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Summary 
 

 

 

 

 

 

 

The IEEE 802.16e-2005 specification provides an air interface standard 

for metropolitan area wireless broadband service.  IEEE 802.16 is the 

basis for Worldwide Interoperability for Microwave Access (WiMAX) 

certification which is the next evolution in wireless technology. The 

latest version of the standard, the IEEE 802.16e addresses mobility and 

also enhances the security sublayer of the IEEE 802.16 standard. Since 

wireless technology is broadcast and transmitted data can be intercepted, 

wireless users face more risks than wired users. The former IEEE 802.16 

standards used the Privacy and Key Management (PKM) protocol which 

had many critical drawbacks. In IEEE 802.16e, a new version of this 

protocol called PKMv2 is released. PKMv2 has radical changes and in 

contrast with the previous version it seems to have an exaggerated 

mixture of security features like nonces, message authentication codes, 

key ids, certificates, etc. 

 

The PKMv2 includes two main issues: an Authentication/Authorization 

protocol to establish a shared Authorization Key (AK), and a 3-Way 

Security Association (SA) Traffic Encryption Key (TEK) Handshake. 

The former is strengthened with de facto standards such as RSA and 

EAP, therefore the PKMv2 SA-TEK 3-Way Handshake (PKMv2 SA-

TEK 3W HS), which is used for transferring TEKs to mobile stations 

(MS) after authentication will be the specific point of this thesis.  
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Static analysis is successfully used for automatically validating security 

properties of classical and modern cryptographic protocols. In this thesis 

we will show how the very same technique can be used to validate 

modern wireless network security protocols, in particular, we study the 

IEEE 802.16e PKMv2 SA-TEK 3W HS. 

 

We derived a model of the protocol and described it using LySa, a 

process calculus in the pi/spi calculus family allowing communication 

protocols to be specified and annotated for validation of authentication 

properties. After that, we carried out a static analysis of our LySa model 

using the static analysis tool LySa-tool. Validating the base protocol, we 

studied our proposal on an optimized but still secure protocol. Having 

established systematic experiments on our models of modified versions 

of the protocol, we analyzed the robustness and security features. In 

conclusion we found improvements that increased the performance while 

being still secure. 
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This thesis was prepared at Informatics Mathematical Modelling, the 

Technical University of Denmark in fulfillment of the requirements for 

acquiring the M.Sc. degree in engineering. 

 

The thesis deals with the static analysis of the IEEE 802.16e-2005 

PKMv2 Protocol. 

 

The thesis consists of a summary report and source codes for the 

experimented protocols. 
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CHAPTER    1 

 

Introduction 
 

 

 

 

 

 

Security issues in wireless networks became a growing concern with the 

spreading growth on wireless communication in recent years. Wireless 

networks face more and especially different security threats than wired 

networks. However, IEEE 802.16, the standard for wireless metropolitan 

area networks (WMAN), incorporated a pre-existing standard called Data 

Over Cable Service Interface Specifications (DOCSIS), which was 

designed for cable networks not wireless networks. Therefore, IEEE 

802.16 security failed to protect the IEEE 802.16 link [1] and had 

significant changes in its Privacy and Key Management (PKM) protocol 

with the latest standard IEEE 802.16e-2005 [2].   

The key distribution and management protocols which are used to 

establish secure communication between two principals, and 

authentication protocols which verify that the communicating principle is 

who it is supposed to be  are one of the main issues that the applications 

of formal methods in the analysis of cryptographic protocols have been 

mainly concerned with. The tools that have been constructed based on 

the theoretical developments have successfully located subtle bugs in 

many cases, even in protocols that have been considered secure for 
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several years. One of the most famous success stories is the Lowe's 

attack [3, 4] on the Needham Schroeder public key protocol [5] using the 

process algebra Communicating Sequential Processes (CSP) and the 

Failures-Divergences Refinement (FDR) which is the model checker for 

CSP [6].  Also, Shmatikov and Stern [7] used Murphi, and Corin et al. 

[8] used symbolic traces and Pure-past Security - Linear Temporal Logic 

(PS-LTL) successfully. 

In this thesis, a formal and automated method to verify the security 

protocol used in IEEE 802.16 is described and used. In particular, the 

PKMv2 SA-TEK 3-Way Handshake is studied using LySa process 

calculus and static analysis. 

 

1.1 Authentication Protocols 

 

An authentication protocol verifies the identity of principals by 

exchanging messages that have a specific form for authentication. These 

protocols usually have additional goals such as the distribution of session 

keys. Because of the illegitimate and/or malicious principals and active 

intruders, authentication requires complex protocols that are based on 

cryptography. The cryptographic protocols enable the principals to 

establish secure communications on insecure networks by using 

cryptographic functions and shared secrets for authentication and 

confidentiality. 

Generally, a trusted server (i.e. Key Distribution Center) is used for 

authentication protocols. The principals communicate with the server to 

make sure that the corresponding principal is authenticated. In addition, 

in most of the protocols the principals agree on a session key for that 

specific session. Since there exists a trade-off between performance and 

security, the symmetric-key cryptography is used for all data traffic, and 

public-key cryptography is widely used for the authentication protocols 

themselves which aim to establish the session key. Roughly speaking, the 

symmetric-key cryptography is faster but less secure, whereas public-key 

cryptography is slower but more secure. Establishing the session key is 

done less frequently but it needs more security, whereas encrypting the 
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data traffic is done frequently but is not so critical as encrypting the 

session keys whose loss will affect all the encrypted data traffic.  

In addition, session key is freshly created for each new connection and 

minimizes the amount of traffic that gets sent with confidential data like 

the users' secret keys or public keys, therefore reduces the amount of 

cipher text an intruder can obtain, and minimizes the damage in a case of 

intrusion. The loss of the session key is not as crucial as the loss of the 

secret key or any permanent key since the session key is renewed in each 

session [9]. 

Symmetric-key cryptography uses the same key for encryption and 

decryption. The notation between a simple encrypted communication 

between two principals is basically shown as: 

A  B : {M}K 

where principal A sends the message M to principal B by encrypting it 

with the key K. Certainly, B must possess the key K in order to be able to 

decrypt {M}K and read the message M. 

Public-key cryptography or in other words asymmetric encryption is 

carried out using a private/public key pair e.g. K 
-/K

+
. The private key is 

kept secret whereas the public key is common knowledge. The messages 

that are encrypted using the private key can only be decrypted by using 

the public key, so all the principals possessing the public key can decrypt 

them. Likewise, the messages that are encrypted using the public key can 

be decrypted by using the private key, so only the principal possessing 

the private key can decrypt them. 

Description of asymmetric encryption is done in the following notation: 

A  B : {|M|}K 

This is the description of the scenario where principal A encrypts the 

message M using his private key K
- 

and sends it to the principal B. To be 

able to decrypt the message, the principal B must possess the 

corresponding public key K
+
. 
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A protocol is formalized as a list of correct message transfers. For 

instance, the following notation in Table 1.1 describes a variant of the 

Wide Mouthed Frog protocol (WMF) [10]: 

Table 1.1: The Wide Mouthed Frog Protocol 

 

In this variant of the WMF protocol two principals A and B have shared 

master keys KA and KB with a trusted server S, and the protocol aims to 

establish a shared session-key K between two principals.  

In step 1, the principal A initiates the protocol by sending the message 

A,B,{K}KA to the server S. S recognizes that A wants to arrange a secure 

communication with B, and since it possesses the shared master key KA, 

it can decrypt the encrypted part of the message and also recognize that A 

wants to use K as a session key between B.  

In step 2, S sends the message A,{K}KB to B using the shared master key 

KB. Having the key KB, B is able to decrypt the message and retrieve the 

session key K.  

In step 3, since the symmetric session-key K is established between the 

two principals, A is now able to send a secret message {m1,...,mk}K to B 

using the session key K. 

There are also other ways of authentication without server, such as 

authentication based on shared-secret, and even more, authentication 

without neither server nor shared secret. The protocol that we study in 

this thesis is an example of authentication based on shared-secret 

whereas the Diffie-Hellman key exchange protocol [11] is a common 

example of authentication without using shared-secret. 
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1.1.1 Attacker Modelling and Scenarios 

 

Only the correct message transfers of the protocol are described in the 

formalization of the protocol in the previous section, therefore it is 

important to be aware of the possibility of an attacker present on the 

network. A common way to model the ability of attackers to send and 

receive messages and to perform encryptions as well as decryptions on a 

public accessed network is to use the classical approach of Dolev and 

Yao [12], the notion of a “hardest attacker". This model allows the 

attacker to perform the following operations: 

 The attacker is able to intercept any message. 

 The attacker can decrypt an encrypted message if and only if he 

knows the key. The attacker can encrypt messages using keys in 

his possession. The attacker cannot guess a key. 

 The attacker can construct new messages. 

 The attacker can send constructed or intercepted messages on the 

network. 

Some basic scenarios are listed below: 

Deletion 

The attacker can delete a message before it reaches to the receiver. This 

kind of attacks would halt or restart the protocol since usually timers are 

used in implementations. 

Insertion  

The attacker can send a message that is totally created by himself. This 

could be an initiation message, a request or a response. 

Eavesdropping 

Eavesdropping is possible when the attacker can intercept and read 

messages of the protocol. As shown in Figure 1.1, eavesdropper does not 

send any messages to principals nor take any messages from them, so this 
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is a passive attack. Encryption is used against eavesdropping since most 

attacks include eavesdropping to gain basic knowledge. 

 

Figure 1.1: Eavesdropping 

 

Replay Attack 

After eavesdropping, the attacker could send the message that he gained 

to any principal in a new run of that protocol as shown in Figure 1.2. This 

type of attacks can be avoided by verifying freshness of the messages. 

Using nonces, timestamps or sequence numbers avoids replay attack. 

 

Figure 1.1: Replay Attack 
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Modification 

This type of attacks needs interception to gain the message. Interception 

is different from eavesdropping since the recipient cannot receive the 

original message. The attacker modifies the original message and sends it 

to the recipient as in Figure 1.3. Encryption is not a complete solution to 

this problem because the message can be replaced with another (a 

previous one) message using the same key. To avoid modification, i.e. 

hashing can be used with digital signature. If a message is sent with its 

hash signed with the private key of the sender, then an attacker will have 

to posses that private key to modify the message with a valid hash value. 

 

Figure 1.3: Modification 

Man-In-the-Middle 

In this type of attacks, the attacker works in a bidirectional manner. 

Namely, he uses eavesdropping and modification attacks to both of the 

principals in the protocol. As shown in Figure 1.4, the attacker is like the 

recipient and the sender of both sides. The solution of this attack is 

bilateral authentication which allows communicating principals to verify 

that received message comes from the genuine sender. 
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Figure 1.4: Man-in-the-middle Attack 

Since an attacker is present the attacker can intercept and replay any 

messages in the global scenario, it is not possible to determine neither the 

sender nor the receiver of a message by looking at it. If the WMF 

protocol from the previous section is deployed on a network where an 

attacker is present, the following run of the protocol could occur in Table 

1.2: 

Table 1.2: Attack Scenario for WMF 

 

In this message transfer, M(S) denotes the malicious attacker acting as S. 

The first message sent from A to the server is intercepted by the attacker. 

But the attacker cannot decrypt the session key since he does not possess 

the key KA. Then the attacker changes the intercepted message by 

replacing B with his own identifier M and sends this message to the real 

server S. Receiving this message the server S believes that A wants to 

engage a secure communication with M which is in fact the attacker. 

Therefore, S encrypts the session key K with the master key KM , which 

is shared between the attacker and the server, and sends it to the attacker. 

Inasmuch as the attacker got the session key, he is able to intercept and 

read messages sent from A to B encrypted under the session key K. A 

believes that the messages are to be secret between him and B, but in fact 

they are readable to the attacker. 
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1.2 Protocol Validation 

 

In protocol validations, choosing the properties to be validated is an 

important issue. For instance, a protocol validated to be tolerant to denial 

of service (DoS) attacks could very well be flawed with respect to replay 

attacks. The most common properties to consider when validating 

cryptographic protocols are: 

Authenticity Communication over a protocol that offers authenticity 

means that principals are communicating with the exact principals they 

believe to be communicating with. To be authenticated means to ensure 

that principals are actually who they say they are. 

Authentication properties have been discussed in many different levels of 

abstraction. The authentication property studied in [13] describes 

authentication at the level of the individual messages used in 

communication. The idea is to be sure that the messages always have the 

intended destination and origin, no matter how an attacker interferes with 

communication. 

Confidentiality A protocol that ensures confidentiality prevents the 

disclosure of transmitted data to unauthorized parties, such that only the 

intended receiver is able to read the confidential data. This is mostly 

established using cryptography. 

Integrity Messages cannot be changed by any malicious user when data 

integrity is offered. Modification, insertion, deletion, or replay of 

transmitted data is detected. Hashing is a well known solution for 

integrity. 

In addition, there are some other properties like non-repudiation [14].  

Various approaches have been used in protocol validations. Formalizing 

protocols in some simplified programming language, process calculus or 

logic description and  using automatic tools to verify the properties for 

the simplified description of the protocol is the tendency of the most 

recent research. The three main approaches in automatic verification are: 
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 Theorem proving The correctness of systems is determined by 

properties in a mathematical theory with deductive methods. Then 

these properties are proved using automatic tools such as theorem 

provers and proof checkers. As a real life example, this method is 

used in [15] to verify the SET protocol and in [16] for the 

automatic train operating system METEOR of the (first) 

driverless metro-line in Paris. 

 State exploration A protocol is modelled as a finite-state system 

and then the verification is evaluated by exploring each state in 

the protocol and reporting if the protocol enters a state that 

violates the properties to be validated. A number of  model 

checkers and state exploration methods have been applied to the 

security protocols as well. Murphi is a well-known example of 

this group[6,7]. 

 Static analysis An indispensable technique for language-based 

security which has successfully detected errors in protocols 

[18,13]. Control flow analysis is used to do an over-

approximation of the possible variable bindings and message 

transfers. Constructing reference monitor semantics it is possible 

to know whether the properties to be validated are violated or not. 

Theorem proving can deal with infinite state spaces and can verify the 

validity of properties for arbitrary parameter values and is a convenient 

method for protocols such as classical key distribution, where the 

reasoning about the formalization of the protocol into a logic description 

is relatively simple, and the assumption made prior to a run of the 

protocol. The main disadvantages of theorem proving are the slowness of 

the verification process, and the error-prone and labor-intensive character 

of application. Furthermore, the mathematical logic requires a rather high 

degree of user expertise. Although some successful applications of 

theorem proving, like the thorough verification of smartcard software 

have been reported, the drawbacks have restricted their use mainly to the 

academic world [17] . 

Model checking and static analysis methods are similar in the sense of 

the usage of the reachability analysis. Confidentiality is interpreted by 

ensuring the secret data does not reach the attacker. Authentication is 

reachability in the sense that information should end up at the intended 
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user from the intended provider of that information. These two methods 

have different advantages and disadvantages. Model checking approach 

returns a trace of the protocol that leads to the reported error, after 

investigating all possible traces trough the protocol. As the length of the 

protocol to be analyzed increases the number of different traces through a 

protocol raises significantly, and if an attacker is present, the number of 

states is infinite which makes it hard to use the method on full scale 

protocols. Murphi [6] is used as a prework of this thesis and this 

drawback is clearly seen, though it is out of the scope of this thesis. In 

static analysis, it is possible to create an over-approximation of the 

components, without investigating all possible traces, this makes it 

feasible to create automatic tools for validations with the presence of an 

attacker. If an error is reported by the static analysis, the trace leading to 

the error is however not part of the result. 

 

1.3 Strategy and Concepts 

 

In this thesis, the security properties of the IEEE 802.16 PKMv2 SA-

TEK 3-Way Handshake protocol are analyzed. This task is done in 

several steps: 

1. Derivation of a model of the base protocol and the modified 

versions of the protocol, and descriptions of the protocols in the 

LySa process calculus. 

2. Static analysis of the LySa process’ which reveals potential 

breaches in the protocols. 

3. Analysis of the result of the static analysis.. 

LySa process calculus [18] is the framework that the analysis of the 

protocols are carried out. LySa is a process calculus in the pi[19]/spi[21] 

calculus family and used in validation of  the authentication properties of 

communication protocols, specifically the destination/origin 

authentication properties.  
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Static analysis [20] is the basis of our analysis. This means that we 

construct an approximation of the behavior of the protocol. In doing so 

we focus on: 

1. the communications that may take place over the network 

2. the potential bindings of the variables occurring in the protocol  

3. the potential violations of the destination/origin annotations of the 

protocol  

The Dolev-Yao attacker [12] is used in the analysis therefore any 

message sent on the network may be intercepted by the attacker, any 

encryption with a key known to the attacker may be decrypted by him 

and furthermore the attacker may make use of all the information 

available to him to construct new messages, even more, new encryptions 

and to send messages on the network. The notion of a perfect encryption 

library is used in order to be able to model encryption. Simply, an 

encrypted message can only be decrypted if the correct key is used. 

The protocol that is chosen to be analyzed in thesis is the IEEE 802.16 

PKMv2 SA-TEK 3-Way Handshake. Executed after the initial 

Authentication Stage or on Handover, the basic purpose of the IEEE 

802.16 PKMv2 SA-TEK 3-Way Handshake is the distribution of keying 

parameters, such as the Traffic Encryption Keys (TEK) which are 

encrypted using Key Encryption Keys (KEK), related to all Security 

Associations (SA) active between a Mobile Station (MS) and the Base 

Station (BS). 

 

1.4 Structure of this Report 

 

Chapter 2 introduces the concepts and usage of the security protocols  in 

the IEEE 802.16 standard that we analyze in this thesis. The intention in 

the thesis and the aimed contribution is also stated in this chapter. 

Chapter 3 presents the LySa calculus which is be used in the static 

analysis and the modelling of the protocol in LySa calculus.  
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Chapter 4 presents static analysis, the technique used in the analysis of 

IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol. Includes an 

example analysis for a simple protocol. 

Chapter 5 includes the experiments and the analysis of the protocol. We 

modelled the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake 

(described in chapter 2) using the LySa calculus (described in chapter 3) 

and analyzed using static analysis (described in chapter 4). 

Chapter 6 summarizes our work and concludes on the security aspect of 

the analyzed protocol.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER    2  

 

IEEE 802.16 Security 
 

 

 

 

 

 

The IEEE 802.16 Working Group on Broadband Wireless Access 

Standards develops the IEEE 802.16 WirelessMAN® Standard for 

Wireless Metropolitan Area Networks. This standard specifies the air 

interface of fixed broadband wireless access (BWA) systems. 

While the 802.16 family of standards is officially called WirelessMAN, it 

has been entitled Worldwide Interoperability for Microwave Access 

(WiMAX) by an industry group called the WiMAX Forum, whose 

mission is to promote and certify compatibility and interoperability of 

broadband wireless products.  

The first 802.16 standard, which was designed to provide a solution for 

the last mile problem for Wireless Metropolitan Area Networks 

(WMAN) with line-of-sight (LOS) working at 10-66GHz bands, was 

approved in 2001 and was followed by two amendments: 802.16a and 

802.16c to address issues of radio spectrum and interoperability, 

respectively.  
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In 2003, a revision project called 802.16REVd commenced aiming to 

align the standard with aspects of the European Telecommunications 

Standards Institute (ETSI) HIPERMAN standard as well as lay down 

conformance and test specifications. This project concluded in 2004 with 

the release of IEEE standard 802.16-2004 which consolidates previous 

standards, also supports non-line-of-sight (NLOS) within 2-11GHz bands 

and mesh nodes [22]. In addition, the earlier 802.16 documents including 

the a/b/c amendments are now superseded. 

An amendment and corrigendum to the standard that aims to provide 

mobility in BWA and presents new security protocols was concluded in 

2005 and named as IEEE 802.16e-2005 [2].  

Two types of principals communicate in IEEE 802.16 and since IEEE 

802.16e-2005 comes up with mobility, the client principal which was 

called as the subscriber station (SS) in the previous versions is now 

called the mobile station (MS) and the other principal who acts as the 

server is still called the base station (BS). 

With the entry of the MS to the network, using the ranging protocol, the 

communication starts. The purpose of the ranging protocol is to set up the 

physical communication parameters and to assign a basic connection 

identifier to the requesting MS. Later, the ranging protocol is periodically 

executed to recommunicate the physical communication parameters [23]. 

After that, the registration protocol is performed in order to allow the 

mobile station into the network. BS and MS’ security capabilities are 

negotiated during the registration protocol. The stations may agree on 

authentication and key management protocols. Authentication options 

are: unilateral authentication, mutual authentication and no 

authentication. The mutual authentication was missing in the previous 

versions and it was one of the problems that were mentioned in the 

related papers such as [1] but now it is included in IEEE 802.16e-2005. 

Key management protocols are focused on this thesis and are described 

in details in the following sections.  

The key management protocols are periodically executed to update the 

Traffic Encryption Keys (TEK) which can be thought as the session keys. 

After the establishment of the TEKs, user data protocols start. Traffic 

encryption keys are used as sequential pairs and have overlapping 

lifetimes to avoid service interruptions. 
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The authentication and key management protocols are specified in the 

security sublayer of IEEE 802.16 standard. The security sublayer is 

meant to provide subscribers with privacy and authentication and 

operators with strong protection from theft of service. The security 

sublayer consists of two component protocols, an encapsulation protocol 

for securing packet data across the network and a key management 

protocol providing the secure distribution of keying data from the base 

station to the mobile station. In the following sections we will focus on 

the key management protocol. The Privacy and Key Management (PKM) 

protocol of IEEE 802.16 and the second version of this protocol, which is 

announced within the IEEE 802.16e-2005 and aims to fix the bugs in the 

former protocol, are described in the following sections. 

 

 

2.1 Overview of PKMv1 (IEEE 802.16-2004)  

 

The first version of the Privacy and Key Management Protocol consists 

of two specific components, which are designed for IEEE 802.16 and 

defined in Security Sublayer. The first protocol is the PKM Authorization 

Protocol which is established by the subscriber station (SS) and 

responded by the base station  (BS). As we mentioned before, until the 

PKMv2 announced the standard was not mobile and therefore we use the 

notation SS instead of MS (mobile station). At the end of a successful run 

of this protocol, an Authorization Key (AK) is created by BS and 

transmitted to SS. After that, each party generates a Key Encryption Key 

(KEK) using their AK. KEKs are used in encrypting and distributing 

Traffic Encryption Keys (TEK), TEKs can be taken as session keys, 

while AK/KEK are long term keys. Then comes the second part: the 

Privacy and Key Management protocol which lets SS to gather TEKs 

from BS, note that TEKs are encrypted by KEKs. The flow of the 

protocols in PKMv1 can be seen in Figure 2.1. 
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Figure 2.1: The PKMv1 Protocols 

 

2.1.1 PKM Authorization 

 

The PKM authorization protocol aims to distribute an authorization key 

(AK) to an authorized SS. The authorization protocol is a three-message 

exchange between an SS and a BS; but it is not in a one after the other 

manner since the first two messages are sent by the SS. When successful 

BS responds with the third message, which is actually the transmission of 

the AK from BS to SS. The messages can be seen in Table 2.1. 

 

 

 

Authorization Protocol (AK Generation) 

 

 

AK 

 

KEK (Derived from AK) 

Privacy & Key Management (TEK Generation) 

 

TEKs 
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Table 2.1: The PKM Authorization Protocol 

 
 

SS uses Message 1, formally named as the Authentication Information 

Message,  to push its X.509 certificate which identifies its manufacturer 

to BS. BS uses this certificate to decide whether SS is a trusted device. 

BS may use this message in order to allow access only to devices from 

recognized manufacturers, according to its security policy. 

SS sends Message 2, named as the Authorization Request immediately 

after Message 1. Message 2 consists of SS’s X.509 certificate with the SS 

public key, its security capabilities which are actually the authentication 

and encryption algorithms that SS support, and the security association 

identity (SAID) which is the id of the secure link between SS and BS. 

Using the certificate, BS determines whether to authorize SS; and the 

public key of SS which is also in the certificate lets BS construct 

Message 3. 

If successful, namely SS is authorized after BS verifies its certificate, BS 

responds with Message 3, the Authorization Reply. This message 

includes the AK, encrypted using the RSA public-key encryption 

protocol using the public-key of SS which was obtained in the previous 

message, the lifetime of the AK as a 32-bit unsigned number in unit of 

seconds, the sequence number for AK as a 4-bit value and the list of SA 

descriptors each including an SAID and the SA cipher suit. The 

successful run of the protocol instantiates an authorization SA between 

the two stations. The design assumes that only BS and SS possess the 

Message 1: Authentication Information Message 

 

SS → BS: Certificate(Manufacturer(SS)) 

 

Message 2: Authorization Request 

 

SS → BS: Certificate(SS) | Capabilities | SAID 

 

Message 3: Authorization Reply 

 

BS → SS: RSA-Encrypt(PubKey(SS), AK) | Lifetime | SeqNo 

| SAIDList 
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AK, which means that the key is confidential and never revealed to any 

other party. 

 

2.1.2 Privacy and Key Management 

 

The privacy and key management protocol aims to establish a data SA 

between BS and SS. The first message of the protocol is optional and 

used for forcing rekeying, therefore the protocol is a two or three 

message exchange between SS and BS. When successful, the BS sends 

TEKs to the SS in the last message of the protocol. The messages in the 

protocol can be seen in the Table 2.2. 

Table 2.2: The Privacy and Key Management Protocol 

 
 

If BS wants to rekey a data SA or create a new SA, it starts the protocol 

with the first message which contains the sequence number of the AK 

used for the exchange, the id of the data SA being created or rekeyed and 

HMAC-SHA1 digest of these two fields. Computation of  the Hashed 

Message Authentication Code HMAC(1) requires a HMAC key which is 

derived from the AK, therefore it allows SS to detect forgeries. 

The second message, named as the Key Request, is where SS requests 

the SA parameters. If the protocol was started by BS, SS takes SAID 

from message 1 with valid HMAC(1). Otherwise, SS takes SAID from 

the authorization protocol SAIDList. Then HMAC is computed with the 

sequence number of AK and the SAID. 

 [Message 1: BS → SS: SeqNo | SAID | HMAC(1)] 

 

Message 2: Key Request 

 

SS → BS: SeqNo | SAID | HMAC(2) 

 

Message 3: Key Reply 

 

BS → SS: SeqNo | SAID | OldTEK | NewTEK | HMAC(3) 
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The third message, the Key Reply, is sent if the HMAC and the SAID in 

message 2 is valid. As mentioned in the beginning of this chapter, TEKs 

have overlapping lifetimes to avoid service interruptions. The OldTEK 

value has the active SA parameters whereas the NewTEK value has the 

SA parameters to be used on the expiry of the current TEK. OldTEK 

includes the initialization vector, remaining lifetime and sequence 

number for the specified data SA for the previous generation TEK, and 

similarly NewTEK includes the same parameters for the next TEK. The 

TEKs are encrypted with 3-DES using the Key Encryption Key (KEK) 

which is derived from the AK. This message also has HMAC to avoid 

forgeries. 

 

2.2 Overview of PKMv2 (IEEE 802.16e-2005)  

 

The second version of  the Privacy and Key Management (PKM) 

protocol of IEEE 802.16 is described in IEEE 802.16e-2005 and aims to 

fix the bugs in the former version. 

The AK derivation is now established by the well known standards RSA 

and EAP. In PKMv2, RSA and EAP can be used in different ways which 

are defined in the standard [2],  such as RSA, RSA+EAP, EAP and 

EAPinEAP. Therefore the AK derivation is now much more specific and 

with the contribution of two principals much more secure. In addition BS 

now has a certificate, and can authenticate itself to the MS by mutual 

authentication which was missing in PKMv1. Nonces are used against 

replay attacks. The process can be seen in Figure 2.2. 
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Figure 2.2: The PKMv2 Protocols 

 

 

The important part of PKMv2 is the SA-TEK 3-Way Handshake. It is 

based on the second part of the former protocol, but now it has more 

security features. The original specification has three messages with H-

MACs and in total twenty-one fields. The main fields are described in 

Table 2.3. 

Table 2.3: The PKMv2 Protocols 

Attribute Content 

MS_Random Number received from MS 

BS_Random Number included in SA-TEK-Challenge or SA-

Challenge 

KeySeqNo AK Sequence Number 

AK (also KEKs and H-C/MAC keys are derived from AK) 

AK Generation is established using  

either EAP or RSA or both  

 

PKMv2 SA-TEK 3-Way Handshake 

 

TEKs 
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AKID Id of the AK that was used for protecting this 

message 

SA-TEK-

Update 

TEKs encrypted by KEKs 

Frame No The frame number that old PMKs and associated 

AKs should be discarded 

SA_Descriptors Only for initial entry 

SecNegParam. Confirms messages security capabilities 

HMAC/CMAC Message Authentication Codes 

 (Hashed/Cryptographic) 

The PKMv2 SA-TEK 3-Way handshake sequence proceeds as shown in 

Figure 2.3. 

 

Figure 2.3: The PKMv2 SA-TEK 3-Way handshake 

BS_Random, KeySeqNo, AKID, [KeyLifeTime], H-C/MAC 

MS_Random,BS_Random, KeySeqNo, AKID, 

SecurityCapabilities,SecNegParam,PKMConfSettings, H-

C/MAC 

MS_Random,BS_Random, KeySeqNo, AKID, [SA-

TEKUpdate], FrameNo, [SADescriptors], SecNegParam, H-

C/MAC 

 

 

M

S 

 

 

B 

S 

1. SA-TEK-Challenge 

2. SA-TEK-Request 

3. SA-TEK-Response 
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The first message, named as PKMv2 SA-TEK-Challenge, includes a 

random number generated by BS and similar to the previous version 

protected by HMAC/CMAC tuple. 

The second message is the PKMv2 SA-TEK-Request and includes the 

random number generated by MS, the random number of BS received in 

the first message, and the similar fields as in the previous version of the 

protocol, just as described in the previous section. 

The BS checks the AKID, HMAC/CMAC (Hashed-MAC/Cryptographic-

MAC) and the BS_Random of the message 2 and if any of these values 

are invalid, than ignores the message. Otherwise, it checks the security 

capabilities provided by the MS and if the properties does not match it 

reports this inconsistency to the higher layers. 

If the second message is successfully validated by the BS then message 3 

which is named as the PKMv2 SATEK-Response is sent to MS. This 

message has the SA-TEKUpdate unless for the handover and the security 

capabilities that BS wishes to specify for the session with the MS. 

If the last message is successfully verified by MS using the 

HMAC/CMAC, the received TEKs and associated parameters will be 

installed by the MS. The security negotiation parameters of BS should 

also be verified by MS but the failure of this verification may not cause 

halt of the protocol since MS may continue by adopting the security 

negotiation parameters encoded in SA-TEK Response message. 

 

 

 

2.3 Overview of Contribution 

 

The PKMv1 was defined in IEEE 802.16-2004 and it had many problems 

and flaws in it which are mainly discussed in [1]. For example, the data 

SA (Security Association) was explicitly defined but the Authorization 

SA was not. The SS had an X.509 certificate, but BS did not. BS did not 

even authenticate itself to the SS. Even the IV (initial vector) in the 

encryption phase was predictable. Therefore, IEEE 802.16 PKMv1 did 

not provide any data authenticity. Besides, the rogue AP problem in 
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802.11 Wireless Local Area Networks [24] was still existing in the sense 

that there was no BS identity in Authorization SA and there could be 

rogue BS’. Furthermore, the TEK identifiers were only 2-bits in length, 

Data Encryption Standard-Cipher Block Chaining (DES-CBC) was not a 

convenient way of encryption, the AK derivation was only BS’s job and 

SS did not have chance to participate it, and because security features 

were used against replay attacks.  

PKMv2 left the first part of PKMv1, namely the AK derivation to the 

well known standards RSA and EAP. In fact, RSA already existed in the 

PKMv1 but in PKMv2 RSA and EAP can be used in different ways 

which are defined in the standard such as RSA, RSA+EAP, EAP and 

EAPinEAP. Therefore the AK derivation is now much more specific and 

with the contribution of two participation much more secure. In addition 

BS now has a certificate, and can authenticate itself to the MS by mutual 

authentication. Nonces are used against replay attacks. 

PKMv1 had many missing parts in it, but PKMv2 is over-strengthened. 

This does not mean that PKMv2 can be considered as the ultimate secure 

protocol, but it definitely has degraded efficiency since it needs more 

sources and time for the security features it has.  The aim of this thesis is 

to argue that, PKMv2 can still pursue its security with less features than 

it has. In other words, PKMv1 was a failure in wireless security, just like 

the WEP in IEEE 802.11 [31], so PKMv2 is now overloaded, but a light 

version of PKMv2 should serve as good as now it is.  

Our approach is to see the limits of robustness in IEEE 802.16 PKMv2. 

The way we do it is removing the extras and the improvements in 

PKMv2 one by one, and in different combinations. We want to see when 

the robustness will be lost, what preserves the robustness and how is this 

accomplished. We also want to see if some improvements are 

unnecessary then what are they, and can we provide better efficiency 

with less strength? The result may lead us to a simplified by still strong 

and secure protocol. 

The experiments could be established by constructing the PKMv2 SA-

TEK 3-Way Handshake beginning from the simple PKMv1. In order to 

see where the problems arise and where the flaws start, the experiments 

are held in the reverse direction, namely from the full protocol to a 

simpler but still secure revised protocol. 
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2.4 Specifying IEEE 802.16 PKMv2 SA-TEK 3-Way 
Handshake 

 

Obviously, the description of IEEE 802.16 PKMv2 SA-TEK 3-Way 

Handshake contains many details that won’t be used in modelling. Not 

all the fields make the protocol secure, so there should be a simplification 

such as removing the fields which have no effect on security itself. 

John Mitchell [25]  simplified the IEEE 802.16 PKMv2 SA-TEK 3-Way 

Handshake to make a formal verification with Murphi as shown in Table 

2.4. This work was used in a security review together with IETF EAP 

Work Group. 

Table 2.4: Mitchell’s Simplified version of the PKMv2 SA-TEK 3-Way 

HS 

 
 

Rewriting the simplified PKMv2 SA-TEK 3-Way Handshake in a more 

familiar protocol narration style is shown in Table 2.5. 

Table 2.5: The Simplified PKMv2 SA-TEK 3-Way Handshake 

 

1. BS  MS :  BSNonce, AKID, MIC[AK](BSNonce, AKID) 

 

2. MS BS :  BSNonce, MSNonce, AKID, MSSuite, 

MIC[AK](MSNonce, BSNonce, AKID, 

MSSuite) 

 

3. BS  MS :  SAUpdate, BSNonce, MSNonce, AKID, 

MIC[AK](SAUpdate, MSNonce, BSNonce, 

AKID) 

1. BS  MS: NBS, AKID, MIC{ NBS, AKID}AK 

 

2. MS BS : NBS, NMS, AKID, MSSuite, MIC{ NBS, NMS, AKID, 

MSSuite}AK 

 

3. BS  MS: SAUpdate, NBS, NMS, AKID, MIC{ SAUpdate, NBS, 

NMS, AKID}AK 
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Using the abbreviations below we can have a shorter narration: 

BS = A, MS = B, NBS = NA , NMS = NB, MSSuite = S, SAUpdate = T, 

AK = K, AKID = Id 

Mitchell uses MIC (Message Integration Code) instead of MAC 

(Message Authentication Code), we will use the notation MAC as used in 

the standard. 

The simplified and abbreviated version of PKMv2 SA-TEK 3-Way 

Handshake is shown in Table 2.6. 

Table 2.6: Simplified and Abbreviated Version of  PKMv2 SA-TEK 3-

Way HS 

 

In order to use this handshake specification in LySa, some parameters 

should be reordered and for simplicity some of them need to be 

reabbreviated. This reordering does not affect the security features but it 

is needed for LySa which will be explained in the following chapter.  

The reordered, simplified and reabbreviated PKMv2 SA-TEK 3-Way 

Handshake protocol narration is shown in Table 2.7, named as Pkmv2-

simple.protocol. 

Table 2.7: Pkmv2-simple.protocol 

 

1. A  B: id, na, MAC{ id, na}K 

 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

 

3. A  B: na, nb, id, T, MAC{ na, nb, id, T}K 

1. A  B: NA, ID, MAC{ NA, Id}K 

 

2. B  A: NA, NB, Id, S, MAC{ NA, NB, Id, S}K 

 

3. A  B: T, NA, NB, Id, MAC{ T, NA, NB, Id}K 
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2.5 Considerations in Modelling 

 

In our specification of the IEEE 802.16 PKMv2 SA-TEK 3-Way 

Handshake in section 2.4, we have six different fields. First of all, every 

message has a nonce which are freshly generated values: na, nb. Then 

comes the authorization key (AK) which is a shared-secret long term key: 

K. This key also has an id which is used in every message: id. The second 

message, which is actually called the SA-TEK-Request, includes a field 

that provides information about the security capabilities of the MS: S. 

Last message, which is actually called the SA-TEK-Response, includes 

the session keys (TEKs) which are encrypted by special keys that are 

generated from AK (KEK: Key Encryption Key): T. Finally, all the 

messages have message authentication codes which are generated from 

the whole message and using AK: MAC.  

In the modelling phase of these entities, three major studies are taken as 

guidelines. Nonces are modelled as they are modelled by Buchholtz’s 

implementation of The Bauer, Berson, and Feiertag (BBF) protocol 

which aims at establishing a fresh shared key, between two principals 

using nonces [26]. 

The long term key and the id of it are modelled as they are modelled in 

the impressive study about static validation which is also the basis for 

this thesis [13]. Wide Mouthed Frog protocol [21] (WMF) which aims at 

establishing a secret (symmetric) session key between two principals who 

share master keys with a trusted server, has an implementation in this 

study which includes the long term key usage that can be used for K in 

our specification of the IEEE 802.16 PKMv2 SA-TEK 3-Way 

Handshake and also the id of K. 

The encrypted session key can be taken as an ordinary message field, like 

in Mitchell’s work [25]. In addition, the security capabilities field is no 

doubt an ordinary field for us, therefore these two fields S and T will be 

modelled as they are in modelled in WMF. 

The modelling of the message authentication codes is a difficult problem 

but in the SAML-TLS implementation in [27] comes a clever solution for 

the problem which is described in Chapter 3, Section 3.2.2. 
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The summary of the considerations in modelling and the basis 

implementations are given in the Table 2.8. 

Table 2.8: Modelling Summary 

Field Definition Implementation 

Nonces Freshly generated BBF 

K Long term key WMF 

Id Long term key id WMF 

T Encrypted session key WMF (as a message) 

S Security Capabilities WMF (as a message) 

MACs Message Authentication Codes SAML-TLS 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER    3 

 

LySa 
 

 

 

 

 

 

This chapter is about LySa [13], a process calculus based on the π-

calculus [28] and incorporates cryptographic operations using ideas from 

the Spi-calculus [21]. Though, there are two main differences between 

LySa and spi/pi calculus. First difference is that, LySa does not have 

channels but one global ether. That is because in usual implementations 

like ethernet-based or wireless, anyone can eavesdrop or act as an active 

attacker and that’s definitely not the channel based communication.  The 

second difference is about the usage of pattern matching in the 

expression of the tests associated with input and decryption. 

 

3.1 LySa Calculus 

 

To analyze the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake 

protocol we need to formalize it in LySa calculus. The distinguishing 

features of LySa can be summarized as: LySa has only one global 
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communication channel or network. Everyone in the network can see the 

messages between processes. The LySa calculus has primitives for 

symmetric and asymmetric cryptography. Besides, decryption is 

modelled using pattern matching.  

 

3.1.1 Syntax 

 

LySa consists of terms and processes; terms consist of names (keys, 

nonces, messages, etc.), variables, public/private keys and the 

compositions of them using symmetric/asymmetric encryptions. The 

syntax of terms E is shown in Table 3.1: 

Table 3.1: LySa Terms 

 

In Table 3.1, N denotes the sets of names and X denotes the sets of 

variables. Tuples of terms E1,...,Ek are encrypted under a term E0 

representing a key in the cases of symmetric or asymmetric encryption. 

An assumption of perfect cryptography is adopted, meaning that the only 

inverse function of encryption is to use decryptions with the correct key. 

The syntax of processes P which is mostly familiar to the polyadic Spi-

calculus [21] is shown in Table 3.2: 

 

 

 E ::= terms     

  n    name ( n  N  ) 

  x    variable ( x  X ) 

  k
+
, k     public and private keys 

  { E1,...,Ek 


0
}E [dest L]  symmetric encryption ( k 

 0 ) 

  {| E1,...,Ek |


0
}E [dest L] asymmetric encryption ( k 

 0 ) 
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Table 3.2: Processes 

 
 

The input operation with pattern matching will only succeed if the prefix 

of the message matches the terms specified before semi-colon in the 

input operation. The input process (E1,...,Ej ; xj+1,...,xk).P means that a k-

tuple of values (
'

1E ,..., '

kE ) is taken as the input and if the first 1≤ i ≤ j 

values '

iE   are pairwise matched to the values Ei, the remaining k-j values 

of the input will be binded to the variables xj+1,...,xk. In other words, the 

values before the semi-colon are to matched to the beginning part of the 

input and if the matching is successful the remaining part of the input 

will be assigned to variables after the semi-colon. This pattern matching 

is also used in decryptions as shown in table 3.2. If no matching will be 

performed, then nothing is written before the semi-colon. Similarly, if  no 

binding will be performed, then nothing is written after the semi-colon. 

For example,  

P = decrypt {y}K as {x;}K in P’ 

means that the decryption in P succeeds only if x = y whereas  

Q = decrypt {y}K as {;x}K in Q’ 

means that  the decryption in Q always succeeds, binding x to y.  

LySa syntax also have annotations for origin and destination in order to 

describe the intentions of the protocols. Encryptions can be annotated 

P ::= processes    

  0    nil 

  E1,...,Ek .P   output 

  (E1,...,Ej ; xj+1,...,xk).P  input (with matching) 

  P1 | P2    parallel composition 

  ( n)P    restriction 

  !P    replication 

  decrypt E as {E1,...,Ej ; xj+1,...,xk


0
}E [orig L] in P 

symmetric decryption (with matching) 

  decrypt E as {|E1,...,Ej ; xj+1,...,xk|


0
}E [orig L] in P 

asymmetric decryption ( k  0 ) 
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with fixed labels, called crypto-points defining its position in the process, 

and with assertions specifying the origin and destination of encrypted 

messages. Crypto-points   are from some enumerable set C (disjoint 

from N and X) and added to state where the encryptions and decryptions 

occur. The LySa term for encryption: 

{ E1,...,Ek 


0
}E [dest L] 

means that the encryption is created at crypto-points   and specifies the 

intended crypto-points L C for decryption of the encrypted value in the 

assertion [dest L] 

Similarly, in the LySa term for decryption: 

decrypt E as {E1,...,Ej ; xj+1,...,xk


0
}E [orig L] in P 

[orig L] specifies the crypto-points L C that E is allowed to have been 

encrypted. 

For the terms with all annotations removed 
.

 is used, and in particular: 

{ E1,...,Ek 


0
}E [dest L]

 = { 
E1  ,..., Ek  



0
} E [dest L] 

In addition, for each name n there is a canonical representative n  and 

similarly, the function 
.

 is extended homomorphically to terms: E  is 

the term where all names and variables are replaced by their canonical 

versions.  

 

3.1.2 Semantics 

This section gives a short description of the reduction semantics defined 

for LySa following the tradition of the π -calculus. We use the notation of 

P[E/x] to describe that all occurrences of x in process P should be 

replaced by the term E, in other words the value of E is bound to variable 

x in P. In addition, names used in a LySa process are global, for instance 

if a name “X" occurs in two places in the process they have the same 
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meaning. Therefore, it is impossible to use local variables and each name 

should only be used in one meaning.  

As described in the previous section, all occurrences of a bound name n 

is mapped to one canonical name n  and the same mapping applies for 

variables. The function applied to terms E  replaces all names and 

variables in the term with their canonical versions. We say that two 

processes are α -equivalent only if the mapping of names and variables 

correspond. 

Structural congruence, ≡, is defined on processes to be the least 

congruence satisfying the following conditions: 

 P ≡ Q if P and Q are disciplined α-equivalent; 

 (P / ≡, |, 0) is a commutative monoid: 

o P | Q ≡ Q | P 

o P | ( Q | R ) ≡ (P | Q) | R 

o P | 0 ≡ P 

 ( n)0 ≡ 0, 

( n) ( n’)P ≡ ( n’) ( n)P, and 

( n) (P|Q) ≡ P|( n)Q if n  fn(P); 

 !P ≡ P | !P 

We consider two variants of reduction relation R: the reference 

monitor semantics (RM) takes advantage of annotations, whereas the 

standard semantics () discards them. After the reduction semantics we 

will describe the reference monitor semantics in details.  

The rules for the reduction semantics R are shown in table 3.3 and 

described below: 
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Communication 

The rule Communication expresses that an output E1,...,Ek .P is matched 

by an input (
'

1E ,..., '

jE ;xj+1,...,xk).Q if the first j elements are pairwise the 

same, namely Ei with all annotations removed is compared with '

iE  with 

all its annotations removed. If these comparisons are successful, rest of 

the terms each Ej+1 ,..., Ek  is bound to the variables  xj+1,...,xk. 

Decryption / Asymmetric Decryption 

The rule Decryption expresses matching the term { E1,...,Ek 


0
}E [dest L], 

which is a result of an encryption, against the pattern in decrypt E as 

{E1,...,Ej ; xj+1,...,xk


0
}E [orig L] in P if the key used for decryption 

corresponds to the one used to create the encrypted term. This is 

accomplished by adding the condition  in addition to the 

case for communication which required the first j components to be 

pairwise the same. This models perfect symmetric cryptography. If the 

matching is successful rest of the terms are binded to the variables as in 

the previous rule. In the case of asymmetric decryption, the decryption 

key should be the opposite of the encryption key, namely {E0, 
'

0E }={m
+
,m } ∨ {E0, 

'

0E }={m ,m
+
} which is shortly expressed by {E0, 

'

0E }={m±,m∓} 

In the reference monitor semantics we ensure that the crypto-point of the 

encrypted value is acceptable at the decryption (i.e.   L’)  and the 

crypto-point of the decryption is acceptable for the encryption (i.e.  ’  

L). But in the standard semantics the condition R(  ,L’,  ’, L) is 

universally true and therefore can  be ignored.  

Parallel 

The rule for parallel construction is standard; using the reduction 

semantics, two parallel processes P | Q are reduced on either one of them. 
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Restriction / Asymmetric Restriction 

The rule for restriction ( n)P applies the reduction semantics on the 

restricted processes. In the case of asymmetric restriction, the same rule 

applies on asymmetric keys. 

Congruence 

The rule for congruence expresses that, if the reduction semantics are 

applied then the two congruent processes P ≡ Q, are reduced to two 

congruent processes P’ ≡ Q’. 

 

  

Table 3.3: Operational semantics 
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Reference Monitor Semantics 

In reference monitor semantics, the reduction rules of the semantics are 

the same but instead of defining the R relation, the reference monitor 

takes this relation as input: RM(  ,L’,  ’, L) = (   L’ ∧  ’  L) which 

means that the encryption made at  must be in the set L’ of expected 

origins of  the data, as well as the actual place where decryption takes 

place  ’ must be in the set of expected destinations L. In other words, 

decryptions may only occur at crypto-points specified in the 

corresponding encryption and vice-versa, otherwise the execution is 

halted. 

  

3.2 Modelling Protocols in LySa 

 

The translation from ordinary protocol narration into a LYSA process is 

done in two stages:  

1. The ordinary protocol narration is refined into an extended 

protocol narration. 

2. The extended protocol narration is translated into LySa.  

A discussion on the need for extending the ordinary protocol narration 

can be found in [29]. 

 

3.2.1 Extended Protocol Narrations 

 

As shown in Section 1.1, the protocol narrations only list the messages to 

be exchanged. Here is the first message of the WMF protocol which was 

also used in Section 1.1: 

A  S : A,B,{K} KA
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This line means that, the message containing A, B and K encrypted with 

the key KA is sent from A to S. 

To formalize the protocols to be analyzed, we have to use an extended 

version of this notation. The extended protocol narration distinguishes 

between inputs and corresponding outputs and also makes clear which 

checks must be performed [13]. The protocol narrations only list the 

messages to be exchanged, therefore the actions to be performed upon 

receiving the messages are left unspecified. 

The first step of unfolding the protocol narrations to the extended 

protocol narrations is to distinguish between outputs and the 

corresponding inputs. This is done also for encryptions and 

corresponding decryptions. In addition, the check on the received values 

and the freshness of the keys should be explicitly stated. In addition, the 

source and destination addresses may be added to the messages. Using 

this extension the first step of the WMF protocol would now be split into 

three parts: 

 

First line consists of the message sent from A with the source and 

destination addresses added as a prefix. Second line has the variables that 

are bound to the received messages fields. In the end of the second line 

exists the checks in the brackets. First check is to make sure that the 

message is really sent for S and the second check is to make sure that the 

sender of the message is the one in the first part (in extended narration 

third part) of the message (the one that wishes to communicate). Third 

line shows the decryption of the encrypted value using the key KA and as 

a result xKey is bound to K.  

The last step is about the security goals namely the authenticity 

properties to be verified. The protocol narration is refined by specifying 

the origin and destination of encrypted messages. This will help us  to be 

sure of the confidential data is sent and received by the principals 

intended by the protocols. So the final result for the extended protocol 

narration of the WMF protocol is given below: 
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The annotations in brackets including the tags dest and orig means that, 

the encrypted message sent in line 1 should only be decrypted at the 

principal S and the decrypted (part of the) message in line 1” should have 

been encrypted at principal A. 

 

The protocol narration of the WMF protocol is given above and the 

extended narration of this protocol is given in Table 3.4 below: 

Table 3.4: The Extended protocol narration of the WMF protocol 

 

 

First three lines of this extended narration was explained and the 

remaining part is similarly derived from the narration. The important 

point is that,  the variables that are set in line 1’ are sent in line 2, in 

convenience with the original protocol. Also in lines 3’ and 3” some 

previous variables are used again, for example in checks. 
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The LySa model of the WMF protocol is given in Table 3.5. The number 

in the left margin refer to the message number of the extended protocol 

narration for WMF (Table 3.4). Step 0 in the LySa process is used to 

setup the long term keys between the server S and the principals A and B. 

The scope of the restriction of KA and KB include the definition of both A 

and B and the Server S. Similarly, the first line of Step1 shows that the 

newly created key has to be restricted, and the first line of Step3 shows 

that the message containing confidential data must also be restricted. The 

remaining parts are similar to the extended protocol narration but in LySa 

syntax. 

Table 3.5: LySa model of the WMF protocol. 

 

 

 

 

3.2.2 Modelling of Message Authentication Codes   

 

The message authentication codes which include the hash functions are 

the important parts of the model which need special modelling 
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considerations. The method used in [27] is suitable for our analysis so we 

employed the usage as follows. 

Hash functions  

Since the hash functions are one way functions, they can be modelled 

with public-key encryption where we have different keys for encryption 

and decryption. If we can manage the paradigm that the encrypted value 

can never be decrypted we can use this as a hash function model. This 

can be done by modelling the hash function using a public name for the 

encryption key and with no corresponding key for decryption. 

Message Authentication Codes  

In PKMv2 a keyed MAC is used to verify the integrity of messages. [27] 

also uses keyed MACs and they modelled it using a shared secret key and 

a cryptographic hash function. The message is hashed along with the key 

and then encrypted with the MAC key. Therefore, the message is 

encrypted by asymmetric encryption first. After that symmetric 

encryption is applied. 

 

 

3.2.3 LySa Model of IEEE 802.16 PKMv2 SA-TEK 3-Way 
Handshake 

 

We are now ready to model protocols in LySa; in particular we will 

model the IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol.  

We had simplified the protocol, making use of the work of John Mitchell 

[25], made the necessary changes that are necessary for LySa and 

obtained the following protocol narration in section 2.4: 

 

A  B: id, na, MAC{ id, na}K 

B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

A  B: na, nb, id, T, MAC{ na, nb, id, T}K 
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The extended protocol narration for IEEE 802.6 SA-TEK 3W HS is 

listed in Table 3.6 where we use the LYSA terms and syntax for writing 

the cryptographic operations. 

Table 3.6: PKMv2 Extended Protocol Narration 

 
 

The extended narration can be translated into LYSA by dividing the 

narration into two processes, one for each principal. The LYSA 

specification of the protocol is given in table. Notice that the checks in 

the extended narration are represented by the pattern matchings on input 

and decryption.  

In the LYSA specification we add annotations to all cryptographic 

operations as described before in this chapter. The LySa model of the 

PKMv2 SA-TEK 3-Way Handshake is given in Table 3.7.  

 

 

 

 

 

0. [new K][new id] 

1.   A     : id, na, {{| id, na |}Hash}K [dest B] [new na] 

1’.      B:  yid, yna, ymac [check yid = id] 

1’’.         B: decrypt ymac as {yh}K [orig A] [check yh = {| yid, yna |}Hash ] 

 

2.   B    : yna, id, nb, S, {{| yna, id, nb, S |}Hash}K [dest A] [new B] [new S] 

2’.      A: xna, xid, xnb, xS, xmac [check xna = na, xid = id] 

2’’.        A: decrypt xmac as {xh}K [orig B] [xh = {| na, id, xnb, xS |}Hash ] 

 

3.   A     : na, nb, id, T, {{| na, nb, id, T |}Hash}K [dest B] [new T] 

3’.      B:  yna, ynb, yid, yT, ymac [check yna = na, ynb = nb, yid = id] 

3’’.         B: decrypt ymac as {yh}K [orig A] [check yh = {| na, nb, id, yT |}Hash ] 
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Table 3.7: PKMv2 LySa Model 

(υ K ) (υ  id) ( 

 ! (υ  na) <id, na, {{| id, na |}Hash}K [ at a1 dest {b1}]>. 

 (na, id; xnb, xS, xmac). 

 decrypt xmac as { {| na, id, xnb, xS |}Hash;} K [ at a2 orig {b2}] in 

 (υ  T) <na, nb, id, T, {{| na, nb, id, T |}Hash}K [ at a3 dest {b3}]>.0 

 | 

 !(id; yna, ymac) 

 decrypt ymac as {{| id, yna |}Hash;}K [ at b1 orig {a1}] in 

 (υ  nb) (υ  S) < yna, id, nb, S, { {| yna, id, nb, S |}Hash}K [ at b2 dest {a2}] > 

 (na, nb, id; yT, ymac). 

 decrypt ymac as { {| na, nb, id, yT |}Hash;}K [ at b3 orig {a3}] in 0 

) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER    4 

 

Static Analysis 
 

 

 

 

 

 

Static Analysis is a formal method which enables the security analysis of 

LySa processes. The analysis is based on tracking messages 

communicated on the network along with the possible values of the 

variables in the protocol and recording the potential violations of the 

destination/origin annotations.  

A LySa process describes a set of possible operations, the analysis uses 

an over-approximation of this set, therefore the analysis could investigate 

a trace which is impossible at all. But this is needed to do a safe 

approximation because under-approximation could miss some traces. The 

over-approximation of a LySa-process is shown in Figure 4.1. 
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Figure 4.1: The over-approximation of a LySa-process 

 

The approximation of a term E is represented by a pair (, ) and called 

estimate for E. Similarly, the approximation of a process P is represented 

by a triple (, , ) and called estimate for P.  

 

4.1 Terms 

 

The estimate for terms satisfies the judgements defined by the axioms 

and rules of Table 4.1. The analysis of terms uses a global abstract 

environment in order to keep track of the potential values of variables so 

that the analysis will determine a superset of the possible canonical 

values that each tem E may evaluate to. 

 



 

 

 

 

 

45  

 

 

 

 

 

 

 

 

The abstract environment  maps the canonical variables to the set of 

canonical values that may be bound to. In the formula, V is written for 

the set of canonical terms with no free variables. The analysis of terms 

uses the abstract environment to make a judgement of the form: 

 

This shows that  ⊆ V is a safe approximation of the set of values that 

E may evaluate to in the abstract environment. 

Table 4.1: Analysis of terms,  E : . 

 
 

The rules in Table 4.1. defines that  contains all the canonical values 

associated with the components of a term. The first, third and fourth rules 

in the first line are for names, private and public keys, respectively. 

These rules say that the canonical names must be in . The second  rule 

in the first line of the table is the rule for variables and it expresses that 

the set of canonical value the canonical variable maps to from the 

environment must be a subset of : ( x ) ⊆ . 

The second line is the rule for k-ary symmetric encryption and the third 

line is the rule for k-ary asymmetric encryption. These rules express that 

each term is analyzed and all combinations of values from this analysis 



 

 

 

 

 

46  

 

 

 

 

 

 

 

 

must be in  belonging to the analysis of the overall encryption term  { 

V1,...,Vk 
0

}V

 [dest L] . V  notation tests if V is in the set . 

 

4.2 Processes 

 

In the analysis of processes we focus on which values can flow on the 

network. The abstract network environment that includes all the message 

sequences that may flow on the network is shown as: 

 

The estimate for processes satisfies the judgements defined by the 

axioms and rules of Table 4.2. The judgements for processes takes the 

form: 

 
 

Here the symbol  represents the set of error messages of the form 

(  ,  ’) which indicates that something encrypted at   was unexpectedly 

decrypted at  ’. In the end of the section 3.1 we defined the reference 

monitor and here the analysis uses the reference monitor. If the reference 

monitor aborts, the annotation leading to the abortion should be placed in 

the error component  and the execution should continue. Namely,  
contains an over-approximation of the potential origin/destination 

annotations.  
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Table 4.2: Analysis of processes, (, ) RM P : . 
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Table 4.2. defines the axioms and the rules for the analysis of the 

processes and   gives the set of values that the terms can evaluate to. 

The first line of the Table 4.2 includes the rules for inactive processes 

and restriction (the last one is for public/private keys). The second line 

includes the rules for parallel composition and replication. The rule for 

the inactive processes does not restrict the analysis result while the rules 

for parallel composition, restriction and replication ensure that the 

analysis also holds for the immediate subprocesses. 

The rule k-ary output which is for sending message on the network 

finds the sets i for each term Ei and requires that all k-tuples of values 

V1,...,Vk  taken from 1  . . .  k can flow on the network and also 

requires that (, , ) are also valid analysis estimates of process P. 

The rule input checks whether the first j terms of  E1,...,Ek have 

acceptable estimates i and  whether the first j values of any message 

V1,...,Vj ,Vj+1 ,...,Vk  in are pointwise included in i. When the check is 

successful, the remaining values  Vj+1 ,...,Vk are included in the estimates 

for the corresponding variables xj+1 ,...,xk. 

The rules for decryption have a similar pattern matching with the 

previous rule. All the terms are evaluated to their respectable estimates i 

and the first j values of the evaluation of the encrypted term { V1,...,Vk 

0
}V

 [dest L]  are checked whether they are pointwise included in i. 

The rule for symmetric decryption ensures that only the correct key can 

be used to decrypt encrypted values. The rule for asymmetric 

decryption ensures that the key used for decryption must be the opposite 

of the one used for encryption. Similar to the input rule, if the matching 

succeeds for the first j values and in addition the keys for decryption 

matches the ones used for decryption, then the remaining values Vj+1 

,...,Vk are added to the acceptable estimates for the corresponding 

variables xj+1 ,...,xk. If the encrypted term E is decrypted at an unexpected 

place (  ’  L ) or the decrypted values are encrypted at an unexpected 

place (   L’), then the error component must contain the annotations 

where the error occurred (  ,  ’)  . 
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If (, ) RM P :  , then (, , ) is a valid estimate for all the 

states passed through in an execution of  P. Also, when  =∅ in an 

estimate of the form (, ) RM P :  then the reference monitor 

cannot abort the execution of P. These are all proved in [18]. 

 

4.3 Modelling The Attacker 

 

In practice, the protocols – especially the ones in wireless networks – are 

executed in medium with malicious attackers. As mentioned in 

subsection 1.1.1 LySa processes will be analyzed in parallel with Dolev-

Yao attacker[12] which can perform operations like sending/receiving 

messages and encryption/decryption same as a legitimate principal. The 

analysis result of a process P analyzed in parallel with the attacker 

contain the least solution that satisfy the rules from the previous Section 

for the estimate (, , ) and the variable bindings for the attacker in 

addition to the variable bindings for the process P. 

We have new canonical name and variables for the attacker: all the 

canonical names of the attacker are mapped to n● and all the canonical 

variables of the attacker are mapped to z●. We also have  ● which is a 

crypto-point in the attacker, and we have the set C which is the set of 

crypto-points in the original process P in parallel with the attacker. 

Finally, there exists a public/private key-pair belonging to the attacker 

{ m , m }.The formal definition of the Dolev-Yao attacker is given in 

Table 4.3. 

A process P is of type (N f , A  , A +

Enc
) if (1) it is a closed process (it 

has no free variables, namely no variables that are never bound to a 

name), (2) its free names are in N f, (3) all the arguments used for 

sending and receiving are in A  and (4) all the arguments used for 

encryption and decryption are in A +

Enc
. 
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Table 4.3: Dolev-Yao condition.. 

 

The descriptions of the conditions given in Table 4.3 are below: 

1. The attacker can improve his knowledge by eavesdropping all 

messages sent on the network. 

2. The attacker can improve his knowledge by decrypting messages 

with the keys he already knows. Unless the intended recipient of 

the message was attacker, an error (  ,  ●) should be added to the 

error component  which means that something encrypted at   

was actually decrypted by the attacker at  ●. 

3. The attacker can construct new encryptions using the keys he 

already knows. If this message is received and decrypted by a 

principal, then an error (  ●,  ) should be added to the error 

component  which means that something encrypted at the 

attacker was decrypted by the attacker by a process P at   

4. The attacker can send messages on the network using his 

knowledge and thus forge new  communications. 

5. The attacker initially has the knowledge of the canonical name n● 

and all free names of the process P. 



 

 

 

 

 

51  

 

 

 

 

 

 

 

 

6. In addition to condition 2, if the attacker possesses the 

corresponding decryption key used for encryption, he can decrypt 

a term encrypted with asymmetric encryption. 

7. In addition to condition 3, the attacker can create an encrypted 

term using asymmetric encryption. 

8. The attacker has his own private/public key pair. 

This conditions enable the attacker to establish the attack scenarios that 

were defined in subsection 1.1.1. The soundness of Dolev-Yao condition 

is proved in [13] 

 

4.4 Analysis 

 

The flow of the analysis starts with a LySa code which contains the LySa 

model of the protocol. The LySa-tool parses the LySa code and 

transforms it into the Alternation-free Least Fixed Point (ALFP) logic 

equations which are definitely outside of the focus of this thesis. These 

equations are solved by the Succinct Solver which is a tool for solving 

constraints specified in ALFP. The Succinct Solver computes the 

minimum solution satisfying the input equations and returns a result. This 

is transformed by the LySa-tool to a readable version of the estimate (, 

, ). The LySa-tool makes use of the Succinct Solver and the Standard 

ML of  New Jersey.  The overall process is shown in Figure 4.2. 

 

 

 

 

Figure 4.2: Analysis process. 
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4.4.1 Analysis of the WMF Protocol 

 

We have defined the protocol narration of the WMF protocol in Table 1.1 

of the first chapter  and the extended narration of this protocol in Table 

3.4 of the third chapter. Here we give the LySa model for the WMF 

protocol in Table 4.4 below. 

Table 4.4: LySa model of the WMF. 

 

 

This model is coded in LySa and after the LySa tool processes the 

analysis gives an estimate where  =∅. The variable environment is 

given in Table 4.5. 
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Table 4.5: The variable environment for the WMF analysis. 

 
 

In Table 4.5,  V● denotes any value that the attacker has the knowledge 

of. The error component  =∅ ensures that no encryptions/decryptions 

occur at unexpected places. So, the last row of the table means that the 

attacker does not possess the knowledge of the Secret. But the attacker 

can send out a message of any length matching any term receiving 

values, and the names the process matches on are all free names so the 

attacker has the knowledge to create messages on the right form. 

Therefore, All variables bound to values received directly on the 

network, which means that they are not decrypted from values received 

on the network, can all be bound to anything inside the attacker V●. 

However, the attacker does not posses enough information to create 

encrypted messages to be decrypted by legitimate principals which would 

to an error in  of the form (  ●,  ), where   is any point in the LySa-

process. In the same manner, the attacker does not posses enough 

information to decrypt any of the encrypted terms from the message on 

the network by legitimate principals which would lead to an error in  of 

the form (  ,  ●).  

The analysis shows that the messages to be kept secret are not leaked to 

the attacker and the messages are originated and received by intended 

principals. But this does not verify the authenticity and confidentiality of 

the WMF protocol. Because, the LySa model in Table 4.4 describes a 
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simple scenario with one initiator A, one server S and one responder B 

which limits the attacker to act as a passive attacker. Therefore, we need 

a more flexible scenario, where a number of initiators Ii, and a number of 

responders Ij exist. The difference between the simple and the flexible 

scenarios are shown in Figure 4.3. 

 

 

 

Figure 4.3: Different WMF scenarios. 

 

In the flexible scenario, all initiators, responders and the attacker share 

keys with the server S. Therefore, the attacker is able to act as either an 

initiator or as a responder in a protocol run. The LySa model of the 

flexible WMF scenarios is described in Table 4.6. 
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Table 4.6: The Flexible WMF scenario. 

 
 

In the first rows of the model, it can be seen that initially shared keys KAi 

and KBj are restricted for the valid principals 1  i , j  n. The keys KA0 

and KB0 belonging to the attacker are not restricted, therefore KA0 and 

KB0 are threaded as free names in the analysis. 

The indexing of the principals is important. The initiating principal Ii is 

indexed from i = 1 and j = 1 since we only describe the legitimate part of 

the system. The server S is indexed from i = 0 and j = 0 so that the 

attacker can act as either a initiator or a responder in the protocol. The 

responder Ij is indexed from i = 0 and j = 1 allowing the responder to 

actually receive messages from the attacker. The indices i and j cannot be 

equal, because that would lead principals to authenticate themselves.  
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The result of the flexible WMF model is shown in Table 4.7. This result 

bears a lot of differences compared to the result of the simple model 

shown in Table 4.5. The error component  in the result is not empty, 

this means that some encryptions and decryptions have occurred at 

unexpected places. In the first line of Table  4.7, there are three types of 

pairs in the error components:  the first type includes  ● as the 

decryption point for example (A2i,j,  ●) and means that information 

encrypted at A2 in any principal initiating the protocol can be decrypted 

by the attacker. When we look at the model in Table 4.6 we see that A2 is 

the place where the Secreti,j is encrypted and therefore the pair (A2i,j,  ●) 

in the error component implies that all secrets are known by the attacker. 

This is also clearly seen in the last row of the analysis result in Table 4.7. 

Second type of pairs includes  ● as the encryption point for example (  ● 

, B2i,j) and means that the attacker can send any information in his 

knowledge V● to any responder Ij and make him believe that the 

information originated from the initiator Ii. This causes the variables that 

store such information contain values from the attacker as shown in the 

second and third rows of Table 4.7. Third type of pairs does not include 

 ● as neither the encryption nor the decryption point for example (A11,2 , 

S12,1) and means that messages encrypted in one run of the protocol can 

be decrypted in another run of the protocol. This can cause the situation 

that a secret meant for principal I1 could end up at principal Ij. Such a 

problem can be seen in the second and third lines of the analysis again. 

Table 4.7: The result of the flexible WMF analysis. 

 
 

Since the analysis is an over-approximation, the error component does 

not necessarily imply that there exist an error. In other words, the value 

in the error-component  could come from a trace that is not actually 

possible. So, we have to find actual traces leading to the errors in the 
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analysis. The trace in Table 4.8 leads to the error (A21,2,  ●).  In the line 1, 

the message intended from the initiating principal I1 to the server S which 

includes the session key K1,2 in the aim of establishing communication 

with principal I2 is eavesdropped by the attacker denoted by M. In the 

line 1’, the attacker modifies the second field of the message as if the 

principal I1 wants to engage communication with I0 which is in fact the 

attacker himself. The server gets this message and sends the message 2 

(includes the session key K1,2 but encrypted with the shared key of the 

attacker) to the intended responder of message 1 which is the attacker. So 

the attacker gets the session key, and now he (or she) is able to decrypt 

any messages sent from I1 to I2. This situation was indicated by (A21,2,  ●) 

Table 4.8: Trace of the error (A21,2,  ●). 

 

Using this session key, the attacker can cause different type of errors in 

the analysis, as shown in Table 4.9. In the first line, the attacker uses the 

session key he (or she) got in the first message, which is in fact a replay 

attack. This persuades the server that I1 has created a fresh key for 

communication with I2. In the second line, the server sends this session 

key to I2 who believes that it is shared with I1, but actually it is the 

attacker. After that the attacker is now able to impersonate I1, by sending 

false secrets to I2 as described in the line 3. This leads to the error (  ● , 

B21,2) since the secret that was believed to be encrypted by I1 and 

decrypted at B2 was in fact  encrypted at the attacker. 

Table 4.9: Trace of the error (  ● , B21,2). 

 
 

The details of the analysis of the WMF protocol is discussed in [18, 13].  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER    5 

 

Analysis of IEEE 802.16 
PKMv2 SA-TEK 3-Way 

Handshake 
 

 

 

 

 

 

As we described in the section 2.3, our approach is based on checking the 

limits of robustness in IEEE 802.16 PKMv2 by removing enhancements 

in PKMv2 one by one, and in different combinations. Thus, we can see if 

some improvements are unnecessary and the result may lead us to a 

simplified by still strong and secure protocol. Our experiments are 

accomplished using the LySa-tool which runs with our LySa code. 
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5.1 Experiments 

 

We based our model on John Mitchell’s simplified version (that was used 

in his security review together with IETF EAP Work Group) [25] of the 

IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake in section 2.4. After 

that we developed our LySa model  in section 3.2.3. 

We start with our base protocol model and try to simplify the model by 

removing components and analyzing with attacker to find flaws.  

The Experiment Logic 

We made the experiments systematically, and the road map of the 

experiment can be seen in Figure 5.1. First, we start with the base 

protocol and show that it has no flaws. After that, we have three major 

paths: Removing the Nonces, Removing the Ids and Removing both 

Nonces and Ids. The shaded nodes in the figure shows the experiments 

with violations. 

In the first path, we start by removing the outermost nonces, namely the 

nonces in the last message. We remove one nonce at a time, and both 

nonces also. Therefore, we have three experiments about the nonces in 

the last message. There is a fourth experiment in this path which includes 

removing another nonce in the second message, in addition to the ones in 

the last message. 

In the second path, we remove the key ids. We start with the key id in the 

last message. Then we remove another key id which is actually in the 

second message. 

In the last path, we join the successful experiments, in other words the 

modification of the base model where no flaws could be found. There are 

two successful experiments in the first path and one in the second, 

therefore we have two experiments in the last path. 

The results of the experiments are discussed in the section 5.3 Analysis 

Results. 
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Figure 5.1: Experiment Road Map. 

 

 

5.1.1 The PKMv2 SA-TEK 3-Way Handshake 

 

In our base model of the protocol we have three messages each of them 

consisting of at least identities, nonces  and message authentication codes 

as shown in Table 5.1. 
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Table 5.1: The base protocol narration. 

 

The LySa model for the protocol is shown in Table 5.2. First part of the 

model is the initiator, who is actually the BS in IEEE 802.16. Then 

comes the responder, who is the MS. The last part shows the attackers 

knowledge. This means that the analysis include an attacker as described 

in section 4.3. 

 Table 5.2: PKMv2 LySa Model 

 

The result of the analysis is: no violations possible. This means that the 

protocol is secure and the attacker couldn’t violate the authentication 

properties. This result is important because it ensures us that the base 

protocol, the PKMv2 SA-TEK 3-Way Handshake, is secure and this 

result is similar to Mitchell’s work [25] with model checking using 

Murphi. Now, we can make our modifications convenient with our 

experiment logic. 

 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: na, nb, id, T, MAC{ na, nb, id, T}K 



 

 

 

 

 

62  

 

 

 

 

 

 

 

 

5.1.2 Removing the Nonces 

In the first part of the experiments we will be dealing with the nonces in 

the second and the last message. The nonce na is the same nonce that was 

used in message 1 and message 2, therefore seems to be redundant. But 

we have to show it with the static analysis. The nonce nb seems to be 

convenient but we deal with it too. 

 

5.1.2.1 Removing nb in the Last Message 

We removed the nonce of B, nb, and now the protocol is as shown in 

Table 5.3. No doubt that this modification affects the MAC of the 

message three. In fact, this modification makes the na in message two 

meaningless, but we have to try and see the result. 

Table 5.3: PKMv2 without nb in message 3 

 
 

The LySa model after the modification is shown in Table 5.4. The 

changes are in the initiators last output and the responders second input. 

 

 

 

 

 

 

 

 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: na, id, T, MAC{ na, id, T}K 
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Table 5.4: LySa model of PKMv2 without nb in message 3 

 

The result of the analysis is: no violations possible. This means that the 

protocol is still secure and the attacker still couldn’t violate the 

authentication properties even though we didn’t use the nonce of 

principal B in the last message. This is an interesting result because now 

the na in message two seems to be meaningless because there is no 

response for it. MAC’s seem to save the protocol to verify the security 

properties. In addition, this is also an important result because it supports 

our assertion But we have to try the other combinations to conclude 

about the analysis. 

 

5.1.2.2 Removing na in the Last Message 

In this experiment, we removed the nonce of principal A, na, and now the 

protocol is as shown in Table 5.5. This nonce was sent to B in message-1, 

and was responded by B in message-2. Removing it from message-3 

shouldn’t affect the result, but we have to show it with LySa results. 
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Table 5.5: PKMv2 without na in message 3 

 
 

The LySa model after the modification is shown in Table 5.6. Similar to 

the previous experiment, the changes are in the initiators last output and 

the responders second input. 

Table 5.6: LySa model of PKMv2 without na in message 3 

 

The result of the analysis is: no violations possible. This means that the 

protocol is still secure and the attacker still couldn’t violate the 

authentication properties even though we didn’t use the nonce of 

principal A in the last message. Actually, this result supports our 

assertion and this is an optimized alternative to the protocol. 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: nb, id, T, MAC{ nb, id, T}K 
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5.1.2.3 Removing All the Nonces in the Last 
Message 

In the previous two experiments, we removed na and nb one by one and 

we couldn’t find any violations. In this experiment, we removed both na 

and nb in the base protocol as shown in Table 5.7. Again we did the 

necessary changes in the MAC. 

Table 5.7: PKMv2 without na and nb in message 3 

 

The LySa model after the modification is shown in Table 5.8. Similar to 

the previous experiment, the changes are in the initiators last output and 

the responders second input. 

Table 5.8: LySa model of PKMv2 without na and nb in message 3 

 

This time we find violation of authentication properties. The result is 

given as:  

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: id, T, MAC{ id, T}K 
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ψ = (a11 1, b31 1), (a31 1, b11 1), (a12 1, b32 1), (a32 1, b12 1), (a11 2, b31 2), 

(a31 2, b11 2), (a12 2, b32 2), (a32 2, b12 2) 

Sample trace for (a11 1, b31 1) can be shown as: 

1. A1  B1: id11, na11, MAC{ id11, na11}K11 

1’. A1  M(B1): id11, na11, MAC{ id11, na11}K11 

2. B1  A1: na11, id11, nb11, S11, MAC{ na11, id11, nb11, S11}K11 

3. M(A1)  B1: id11, T0, MAC{ id11, na11}K11 

 

The results show that some encrypted values are decrypted in wrong 

places and some decrypted values were actually encrypted in the wrong 

places. The crypto-points are all from legitimate principals so there can 

be a replay attack. A possible trace of this error can be summarized as: 

the attacker eavesdropped the first message and he used the encrypted 

value in the first message, which is actually the MAC of the message, 

that he couldn’t decrypt in a reply attack. In the third message, he 

replayed the MAC’s, namely he used the MAC of message one in 

messag-3.  This is a flaw so we found a level that the protocol lost its 

robustness property.  

This results show that in the implementation, the length of the fields are 

important. If somehow the lengths of the na value and the T value are the 

same, then there exists the security flaw.  

 

5.1.2.4 Removing All Nonces in the Last Message 
and nb in the Second Message 

In this experiment, we removed all the nonces of principal A from both 

second and third messages while removing the nonce of principal B from 

the third message. In fact, we wanted to go one step further, and tried to 

see if the point we stopped (which is actually the previous experiment, 

removing all the nonces in message 3) is the right point to stop. Thus we 

obtained the modified version of the protocol shown in Table 5.9. We did 

the necessary changes in the MAC fields of both message-2 and 

message-3. 
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Table 5.9: PKMv2 without na in message 3 and no nbs  

 

The LySa model after the modification is shown in Table 5.10. 

Compared to the base model, the initiator has changes in its only input 

and last output, whereas the responder has changes in its only output and 

second input. 

Table 5.10: LySa model of PKMv2 without na in message 3 and no nbs  

 
 

Again we have found violation of authentication properties. The result is 

given as:  

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, S, MAC{ na, id, S}K 

3. A  B: id, T, MAC{ id, T}K 
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ψ = (a11 1, b31 1), (a31 1, b11 1), (a12 1, b32 1), (a32 1, b12 1), (a11 2, b31 2), 

(a31 2, b11 2), (a12 2, b32 2), (a32 2, b12 2) 

This result is same as the one in the previous experiment and the 

explanation including the sample trace is in use for this one too.  

 

5.1.3 Removing the Key Ids  

In this part of the experiments we will be dealing with the ids in the 

messages. The important point is that, all the id fields in the base protocol 

are the same and sent in plaintext. 

 

5.1.3.1 Removing the key id in the Last Message 

We removed the id from the last message and modified the MAC as 

needed. The protocol is now as shown in Table 5.11. 

Table 5.11: PKMv2 without id in message 3 

 
 

The LySa model after the modification is shown in Table 5.12. The 

changes are in the initiators last output and the responders last input. 

 

 

 

 

 

 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: na, nb, T, MAC{ na, nb, T}K 
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Table 5.12: LySa model of PKMv2 without id in message 3 

 

The result of the analysis is: no violations possible. This means that the 

protocol is still secure and the attacker still couldn’t violate the 

authentication properties even though we didn’t use the key id in the last 

message.  

 

5.1.3.2 Removing the key ids in the Second and the 
Third Message 

Seeing that removing one id did not make any effect, this time we 

removed the key ids in the last two messages and modified the MACs as 

needed. The protocol is now as shown in Table 5.13. 

Table 5.13: PKMv2 without ids in message 2 and 3 

 
 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, nb, S, MAC{ na, nb, S}K 

3. A  B: na, nb, T, MAC{ na, nb, T}K 
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The LySa model after the modification is shown in Table 5.14. The 

changes are in the initiators last output and the responders last input. 

Table 5.14: LySa model of PKMv2 without ids in message 2 and 3 

 

Now we have found violation of authentication properties. The result is 

given as:  

ψ = (b21 1, b31 1), (a31 1, a21 1), (b22 1, b32 1), (a32 1, a22 1), (b21 2, b31 2), 

(a31 2, a21 2), (b22 2, b32 2), (a32 2, a22 2), (a31 0, a21 0), (a32 0, a22 0), (b20 2, 

b30 2), (b20 1, b30 1) 

We found traces for specific types of violation. Sample trace for (b21 1, 

b31 1) can be shown as: 

1. A1  B1: id11, na11, MAC{ id11, na11}K11 

2. B1  A1: na11, nb11, S11, MAC{ na11, nb11, S11}K11 

2’. B1  M(A1): na11, nb11, S11, MAC{ na11, nb11, S11}K11 

3. M(A1)  B1: na11, nb11, T0, MAC{ na11, nb11, S11}K11 
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Sample trace for (b20 1, b30 1) can be shown as: 

1. M(A0)  B1: id01, na01, MAC{ id01, na01}K01 

2. B1  M(A0): na01, nb01, S01, MAC{ na01, nb01, S01}K01 

3. M(A0)  B1: na01, nb01, T01, MAC{ na01, nb01, S01}K01 

The difference between the possible non-confidential values in this 

experiment are:  

nb01, nb02, nb10, nb20, na01, na02 

This result shows that we cannot remove both ids in the protocol.   

 

5.1.4 Removing Nonces and the Key Ids  

In this part of the experiments we will be dealing with both the key ids 

and the nonces in the messages. We will only use the successful results in 

section 5.1.2 and 5.1.3. Therefore, this part can be seen as a synthesis of 

the two previous parts. 

 

5.1.4.1 Removing the key id and nb in the Last 
Message 

We removed the id and nb from the last message and modified the MAC 

as needed. As we showed before, removing those fields one by one did 

no changes, so this time we remove them together. The protocol is now 

as shown in Table 5.15. 

Table 5.15: PKMv2 without id and nb in message 3 

 
 

The LySa model after the modification is shown in Table 5.16. The 

changes are in the initiators last output and the responders last input. 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: na, T, MAC{ na, T}K 
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Table 5.16: LySa model of PKMv2 without id and nb in message 3 

 

The result of the analysis is: no violations possible. This means that the 

protocol is still secure and the attacker still couldn’t violate the 

authentication properties even though we didn’t use the key id and nb in 

the last message. Definitely, this is a better result and better optimization. 

But now nb in the second message is useless, therefore this result is not 

practical. 

 

5.1.4.2 Removing the key id and na in the Last 
Message 

We removed the id and na from the last message and modified the MAC 

as needed. The protocol is now as shown in Table 5.17. 

Table 5.17: PKMv2 without id and na in message 3 

 

1. A  B: id, na, MAC{ id, na}K 

2. B  A: na, id, nb, S, MAC{ na, id, nb, S}K 

3. A  B: nb, T, MAC{ nb, T}K 
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The LySa model after the modification is shown in Table 5.18. The 

changes are in the initiators last output and the responders last input. 

Table 5.18: LySa model of PKMv2 without id and na in message 3 

 

The result of the analysis is: no violations possible. This means that the 

protocol is still secure and the attacker still couldn’t violate the 

authentication properties even though we didn’t use the key id in the last 

message.  

Finally, this point is the best point of optimization since it is still secure 

and also practical. Namely, this version makes use of both nonces of A 

and B (actually BS and SS), and also key ids. Now we have seen the 

limits of the protocol and removed the redundant fields. 
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5.2 Fixing the Violations  

As seen in the experiments, in some modified versions of the protocol, 

violations are seen and the problems occur in the encryption/decryption 

parts of the protocol, which are in fact the message authentication codes 

in our model. In this part, we go one step further and fix the errors and 

present secure versions of the protocols that had violations.  

We change the implementation of message authentication codes. We 

hash the messages along with the key and a sequence number. The 

sequence numbers ensure messages within a single session cannot be 

confused with one another. We model thin LySa by using a sequence of 

public values Seq1, Seq2, . . . and each message will be encrypted along 

with one of these numbers using the current session key. For example the 

i'th message transfer from principal A to principal B will be: 

 

5.2.1 Fix for Removing All the Nonces in  the Last 
Message  

Adding sequence numbers into the message authentication codes fix the 

violations in the version without nonces in message three. The LySa 

model of this version is given below. The LySa results are explained in 

section 5.2.4. 
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Table 5.19: LySa model of the fixed version of the experiment 5.1.2.3. 

 
 

5.2.2 Fix for Removing All Nonces in the Last Message 
and nb in the Second Message  

Adding sequence numbers into the message authentication codes fix the 

violations in the version without nonces in message three and nb in 

message two. The LySa model of this version is given below. The LySa 

results are explained in section 5.2.4. 
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Table 5.20: LySa model of the fixed version of the experiment 5.1.2.4. 

 

 

5.2.3 Fix for Removing the key ids in the Second and 
the Third Message  

Adding sequence numbers into the message authentication codes fix the 

violations in the version without key ids in message two and three. The 

LySa model of this version is given below. The LySa results are 

explained in section 5.2.4. 
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Table 5.21: LySa model of the fixed version of the experiment 5.1.3.2. 

 

5.2.4 LySa Results for the Fixes  

The LySa results of the fixed models for the modifications that caused 

violations are all the same: no violations possible. This means that this 

versions of the protocol are again secure. Since the problems occurred 

from the message authentication codes, changing the implementations of 

them fixed the violations. As a simple note, this was not included in our 

proposal at the beginning. Therefore, the fixes are just for showing how 

to fix a violation about message authentication codes. 

 

5.3 Analysis Results  

As seen in the experiments, we established the analysis in four steps. 

First of all, we analyzed the base model. We had successful results for 

the base model. Then we removed the nonces starting from the ones in 

the last message. The results for nonces showed us that removing neither 

the nonce of the principal A nor the principal B does not change the 
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secure standing of the protocol. But removing them both, causes 

problems especially replay attacks. After that we checked the nonces in 

the second message but removing them also caused problem so we 

stopped. We didn’t try some combinations such as removing nb in 

message since it was the first usage of it. As a third step we removed the 

key ids which were always the same in three messages and sent in 

plaintext. Removing the last id still preserved the robustness, but doing 

more with the ids caused problems. Finally we got the secure paths from 

the nonce experiments and the id experiments and merged them to get a 

combined path which is optimized but secure. Thus we found out that 

removing the id and one of the nonces in the last message does not cause 

any flow. Whereas, removing both nonces in the last message or 

removing a nonce from the second message with a missed id makes the 

protocol fail. 

As a result we may have a simplified but still strong and secure protocol 

if we make the optimizations that we found successful in our analysis. In 

addition, reducing the number of fields will also have better performance 

results since the bandwidth usage is also important in wireless networks. 

Another result of this analysis is that the lengths of the fields are also 

very important since the error components in the static analysis show that 

the same MACs can be created when the implementations take some 

field lengths the same. 

As we mentioned in the static analysis chapter, the errors in this analysis 

do not always show that the protocol has flaws, whereas the successful 

runs of the analysis are always successful. The reason of this behavior is 

the over-approximation of the analysis. Therefore, the experiments where 

we got the results with no violations show that the studied protocols are 

secure. But the experiments with violations in the result needed some 

traces to show the flaws. We found traces for the flaws to show that that 

versions of the protocol really had flaws. 

In conclusion, the results of the static analysis support our assertion that 

the PKMv2 can be improved by optimization without any loss of 

security. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER    6 

 

Conclusion 
 

 

 

 

 

 

Security is important in all types of data communications but it is an 

essential and also a tough subject in wireless networks. The IEEE 802.16 

standard which is certified as WiMAX is the strongest competitor of 3G 

and still rapidly growing. In this thesis, the latest version of the standard, 

the IEEE 802.16e-2005 is considered. This version of standard's most 

important feature is mobility but it also has significant improvements in 

security. The reason for such security improvements in this version was 

the big failure in the previous security protocol PKMv1. Similar to the 

drawbacks in IEEE 802.11b which was fixed in IEEE 802.11i, the 

drawbacks of IEEE 802.16-2004 is now fixed by IEEE 802.16e-2005.  

In this thesis, the studies are divided into four groups. First of all, the 

security sublayers of the current and former IEEE 802.16 protocols are 

studied. These studies led us to the PKM protocol which has two main 

issues: an Authentication/Authorization scheme to establish a shared 

authorization key, and a second scheme to distribute the traffic 

encryption keys. The latest version of the protocol, PKMv2, leaves the 

first issue to de facto standards which are proved to be secure such as 

RSA and EAP, therefore fixes the ambiguities in the first version. The 
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second issue was very weak in the PKMv1 and is highly strengthened by 

the PKMv2 named as PKMv2 SA-TEK 3-Way Handshake. PKMv1 had 

many missing security features, whereas PKMv2 is over-strengthened 

which does not mean that PKMv2 is the ultimate secure protocol. The 

truth is that, it has definitely degraded efficiency since it needs more 

sources and time for the security features it has. The assertion of this 

thesis is that, PKMv2 can still pursue its security with less features than it 

has. The redundancy in the PKMv2 is being questioned. 

The second part of the work is about LySa process calculus. LySa allows 

communication protocols to be specified and annotated allowing for 

validation of authentication properties. To make the static analysis of the 

IEEE 802.16 PKMv2 SA-TEK 3-Way Handshake protocol we had to 

formalize it in LySa calculus which is based on pi calculus. The next part 

of the work is the static analysis method. Static analysis is successfully 

used for automatically validating security properties of classical 

protocols. Using these three parts of work, we were able to derive a 

model of the protocol and describe it using LySa and carry out a static 

analysis of the LySa process using the static analysis tool LySa-tool.  

Last part of our work was the analysis to see the limits of robustness in 

IEEE 802.16 PKMv2. The way we do that was removing the extras and 

the improvements in PKMv2 one by one, and in different combinations. 

We wanted to see when the robustness would be lost and also if there 

were some unnecessary  improvements. Since this was an over-

strengthened protocol we could try to provide better efficiency with less 

strength. So that the result may lead us to a simplified by still strong and 

secure protocol. 

We established many experiments and took the important ones here. Our 

analysis results shows that some fields are unnecessary and does not 

affect security at all. Special combinations of those fields are also 

redundant and shown by our experiments. This results support our ideas 

about optimizing the protocol. Thus, according to our static analysis 

results based on LySa process calculus, we can say that this protocol is 

secure enough itself and will still be secure even though some 

components are removed. The limits of the robustness is measured and 

given in the analysis results. In addition, the possible flaws when this 

limits are exceeded are mentioned.  
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The  soundness of the analysis based on Lysa is proved in previous 

studies, especially in [13] and [26]. The method of the analysis is 

described in details in [20]. 

As a future work, the former parts of the PKMv2 can be modeled and 

analyzed so that  the results can be joined with the results of this thesis 

and a security analysis framework can be developed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 
 

Lysa Codes 

 

 

 

 

 

 

A.1 The PKMv2 SA-TEK 3-Way Handshake  
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for thesis   1.lysa            */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.1 The PKMv2 SA-TEK 3-Way Handshake           */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  
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      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <na_{i, j}, nb_{i, 

j}, id_{i, j}, T_{i, j}, {{|na_{i, j}, nb_{i, j}, id_{i, 

j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, 

j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 

   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (na_{i,j}, nb_{i,j}, id_{i,j}; 

yT_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|na_{i,j}, 

nb_{i,j}, id_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} 

orig {a3_{i,j}}] in 0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.2 Removing nb in the Last Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for thesis           2.1.lysa         */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.2.1 Removing nb in the Last Message         */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <na_{i, j}, id_{i, 

j}, T_{i, j}, {{|na_{i, j}, id_{i, j}, T_{i, 

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 
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   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (na_{i,j}, id_{i,j}; yT_{i,j}, 

ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|na_{i,j}, 

id_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig 

{a3_{i,j}}] in 0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.3 Removing na in the Last Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for thesis          2.2.lysa          */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.2.2 Removing na in the Last Message         */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <nb_{i, j}, id_{i, 

j}, T_{i, j}, {{|nb_{i, j}, id_{i, j}, T_{i, 

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 
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   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (nb_{i,j}, id_{i,j}; yT_{i,j}, 

ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|nb_{i,j}, 

id_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig 

{a3_{i,j}}] in 0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.4 Removing All the Nonces in the Last Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for thesis          2.3.lysa          */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.2.3 Removing All the Nonces in the Last      */ 

/*    Message               */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <id_{i, j}, T_{i, j}, 

{{|id_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest 

{b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 
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   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 

   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (id_{i,j}; yT_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in 

0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.5 Removing All nonces in the Last Message and 
nb in the Second Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for thesis            3.3.lysa       */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.2.4 Removing All Nonces in the Last Message */ 

/*              and nb in the Second Message                           

*/ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xS_{i, j}, 

xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at a2_{i, j} orig 

{b2_{i, j}}] in 

   (new T_{i, j}) <id_{i, j}, T_{i, j}, 

{{|id_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest 

{b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 
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     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 

   (new S_{i,j})<yna_{i,j}, id_{i,j}, 

S_{i,j}, {{|yna_{i,j}, id_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (id_{i,j}; yT_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in 

0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.6 Removing the key id in the Last Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for thesis            4.1a.lysa      */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.3.1 Removing the key id in the Last Message */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <na_{i, j}, nb_{i, 

j}, T_{i, j}, {{|na_{i, j}, nb_{i, j}, T_{i, 

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 
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   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (na_{i,j}, nb_{i,j}; yT_{i,j}, 

ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|na_{i,j}, 

nb_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig 

{a3_{i,j}}] in 0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.7 Removing the key ids in the Second and the 
Third Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for                 4.1b.lysa      */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.3.2 Removing the key ids in the Second     */ 

/*              and the Third Message                           

*/ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}; xnb_{i, j}, xS_{i, j}, 

xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at a2_{i, j} orig 

{b2_{i, j}}] in 

   (new T_{i, j}) <na_{i, j}, nb_{i, 

j}, T_{i, j}, {{|na_{i, j}, nb_{i, j}, T_{i, 

j}|}:Hash}:K_{i, j} [at a3_{i, j} dest {b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 
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     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 

   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, nb_{i,j}, S_{i,j}, {{|yna_{i,j}, 

nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} [at b2_{i,j} dest 

{a2_{i,j}}]>. 

   (na_{i,j}, nb_{i,j}; yT_{i,j}, 

ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|na_{i,j}, 

nb_{i,j}, yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig 

{a3_{i,j}}] in 0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.8 Removing the key id and nb in the Last Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for                 4.1c.lysa      */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.4.1 Removing the key id and nb in the       */ 

/*              Last Message                          */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <na_{i, j}, T_{i, j}, 

{{|na_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest 

{b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 
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   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 

   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (na_{i,j}; yT_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|na_{i,j}, 

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in 

0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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A.9 Removing the key id and na in the Last Message 
 

 

 

/********************************************************/ 

/*                                                      */ 

/* LySa Codes for                 4.1d.lysa      */ 

/* <01-02-2007 Ender Yuksel>           */ 

/*                                                      */ 

/*  5.1.4.2 Removing the key id and na      */ 

/*              in the Last Message                   */ 

/*                                                      */ 

/********************************************************/ 

 

 

let X subset NATURAL2 in 

 

(new_{i in X, j in X} K_{i, j}) 

(new_{i in X, j in X} id_{i, j}) 

 

let Z subset X union ZERO in( 

 

/* Principal A_{i} */ 

(|_{i in X}  

 

      /* Initiating a session with principal B_{j} */ 

      (|_{j in Z} !(new na_{i,j})  

            <id_{i, j}, na_{i,j}, {{|id_{i, j}, 

na_{i, j}|}:Hash}:K_{i, j} [at a1_{i, j} dest {b1_{i, 

j}}]>. 

   (na_{i, j}, id_{i, j}; xnb_{i, j}, 

xS_{i, j}, xmac_{i, j}). 

   decrypt xmac_{i, j} as {{|na_{i, j}, 

id_{i, j}, xnb_{i, j}, xS_{i, j}|}:Hash;}:K_{i, j} [at 

a2_{i, j} orig {b2_{i, j}}] in 

   (new T_{i, j}) <nb_{i, j}, T_{i, j}, 

{{|nb_{i, j}, T_{i, j}|}:Hash}:K_{i, j} [at a3_{i, j} dest 

{b3_{i, j}}]>.0 ) 

)       

| 

/* Principal B */ 

(|_{j in X}  

 

     /* Responding to a session from principal A_{i} */ 

     (|_{i in Z} ! (id_{i,j}; yna_{i,j}, ymac_{i,j}). 
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   decrypt ymac_{i,j} as {{|id_{i,j}, 

yna_{i,j}|}:Hash;}:K_{i,j} [at b1_{i,j} orig {a1_{i,j}}] in 

   (new nb_{i,j})(new 

S_{i,j})<yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}, 

{{|yna_{i,j}, id_{i,j}, nb_{i,j}, S_{i,j}|}:Hash}:K_{i,j} 

[at b2_{i,j} dest {a2_{i,j}}]>. 

   (nb_{i,j}; yT_{i,j}, ymac_{i,j}). 

   decrypt ymac_{i,j} as {{|nb_{i,j}, 

yT_{i,j}|}:Hash;}:K_{i,j} [at b3_{i,j} orig {a3_{i,j}}] in 

0 ) 

) 

| 

/* Credentials of illegitimate principals */ 

|_{i in X union ZERO} |_{j in ZERO} <K_{i, j}, K_{j, i}, 

id_{i, j},id_{j, i}, Hash>.0 

) 
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