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Abstract. This paper presents a general approach for surface-to-surface
registration (S2SR) with the Euclidian metric using signed distance maps.
In addition, the method is symmetric such that the registration of a shape
A to a shape B is identical to the registration of the shape B to the shape
A.
The S2SR problem can be approximated by the image registration (IR)
problem of the signed distance maps (SDMs) of the surfaces confined to
some narrow band. By shrinking the narrow bands around the zero level
sets the solution to the IR problem converges towards the S2SR problem.
It is our hypothesis that this approach is more robust and less prone to
fall into local minima than ordinary surface-to-surface registration. The
IR problem is solved using the inverse compositional algorithm.
In the paper a set of 40 pelvic bones of Duroc pigs are registered to
each other with respect to the Euclidean transformation with both the
S2SR approach and iterative closest point approach. The results of the
two registration methods are compared both visually and with quality
measures.

1 Introduction

This paper addresses the problem of shape registration or alignment which plays
an essential role in shape analysis. Many registration proceduces such generalized
Procrustes analysis [7, 3] rely on a prior manual annotation of landmarks. The
main drawback with these approaches is the reliance on manual annotation which
becomes cumbersome and infeasible for larger 2D datasets and for 3D data.
The iterative closest point (ICP) algorithm by Besl et al. [2] solves the problem
of landmark dependence by iteratively updating the point correspondence after
the closest point criterium. Since the introduction in 1992 numerous extension
and improvements of original ICP has proposed in literature [5, 8, 6]. Most of
these methods still require a good initial estimate in order not to converge to a
local minimum. Furthermore, common for these methods are that they do not
utilize the knowledge of the connectedness of the point cloud, which is available
in many cases.
The approach described in this paper is in many ways related to the approach
presented by Darkner et al. [4], which aligns two point clouds by minimizing the
squared difference between the distance functions of the point clouds in some
rectangular box domain. Our approach differentiatea itself from the approach



presented in [4], as it uses signed distance maps and minimizes the squared
difference between the signed distance maps restricted to a shrinking narrow
band.

2 Theory

The registration of a surface Sx to a surface Sy w.r.t the Euclidian metric can
be expressed as the minimization of the functional

F1(p) =

∮

Sx

d(W (x;p),Sy)2dx, (1)

where W ( ;p) is the warp function.
A minor flaw with this approach is that registration of Sx to Sy is not necessarily
equivalent to the registration Sy to Sx. If W ( ;p) is invertible (1) can be extended
to

F2(p) =

∮

Sx

d(W (x;p),Sy)2dx +

∮

Sy

d(W (y;p)−1,Sx)2dy

=

∮

Sx

d,Sy
(W (x;p))2dx +

∮

Sy

dSx
(W (y;p)−1)2dy, (2)

where dSx
and dSy

are the distance map functions of the surfaces Sx and Sy.
This energy functional ensures a symmetric registration.
A minimum of (2) can be obtained by any gradient or Newton based optimization
scheme. However, such schemes may very well get stuck in a local minimum
instead of the global minimum. To overcome this problem we introduce a slightly
different energy functional

F3 =

∫

Ur
x

(Φy(W (x;p))− Φx(x))2dx +

∫

Ur
y

(Φx(W (y;p)−1)− Φy(y))2dy, (3)

where Φx(x) and Φy(y) are the SDM functions of the surfaces Sx and Sy, and
Ur

x = {x | x ∈ R
d, |Φ(x)| < r}. And we note that

F3 → F2 for r → 0. (4)

Now, consider the shape in Figure 1 consisting of two identical rectangles.
If we translate the shape in both the x and the y direction between -25 and 25
pixels and calculate the energy in each position using (2) and (3) with r = 25
pixels we get energy landscapes shown in Figure 2. In this case, the (2) cost
function produces three minima while the (3) cost function produces only the
global minimum.

Unfortunately, SDM’s are in principal only defined for closed curves and
surfaces. In the Experiment section of this paper, we will however demonstrate
how one can define a kind of pseudo SDM for open curves and surfaces.



Fig. 1. A simple shape.
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(a) F2 cost functional.
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(b) F3 cost functional.

Fig. 2. Cost as a function of translation in x and y direction.



3 Method

The energy functional defined in (3) can be viewed as a image registration prob-
lem between two SDM’s Φx and Φy, where the points to be warped are those
inside the narrow bands Ur

x and Ur
y . The problem is solved using an extended

version of the inverse compositional algorithm presented by Baker et al [1]. To
preserve the same notation as in [1], we assume that Φx and Φy are discretized
signed distance functions. Thus, (3) becomes

F4 =
∑

x∈Ur
x

(Φy(W (x;p))− Φx(x))2 +
∑

y∈Ur
y

(Φx(W (y;p)−1)− Φy(y))2. (5)

If the set of warps forms a group the minimization of (5) is equivalent to the
minimization of

F5 =
∑

x∈Ur
x

(Φy(W (x;p))− Φx(W (x;∆p)))2

+
∑

y∈Ur
y

(Φx(W (y;p)−1)− Φy(W (y;∆p)−1))2. (6)

with the update rule W (x;p) ← W (x;p) ◦W (x;∆p)−1. By applying the first
order Taylor expansion to (6) we get

F5 ≈
∑

x∈Ur
x

(

Φy(W (x;p))− Φx(W (x;0))−∇Φx

∂W

∂p
∆p

)2

+
∑

y∈Ur
y

(

Φx(W (y;p)−1)− Φy(W (y;0)−1)−∇Φy

∂W−1

∂p
∆p

)2

. (7)

By taking the derivatives of (7) w.r.t ∆p and setting them equal to zero we get
the update equation

∆p = −H−1





∑

x∈Ur
x

S⊤x (Φy(W (x;p))− Φx(x)) +
∑

y∈Ur
y

S⊤y (Φx(W (y;p)−1)− Φy(y))



 ,

(8)

where Sx = ∇Φx
∂W
∂p

, Sy = ∇Φy
∂W−1

∂p
and H = S⊤x Sx + S⊤y Sy.

A S2SR can be obtained with Algorithm 1.
We suggest you use the following scheme for selecting an appropriate sequence

of ri’s:

ri+1 =
ri

2
. (9)

It is however more tricky to choose the best r0. So far, we have not been able to
find a bullet proof way of choosing an appropriate initial narrow band. Essen-
tially, it has to be large enough!



Algorithm 1 S2SR

1: r = [r1 . . . rn]; { ri > ri+1}
2: for each ri ∈ r do

3: k = 0;
4: repeat

5: update p using (8) with Uri
x and Uri

y ;
6: k = k + 1;
7: until convergence or k > kmax

8: end for

4 Experiments

Two experiments were conducted to test the surface registration approach ; (i)
a toy example where the outline of the right and left hand of one of the authors
were registered to each other, and (ii) a real example where 40 pelvic bones of
Duroc pigs are registered with the ICP algorithm by Fitzgibbon [5] and with
our S2SR algorithm.

4.1 Hand example

To test the robustness of the S2SR algorithm a left and a right and hand were
traced on a piece of paper and scanned into a computer. The left hand was
flipped horizontally, displaced 100 pixels in the x-direction and -25 pixels in
the y-direction, and rotated 5 degrees counter clockwise. Figure 3 shows the
initial position of the hands, the final position with regular S2SR3 and last the
final position with our S2SR algorithm with the narrow bands r = 30, 15, 1.
Evidently, the regular S2SR approach gets stuck in a local minimum or saddle
point, while the shrinking narrow band S2SR approach registers the left and
right hand perfectly.

(a) Initial position. (b) Final position for S2SR
with narrow band r=1.

(c) Final position for S2SR
with narrow bands 30, 15,
1.

Fig. 3. Rigid registration of left (green) and right hand (red).

3 Simulated with the small narrow band r=1.



4.2 Pelvic bones

Half pig skeletons were automatic extracted from CT scans of half pig carcasses
and fitted with implicit surfaces. From the implicit surfaces triangle meshes were
created, and the pelvic bones were manually removed from the triangulated
skeletons. An example of a pelvic bone can be found in Figure 4. One problem
with the triangulated pelvic bones is that they are open surfaces, and thus cannot
be converted to SDM’s. As a work around the triangle meshes were closed by
triangulating the open parts and then converted to discretized SDM’s. Hereafter,
all voxels in the discretized SDM’s with distances to the added faces were set to
an undefined value. Consequently, under the registration voxels from one SDM
may be warped to an undefined area of the other SDM. In such cases, the distance
in the undefined area is assumed to be 0. This hack is actually reasonable as it
gives a bit of slack around the open areas of a surface. In many cases a surface
is only open as it has been chosen to disregard part of the shape - cutting away
part of a shape in the exact same place is impossible.

Fig. 4. Example of a pelvic bone from a Duroc pig.

From the set of pelvic bone shapes a shape was selected randomly to be the
reference, and the remaining shapes were registered to the reference shape with
ICP and our level set based S2SR algorithm with r = 20mm, 10mm, 5mm, 1mm.
To compare the two registration approaches we use the mean squared error
(MSE) and the maximum error (ME). As ICP minimizes the point-to-closest-
point (CP) distance and our algorithm minimizes the surface-to-surface distance4

we evaluate the performance of registration algorithms using both distance con-
cepts. Furthermore, as our registration algorithm does symmetric minimization
of the squared distances and ICP does not, the MSE and the ME are calculated
in the same direction as the ICP registration, in the other direction and both

4 The distances are found by interpolating the SDMs. To ensure fairness, when eval-
uating the MSE and ME, points, which are warped to an undefined area of a SDM,
are ignored instead of receiving the distance 0.



directions combined. The results of the registration are shown in Table 1. As no
surprise, the ICP registration has a lower MSE and ME in the same direction as
the registration, when we are using the CP distance. It is neither a surprise that
our S2SR algorithm has lower MSEs and MEs in the opposite direction of the
ICP registration and in both directions. It is however a bit of a surprise, that
our S2SR algorithm has a smaller MSE than ICP when using SDMs to extract
distances. A possible reason for this result is that our algorithm allows for a bit
of slack around the open regions of the surface, and is therefore better at fitting
the remaining regions of the surface. Figure 5 illustrates this by color-coding the
surface of a pelvic with the shortest distance.

Method ICP (A→ B) S2SR (A↔ B)
Direction A→ B A← B A↔ B A→ B A← B A↔ B

Measure
√

MSE ME
√

MSE ME
√

MSE ME
√

MSE ME
√

MSE ME
√

MSE ME

SDM 11.92 20.13 12.70 27.04 12.34 27.24 11.69 24.11 12.18 24.03 11.90 26.28
CP 12.32 20.85 14.40 29.41 13.44 29.48 12.77 25.70 13.11 26.34 12.95 28.30

Table 1. The MSE and ME averaged over the 39 registrations (in mm) after registra-
tion.

Fig. 5. Distance color-coded surfaces after registration. Black areas are areas where
the distance could not be interpolated in the SDM because the point is situated in a
undefined area.



5 Conclusion

This paper presented a method for S2SR. The registration algorithm was tested
on two examples, where its properties were highlighted; (i) it is less prone to fall
into local minima than ordinary S2SR, (ii) and it does symmetric registration. As
the method relies on SDMs it only works in theory on closed curves and surfaces.
Nevertheless, this paper demonstrated that it can work on open surfaces by
introducing a pseudo SDM, where distances are not defined in regions close to
the open areas of the surface. In the future, we will use non-rigid transformation
with the registration approach.
With regards to computation time, it can be mentioned that it took a little less
than 50 minutes to run 39 pelvic bone registrations on a standard Dell laptop
with a 1.6Ghz Centrino CPU and 2Gb ram.
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