

Analysis of the PKMv2 Protocol in IEEE
802.16e-2005 Using Static Analysis

Ender Yuksel

Kongens Lyngby 2007

IMM-THESIS-2007-16

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-M.Sc: ISSN 0000000000, ISBN 00000000000

Summary

The IEEE 802.16e-2005 specification provides an air interface standard

for metropolitan area wireless broadband service. IEEE 802.16 is the

basis for Worldwide Interoperability for Microwave Access (WiMAX)

certification which is the next evolution in wireless technology. The

latest version of the standard, the IEEE 802.16e addresses mobility and

also enhances the security sublayer of the IEEE 802.16 standard. Since

wireless technology is broadcast and transmitted data can be intercepted,

wireless users face more risks than wired users. The former IEEE 802.16

standards used the Privacy and Key Management (PKM) protocol which

had many critical drawbacks. In IEEE 802.16e, a new version of this

protocol called PKMv2 is released. PKMv2 has radical changes and in

contrast with the previous version it seems to have an exaggerated

mixture of security features like nonces, message authentication codes,

key ids, certificates, etc.

The PKMv2 includes two main issues: an Authentication/Authorization

protocol to establish a shared Authorization Key (AK), and a 3-Way

Security Association (SA) Traffic Encryption Key (TEK) Handshake.

The former is strengthened with de facto standards such as RSA and

EAP, therefore the PKMv2 SA-TEK 3-Way Handshake (PKMv2 SA-

TEK 3W HS), which is used for transferring TEKs to mobile stations

(MS) after authentication will be the specific point of this thesis.

ii

Static analysis is successfully used for automatically validating security

properties of classical and modern cryptographic protocols. In this thesis

we will show how the very same technique can be used to validate

modern wireless network security protocols, in particular, we study the

IEEE 802.16e PKMv2 SA-TEK 3W HS.

We derived a model of the protocol and described it using LySa, a

process calculus in the pi/spi calculus family allowing communication

protocols to be specified and annotated for validation of authentication

properties. After that, we carried out a static analysis of our LySa model

using the static analysis tool LySa-tool. Validating the base protocol, we

studied our proposal on an optimized but still secure protocol. Having

established systematic experiments on our models of modified versions

of the protocol, we analyzed the robustness and security features. In

conclusion we found improvements that increased the performance while

being still secure.

Preface

This thesis was prepared at Informatics Mathematical Modelling, the

Technical University of Denmark in fulfillment of the requirements for

acquiring the M.Sc. degree in engineering.

The thesis deals with the static analysis of the IEEE 802.16e-2005

PKMv2 Protocol.

The thesis consists of a summary report and source codes for the

experimented protocols.

Lyngby, February 2007

Ender Yuksel

iv

Acknowledgements

I am very grateful for the advice and support from my supervisor,

professor Hanne Riis Nielson, for her feedback and excellent guidance

and for keeping me focused in my research.

I would like to thank Christoffer Rosenkilde Nielsen for his helps and

support.

I would also like to thank professor Bulent Orencik for his support and

guidance since 2003.

Last but not least, I want to thank my parents and my brother for their

endless support and encouragement in my whole life.

vi

Contents

INTRODUCTION .. 1

1.1 AUTHENTICATION PROTOCOLS ... 2
1.1.1 Attacker Modelling and Scenarios ... 5

1.2 PROTOCOL VALIDATION ... 9
1.3 STRATEGY AND CONCEPTS ... 11
1.4 STRUCTURE OF THIS REPORT .. 12

IEEE 802.16 SECURITY ... 14

2.1 OVERVIEW OF PKMV1 (IEEE 802.16-2004) .. 16
2.1.1 PKM Authorization .. 17
2.1.2 Privacy and Key Management ... 19

2.2 OVERVIEW OF PKMV2 (IEEE 802.16E-2005) .. 20
2.3 OVERVIEW OF CONTRIBUTION.. 23
2.4 SPECIFYING IEEE 802.16 PKMV2 SA-TEK 3-WAY HANDSHAKE 25
2.5 CONSIDERATIONS IN MODELLING .. 27

LYSA ... 29

3.1 LYSA CALCULUS .. 29
3.1.1 Syntax .. 30
3.1.2 Semantics ... 32

3.2 MODELLING PROTOCOLS IN LYSA.. 36
3.2.1 Extended Protocol Narrations ... 36
3.2.2 Modelling of Message Authentication Codes... 39
3.2.3 LySa Model of IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake 40

STATIC ANALYSIS .. 43

4.1 TERMS .. 44
4.2 PROCESSES ... 46
4.3 MODELLING THE ATTACKER .. 49

viii

4.4 ANALYSIS ... 51
4.4.1 Analysis of the WMF Protocol ... 52

ANALYSIS OF IEEE 802.16 PKMV2 SA-TEK 3-WAY HANDSHAKE 58

5.1 EXPERIMENTS ... 59
5.1.1 The PKMv2 SA-TEK 3-Way Handshake .. 60
5.1.2 Removing the Nonces ... 62
5.1.2.1 Removing nb in the Last Message ... 62
5.1.2.2 Removing na in the Last Message ... 63
5.1.2.3 Removing All the Nonces in the Last Message ... 65
5.1.2.4 Removing All Nonces in the Last Message and nb in the Second Message

 .. 66
5.1.3 Removing the Key Ids .. 68
5.1.3.1 Removing the key id in the Last Message ... 68
5.1.3.2 Removing the key ids in the Second and the Third Message 69
5.1.4 Removing Nonces and the Key Ids ... 71
5.1.4.1 Removing the key id and nb in the Last Message 71
5.1.4.2 Removing the key id and na in the Last Message 72

5.2 FIXING THE VIOLATIONS .. 74
5.2.1 Fix for Removing All the Nonces in the Last Message................................ 74
5.2.2 Fix for Removing All Nonces in the Last Message and nb in the Second

Message .. 75
5.2.3 Fix for Removing the key ids in the Second and the Third Message 76

5.3 ANALYSIS RESULTS .. 77

CONCLUSION ... 79

LYSA CODES .. 82

A.1 THE PKMV2 SA-TEK 3-WAY HANDSHAKE ... 82
A.2 REMOVING NB IN THE LAST MESSAGE ... 84
A.3 REMOVING NA IN THE LAST MESSAGE .. 86
A.4 REMOVING ALL THE NONCES IN THE LAST MESSAGE ... 88
A.5 REMOVING ALL NONCES IN THE LAST MESSAGE AND NB IN THE SECOND

MESSAGE ... 90
A.6 REMOVING THE KEY ID IN THE LAST MESSAGE ... 92
A.7 REMOVING THE KEY IDS IN THE SECOND AND THE THIRD MESSAGE 94
A.8 REMOVING THE KEY ID AND NB IN THE LAST MESSAGE 96
A.9 REMOVING THE KEY ID AND NA IN THE LAST MESSAGE 98

CHAPTER 1

Introduction

Security issues in wireless networks became a growing concern with the

spreading growth on wireless communication in recent years. Wireless

networks face more and especially different security threats than wired

networks. However, IEEE 802.16, the standard for wireless metropolitan

area networks (WMAN), incorporated a pre-existing standard called Data

Over Cable Service Interface Specifications (DOCSIS), which was

designed for cable networks not wireless networks. Therefore, IEEE

802.16 security failed to protect the IEEE 802.16 link [1] and had

significant changes in its Privacy and Key Management (PKM) protocol

with the latest standard IEEE 802.16e-2005 [2].

The key distribution and management protocols which are used to

establish secure communication between two principals, and

authentication protocols which verify that the communicating principle is

who it is supposed to be are one of the main issues that the applications

of formal methods in the analysis of cryptographic protocols have been

mainly concerned with. The tools that have been constructed based on

the theoretical developments have successfully located subtle bugs in

many cases, even in protocols that have been considered secure for

2

several years. One of the most famous success stories is the Lowe's

attack [3, 4] on the Needham Schroeder public key protocol [5] using the

process algebra Communicating Sequential Processes (CSP) and the

Failures-Divergences Refinement (FDR) which is the model checker for

CSP [6]. Also, Shmatikov and Stern [7] used Murphi, and Corin et al.

[8] used symbolic traces and Pure-past Security - Linear Temporal Logic

(PS-LTL) successfully.

In this thesis, a formal and automated method to verify the security

protocol used in IEEE 802.16 is described and used. In particular, the

PKMv2 SA-TEK 3-Way Handshake is studied using LySa process

calculus and static analysis.

1.1 Authentication Protocols

An authentication protocol verifies the identity of principals by

exchanging messages that have a specific form for authentication. These

protocols usually have additional goals such as the distribution of session

keys. Because of the illegitimate and/or malicious principals and active

intruders, authentication requires complex protocols that are based on

cryptography. The cryptographic protocols enable the principals to

establish secure communications on insecure networks by using

cryptographic functions and shared secrets for authentication and

confidentiality.

Generally, a trusted server (i.e. Key Distribution Center) is used for

authentication protocols. The principals communicate with the server to

make sure that the corresponding principal is authenticated. In addition,

in most of the protocols the principals agree on a session key for that

specific session. Since there exists a trade-off between performance and

security, the symmetric-key cryptography is used for all data traffic, and

public-key cryptography is widely used for the authentication protocols

themselves which aim to establish the session key. Roughly speaking, the

symmetric-key cryptography is faster but less secure, whereas public-key

cryptography is slower but more secure. Establishing the session key is

done less frequently but it needs more security, whereas encrypting the

3

data traffic is done frequently but is not so critical as encrypting the

session keys whose loss will affect all the encrypted data traffic.

In addition, session key is freshly created for each new connection and

minimizes the amount of traffic that gets sent with confidential data like

the users' secret keys or public keys, therefore reduces the amount of

cipher text an intruder can obtain, and minimizes the damage in a case of

intrusion. The loss of the session key is not as crucial as the loss of the

secret key or any permanent key since the session key is renewed in each

session [9].

Symmetric-key cryptography uses the same key for encryption and

decryption. The notation between a simple encrypted communication

between two principals is basically shown as:

A B : {M}K

where principal A sends the message M to principal B by encrypting it

with the key K. Certainly, B must possess the key K in order to be able to

decrypt {M}K and read the message M.

Public-key cryptography or in other words asymmetric encryption is

carried out using a private/public key pair e.g. K
-/K

+
. The private key is

kept secret whereas the public key is common knowledge. The messages

that are encrypted using the private key can only be decrypted by using

the public key, so all the principals possessing the public key can decrypt

them. Likewise, the messages that are encrypted using the public key can

be decrypted by using the private key, so only the principal possessing

the private key can decrypt them.

Description of asymmetric encryption is done in the following notation:

A B : {|M|}K

This is the description of the scenario where principal A encrypts the

message M using his private key K
-

and sends it to the principal B. To be

able to decrypt the message, the principal B must possess the

corresponding public key K
+
.

4

A protocol is formalized as a list of correct message transfers. For

instance, the following notation in Table 1.1 describes a variant of the

Wide Mouthed Frog protocol (WMF) [10]:

Table 1.1: The Wide Mouthed Frog Protocol

In this variant of the WMF protocol two principals A and B have shared

master keys KA and KB with a trusted server S, and the protocol aims to

establish a shared session-key K between two principals.

In step 1, the principal A initiates the protocol by sending the message

A,B,{K}KA to the server S. S recognizes that A wants to arrange a secure

communication with B, and since it possesses the shared master key KA,

it can decrypt the encrypted part of the message and also recognize that A

wants to use K as a session key between B.

In step 2, S sends the message A,{K}KB to B using the shared master key

KB. Having the key KB, B is able to decrypt the message and retrieve the

session key K.

In step 3, since the symmetric session-key K is established between the

two principals, A is now able to send a secret message {m1,...,mk}K to B

using the session key K.

There are also other ways of authentication without server, such as

authentication based on shared-secret, and even more, authentication

without neither server nor shared secret. The protocol that we study in

this thesis is an example of authentication based on shared-secret

whereas the Diffie-Hellman key exchange protocol [11] is a common

example of authentication without using shared-secret.

5

1.1.1 Attacker Modelling and Scenarios

Only the correct message transfers of the protocol are described in the

formalization of the protocol in the previous section, therefore it is

important to be aware of the possibility of an attacker present on the

network. A common way to model the ability of attackers to send and

receive messages and to perform encryptions as well as decryptions on a

public accessed network is to use the classical approach of Dolev and

Yao [12], the notion of a “hardest attacker". This model allows the

attacker to perform the following operations:

 The attacker is able to intercept any message.

 The attacker can decrypt an encrypted message if and only if he

knows the key. The attacker can encrypt messages using keys in

his possession. The attacker cannot guess a key.

 The attacker can construct new messages.

 The attacker can send constructed or intercepted messages on the

network.

Some basic scenarios are listed below:

Deletion

The attacker can delete a message before it reaches to the receiver. This

kind of attacks would halt or restart the protocol since usually timers are

used in implementations.

Insertion

The attacker can send a message that is totally created by himself. This

could be an initiation message, a request or a response.

Eavesdropping

Eavesdropping is possible when the attacker can intercept and read

messages of the protocol. As shown in Figure 1.1, eavesdropper does not

send any messages to principals nor take any messages from them, so this

6

is a passive attack. Encryption is used against eavesdropping since most

attacks include eavesdropping to gain basic knowledge.

Figure 1.1: Eavesdropping

Replay Attack

After eavesdropping, the attacker could send the message that he gained

to any principal in a new run of that protocol as shown in Figure 1.2. This

type of attacks can be avoided by verifying freshness of the messages.

Using nonces, timestamps or sequence numbers avoids replay attack.

Figure 1.1: Replay Attack

7

Modification

This type of attacks needs interception to gain the message. Interception

is different from eavesdropping since the recipient cannot receive the

original message. The attacker modifies the original message and sends it

to the recipient as in Figure 1.3. Encryption is not a complete solution to

this problem because the message can be replaced with another (a

previous one) message using the same key. To avoid modification, i.e.

hashing can be used with digital signature. If a message is sent with its

hash signed with the private key of the sender, then an attacker will have

to posses that private key to modify the message with a valid hash value.

Figure 1.3: Modification

Man-In-the-Middle

In this type of attacks, the attacker works in a bidirectional manner.

Namely, he uses eavesdropping and modification attacks to both of the

principals in the protocol. As shown in Figure 1.4, the attacker is like the

recipient and the sender of both sides. The solution of this attack is

bilateral authentication which allows communicating principals to verify

that received message comes from the genuine sender.

8

Figure 1.4: Man-in-the-middle Attack

Since an attacker is present the attacker can intercept and replay any

messages in the global scenario, it is not possible to determine neither the

sender nor the receiver of a message by looking at it. If the WMF

protocol from the previous section is deployed on a network where an

attacker is present, the following run of the protocol could occur in Table

1.2:

Table 1.2: Attack Scenario for WMF

In this message transfer, M(S) denotes the malicious attacker acting as S.

The first message sent from A to the server is intercepted by the attacker.

But the attacker cannot decrypt the session key since he does not possess

the key KA. Then the attacker changes the intercepted message by

replacing B with his own identifier M and sends this message to the real

server S. Receiving this message the server S believes that A wants to

engage a secure communication with M which is in fact the attacker.

Therefore, S encrypts the session key K with the master key KM , which

is shared between the attacker and the server, and sends it to the attacker.

Inasmuch as the attacker got the session key, he is able to intercept and

read messages sent from A to B encrypted under the session key K. A

believes that the messages are to be secret between him and B, but in fact

they are readable to the attacker.

9

1.2 Protocol Validation

In protocol validations, choosing the properties to be validated is an

important issue. For instance, a protocol validated to be tolerant to denial

of service (DoS) attacks could very well be flawed with respect to replay

attacks. The most common properties to consider when validating

cryptographic protocols are:

Authenticity Communication over a protocol that offers authenticity

means that principals are communicating with the exact principals they

believe to be communicating with. To be authenticated means to ensure

that principals are actually who they say they are.

Authentication properties have been discussed in many different levels of

abstraction. The authentication property studied in [13] describes

authentication at the level of the individual messages used in

communication. The idea is to be sure that the messages always have the

intended destination and origin, no matter how an attacker interferes with

communication.

Confidentiality A protocol that ensures confidentiality prevents the

disclosure of transmitted data to unauthorized parties, such that only the

intended receiver is able to read the confidential data. This is mostly

established using cryptography.

Integrity Messages cannot be changed by any malicious user when data

integrity is offered. Modification, insertion, deletion, or replay of

transmitted data is detected. Hashing is a well known solution for

integrity.

In addition, there are some other properties like non-repudiation [14].

Various approaches have been used in protocol validations. Formalizing

protocols in some simplified programming language, process calculus or

logic description and using automatic tools to verify the properties for

the simplified description of the protocol is the tendency of the most

recent research. The three main approaches in automatic verification are:

10

 Theorem proving The correctness of systems is determined by

properties in a mathematical theory with deductive methods. Then

these properties are proved using automatic tools such as theorem

provers and proof checkers. As a real life example, this method is

used in [15] to verify the SET protocol and in [16] for the

automatic train operating system METEOR of the (first)

driverless metro-line in Paris.

 State exploration A protocol is modelled as a finite-state system

and then the verification is evaluated by exploring each state in

the protocol and reporting if the protocol enters a state that

violates the properties to be validated. A number of model

checkers and state exploration methods have been applied to the

security protocols as well. Murphi is a well-known example of

this group[6,7].

 Static analysis An indispensable technique for language-based

security which has successfully detected errors in protocols

[18,13]. Control flow analysis is used to do an over-

approximation of the possible variable bindings and message

transfers. Constructing reference monitor semantics it is possible

to know whether the properties to be validated are violated or not.

Theorem proving can deal with infinite state spaces and can verify the

validity of properties for arbitrary parameter values and is a convenient

method for protocols such as classical key distribution, where the

reasoning about the formalization of the protocol into a logic description

is relatively simple, and the assumption made prior to a run of the

protocol. The main disadvantages of theorem proving are the slowness of

the verification process, and the error-prone and labor-intensive character

of application. Furthermore, the mathematical logic requires a rather high

degree of user expertise. Although some successful applications of

theorem proving, like the thorough verification of smartcard software

have been reported, the drawbacks have restricted their use mainly to the

academic world [17] .

Model checking and static analysis methods are similar in the sense of

the usage of the reachability analysis. Confidentiality is interpreted by

ensuring the secret data does not reach the attacker. Authentication is

reachability in the sense that information should end up at the intended

11

user from the intended provider of that information. These two methods

have different advantages and disadvantages. Model checking approach

returns a trace of the protocol that leads to the reported error, after

investigating all possible traces trough the protocol. As the length of the

protocol to be analyzed increases the number of different traces through a

protocol raises significantly, and if an attacker is present, the number of

states is infinite which makes it hard to use the method on full scale

protocols. Murphi [6] is used as a prework of this thesis and this

drawback is clearly seen, though it is out of the scope of this thesis. In

static analysis, it is possible to create an over-approximation of the

components, without investigating all possible traces, this makes it

feasible to create automatic tools for validations with the presence of an

attacker. If an error is reported by the static analysis, the trace leading to

the error is however not part of the result.

1.3 Strategy and Concepts

In this thesis, the security properties of the IEEE 802.16 PKMv2 SA-

TEK 3-Way Handshake protocol are analyzed. This task is done in

several steps:

1. Derivation of a model of the base protocol and the modified

versions of the protocol, and descriptions of the protocols in the

LySa process calculus.

2. Static analysis of the LySa process’ which reveals potential

breaches in the protocols.

3. Analysis of the result of the static analysis..

LySa process calculus [18] is the framework that the analysis of the

protocols are carried out. LySa is a process calculus in the pi[19]/spi[21]

calculus family and used in validation of the authentication properties of

communication protocols, specifically the destination/origin

authentication properties.

12

Static analysis [20] is the basis of our analysis. This means that we

construct an approximation of the behavior of the protocol. In doing so

we focus on:

1. the communications that may take place over the network

2. the potential bindings of the variables occurring in the protocol

3. the potential violations of the destination/origin annotations of the

protocol

The Dolev-Yao attacker [12] is used in the analysis therefore any

message sent on the network may be intercepted by the attacker, any

encryption with a key known to the attacker may be decrypted by him

and furthermore the attacker may make use of all the information

available to him to construct new messages, even more, new encryptions

and to send messages on the network. The notion of a perfect encryption

library is used in order to be able to model encryption. Simply, an

encrypted message can only be decrypted if the correct key is used.

The protocol that is chosen to be analyzed in thesis is the IEEE 802.16

PKMv2 SA-TEK 3-Way Handshake. Executed after the initial

Authentication Stage or on Handover, the basic purpose of the IEEE

802.16 PKMv2 SA-TEK 3-Way Handshake is the distribution of keying

parameters, such as the Traffic Encryption Keys (TEK) which are

encrypted using Key Encryption Keys (KEK), related to all Security

Associations (SA) active between a Mobile Station (MS) and the Base

Station (BS).

1.4 Structure of this Report

Chapter 2 introduces the concepts and usage of the security protocols in

the IEEE 802.16 standard that we analyze in this thesis. The intention in

the thesis and the aimed contribution is also stated in this chapter.

Chapter 3 presents the LySa calculus which is be used in the static

analysis and the modelling of the protocol in LySa calculus.

13

Chapter 4 presents static analysis, the technique used in the analysis of

IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol. Includes an

example analysis for a simple protocol.

Chapter 5 includes the experiments and the analysis of the protocol. We

modelled the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake

(described in chapter 2) using the LySa calculus (described in chapter 3)

and analyzed using static analysis (described in chapter 4).

Chapter 6 summarizes our work and concludes on the security aspect of

the analyzed protocol.

CHAPTER 2

IEEE 802.16 Security

The IEEE 802.16 Working Group on Broadband Wireless Access

Standards develops the IEEE 802.16 WirelessMAN® Standard for

Wireless Metropolitan Area Networks. This standard specifies the air

interface of fixed broadband wireless access (BWA) systems.

While the 802.16 family of standards is officially called WirelessMAN, it

has been entitled Worldwide Interoperability for Microwave Access

(WiMAX) by an industry group called the WiMAX Forum, whose

mission is to promote and certify compatibility and interoperability of

broadband wireless products.

The first 802.16 standard, which was designed to provide a solution for

the last mile problem for Wireless Metropolitan Area Networks

(WMAN) with line-of-sight (LOS) working at 10-66GHz bands, was

approved in 2001 and was followed by two amendments: 802.16a and

802.16c to address issues of radio spectrum and interoperability,

respectively.

15

In 2003, a revision project called 802.16REVd commenced aiming to

align the standard with aspects of the European Telecommunications

Standards Institute (ETSI) HIPERMAN standard as well as lay down

conformance and test specifications. This project concluded in 2004 with

the release of IEEE standard 802.16-2004 which consolidates previous

standards, also supports non-line-of-sight (NLOS) within 2-11GHz bands

and mesh nodes [22]. In addition, the earlier 802.16 documents including

the a/b/c amendments are now superseded.

An amendment and corrigendum to the standard that aims to provide

mobility in BWA and presents new security protocols was concluded in

2005 and named as IEEE 802.16e-2005 [2].

Two types of principals communicate in IEEE 802.16 and since IEEE

802.16e-2005 comes up with mobility, the client principal which was

called as the subscriber station (SS) in the previous versions is now

called the mobile station (MS) and the other principal who acts as the

server is still called the base station (BS).

With the entry of the MS to the network, using the ranging protocol, the

communication starts. The purpose of the ranging protocol is to set up the

physical communication parameters and to assign a basic connection

identifier to the requesting MS. Later, the ranging protocol is periodically

executed to recommunicate the physical communication parameters [23].

After that, the registration protocol is performed in order to allow the

mobile station into the network. BS and MS’ security capabilities are

negotiated during the registration protocol. The stations may agree on

authentication and key management protocols. Authentication options

are: unilateral authentication, mutual authentication and no

authentication. The mutual authentication was missing in the previous

versions and it was one of the problems that were mentioned in the

related papers such as [1] but now it is included in IEEE 802.16e-2005.

Key management protocols are focused on this thesis and are described

in details in the following sections.

The key management protocols are periodically executed to update the

Traffic Encryption Keys (TEK) which can be thought as the session keys.

After the establishment of the TEKs, user data protocols start. Traffic

encryption keys are used as sequential pairs and have overlapping

lifetimes to avoid service interruptions.

16

The authentication and key management protocols are specified in the

security sublayer of IEEE 802.16 standard. The security sublayer is

meant to provide subscribers with privacy and authentication and

operators with strong protection from theft of service. The security

sublayer consists of two component protocols, an encapsulation protocol

for securing packet data across the network and a key management

protocol providing the secure distribution of keying data from the base

station to the mobile station. In the following sections we will focus on

the key management protocol. The Privacy and Key Management (PKM)

protocol of IEEE 802.16 and the second version of this protocol, which is

announced within the IEEE 802.16e-2005 and aims to fix the bugs in the

former protocol, are described in the following sections.

2.1 Overview of PKMv1 (IEEE 802.16-2004)

The first version of the Privacy and Key Management Protocol consists

of two specific components, which are designed for IEEE 802.16 and

defined in Security Sublayer. The first protocol is the PKM Authorization

Protocol which is established by the subscriber station (SS) and

responded by the base station (BS). As we mentioned before, until the

PKMv2 announced the standard was not mobile and therefore we use the

notation SS instead of MS (mobile station). At the end of a successful run

of this protocol, an Authorization Key (AK) is created by BS and

transmitted to SS. After that, each party generates a Key Encryption Key

(KEK) using their AK. KEKs are used in encrypting and distributing

Traffic Encryption Keys (TEK), TEKs can be taken as session keys,

while AK/KEK are long term keys. Then comes the second part: the

Privacy and Key Management protocol which lets SS to gather TEKs

from BS, note that TEKs are encrypted by KEKs. The flow of the

protocols in PKMv1 can be seen in Figure 2.1.

17

Figure 2.1: The PKMv1 Protocols

2.1.1 PKM Authorization

The PKM authorization protocol aims to distribute an authorization key

(AK) to an authorized SS. The authorization protocol is a three-message

exchange between an SS and a BS; but it is not in a one after the other

manner since the first two messages are sent by the SS. When successful

BS responds with the third message, which is actually the transmission of

the AK from BS to SS. The messages can be seen in Table 2.1.

Authorization Protocol (AK Generation)

AK

KEK (Derived from AK)

Privacy & Key Management (TEK Generation)

TEKs

18

Table 2.1: The PKM Authorization Protocol

SS uses Message 1, formally named as the Authentication Information

Message, to push its X.509 certificate which identifies its manufacturer

to BS. BS uses this certificate to decide whether SS is a trusted device.

BS may use this message in order to allow access only to devices from

recognized manufacturers, according to its security policy.

SS sends Message 2, named as the Authorization Request immediately

after Message 1. Message 2 consists of SS’s X.509 certificate with the SS

public key, its security capabilities which are actually the authentication

and encryption algorithms that SS support, and the security association

identity (SAID) which is the id of the secure link between SS and BS.

Using the certificate, BS determines whether to authorize SS; and the

public key of SS which is also in the certificate lets BS construct

Message 3.

If successful, namely SS is authorized after BS verifies its certificate, BS

responds with Message 3, the Authorization Reply. This message

includes the AK, encrypted using the RSA public-key encryption

protocol using the public-key of SS which was obtained in the previous

message, the lifetime of the AK as a 32-bit unsigned number in unit of

seconds, the sequence number for AK as a 4-bit value and the list of SA

descriptors each including an SAID and the SA cipher suit. The

successful run of the protocol instantiates an authorization SA between

the two stations. The design assumes that only BS and SS possess the

Message 1: Authentication Information Message

SS → BS: Certificate(Manufacturer(SS))

Message 2: Authorization Request

SS → BS: Certificate(SS) | Capabilities | SAID

Message 3: Authorization Reply

BS → SS: RSA-Encrypt(PubKey(SS), AK) | Lifetime | SeqNo

| SAIDList

19

AK, which means that the key is confidential and never revealed to any

other party.

2.1.2 Privacy and Key Management

The privacy and key management protocol aims to establish a data SA

between BS and SS. The first message of the protocol is optional and

used for forcing rekeying, therefore the protocol is a two or three

message exchange between SS and BS. When successful, the BS sends

TEKs to the SS in the last message of the protocol. The messages in the

protocol can be seen in the Table 2.2.

Table 2.2: The Privacy and Key Management Protocol

If BS wants to rekey a data SA or create a new SA, it starts the protocol

with the first message which contains the sequence number of the AK

used for the exchange, the id of the data SA being created or rekeyed and

HMAC-SHA1 digest of these two fields. Computation of the Hashed

Message Authentication Code HMAC(1) requires a HMAC key which is

derived from the AK, therefore it allows SS to detect forgeries.

The second message, named as the Key Request, is where SS requests

the SA parameters. If the protocol was started by BS, SS takes SAID

from message 1 with valid HMAC(1). Otherwise, SS takes SAID from

the authorization protocol SAIDList. Then HMAC is computed with the

sequence number of AK and the SAID.

 [Message 1: BS → SS: SeqNo | SAID | HMAC(1)]

Message 2: Key Request

SS → BS: SeqNo | SAID | HMAC(2)

Message 3: Key Reply

BS → SS: SeqNo | SAID | OldTEK | NewTEK | HMAC(3)

20

The third message, the Key Reply, is sent if the HMAC and the SAID in

message 2 is valid. As mentioned in the beginning of this chapter, TEKs

have overlapping lifetimes to avoid service interruptions. The OldTEK

value has the active SA parameters whereas the NewTEK value has the

SA parameters to be used on the expiry of the current TEK. OldTEK

includes the initialization vector, remaining lifetime and sequence

number for the specified data SA for the previous generation TEK, and

similarly NewTEK includes the same parameters for the next TEK. The

TEKs are encrypted with 3-DES using the Key Encryption Key (KEK)

which is derived from the AK. This message also has HMAC to avoid

forgeries.

2.2 Overview of PKMv2 (IEEE 802.16e-2005)

The second version of the Privacy and Key Management (PKM)

protocol of IEEE 802.16 is described in IEEE 802.16e-2005 and aims to

fix the bugs in the former version.

The AK derivation is now established by the well known standards RSA

and EAP. In PKMv2, RSA and EAP can be used in different ways which

are defined in the standard [2], such as RSA, RSA+EAP, EAP and

EAPinEAP. Therefore the AK derivation is now much more specific and

with the contribution of two principals much more secure. In addition BS

now has a certificate, and can authenticate itself to the MS by mutual

authentication which was missing in PKMv1. Nonces are used against

replay attacks. The process can be seen in Figure 2.2.

21

Figure 2.2: The PKMv2 Protocols

The important part of PKMv2 is the SA-TEK 3-Way Handshake. It is

based on the second part of the former protocol, but now it has more

security features. The original specification has three messages with H-

MACs and in total twenty-one fields. The main fields are described in

Table 2.3.

Table 2.3: The PKMv2 Protocols

Attribute Content

MS_Random Number received from MS

BS_Random Number included in SA-TEK-Challenge or SA-

Challenge

KeySeqNo AK Sequence Number

AK (also KEKs and H-C/MAC keys are derived from AK)

AK Generation is established using

either EAP or RSA or both

PKMv2 SA-TEK 3-Way Handshake

TEKs

22

AKID Id of the AK that was used for protecting this

message

SA-TEK-

Update

TEKs encrypted by KEKs

Frame No The frame number that old PMKs and associated

AKs should be discarded

SA_Descriptors Only for initial entry

SecNegParam. Confirms messages security capabilities

HMAC/CMAC Message Authentication Codes

 (Hashed/Cryptographic)

The PKMv2 SA-TEK 3-Way handshake sequence proceeds as shown in

Figure 2.3.

Figure 2.3: The PKMv2 SA-TEK 3-Way handshake

BS_Random, KeySeqNo, AKID, [KeyLifeTime], H-C/MAC

MS_Random,BS_Random, KeySeqNo, AKID,

SecurityCapabilities,SecNegParam,PKMConfSettings, H-

C/MAC

MS_Random,BS_Random, KeySeqNo, AKID, [SA-

TEKUpdate], FrameNo, [SADescriptors], SecNegParam, H-

C/MAC

M

S

B

S

1. SA-TEK-Challenge

2. SA-TEK-Request

3. SA-TEK-Response

23

The first message, named as PKMv2 SA-TEK-Challenge, includes a

random number generated by BS and similar to the previous version

protected by HMAC/CMAC tuple.

The second message is the PKMv2 SA-TEK-Request and includes the

random number generated by MS, the random number of BS received in

the first message, and the similar fields as in the previous version of the

protocol, just as described in the previous section.

The BS checks the AKID, HMAC/CMAC (Hashed-MAC/Cryptographic-

MAC) and the BS_Random of the message 2 and if any of these values

are invalid, than ignores the message. Otherwise, it checks the security

capabilities provided by the MS and if the properties does not match it

reports this inconsistency to the higher layers.

If the second message is successfully validated by the BS then message 3

which is named as the PKMv2 SATEK-Response is sent to MS. This

message has the SA-TEKUpdate unless for the handover and the security

capabilities that BS wishes to specify for the session with the MS.

If the last message is successfully verified by MS using the

HMAC/CMAC, the received TEKs and associated parameters will be

installed by the MS. The security negotiation parameters of BS should

also be verified by MS but the failure of this verification may not cause

halt of the protocol since MS may continue by adopting the security

negotiation parameters encoded in SA-TEK Response message.

2.3 Overview of Contribution

The PKMv1 was defined in IEEE 802.16-2004 and it had many problems

and flaws in it which are mainly discussed in [1]. For example, the data

SA (Security Association) was explicitly defined but the Authorization

SA was not. The SS had an X.509 certificate, but BS did not. BS did not

even authenticate itself to the SS. Even the IV (initial vector) in the

encryption phase was predictable. Therefore, IEEE 802.16 PKMv1 did

not provide any data authenticity. Besides, the rogue AP problem in

24

802.11 Wireless Local Area Networks [24] was still existing in the sense

that there was no BS identity in Authorization SA and there could be

rogue BS’. Furthermore, the TEK identifiers were only 2-bits in length,

Data Encryption Standard-Cipher Block Chaining (DES-CBC) was not a

convenient way of encryption, the AK derivation was only BS’s job and

SS did not have chance to participate it, and because security features

were used against replay attacks.

PKMv2 left the first part of PKMv1, namely the AK derivation to the

well known standards RSA and EAP. In fact, RSA already existed in the

PKMv1 but in PKMv2 RSA and EAP can be used in different ways

which are defined in the standard such as RSA, RSA+EAP, EAP and

EAPinEAP. Therefore the AK derivation is now much more specific and

with the contribution of two participation much more secure. In addition

BS now has a certificate, and can authenticate itself to the MS by mutual

authentication. Nonces are used against replay attacks.

PKMv1 had many missing parts in it, but PKMv2 is over-strengthened.

This does not mean that PKMv2 can be considered as the ultimate secure

protocol, but it definitely has degraded efficiency since it needs more

sources and time for the security features it has. The aim of this thesis is

to argue that, PKMv2 can still pursue its security with less features than

it has. In other words, PKMv1 was a failure in wireless security, just like

the WEP in IEEE 802.11 [31], so PKMv2 is now overloaded, but a light

version of PKMv2 should serve as good as now it is.

Our approach is to see the limits of robustness in IEEE 802.16 PKMv2.

The way we do it is removing the extras and the improvements in

PKMv2 one by one, and in different combinations. We want to see when

the robustness will be lost, what preserves the robustness and how is this

accomplished. We also want to see if some improvements are

unnecessary then what are they, and can we provide better efficiency

with less strength? The result may lead us to a simplified by still strong

and secure protocol.

The experiments could be established by constructing the PKMv2 SA-

TEK 3-Way Handshake beginning from the simple PKMv1. In order to

see where the problems arise and where the flaws start, the experiments

are held in the reverse direction, namely from the full protocol to a

simpler but still secure revised protocol.

25

2.4 Specifying IEEE 802.16 PKMv2 SA-TEK 3-Way
Handshake

Obviously, the description of IEEE 802.16 PKMv2 SA-TEK 3-Way

Handshake contains many details that won’t be used in modelling. Not

all the fields make the protocol secure, so there should be a simplification

such as removing the fields which have no effect on security itself.

John Mitchell [25] simplified the IEEE 802.16 PKMv2 SA-TEK 3-Way

Handshake to make a formal verification with Murphi as shown in Table

2.4. This work was used in a security review together with IETF EAP

Work Group.

Table 2.4: Mitchell’s Simplified version of the PKMv2 SA-TEK 3-Way

HS

Rewriting the simplified PKMv2 SA-TEK 3-Way Handshake in a more

familiar protocol narration style is shown in Table 2.5.

Table 2.5: The Simplified PKMv2 SA-TEK 3-Way Handshake

1. BS MS : BSNonce, AKID, MIC[AK](BSNonce, AKID)

2. MS BS : BSNonce, MSNonce, AKID, MSSuite,

MIC[AK](MSNonce, BSNonce, AKID,

MSSuite)

3. BS MS : SAUpdate, BSNonce, MSNonce, AKID,

MIC[AK](SAUpdate, MSNonce, BSNonce,

AKID)

1. BS MS: NBS, AKID, MIC{ NBS, AKID}AK

2. MS BS : NBS, NMS, AKID, MSSuite, MIC{ NBS, NMS, AKID,

MSSuite}AK

3. BS MS: SAUpdate, NBS, NMS, AKID, MIC{ SAUpdate, NBS,

NMS, AKID}AK

26

Using the abbreviations below we can have a shorter narration:

BS = A, MS = B, NBS = NA , NMS = NB, MSSuite = S, SAUpdate = T,

AK = K, AKID = Id

Mitchell uses MIC (Message Integration Code) instead of MAC

(Message Authentication Code), we will use the notation MAC as used in

the standard.

The simplified and abbreviated version of PKMv2 SA-TEK 3-Way

Handshake is shown in Table 2.6.

Table 2.6: Simplified and Abbreviated Version of PKMv2 SA-TEK 3-

Way HS

In order to use this handshake specification in LySa, some parameters

should be reordered and for simplicity some of them need to be

reabbreviated. This reordering does not affect the security features but it

is needed for LySa which will be explained in the following chapter.

The reordered, simplified and reabbreviated PKMv2 SA-TEK 3-Way

Handshake protocol narration is shown in Table 2.7, named as Pkmv2-

simple.protocol.

Table 2.7: Pkmv2-simple.protocol

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: na, nb, id, T, MAC{ na, nb, id, T}K

1. A B: NA, ID, MAC{ NA, Id}K

2. B A: NA, NB, Id, S, MAC{ NA, NB, Id, S}K

3. A B: T, NA, NB, Id, MAC{ T, NA, NB, Id}K

27

2.5 Considerations in Modelling

In our specification of the IEEE 802.16 PKMv2 SA-TEK 3-Way

Handshake in section 2.4, we have six different fields. First of all, every

message has a nonce which are freshly generated values: na, nb. Then

comes the authorization key (AK) which is a shared-secret long term key:

K. This key also has an id which is used in every message: id. The second

message, which is actually called the SA-TEK-Request, includes a field

that provides information about the security capabilities of the MS: S.

Last message, which is actually called the SA-TEK-Response, includes

the session keys (TEKs) which are encrypted by special keys that are

generated from AK (KEK: Key Encryption Key): T. Finally, all the

messages have message authentication codes which are generated from

the whole message and using AK: MAC.

In the modelling phase of these entities, three major studies are taken as

guidelines. Nonces are modelled as they are modelled by Buchholtz’s

implementation of The Bauer, Berson, and Feiertag (BBF) protocol

which aims at establishing a fresh shared key, between two principals

using nonces [26].

The long term key and the id of it are modelled as they are modelled in

the impressive study about static validation which is also the basis for

this thesis [13]. Wide Mouthed Frog protocol [21] (WMF) which aims at

establishing a secret (symmetric) session key between two principals who

share master keys with a trusted server, has an implementation in this

study which includes the long term key usage that can be used for K in

our specification of the IEEE 802.16 PKMv2 SA-TEK 3-Way

Handshake and also the id of K.

The encrypted session key can be taken as an ordinary message field, like

in Mitchell’s work [25]. In addition, the security capabilities field is no

doubt an ordinary field for us, therefore these two fields S and T will be

modelled as they are in modelled in WMF.

The modelling of the message authentication codes is a difficult problem

but in the SAML-TLS implementation in [27] comes a clever solution for

the problem which is described in Chapter 3, Section 3.2.2.

28

The summary of the considerations in modelling and the basis

implementations are given in the Table 2.8.

Table 2.8: Modelling Summary

Field Definition Implementation

Nonces Freshly generated BBF

K Long term key WMF

Id Long term key id WMF

T Encrypted session key WMF (as a message)

S Security Capabilities WMF (as a message)

MACs Message Authentication Codes SAML-TLS

CHAPTER 3

LySa

This chapter is about LySa [13], a process calculus based on the π-

calculus [28] and incorporates cryptographic operations using ideas from

the Spi-calculus [21]. Though, there are two main differences between

LySa and spi/pi calculus. First difference is that, LySa does not have

channels but one global ether. That is because in usual implementations

like ethernet-based or wireless, anyone can eavesdrop or act as an active

attacker and that’s definitely not the channel based communication. The

second difference is about the usage of pattern matching in the

expression of the tests associated with input and decryption.

3.1 LySa Calculus

To analyze the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake

protocol we need to formalize it in LySa calculus. The distinguishing

features of LySa can be summarized as: LySa has only one global

30

communication channel or network. Everyone in the network can see the

messages between processes. The LySa calculus has primitives for

symmetric and asymmetric cryptography. Besides, decryption is

modelled using pattern matching.

3.1.1 Syntax

LySa consists of terms and processes; terms consist of names (keys,

nonces, messages, etc.), variables, public/private keys and the

compositions of them using symmetric/asymmetric encryptions. The

syntax of terms E is shown in Table 3.1:

Table 3.1: LySa Terms

In Table 3.1, N denotes the sets of names and X denotes the sets of

variables. Tuples of terms E1,...,Ek are encrypted under a term E0

representing a key in the cases of symmetric or asymmetric encryption.

An assumption of perfect cryptography is adopted, meaning that the only

inverse function of encryption is to use decryptions with the correct key.

The syntax of processes P which is mostly familiar to the polyadic Spi-

calculus [21] is shown in Table 3.2:

 E ::= terms

 n name (n N)

 x variable (x X)

 k
+
, k public and private keys

 { E1,...,Ek

0
}E [dest L] symmetric encryption (k

 0)

 {| E1,...,Ek |

0
}E [dest L] asymmetric encryption (k

 0)

31

Table 3.2: Processes

The input operation with pattern matching will only succeed if the prefix

of the message matches the terms specified before semi-colon in the

input operation. The input process (E1,...,Ej ; xj+1,...,xk).P means that a k-

tuple of values (
'

1E ,..., '

kE) is taken as the input and if the first 1≤ i ≤ j

values '

iE are pairwise matched to the values Ei, the remaining k-j values

of the input will be binded to the variables xj+1,...,xk. In other words, the

values before the semi-colon are to matched to the beginning part of the

input and if the matching is successful the remaining part of the input

will be assigned to variables after the semi-colon. This pattern matching

is also used in decryptions as shown in table 3.2. If no matching will be

performed, then nothing is written before the semi-colon. Similarly, if no

binding will be performed, then nothing is written after the semi-colon.

For example,

P = decrypt {y}K as {x;}K in P’

means that the decryption in P succeeds only if x = y whereas

Q = decrypt {y}K as {;x}K in Q’

means that the decryption in Q always succeeds, binding x to y.

LySa syntax also have annotations for origin and destination in order to

describe the intentions of the protocols. Encryptions can be annotated

P ::= processes

 0 nil

 E1,...,Ek .P output

 (E1,...,Ej ; xj+1,...,xk).P input (with matching)

 P1 | P2 parallel composition

 (n)P restriction

 !P replication

 decrypt E as {E1,...,Ej ; xj+1,...,xk

0
}E [orig L] in P

symmetric decryption (with matching)

 decrypt E as {|E1,...,Ej ; xj+1,...,xk|

0
}E [orig L] in P

asymmetric decryption (k 0)

32

with fixed labels, called crypto-points defining its position in the process,

and with assertions specifying the origin and destination of encrypted

messages. Crypto-points are from some enumerable set C (disjoint

from N and X) and added to state where the encryptions and decryptions

occur. The LySa term for encryption:

{ E1,...,Ek

0
}E [dest L]

means that the encryption is created at crypto-points and specifies the

intended crypto-points L C for decryption of the encrypted value in the

assertion [dest L]

Similarly, in the LySa term for decryption:

decrypt E as {E1,...,Ej ; xj+1,...,xk

0
}E [orig L] in P

[orig L] specifies the crypto-points L C that E is allowed to have been

encrypted.

For the terms with all annotations removed
.

 is used, and in particular:

{ E1,...,Ek

0
}E [dest L]

 = {
E1 ,..., Ek

0
} E [dest L]

In addition, for each name n there is a canonical representative n and

similarly, the function
.

 is extended homomorphically to terms: E is

the term where all names and variables are replaced by their canonical

versions.

3.1.2 Semantics

This section gives a short description of the reduction semantics defined

for LySa following the tradition of the π -calculus. We use the notation of

P[E/x] to describe that all occurrences of x in process P should be

replaced by the term E, in other words the value of E is bound to variable

x in P. In addition, names used in a LySa process are global, for instance

if a name “X" occurs in two places in the process they have the same

33

meaning. Therefore, it is impossible to use local variables and each name

should only be used in one meaning.

As described in the previous section, all occurrences of a bound name n

is mapped to one canonical name n and the same mapping applies for

variables. The function applied to terms E replaces all names and

variables in the term with their canonical versions. We say that two

processes are α -equivalent only if the mapping of names and variables

correspond.

Structural congruence, ≡, is defined on processes to be the least

congruence satisfying the following conditions:

 P ≡ Q if P and Q are disciplined α-equivalent;

 (P / ≡, |, 0) is a commutative monoid:

o P | Q ≡ Q | P

o P | (Q | R) ≡ (P | Q) | R

o P | 0 ≡ P

 (n)0 ≡ 0,

(n) (n’)P ≡ (n’) (n)P, and

(n) (P|Q) ≡ P|(n)Q if n fn(P);

 !P ≡ P | !P

We consider two variants of reduction relation R: the reference

monitor semantics (RM) takes advantage of annotations, whereas the

standard semantics () discards them. After the reduction semantics we

will describe the reference monitor semantics in details.

The rules for the reduction semantics R are shown in table 3.3 and

described below:

34

Communication

The rule Communication expresses that an output E1,...,Ek .P is matched

by an input (
'

1E ,..., '

jE ;xj+1,...,xk).Q if the first j elements are pairwise the

same, namely Ei with all annotations removed is compared with '

iE with

all its annotations removed. If these comparisons are successful, rest of

the terms each Ej+1 ,..., Ek is bound to the variables xj+1,...,xk.

Decryption / Asymmetric Decryption

The rule Decryption expresses matching the term { E1,...,Ek

0
}E [dest L],

which is a result of an encryption, against the pattern in decrypt E as

{E1,...,Ej ; xj+1,...,xk

0
}E [orig L] in P if the key used for decryption

corresponds to the one used to create the encrypted term. This is

accomplished by adding the condition in addition to the

case for communication which required the first j components to be

pairwise the same. This models perfect symmetric cryptography. If the

matching is successful rest of the terms are binded to the variables as in

the previous rule. In the case of asymmetric decryption, the decryption

key should be the opposite of the encryption key, namely {E0,
'

0E }={m
+
,m } ∨ {E0,

'

0E }={m ,m
+
} which is shortly expressed by {E0,

'

0E }={m±,m∓}

In the reference monitor semantics we ensure that the crypto-point of the

encrypted value is acceptable at the decryption (i.e. L’) and the

crypto-point of the decryption is acceptable for the encryption (i.e. ’

L). But in the standard semantics the condition R(,L’, ’, L) is

universally true and therefore can be ignored.

Parallel

The rule for parallel construction is standard; using the reduction

semantics, two parallel processes P | Q are reduced on either one of them.

35

Restriction / Asymmetric Restriction

The rule for restriction (n)P applies the reduction semantics on the

restricted processes. In the case of asymmetric restriction, the same rule

applies on asymmetric keys.

Congruence

The rule for congruence expresses that, if the reduction semantics are

applied then the two congruent processes P ≡ Q, are reduced to two

congruent processes P’ ≡ Q’.

Table 3.3: Operational semantics

36

Reference Monitor Semantics

In reference monitor semantics, the reduction rules of the semantics are

the same but instead of defining the R relation, the reference monitor

takes this relation as input: RM(,L’, ’, L) = (L’ ∧ ’ L) which

means that the encryption made at must be in the set L’ of expected

origins of the data, as well as the actual place where decryption takes

place ’ must be in the set of expected destinations L. In other words,

decryptions may only occur at crypto-points specified in the

corresponding encryption and vice-versa, otherwise the execution is

halted.

3.2 Modelling Protocols in LySa

The translation from ordinary protocol narration into a LYSA process is

done in two stages:

1. The ordinary protocol narration is refined into an extended

protocol narration.

2. The extended protocol narration is translated into LySa.

A discussion on the need for extending the ordinary protocol narration

can be found in [29].

3.2.1 Extended Protocol Narrations

As shown in Section 1.1, the protocol narrations only list the messages to

be exchanged. Here is the first message of the WMF protocol which was

also used in Section 1.1:

A S : A,B,{K} KA

37

This line means that, the message containing A, B and K encrypted with

the key KA is sent from A to S.

To formalize the protocols to be analyzed, we have to use an extended

version of this notation. The extended protocol narration distinguishes

between inputs and corresponding outputs and also makes clear which

checks must be performed [13]. The protocol narrations only list the

messages to be exchanged, therefore the actions to be performed upon

receiving the messages are left unspecified.

The first step of unfolding the protocol narrations to the extended

protocol narrations is to distinguish between outputs and the

corresponding inputs. This is done also for encryptions and

corresponding decryptions. In addition, the check on the received values

and the freshness of the keys should be explicitly stated. In addition, the

source and destination addresses may be added to the messages. Using

this extension the first step of the WMF protocol would now be split into

three parts:

First line consists of the message sent from A with the source and

destination addresses added as a prefix. Second line has the variables that

are bound to the received messages fields. In the end of the second line

exists the checks in the brackets. First check is to make sure that the

message is really sent for S and the second check is to make sure that the

sender of the message is the one in the first part (in extended narration

third part) of the message (the one that wishes to communicate). Third

line shows the decryption of the encrypted value using the key KA and as

a result xKey is bound to K.

The last step is about the security goals namely the authenticity

properties to be verified. The protocol narration is refined by specifying

the origin and destination of encrypted messages. This will help us to be

sure of the confidential data is sent and received by the principals

intended by the protocols. So the final result for the extended protocol

narration of the WMF protocol is given below:

38

The annotations in brackets including the tags dest and orig means that,

the encrypted message sent in line 1 should only be decrypted at the

principal S and the decrypted (part of the) message in line 1” should have

been encrypted at principal A.

The protocol narration of the WMF protocol is given above and the

extended narration of this protocol is given in Table 3.4 below:

Table 3.4: The Extended protocol narration of the WMF protocol

First three lines of this extended narration was explained and the

remaining part is similarly derived from the narration. The important

point is that, the variables that are set in line 1’ are sent in line 2, in

convenience with the original protocol. Also in lines 3’ and 3” some

previous variables are used again, for example in checks.

39

The LySa model of the WMF protocol is given in Table 3.5. The number

in the left margin refer to the message number of the extended protocol

narration for WMF (Table 3.4). Step 0 in the LySa process is used to

setup the long term keys between the server S and the principals A and B.

The scope of the restriction of KA and KB include the definition of both A

and B and the Server S. Similarly, the first line of Step1 shows that the

newly created key has to be restricted, and the first line of Step3 shows

that the message containing confidential data must also be restricted. The

remaining parts are similar to the extended protocol narration but in LySa

syntax.

Table 3.5: LySa model of the WMF protocol.

3.2.2 Modelling of Message Authentication Codes

The message authentication codes which include the hash functions are

the important parts of the model which need special modelling

40

considerations. The method used in [27] is suitable for our analysis so we

employed the usage as follows.

Hash functions

Since the hash functions are one way functions, they can be modelled

with public-key encryption where we have different keys for encryption

and decryption. If we can manage the paradigm that the encrypted value

can never be decrypted we can use this as a hash function model. This

can be done by modelling the hash function using a public name for the

encryption key and with no corresponding key for decryption.

Message Authentication Codes

In PKMv2 a keyed MAC is used to verify the integrity of messages. [27]

also uses keyed MACs and they modelled it using a shared secret key and

a cryptographic hash function. The message is hashed along with the key

and then encrypted with the MAC key. Therefore, the message is

encrypted by asymmetric encryption first. After that symmetric

encryption is applied.

3.2.3 LySa Model of IEEE 802.16 PKMv2 SA-TEK 3-Way
Handshake

We are now ready to model protocols in LySa; in particular we will

model the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol.

We had simplified the protocol, making use of the work of John Mitchell

[25], made the necessary changes that are necessary for LySa and

obtained the following protocol narration in section 2.4:

A B: id, na, MAC{ id, na}K

B A: na, id, nb, S, MAC{ na, id, nb, S}K

A B: na, nb, id, T, MAC{ na, nb, id, T}K

41

The extended protocol narration for IEEE 802.6 SA-TEK 3W HS is

listed in Table 3.6 where we use the LYSA terms and syntax for writing

the cryptographic operations.

Table 3.6: PKMv2 Extended Protocol Narration

The extended narration can be translated into LYSA by dividing the

narration into two processes, one for each principal. The LYSA

specification of the protocol is given in table. Notice that the checks in

the extended narration are represented by the pattern matchings on input

and decryption.

In the LYSA specification we add annotations to all cryptographic

operations as described before in this chapter. The LySa model of the

PKMv2 SA-TEK 3-Way Handshake is given in Table 3.7.

0. [new K][new id]

1. A : id, na, {{| id, na |}Hash}K [dest B] [new na]

1’. B: yid, yna, ymac [check yid = id]

1’’. B: decrypt ymac as {yh}K [orig A] [check yh = {| yid, yna |}Hash]

2. B : yna, id, nb, S, {{| yna, id, nb, S |}Hash}K [dest A] [new B] [new S]

2’. A: xna, xid, xnb, xS, xmac [check xna = na, xid = id]

2’’. A: decrypt xmac as {xh}K [orig B] [xh = {| na, id, xnb, xS |}Hash]

3. A : na, nb, id, T, {{| na, nb, id, T |}Hash}K [dest B] [new T]

3’. B: yna, ynb, yid, yT, ymac [check yna = na, ynb = nb, yid = id]

3’’. B: decrypt ymac as {yh}K [orig A] [check yh = {| na, nb, id, yT |}Hash]

42

Table 3.7: PKMv2 LySa Model

(υ K) (υ id) (

 ! (υ na) <id, na, {{| id, na |}Hash}K [at a1 dest {b1}]>.

 (na, id; xnb, xS, xmac).

 decrypt xmac as { {| na, id, xnb, xS |}Hash;} K [at a2 orig {b2}] in

 (υ T) <na, nb, id, T, {{| na, nb, id, T |}Hash}K [at a3 dest {b3}]>.0

 |

 !(id; yna, ymac)

 decrypt ymac as {{| id, yna |}Hash;}K [at b1 orig {a1}] in

 (υ nb) (υ S) < yna, id, nb, S, { {| yna, id, nb, S |}Hash}K [at b2 dest {a2}] >

 (na, nb, id; yT, ymac).

 decrypt ymac as { {| na, nb, id, yT |}Hash;}K [at b3 orig {a3}] in 0

)

CHAPTER 4

Static Analysis

Static Analysis is a formal method which enables the security analysis of

LySa processes. The analysis is based on tracking messages

communicated on the network along with the possible values of the

variables in the protocol and recording the potential violations of the

destination/origin annotations.

A LySa process describes a set of possible operations, the analysis uses

an over-approximation of this set, therefore the analysis could investigate

a trace which is impossible at all. But this is needed to do a safe

approximation because under-approximation could miss some traces. The

over-approximation of a LySa-process is shown in Figure 4.1.

44

Figure 4.1: The over-approximation of a LySa-process

The approximation of a term E is represented by a pair (,) and called

estimate for E. Similarly, the approximation of a process P is represented

by a triple (, ,) and called estimate for P.

4.1 Terms

The estimate for terms satisfies the judgements defined by the axioms

and rules of Table 4.1. The analysis of terms uses a global abstract

environment in order to keep track of the potential values of variables so

that the analysis will determine a superset of the possible canonical

values that each tem E may evaluate to.

45

The abstract environment maps the canonical variables to the set of

canonical values that may be bound to. In the formula, V is written for

the set of canonical terms with no free variables. The analysis of terms

uses the abstract environment to make a judgement of the form:

This shows that ⊆ V is a safe approximation of the set of values that

E may evaluate to in the abstract environment.

Table 4.1: Analysis of terms, E : .

The rules in Table 4.1. defines that contains all the canonical values

associated with the components of a term. The first, third and fourth rules

in the first line are for names, private and public keys, respectively.

These rules say that the canonical names must be in . The second rule

in the first line of the table is the rule for variables and it expresses that

the set of canonical value the canonical variable maps to from the

environment must be a subset of : (x) ⊆ .

The second line is the rule for k-ary symmetric encryption and the third

line is the rule for k-ary asymmetric encryption. These rules express that

each term is analyzed and all combinations of values from this analysis

46

must be in belonging to the analysis of the overall encryption term {

V1,...,Vk
0

}V

 [dest L] . V notation tests if V is in the set .

4.2 Processes

In the analysis of processes we focus on which values can flow on the

network. The abstract network environment that includes all the message

sequences that may flow on the network is shown as:

The estimate for processes satisfies the judgements defined by the

axioms and rules of Table 4.2. The judgements for processes takes the

form:

Here the symbol represents the set of error messages of the form

(, ’) which indicates that something encrypted at was unexpectedly

decrypted at ’. In the end of the section 3.1 we defined the reference

monitor and here the analysis uses the reference monitor. If the reference

monitor aborts, the annotation leading to the abortion should be placed in

the error component and the execution should continue. Namely,
contains an over-approximation of the potential origin/destination

annotations.

47

Table 4.2: Analysis of processes, (,) RM P : .

48

Table 4.2. defines the axioms and the rules for the analysis of the

processes and gives the set of values that the terms can evaluate to.

The first line of the Table 4.2 includes the rules for inactive processes

and restriction (the last one is for public/private keys). The second line

includes the rules for parallel composition and replication. The rule for

the inactive processes does not restrict the analysis result while the rules

for parallel composition, restriction and replication ensure that the

analysis also holds for the immediate subprocesses.

The rule k-ary output which is for sending message on the network

finds the sets i for each term Ei and requires that all k-tuples of values

V1,...,Vk taken from 1 . . . k can flow on the network and also

requires that (, ,) are also valid analysis estimates of process P.

The rule input checks whether the first j terms of E1,...,Ek have

acceptable estimates i and whether the first j values of any message

V1,...,Vj ,Vj+1 ,...,Vk in are pointwise included in i. When the check is

successful, the remaining values Vj+1 ,...,Vk are included in the estimates

for the corresponding variables xj+1 ,...,xk.

The rules for decryption have a similar pattern matching with the

previous rule. All the terms are evaluated to their respectable estimates i

and the first j values of the evaluation of the encrypted term { V1,...,Vk

0
}V

 [dest L] are checked whether they are pointwise included in i.

The rule for symmetric decryption ensures that only the correct key can

be used to decrypt encrypted values. The rule for asymmetric

decryption ensures that the key used for decryption must be the opposite

of the one used for encryption. Similar to the input rule, if the matching

succeeds for the first j values and in addition the keys for decryption

matches the ones used for decryption, then the remaining values Vj+1

,...,Vk are added to the acceptable estimates for the corresponding

variables xj+1 ,...,xk. If the encrypted term E is decrypted at an unexpected

place (’ L) or the decrypted values are encrypted at an unexpected

place (L’), then the error component must contain the annotations

where the error occurred (, ’) .

49

If (,) RM P : , then (, ,) is a valid estimate for all the

states passed through in an execution of P. Also, when =∅ in an

estimate of the form (,) RM P : then the reference monitor

cannot abort the execution of P. These are all proved in [18].

4.3 Modelling The Attacker

In practice, the protocols – especially the ones in wireless networks – are

executed in medium with malicious attackers. As mentioned in

subsection 1.1.1 LySa processes will be analyzed in parallel with Dolev-

Yao attacker[12] which can perform operations like sending/receiving

messages and encryption/decryption same as a legitimate principal. The

analysis result of a process P analyzed in parallel with the attacker

contain the least solution that satisfy the rules from the previous Section

for the estimate (, ,) and the variable bindings for the attacker in

addition to the variable bindings for the process P.

We have new canonical name and variables for the attacker: all the

canonical names of the attacker are mapped to n● and all the canonical

variables of the attacker are mapped to z●. We also have ● which is a

crypto-point in the attacker, and we have the set C which is the set of

crypto-points in the original process P in parallel with the attacker.

Finally, there exists a public/private key-pair belonging to the attacker

{ m , m }.The formal definition of the Dolev-Yao attacker is given in

Table 4.3.

A process P is of type (N f , A , A +

Enc
) if (1) it is a closed process (it

has no free variables, namely no variables that are never bound to a

name), (2) its free names are in N f, (3) all the arguments used for

sending and receiving are in A and (4) all the arguments used for

encryption and decryption are in A +

Enc
.

50

Table 4.3: Dolev-Yao condition..

The descriptions of the conditions given in Table 4.3 are below:

1. The attacker can improve his knowledge by eavesdropping all

messages sent on the network.

2. The attacker can improve his knowledge by decrypting messages

with the keys he already knows. Unless the intended recipient of

the message was attacker, an error (, ●) should be added to the

error component which means that something encrypted at

was actually decrypted by the attacker at ●.

3. The attacker can construct new encryptions using the keys he

already knows. If this message is received and decrypted by a

principal, then an error (●,) should be added to the error

component which means that something encrypted at the

attacker was decrypted by the attacker by a process P at

4. The attacker can send messages on the network using his

knowledge and thus forge new communications.

5. The attacker initially has the knowledge of the canonical name n●

and all free names of the process P.

51

6. In addition to condition 2, if the attacker possesses the

corresponding decryption key used for encryption, he can decrypt

a term encrypted with asymmetric encryption.

7. In addition to condition 3, the attacker can create an encrypted

term using asymmetric encryption.

8. The attacker has his own private/public key pair.

This conditions enable the attacker to establish the attack scenarios that

were defined in subsection 1.1.1. The soundness of Dolev-Yao condition

is proved in [13]

4.4 Analysis

The flow of the analysis starts with a LySa code which contains the LySa

model of the protocol. The LySa-tool parses the LySa code and

transforms it into the Alternation-free Least Fixed Point (ALFP) logic

equations which are definitely outside of the focus of this thesis. These

equations are solved by the Succinct Solver which is a tool for solving

constraints specified in ALFP. The Succinct Solver computes the

minimum solution satisfying the input equations and returns a result. This

is transformed by the LySa-tool to a readable version of the estimate (,

,). The LySa-tool makes use of the Succinct Solver and the Standard

ML of New Jersey. The overall process is shown in Figure 4.2.

Figure 4.2: Analysis process.

52

4.4.1 Analysis of the WMF Protocol

We have defined the protocol narration of the WMF protocol in Table 1.1

of the first chapter and the extended narration of this protocol in Table

3.4 of the third chapter. Here we give the LySa model for the WMF

protocol in Table 4.4 below.

Table 4.4: LySa model of the WMF.

This model is coded in LySa and after the LySa tool processes the

analysis gives an estimate where =∅. The variable environment is

given in Table 4.5.

53

Table 4.5: The variable environment for the WMF analysis.

In Table 4.5, V● denotes any value that the attacker has the knowledge

of. The error component =∅ ensures that no encryptions/decryptions

occur at unexpected places. So, the last row of the table means that the

attacker does not possess the knowledge of the Secret. But the attacker

can send out a message of any length matching any term receiving

values, and the names the process matches on are all free names so the

attacker has the knowledge to create messages on the right form.

Therefore, All variables bound to values received directly on the

network, which means that they are not decrypted from values received

on the network, can all be bound to anything inside the attacker V●.

However, the attacker does not posses enough information to create

encrypted messages to be decrypted by legitimate principals which would

to an error in of the form (●,), where is any point in the LySa-

process. In the same manner, the attacker does not posses enough

information to decrypt any of the encrypted terms from the message on

the network by legitimate principals which would lead to an error in of

the form (, ●).

The analysis shows that the messages to be kept secret are not leaked to

the attacker and the messages are originated and received by intended

principals. But this does not verify the authenticity and confidentiality of

the WMF protocol. Because, the LySa model in Table 4.4 describes a

54

simple scenario with one initiator A, one server S and one responder B

which limits the attacker to act as a passive attacker. Therefore, we need

a more flexible scenario, where a number of initiators Ii, and a number of

responders Ij exist. The difference between the simple and the flexible

scenarios are shown in Figure 4.3.

Figure 4.3: Different WMF scenarios.

In the flexible scenario, all initiators, responders and the attacker share

keys with the server S. Therefore, the attacker is able to act as either an

initiator or as a responder in a protocol run. The LySa model of the

flexible WMF scenarios is described in Table 4.6.

55

Table 4.6: The Flexible WMF scenario.

In the first rows of the model, it can be seen that initially shared keys KAi

and KBj are restricted for the valid principals 1 i , j n. The keys KA0

and KB0 belonging to the attacker are not restricted, therefore KA0 and

KB0 are threaded as free names in the analysis.

The indexing of the principals is important. The initiating principal Ii is

indexed from i = 1 and j = 1 since we only describe the legitimate part of

the system. The server S is indexed from i = 0 and j = 0 so that the

attacker can act as either a initiator or a responder in the protocol. The

responder Ij is indexed from i = 0 and j = 1 allowing the responder to

actually receive messages from the attacker. The indices i and j cannot be

equal, because that would lead principals to authenticate themselves.

56

The result of the flexible WMF model is shown in Table 4.7. This result

bears a lot of differences compared to the result of the simple model

shown in Table 4.5. The error component in the result is not empty,

this means that some encryptions and decryptions have occurred at

unexpected places. In the first line of Table 4.7, there are three types of

pairs in the error components: the first type includes ● as the

decryption point for example (A2i,j, ●) and means that information

encrypted at A2 in any principal initiating the protocol can be decrypted

by the attacker. When we look at the model in Table 4.6 we see that A2 is

the place where the Secreti,j is encrypted and therefore the pair (A2i,j, ●)

in the error component implies that all secrets are known by the attacker.

This is also clearly seen in the last row of the analysis result in Table 4.7.

Second type of pairs includes ● as the encryption point for example (●

, B2i,j) and means that the attacker can send any information in his

knowledge V● to any responder Ij and make him believe that the

information originated from the initiator Ii. This causes the variables that

store such information contain values from the attacker as shown in the

second and third rows of Table 4.7. Third type of pairs does not include

 ● as neither the encryption nor the decryption point for example (A11,2 ,

S12,1) and means that messages encrypted in one run of the protocol can

be decrypted in another run of the protocol. This can cause the situation

that a secret meant for principal I1 could end up at principal Ij. Such a

problem can be seen in the second and third lines of the analysis again.

Table 4.7: The result of the flexible WMF analysis.

Since the analysis is an over-approximation, the error component does

not necessarily imply that there exist an error. In other words, the value

in the error-component could come from a trace that is not actually

possible. So, we have to find actual traces leading to the errors in the

57

analysis. The trace in Table 4.8 leads to the error (A21,2, ●). In the line 1,

the message intended from the initiating principal I1 to the server S which

includes the session key K1,2 in the aim of establishing communication

with principal I2 is eavesdropped by the attacker denoted by M. In the

line 1’, the attacker modifies the second field of the message as if the

principal I1 wants to engage communication with I0 which is in fact the

attacker himself. The server gets this message and sends the message 2

(includes the session key K1,2 but encrypted with the shared key of the

attacker) to the intended responder of message 1 which is the attacker. So

the attacker gets the session key, and now he (or she) is able to decrypt

any messages sent from I1 to I2. This situation was indicated by (A21,2, ●)

Table 4.8: Trace of the error (A21,2, ●).

Using this session key, the attacker can cause different type of errors in

the analysis, as shown in Table 4.9. In the first line, the attacker uses the

session key he (or she) got in the first message, which is in fact a replay

attack. This persuades the server that I1 has created a fresh key for

communication with I2. In the second line, the server sends this session

key to I2 who believes that it is shared with I1, but actually it is the

attacker. After that the attacker is now able to impersonate I1, by sending

false secrets to I2 as described in the line 3. This leads to the error (● ,

B21,2) since the secret that was believed to be encrypted by I1 and

decrypted at B2 was in fact encrypted at the attacker.

Table 4.9: Trace of the error (● , B21,2).

The details of the analysis of the WMF protocol is discussed in [18, 13].

CHAPTER 5

Analysis of IEEE 802.16
PKMv2 SA-TEK 3-Way

Handshake

As we described in the section 2.3, our approach is based on checking the

limits of robustness in IEEE 802.16 PKMv2 by removing enhancements

in PKMv2 one by one, and in different combinations. Thus, we can see if

some improvements are unnecessary and the result may lead us to a

simplified by still strong and secure protocol. Our experiments are

accomplished using the LySa-tool which runs with our LySa code.

59

5.1 Experiments

We based our model on John Mitchell’s simplified version (that was used

in his security review together with IETF EAP Work Group) [25] of the

IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake in section 2.4. After

that we developed our LySa model in section 3.2.3.

We start with our base protocol model and try to simplify the model by

removing components and analyzing with attacker to find flaws.

The Experiment Logic

We made the experiments systematically, and the road map of the

experiment can be seen in Figure 5.1. First, we start with the base

protocol and show that it has no flaws. After that, we have three major

paths: Removing the Nonces, Removing the Ids and Removing both

Nonces and Ids. The shaded nodes in the figure shows the experiments

with violations.

In the first path, we start by removing the outermost nonces, namely the

nonces in the last message. We remove one nonce at a time, and both

nonces also. Therefore, we have three experiments about the nonces in

the last message. There is a fourth experiment in this path which includes

removing another nonce in the second message, in addition to the ones in

the last message.

In the second path, we remove the key ids. We start with the key id in the

last message. Then we remove another key id which is actually in the

second message.

In the last path, we join the successful experiments, in other words the

modification of the base model where no flaws could be found. There are

two successful experiments in the first path and one in the second,

therefore we have two experiments in the last path.

The results of the experiments are discussed in the section 5.3 Analysis

Results.

60

Figure 5.1: Experiment Road Map.

5.1.1 The PKMv2 SA-TEK 3-Way Handshake

In our base model of the protocol we have three messages each of them

consisting of at least identities, nonces and message authentication codes

as shown in Table 5.1.

61

Table 5.1: The base protocol narration.

The LySa model for the protocol is shown in Table 5.2. First part of the

model is the initiator, who is actually the BS in IEEE 802.16. Then

comes the responder, who is the MS. The last part shows the attackers

knowledge. This means that the analysis include an attacker as described

in section 4.3.

 Table 5.2: PKMv2 LySa Model

The result of the analysis is: no violations possible. This means that the

protocol is secure and the attacker couldn’t violate the authentication

properties. This result is important because it ensures us that the base

protocol, the PKMv2 SA-TEK 3-Way Handshake, is secure and this

result is similar to Mitchell’s work [25] with model checking using

Murphi. Now, we can make our modifications convenient with our

experiment logic.

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: na, nb, id, T, MAC{ na, nb, id, T}K

62

5.1.2 Removing the Nonces

In the first part of the experiments we will be dealing with the nonces in

the second and the last message. The nonce na is the same nonce that was

used in message 1 and message 2, therefore seems to be redundant. But

we have to show it with the static analysis. The nonce nb seems to be

convenient but we deal with it too.

5.1.2.1 Removing nb in the Last Message

We removed the nonce of B, nb, and now the protocol is as shown in

Table 5.3. No doubt that this modification affects the MAC of the

message three. In fact, this modification makes the na in message two

meaningless, but we have to try and see the result.

Table 5.3: PKMv2 without nb in message 3

The LySa model after the modification is shown in Table 5.4. The

changes are in the initiators last output and the responders second input.

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: na, id, T, MAC{ na, id, T}K

63

Table 5.4: LySa model of PKMv2 without nb in message 3

The result of the analysis is: no violations possible. This means that the

protocol is still secure and the attacker still couldn’t violate the

authentication properties even though we didn’t use the nonce of

principal B in the last message. This is an interesting result because now

the na in message two seems to be meaningless because there is no

response for it. MAC’s seem to save the protocol to verify the security

properties. In addition, this is also an important result because it supports

our assertion But we have to try the other combinations to conclude

about the analysis.

5.1.2.2 Removing na in the Last Message

In this experiment, we removed the nonce of principal A, na, and now the

protocol is as shown in Table 5.5. This nonce was sent to B in message-1,

and was responded by B in message-2. Removing it from message-3

shouldn’t affect the result, but we have to show it with LySa results.

64

Table 5.5: PKMv2 without na in message 3

The LySa model after the modification is shown in Table 5.6. Similar to

the previous experiment, the changes are in the initiators last output and

the responders second input.

Table 5.6: LySa model of PKMv2 without na in message 3

The result of the analysis is: no violations possible. This means that the

protocol is still secure and the attacker still couldn’t violate the

authentication properties even though we didn’t use the nonce of

principal A in the last message. Actually, this result supports our

assertion and this is an optimized alternative to the protocol.

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: nb, id, T, MAC{ nb, id, T}K

65

5.1.2.3 Removing All the Nonces in the Last
Message

In the previous two experiments, we removed na and nb one by one and

we couldn’t find any violations. In this experiment, we removed both na

and nb in the base protocol as shown in Table 5.7. Again we did the

necessary changes in the MAC.

Table 5.7: PKMv2 without na and nb in message 3

The LySa model after the modification is shown in Table 5.8. Similar to

the previous experiment, the changes are in the initiators last output and

the responders second input.

Table 5.8: LySa model of PKMv2 without na and nb in message 3

This time we find violation of authentication properties. The result is

given as:

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: id, T, MAC{ id, T}K

66

ψ = (a11 1, b31 1), (a31 1, b11 1), (a12 1, b32 1), (a32 1, b12 1), (a11 2, b31 2),

(a31 2, b11 2), (a12 2, b32 2), (a32 2, b12 2)

Sample trace for (a11 1, b31 1) can be shown as:

1. A1 B1: id11, na11, MAC{ id11, na11}K11

1’. A1 M(B1): id11, na11, MAC{ id11, na11}K11

2. B1 A1: na11, id11, nb11, S11, MAC{ na11, id11, nb11, S11}K11

3. M(A1) B1: id11, T0, MAC{ id11, na11}K11

The results show that some encrypted values are decrypted in wrong

places and some decrypted values were actually encrypted in the wrong

places. The crypto-points are all from legitimate principals so there can

be a replay attack. A possible trace of this error can be summarized as:

the attacker eavesdropped the first message and he used the encrypted

value in the first message, which is actually the MAC of the message,

that he couldn’t decrypt in a reply attack. In the third message, he

replayed the MAC’s, namely he used the MAC of message one in

messag-3. This is a flaw so we found a level that the protocol lost its

robustness property.

This results show that in the implementation, the length of the fields are

important. If somehow the lengths of the na value and the T value are the

same, then there exists the security flaw.

5.1.2.4 Removing All Nonces in the Last Message
and nb in the Second Message

In this experiment, we removed all the nonces of principal A from both

second and third messages while removing the nonce of principal B from

the third message. In fact, we wanted to go one step further, and tried to

see if the point we stopped (which is actually the previous experiment,

removing all the nonces in message 3) is the right point to stop. Thus we

obtained the modified version of the protocol shown in Table 5.9. We did

the necessary changes in the MAC fields of both message-2 and

message-3.

67

Table 5.9: PKMv2 without na in message 3 and no nbs

The LySa model after the modification is shown in Table 5.10.

Compared to the base model, the initiator has changes in its only input

and last output, whereas the responder has changes in its only output and

second input.

Table 5.10: LySa model of PKMv2 without na in message 3 and no nbs

Again we have found violation of authentication properties. The result is

given as:

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, S, MAC{ na, id, S}K

3. A B: id, T, MAC{ id, T}K

68

ψ = (a11 1, b31 1), (a31 1, b11 1), (a12 1, b32 1), (a32 1, b12 1), (a11 2, b31 2),

(a31 2, b11 2), (a12 2, b32 2), (a32 2, b12 2)

This result is same as the one in the previous experiment and the

explanation including the sample trace is in use for this one too.

5.1.3 Removing the Key Ids

In this part of the experiments we will be dealing with the ids in the

messages. The important point is that, all the id fields in the base protocol

are the same and sent in plaintext.

5.1.3.1 Removing the key id in the Last Message

We removed the id from the last message and modified the MAC as

needed. The protocol is now as shown in Table 5.11.

Table 5.11: PKMv2 without id in message 3

The LySa model after the modification is shown in Table 5.12. The

changes are in the initiators last output and the responders last input.

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: na, nb, T, MAC{ na, nb, T}K

69

Table 5.12: LySa model of PKMv2 without id in message 3

The result of the analysis is: no violations possible. This means that the

protocol is still secure and the attacker still couldn’t violate the

authentication properties even though we didn’t use the key id in the last

message.

5.1.3.2 Removing the key ids in the Second and the
Third Message

Seeing that removing one id did not make any effect, this time we

removed the key ids in the last two messages and modified the MACs as

needed. The protocol is now as shown in Table 5.13.

Table 5.13: PKMv2 without ids in message 2 and 3

1. A B: id, na, MAC{ id, na}K

2. B A: na, nb, S, MAC{ na, nb, S}K

3. A B: na, nb, T, MAC{ na, nb, T}K

70

The LySa model after the modification is shown in Table 5.14. The

changes are in the initiators last output and the responders last input.

Table 5.14: LySa model of PKMv2 without ids in message 2 and 3

Now we have found violation of authentication properties. The result is

given as:

ψ = (b21 1, b31 1), (a31 1, a21 1), (b22 1, b32 1), (a32 1, a22 1), (b21 2, b31 2),

(a31 2, a21 2), (b22 2, b32 2), (a32 2, a22 2), (a31 0, a21 0), (a32 0, a22 0), (b20 2,

b30 2), (b20 1, b30 1)

We found traces for specific types of violation. Sample trace for (b21 1,

b31 1) can be shown as:

1. A1 B1: id11, na11, MAC{ id11, na11}K11

2. B1 A1: na11, nb11, S11, MAC{ na11, nb11, S11}K11

2’. B1 M(A1): na11, nb11, S11, MAC{ na11, nb11, S11}K11

3. M(A1) B1: na11, nb11, T0, MAC{ na11, nb11, S11}K11

71

Sample trace for (b20 1, b30 1) can be shown as:

1. M(A0) B1: id01, na01, MAC{ id01, na01}K01

2. B1 M(A0): na01, nb01, S01, MAC{ na01, nb01, S01}K01

3. M(A0) B1: na01, nb01, T01, MAC{ na01, nb01, S01}K01

The difference between the possible non-confidential values in this

experiment are:

nb01, nb02, nb10, nb20, na01, na02

This result shows that we cannot remove both ids in the protocol.

5.1.4 Removing Nonces and the Key Ids

In this part of the experiments we will be dealing with both the key ids

and the nonces in the messages. We will only use the successful results in

section 5.1.2 and 5.1.3. Therefore, this part can be seen as a synthesis of

the two previous parts.

5.1.4.1 Removing the key id and nb in the Last
Message

We removed the id and nb from the last message and modified the MAC

as needed. As we showed before, removing those fields one by one did

no changes, so this time we remove them together. The protocol is now

as shown in Table 5.15.

Table 5.15: PKMv2 without id and nb in message 3

The LySa model after the modification is shown in Table 5.16. The

changes are in the initiators last output and the responders last input.

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: na, T, MAC{ na, T}K

72

Table 5.16: LySa model of PKMv2 without id and nb in message 3

The result of the analysis is: no violations possible. This means that the

protocol is still secure and the attacker still couldn’t violate the

authentication properties even though we didn’t use the key id and nb in

the last message. Definitely, this is a better result and better optimization.

But now nb in the second message is useless, therefore this result is not

practical.

5.1.4.2 Removing the key id and na in the Last
Message

We removed the id and na from the last message and modified the MAC

as needed. The protocol is now as shown in Table 5.17.

Table 5.17: PKMv2 without id and na in message 3

1. A B: id, na, MAC{ id, na}K

2. B A: na, id, nb, S, MAC{ na, id, nb, S}K

3. A B: nb, T, MAC{ nb, T}K

73

The LySa model after the modification is shown in Table 5.18. The

changes are in the initiators last output and the responders last input.

Table 5.18: LySa model of PKMv2 without id and na in message 3

The result of the analysis is: no violations possible. This means that the

protocol is still secure and the attacker still couldn’t violate the

authentication properties even though we didn’t use the key id in the last

message.

Finally, this point is the best point of optimization since it is still secure

and also practical. Namely, this version makes use of both nonces of A

and B (actually BS and SS), and also key ids. Now we have seen the

limits of the protocol and removed the redundant fields.

74

5.2 Fixing the Violations

As seen in the experiments, in some modified versions of the protocol,

violations are seen and the problems occur in the encryption/decryption

parts of the protocol, which are in fact the message authentication codes

in our model. In this part, we go one step further and fix the errors and

present secure versions of the protocols that had violations.

We change the implementation of message authentication codes. We

hash the messages along with the key and a sequence number. The

sequence numbers ensure messages within a single session cannot be

confused with one another. We model thin LySa by using a sequence of

public values Seq1, Seq2, . . . and each message will be encrypted along

with one of these numbers using the current session key. For example the

i'th message transfer from principal A to principal B will be:

5.2.1 Fix for Removing All the Nonces in the Last
Message

Adding sequence numbers into the message authentication codes fix the

violations in the version without nonces in message three. The LySa

model of this version is given below. The LySa results are explained in

section 5.2.4.

75

Table 5.19: LySa model of the fixed version of the experiment 5.1.2.3.

5.2.2 Fix for Removing All Nonces in the Last Message
and nb in the Second Message

Adding sequence numbers into the message authentication codes fix the

violations in the version without nonces in message three and nb in

message two. The LySa model of this version is given below. The LySa

results are explained in section 5.2.4.

76

Table 5.20: LySa model of the fixed version of the experiment 5.1.2.4.

5.2.3 Fix for Removing the key ids in the Second and
the Third Message

Adding sequence numbers into the message authentication codes fix the

violations in the version without key ids in message two and three. The

LySa model of this version is given below. The LySa results are

explained in section 5.2.4.

77

Table 5.21: LySa model of the fixed version of the experiment 5.1.3.2.

5.2.4 LySa Results for the Fixes

The LySa results of the fixed models for the modifications that caused

violations are all the same: no violations possible. This means that this

versions of the protocol are again secure. Since the problems occurred

from the message authentication codes, changing the implementations of

them fixed the violations. As a simple note, this was not included in our

proposal at the beginning. Therefore, the fixes are just for showing how

to fix a violation about message authentication codes.

5.3 Analysis Results

As seen in the experiments, we established the analysis in four steps.

First of all, we analyzed the base model. We had successful results for

the base model. Then we removed the nonces starting from the ones in

the last message. The results for nonces showed us that removing neither

the nonce of the principal A nor the principal B does not change the

78

secure standing of the protocol. But removing them both, causes

problems especially replay attacks. After that we checked the nonces in

the second message but removing them also caused problem so we

stopped. We didn’t try some combinations such as removing nb in

message since it was the first usage of it. As a third step we removed the

key ids which were always the same in three messages and sent in

plaintext. Removing the last id still preserved the robustness, but doing

more with the ids caused problems. Finally we got the secure paths from

the nonce experiments and the id experiments and merged them to get a

combined path which is optimized but secure. Thus we found out that

removing the id and one of the nonces in the last message does not cause

any flow. Whereas, removing both nonces in the last message or

removing a nonce from the second message with a missed id makes the

protocol fail.

As a result we may have a simplified but still strong and secure protocol

if we make the optimizations that we found successful in our analysis. In

addition, reducing the number of fields will also have better performance

results since the bandwidth usage is also important in wireless networks.

Another result of this analysis is that the lengths of the fields are also

very important since the error components in the static analysis show that

the same MACs can be created when the implementations take some

field lengths the same.

As we mentioned in the static analysis chapter, the errors in this analysis

do not always show that the protocol has flaws, whereas the successful

runs of the analysis are always successful. The reason of this behavior is

the over-approximation of the analysis. Therefore, the experiments where

we got the results with no violations show that the studied protocols are

secure. But the experiments with violations in the result needed some

traces to show the flaws. We found traces for the flaws to show that that

versions of the protocol really had flaws.

In conclusion, the results of the static analysis support our assertion that

the PKMv2 can be improved by optimization without any loss of

security.

CHAPTER 6

Conclusion

Security is important in all types of data communications but it is an

essential and also a tough subject in wireless networks. The IEEE 802.16

standard which is certified as WiMAX is the strongest competitor of 3G

and still rapidly growing. In this thesis, the latest version of the standard,

the IEEE 802.16e-2005 is considered. This version of standard's most

important feature is mobility but it also has significant improvements in

security. The reason for such security improvements in this version was

the big failure in the previous security protocol PKMv1. Similar to the

drawbacks in IEEE 802.11b which was fixed in IEEE 802.11i, the

drawbacks of IEEE 802.16-2004 is now fixed by IEEE 802.16e-2005.

In this thesis, the studies are divided into four groups. First of all, the

security sublayers of the current and former IEEE 802.16 protocols are

studied. These studies led us to the PKM protocol which has two main

issues: an Authentication/Authorization scheme to establish a shared

authorization key, and a second scheme to distribute the traffic

encryption keys. The latest version of the protocol, PKMv2, leaves the

first issue to de facto standards which are proved to be secure such as

RSA and EAP, therefore fixes the ambiguities in the first version. The

80

second issue was very weak in the PKMv1 and is highly strengthened by

the PKMv2 named as PKMv2 SA-TEK 3-Way Handshake. PKMv1 had

many missing security features, whereas PKMv2 is over-strengthened

which does not mean that PKMv2 is the ultimate secure protocol. The

truth is that, it has definitely degraded efficiency since it needs more

sources and time for the security features it has. The assertion of this

thesis is that, PKMv2 can still pursue its security with less features than it

has. The redundancy in the PKMv2 is being questioned.

The second part of the work is about LySa process calculus. LySa allows

communication protocols to be specified and annotated allowing for

validation of authentication properties. To make the static analysis of the

IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol we had to

formalize it in LySa calculus which is based on pi calculus. The next part

of the work is the static analysis method. Static analysis is successfully

used for automatically validating security properties of classical

protocols. Using these three parts of work, we were able to derive a

model of the protocol and describe it using LySa and carry out a static

analysis of the LySa process using the static analysis tool LySa-tool.

Last part of our work was the analysis to see the limits of robustness in

IEEE 802.16 PKMv2. The way we do that was removing the extras and

the improvements in PKMv2 one by one, and in different combinations.

We wanted to see when the robustness would be lost and also if there

were some unnecessary improvements. Since this was an over-

strengthened protocol we could try to provide better efficiency with less

strength. So that the result may lead us to a simplified by still strong and

secure protocol.

We established many experiments and took the important ones here. Our

analysis results shows that some fields are unnecessary and does not

affect security at all. Special combinations of those fields are also

redundant and shown by our experiments. This results support our ideas

about optimizing the protocol. Thus, according to our static analysis

results based on LySa process calculus, we can say that this protocol is

secure enough itself and will still be secure even though some

components are removed. The limits of the robustness is measured and

given in the analysis results. In addition, the possible flaws when this

limits are exceeded are mentioned.

81

The soundness of the analysis based on Lysa is proved in previous

studies, especially in [13] and [26]. The method of the analysis is

described in details in [20].

As a future work, the former parts of the PKMv2 can be modeled and

analyzed so that the results can be joined with the results of this thesis

and a security analysis framework can be developed.

APPENDIX A

Lysa Codes

A.1 The PKMv2 SA-TEK 3-Way Handshake

/**/

/* */

/* LySa Codes for thesis 1.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.1 The PKMv2 SA-TEK 3-Way Handshake */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

83

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <na_{i, j}, nb_{i,

j}, id_{i, j}, T_{i, j}, {{|na_{i, j}, nb_{i, j}, id_{i,

j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i,

j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (na_{i,j}, nb_{i,j}, id_{i,j};

yT_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|na_{i,j},

nb_{i,j}, id_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j}

orig {a3_{i,j}}] in 0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

84

A.2 Removing nb in the Last Message

/**/

/* */

/* LySa Codes for thesis 2.1.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.2.1 Removing nb in the Last Message */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <na_{i, j}, id_{i,

j}, T_{i, j}, {{|na_{i, j}, id_{i, j}, T_{i,

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

85

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (na_{i,j}, id_{i,j}; yT_{i,j},

ymac_{i,j}).

 decrypt ymac_{i,j} as {{|na_{i,j},

id_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig

{a3_{i,j}}] in 0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

86

A.3 Removing na in the Last Message

/**/

/* */

/* LySa Codes for thesis 2.2.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.2.2 Removing na in the Last Message */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <nb_{i, j}, id_{i,

j}, T_{i, j}, {{|nb_{i, j}, id_{i, j}, T_{i,

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

87

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (nb_{i,j}, id_{i,j}; yT_{i,j},

ymac_{i,j}).

 decrypt ymac_{i,j} as {{|nb_{i,j},

id_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig

{a3_{i,j}}] in 0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

88

A.4 Removing All the Nonces in the Last Message

/**/

/* */

/* LySa Codes for thesis 2.3.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.2.3 Removing All the Nonces in the Last */

/* Message */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <id_{i, j}, T_{i, j},

{{|id_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest

{b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

89

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (id_{i,j}; yT_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in

0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

90

A.5 Removing All nonces in the Last Message and
nb in the Second Message

/**/

/* */

/* LySa Codes for thesis 3.3.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.2.4 Removing All Nonces in the Last Message */

/* and nb in the Second Message

*/

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xS_{i, j},

xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at a2_{i, j} orig

{b2_{i, j}}] in

 (new T_{i, j}) <id_{i, j}, T_{i, j},

{{|id_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest

{b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

91

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

 (new S_{i,j})<yna_{i,j}, id_{i,j},

S_{i,j}, {{|yna_{i,j}, id_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (id_{i,j}; yT_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in

0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

92

A.6 Removing the key id in the Last Message

/**/

/* */

/* LySa Codes for thesis 4.1a.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.3.1 Removing the key id in the Last Message */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <na_{i, j}, nb_{i,

j}, T_{i, j}, {{|na_{i, j}, nb_{i, j}, T_{i,

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

93

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (na_{i,j}, nb_{i,j}; yT_{i,j},

ymac_{i,j}).

 decrypt ymac_{i,j} as {{|na_{i,j},

nb_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig

{a3_{i,j}}] in 0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

94

A.7 Removing the key ids in the Second and the
Third Message

/**/

/* */

/* LySa Codes for 4.1b.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.3.2 Removing the key ids in the Second */

/* and the Third Message

*/

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}; xnb_{i, j}, xS_{i, j},

xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at a2_{i, j} orig

{b2_{i, j}}] in

 (new T_{i, j}) <na_{i, j}, nb_{i,

j}, T_{i, j}, {{|na_{i, j}, nb_{i, j}, T_{i,

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

95

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, nb_{i,j}, S_{i,j}, {{|yna_{i,j},

nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} [at b2_{i,j} dest

{a2_{i,j}}]>.

 (na_{i,j}, nb_{i,j}; yT_{i,j},

ymac_{i,j}).

 decrypt ymac_{i,j} as {{|na_{i,j},

nb_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig

{a3_{i,j}}] in 0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

96

A.8 Removing the key id and nb in the Last Message

/**/

/* */

/* LySa Codes for 4.1c.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.4.1 Removing the key id and nb in the */

/* Last Message */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <na_{i, j}, T_{i, j},

{{|na_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest

{b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

97

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (na_{i,j}; yT_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|na_{i,j},

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in

0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

98

A.9 Removing the key id and na in the Last Message

/**/

/* */

/* LySa Codes for 4.1d.lysa */

/* <01-02-2007 Ender Yuksel> */

/* */

/* 5.1.4.2 Removing the key id and na */

/* in the Last Message */

/* */

/**/

let X subset NATURAL2 in

(new_{i in X, j in X} K_{i, j})

(new_{i in X, j in X} id_{i, j})

let Z subset X union ZERO in(

/* Principal A_{i} */

(|_{i in X}

 /* Initiating a session with principal B_{j} */

 (|_{j in Z} !(new na_{i,j})

 <id_{i, j}, na_{i,j}, {{|id_{i, j},

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i,

j}}]>.

 (na_{i, j}, id_{i, j}; xnb_{i, j},

xS_{i, j}, xmac_{i, j}).

 decrypt xmac_{i, j} as {{|na_{i, j},

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at

a2_{i, j} orig {b2_{i, j}}] in

 (new T_{i, j}) <nb_{i, j}, T_{i, j},

{{|nb_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest

{b3_{i, j}}]>.0)

)

|

/* Principal B */

(|_{j in X}

 /* Responding to a session from principal A_{i} */

 (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}).

99

 decrypt ymac_{i,j} as {{|id_{i,j},

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in

 (new nb_{i,j})(new

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j},

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j}

[at b2_{i,j} dest {a2_{i,j}}]>.

 (nb_{i,j}; yT_{i,j}, ymac_{i,j}).

 decrypt ymac_{i,j} as {{|nb_{i,j},

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in

0)

)

|

/* Credentials of illegitimate principals */

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i},

id_{i, j},id_{j, i}, Hash>.0

)

Bibliography

[1] Johnston, D. and Walker, J., 2004. Overview of IEEE 802.16

security, IEEE

Security & Privacy Magazine, vol. 2, Issue: 3, 40 – 48.

[2] IEEE Std 802.16e-2005, 2006. Standard for Local and metropolitan

area networks Part 16: Air Interface for Fixed and Mobile

Broadband Wireless Access Systems Amendment 2:

Physical and Medium Access Control Layers for

Combined Fixed and Mobile Operation in Licensed Bands

and Corrigendum 1, IEEE, New York, USA.

[3] Lowe, G., 1996. Breaking and fixing the Needham-Schroeder public-

key

protocol using CSP and FDR, International Workshop on

Tools and Algorithms for the Construction and Analysis of

Systems, Springer-Verlag, 147-166.

[4] Lowe, G., 1995. An attack on the needham-schroeder public-key

authentication

protocol, Information Processing Letters, 56(3), 131-133.

[5] Needham, R.M. and Schroeder, M.D., 1978. Using encryption for

authentication in large networks of computers,

Communications of the ACM, 21(12), 993-999.

[6] Mitchell, J. C., Mitchell, M. and Stern, U., 1997. Automated

Analysis of Cryptographic Protocols Using Murphi, IEEE

Symposium on Security and Privacy. IEEE Press, 141-

151.

[7] Shmatikov, V. and Stern, U., 1998. Efficient finite-state analysis for

large security protocols, IEEE Computer Security

Foundations Workshop, 106-115.

101

[8] Corin, R. and Saptawijaya, A., 2006. A logic for constraint-based

security protocol analysis, IEEE Symposium on Security

and Privacy, 155 – 168.

[9] Tanenbaum, A. S., 2003. Computer Networks, Fourth Edition,

Prentice Hall,

New Jersey.

[10] Burrows, M., Abadi, M. and Needham, R. M., 1989. A logic of

authentication, Proceedings of the Royal Society of

London. Series A, Mathematical and Physical Sciences,

426(1871), 233-271.

[11] Diffie, W. and Hellman, M.E., 1976. New Directions in

Cryptography, IEEE

Transactions on Information Theory, vol. IT-22, 644-654.

[12] Dolev, D. and Yao, A.C., 1983. On the security of public key

protocols, IEEE

Transactions on Information Theory, IT-29(12), 198-208.

[13] Bodei, C., Buchholtz, M., Degano, P., Nielson, H.R. and Nielson,

F., 2004.

Static Validation of Security Protocols, Journal of

Computer Security, 347-390.

[14] Lin, P. and Lin, L., 1996. Security in enterprise Networking: A

quick tour, IEEE Communications Magazine, January, 56.

[15] Bella, G., Massacci, F. and Paulson, L.C., 2003. Verifying the set

registration

protocols, IEEE Journal on Selected Areas in

Communications, 21(1), 77-87.

[16] Behm, P., Benoit, P., Faivre, A. and Meynadier, J.M., 1999.

Meteor: a successful application of B in a large project,

Lecture Notes in Computer Science, 1708/1999, 369.

102

[17] Baier, C. and Katoen, J.P., 2006. Principles of model checking,

Preprint.

[18] Bodei, C., Buchholtz, M., Degano, P., Nielson, F. and Nielson,

H.R., 2003. Automatic validation of protocol narration,

Proceedings of the 16th Computer Security Foundations

Workshop (CSFW 03), 126-140.

[19] Milner, R., Parrow, J. and Walker, D., 1992. A calculus of mobile

processes,

Information and Computation, 100(1), 1-40.

[20] Nielson, F., Nielson, H.R. and Hankin, C., 1999. Principles of

Program Analysis, Springer-Verlag, New York..

[21] Abadi, M. and Gordon, A. D., 1999. A calculus for cryptographic

protocols: The spi calculus, Information and Computation,

148(1), 1-70.

[22] IEEE Std 802.16-2004, Standard for Local and metropolitan area

networks Part 16: Air Interface for Fixed Broadband

Wireless Access Systems, IEEE, New York, USA.

[23] Andova, S., Cremers, C., Gjosteen, K., Mauw, S., Mjolsnes, S.

F., and Radomirovica, S., 2006. Framework for

compositional verification of security protocols, preprint

submitted to Elsevier.

[24] Yüksel, E., Soytürk, M., Ovatman, T. and Örencik, B., 2005.

Security Problem in Wireless Local Area Networks,

National Symposium on Network and Information Systems

Security, 23-30.

[25] Datta, A., He, C., Mitchell, J. C., Roy, A. and Sundararajan, M.,

2005. 802.16eNotes, IETF Liasons.

[26] Buchholtz, M., Nielson, H.R. and Nielson, F., 2004. A calculus for

control flow analysis of security protocols, International

Journal on Information Security, 2(3-4), 145-167.

103

[27] Hansen, S., Skriver, J. and Nielson, H.R., 2005. Using static

analysis to validate the SAML single sign-on protocol,

Workshop on Issues in the Theory of Security, 27-40.

[28] Milner, R., 1999. Communicating and mobile systems: the π-

calculus, Cambridge University Press, fifth edition.

[29] Abadi, M., 1999. Security protocols and specifications, Proceedings

of the Second International Conference on Foundations of

Software Science and Computation Structure, pages 1–

13.

