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Protection of communication against network failures is becoming
increasingly important and in this paper we present the most capacity
efficient protection method possible, the complete rerouting protection
method, when requiring that all communication should be restored in
case of a single link network failure. We present a linear programming
model of the protection method and a column generation algorithm.
For 6 real world networks, the minimal restoration overbuild network
capacity is between 13% and 78%. We further study the importance of
the density of the network, derive analytical bounds and study methods
to speed up the column generation algorithm. c© 2005 Optical Society
of America
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1. Introduction

Reliability of communication networks has become of major importance in the last
decades. This has lead to a significant research in different technologies which can
make the communication networks more reliable. A communication network may
fail in a number of ways: Power outages on switches, switch software failure, switch
hardware failure, cable cuts etc. Cable cuts by e.g. entrepreneurs is one of the most
frequent types of network failures and they are difficult to prevent. This type of
network failures, called link failures, is the focus in this paper.

Whenever a link in a communication network fails, communication either has to
wait for the link to be repaired or the communication has to be rerouted through
unharmed parts of the network. Rerouting in case of link failure can usually be
performed much faster than physical recovery of the failed link, but it requires
additional capacity on the network. This extra capacity we will term the Restoration
Over Build (ROB) network capacity.

The communication networks considered in this paper are the circuit switched
high capacity backbone networks, which transports a wide variety of communication
traffic: Telephone calls, internet, etc. We consider the static case where a fixed
connection, called a circuit, of a certain bandwidth is setup between two switches
(nodes) in the network. In Figure 1 (a) a bidirectional circuit is established between
node A and node D on the link AD of communication volume 5, marked as the
dashed line. Hence there needs to be a communication capacity of 5 on link AD.
If link AD fails, see Figure 1 (b), two alternative routes marked with dotted lines,
can be used to reestablish the circuit: One using the links AB, BD and one using
the links AB, BC, CD. Both routes may also be used to collectively cover the loss
of communication. In order to be able to recover from the AD link failure, we need
at least 5 units of unused capacity on the alternative routes. If we assume that the
circuit AD is the only communication circuit, the non-failure (NF) network capacity
is 5. If the circuit is rerouted along the AB, BD path we need 5 units capacity on
both links and hence the ROB network capacity is 10. The Relative Restoration
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Over Build (RROB) network capacity is the ROB network capacity divided with
the NF network capacity, i.e. RROB = 2.0.

The routing and protection model we describe here is chosen to be as simple
as possible. The communication circuits we consider are bidirectional. We only
consider single link failures. We assume that there are no limits on the capacity of
each link and that the cost of a routing and protection plan is the sum of the cost
of the required link capacities. We assume no limits on the paths which may be
used, except that failed links cannot be used at all. We further assume that 100%
protection is required, i.e. that the full communication flow is re-established. We
assume that we can split the communication in any way necessary.

A number of different protection methods have been suggested, see Section 2 for
a brief overview of some of these. They differ in (at least) two important aspects:
The speed of the recovery and network capacity required. The speed of the recovery
depends on a number of intrinsic details in the protection method which is not the
focus of this paper, see [1] for a detailed discussion of the required recovery time.

It is important to acknowledge that a tradeoff exists: The faster the recovery, the
more capacity is required. Hence it is impossible to find one overall best rerouting
method. The best choice depends on the particular situation faced by the telecom-
munication network operator depending on e.g. the maximally allowed rerouting
time, the technology available for the switches etc.

The fastest protection method is 1+1 (APS) protection [2], where the signal
is sent over two physically disjoint paths from start to end of the network. This
means that any single link failure can be recovered in the destination node, because
if the signal disappears, the destination node can simply use the signal from the
other path. Unfortunately 1+1 protection requires RROB network capacity to be
significantly more than 1.0. 1+1 protection is one of the two most widely used
protection methods for circuit switched networks, the other is ring protection.

In this paper we present a new protection method: Complete Rerouting (CR).
This is the most capacity efficient protection method for circuit switched networks
and it is, to the best of our knowledge, the first time it has been described, though we
have cited it in [3]. The required capacity depends both on the protection method
and on the efficiency of the planning method used when planning routing and
protection. In this article we will both present a Linear Programming (LP) model
and a column generation optimization algorithm to solve the developed model.

In the remainder of this paper we will in Section 2 give a brief description of
some of the developed protection methods for circuit switched network protection.
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In Section 3 the LP model and the column generation algorithm is described. The
results when applying the column generation algorithm to 6 real world network is
given in Section 4. Finally we will attempt a conclusion in Section 5

2. Previous Work

Because of the importance of reliable communication networks, a lot of research
has been performed. It is beyond the scope of this paper to thoroughly present all
the different protection methods and we refer to [2] for a comprehensive and recent
survey of the field.

In general the protection methods can be classified according to the structure
they protect:

• Span protection, i.e. all circuits using the failed link are rerouted between the
end nodes of the failed link [2, 4]

• Path restoration, i.e. the paths which fail are individually protected through
re-routing. Examples are: Global [5], 1+1 (APS) protection [2], Shared
Backup Path Protection [2].

• Ring protection and p-cycle protection, all the links are part of an overlaid
structure, a ring or a p-cycle. Ring protection [2, 3, 6]. p-cycle protection [2,
3, 7]

The above classification is quite broad and many variations exists for each pro-
tection method.

3. The Complete Rerouting Protection Model

All of the protection methods described in Section 2 make one crucial assumption:
Only circuits which fails are rerouted. While this is a natural and logical assumption,
it limits the possibilities when planning the protection. When performing complete
rerouting protection, all the circuits can be rerouted in case of a link failure. This
means that for each possible link failure, a complete routing plan is established.
These plans are optimized in order to minimize the cost of the required link capac-
ities in the network.

3.A. The Complete Rerouting Protection Linear Program

Consider a network consisting of a set of nodes V indexed by i, j, k, l, q, r and a set
of links L. The links are indexed by unordered end-node pairs, ij ∈ L : i, j ∈ V . The
cost per capacity unit of each link is given by the constants cij ∈ R+. Furthermore,
a set of circuits demands D, indexed by unordered node pairs, kl ∈ D : k, l ∈ V
are defined. The constant dkl ∈ N0 is the number of circuit demanded between
nodes k and l. The failure situations, one for each link in the network, are indexed
by unordered node pairs, qr ∈ L : q, r ∈ V . For each demand kl and each failure
situation qr a set of paths P kl,qr is defined and the constant PATHkl,qr

p,ij ∈ {0, 1}
has the value 1 if path p for demand kl in failure situation qr use link ij and 0
otherwise. The flow on each path p for each demand kl in each failure situation qr
is defined by a variable xkl,qr

p ∈ R+. The necessary capacity for each link is defined
by the variable yij ∈ R+. We can now formulate the CompleteRerouting LP model,
given a set of allowable paths P kl,qr to use:
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Complete-Rerouting(P kl,qr)

minimize:
∑
ij

cij · yij (1)

subject to:
∑

p∈P kl,qr

xkl,qr
p ≥ dkl ∀ kl ∈ D, qr ∈ L (2)

yij −
∑
kl

∑
p∈P kl,qr

PATHkl,qr
p,ij · xkl,qr

p ≥ 0 ∀ ij, qr ∈ L, ij 6= qr (3)

xkl,qr
p , yij ∈ R+ (4)

Equation (1) calculates the cost of the required capacities in the network. Equa-
tion (2) ensures that each demand is satisfied in each failure situation. Equation (3)
ensures that for each failure situation there is enough capacity on each link. Equa-
tion (4) defines the domains of the variables xkl,qr

p and yij .

3.B. Sub Problem

The LP model described in Section 3.A can be solved by any standard LP solver,
but the number of paths can be huge, depending on the size and the density of the
network. Instead a column generation algorithm is applied to solve the problem.
For each iteration in the column generation algorithm, the LP model is solved using
a subset P kl,qr

∗ ⊆ P kl,qr of the paths. Using the dual variables αkl
qr ≥ 0 (from

equation (2)) and the dual variables βqr
ij ≥ 0 (from equation (3)), we can for each

demand kl and each failed link qr calculate the reduced cost of the best backup
path, see equation (5). The best path for demand kl when link qr has failed is given
by the binary vector akl,qr

ij ∈ {0, 1}.

ckl,qr
reduced =

∑
ij

βqr
ij akl,qr

ij − αkl
qr (5)

Given that the dual variables βqr
ij are positive, the shortest path can be found

using the Floyd-Warshall algorithm [8] for each failure situation qr. The Floyd-
Warshall algorithm is an O(N3) algorithm, which has to be applied, for each failure
situation qr. This leads to a worst case solution time of each subproblem of O(N5)
or, as most telecommunication networks are rather sparse, O(N3 · L).

3.C. The Column Generation Algorithm

The column generation algorithm is given in Figure 1. First one dummy column is
generated for each demand kl in each failure situation qr and included into the set of
current paths P kl,qr

∗ . The dummy columns are given artificially high costs to ensure
that they will never be used in the final solution. Then the main loop is entered.
The reduced master problem is solved given the current set of paths P kl,qr

∗ . Then
new paths are generated, by executing the Floyd-Warshall algorithm for each failure
situation qr, using as link costs the dual βqr

ij variables. The failed link can either
be assigned an artificially high cost or be ignored by the Floyd-Warshall algorithm.
All the paths with negative reduced costs, calculated by equation (5) are added to
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1: Initialize P kl,qr
∗

2: repeat
3: SOLVE CompleteRerouting(P kl,qr

∗ )
4: repeat
5: xkl,qr

ij =Floyd-Warshall(βqr
ij )

6: Add path xkl,qr
ij to P kl,qr

∗ if ckl,qr
reduced < 0

7: until all failure situations qr covered
8: until No improving paths found

Fig. 1. Column Generation algorithm

the set P kl,qr
∗ . At the end of the main loop it is checked if any new paths have been

added to P kl,qr
∗ , if not, the algorithm terminates.

The CR column generation algorithm will most often give fractional solutions.
Most circuit switched connection methods will require that certain sizes of connec-
tions cannot be split, i.e. be bifurcated. Furthermore link capacities may be modular,
i.e. link capacities can only be acquired in certain sizes. The same may be required
of the protection methods. On the other hand these requirements are often posed
by the technical equipment which may later be improved. Hence to evaluate the
protection methods, it is beneficial to disregard current technical limitations. If we,
on the other hand, we required some kind of integer solution on the CR protection
method we loose the lower bound guarantee. Since we do not anticipate the CR will
become an actual applied protection method, we are more interested in the lower
bounding abilities and hence prefer the fractional solution.

A more important issue regarding the CR column generation algorithm is its
runnning time. We want to be able to calculate protection lower bounds for networks
of a realistic size. These issues are dealt with in Section 4.B.

4. Results

In this Section the complete rerouting protection method is tested by applying
the column generation method to 6 real world networks. In order to enhance the
analysis in Section 4.A we simplify optimization setup. The cost of the links is set
to 1 (cij = 1) and the demand is set to 1 (dkl = 1) for each un-ordered node pair,
except for the France 2 [9] network.

In Table 4, a number of details for each of the networks are specified. The table
contain seven columns. First the name of the network, then the number of nodes
and the number of links in the network and then the average node degree. The
fifth column contains the Non-Failure network capacity. The sixth column contains
the ROB network capacity for the Complete Rerouting protection method. Finally
column seven contains the RROB network capacity.

The most interesting results in this paper are contained in the last column in
Table 4. The interesting fact is the RROB network capacity, i.e. the protection
lower bound is significant and for three of the six networks 0.50 or larger. This
bound enables us to give a better evaluation of different protection methods.

4.A. Protection bound and sparcity

The networks tested in Section 4 all have an average node degree between 3.21
to 4.73, i.e. they are rather sparse networks. This is very often the situation in
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Table 1. The tested networks
Nodes Links Avg. Node NF CR

Degree Capacity ROB RROB
Cost239 [10] 11 26 4.73 86 11.6 0.13
Europe 13 21 3.23 158 90.0 0.57
USA [9] 28 45 3.21 1273 641.2 0.50
Italy [11] 33 68 4.12 1718 581.4 0.34
France [9] 43 71 3.3 3473 1604 0.46
France 2 [9] 43 71 3.3 4043 3156.3 0.78

telecommunication networks, because of the high fixed charges required for creat-
ing new connections in the network. An interesting question is what the connection
is between the sparseness of a network and the network protection capacity lower
bound, i.e. sparcity, ROB, and RROB. To test this for a wider range of network
densities, we choose the most dense network, Cost239. For this network we start
with the smallest subset of links which guarantees protection, a ring. Then the links
are randomly added until the original Cost239 network has been constructed. Af-
terwards, new links are randomly added until the fully connected network has been
created. In this way we will test the importance of the network density with respect
to the complete protection lower bound. Furthermore, we are able, to analytically
calculate the optimal NF network capacity and CR network capacity for the two
bounding cases the ring and the fully connected network, see Table 4.A. A brief
description of these equations are given in Section 4.A.1 to Section 4.A.4 below.
Notice that the equations for NF network capacity for the ring network and the
CR network capacity for the ring network only holds for networks with an uneven
number of nodes.

Table 2. Formulas for calculating network capacity for NF and CR for
ring networks and fully connected networks

Network Type NF CR ROBB
Ring (N+1)·N ·(N−1)

8
(N+1)·N ·(N−1)

4 2 − 1
Full Network N ·(N−1)

2
N ·(N−1)

2 · N−1
N−2

N−1
N−2 − 1

4.A.1. NF network capacity:Full Network

Shortest path routing in the fully connected network is simple: Use a capacity of 1
unit on each link. Each link corresponds to exactly a demand of 1 unit because we
are considering unordered demand pairs. Hence the total capacity corresponds to
the number of un-oriented links in the network, see equation (6).

NFfull =
N · (N − 1)

2
(6)

4.A.2. NF network capacity:Ring Network

We will consider the case where we have a ring (network) with an un-even number
of nodes N . Furthermore we will consider the case where there is a demand of 1
unit for each ordered pair of nodes. For each node in the ring, shortest path routing
is performed to the N−1

2 nearest nodes on each side. We will have to use a capacity
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of 1 to the nearest, 2 to the next nearest and so forth. In order to adjust to the
un-ordered case we finally divide by 2, see equation (7).

NFring = 2 ·



N−1
2∑
i

i


 · N · 1

2

=
N−1

2 · (N−1
2 + 1)

2
· N

=
(N + 1) · N · (N − 1)

8
(7)

4.A.3. CR network capacity:Full Network

In the case of a full network, we first route the traffic as in the NF case and hence
need a capacity of one on each link. Only one demand use each link hence only
this demand needs to be re-routed in case the links fails. the one unit is then split
among all paths of length 2. There are N − 2 of these. Hence an additional ROB
on each link of 1

N−2 is added. This leads to a CRfull as given in equation (8).

CRfull =
N · (N − 1)

2
+

N · (N − 1)
2

· 1
N − 2

=
N · (N − 1)

2
· N − 1
N − 2

(8)

4.A.4. CR network capacity:Ring Network

We will consider the case where we have a ring with an un-even number of nodes
N and hence N links. Again we will consider the situation of ordered demands.
Because we only consider single link failures, we hence have N failure situations,
where all the communication should be routed on the N − 1 remaining links which
form a line. The maximal capacity of any of the remaining links are required on
the two middle links. Since all links will become middle links of the line, in case of
two specific failures, the maximal capacity is required for all links in the ring, see
equation (9).

CRring = 2 · (N − 1)
2

· (N + 1)
2

· N

2
(9)

4.A.5. Numerical simulations

Based on the Cost239 network we generated 30 different datasets. Each dataset
contains 46 different networks with between 11 links, a ring, and 55 links, the fully
connected network. The first 15 networks only consists of links from the original
Cost239 network and the remaining networks consists of the Cost239 network with
extra randomly chosen links. In Figure 2 the average NF network capacity and the
average CR network Capacity for the networks is shown. The dotted lines are the
lower bound (full network) and upper bound (ring network) for the NF network
capacity and the dashed horizontal lines correspondingly are the lower and upper
bounds for the CR protection method. The bounds are calculated according to
equation (6), equation (7), equation (8) and equation (9). It can be seen that the
analytic bounds holds for the ring network and the full network for both the NF
network capacity and the CR network capacity. There are error bars corresponding
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to the standard deviation for both the NF network capacity and the CR network
capacity. It can be seen that the error bars for the CR network capacity are quite
significant for the more sparse networks, but they are reduced as the network density
increases.

In Figure 3 the RROB network capacity for the CR protection method is shown
together with error bars corresponding to the standard deviation for the ROBB
network capacity. Furthermore, the ROBB network capacity for the 6 networks in
Table 4 is shown in the graph and the RROB network capacity from Table 4.A is
shown as the dashed lines. The predicted RROB network capacity holds for the ring
network and for the full network, but as it can be seen the ROBB network capacity
of the intermediate networks do not stay between the dashed lines. The graph for
the RROB network capacity for the Cost239 network derived networks suggests
that capacity savings can be achieved by expanding the networks with links up to
an average node degree of 5. More experimentation is though needed to confirm this
hypothesis. Furthermore, this may be different for other protection methods.
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4.B. Computational Issues

The experiments were performed on a 1000 MHz SUN Fire 3800 machine. Despite
solving the Complete Rerouting problem using a column generation algorithm, the
solution times for the larger and more dense networks is significant, see Table 4.B.
The first column in Table 4.B contains the network name and the second column the
number of rows in the LP program. The third column contains the initial number
of rows, the fourth column the generated number of rows and the fifth column
the total number of rows. Column six and seven contains the number of iterations
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and the number of seconds required respectively. Finally column eight contains the
percentage of the computation time required for (re-)solving the master problem.

Table 3. Problem size and solution size
Columns

Rows Initial Generated Total Iterations Sec. resolve %
Cost239 2106 1456 2831 4287 24 17.1 93.5 %
Europe 2079 1659 2253 3912 44 3.8 56.1 %
USA 19035 17055 33145 50200 65 1062.5 90.1 %
Italy 40528 35972 105119 141091 86 104577.7 99.5 %
France 69154 64184 156831 221015 47 68968.0 98.6 %
France 2 69154 64184 76090 140274 130 22386.0 92.1 %

As can be seen from Table 4.B the running times are significant. The majority
of the computation time is required for resolving the master problem, as can be
seen from column eight in Table 4.B. This is quite surprising because we are using
state of the art solvers, CPLEX 9.0 [12], and only resolving for each iteration, i.e.
warmstarting from the previous solution. Since the main computational problem is
solving the master problem, we have not considered faster algorithms for solving the
subproblem, but concentrated on improving the solve time of the master problem.

We have tried three different approaches to reduce the computation time of the
master problem: Reducing the number of columns by pricing out these, see Sec-
tion 4.B.2, reducing the number of iterations performed by applying stabilization,
see Section 4.B.2 and calculating non-optimal bounds, see Section 4.B.3.

4.B.1. Column Reduction

Reducing the number of columns in the master problem could possibly improve the
solution time because only a fraction of the generated columns are actually used
in the end. The columns accepted into the problem all have negative reduced costs
according to equation (5), but the dual variables βqr

ij and αkl
qr changes during the

iterations and hence columns which have at one iteration been included into the
set P kl,qr

∗ may not have negative reduced costs in later iterations. Hence a test is
added to the algorithm which test if already included columns have a reduced cost
above a certain (positive) threshold, if yes they are excluded. This did however not
improve solution time.

4.B.2. Stabilization

Stabilization of column generation algorithms is a well known technique [13, 14]
which reduce the fluctuations in the dual variables (βqr

ij and αkl
qr) by either adding

slack variables that are penalized or by adding bounds on the variables in the dual
master problem. This was tested but it did not improve solution time. The reason is
probably that the dual variables are not fluctuating wildly. To test this hypothesis,
first the optimal values of the dual variables βqr∗

ij and αkl∗
qr were calculated. Then

the column generation algorithm was re-run and the normalized Euclidean distance
between the current dual variables (βqr

ij and αkl
qr) and the optimal dual variables

(βqr∗
ij and αkl∗

qr ) was calculated, see equation (10).

Euc = [
∑
ij,qr

(βqr
ij − βqr∗

ij )2 +
∑
ij,kl

(αkl
qr − αkl∗

qr )2]1/2/[|L|2 + |D| · |L|] (10)
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For each iteration of the algorithm, the normalized Euclidean distance is cal-
culated and plotted for the USA network in Figure 4.B.2. The curvature of the
graphs which should indicate fluctuations in the dual variables is a slowly decay-
ing Euclidean distance for most of the iterations followed by a steep decent in the
end [15]. Judging from the graph in Figure 4.B.2, this could is not the case for the
USA network, which is typical for the large networks where the running times are
significant.
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Fig. 4. Euclidean distance between optimal dual variables and current dual vari-
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4.B.3. Non-optimal bounding

Because the objective in this paper is not finding actual protection schemes, but
rather lower bounds, we can instead settle for getting the best possible lower bound
within a given time limit. This is possible because we can, during the execution
of the column generation algorithm, calculate guaranteed lower bounds according
to equation (11). Because of the demand constraints (2), the greatest improvement
which can be achieved for each iteration is to set all the new variables, one for each
demand kl in each failure situation qr to 1. This (negative) value is now added to the
current CR value achieving the bound. We illustrate the benefit of this bound for the
USA network in Figure 5 where the ROBB network capacity and its lower bound is
shown. It can be seen that whereas the ROBB network capacity is non-increasing,
the lower bound is not non-decreasing.

CRbound = CRcurrent +
∑
qr,kl

min(0, ckl,qr
reduced) (11)

In Table 4.B.3 we have compare the precision, i.e. the number of digits of the
RROB network capacity upon which the lower and the upper bound agree, with
the computation time required. The first column in Table 4.B.3 is the name of
the test network. The two next columns gives the time in seconds it takes for the
bounds to agree on the first digit and the percentage of the total computation time
it takes. Column four and five contain the same information for the second digit
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and column six and seven the same information for full precision, which in this
case corresponds to five digits. As it can be seen, just calculating the first digit of
precision requires a significant time and only for the France 2 there are significant
time savings to achieve. The missing data, e.g. 1 digit for USA simply means that
the column generation algorithm found solutions agreeing on the first and second
digit at the same time.

Table 4. Precision vs. time
1 2 ∞

Sec. % Sec. % Sec. %
Cost239 13.1 75.7 17.3 100.0 17.3 100.0
Europe 2.6 66.7 - - 3.9 100.0
USA - - 1253.3 99.1 1265.0 100.0
Italy 57845.2 54.7 101734.4 96.1 105825.2 100.0
France 70824.8 89.1 - - 79482.5 100.0
France 2 1487.6 8.2 - - 18154.4 100.0

5. Conclusion

In this paper we have presented Complete Rerouting protection method, which
is the most capacity efficient protection method for 100% protection against link
failures, i.e. it finds the lowest restoration over build network capacity.

We have presented an LP model for the complete rerouting protection method
and also presented a column generation algorithm which can be used to find optimal
solutions. This algorithm we then test on 6 real world networks with up to 43 nodes
and 71 links. The found bounds can now be used as lower bounds when testing
other protection methods. We have furthermore presented analytical bounds on
the bounding cases of the ring network and the fully connected network. We have
also demonstrated how lower bounds can be found based on the column generation
algorithm, even though this algorithm is terminated before completion.

The complete rerouting method will most likely never be used for protection in
networks because communication which is unharmed by a particular link failure will
also have to be rerouted. For this to be acceptable, the capacity costs would have to
be huge. The primary use of the Complete Rerouting method is for calculating lower
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bounds for protection of different networks. This is highly useful when evaluating
different rerouting methods and we intend to demonstrate this in our future research.
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