} then
15: changes := data(l)
16: if changes 6⊆ keys(n, l) then
17: keys(n, l) := keys(n, l) ∪ changes

∪ decryptAll(n, l, l′, keys(n, l) ∪ changes)
18: return true
19: end if
20: end if
21: return false

2. locs: showing the contents of the set locs, which contains the possible
location of each actor,

3. keys: showing the contents of the set keys, which contains the keys of
each actor,

The result of the run is listed in Figure 4.8. Step one is the initialization of the
data structures in the algorithm. Step two is after the first call to logEquivalent,
at this stage the actors move to the hall and the user learns the key from the
janitor. Step three is after processing the first log entry. Step four is after the
second call to logEquivalent and just before the processing of the second entry
in the log file. Step five is where the user moves to the server room. Step six is
where the user takes something from the vault, and the algorithm must assume
that he takes everything. Step seven is where the user returns to the hall. Step
eight we simulate everything that could happen and here we must assume that
he outputs the secret and thus the janitor also learns the secret. The final step
is when the user places the secret data element to his desk. The analysis shows
clearly who took the data from the vault, but it cannot tell whether the janitor
learned the secret or not, it can only assume the worst, namely that the user
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gave away the secret in the hall. In order to make the framework even more
realistic, one could add probabilities to the actions of actors, e.g., the probability
of the user giving away the secret to the janitor could be 0.1 or simply 0.0. That
would produce a smaller result set when analyzing the log file, and probably a
more realistic one. We see this as future work.

# actor locs keys
1 U USR {}

J JAN {JAN → {KEY }}
2 U USR,HALL {HALL → {KEY },

USR → {KEY }
J JAN,HALL {JAN → {KEY },

HALL → {KEY }
3 U USR,HALL {HALL → {KEY },

USR → {KEY }
J JAN {JAN → {KEY }}

4 U USR,HALL {HALL → {KEY },
USR → {KEY }

J JAN,HALL {JAN → {KEY },
HALL → {KEY }}

5 U SRV {SRV → {KEY }}
J JAN,HALL {JAN → {KEY },

HALL → {KEY }}
6 U SRV {SRV → {KEY, Secret}}

J JAN,HALL {JAN → {KEY },
HALL → {KEY }}

7 U HALL {HALL → {KEY, Secret}}
J JAN,HALL {JAN → {KEY },

HALL → {KEY }}
8 U HALL, USR {HALL → {KEY, Secret},

USR → {KEY, Secret}}
J JAN,HALL {JAN → {KEY, Secret},

HALL → {KEY, Secret}}
9 U USR {USR → {KEY, Secret}}

J JAN,HALL {JAN → {KEY, Secret},
HALL → {KEY, Secret}}

Figure 4.8: Running analysis2
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Chapter 5

Program Design and
Implementation

This chapter discusses the design and implementation of a tool for insider anal-
ysis. The tool was implemented in the F# and C# programming languages
using Visual Studio 2005 on the Windows operating system.

5.1 User Interface

The user interface is a standard Windows Forms application developed in Visual
Studio. A good coverage of Windows Forms programming, in C#, is given by
Eric Brown in [6]. The tool has the following seven tab pages, that each display
a representation of a system or results of analyses:

• System Spec - shows the loaded system in the system specification lan-
guage syntax,

• Graph - shows the spatial structure of the loaded system as a image,

• Abstract System - shows an internal representation of the system as an
abstract system,
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• insCalc Program - shows the mapping from the system specification to
an insCalc program where process variables are placed at each location
which contains an actor,

• Analysis0 - the result of running analysis0 for all actors in the system,
from their initial location.

• Analysis1 - the result of running analysis1 after substituting process vari-
ables out for process definitions in the system. The tab page shows both
the result window and the process definitions,

• Analysis2 - the result of running analysis2 on a given log file. This tab
page shows both the log file and the result of the analysis.

The tool also has a standard menu bar where the user can load system specifica-
tions into the system and run the analyses. For Analysis1 and Analysis2 the user
is prompted for a process definition file and a log file respectively. Figure 5.1
shows the tool after a system has been loaded.

Figure 5.1: The Running Example as a Specification
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5.1.1 Loading Systems

The first thing the user of the tool must do is load a system specification. The
system specification has the same syntax as the system specification language
presented in Section 3.6. The tool parses the system specification and responds
with an error message if the specification can not be parsed. If the specification
can be parsed with out problems, a graph of the spatial structure is drawn in
the Graph tab page, as shown in Figure 5.2.

Figure 5.2: Graph Tab Page

The insCalc Program tab page displays the insCalc program that is the result of
mapping the system to insCalc. The resulting insCalc program contains process
variables at locations where actors are present. Immediately after a system is
loaded, the tabs in Analysis0, Analysis1, and Analysis2 are cleared.

5.1.2 Analysis0

Analysis0 can be executed as soon as a system has been loaded into the tool.
The analysis finds reachable locations and data for each actor in the system,
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Analysis0 Results for Actor ACT1 Located at HALL
-----------------------------------------------------------------
Reachable Locations: { HALL, ROOM1, ROOM2, ROOM3, ROOM4, ROOM5,

ROOM6 }
Reachable Data: { key1{}, key1{ACT1: d, ACT2: d}, key2{},

key2{ROOM1: d}, key3{}, key3{ROOM2: d}, key4{},
key4{ROOM3: d}, key5{}, key5{ROOM4: d}, key6{},
key6{ROOM5: d} }

Analysis0 Results for Actor ACT2 Located at HALL
-----------------------------------------------------------------
Reachable Locations: { HALL, ROOM1, ROOM2, ROOM3, ROOM4, ROOM5,

ROOM6 }

Reachable Data: { key1{}, key1{ACT1: d, ACT2: d}, key2{},
key2{ROOM1: d}, key3{}, key3{ROOM2: d}, key4{},
key4{ROOM3: d}, key5{}, key5{ROOM4: d}, key6{},
key6{ROOM5: d} }

Figure 5.3: Analysis0 Result Report

from their initial locations. The output for the analysis is a text report listing
up data, and locations that the actors can discover by roaming the system, as
shown in Figure 5.3.

5.1.3 Analysis1

For analysis1 the user must provide the tool with an input file, with process
definitions, as defined in Section 3.10.2.2. The result tab page is divided into
two sections, the upper part shows the process definitions used in the analysis,
and the lower part shows the result of the analysis. The process variables, in
the insCalc program, are substituted out for the process definitions supplied in
the input file. It is important that all process definitions end with a nil action
for the parser to be able to parse the file. No error message is produced if the
actor is not able to perform an action in the process sequence, i.e., the process
definition is not validated before it is run.

After the substitution the analysis is executed, and the result of the analysis is
presented in the lower text box. The result is text report showing the contents
of L̂, κ̂, T̂ , and σ̂, which denote reachable locations, reachable data, data at
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locations, and data in variables respectively. Figure 5.4 shows the tab page for
analysis1.

Reachable Locations:
ACT1 = {HALL, ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6}
ACT2 = {HALL}

Reachable Data:
ACT1 = {key1{}, key1{ACT1: d, ACT2: d}, key2{}, key2{ROOM1: d},

key3{}, key3{ROOM2: d}, key4{}, key4{ROOM3: d}, key5{},
key5{ROOM4: d}, key6{}, key6{ROOM5: d}}

ACT2 = {}

Data at locations:
HALL = {key1{ACT1: d, ACT2: d}}
ROOM1 = {key2{ROOM1: d}}
ROOM2 = {key3{ROOM2: d}}
ROOM3 = {key4{ROOM3: d}}
ROOM4 = {key5{ROOM4: d}}
ROOM5 = {key6{ROOM5: d}}
ROOM6 = {}

Data at variables:
dec_key6 = {key6{}}
key6 = {key6{ROOM5: d}}
dec_key5 = {key5{}}
key5 = {key5{ROOM4: d}}
dec_key4 = {key4{}}
key4 = {key4{ROOM3: d}}
dec_key3 = {key3{}}
key3 = {key3{ROOM2: d}}
dec_key2 = {key2{}}
key2 = {key2{ROOM1: d}}
dec_key1 = {key1{}}
key1 = {key1{ACT1: d, ACT2: d}}

Figure 5.4: Analysis1 Result Report

5.1.4 Analysis2

For analysis2 the user must provide the tool with a log file. The log file is loaded
into the upper text box in the Analysis2 tab page, and the result of the analysis
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is displayed in the lower text box. The analysis processes the log file entries in
the same order as in the log file, and produces a text report showing reachable
locations, data that each actor can have at each location in the system, and
finally data located at each location in the system. The result tab page for
analysis2 is shown in Figure 5.5.

Locations for Actors:
ACT1 = {HALL, ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6}
ACT2 = {HALL, ROOM1, ROOM2, ROOM3, ROOM4, ROOM5, ROOM6}

Reachable Data:
ACT1:
HALL = {key1{}, key1{ACT1: d, ACT2: d}, key2{}, key2{ROOM1: d},

key3{}, key3{ROOM2: d}, key4{}, key4{ROOM3: d}, key5{},
key5{ROOM4: d}, key6{}, key6{ROOM5: d}}

ROOM1 = {key1{}, key1{ACT1: d, ACT2: d}, key2{}, key2{ROOM1: d},
key3{}, key3{ROOM2: d}, key4{}, key4{ROOM3: d}, key5{},
key5{ROOM4: d}, key6{}, key6{ROOM5: d}}

ROOM2 ={key1{}, key1{ACT1: d, ACT2: d}, key2{}, key2{ROOM1: d},
key3{}, key3{ROOM2: d}, key4{}, key4{ROOM3: d}, key5{},
key5{ROOM4: d}, key6{}, key6{ROOM5: d}}

...

ACT2:
...

Data at Locations:
HALL = {key1{}, key1{ACT1: d, ACT2: d}, key2{},

key2{ROOM1: d}, key3{}, key3{ROOM2: d}, key4{},
key4{ROOM3: d}, key5{}, key5{ROOM4: d}, key6{},
key6{ROOM5: d}}

ROOM1 = {key2{ROOM1: d}}
ROOM2 = {key3{ROOM2: d}}
ROOM3 = {key4{ROOM3: d}}
ROOM4 = {key5{ROOM4: d}}
ROOM5 = {key6{ROOM5: d}}
ROOM6 = {}

Figure 5.5: Analysis2 Result Report
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5.2 Program Source

5.2.1 Programming Languages

The program is written in C# and F# using Visual Studio 2005 on the Windows
operating system. F# is a functional language in the ML language family, and
it is developed by Microsoft Research. The language is strongly typed, and is
much similar to the Ocaml [17] language. The reason for choosing F# is that the
support for creating parsers and lexical analyzers is excellent in F#, and data
structures for mathematical concepts are easy to express in ML languages. Also
the pattern matching features of the languages gives a much shorter code and
is thus easier to debug and maintain. There is a F# plug-in for Visual Studio,
which is not perfect, but in times of trouble there is an excellent community web
site where programmers get quick respond to problems they run into [7]. Our
experience using F# is generally good and the success of the implementation,
of our tool, is much due to the choice of language. The communication between
the two languages C# and F# was sometimes strange, and we had to create
strange work-a-rounds to make the code work. F# is definitely a promising
language and it is nice to finally have a functional language that can be used
side-by-side with the industrial strength languages.

5.2.2 Programming Environment

As mentioned the tool was developed in Visual Studio 2005 using the F# plug-
in. The code implementing the insider framework was all in F#, and most of
the time the theory mapped directly to F# code. Of course we found errors in
the algorithms when we implemented them, but these were minor bugs that did
not change the overall structure of the algorithms. The Visual Studio solution
was divided into two projects; the graphical user interface written in C#, and
the insider framework dynamic link library written in F#. The debug feature
of Visual Studio was a great help when debugging the program.

5.2.3 Program Structure

The program is organized into two Visual Studio projects, one for the user inter-
face, written in C# and one for parsers, analysis and various internal represen-
tation of a system, written in F#. The most important part of the program is
the project written in F#, as it is the one implementing the Insider Framework.
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In the following we will give an overview of the files and the data structures used
to implement the framework. The project is divided into twelve major files, and
Figure 5.6 shows a dependency graph of how these files are dependent on each
other.

Figure 5.6: Dependency Graph

The SystemLanguage.fs file contains the data structures and functions that
make up the internal representation of the abstract system. This is the most
fundamental file in the project as all other files refer to it. In Figure 5.6 it is
shown as covering all other files to demonstrate that all other files are dependent
on it. Figure 5.7 shows the data structures for the abstract system, they look
like much like the model presented in Section 3.4.

The Util.fs file contains three functions, that each parse one of the possible
input files. There is parse function for the specification files, a parser for process
definition files, and a parser for log files. The three parsers are located in the
files Parser.fs, InsCalcParser.fs, and LogParser.fs respectively.
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type name = string

type location_access = Input | Read | Out | Eval | Move
| Input_ | Read_ | Out_ | Eval_ | Move_

type location_policy = LocPolicy of name * location_access list
| LocPolicyStar of location_access list

type location = Loc of name * location_policy list

type domain = Dom of name

type connection = Con of name * name

type actor = Act of name

type data_access = Decrypt

type data_policy = DataPolicy of name * data_access
| DataPolicyStar of data_access

type data = Data of name * data_policy list

Figure 5.7: F# Data Structures for the Abstract System

The InsCalc.fs file contains the data structures for the internal representations
of insCalc programs. An abstract system can be mapped to an insCalc program,
and the process definitions can be plugged into the program using the parser
in InsCalcParser.fs. The data structures for insCalc programs are listed in
Figure 5.8 and the are also strikingly similar to the definitions presented in
Figure 3.8.

The Log.fs file contains the data structure for representing log files. A log file
is represented as a list of log entries.

The Refmonitor.fs file is the file implementing the reference monitor seman-
tics, i.e., the grant, decrypt, leadsTo, encrypt, and decryptAll functions. As the
correctness of the analyses depend on the functions in this file, there is also a
test file that tests all these functions.

The AnalysisResults.fs file contains data structures that hold the results of
the analyses. It contains ”toString()” functions for the analysis results, to make
it possible to print out the results as text.
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type locality = Local of name | LocVar of name

type formal = Formal of name

type field = Value of name | Variable of name

type template = FormalVar of formal | Field of field

type proc = Nil
| Action of action * proc
| Par of proc * proc
| Inv of name

and action = Out of field * locality
| In of template * locality
| Read of template * locality
| Encrypt of field * data_policy list * formal
| Decrypt of field * formal
| Eval of name * proc * name
| Move of name

type net = ProcNode of location * proc * name * Set<data>
| NilNode of location
| TupleNode of location * data
| CompNode of net * net

Figure 5.8: F# Data Structures for the insCalc Syntax

Finally, the files Analysis0.fs, Analysis0.fs, and Analysis2.fs implement
Analysis0, Analysis1, and Analysis2 respectively.

5.3 Parsers and Lexers

The parsers and lexical analyzers for the three input files where developed using
the tools FSLEX and FSYACC which come with the F# development environ-
ment. These tools are very similar to the ocamllex and ocamlyacc tools for
the Ocaml language [14], [15]. The syntax in Section 3.7 and Section 3.10.2.2
mapped directly to FSYACC specifications. Detailed information on lexical
analyzers and parser generators can be found in [1, 9, 3].
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5.4 Summary

This chapter has given the reader an overview of the tool developed for doing
insider analysis. We are pleased with the results and believe that our tool
runs the three analysis correctly. The choice of language is a big factor in
the success of programming the tool, and we believe that F# is a good choice
for programming tools, that build on language based research. Visual Studio
2005 is also an excellent programming environment, and its debugging feature
is amazing and saves the programmer a lot of time when debugging.
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Chapter 6

Evaluation

One of the goals of this project was to develop a tool for performing insider
analysis. A description of the implementation of the tool was given in Chapter 5,
but in this chapter we will focus on the evaluation of the tool. For the evaluation
we use two system specifications, along with process definitions and log files for
each system. Each system will demonstrate an important property of the tool,
and hopefully demonstrate the correctness of the algorithms in the framework
and the implementation of the tool.

6.1 Specification 1

We begin by analyzing a system that we choose to call ”Specification 1”. It is a
simple system with seven rooms connected through a single hall. There are six
locations named ”Room1” through ”Room6” and a location named ”Kitchen”.
In the Kitchen there is a Waste basket containing a document, that can be de-
crypted by going into the location named ”Room4”. There are cipher locks on
Room5 and Room6, and only an actor holding key2 can enter Room5, and only
the one holding the Doc data element can enter Room6. There is a computer
in Room1 connected to a printer located in Room2. Figure 6.1 shows a graphi-
cal representation of the system and Figure 6.2 shows the system specification
loaded into our tool.
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Figure 6.1: Specification 1

6.1.1 Analysis0

We want to demonstrate that Analysis0 makes the actors pick up data and use
them as keys, even though the actors have to go to a lot of trouble in decrypting
the data.

The analysis should make Act1 decrypt key2 by using key2, and make him go
to the Kitchen and pick the Doc from the Waste and decrypt it at Room4. It
should also make Act1 explore Room5, which requires key2, and pick up the
Pin code located there. Finally, Act1 will explore Room6 which requires the
decrypted Doc.

The same thing should happen with Act2, but he will not be able to reach
Room5 as he does not have key2 at his disposal, thus he will not be able to
retrieve the Pin code located at Room5.

This should hopefully demonstrate that actors can use things they pick up as
keys, if they can decrypt them, and that access control works as expected.
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locations: Hall{*:m_,o,r,i}(phys),
Room1{*:m}(phys),Room2{*:m}(phys),
Room3{*:m}(phys),Room4{Hall:m_}(phys),
Room5{key2:m_}(phys),Room6{Doc:m_}(phys),
Kitchen{Hall:m_}(phys),
Waste{*:o,i,r}(phys),
Pc1{*:e,o,i,r}(dig),
Printer{*:o,i,r}(dig);

connections:Hall->Room1, Room1->Hall,
Hall->Room2, Room2->Hall,
Hall->Room3, Room3->Hall,
Hall->Room4, Room4->Hall,
Hall->Room5, Room5->Hall,
Hall->Room6, Room6->Hall,
Hall->Kitchen, Kitchen->Hall,
Kitchen->Waste, Room1->Pc1,
Room2->Printer, Pc1->Printer,
Printer->Pc1;

actors: Act1@Room1, Act2@Room2; data: Doc{Room4:d}@Waste,
key1{}@Act1, key2{key1:d}@Act1,

Pin{}@Room5;

Figure 6.2: Specification1: System Specification

Figure 6.3 shows the output of our tool when running Analysis0. Act1 is able
to reach all locations in the system and retrieve all data, but Act2 is not able to
reach Room5 and retrieve the Pin data item. The result is as we expected, and
the running time of the analysis was close to zero seconds, without any delays
in the user interface.

6.1.2 Analysis1

For Analysis1 we explicitly state what each actor in the system does. We can-
not specify the order things happen so the analysis will simulate all possible
interleavings of actions between actors. The analysis is much more precise than
analysis0, that only provided us with an upper bound of possible actions. The
analysis can be viewed as a reconstruction of actions that where performed in
a system, where every single action was observable.

The process definition we will provide will be a simple sequence of action, where
Act1 performs all the necessary actions to get access to Room6, i.e., pick up



84 Evaluation

Analysis0 Results for Actor Act1 Located at Room1
---------------------------------------------------------------
Reachable Locations: { Hall, Kitchen, Pc1, Printer, Room1,

Room2, Room3, Room4, Room5, Room6,
Waste }

Reachable Data: { Doc{}, Doc{Room4: d}, key1{}, key2{},
key2{key1: d} }

Analysis0 Results for Actor Act2 Located at Room2
---------------------------------------------------------------
Reachable Locations: { Hall, Kitchen, Pc1, Printer, Room1,

Room2,Room3, Room4, Room6, Waste }
Reachable Data: { Doc{}, Doc{Room4: d} }

Figure 6.3: Specification1: Analysis0 Results

Doc from the Waste bin, decrypt it at Room4, and then use it to access Room6.
We will not provide any action sequence for Act2, in order demonstrate that he
will not acquire any knowledge just by standing in Room2 doing nothing. The
process definition is shown in Figure 6.4.

Act1 := move("Hall").move("Kitchen").
in(!doc)@"Waste".move("Hall").move("Room4").
decrypt(doc,!doc_decrypted).move("Hall").
move("Room6").nil

Figure 6.4: Specification1: Process Definitions for Analysis1

The result of running the analysis on process definition is shown in Figure 6.5.
The result shows that Act1 can reach the expected locations, and does not
explore any other locations which are not given in the process definition. Act2
does not explore any location and does not discover any data. One thing to
notice is that even though Act1 does not explicitly decrypt key2, the key is
decrypted as soon as he starts moving around. The algorithm decrypt any keys
in the actors key set before he starts moving around in the system. When the
actor is started moving he must explicitly decrypt all data that he picks up
along the way.
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Reachable Locations:
Act1 = {Hall, Kitchen, Room1, Room4, Room6}
Act2 = {Room2}

Reachable Data:
Act1 = {Doc{}, Doc{Room4: d}, key1{}, key2{},
key2{key1: d}} Act2 = {}

Data at locations:
Hall = {}
Room1 = {}
Room2 = {}
Room3 = {}
Room4 = {}
Room5 = {Pin{}}
Room6 = {}
Kitchen = {}
Waste = {Doc{Room4: d}}
Pc1 = {}
Printer = {}

Data at variables:
doc_decrypted = {Doc{}}
doc = {Doc{Room4: d}}

Figure 6.5: Specification1: Analysis1 Results

6.1.3 Analysis2

For Analysis2 we provide the system with a log file of actions, that where ob-
served in the system at locations where actions are logged. The log file is
presented in Figure 6.6.

(0, Actor(Act1), Room1, Hall, m);
(1, Location(Hall), Hall, Kitchen, m);
(2, Actor(Act1), Kitchen, Hall, m);
(3, Location(Hall), Hall, Room4, m);
(4, Actor(Act1), Room4, Hall, m);
(4, Key(Doc), Hall, Room6, m)

Figure 6.6: Specification1: Log file for Analysis2
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Locations for Actors:
Act1 = {Room6}
Act2 = {Room2}
Reachable Data:
Act1:
Hall = {Doc{}, Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}
Room1 = {} Room2 = {} Room3 = {} Room4 = {} Room5 = {}
Room6 = {Doc{}, Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}
Kitchen = {}
Waste = {}
Pc1 = {}
Printer = {}
Act2:
Hall = {}
Room1 = {}
Room2 = {Doc{}, Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}
Room3 = {} Room4 = {} Room5 = {} Room6 = {}
Kitchen = {}
Waste = {}
Pc1 = {}
Printer = {}
Data at Locations:
Hall = {Doc{}, Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}
Room1 = {} Room2 = {} Room3 = {} Room4 = {}
Room5 = {Pin{}}
Room6 = {}
Kitchen = {}
Waste = {Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}
Pc1 = {Doc{}, Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}
Printer = {Doc{}, Doc{Room4: d}, key1{}, key2{}, key2{key1: d}}

Figure 6.7: Specification1: Analysis2 Results

The log file records the same sequence of events as the process definition for
Analysis1. The result of running the analysis with the log file is presented in
Figure 6.7. The results have three components: reachable locations for each
actor, reachable data for each actor at each location, and data located at each
location in the system. We can see from the results that Act1 ended his trip at
Room6, and that Act2 did not move from Room2. Act1 did manage to decrypt
the Doc data element, found in Waste bin in the Kitchen. There are a lot of
data in the Waste, PC, and the Printer and this is because the out action is
not logged at these locations. The analysis must assume that Act1 could have
outputted his data at these locations even though he did not.
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The analysis seems to do the job correctly, but it is sensitive to errors in the log
file. There are few integrity checks on the log file entries and it is easy to make
mistake that give unexpected results.

6.2 Specification 2

We call the second system, that we use for evaluation our tool, ”the paycheck”
system. It is a normal office scenario with four actors, which each have received
their paycheck in their PCs. The access annotations for this system are realistic,
there is a surveillance camera in the hall that monitors movement in the hall,
and the actors can perform all actions at all locations.

We want to demonstrate that especially Analysis2 is too imprecise because it
is too pessimistic. It always assumes the worst, that all actors exchange every
data they have, if the out, in, and read actions are not logged. Figure 6.8
shows the system graphically and Figure 6.9 shows the system specification file
for the system.

Figure 6.8: Specification 1
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locations: Hall{*:m_,o,r,i}(phys),
Room1{*:m,i,o,r}(phys),Room2{*:m,i,o,r}(phys),
Room3{*:m,i,o,r}(phys),Room4{*:m,i,o,r}(phys),
Wc{*:m,i,o,r}(phys),
Kitchen{Hall:m,i,o,r}(phys),
Waste{Kitchen:o,i,r}(phys),
Pc1{Act1:e,o,i,r}(dig),
Pc2{Act2:e,o,i,r}(dig),
Pc3{Act3:e,o,i,r}(dig),
Pc4{Act3:e,o,i,r}(dig);

connections:Hall->Room1, Room1->Hall,
Hall->Room2, Room2->Hall,
Hall->Room3, Room3->Hall,
Hall->Room4, Room4->Hall,
Hall->Wc, Wc->Hall,
Hall->Kitchen, Kitchen->Hall,
Kitchen->Waste;

actors: Act1@Room1, Act2@Room2, Act3@Room3, Act4@Room4;
data:Doc{}@Waste;

Figure 6.9: Specification2: System Specification

6.2.1 Analysis0

For Analysis0 there are no surprises, each actor can get the Doc data element
in the Waste bin in the Kitchen and his paycheck. Each actor can reach all
locations. The result of running Analysis0 is shown in Figure 6.10.
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Analysis0 Results for Actor Act1 Located at Room1
-------------------------------------------------------------
Reachable Locations:
{ Hall, Kitchen, Pc1, Room1, Room2, Room3, Room4, Waste, Wc }
Reachable Data:
{ Doc{}, Pay1{}, Pay1{Act1: d} }

Analysis0 Results for Actor Act2 Located at Room2
-------------------------------------------------------------
Reachable Locations:
{ Hall, Kitchen, Pc2, Room1, Room2, Room3, Room4, Waste, Wc }
Reachable Data:
{ Doc{}, Pay2{}, Pay2{Act2: d} }

Analysis0 Results for Actor Act3 Located at Room3
-------------------------------------------------------------
Reachable Locations:
{ Hall, Kitchen, Pc3, Room1, Room2, Room3, Room4, Waste, Wc }
Reachable Data:
{ Doc{}, Pay3{}, Pay3{Act3: d} }

Analysis0 Results for Actor Act4 Located at Room4
-------------------------------------------------------------
Reachable Locations:
{ Hall, Kitchen, Pc4, Room1, Room2, Room3, Room4, Waste, Wc }
Reachable Data:
{ Doc{}, Pay4{}, Pay4{Act4: d} }

Figure 6.10: Specification2: Analysis0 Results

6.2.2 Analysis1

For Analysis1 we provide process definitions, where each actor reads his pay-
check and then goes to the Kitchen to meet the other actors. The process defi-
nitions are thus the same for all actors, and they are displayed in Figure 6.11.

The result of the analysis is displayed in Figure 6.12, and it contains the expected
result. Each actor can reach his office, the Hall, and the Kitchen, and can read
his own paycheck.
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Act1 := in(!pay1)@"Pc1".decrypt(pay1, !pay1_dec).
move("Hall").move("Kitchen").nil;

Act2 := in(!pay2)@"Pc2".decrypt(pay2, !pay2_dec).
move("Hall").move("Kitchen").nil;

Act3 := in(!pay3)@"Pc3".decrypt(pay3, !pay3_dec).
move("Hall").move("Kitchen").nil;

Act4 := in(!pay4)@"Pc4".decrypt(pay4, !pay4_dec).
move("Hall").move("Kitchen").nil

Figure 6.11: Specification2: Analysis1 Process Definitions

Reachable Locations:
Act1 = {Hall, Kitchen, Room1}
Act2 = {Hall, Kitchen, Room2}
Act3 = {Hall, Kitchen, Room3}
Act4 = {Hall, Kitchen, Room4}
Reachable Data:
Act1 = {Pay1{}, Pay1{Act1: d}}
Act2 = {Pay2{}, Pay2{Act2: d}}
Act3 = {Pay3{}, Pay3{Act3: d}}
Act4 = {Pay4{}, Pay4{Act4: d}}
Data at locations:
Hall = {} Room1 = {} Room2 = {} Room3 = {} Room4 = {}
Wc = {}
Kitchen = {}
Waste = {Doc{}}
Pc1 = {Pay1{Act1: d}}
Pc2 = {Pay2{Act2: d}}
Pc3 = {Pay3{Act3: d}}
Pc4 = {Pay4{Act4: d}}
Data at variables:
pay4_dec = {Pay4{}}
pay4 = {Pay4{Act4: d}}
pay3_dec = {Pay3{}}
pay3 = {Pay3{Act3: d}}
pay2_dec = {Pay2{}}
pay2 = {Pay2{Act2: d}}
pay1_dec = {Pay1{}}
pay1 = {Pay1{Act1: d}}

Figure 6.12: Specification2: Analysis1 Results



6.3 Summary 91

6.2.3 Analysis2

For Analysis2 we provide the system with a log file of recorded actions in the
system. We want this system to have realistic access-modes on the locations,
and have chosen to log only the movement of actors in the Hall. The surveillance
camera in the Hall could be connected to a face-recognition program that logs
which actors move into the Hall. The camera cannot log what the actors are
saying or see what information is being exchanged in the Hall. The log file, we
present, shows simply that each actor moves to the Hall and nothing more. The
log file is presented in Figure 6.13.

(0, Actor(Act1), Room1, Hall, m);
(1, Actor(Act2), Room2, Hall, m);
(2, Actor(Act3), Room3, Hall, m);
(3, Actor(Act4), Room4, Hall, m)

Figure 6.13: Specification2: Analysis2 Log File

The output of the analysis is shown in Figure 6.14, and shows that when we run
Analysis2 in our tool every actor exchanges every information that is available
to him. Every actor also leaves all his data at every location. It is obviously not
very realistic, that every actor tells the next what he got payed. The analysis is
thus not very realistic when it comes to realistic access annotations. It would be
more realistic to add some kind of probability that a given data is exchanged.
A simple solution would be to annotate the data with either private or public.
Private data are data that the actor would never give away and public data
would be something he might give away.

6.3 Summary

This section contains the evaluation of our tool. It seems to give us the expected
results and run the analysis very fast. It is hard to come up with systems to
demonstrate the power of the analyses because of the complexity of things that
can happen in the system. It is easy to loose track of things in a system with
more than a handful of locations, data and actors. The last analysis seem to be
a bit unrealistic when not every action is logged.
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Locations for Actors:
Act1 = {Hall, Kitchen, Pc1, Room1, Room2,

Room3, Room4, Wc}
Act2 = {Hall, Kitchen, Pc2, Room1, Room2,

Room3, Room4, Wc}
Act3 = {Hall, Kitchen, Pc3, Room1, Room2,

Room3, Room4, Wc}
Act4 = {Hall, Kitchen, Pc4, Room1, Room2,

Room3, Room4, Wc}

Reachable Data:
Act1-Act3:
Hall = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},

Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Room1 = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Room2 = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Room3 = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Room4 = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Wc = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Kitchen = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Waste = {Doc{}, Pay1{}, Pay1{Act1: d}, Pay2{},
Pay2{Act2: d}, Pay3{}, Pay3{Act3: d},
Pay4{}, Pay4{Act4: d}}

Pc2 = {}
Pc3 = {}
Pc4 = {}

Data at Locations: ...

Figure 6.14: Specification2: Analysis2 Results
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Conclusion

In the previous chapters we have presented a framework for doing insider anal-
ysis, and designed and programmed a tool that implement the elements of the
framework. We evaluated our tool and found it to be a correct implementation
of the Insider Framework.

7.1 Achievements

We have extended an existing theory [16] and focused on providing details that
made that theory implementable. The extensions where mainly to add access-
control to data and add a logging-component to the framework. After the exten-
sions where in place, we programmed a tool for performing insider analysis. The
tool implements three analysis described in the Insider Framework. Although
the previous chapter contain a lot of theory we believe that our analysis and
our tool could be helpful in a high-security, real-world system. Our tool should
be easy to connect to a surveillance system, as the only thing that is needed for
our system is a log file of actions performed in the system.

We have not heard about other similar tools and have thus not compared our
tool to any other.



94 Conclusion

We believe that we have succeeded in developing an implementable framework
for insider analysis and we are proud of the tool and the theory developed.

7.2 Limitations

Our tool has some limitations. There are a few integrity checks on the input
files, especially the process definitions and the log files. The tool could have
handled errors in the process definitions and log files more gracefully. The user
interface could also display the result of the analyses in a more ”graphical” way.

Analysis2 seems to be unrealistic as it is too pessimistic when input and output
actions are not logged. It assumes the worst and actors give away all their data,
witch is not very realistic in all cases.

7.3 Future Work

We have performed one iteration in the process of developing framework for
doing insider analysis. The framework can be extended endlessly to make it
more realistic and more flexible. We will list a few extensions that came to your
mind while working on the project.

• More complex tuples: We chose to work with simple tuples, the theory
and the tool could easily be extended with more complex tuple structures.

• Recursive process definitions: We did not allow process definitions to
be recursive, as the syntax of insCalc did not provide support for specifying
process definitions. By extending the syntax of insCalc to allow process
definitions the invocation of process variables could be recursive.

• Encrypt data with multiple keys: We did not allow data to be en-
crypted with more than one key. The abstract system could be extended
to allow data to be encrypted multiple times.

• Locations that can be locked: It could be nice to have locations that
actors can lock, and thus make it impossible for other actors to enter the
location while it was locked.

• Movable locations: Some locations could be marked as movable loca-
tions, that actors could move from one place to another. This would be



7.3 Future Work 95

useful in modeling cars, elevators, and other movable objects in the real-
world.

• Probability on events: It could give a better result to add probabili-
ties on the likelihood that e.g., an actor gives another actor some data.
The analysis would then take this into account and produce a result that
depended on those probabilistic values.
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Appendix A

Test Systems

A.1 Specification1

A.1.1 Test1.spe

locations: Hall{*:m_,o,r,i}(phys),
Room1{*:m}(phys),Room2{*:m}(phys),
Room3{*:m}(phys),Room4{*:m_}(phys),
Room5{key2:m_}(phys),Room6{Doc:m_}(phys),
Kitchen{Hall:m_}(phys),
Waste{*:o,i,r}(phys),
Pc1{*:e,o,i,r}(dig),
Printer{*:o,i,r}(dig);

connections:Hall->Room1, Room1->Hall,
Hall->Room2, Room2->Hall,
Hall->Room3, Room3->Hall,
Hall->Room4, Room4->Hall,
Hall->Room5, Room5->Hall,
Hall->Room6, Room6->Hall,
Hall->Kitchen, Kitchen->Hall,
Kitchen->Waste, Room1->Pc1,
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Room2->Printer, Pc1->Printer,
Printer->Pc1;

actors: Act1@Room1, Act2@Room2; data: Doc{Room4:d}@Waste,
key1{}@Act1, key2{key1:d}@Act1,

Pin{}@Room5;

A.1.2 Test1.pde

Act1 := move("Hall").move("Kitchen").
in(!doc)@"Waste".move("Hall").move("Room4").
decrypt(doc, !doc_decrypted).move("Hall").
move("Room6").nil

A.1.3 Test1.log

(0, Actor(Act1), Room1, Hall, m);
(1, Location(Hall), Hall, Kitchen, m);
(2, Actor(Act1), Kitchen, Hall, m);
(3, Location(Hall), Hall, Room4, m);
(4, Actor(Act1), Room4, Hall, m);
(4, Key(Doc), Hall, Room6, m)

A.2 Chain of Keys

A.2.1 Chain Of Keys.spe

locations: HALL{*:m, o, r, i}(phys),
ROOM1{key1:m,i,r}(phys),
ROOM2{key2:m_,i,r}(phys),
ROOM3{key3:m,i,r}(phys),
ROOM4{key4:m_,i,r}(phys),
ROOM5{key5:m,i,r}(phys),
ROOM6{key6:m_,i,r}(phys);

connections: HALL->ROOM1, ROOM1->HALL,
HALL->ROOM2, ROOM2->HALL,
HALL->ROOM3, ROOM3->HALL,
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HALL->ROOM4, ROOM4->HALL,
HALL->ROOM5, ROOM5->HALL,
HALL->ROOM6, ROOM6->HALL;

actors: ACT1@HALL, ACT2@HALL;
data: key1{ACT1:d; ACT2:d}@HALL, key2{ROOM1:d}@ROOM1,

key3{ROOM2:d}@ROOM2, key4{ROOM3:d}@ROOM3,
key5{ROOM4:d}@ROOM4, key6{ROOM5:d}@ROOM5;

A.2.2 Chain Of Keys.pde

ACT1 := in(!key1)@"HALL".decrypt(key1,!dec_key1).
move("ROOM1").in(!key2)@"ROOM1".
decrypt(key2, !dec_key2).move("HALL").

move("ROOM2").in(!key3)@"ROOM2".
decrypt(key3,!dec_key3).move("HALL").
move("ROOM3").in(!key4)@"ROOM3".
decrypt(key4,!dec_key4).move("HALL").
move("ROOM4").in(!key5)@"ROOM4".
decrypt(key5,!dec_key5).move("HALL").
move("ROOM5").in(!key6)@"ROOM5".
decrypt(key6,!dec_key6).move("HALL").
move("ROOM6").move("HALL").nil

A.2.3 Chain Of Keys.log

(1, Key(key2), HALL, ROOM2, m);
(2, Key(key4), HALL, ROOM4, m);
(3, Key(key6), HALL, ROOM6, m)

A.3 The Long Hall

A.3.1 The Long Hall.spe

locations: HALL{*:m_,o_,r_,i_}(phys),
JAN{key1:m_; JAN:r,i,o_}(phys),
OFF{1234:m_,o,i,r}(phys),
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ROOM1{*:m}(phys),ROOM2{*:m}(phys),
ROOM3{*:m_}(phys),ROOM4{*:m}(phys),
ROOM5{*:m}(phys),ROOM6{*:m}(phys),
KITCHEN{HALL:m_}(phys), WASTE{*:o,i,r}(phys),
PC1{*:e,o,i,r}(dig), PRINTER{*:o,i,r}(dig);

connections:HALL->JAN, JAN->HALL,
HALL->OFF, OFF->HALL,

HALL->ROOM1, ROOM1->HALL,
HALL->ROOM2, ROOM2->HALL,
HALL->ROOM3, ROOM3->HALL,
HALL->ROOM4, ROOM4->HALL,
HALL->ROOM5, ROOM5->HALL,
HALL->ROOM6, ROOM6->HALL,
HALL->KITCHEN, KITCHEN->HALL,
KITCHEN->WASTE, ROOM1->PC1,
ROOM2->PRINTER, PC1->PRINTER,
PRINTER->PC1;

actors: USER@OFF, JANITOR@JAN, WORKER@ROOM1;
data: DOC{}@WASTE, key1{}@USER, key2{key1:d}@USER,

PIN{}@JAN;

A.3.2 The Long Hall.pde

JANITOR:=encrypt("trash" ,{JANITOR:d}, !trash).
move("HALL").move("KITCHEN").out(trash)@"WASTE".
read(!waste)@"WASTE".move("HALL").move("JAN").nil;

USER:=encrypt("old_banana" ,{*:d}, !old_banana).
move("HALL").move("KITCHEN").out(old_banana)@"WASTE".
read(!waste)@"WASTE".move("HALL").move("ROOM2").
read(!everything)@"PRINTER".move("HALL").move("OFF").nil;

WORKER:=out("document")@"PC1".in(!document)@"PC1".
eval("Printing", out(document)@"PRINTER".nil)@"PC1".nil

A.3.3 The Long Hall.log

(1, Actor(USER), OFF, HALL, m);
(2, Actor(JANITOR), JAN, HALL, m);
(3, Key(PIN), HALL, JAN, m);
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(4, Location(JAN), JAN, JAN, o);
(5, Location(HALL), HALL, KITCHEN, m);
(6, Location(JAN), JAN, HALL, m);

A.4 The PayCheck

A.4.1 PayCheck.spe

locations: Hall{*:m_,o,r,i}(phys),
Room1{*:m,i,o,r}(phys),Room2{*:m,i,o,r}(phys),
Room3{*:m,i,o,r}(phys),Room4{*:m,i,o,r}(phys),
Wc{*:m,i,o,r}(phys),
Kitchen{Hall:m,i,o,r}(phys),
Waste{Kitchen:o,i,r}(phys),
Pc1{Act1:e,o,i,r}(dig),
Pc2{Act2:e,o,i,r}(dig),
Pc3{Act3:e,o,i,r}(dig),
Pc4{Act4:e,o,i,r}(dig);

connections:Hall->Room1, Room1->Hall,
Hall->Room2, Room2->Hall,
Hall->Room3, Room3->Hall,
Hall->Room4, Room4->Hall,
Hall->Wc, Wc->Hall,
Hall->Kitchen, Kitchen->Hall,
Kitchen->Waste, Room1->Pc1,
Room2->Pc2, Room3->Pc3, Room4->Pc4;

actors: Act1@Room1, Act2@Room2, Act3@Room3, Act4@Room4;
data: Doc{}@Waste, Pay1{Act1:d}@Pc1, Pay2{Act2:d}@Pc2,

Pay3{Act3:d}@Pc3, Pay4{Act4:d}@Pc4;

A.4.2 PayCheck.pde

Act1 := in(!pay1)@"Pc1".decrypt(pay1, !pay1_dec).
move("Hall").move("Kitchen").nil;

Act2 := in(!pay2)@"Pc2".decrypt(pay2, !pay2_dec).
move("Hall").move("Kitchen").nil;

Act3 := in(!pay3)@"Pc3".decrypt(pay3, !pay3_dec).
move("Hall").move("Kitchen").nil;

Act4 := in(!pay4)@"Pc4".decrypt(pay4, !pay4_dec).
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move("Hall").move("Kitchen").nil

A.4.3 PayCheck.log

(0, Actor(Act4), Room4, Hall, m);
(1, Actor(Act3), Room3, Hall, m);
(2, Actor(Act2), Room2, Hall, m);
(3, Actor(Act1), Room1, Hall, m);
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