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Summary

The Performance Evaluation Process Algebra, PEPA, is introduced by Jane
Hillston as a stochastic process algebra for modelling distributed systems and
especially suitable for performance evaluation. A range of tools has already
been developed that apply this algebra to various application areas for different
purposes.

In this thesis, we present a static analysis more precisely approximating the
control structure of processes expressed in PEPA. The analysis technique we
adopted is Data Flow Analysis which is often associated with the efficient im-
plementation of classical imperative programming languages. We begin the
analysis by defining an appropriate transfer function, then with the classical
worklist algorithm we construct a finite automaton that captures all possible
interactions among processes. With the help of the novel methodology of anno-
tating label and layer to the PEPA program, the approximating result is very
precise.

Later we try to accelerate the analysis by two approaches, and develop algo-
rithms for validating the deadlock property of the PEPA program. In addition,
the thesis comes out with a tool that fully implements the analyses and it could
be used to verify the deadlock property of the PEPA programs in a certain scale.

Keywords: PEPA, Date Flow Analysis, Control Structure, Finite Automaton,
Deadlock, Static Analysis, Stochastic Process Algebra.
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Chapter 1

Introduction

In computer science, the process calculi (or process algebras) are a diverse
family of related approaches to formally modelling concurrent systems. They
provide a tool for the high-level description of interactions, communications,
and synchronizations between a collection of independent processes [35]. The
most famous ones include: Communicating Sequential Processes(CSP)[24] ,Cal-
culus of Communicating Systems (CCS) [26] and Algebra of Communicating
Processes(ACP)[9].

Among them there is a branch of process algebras extended with probabilistic
or stochastic information, which are usually named stochastic process algebras
(SPAs). For example, in CSP tradition, there is Timed CSP [20], in CCS tradi-
tion, there is PEPA [22], and prACP−I [8] is in ACP tradition. The SPAs have
gained acceptance as one of the techniques available for performance analy-
sis. For example, in large computer and communication systems, they could be
used to model the system and predict the behavior of a system with respect to
dynamic properties such as throughput and response time[23].

However, the system modelling with SPAs always inherits the process algebras’s
concurrent essentials and behaves in a complex way. When dynamically execut-
ing the system, we sometimes need to be ensured that there must not arise any
abnormal event. For example, the system shouldn’t terminate unexpectedly(no
deadlock). Furthermore, sometimes even though we are notified that the sys-
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tem might go into the deadlock states, we are not satisfied. We are also curious
in which steps might we reach those states, because this information would be
very useful for understanding the cause of the abnormity and then help people
to revise the system to avoid deadlock.

In this thesis, we are going to develop a static analysis for one kind of SPAs:
Performance Evaluation Process Algebra (PEPA) [22], aiming at answering the
following two questions for the system modelled with PEPA:

• Does the system potentially have chance to go into the deadlock states?

• If there exist deadlock states, how does the system behave before reaching
those states?

In the following subsections, first we will introduce the theoretical background
of our work. Then we give a short description of the real work we accomplished.
In the last of this chapter we will outline the structure of the thesis.

1.1 Theoretical Background

1.1.1 Related Works

In recently years, there are several methods of applying static analysis techniques
to highly concurrent languages and a variety of process algebras. For process
algebras, the works are mainly based on three approaches:

• One line of work is to adapt Type Systems from the functional and object-
oriented languages to express meaningful properties of the process alge-
bras(e.g. [27, 34]).

• Another line of work is based on Control Flow Analysis. The process alge-
bras that have been extensively researched are: pi-calculus [10], variants
of mobile ambients(e.g. [12, 29]) and process algebras for cryptographic
protocols such as Lysa [11].

• The last line of work just emerges recently, and it uses the classical ap-
proach – Data Flow Analysis to focus on analyzing transitions instead of
configurations of the models (Configurations are the main concern of the
previous two approaches). The process algebras that has already been
done includes CCS [15, 16].
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Our work adopts the last approach, because its special feature of transition
tracking would help us easily answer not only the first question (verify deadlock
property) but also the second question mentioned above (find paths leading to
deadlock states). And the work in [15, 16] inspires our own work quite a lot.

1.1.2 Analysis Techniques

Our work is based on the category of program analysis, in particular the Data
Flow Analysis, which will be introduced briefly as follows.

Program analysis offers static compile-time techniques for predicting safe and
computable approximations to the set of values or behaviors arising dynamically
at run-time when executing a program on a computer[28].

The safe here means that analysis is based on formal semantics (Our job is
based on the semantics of PEPA). The approximations are usually divided into
three classes:(a)Over-approximation captures the entire behavior of the pro-
gram. (b)Under-approximation captures a subset of all possible behavior of the
program in reality.(c)Undecidable-approximation can’t decide whether the the
approximation behaviors belong to the program or not. In our work, we will
use both (a) and (b) approaches for approximation.

The Data Flow Analysis is among four classical program analysis approaches,
which are Data Flow Analysis, Constraint Based Analysis, Abstract Interpreta-
tion and Type and Effect Systems. In Data Flow Analysis, it is customary to
think of a program (written in traditional programming language) as a graph:
the nodes are basic blocks and the edges describe how control might pass from
one basic block to another. The transfer functions associated with basic blocks
are often specified as Bitvector Frameworks or more general as Monotone Frame-
works. The transfer functions in Bitvector Frameworks will always remove in-
formation no longer appropriate, and at the same time generate appropriate
information to the basic blocks which will form new basic block.

1.2 Our work

Our work is based on the Data Flow Analysis. We build a graph (actually
we generate an automaton from the program while the graph is the graphical
representation of the automaton) for the program written in PEPA, which could
capture the control structure of the program. And this automaton could be used
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to verify deadlock property and illustrate paths leading to deadlock states.

Concretely, we first specify the kill and gen function based on the semantics of
the PEPA and make our own transfer function. For the safe approximation, we
perform under-approximation for the kill function and the over-approximation
for the gen function: it is always safe to kill less information and gen more
information than the exact information. We shall see that the labels and lay-
ers of individual actions(labels and layers are annotation to the PEPA program
while action is a term in PEPA, please refer to chapter 2 in details) will corre-
spond to the basic blocks of Data Flow analysis and there is a need to introduce
two domains : extended multisets and extra extended multisets to replace the
Bitvectors for these functions.

Later we will use worklist algorithm to construct a finite control flow graph
(automaton) for PEPA process: the nodes describe the exposed actions(will be
introduced in chapter 3) for the various configuration (state) that may arise
dynamically during the execution; the edges describe the interactions of ac-
tions(transitions) that tell how one configuration evolves to another configu-
ration. For the termination of the algorithm, we adopt a suitable granularity
function and the widening operator.

Lastly, to improve the analysis efficiency, we develop two methods which could
significantly speed up the analysis when some information is ignored.

After developing these analyses, we utilize them first to verify several small
programs and then study the deadlock property of a series of larger programs:
variants of Milner’s process for a jobshop [31].

1.3 Thesis Organization

Chapter 2 introduces the syntax of PEPA as well as its semantics. In addition,
layers and labels are equipped to PEPA.

Chapter 3 first introduces the concept of exposed actions for PEPA program and
two domains: extend multiset and extra extend multiset. Later two functions
Es

? and Ep
? are developed to compute the information for initialization worklist

algorithm.

Chapter 4 describes the development of function kill(Ks
?,K

p
?), gen(Gs

?,Gp
?) and

finally the transfer function which will be invoked in the worklist algorithm.
The domain extend multimap and extra extend multimap are introduced.
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Chapter 5 describes the constructing of the automaton by worklist algorithm.
Some auxiliary functions are developed to cooperate with the worklist algorithm,
such as update, enabled, Ys

? , Yp
? etc.

Chapter 6 discusses two methods for increasing the analysis speed (constructing
the automaton) on the condition that the structure of PEPA program meet
some requirements.

Chapter 7 shows how to use the analysis developed in the previous chapters
to verify the deadlock property of PEPA programs and how to find the paths
leading to each deadlock state.

Chapter 8 concludes the thesis and points out some future work.
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Chapter 2

Performance Evaluation
Process Algebra

In this chapter we shall first introduce the syntax of PEPA programs and then
review the semantics as presented in [22]. Lastly we will equip PEPA with
labels and layers that would be helpful for the analysis developed later.

2.1 Syntax

PEPA models are described as interaction of components. Each component itself
contains a series of activities that give the behavior of concrete actions. Each
activity, a ∈ Act, is defined as a pair (α, r) where α ∈ A is the action type and
r ∈ R+ is the activity rate that indicates the duration of this activity. And we
know Act ⊆ A× R+.

PEPA also provides a set of combinators to build up complex behavior from
simpler behavior, which means, the combinators could combine different simpler
components together and thus influence the activities (represent the behavior)
within them. There are five type of combinators in PEPA, namely prefix (.),
Choice(+),Cooperation( ��

L
), Hiding(/) and Constant(def=).
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Prefix: (α, r).S: Prefix is the basic mechanism by which the behaviors of com-
ponents are constructed. It means after the component has carried out
activity (α, r), it will behave as component S.

Choice: S1 + S2: This combinator represents a system which may behave ei-
ther as component S1 or as S2. S1 +S2 enables all the current activities of
S1 and all the current activities of S2. The first activity to complete distin-
guishes one out of the two components, S1 or S2 and the other component
of the choice is then discarded.

Cooperation: P1 ��
L

P2: This combinator describes the synchronization of the
P1 and P2 over the activities in the cooperation set L. The components
may proceed independently with activities whose types do not belong to
this set. In contrast, the components should cooperate with the other
components if the types of their activities (to be executed) both fall into
this set.

Hiding: P/L: It behaves as P except that any activities of types within the set
L are hidden, meaning that their type is not witnessed upon completion.
A hidden activity is witnessed only by its delay and the unknown type τ ,
and it can’t be carried out in cooperation with any other component.

Constant: C
def= S or S

def= P : Constant are components whose meaning is given
by a defining equation such as C

def= S or S
def= P which gives the constant C

the behavior of the component S or S given the behavior of P respectively.
This is how we assign names to components (behaviors).

The syntax is formally defined by means of the following grammar.

S ::= (α, r).S | S1 + S2 | C
P ::= P1 ��

L
P2 | P/L | S

where S denotes a sequential component and P denotes a model component.
A sequential component could be formed by sequential combinators that is ei-
ther prefix, choice or constant C where C stands for sequential component. A
model component could be formed by model combinators that is either cooper-
ation, hiding or constant S where S stands for sequential component or model
component.

We shall be interested in programs of the form

let C1 , S1; · · · ;Ck , Sk︸ ︷︷ ︸
Sequential Component definition

in P0︸︷︷︸
Model Component definition

where the Sequential processes (sequential components) named C1, · · · , Ck(∈
PN) are mutually recursively defined and may be used in the main model
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process P0 (P0 is formed by model components connected with model combina-
tors) as well as in the sequential process bodies S1, · · · , Sk. We shall require that
C1, · · · , Ck are pairwise distinct and that they are the only sequential process
names used. In turn, P0 is the main model component which is essentially de-
scribed by ��

L
and / combinators to join the sequential processes C1, · · · , Ck.

And these sequential processes are also called model components in model com-
ponent definition.

Another thing should be mentioned here is that cooperation between several
different components using differing cooperation sets may be regarded as being
built up in layers. Each cooperation combining just two components which
themselves might be composed from cooperation between components at a lower
level. For example:

(P1 ��
L

P2) ��
K

P3

In this case, the top layer could be Q1 ��
K

Q2 where, at the lower level, if ≡
denotes syntactic equivalence, Q1 ≡ P1 ��

L
P2 and Q2 ≡ P3.

Example 2.1 Let’s transform a program written in PEPA syntax into the pro-
gram with our form:

S
def= (g, r1).(p, r2).S

Q
def= (g, r3).(h, r4).Q + (p, r5).Q

S ��
{g,p}

Q

would be transformed into

let S , (g, r1).(p, r2).S
Q , (g, r3).(h, r4).Q + (p, r5).Q

in S ��
{g,p}

Q

Here we also give other two programs: the sequential components remain the
same as above, while the main model component are defined as (S ��

{}
S) ��

{g,p}
Q

and (S ��
{g,p}

S) ��
g,p

Q respectively. These three programs would be furthered dis-
cussed in the following examples.

2.2 Semantics

Following [22] the calculus is equipped with a reduction semantics. The reduc-
tion relation E →(α,r) E′ is specified in Table 2.1 and expresses that the process
E in one step may evolve into the process E′.
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Prefix

(α, r).E →(α,r) E

Cooperation

E →(α,r) E′

E ��
L

F →(α,r) E′ ��
L

F
(α /∈ L)

F →(α,r) F ′

E ��
L

F →(α,r) E ��
L

F ′ (α /∈ L)

E →(α,r1) E′ F →(α,r2) F ′

E ��
L

F →(α,R) E′ ��
L

F ′ (α ∈ L) where R =
r1

rα(E)
r2

rα(F )
min(rα(E), rα(F ))

Hiding
E →(α,r) E′

E/L →(α,r) E′/L
(α /∈ L)

E →(α,r) E′

E/L →(τ,r) E′/L
(α ∈ L)

Choice

E →(α,r) E′

E + F →(α,r) E′

F →(α,r) F ′

E + F →(α,r) F ′

Constant

E →(α,r) E′

A →(α,r) E′ (A def= E)

Table 2.1: Operational semantics of PEPA
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Example 2.2 Using the formal semantics we can express the first steps of the
reductions of Example 2.1 as follows:
S ��

{g,p}
Q ≡ ((g, r1).(p, r2).S) ��

{g,p}
((g, r3).(h, r4).Q + (p, r5).Q)

→(g,R1) ((p, r2).S) ��
{g,p}

((h, r4).Q)
→(h,r4) ((p, r2).S) ��

{g,p}
Q

≡ ((p, r2).S) ��
{g,p}

((g, r3).(h, r4).Q + (p, r5).Q)
→(p,R2) S ��

{g,p}
Q

Here R1 is a function of r1 and r3 while R2 is a function of r2 and r5. Since
our analysis doesn’t touch upon the rate of the action. so we will not explain
the accurate meaning of this parameter. For the brevity of the thesis, we skip
this parameter if necessary.

2.3 The introduction of Label and Layer to PEPA

In order to capture the control structure of the process, we add additional
information to each prefix component (α, r).S. The actions (α, r) are annotated
with two markers: labels ` ∈ Lab and layers ı ∈ Layer. These two markers
serves as pointers into the process. They have no semantic significance and will
only be used in the analysis that will be presented shortly.

Lab: Labels ` are directly assigned to each actions. They are only determined
by the sequential component definition of the program.

The rule for allocating label to action: each action will be assigned a
unique number n ∈ N that start from 1. Even two actions have the same
action type will have different labels.

Example 2.3 Let’s take the sequential component definition of program
in Example 2.1, we will label them as follows:

S , (g1, r1).(p2, r2).S
Q , (g3, r3).(h4, r4).Q + (p5, r5).Q

Layer: Layers ı eventually will also be assigned to each action. First each
model component will be issued the layer ı which is determined by the
model component definition of the program. Then the model component
will assign its layer to the sequential components(actions) it represents.
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The rule for allocating layer to model component: each model component
will be assigned a unique vector v (represents the layer) that contains
element e ∈ {0, 1}. v is composed depending on the tree structure of the
cooperation combinator. e will be appended to v from the top layer to
the lower layer of the combinator tree in sequence. v has two part: the
location that takes up the rightmost position of the vector, and the current
layer that consists of all elements left to the rightmost element. And the
lefthanded side of combinator will be assigned 0 while righthanded side
will be assigned 1. The top layer is assumed to be assigned 0. For example:

Example 2.4 Let’s take one of the model component definition of pro-
gram in Example 2.1, we will add layer to each model component as fol-
lows:

( S︸︷︷︸
000

��
{}

S︸︷︷︸
001

) ��
{g,p}

Q︸︷︷︸
01

or (S000 ��
{}

S001) ��
{g,p}

Q01

where S on the left has layer 000: its current layer is 00, and since it is on
the lefthanded side of ��

{}
, its location is 0. Q has layer 01: its current

layer is 0 (the top layer), and due to the fact it is on the righthanded side
of ��

{g,p}
, its location is 1.

Then we will grant layer to actions from model component. Let’s take S
from sequential component definition of program in Example 2.1 with layer
000 as the example:

S , (g, r1)000.(p, r2)000.S

Here all actions(g and p) will be assigned their model component’s layer
000.

If we annotate the syntax of the prefix component (α, r).S with two new nota-
tions, eventually it will change to (α`, r)ı.S.

Example 2.5 If we take S from Example 2.1, label it as in Example 2.3 and
layer it with 000 as in Example 2.4, each action within S will be marked as
follows:

S , (g1, r1)000.(p2, r2)000.S

The above annotation doesn’t impact the significance of the semantics at all.
However, to facilitate the analysis, we present two versions of semantics as
follows for different purposes.

Table 2.2 shows the semantics of the sequential component of PEPA only equipped
with label but omit layer. This is because the layer of a certain sequential com-
ponent always remain the same even when it evolves to other form of sequential
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Sequential Component

Prefix
(α`, r).S →α` S

Choice1
S1 →α`1 S′1

S1 + S2 →α`1 S′1

Choice2
S2 →α`2 S′2

S1 + S2 →α`2 S′2

ConstC
S →α` S′

C →α` S′
(C def= S)

Table 2.2: Semantics of the sequential components of PEPA equipped with label

component. The label itself is enough to clearly illustrate the effect of each
transition among sequential components.

Table 2.3 demonstrates the semantics of PEPA equipped with both label and
layer. It contains two parts explaining exactly the syntax of PEPA introduced
in Subsection 2.1.
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Sequential Component

Prefix
[(α`, r).S]ın →α(`,ın) [S]ın

Choice1
[S1]ın →α(`1,ın) [S′1]

ın

[S1 + S2]ın →α(`1,ın) [S′1]ın

Choice2
[S2]ın →α(`2,ın) [S′2]

ın

[S1 + S2]ın →α(`2,ın) [S′2]ın

ConstC
[S]ın →α(`,ın) [S′]ın

[C]ın →α(`,ın) [S′]ın
(C def= S)

Model Component

Coop1
[P1]ın0 →α(`1,ı1) [P ′

1]
ın0

[P1 ��
L

P2]ın →α(`1,ı1) [P ′
1
��

L
P2]ın

(α /∈ L)

Coop2
[P2]ın1 →α(`2,ı2) [P ′

2]
ın1

[P1 ��
L

P2]ın →α(`2,ı2) [P1 ��
L

P ′
2]ın

(α /∈ L)

Coop3
[P1]ın0 →α(`1,ı1) [P ′

1]
ın0 [P2]ın1 →α(`2,ı2) [P ′

2]
ın1

[P1 ��
L

P2]ın →α(`1,ı1)(`2,ı2) [P ′
1
��

L
P ′

2]ın
(α ∈ L)

Hiding1
[P ]ın →α(`,ı) [P ′]ın

[P/L]ın →α(`,ı) [P ′/L]ın
(α /∈ L)

Hiding2
[P ]ın →α(`,ı) [P ′]ın

[P/L]ın →τ(`,ı) [P ′/L]ın
(α ∈ L)

ConstS
P →α` P ′

[S]ın →α(`,ın) [P ′]ın
(S def= P )

Table 2.3: Semantics of PEPA equipped with label and layer
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Exposed Actions

An exposed action is an action that may participate in the next interaction.
For instance, the sequential component S in Example 2.1 will have action g as
exposed action while Q will have both g and p as exposed actions. In either case,
they will have one occurrence of each type. However, in general, a process may
contain many, even infinitely many, occurrences of the same action (identified
by the same label and layer) and it may be the case that several of them are
ready to participate in the next interaction. For example:

S , (α, r).S
P , S + S

Here S only has one occurrence of α as exposed action, at the same time P will
have two occurrence of the same action as exposed actions and both of them
are ready for next interaction.

3.1 Extended Multiset M and Extra Extended
Multiset Mex

To capture this in [16] the authors define an extended multiset M (the domain
that our Es

? works on, Es
? will be presented in Subsection 3.2 ) and we introduce
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it in Subsection 3.1.1, and we are going to define the extra extended multiset
Mex (the domain that our Ep

? works on, Ep
? will be presented in Subsection 3.2)

in Subsection 3.1.2 for catering to our new scenario. In the following section 3.2,
we will introduce the abstraction function Es

? and Ep
? that specify an extended

multiset and extra extended multiset of the program.

3.1.1 Extended Multiset M

M is defined as an element of

M = Lab → N ∪ {>}

M(`) records the number of occurrences of the label `; there may be a finite
number in which case M(`) ∈ N or an max finite number in which case M(`)
= >. Here > ∈ N that varies from different programs.

We equip the set M = Lab → N ∪ {>} with a partial ordering ≤M defined by:

M ≤M M ′ iff ∀` : M(`) ≤ M ′(`) ∨M ′(`) = >

Fact 3.1 The domain(M,≤M) is a complete lattice with least element ⊥M

given by ∀` : ⊥M(`) = 0 and largest element >M given by ∀` : >M(`) = >.

The least upper bound and greatest lower bound operators of M are denoted
tM and uM, respectively, and they are defined by:

(M tM M ′)(`) =
{

max{M(`),M ′(`)} if M(`) ∈ N ∧M ′(`) ∈ N
> otherwise

(M uM M ′)(`) =

 min{M(`),M ′(`)} if M(`) ∈ N ∧M ′(`) ∈ N
M(`) if M ′(`) = >
M ′(`) if M(`) = >

We also define addition and substraction on extended multisets, they are defined
by:

(M +M M ′)(`) =
{

M(`) + M ′(`) if M(`) ∈ N ∧M ′(`) ∈ N
> otherwise
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(M −M M ′)(`) =


M(`)−M ′(`) if M(`) ∈ N ∧M(`) ≥ M ′(`)
0 if M(`) ∈ N ∧M(`) < M ′(`)

or M(`) ∈ N ∧M ′(`) = >
> if M(`) = >

Fact 3.2 The operations enjoy the following properties:

1. tM and +M are monotonic in both arguments and they both observe the
laws of Abelian monoid with ⊥M as neutral element.

2. uM is monotonic in both arguments and it observes the laws of an Abelian
monoid with >M as neutral element.

3. −M is monotonic in its left argument and anti-monotonic in its right
argument.

Fact 3.3 The operations +M and −M satisfy the following laws:

1. M −M (M1 +M M2) = (M −M M1)−M M2

2. If M ≤M M1 then (M1 −M M) +M M2 = (M1 +M M2)−M M .

3. If M ′
1 ≤M M1 and M ′

2 ≤M then (M1−M M ′
1)+M (M2−M M ′

2) = (M1 +M

M2)−M (M ′
1 +M M ′

2).

In the following we write M [` 7→ n] for the extended multiset M that ` is
mapped to n ∈ N ∪ {>}. We write dom(M) for the set {` | M(`) 6= 0}.

3.1.2 Extra Extended Multiset Mex

If Labex = (Lab,Layer) then

Mex = Labex → N ∪ {>}

We let `ex = (`, ı) ∈ Labex, then Mex(`ex) records the number of occurrences
of the label ` at layer ı; there may be a finite number in which case Mex(`ex)
∈ N or an max finite number in which case Mex(`ex) = >. And the value of >
varies from different programs.
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Fact 3.4 The domain(Mex,≤Mex) is a complete lattice with least element
⊥Mex given by ∀`ex : ⊥Mex(`ex) = 0 and largest element >Mex given by
∀`ex : >Mex(`ex) = >.

The least upper bound, greatest lower bound, addition and substraction of Mex

are defined very close to the counterpart of M , which are listed as follows:

(MextMexM ′
ex)(`ex) =

{
max{Mex(`ex),M ′

ex(`ex)} if Mex(`ex) ∈ N ∧M ′
ex(`ex) ∈ N

> otherwise

(MexuMexM ′
ex)(`) =

 min{Mex(`ex),M ′
ex(`ex)} if Mex(`ex) ∈ N ∧M ′

ex(`ex) ∈ N
Mex(`ex) if M ′

ex(`ex) = >
M ′

ex(`ex) if Mex(`ex) = >

(Mex+MexM ′
ex)(`) =

{
Mex(`ex) + M ′

ex(`ex) if Mex(`ex) ∈ N ∧M ′
ex(`ex) ∈ N

> otherwise

(Mex−MexM ′
ex)(`) =


Mex(`ex)−M ′

ex(`ex) if Mex(`ex) ∈ N ∧Mex(`ex) ≥ M ′
ex(`ex)

0 if Mex(`ex) ∈ N ∧M(`) < M ′
ex(`ex)

or Mex(`ex) ∈ N ∧M ′
ex(`ex) = >

> if Mex(`ex) = >

Fact 3.5 The operations enjoy the following properties:

1. tMex and +Mex are monotonic in both arguments and they both observe
the laws of Abelian monoid with ⊥Mex as neutral element.

2. uMex is monotonic in both arguments and it observes the laws of an
Abelian monoid with >Mex as neutral element.

3. −Mex is monotonic in its left argument and anti-monotonic in its right
argument.

Fact 3.6 The operations +Mex and −Mex satisfy the following laws:

1. M −Mex (M1 +Mex M2) = (M −Mex M1)−Mex M2
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2. If M ≤Mex M1 then (M1 −Mex M) +Mex M2 = (M1 +Mex M2)−Mex M .

3. If M ′
1 ≤Mex M1 and M ′

2 ≤Mex then (M1−MexM ′
1)+Mex (M2−MexM ′

2) =
(M1 +Mex M2)−Mex (M ′

1 +Mex M ′
2).

We write domExlayer(Mex, ı) for the set {` | (`, ı) ∈ Labex of Mex}. We write
domEx(Mex) for the set {(`, ı) | Mex(`, ı) 6= 0}.

3.2 Calculating Exposed Actions

The information of key interest is the collection of extra extended multisets of
exposed actions of the model component processes. However, to obtain that
we need first to get the extended multisets of exposed actions of the sequential
component processes. The first step is computed by abstraction function Es

? ,
and the second step by function namely Ep

? .

To motivate the definition let us first consider the combination of choice and
prefix of two sequential processes (α`1

1 , r1).S1 + (α`2
2 , r2).S2. Here both of the

actions α1 and α2 are ready to interact but actions from S1 and S2 are not, so
we shall take:

Es[[(α`1
1 , r1).S1 + (α`2

2 , r2).S2]]env = ⊥M[`1 7→ 1] +M ⊥M[`2 7→ 1]

If the two labels happen to be equal (`1 = `2) the overall count will become 2
since we have used the pointwise addition operator +M.

Second, if we turn to cooperation combinator, we shall have the following func-
tion formula, and this time we use Ep instead:

Ep[[(α`1
1 , r1)00.S �� (α`2

2 , r2)01.S]] = ⊥Mex[(`1, 00) 7→ 1]+Mex⊥Mex[(`2, 01) 7→ 1]

In this case, even though `1 and `2 have the same label, According to the +Mex

operation, the overall count couldn’t become 2, because these two labels are not
in the same layer.

Function E

To handle the general case we shall introduce two functions

Es : Sproc → (PN → M) → M

Ep : Pproc → Mex
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For function Es, it takes an environment as the additional parameter which
holds the required information for the process names. The function is defined in
Table 3.1 for arbitrary processes; in the case of choice and prefix, it generalizes
the clauses shown above. Turning to the clause for sequence constants we simply
consult the environment env provided as the first argument to Es.

As shown in Table 3.1, there defines a function FE : (PN → M) → (PN →
M). Since the operations involved in its definition are all monotonic (cf. Fact
3.1). we have a monotonic function defined on a complete lattice (cf. Fact
3.2) and Tarski’s fixed point theorem ensures that it has a fixed point which
is denoted envE in Table 3.1. Since all sequential processes are finite it follows
that FE is continuous and hence that the Kleene formulation of the fixed point
is permissible. We can now define the function

Es
? : Sproc → M

Simply as Es
? [[S]] = Es[[S]]envE .

For function Ep, it will always take layer ı as parameters and finally append
the correct layer to each S sequential component. Specifically, for cooperation
operator, it will combine the result of two components by +Mex operation. The
clause for the P/L will simply ignores the hidden set L. The clause for constant
model combinator will borrow the result get from Es

? step and use the denotation
of this sequential component to compute the overall Mex. It is worth pointing
out that only the label and layer pair belonging to the Mex set should be set
up by each constant combinator clause.

We can now define the function

Ep
? : Pproc → Mex

Simply as Ep
? [[P ]] = Ep[[P ]]0.The parameter 0 takes charge of layer initialization

and is the value issued to the top layer. (cf.section 2.3).

Example 3.1 For the running example of Example 2.1 we have

Ep
? [[S ��

{g,p}
Q]] = [(1, 00) 7→ 1, (2, 00) 7→ 0, (3, 01) 7→ 1, (4, 01) 7→ 0,

(5, 01) 7→ 1]
Ep

? [[(S ��
{}

S) ��
{g,p}

Q]] = [(1, 000) 7→ 1, (2, 000) 7→ 0, (1, 001) 7→ 1, (2, 001) 7→ 0,

(3, 01) 7→ 1, (4, 01) 7→ 0, (5, 01) 7→ 1]
Ep

? [[(S ��
{g,p}

S) ��
{g,p}

Q]] = [(1, 000) 7→ 1, (2, 000) 7→ 0, (1, 001) 7→ 1, (2, 001) 7→ 0,

(3, 01) 7→ 1, (4, 01) 7→ 0, (5, 01) 7→ 1]
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

Es[[(α`, r).S]]env = ⊥M[` 7→ 1]
Es[[S1 + S2]]env = Es[[S1]]env +M Es[[S2]]env

Es[[C]]env = env(C)
Es

? [[S]] = Es[[S]]envE

whereFE(env) = [C1 7→ Es[[S1]]env, · · · , Ck 7→ Es[[Sk]]env]
and env⊥M

= [C1 7→ ⊥M, · · · , Ck 7→ ⊥M]

and envE = tj≥0Fj
E(env⊥M

)
Ep[[P1 ��

L
P2]]ı = Ep[[P1]]ı0 +Mex Ep[[P2]]ı1

Ep[[P/L]]ı = Ep[[P ]]ı

Ep[[S]]ı = let (`1 7→ n1, · · · , `n 7→ nn) = Es
? [[S]]

in ⊥Mex[(`j , ı) 7→ nj ] where `j ∈ domExlayer(⊥Mex, ı)
and j ∈ {1, · · · , n}

Ep
? [[P ]] = Ep[[P ]]0

Table 3.1: Es and Ep function

We could see that the first case has 5 elements (5 label-layer pairs) in its extra
extended multiset while the last two cases have 7 elements in each of them. All
label-layer pairs for each program is listed in Table above. However, we could
simplify them with the help of ⊥Mex and remove the element that doesn’t ready
for transition(the label-layer pair maps to 0). Here we have another version of
the result:

Ep
? [[S ��

{g,p}
Q]] = ⊥Mex[(1, 00) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

Ep
? [[(S ��

{}
S) ��

{g,p}
Q]] = ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

Ep
? [[(S ��

{g,p}
S) ��

{g,p}
Q]] = ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

3.3 Termination

When deal with the calculation of Es
? , it is not trivial to implement the com-

putation of the least fixed point of Table 3.1. In [16], the authors propose an
Lemma which fit in our case pretty well, here we just give the lemma without
proof.
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Lemma 3.7 Using the notation of Table 3.1 we have

envE = Fk
E (env⊥M

) ./ F2k
E (env⊥M

)

where k is number of sequential components in the program and ./ is the point-
wise extension of the operation ./Mdefined by

(M ./M M ′)(`) =
{

M(`) if M(`) = M ′(`)
> otherwise

From this lemma, we could calculate the envE and Es
? [[S]] without any problem.

Consequently, Ep
? [[P ]] could be computed based on the result of Es

? [[S]].



Chapter 4

Transfer Functions

The abstraction functions Es
? and Ep

? only give us the information of interest for
the initial process and we shall now present auxiliary functions allowing us to
approximate how the information evolves during the execution of the process.

Once an action has participated in an interaction, some new actions maybe
expose and some actions just cease to be exposed. We say the new exposure
actions would be generated by the default interaction while the action no longer
expose anymore would be killed by the same interaction. For instance, recall S is
marked as S = (g1, r1)000.(p2, r2)000.S in the Example 2.5 . Initially (g1, r1)000

is exposed but once it has been executed it will no longer be exposed in the
next interaction(we say it is killed), but at the same time the action (p2, r2)000

would get exposed(we say it is generated).

Thus, in order to capture how the program evolve, we shall now introduce two
functions Gs

? and Gp
? to describe the information generated by execution of the

processes and two functions Ks
? and Kp

? to describe the information killed by
execution of the processes.
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4.1 Extended Multimap T and Extra Extended
Multimap Tex

Just as we introduce the domains on which Es
? and Ep

? work, we will first describe
relevant domains that functions Gs

?, Gp
? , Ks

? and Kp
? ground on.

4.1.1 Extended Multimap T

The information generated by Gs
? or Ks

? will be an element of:

T = Lab → M (= Lab → (Lab → N ∪ {>}))

As for exposed actions it is not sufficient to use sets: there may be more than
one occurrence of an action that is either generated or killed by another action.
The ordering ≤T is defined as the pointwise extension of ≤M:

T1 ≤T T2 iff ∀` : T1(`) ≤M T2(`)

In analogy with Fact 3.1 this turns(T,≤T) into a complete lattice with least ele-
ment⊥T and greatest element>T defined as expected. The operators tT,uT,+T

and −T on T are defined as the pointwise extensions of the corresponding opera-
tors on M and they enjoy properties corresponding to those of Fact 3.2 and Fact
3.3. We shall occasionally write T (`1`2) as an abbreviation for T (`1) +M T (`2).

4.1.2 Extended Multimap Tex

If Labex = (Lab,Layer) then the information generated by Gp
? or Kp

? will be
an element of:

Tex = Labex → Mex (= Labex → (Labex → N ∪ {>}))

The operators tTex,uTex,+Tex and −Tex on Tex are defined as the pointwise
extensions of the corresponding operators on Mex. We shall occasionally write
Tex(`1ex`2ex) as an abbreviation for Tex(`1ex) +Mex Tex(`2ex).

4.2 Generated Actions

To motivate the definitions of Gs
? and Gp

? , let us consider prefix combinator as
expressed in the process (α`, r).S. Clearly, once (α`, r) has been executed it
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will no longer be exposed whereas the actions of Es
? [[S]] will become exposed.

Thus a first suggestion may be to take Gs
?[[(α`, r).S]](`) = Es

? [[S]]. However, to
cater for the case where the same label may occur several times in a sequential
process (as the case when ` is used inside S) we have to modify these formula
slightly to ensure that they correctly combines the information available about
`. The function Gs

? will compute an over -approximation as it takes the least
upper bound of the information available.

Gs
?[[(α`, r).S]]`′ =

{
Es

? [[S]] tM Gs
?[[S]]`′ if `′ = `

Gs
?[[S]]`′ if `′ 6= `

it could be rewritten as:

Gs
?[[(α`, r).S]] = ⊥T[` 7→ Es

? [[S]]] tT Gs
?[[S]]

Function G
To cater for the general case, we shall define two functions:

Gs : Sproc → (PN → T) → T

Gp : Pproc → Tex

For function Gs, it takes an environment as the parameter which provides rele-
vant information for the process names and is defined in Table 4.1. The clauses
are much as one should expect from the explanation above, in particular we
may note that the operation tT is used to combine information throughout the
clauses and represents the over -approximation characteristic of this function.
The recursive definitions in prefix clause give rise to a monotonic function FG :
(PN → T) → (PN → T) on a complete lattice (cf. Fact 3.1,Fact 3.2). and
hence Tarski’s fixed point theorem ensures that the least fixed point envG ex-
ists. Once more the function turns out to be continuous and hence the Kleene
formulation of the fixed point is permissible. And we could define function

Gs
? : Sproc → T

and this function will give us all information generated by sequential component
in the program.

For function Gp, it will always take layer ı as parameters and finally append
the correct layer to each S sequential component. Specifically, for cooperation
operator, it will combine the result of two components by tTex operation. The
clause for the P/L will simply ignores the hidden set L. The clause for constant
model combinator will borrow the result get from Gs

? step and compute the
denotation of this sequential component to the overall Tex. It is worth pointing
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

Gs[[(α`, r).S]]env = ⊥T[` 7→ Es[[S]]envε] tT Gs[[S]]env

Gs[[S1 + S2]]env = Gs[[S1]]env tT Gs[[S2]]env

Gs[[C]]env = env(C)
Gs

?[[S]] = Gs[[S]]envG

whereFG = [C1 7→ Gs[[S1]]env, · · · , Ck 7→ Gs[[Sk]]env]
and env⊥T

= [C1 7→ ⊥T, · · · , Ck 7→ ⊥T]

and envG = tj≥0Fj
G(env⊥T

)

Gp[[P1 ��
L

P2]]ı = Gp[[P1]]ı0 tTex Gp[[P2]]ı1

Gp[[P/L]]ı = Gp[[P ]]ı

Gp[[S]]ı = let [`1 7→ {`1 7→ n11, · · · , `n 7→ n1n}, · · · ,

`n 7→ {`1 7→ nn1, · · · , `n 7→ nnn}] = Gs
?[[S]]

in ⊥Tex[(`j , ı) 7→ ⊥Mex[(`k, ı) 7→ njk]]
where `j , `k ∈ domExlayer(⊥Mex, ı) and j, k ∈ {1, · · · , n}

Gp
? [[P ]] = Gp[[P ]]0

Table 4.1: Gs and Gp function

out that only the label and layer pair belonging to the Tex set should be set up
by each constant combinator clause and we use j and k to control it.

We can now define the function

Gp
? : Pproc → Tex

Simply as Gp
? [[P ]] = Gp[[P ]]0.The parameter 0 takes charge of layer initialization

and is the value issued to the top layer.

Example 4.1 We will compute the Gp
? for programs introduced in Example 2.1.

`ex Gp
? [[S ��

{g,p}
Q]](`ex)

(1, 00) ⊥Mex[(2, 00) 7→ 1]

(2, 00) ⊥Mex[(1, 00) 7→ 1]

(3, 01) ⊥Mex[(4, 01) 7→ 1]

(4, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

(5, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]
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`ex Gp
? [[(S ��

{}
S) ��

{g,p}
Q]](`ex) Gp

? [[(S ��
{g,p}

S) ��
{g,p}

Q]](`ex)

(1, 000) ⊥Mex[(2, 000) 7→ 1] ⊥Mex[(2, 000) 7→ 1]

(2, 000) ⊥Mex[(1, 000) 7→ 1] ⊥Mex[(1, 000) 7→ 1]

(1, 001) ⊥Mex[(2, 001) 7→ 1] ⊥Mex[(2, 001) 7→ 1]

(2, 001) ⊥Mex[(1, 001) 7→ 1] ⊥Mex[(1, 001) 7→ 1]

(3, 01) ⊥Mex[(4, 01)] ⊥Mex[(4, 01)]

(4, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1] ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

(5, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1] ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

It could be seen clearly that (S ��
{}

S) ��
{g,p}

Q and (S ��
{g,p}

S) ��
{g,p}

Q have exactly
the same results from Gp

? functions.

Lemma 4.1 If P →˜̀ Q then Gs
?[[Q]] ≤T Gs

?[[P ]].

Proof. We proceed by induction on the inference of P →˜̀ Q as defined in Table
2.2.

The case [Prefix ]:

Gs
?[[(α`, r).S]] = Gs[[(α`, r).S]]envG

= ⊥T[` 7→ Es[[S]]envε] tT Gs[[S]]envG

≥T Gs[[S]]envG = Gs
?[[S]]

as required.

The case [Choice1 ]: From Induction hypothesis, we know
Gs

?[[S′1]] ≤T Gs
?[[S1]] which means Gs[[S′1]]envG ≤T Gs[[S1]]envG.

So we calculate

Gs
?[[S1 + S2]] = Gs[[S1 + S2]]envG = Gs[[S1]]envG tT Gs[[S2]]envG

≥T Gs[[S1]]envG ≥T Gs[[S′1]]envG = Gs
?[[S′1]]

this proves the result.

The case [Choice2 ]: Analogous.

The case [ConstC ]: From the induction hypothesis, we know
Gs

?[[S′]] ≤T Gs
?[[S]]. We also know Gs

?[[C]] = Gs
?[[S]] because C

def= S, so
Gs

?[[S′]] ≤T Gs
?[[C]] as required.

�
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Lemma 4.2 If P →α(`,ı) Q then Gp[[Q]]ın ≤Tex Gp[[P ]]ın .
If P →α(`,ı) Q then Gp

? [[Q]] ≤Tex Gp
? [[P ]].

Proof. We will prove the first part, which will immediately illustrate the cor-
rectness of the second part.

We proceed by induction on the inference of P →
e`ı Q as defined in Table

2.3. There are two parts in Table 2.3: Sequential component part and Model
component part. We also know that all sequential components essentially are
the elements of model component part, so the sequential components could be
considered as the ”axioms” among all inference rules. In addition, ConstS in
Model component will represent any sequential components, so if we successfully
prove ConstS, it is straightforward to see the result applies to all sequential
components: Prefix, Choice1, Choice2 and ConstC.

The case [Prefix,Choice1,Choice2 and ConstC ]: Refer proof of
ConstS.

The case [ConstS ]: This component could be regarded as the axiom of all
model component rule. The induction hypothesis is P →α` P ′, from
Lemma 4.1, we have Gs

?[[P ′]] ≤T Gs
?[[P ]], we also have Gs

?[[P ]] = Gs
?[[S]].

Thus we get Gs
?[[P ′]] ≤T Gs

?[[S]].

From the definition of Gp[[P ′]]ın , Gp[[S]]ın and the fact Gs
?[[P ′]] ≤T Gs

?[[S]], it
is easily seen that Gp[[P ′]]ın ≤T Gp[[S]]ın , and this proves the result.

The case [Coop1 ]: From the induction hypothesis we have
Gp[[P ′

1]]
ın0 ≤Tex Gp[[P1]]ın0.

If we add tTexGp[[P2]]ın1 to its both sides, we get

Gp[[P ′
1]]

ın0 tTex Gp[[P2]]ın1 ≤Tex Gp[[P1]]ın0 tTex Gp[[P2]]ın1

⇔ Gp[[P ′
1
��

L
P2]]ın ≤Tex Gp[[P1 ��

L
P2]]ın

this proves the result.

The case [Coop2 ]: Analogous.

The case [Coop3 ]: From the induction hypothesis we have
Gp[[P ′

1]]
ın0 ≤Tex Gp[[P1]]ın0 and Gp[[P ′

2]]
ın1 ≤Tex Gp[[P2]]ın1.

so we have

Gp[[P ′
1]]

ın0 tTex Gp[[P ′
2]]

ın1 ≤Tex Gp[[P1]]ın0 tTex Gp[[P2]]ın1

⇔ Gp[[P ′
1
��

L
P ′

2]]
ın ≤Tex Gp[[P1 ��

L
P2]]ın

this proves the result.
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The case [Hiding1 ]: From the induction hypothesis we have
Gp[[P ′]]ın ≤Tex Gp[[P ]]ın . We also know Gp[[P ′]]ın = Gp[[P ′/L]]ın and Gp[[P ]]ın =
Gp[[P/L]]ın . So it is straightforward to see that

Gp[[P ′/L]]ın ≤Tex Gp[[P/L]]ın .

this proves the result.

The case [Hiding2 ]: Analogous.

This complete the proof of the first part. For the second part, since Gp
? [[Q]] =

Gp[[Q]]ı0 and Gp
? [[P ]] = Gp[[P ]]ı0 , when combined with the first part, it is straight-

forward to see the second part holds. �

Since (T,≤T) admits infinite ascending chains we need to show that the naive
implementation of calculating Gs

? will in fact terminate.In [16], the authors pro-
pose an Lemma which fit in our case pretty well, here we just give the lemma
without proof.

Lemma 4.3 Using the notation of Table 4.1 we have

envG = Fk
G(env⊥T

)

where k is number of sequential components of the program.

From this lemma, we could calculate the envG and Gs
?[[S]] without any problem.

Consequently, Gp
? [[P ]] could be computed based on the result of Gs

?[[S]].

4.3 Killed Actions

Now we turn to find the definitions of Ks
? and Kp

?. Similarly to the generated
action, let us consider prefix combinator as expressed in the process (α`, r).S.
Clearly, once (α`, r) has been executed it will no longer be exposed. Thus a
first suggestion may be to take Ks

?[[(α
`, r).S]](`) = ⊥M[` 7→ 1]. However, like

Gs
?, we need to consider same label may occur several times in a process, thus

we will compute an under -approximation as it takes the greatest lower bound of
the information available

Ks
?[[(α

`, r).S]]`′ =
{
⊥M[` 7→ 1] uM Ks

?[[S]]`′ if `′ = `
Ks

?[[S]]`′ if `′ 6= `
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

Ks[[(α`, r).S]]env = >T[` 7→ ⊥M[` 7→ 1]] uT Ks[[S]]env

Ks[[S1 + S2]]env = let [(α`1
1 , r1).Q1, · · · , (α`n

n , rn).Qn] = H[[S1 + S2]]
in uT i∈(1,··· ,n)(>T[`i 7→ M ] uT Ks[[Qi]]env)

where M = Es[[Σi∈(1,··· ,n)(α
`i
i , ri).Qi]]envE

Ks[[C]]env = env(C)
Ks

?[[S]] = Ks[[S]]envK

whereFK = [C1 7→ Ks[[S1]]env, · · · , Ck 7→ Ks[[Sk]]env]
and env>T

= [C1 7→ >T, · · · , Ck 7→ >T]

and envK = uj≥0Fj
K(env>T

)
Kp[[P1 ��

L
P2]]ı = Kp[[P1]]ı0 uTex Kp[[P2]]ı1

Kp[[P/L]]ı = Kp[[P ]]ı

Kp[[S]]ı = let [`1 7→ {`1 7→ n11, · · · , `n 7→ n1n}, · · · ,

`n 7→ {`1 7→ nn1, · · · , `n 7→ nnn}] = Ks
?[[S]]

in >Tex[(`j , ı) 7→ ⊥Mex[(`k, ı) 7→ njk]]
where `j , `k ∈ domExlayer(⊥Mex, ı) and j, k ∈ {1, · · · , n}

Kp
?[[P ]] = Kp[[P ]]0

Table 4.2: Ks and Kp function

it could be rewritten as:

Ks
?[[(α

`, r).S]] = >T[` 7→ M ] uT Ks
?[[S]] where M = ⊥M[` 7→ 1]

M also equals to Es
? [[(α`, r).S]].

Now we are going to define the killed function formally, and we will use under -
approximation as it always safe to kill fewer actions.

1. Function K
Ks : Sproc → (PN → T) → T

Kp : Pproc → Tex

For function Ks, it takes an environment as the parameter which provides
relevant information for the process names and is defined in Table 4.2. The
prefix clauses are much as one should expect from the explanation above,
in particular we may note that the operation uT is used to combine infor-
mation throughout other clauses and represents the under -approximation
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characteristic of this function. Also we should notice that the M in the
clause for summations actually equals Es[[Σi∈(1,··· ,n)(α

`i
i , ri).Qi]]envE , re-

flecting that all the exposed actions of all the prefix clauses that the S1

and S2 could reach are indeed killed when one of them has been selected
for the reduction step. And all the reachable prefix clauses from S1 and
S2 could be calculated by function H that will be discussed later.

The recursive definitions in prefix clause give rise to a monotonic function
FK: (PN → T) → (PN → T) on a complete lattice (cf. Fact 3.1,Fact 3.2).
and hence Tarski’s fixed point theorem ensures that the least fixed point
envK exists. Once more the function turns out to be co-continuous because
T contains no infinite decreasing chains and hence the Kleene formulation
of the fixed point is permissible. And we could define function

Ks
? : Sproc → T

and this function will give us all information killed by sequential compo-
nent in the program.

For function Kp, it will always take layer ı as parameters and finally ap-
pend the correct layer to each S sequential component. Specifically, for
cooperation operator, it will combine the result of two components by
uTex operation. The clause for the P/L will simply ignores the hidden set
L. The clause for constant model combinator will borrow the result get
from Ks

? step and compute the denotation of this sequential component
to the overall Tex. It is worth pointing out that only the label and layer
pair belong to the Tex set should be set up by each constant combinator
clause and we use j and k to control it.

We can now define the function

Kp
? : Pproc → Tex

Simply as Kp
?[[P ]] = Kp[[P ]]0.The parameter 0 takes charge of layer initial-

ization and represents the value issued to the top layer.

2. Function H
Function H will collect all prefix clauses from any sequential component.
We define it as follows:

H : Proc → ℘(Prefix)

where Prefix is the domain of prefix components in the program. ℘(Prefix)
is the set of those components. The formal description is in Table 4.3. And
the ∪ operation could be found in each clause, meaning that the function
will collect all relevant prefix clauses.
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

H[[(α`, r).S]] = let R = ∅
in R ∪ (α`, r).S

H[[S1 + S2]] = let R1 = H[[S1]]andR2 = H[[S2]]
in R1 ∪R2

H[[Ck]]k∈I = H[[Sk]]

Table 4.3: H function

Example 4.2 We will compute the Kp
? for programs introduced in Example 2.1.

`ex Kp
?[[S ��

{g,p}
Q]](`ex)

(1, 00) ⊥Mex[(1, 00) 7→ 1]

(2, 00) ⊥Mex[(2, 00) 7→ 1]

(3, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

(4, 01) ⊥Mex[(4, 01) 7→ 1]

(5, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

`ex Kp
?[[(S ��

{}
S) ��

{g,p}
Q]](`ex) Kp

?[[(S ��
{g,p}

S) ��
{g,p}

Q]](`ex)

(1, 000) ⊥Mex[(1, 000) 7→ 1] ⊥Mex[(1, 000) 7→ 1]

(2, 000) ⊥Mex[(2, 000) 7→ 1] ⊥Mex[(2, 000) 7→ 1]

(1, 001) ⊥Mex[(1, 001) 7→ 1] ⊥Mex[(1, 001) 7→ 1]

(2, 001) ⊥Mex[(2, 001) 7→ 1] ⊥Mex[(2, 001) 7→ 1]

(3, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1] ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

(4, 01) ⊥Mex[(4, 01) 7→ 1] ⊥Mex[(4, 01) 7→ 1]

(5, 01) ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1] ⊥Mex[(3, 01) 7→ 1, (5, 01) 7→ 1]

It could be seen clearly that (S ��
{}

S) ��
{g,p}

Q and (S ��
{g,p}

S) ��
{g,p}

Q have exactly
the same results from Kp

? functions.

Lemma 4.4 If P →˜̀ Q then Ks
?[[P ]] ≤T Ks

?[[Q]] and Ks
?[[P ]](˜̀) ≤M Es

? [[P ]].

Proof. We proceed by induction on the inference of P →˜̀ Q as defined in Table
2.2. For each case, we use index 1 and 2 to differentiate the first and second
part of the proof.
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The case [Prefix ]:

1.

Ks
?[[(α

`, r).S]] = Ks[[(α`, r).S]]envK

= >T[` 7→ ⊥M[` 7→ 1]] uT Ks[[S]]envK

≤T Ks[[S]]envK = Ks
?[[S]]

as required.

2.

Ks
?[[(α

`, r).S]](˜̀) = Ks[[(α`, r).S]]envK(˜̀)
= >T[` 7→ ⊥M[` 7→ 1]](˜̀) uT Ks[[S]]envK(˜̀)
= Es

? [[(α`, r).S]] uT Ks[[S]]envK(˜̀)
≤M Es

? [[(α`, r).S]]

as required.

The case [Choice1 ]:

1. From Induction hypothesis, we know
Ks

?[[S
′
1]] ≤T Ks

?[[S1]] which means Ks[[S1]]envK ≤T Ks[[S′1]]envK .
Since S1 is part of S1 +S2, when calculating Ks[[S1]]envK , we should
take the effect caused by S1 + S2 into account. Here we shall have

Ks[[S1]]envS1+S2 = let [(α`1
1 , r1).Q1, · · · , (α`n

n , rn).Qn] = H[[S1 + S2]]

and [(α`1
1 , r1).Q1, · · · , (α`k

k , rk).Qk] = H[[S1]]
where k <= n

in uT i∈(1,··· ,k)(>T[`i 7→ M ] uT Ks[[Qi]]env)

where M = Es[[Σi∈(1,··· ,n)(α
`i
i , ri).Qi]]envE

recall that

Ks[[S1 + S2]]env = let [(α`1
1 , r1).Q1, · · · , (α`n

n , rn).Qn] = H[[S1 + S2]]
in uT i∈(1,··· ,n)(>T[`i 7→ M ] uT Ks[[Qi]]env)

where M = Es[[Σi∈(1,··· ,n)(α
`i
i , ri).Qi]]envE

thus, it is straightforward to see thatKs[[S1+S2]]envK ≤T Ks[[S1]]envS1+S2
K ,

so we have Ks[[S1 + S2]]envK ≤T Ks[[S1]]envS1+S2
K ≤T Ks[[S′1]]envK

and this proves the result.

2. from Ks[[S1 + S2]]env above, it is easy to see that
Ks

?[[S1+S2]](˜̀) ≤M Es
? [[S1+S2]] since clause for M equals the exposed

actions of S1 + S2.
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The case [Choice2 ]: Analogous.

The case [ConstC ]:

1. From the induction hypothesis, we know
Ks

?[[S]] ≤T Ks
?[[S

′]]. We also know Ks
?[[C]] = Ks

?[[S]] because C
def= S, so

Ks
?[[C]] ≤T Ks

?[[S
′]] as required.

2. From the induction hypothesis, we know
Ks

?[[S]](˜̀) ≤M Es
? [[S]] We also know Ks

?[[C]](˜̀) = Ks
?[[S]](˜̀) because

C
def= S, so Ks

?[[C]](˜̀) ≤M Es
? [[S]]

�

Lemma 4.5 If P →α(`,ı) Q then Kp[[P ]]ın ≤Tex Kp[[Q]]ın

and Kp[[P ]]ın( ˜̀ı) ≤Mex Ep[[P ]]ın .
If P →α(`,ı) Q then Kp

?[[P ]] ≤Tex Kp
?[[Q]] and Ks

?[[P ]]( ˜̀ı) ≤Mex Es
? [[P ]].

Proof. We will prove the first part, which will immediately illustrate the cor-
rectness of the second part.

We proceed by induction on the inference of P →
e`ı Q as defined in Table 2.3.

The method we adopt here is exactly the same as the one used when we prove
the counterpart in Lemma 4.2.

The case [Prefix,Choice1,Choice2 and ConstC ]: Refer proof of
ConstS.

The case [ConstS ]:

1. This component could be regarded as the axiom of all model compo-
nent rule. The induction hypothesis is P →α` P ′, from Lemma 4.4,
we have Ks

?[[P ]] ≤T Ks
?[[P

′]], we also have Ks
?[[P ]] = Ks

?[[S]]. Thus we
get Ks

?[[S]] ≤T Ks
?[[P

′]].
From the definition of Kp[[P ′]]ın , Kp[[S]]ın and the fact Ks

?[[S]] ≤T

Ks
?[[P

′]], it is easily seen that Kp[[S]]ın ≤T Kp[[P ′]]ın , and this proves
the result.

2. The induction hypothesis is P →α` P ′, from Lemma 4.4, we have
Ks

?[[P ]](`) ≤M Es
? [[P ]], we also have Ks

?[[P ]] = Ks
?[[S]] and Es

? [[P ]] =
Es

? [[S]], so we have Ks
?[[S]](`) ≤M Es

? [[S]].
From the definition of Kp[[S]]ın , Ep[[S]]ın and the fact Ks

?[[S]](`) ≤M

Es
? [[S]], it is easily seen that Kp[[S]]ın(`, ın) ≤Mex Ep[[S]]ın , and this

proves the result.
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The case [Coop1 ]:

1. From the induction hypothesis we have
Kp[[P1]]ın0 ≤Tex Kp[[P ′

1]]
ın0.

If we add uTexKp[[P2]]ın1 to its both sides, we get

Kp[[P1]]ın0 uTex Kp[[P2]]ın1 ≤Tex Kp[[P ′
1]]

ın0 uTex Kp[[P2]]ın1

⇔ Kp[[P1 ��
L

P2]]ın ≤Tex Kp[[P ′
1
��

L
P2]]ın

this proves the result.
2. From the induction hypothesis we have
Kp[[P1]]ın0(`1, ı1) ≤Mex Ep[[P1]]ın0, we can calculate

Kp[[P1 ��
L

P2]]ın = Kp[[P1]]ı0 uTex Kp[[P2]]ı1

≤Tex Kp[[P1]]ı0

So we have

Kp[[P1 ��
L

P2]]ın(`1, ı1) ≤Mex Kp[[P1]]ı0(`1, ı1)

≤Mex Ep[[P1]]ın0

≤Mex Ep[[P1 ��
L

P2]]ın

As required.

The case [Coop2 ]: Analogous.

The case [Coop3 ]:

1. From the induction hypothesis we have
Kp[[P1]]ın0 ≤Tex Kp[[P ′

1]]
ın0 and Kp[[P2]]ın1 ≤Tex Kp[[P ′

2]]
ın1.

so we have

Kp[[P1]]ın0 uTex Kp[[P2]]ın1 ≤Tex Kp[[P ′
1]]

ın0 uTex Kp[[P ′
2]]

ın1

⇔ Kp[[P1 ��
L

P2]]ın ≤Tex Kp[[P ′
1
��

L
P ′

2]]
ın

this proves the result.
2. From the induction hypothesis we have
Kp[[P1]]ın0(`1, ı1) ≤Mex Ep[[P1]]ın0 andKp[[P2]]ın1(`1, ı1) ≤Mex Ep[[P2]]ın1.
We calculate

Kp[[P1 ��
L

P2]]ın = Kp[[P1]]ın0 uTex Kp[[P2]]ın1

so we have

Kp[[P1 ��
L

P2]]ın(`l, ı1)(`2, ı2) = Kp[[P1 ��
L

P2]]ın(`l, ı1) +Mex

Kp[[P1 ��
L

P2]]ın(`2, ı2)

≤Mex Kp[[P1]]ın0(`1, ı1) +Mex Kp[[P2]]ın1(`2, ı2)
≤Mex Ep[[P1]]ın0 +Mex Ep[[P2]]ın1

= Ep[[P1 ��
L

P2]]ın
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as required.

The case [Hiding1 ]:

1. From the induction hypothesis we have
Kp[[P ]]ın ≤Tex Kp[[P ′]]ın . We also know Kp[[P ′]]ın = Kp[[P ′/L]]ın and
Kp[[P ]]ın = Kp[[P/L]]ın . So it is straightforward to see that

Kp[[P/L]]ın ≤Tex Kp[[P ′/L]]ın .

this proves the result.

2. From the induction hypothesis we have Kp[[P ]]ın(`, ı) ≤Mex Ep[[P ]]ın

We also know Kp[[P ]]ın = Kp[[P/L]]ın and Ep[[P ]]ın = Ep[[P/L]]ın . So
it is straightforward to see that

Kp[[P/L]]ın(`, ı) ≤Mex Ep[[P/L]]ın .

The case [Hiding2 ]: Analogous.

This complete the proof of the first part. For the second part, since Kp
?[[Q]] =

Kp[[Q]]ı0 , Kp
?[[P ]] = Kp[[P ]]ı0 and Ep

? [[P ]] = Ep[[P ]]ı0 , when combined with the first
part, it is straightforward to see the second part holds. �

Turning to the implementation of the least fixed point we use a simple iterative
procedure that is terminated when Fj

K(env>T
) = Fj+1

K (env>T
). This procedure

works because the lattice of interest admits no infinite descending chains.

4.4 The Transfer Function

In the classic Bit Vector Frameworks the transfer function looks like the following
formula:

fblock(E) = (E \ killblock) ∪ genblock

For a forward analysis, E is the information holding at the entry of the block,
killblock is the information killed by executing this block, while genblock is the
information created by it. In our scenario, E is the extra extended multiset Mex

that tells all current available exposed actions. The block itself will be identified
by ’ ˜̀ı’ that may be executed, where ˜̀ı ∈ Labex∪ (Labex×Labex). We come
up with our transfer function which takes the following form:

transfer
e`ı(E) = (E −M Kp

?[[P ]]( ˜̀ı)) +M Gp
? [[P ]]( ˜̀ı)
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We used Kp
? andGp

? which are discussed in the previous section. And the transfer
function depicts how the information evolves during the execution of the model
processes.

From the formula we also know that the transfer
e`ı function is monotonic.

The following result tells that the transfer functions transfer
e`ı defined above

provide safe approximations to the exposed actions of the resulting process:

Proposition 4.6 If P →
e`ı Q then Ep[[Q]]ın ≤Mex transfer

e`ı(E
p[[P ]]ın).

If P →
e`ı Q then Ep

? [[Q]] ≤Mex transfer
e`ı(E

p
? [[P ]]).

Proof. We will proof the first part, which will immediately illustrate the cor-
rectness of the second part.

We proceed by induction on the inference of P →
e`ı Q as defined in Table 2.3.

The case [Prefix ]: First observe that Gp[[(α`, r).S]]ın(`, ın) ≥Mex Ep[[S]]ın .
Then

(Ep[[(α`, r).S]]ın −Mex Kp[[(α`, r).S]]ın(`, ın)) +Mex Gp[[(α`, r).S]]ın(`, ın)
≥Mex Gp[[(α`, r).S]]ın(`, ın)
≥Mex Ep[[S]]ın

as required.

The case [Choice1 ]: From the induction hypothesis we have

(Ep[[S1]]ın −Mex Kp[[S1]]ın(`1, ın)) +Mex Gp[[S1]]ın(`1, ın) ≥Mex Ep[[S′1]]
ın

We haveKp[[S1]]ın(`1, ın) ≥Mex Kp[[S1+S2]]ın(`1, ın) and Gp[[S1]]ın(`1, ın) ≤Mex

Gp[[S1 + S2]]ın(`1, ın), we also have Ep[[S1 + S2]]ın ≥Mex Ep[[S1]]ın .

So we get

(Ep[[S1 + S2]]ın −Mex Kp[[S1 + S2]]ın(`1, ın)) +Mex Gp[[S1 + S2]]ın(`1, ın)
≥Mex (Ep[[S1]]ın −Mex Kp[[S1]]ın(`1, ın)) +Mex Gp[[S1]]ın(`1, ın)
≥Mex Ep[[S′1]]

ın

where we have use the monotonicity of +Mex and that −Mex is monotonic
in its left argument and anti-monotonic in its right argument as stated in
Fact 3.5. This proves the result.
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The case [Choice2 ]: Analogous.

The case [ConstC ]: From the induction hypothesis we have

(Ep[[S]]ın −Mex Kp[[S]]ın(`, ın)) +Mex Gp[[S]]ın(`, ın) ≥Mex Ep[[S′]]ın

Because C
def= S, we have Ep[[S]]ın = Ep[[C]]ın ,Kp[[S]]ın = Kp[[C]]ınandGp[[S]]ın =

Gp[[C]]ın .

Thus we have

(Ep[[C]]ın −Mex Kp[[C]]ın(`, ın)) +Mex Gp[[C]]ın(`, ın) ≥Mex Ep[[S′]]ın

And this proves the result.

The case [Coop1 ]: From the induction hypothesis we have

Ep[[P ′
1]]

ın ≤Mex (Ep[[P1]]ın0 −Mex Kp[[P1]]ın0(`1, ı1)) +Mex Gp[[P1]]ın0(`1, ı1)
≤Mex (Ep[[P1]]ın0 −Mex Kp[[P1 ��

L
P2]]ın(`1, ı1))

+MexGp[[P1 ��
L

P2]]ın(`1, ı1)

using Kp[[P1]]ın0(`1, ı1) ≥Mex Kp[[P1+P2]]ın(`1, ı1), Gp[[P1]]ın0(`1, ı1) ≤Mex

Gp[[P1 + P2]]ın(`1, ı1) and the monotonicity of +Mex and that −Mex is
monotonic in its left argument and anti-monotonic in its right argument
as stated in Fact 3.5.

We can calculate

Ep[[P ′
1
��

L
P2]]ın = Ep[[P ′

1]]
ın0 +Mex Ep[[P2]]ın1

≤Mex (Ep[[P1]]ın0 −Mex Kp[[P1 ��
L

P2]]ın(`1, ı1))

+MexGp[[P1 ��
L

P2]]ın(`1, ı1)) +Mex Ep[[P2]]ı1

= (Ep[[P1]]ın0 +Mex Ep[[P2]]ı1)−Mex Kp[[P1 ��
L

P2]]ın(`1, ı1)

+MexGp[[P1 ��
L

P2]]ın(`1, ı1))

= (Ep[[P1 ��
L

P2]]ın −Mex Kp[[P1 ��
L

P2]]ın(`1, ı1))

+MexGp[[P1 ��
L

P2]]ın(`1, ı1))

where we use Ep[[P1]]ın0 ≥Mex Kp[[P1]]ın0(`1, ı1) ≥Mex Kp[[P1+P2]]ın(`1, ı1)
(Lemma 4.4) and Fact 3.6. And this proves the result.

The case [Coop2 ]: Analogous.

The case [Coop3 ]: As in the previous case, from induction hypothesis we
have

Ep[[P ′
1]]

ın ≤Mex Ep[[P1]]ın0 −Mex Kp[[P1]]ın0(`1, ı1) +Mex Gp[[P1]]ın0(`1, ı1)
Ep[[P ′

2]]
ın ≤Mex Ep[[P2]]ın1 −Mex Kp[[P2]]ın1(`2, ı2) +Mex Gp[[P2]]ın1(`2, ı2)
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We can calculate

Ep[[P ′
1
��

L
P ′

2]]
ın = Ep[[P ′

1]]
ın0 +Mex Ep[[P ′

2]]
ın1

≤Mex Ep[[P1]]ın0 −Mex Kp[[P1]]ın0(`1, ı1) +Mex Gp[[P1]]ın0(`1, ı1)
+MexEp[[P2]]ın1 −Mex Kp[[P2]]ın1(`2, ı2) +Mex Gp[[P2]]ın1(`2, ı2)

= (Ep[[P1 ��
L

P2]]ın −Mex Kp[[P1 ��
L

P2]]ın(`1, ı1))

+MexGp[[P1 ��
L

P2]]ın(`1, ı1))

using Lemma 4.4 and Fact 3.6. This proves the result.

The case [Hiding1 ]: From the induction hypothesis we have

(Ep[[P ]]ın −Mex Kp[[P ]]ın(`, ı)) +Mex Gp[[P ]]ın(`, ı) ≥Mex Ep[[P ′]]ın

Because we have Ep[[P ′/L]]ın = Ep[[P ′]]ın , Ep[[P/L]]ın = Ep[[P ]]ın ,
Kp[[P/L]]ın = Kp[[P ]]ın and Gp[[P/L]]ın = Gp[[P ]]ın .

Thus we have

(Ep[[P/L]]ın −Mex Kp[[P/L]]ın(`, ı)) +Mex Gp[[P/L]]ın(`, ı) ≥Mex Ep[[P ′/L]]ın

And this proves the result.

The case [Hiding2 ]: Analogous.

The case [ConstS ]: Analogous to the case ConstS.

This complete the proof of the first part. For the second part, since Ep
? [[Q]] =

Ep[[Q]]0 and Ep
? [[P ]] = Ep[[P ]]0, when combined with the first part, it is straight-

forward to see the second part holds.

�
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Chapter 5

Constructing the Automaton

Given a program
let C1 , S1; · · · ;Ck , Sk in P0

we shall now construct a finite automaton that would reflect the potentially
infinite transition of the system by a finite transition of the the automaton.
Our automaton will have the following important components:

Q: It describes a set of states. Each state q ∈ Q is associated with an extra
extended multiset E[q] that represent the current exposed actions of that
state. In particular, q represent a certain process P with Ep

? [[P ]] ≤M E[q].

q0: q0 is the initial state of the automaton, it directly determines the exposed
actions Ep

? [[P0]] of the initial process.

E: E is a map that associate each state q ∈ Q to the exposed actions of that
state.

δ: A transition relation δ containing transitions of the following two forms:

• qs ⇒α
(`1,ı1)(`2,ı2)

qt reflecting that in state qs two processes with the
same cooperation action type under the same effective cooperation
scope(cf. Subsection 5.3) labeled `1 and `2 on layers ı1 and ı2, re-
spectively, may interact and give rise to the state qt.
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q_0

q_1(<1,000>:<3,01>)

q_2

(<1,001>:<3,01>)

q_3

<4,01>

q_4
<4,01>

(<2,000>:<5,01>)

q_5

(<1,001>:<3,01>)

(<2,001>:<5,01>)
(<1,000>:<3,01>) q_6

<4,01>

(<2,001>:<5,01>)

(<2,000>:<5,01>)

Figure 5.1: Automaton of
(S ��

{}
S) ��

{g,p}
Q

• qs ⇒α
`,ı qt reflecting that in state qs a process that does not need to

cooperate with other processes for action α, could proceed indepen-
dently on action α that identified by (`, ı) and give rise to the state
qt.

We denote the automaton by (Q, q0, δ, E).

This automaton represents an arbitrary non-deterministic automaton since it
doesn’t have any final state: once it start from q0, it will never stop and will
always have transition toward other state(except a deadlock occur). Further-
more, we could call it partially deterministic in the sense that if qs ⇒α

e`ı
q1 and

qs ⇒α
e`ı

q2 it could be ensured that q1 = q2. However, we could also simply con-
vert this automaton to deterministic by adding a fail state qf and a transition
qs ⇒α

e`ı
qf whenever there does not exist a state qt with qs ⇒α

e`ı
qt.

Example 5.1 For (S ��
{}

S) ��
{g,p}

Q from Example 2.1, we obtain the finite au-
tomaton shown in Figure 5.1. The initial state is q0 and there are seven states
in the automaton: q0, · · · , q6. The transitions among these states are clearly
illustrated in the figure 5.1. The exposed actions(the extra extended multisets)
correspond to each state are listed below.

q E[q]

q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1, (4, 01) 7→ 1]

q2 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1, (4, 01) 7→ 1]

q3 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

q4 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1, (4, 01) 7→ 1]

q6 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]
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The key algorithm for constructing the automaton is a worklist algorithm and
it is represented in Subsection 5.1. It starts out from the initial state q0 and
constructs the automaton by adding more and more states and transitions. The
algorithm makes use of several auxiliary functions that will be further introduced
in the subsequent subsections:

• Given a state qs representing some exposed actions we need to select those
labels ˜̀ı (which represent actions) that may interact in the next step; this is
done using the procedure enabled described in Subsection 5.3. However,
to help solving the scope problem (we will talk about it later), we also
developed the auxiliary function Y?.

• Once the label-layer pair ˜̀ı has been selected we can use the function
transfer

e`ı already introduced in the previous chapter and this could de-
termine the denotation of exposed actions from this transition for the
target state.

• Finally, a target state qt should be generated by combining information of
the previous states and the contribution to the target state given by the
current transfer function.

In the last part of this chapter, we will give result of the overall correctness
of the construction.

5.1 The worklist algorithm

The main data structures of the algorithm are:

• a set Q of the states introduced so far; for each state q the table E will
specify the associated extra extended multiset E[q]∈ Mex .

• a worklist W being a subset of Q, which contains those states that have
to be processed.

• a set δ of triples (qs, ˜̀ı, qt) defining the current transitions; here qs ∈ Q is
the source state, qt ∈ Q is the target state and ˜̀ı ∈ Labex ∪ (Labex ×
Labex) is the label-layer pair of edge.

The overall algorithm has been displayed in Table 5.1 and is explained below.

Line(1) describes the initialization of the program: first the set of states Q is
initialized to contain q0 and the associated entry in table E is set to Ep

? [[P0]]. q0
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(1) Q := {q0}; E[q0] := Ep
? [[P0]];W := {q0}; δ := ∅;

(2) while W 6= ∅ do

(3) select qs from W;W := W \ {qs};
(4) for each ˜̀ı ∈ enabled(E[qs]) do

(5) let E = transfer
e`ı(E[qs])

(6) in update(qs, ˜̀ı, E)

Table 5.1: The worklist algorithm for constructing the automaton.

has been added to Worklist W as well that indicates it will be proceeded in the
next step. The transition relation δ will be empty.

Line(2) introduces the classical loop inspecting the contents of the worklist W.
For each loop, a state qs will be picked up from the W and removed at the same
time, which is shown in line(3). Line(4) shows that for this qs, we will go through
each ˜̀ı from the set of all potential interactions calculated by enabled(E[qs])
function, which will be introduced in the following subsection. Here we just keep
in mind that enabled(E[qs]) ⊆ (E[qs]∪ (E[qs]×E[qs]). It reflects that either one
of the actions or a pair of actions from E[qs] will take part in the next interaction.

Line(5) and (6) describe once a potential transition ˜̀ı is picked up, how it
influence the previous constructed states and transitions of the automaton. In
line(6), the function transfer

e`ı(E[qs]) will return a extra extended multiset E
representing denotation to the target state in term of exposed actions calculated
from this transition. According to this denotation E, Line(6) will call function
update to refresh the properties of constructing automaton: states Q, the table
E and transition relationship δ. The basic idea for this function is: first to find
whether an existing state could be reused, if not a new state will be introduced;
second the table E and all relative transitions δ will be updated. This function
would be presented in the next subsection.

5.2 The procedure update

The procedure update(qs, ˜̀ı, E) is specified in Table 5.2. The three parameters
are connected as follows: E is the extra extended multiset describing the contri-
bution of the target state(we will call it qt later in the Table 5.2) to which there
should be a transition marked ˜̀ı that emerges from qs. The procedure proceeds
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(1) if there exists q ∈ Q with H(E[q]) = H(E)
(2) then qt := q

(3) else select qt from outside Q;
(4) Q := Q ∪ {qt}; E[qt] := ⊥Mex;
(5) if ¬(E[qt] ≥Mex E)
(6) then E[qt] := E[qt]∇MexE;W := W ∪ {qt};
(7) δ := δ \ {(qs, ˜̀ı, q) | q ∈ Q} ∪ {(qs, ˜̀ı, qt)};
(8) clean-up(Q,W, δ)

Table 5.2: Processing enabled actions: update(qs, ˜̀ı, E)

in three steps:

1. First it determines the target state qt: In line(1)-(4), we first check whether
an existing state in Q could be used as qt directly, if not a new state
would be constructed for qt and consequently the entry of the new state
in E should be appended and initialized to ⊥Mex, the new state should be
appended to set Q as well. The thing worth pointing here is: in line(1),
we use H(E[q]) = H(E) to determine whether an existing state q has
the desired exposed actions which is directly equal to (or its H function’s
value equal to) what E describes(or its H function describes).H is called
the granularity function, and we will discuss it in later.

2. Second it determines the entry of qt in table E that should be updated
or not. This is checked in line(5) which makes a judgement whether the
description E[qt] includes the required information E. If it does not, in
line(6) we first use widening operator ∇M to combine the old and the new
extra extended multisets in such a way that termination of the overall
algorithm is ensured. This widening operator ∇M will be defined later. In
this case, since qt and E[qt] is considered modified, we should re-process
it by putting it to worklist W.

3. Lastly, line(7)-(8) will update the transition relation that meets the changes
made above. line(7) add the triple (qs, ˜̀ı, qt) to δ as expected, however,
it also removes any previous transitions from qs with label ˜̀ı as its target
state qt might be modified and isn’t correct any more. As a consequence
the automaton may contain unreachable parts and in line(8) the proce-
dure clean-up in Table 5.3 will be invoked to remove the parts of Q, W
and δ that can’t be reached from the initial state q0.
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(1) Qreach := {q0} ∪ {q | ∃n,∃q1, · · · , qn : (q0, · · · , q1) ∈ δ ∧ · · · ∧ (qn, · · · , q) ∈ δ};
(2) Q := Q ∩Qreach;
(3) δ := δ ∩ (Qreach × Labex ∪ (Labex× Labex)×Qreach);
(4) W := W ∩Qreach;

Table 5.3: The clean-up procedure: clean-up(Q,W,δ)

5.2.1 The widening operator

The widening operator ∇Mex : Mex ×Mex → Mex used in line (6) of Table 5.2
combines extra extended multisets, and is defined by:

(M1∇MexM2)(`ex) =

 M1(`ex) if M2(`ex) ≤ M1(`ex)
M2(`ex) if M1(`ex) = 0 ∧M2(`ex) > 0
> otherwise

It will ensure that the chain of values taken by E[qt] in line(6) always stabilizes
after a finite number of steps. Please refer to [13][28] for the definition of that.
Here we merely establish the correctness of our choice.

Fact 5.1 ∇Mex is a widening operator, in particular M1tMexM2 ≤Mex M1∇MexM2.

5.2.2 The clean-up procedure

The clean-up procedure in Table 5.3 will do some cleaning job after the target
state qt is updated in Table 5.2. In line(1), Qreach will collect all states that could
be reached from the initial state q0, line(2)-(4) will simply make intersection of
the Q, W with Qreach and remove transition relations which include source
states or target states that are not reachable.

5.2.3 The granularity function

We now return to the choice of granularity function H that is used in line (1)
of table 5.2.

H : Mex → H
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The function HL,k (for k ∈ N ∪ {>} and L ⊆ Labex) is one example of a
granularity function:

HL,k(E) = {(`ex, n) | `ex ∈ L ∧ E(`ex) = n ≤ k}
∪ {(`ex,>) | `ex ∈ L ∧ E(`ex) = n > k ∨ E(`ex) = >}

To ensure the correct operation of the algorithm we shall be interested in gran-
ularity functions with certain properties:

• H is finitary if for all choices of finite sets Labexfin ⊆ Labex, H should
be

H : (Labexfin → N ∪ {>}) → Hfin

for some finite subset Hfin ⊆ H.

• H is stable if:

H(E1) = H(E2) implies H(E1∇MexE2) = H(Ei) for i = 1, 2

Fact 5.2 The granularity function HL,k is finitary as well as stable (for all
choices of L ⊆ Labex and k ≥ 0, but k 6= >).

Now we state a general termination result for the construction of the finite
automaton:

Theorem 5.3 Whenever the algorithm of Table 5.1 terminates it produces a
partially deterministic automaton.
If the granularity function H is stable then the automaton satisfy the following
injective property:

∀q1, q2 ∈ Q : H(E[q1]) = H(E[q2]) ⇒ q1 = q2

If the granularity function H is finitary then the algorithm always terminates.

Proof. The proof is similar to the counterpart exhibits in [16], we omit it here.
�

Even though Fact 5.2 doesn’t guarantee that when k = >, HL,k is still finitary
as well as stable (which could ensure the algorithm of Table 5.1 terminate (Refer
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to Theorem 5.3)), we observed that if PEPA programs fulfills certain condition,
Fact 5.2 will still hold even k = >. We will discuss this condition in Subsetion
5.5.

In the following part, if there is no specific declaration, we will equip HL,> to
our analysis (all the programs in this thesis fulfills that condition, so it is safe
to use k = >), for obtaining the best precision from this granularity function to
our analysis.

Example 5.2 To illustrate the worklist algorithm consider the program intro-
duced before: (S ��

{g,p}
S) ��

{g,p}
Q. We adopt the granularity function HL,>. which

guarantees that we get the automaton with best precision from HL,k(for k ∈
N ∪ {>}). Initially the automaton will only have one state q0 with

E[q0] = ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1].

Then the automaton will evolve as we execute the while loop from Table 5.1.
After eight rounds of running that loop we get the constructed automaton, which
ends up with eight states in total.

Figure 5.2 to 5.9 demonstrate the process of building up the automaton step by
step. Each figure shows the nodes and edges already established after a specific
round. There are nodes with three colors in these figures: the pink nodes rep-
resent the states that have already been proceeded; the blue and gold nodes all
together represent states in the W set waiting for processing and in particular,
the gold node corresponds to the state that will be processed in the next round
(it is randomly selected from blue nodes). There are edges with two colors in
these figures: the blue edges represent transitions already established before the
current round while the red edges represent transitions be created just at the
current round. We also append eight tables to supplement demonstrating these
figures and each of them is included with the extra extended multisets relevant
to each state.

After the first round of executing the while loop from Table 5.1, we get a automa-
ton with four states, among which q1, q2 and q3 are generated just in this round.
At this round, the enabled[qs] function at Line (4) from Table 5.1 (this function
will be described in detail in Section 5.3, here qs = q0) returns three pairs of pos-
sible interactions: {(1, 000) : (3, 01), (1, 001) : (3, 01), (1, 000) : (1, 001)}. If we
take (1, 001) : (3, 001), then the transition function requires that the target state
should have the denotation E = ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1, (4, 01) 7→ 1].
In the mean time, the granularity function HL,> at Line (1) from Table 5.2
forces us to select a new state(here q2) and then put this denotation to E[q2]
with ∇Mex operator at Line(6) from Table 5.2. In this way we generate q1, q2
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and q3 and put them to the W set for processing in the following rounds, among
which q1 will be processed in next rounds.

In the second round, q1 is considered and thus there are three possible in-
teractions: {(2, 000) : (2, 001), (2, 001) : (5, 01), (2, 000) : (5, 01)}. Picking
up (2, 001) : (5, 01) and (2, 000) : (5, 01) will lead the creation of two new
states q4 and q5 as performed in round one. However, the transition from
(2, 000) : (2, 001) make the transfer function require target state having the de-
notation of E = ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]. This
time the granularity function HL,> at Line (1) from Table 5.2 enables us to
reuse the state q0 which has the same denotation.

The three to eight rounds perform the similar operations and we will not explains
them here in detail.

q E[q] W = {q1, q2, q3}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

Round1

q E[q] W = {q2, q3, q4, q5}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

Round2

q_0

q_1(<1,001>:<1,000>)

q_2
(<1,000>:<3,01>)

q_3

(<1,001>:<3,01>)

Figure 5.2: Round 1

q_0

q_1
(<1,001>:<1,000>)

q_2
(<1,000>:<3,01>)

q_3

(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4(<2,001>:<5,01>)

q_5

(<2,000>:<5,01>)

Figure 5.3: Round 2
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q E[q] W = {q3, q4, q5}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

Round3

q E[q] W = {q4, q5}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

Round4

q_0

q_1(<1,001>:<1,000>)

q_2(<1,000>:<3,01>)

q_3

(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4

(<2,001>:<5,01>)
q_5(<2,000>:<5,01>)

<4,01>

Figure 5.4: Round 3

q_0 q_1
(<1,001>:<1,000>)

q_2(<1,000>:<3,01>)

q_3
(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4(<2,001>:<5,01>)

q_5

(<2,000>:<5,01>)

<4,01>

<4,01>

Figure 5.5: Round 4

q E[q] W = {q5, q6}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q6 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

Round5

q E[q] W = {q6}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q6 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

Round6
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q_0

q_1(<1,001>:<1,000>)

q_2(<1,000>:<3,01>)

q_3

(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4

(<2,001>:<5,01>)

q_5

(<2,000>:<5,01>)

<4,01>

<4,01>

(<2,000>:<5,01>)
q_6

(<1,001>:<3,01>)

Figure 5.6: Round 5

q_0 q_1
(<1,001>:<1,000>)

q_2(<1,000>:<3,01>)

q_3
(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4(<2,001>:<5,01>)

q_5

(<2,000>:<5,01>)

<4,01>

<4,01>

(<2,000>:<5,01>)

q_6

(<1,001>:<3,01>)

(<2,001>:<5,01>)

(<1,000>:<3,01>)

Figure 5.7: Round 6

q E[q] W = {q7}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q6 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q7 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

Round7

q E[q] W = {}
q0 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q2 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

q3 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q4 ⊥Mex[(2, 000) 7→ 1, (1, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q5 ⊥Mex[(1, 000) 7→ 1, (2, 001) 7→ 1,

(3, 01) 7→ 1, (5, 01) 7→ 1]

q6 ⊥Mex[(2, 000) 7→ 1, (2, 001) 7→ 1,

(4, 01) 7→ 1]

q7 ⊥Mex[(1, 000) 7→ 1, (1, 001) 7→ 1,

(4, 01) 7→ 1]

Round8
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q_0 q_1(<1,001>:<1,000>)

q_2(<1,000>:<3,01>)

q_3

(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4

(<2,001>:<5,01>)

q_5

(<2,000>:<5,01>)

<4,01>

<4,01>

(<2,000>:<5,01>)

q_6

(<1,001>:<3,01>)

(<2,001>:<5,01>)

(<1,000>:<3,01>)

<4,01> q_7
(<2,001>:<2,000>)

Figure 5.8: Round 7

q_0

q_1
(<1,001>:<1,000>)

q_2

(<1,000>:<3,01>)

q_3(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4

(<2,001>:<5,01>)

q_5
(<2,000>:<5,01>)

<4,01>

<4,01>

(<2,000>:<5,01>)

q_6(<1,001>:<3,01>)

(<2,001>:<5,01>)
(<1,000>:<3,01>)

<4,01>

q_7
(<2,001>:<2,000>)

<4,01>

(<1,001>:<1,000>)

Figure 5.9: Round 8

5.3 The computation of enabled exposed actions

We now return to the construction of procedure enabled(E) used in line (4)
of Table 5.1 for worklist algorithm. Here E taking the form E[qs] is an extra
extended multiset that describes all potential enabled exposed actions at that
state qs.

From Table 2.1, we know there are two kinds of transition that could take place
among processes in PEPA.

1. The transition only involves one process. In this case, The action of this
transition should not be surrounded by any cooperation set containing the
same type. Put it more accurately, this action can’t be under any effective
cooperation scope that covers this type.

2. The transition involves two processes cooperating on the same action type
within the same effective cooperation scope.
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Sequential component definition

P
def= (α, 1).P

Q
def= (α, 2).(β, 3).Q

Model component definition

case(1): P

case(2): P ��
α

Q

case(3): P ��
β

Q

case(4): P ��
α

(Q/{α})

Table 5.4: A example for demonstrating cooperation environment

Before introducing the concept of effective cooperation scope, we would present
cooperation environment, cooperation scope first, then we come to the term
effective cooperation scope.

Cooperation environment For the sake of determining whether an action
should be proceeded independently or cooperate with other processes that
have the same action type, it is not enough just to analyze those processes
with the suitable action type. One also need to consider what is their
cooperation environment : the cooperation dependency among different
processes due to the use of cooperation and hiding combinators.

Example 5.3 We define a program shown in Table 5.4: first we define
two sequential components P and Q, then select different model components
to illustrate the impact of various cooperation environment to action (α, 1)
in process P.

In case(1), action (α, 1) is proceeded itself. In case(2), action(α, 1) in
P must cooperate with action (α, 2) in Q, due to the fact they set up a
cooperation set{α} between themselves. However, in case(3), since the
cooperation set is {β} that doesn’t cover action α, (α, 1) could still be
proceeded on its own. For case(4), even though P and Q share a coopera-
tion set{α},(α, 1) needn’t cooperate with (α, 2) because the hidden operator
make (α, 2) invisible to the process outside Q.

Cooperation scope Up to now, it could be seen clearly that different coopera-
tion environment would make sequential components behave dissimilarly.
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If take this step further, we will discuss how the cooperation and hid-
den combinators impose their semantics force on the various sequential
processes. To make it simple, here we first present an important concept
cooperation scope to depict such semantics force: within a given program,
a set of sequential processes might be influenced by a certain cooperation
or hidden combinator, we say this set of sequential processes is under the
cooperation scope of this certain cooperation or hidden combinator.

Recall we have defined the layer in Subsection 2.3 and this could help us
easily distinguish the position of different sequential processes and their
internal actions in a given model process. Here we borrow the concept
of layer to the cooperation and hidden combinator in order to redefine
cooperation scope much more accurately. The rule for allocating layer to
cooperation and hidden combinator is quite similar to the rule that applied
to actions in Subsection 2.3. The cooperation scope for either cooperation
combinators or hidden combinators is all sequential processes or actions
whose current layer is equal or lower than the combinator’s(cf. Subsection
2.3, here we underline the current layer of each sequential process in the
next example).

Example 5.4 For the sequential components in Table 5.4, if we add a
new model component called case(5) as follows:

case(5) : P︸︷︷︸
00

��
α︸︷︷︸
0

( P︸︷︷︸
010

��
α︸︷︷︸
01

( Q︸︷︷︸
011

/{α}︸ ︷︷ ︸
01

))

It could be easily deduced that for cooperation combinator ��
α︸︷︷︸
0

, processes

P︸︷︷︸
00

, P︸︷︷︸
010

and Q︸︷︷︸
011

are under its cooperation scope. Similarly, for ��
α︸︷︷︸
01

,

P︸︷︷︸
010

and Q︸︷︷︸
011

are under its cooperation scope. For hidden combinator

/{α}︸ ︷︷ ︸
01

, Q︸︷︷︸
011

is under its cooperation scope.

Effective cooperation scope According to the semantics of the cooperation
and hidden combinator, a cooperation combinator’s cooperation scope al-
ways try to include more processes for cooperating while hidden combi-
nator’s cooperation scope always intends to exclude some processes and
exempt them from cooperating.

In order to merge these two kinds of cooperation scopes, we will introduce
effective cooperation scope: for any cooperation combinator with a certain
type, the effective cooperation scope should contains sequential processes
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under this cooperation combinator’ cooperation scope but excludes the
processes that falls into the cooperation scope of all hidden combina-
tors(whose layers are lower than the cooperation combinator of this type).
Clearly if two processes are under the same effective cooperation scope of
a cooperation combinator with a certain type, they must cooperate with
each other when make a transition on that type. If a process is not under
any effective cooperation scope, it could proceed independently.

Example 5.5 When scrutinizing the example 5.4 , for cooperation com-
binator ��

α︸︷︷︸
0

, P︸︷︷︸
00

and P︸︷︷︸
010

are under its effective cooperation scope; for

cooperation combinator ��
α︸︷︷︸
01

, its effective cooperation scope covers P︸︷︷︸
010

.

And it could be seen that for process P︸︷︷︸
010

, it is under both ��
α︸︷︷︸
0

and ��
α︸︷︷︸
01

’s

effective cooperation scope. This means that it must cooperate with either
processes that under cooperation scope of these two cooperation combina-
tors. For Q︸︷︷︸

011

, it is not under any effective cooperation scope, so the action

in it could proceed independently.

Now we will outline the significant steps in function enabled (to be presented
in Subsection 5.3.1) that calculate all potential transitions from extra extended
multiset E.

• Given a program, for any action with type α, we need to obtain all cooper-
ation and hidden combinators whose cooperation scope covers this action.
This is done using the function Y describled in Subsection 5.3.2.

• Given a program, when we get the combinators(cooperation or hidden)
with the right cooperation scope of all actions, we need to get the more
useful information of their effective cooperation scope. This will leave each
action merely to be bounded with cooperation combinators(get rid of the
hidden combinators). The algorithm for doing this job is developed in
function removehidd, which will be presented in Subsection 5.3.3.

• Finally, we are able to find all enabled transitions according to the infor-
mation from relevant effective cooperation scope. In particular, how to
find all actions to be cooperated among different processes is developed
in function matchaction that would be further discussed in Subsection
5.3.4.
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5.3.1 The enabled function

The main data structure of the enabled function are:

• a map Z ∈ Y linking each action with the layer of combinators (either
cooperation or hidden) whose cooperation scope covers the action itself,
where

Y = Labex → (Act× ℘(Layer)× ℘(Layer))

The first ℘(Layer) describes the set of cooperation combinators that could
be on several layers, while the second ℘(Layer) records the similar infor-
mation for hidden combinators.

• a set S ∈ U, this set contains action information and the respective coop-
eration combinators whose effective cooperation scope cover this action.

U = ℘(Labex × Act × ℘(Layer))
= ℘(Lab × Layer × Act × ℘(Layer))

The ℘(Layer) describes the set of cooperation combinators whose effective
cooperation scope covers this action.

• a variable R ∈ R collecting the enabled transitions from both type, where

R = ℘(Labex)× ℘(Labex× Labex)

℘(Labex) is the result for transitions involving single action while ℘(Labex×
Labex) tracks all transitions involving two actions with the same type.

• E ∈ Mex taking the form E[qs] is an extra extended multiset that describes
all potential enabled exposed actions at that state qs.

The overall algorithm for enabled function is displayed in Table 5.5 and is ex-
plained below. The initialization are performed in line(1) and (2): First Z is
calculated by Yp

? [[P0]](0, ∅, ∅) and this function is discussed in the following Sub-
section 5.3.2, here we just give its parameters’ meaning: P represents the model
component of this program; 0, ∅, and ∅ respectively indicate the function will
start from the 0 layer(top layer), cooperation and hidden set for combinators is
set ∅ (combinators here should has the right cooperation scope over different ac-
tions) and later the function will traverse the program tree and collect necessary
information marked with correct layer to the cooperation and hidden set on the
fly. The result of the enabled function R is initialized to ∅. Taking E and Z
as parameters, line(2) obtain the value of S by removehidd function. And this
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enabled(E)

(1) Z := Yp
? [[P0]](0, ∅, ∅); R := ∅;

(2) S := removehidd(E,Z);
(3) for each (`, ı, α, C) ∈ S do

(4) if C = ∅
(5) then R := R ∪ {(`, ı)}
(6) else for each ıc ∈ C do

(7) R := R ∪ matchaction(ıc, (`, ı, α, C), S)
(8) return R;

Table 5.5: The enabled(E) procedure

function will provide information for the following steps in the algorithm that
each action links with its cooperation combinators set(here we only record their
layers)that has right effective cooperation scope.

Line(3)-(8) will use the information from S and check for each record the action
should proceed independently or cooperate with other records in S. The in-
specting process start from line(3), where each record contains: the label of the
action `, the layer ı the action belongs to, the action type α and the set C for
all cooperation combinators that have the effective cooperation scope covering
this action. Line(4)and Line(5) will show that if the action is not under any
effective cooperation scope (C = ∅), this action should be added to the result
set R by itself. Line(6) and (7) shows the different cases, if this action has any
combinators whose effective cooperation scope covers itself, the function will
go through all combinators(line(6)) and check if it could find other actions to
cooperate with the default one in S by function matchaction(to be presented
in the following Subsection 5.3.4), and add all possible pair of actions to the
result set R. Line(8) will return the final result set E containing both single
actions and actions to be proceeded with cooperation.

5.3.2 The function Y and its auxiliary functions

Now we will present the function Y at line(1) in Table 5.5 that would provide
information related to cooperation scopes for all actions in the program.

Recall that we need to get a result from function Y that belongs to the following
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domain:
Y = Labex → (Act× ℘(Layer)× ℘(Layer))

where the first and second ℘(Layer) represent the set of combinators’ layers
for cooperation and hidden respectively. The entry in this map Labex requires
each label must link to some layer information. In other words, Label must
links to Layer, ℘(Layer) and ℘(Layer). The first problem is how to put each
label together correspond with layer information.

From the previous chapter, we already know that because of cooperation envi-
ronment, an action in a certain sequential process may behave dissimilarly if it
is located at different layers. Here we can conclude that the sequential process
itself may also act distinctively when located at different layers. And the layer
information of each sequential process (differentiated by sequential process name
Ck) will be assigned according to the structure of the model component defini-
tion.

Thus we come to the point of how to solve the problem above, which should
have two steps:
let C1 , S1; · · · ;Ck , Sk in P0

1. For every sequential process name Ck, collect all possible labels(actions)
that belong to that process (all possible actions a sequential process might
behave as).

2. Put layer information to each sequential process name Ck which is deter-
mined by the structure of the model component definition. Subsequently
put layer information to all possible labels(actions) of different sequential
processes separately.

For step1 we have developed a function Ys, while at step2 a function Yp was
proposed.

The function Ys
? tries to collect all action label-type pairs related for each se-

quential process name and has the functionality

Ys
? : Sproc → ℘(Lab×Act)

The function is defined in Table 5.6 using the overall pattern developed in pre-
vious sections. So we have a function

Ys : Sproc → (PN → ℘(Lab×Act)) → ℘(Lab×Act)
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

Ys[[(α`, r).S]]env = (`, α) ∪ Ys[[S]]env

Ys[[S1 + S2]]env = Ys[[S1]]env ∪ Ys[[S2]]env

Ys[[C]]env = env(C)
Ys

? [[S]] = Ys[[S]]envY

whereFY = [C1 7→ Ys[[S1]]env, · · · , Ck 7→ Ys[[Sk]]env]
and env∅ = [C1 7→ ∅, · · · , Ck 7→ ∅]
and envY = tj≥0Fj

Y(env∅)

Yp[[P1 ��
L

P2]](ı, coop, hidd) = let coop′ = addlayers(coop, L, ı)

in Yp[[P1]](ı0, coop′, hidd) ∪ Yp[[P2]](ı1, coop′, hidd)
Yp[[P/L]](ı, coop, hidd) = let hidd′ = addlayers(hidd, L, i′)

and ı = ı′0 or ı = ı′1
in Yp[[P ]](ı, coop, hidd′)

Yp[[S]](ı, coop, hidd) = let [(`1, α1), · · · , (`n, αn)] = Ys
? [[S]]

in [(`1, ı) 7→ (α1, ∂(coop, α1), ∂(hidd, α1)), · · · ,

(`n, ı) 7→ (αn, ∂(coop, αn), ∂(hidd, αn))]
Yp

? [[P ]](0, ∅, ∅) = Yp[[P ]](0, ∅, ∅)

Table 5.6: Ys and Yp function

whose second argument is an environment providing similar information for the
process names. The domain ℘(Lab ×Act) inherits a partial ordering v from
the subset ordering on sets and becomes a complete lattice. The function FY
is a monotonic function on a complete lattice and hence has a least fixed point
envY . As the function FY is in fact also continuous the Kleene formulation
of the fixed point is permissible. It follows that the overall definition of Ys

? is
well-defined.

Now we turn to define the function Yp

Yp : Pproc → Y (= Pproc → (Labex → (Act× ℘(Layer)× ℘(Layer))))

It could be seen clearly that this function will return the affiliation of each
action(to be distinguished by label and action type) and its layer information.

For function Yp, it will always take layer ı, cooperation combinator set coop and
hidden combinator set hidd as parameters and finally append the correct layer
information to each S sequential component(Finally to each actions within a S
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addlayers(B,L, ı)

(1) for each act ∈ L do

(2) put (act, ∂(B, act) ∪ ı) to B;
where

B ∈ N( represents coop or hidd in Table 5.6); α ∈ Act, and L ∈ ℘(Act)
∂(B,α) : return layer information related to α from map B.

Table 5.7: function addlayers

sequential component). Here coop, hidd ∈ N, where

N = Act → ℘(Layer)

which indicates a action might under the cooperation scopes of the same com-
binator(cooperation or hidden ) that located at different layers at the same
time.

Specifically, for cooperation operator, it will update the coop set first and then
combine the result of two components by ∪ operation. One will notice that we
utilize a auxiliary function addlayers(coop, L, ı) to update the coop set with
action types in L at the current layer ı, which is specified in Table 5.7. The
clause for the P/L will similarly update the hidd set with action type set L by
the addlayers function. The clause for constant model combinator will borrow
the result get from Ys

? step and set up each action contained by a sequential
process S with the coop and hidd layer information, the current layer of this
sequential process ı as well as the action type of this action α.

The enabled function in Table 5.5 will simply call Yp
? to set layer information

(ı, coop, hidd) of each action along the path from the top layer 0 to the layer
that the actions locates.

Example 5.6 We will take three cases of program from Example 2.1. In addi-
tion, we create a new case S ��

{g,p,h}
Q/{h} that contains hidd combinator. Then

we calculate Yp
? for each of four cases and list the results in the following tables.

In case (a), because action h isn’t under any cooperation scope, both coop and
hidd set of labex (4,01) are empty. However, the counterparts of case (b) are
both {0} and clearly this is the effect of ��

{g,p,h}
and /{h} combinators. In case

(d), the actions(g and p) in S all have coop combinators at the layers {00, 0},
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due to the fact they are under the cooperation scopes of both ��
{g,p}︸ ︷︷ ︸

0

and ��
{g,p}︸ ︷︷ ︸
00

.

Yp
? of S︸︷︷︸

00

��
{g,p}︸ ︷︷ ︸

0

Q︸︷︷︸
01

S︸︷︷︸
00

��
{g,p,h}︸ ︷︷ ︸

0

( Q︸︷︷︸
01

/{h}︸ ︷︷ ︸
0

)

labex action coop hidd action coop hidd
(1, 00) g {0} ∅ g {0} ∅
(2, 00) p {0} ∅ p {0} ∅
(3, 01) g {0} ∅ g {0} ∅
(4, 01) h ∅ ∅ h {0} {0}
(5, 01) p {0} ∅ p {0} ∅
Case (a) (b)

Yp
? of ( S︸︷︷︸

000

��
{}︸︷︷︸
00

S︸︷︷︸
001

) ��
{g,p}︸ ︷︷ ︸

0

Q︸︷︷︸
01

( S︸︷︷︸
000

��
{g,p}︸ ︷︷ ︸
00

S︸︷︷︸
001

) ��
{g,p}︸ ︷︷ ︸

0

Q︸︷︷︸
01

labex action coop hidd action coop hidd
(1, 000) g {0} ∅ g {00, 0} ∅
(2, 000) p {0} ∅ p {00, 0} ∅
(1, 001) g {0} ∅ g {00, 0} ∅
(2, 001) p {0} ∅ p {00, 0} ∅
(3, 01) g {0} ∅ g {0} ∅
(4, 01) h ∅ ∅ h ∅ ∅
(5, 01) p {0} ∅ p {0} ∅
Case (c) (d)

5.3.3 The procedure removehidd

In the last subsection, we have discussed how to put the information of coop-
eration scope to each actions in the program. Now we should talk about the
method to merge the information from cooperation scopes and calculate the
effective cooperation scope for each cooperation combinator to each action. Put
it in another words, we will simplify each entry in map Z (cf. Table 5.5 line(2))
by function removehidd that essentially utilizes layers in hidd to restrict layers
in coop, and finally we will get rid of the existing hidd and coop and instead
to replace them with a new coop (cooperation combinators set) which has the
truly effective cooperation scope to this action.

Our removehidd procedure is displayed in Table 5.8. Line(1) is the initializa-
tion of the procedure: S is the result set, where each element represents the
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The procedure removehidd(E,Z)

(1) S := ∅;
(2) for each (`, ı) ∈ domEx(E) do

(3) let (α, C, H) = Z((`, ı))
(4) in if ¬(C = ∅)
(5) then for each ıc ∈ C do

(6) if there exists ih ∈ H

(7) with ℵ(ıc) <= ℵ(ıh)
(8) then C := C \ ıc;
(9) S := S ∪ (`, ı, α, C);
(10) return S;

Table 5.8: function removehidd

information of one action which has four fields: label `, layer ı, action type α
and cooperation combinators set C(represent by several layers) from which all
combinators have effective cooperation scope over this action. Line(2) start the
loop which checks all elements in domEx(E)(cf. Section 3.1.2 ), meaning that we
only consider exposed actions that is described in the extra extended multiset
E. Line(3) get layer information of each actions to be checked.

Line(4)-(8) describes that some cooperation combinators will be blocked by
some hidden combinators for the same action. Line(4) and (5) say we will check
each layer in C and find out if any layer should be removed from the set. In
another words, we should determine if some cooperation combinators will lose
their cooperation scope over a certain action when taking the influence caused
by some hidden combinators into account. Line(6)-(8) state that under what
specific circumstance a layer should be removed from C: in hidd set check if there
exists any layer that is higher than the layer from the cooperation combinator
layer set C. If the condition is guaranteed, this hidden combinator will hide
this cooperation combinator and make the action not cooperate with processes
outside the cooperation scope of this hidden combinator even though they are
under the cooperation scope of this cooperation combinator. Here function ℵ(ı)
will return the length of the layer ı: the larger the value is, the lower the layer
is.

Line(9) will add a new element which contains the updated C to set S. And
finally the result will be returned by line(10).

Example 5.7 Here we will inspect four cases from Example 5.6. First we cal-
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culate removehidd(Ep
? [[P0]],Yp

? [[P0]]) for each of them, based on the result from
Example 5.6 and Example 3.1(The result of Case(a) and (b) in Example 3.1 are
exactly the same).The table below shows the result.

removehidd(Ep
? [[P0]],Yp

? [[P0]])

Case(a) Case(b)
labex action coop′ labex action coop′

(1, 00) g {0} (1, 00) g {0}
(3, 01) g {0} (3, 01) g {0}
(5, 01) p {0} (5, 01) p {0}

Case(c) Case(d)
labex action coop′ labex action coop′

(1, 000) g {0} (1, 000) g {00, 0}
(1, 001) g {0} (1, 001) g {00, 0}
(3, 01) g {0} (3, 01) g {0}
(5, 01) p {0} (5, 01) p {0}

We find that the coop′ is exactly the same as the coop in Example 5.6. This
is because the actions considered in these cases (p,g) are not related to any
hidden combinators. Next we show a example that coop in 5.6 is modified by the
removehidd function.

Imagine the case(b) of the program is in some state qx that has extra extend
multiset E = ⊥Mex[(2, 00) 7→ 1, (4, 01) 7→ 1], then the result of removehidd
(E,Yp

? [[P0]]) is

labex action coop′

(2, 00) p {0}
(4, 01) h ∅

Notice that this time the coop′ of action (4, 01) is ∅ instead of the coop = {0}
in Example 5.6. And clearly action (4, 01) will not cooperate with other actions
since it is hidden by /{h} combinator.

5.3.4 The procedure matchaction

The procedure matchaction(ıc, (`, ı, α, C), S) tries to find a record in S, that will
cooperate with action(the default record) (`, ı, α, C) on the cooperation combi-
nator on layer ıc. In Table 5.9 the function is displayed and we will explain it
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matchaction(ıc, (`, ı, α, C), S)

(1) T := ∅;
(2) for each (`′, ı′, α′, C ′) ∈ S do

(3) if there exists ı′c ∈ C ′ with

(4) ıc = ı′c ∧ α = α′ ∧ ¬(ρ(ı,ℵ(ıc)) = ρ(ı′,ℵ(ıc)))
(5) then T := T ∪ {((`, ı), (`′, ı′))};
(6) return T ;

Table 5.9: function matchaction

below. Line(1) initialize the variable T for collecting all possible exposed action
pairs under the effective cooperation scope of a certain cooperation combinator
at layer ıc.

Line(2)-(5) illustrate the matching procedure: line(2) start the loop that indi-
cates we need to exam all record in S; line(3) and (4) states the condition on
which two actions should cooperate with each other: if there is a record in S
whose cooperation combinator layer set C ′ contains a layer ı′c that meet:

• Two actions are under the same effective cooperation scope: ı′c = ıc.

• Its action type α′ is the same as the default record’s action type α.

• Two actions shouldn’t under the same side of cooperation combinator, this
is ensured by ¬(ρ(ı,ℵ(ıc)) = ρ(ı′,ℵ(ıc))). The function ρ(ı, k) return the
value of the element at position k + 1 of layer ı. e.g. If ı = 001011, then
ρ(ı, 3) will return 0.

Line(5) and(6) will append a qualified enabled action pair to the result set when
the program goes through all the reords in S, and finally return the result. One
thing worth mentioning here is that: when we try to add a new enabled action
pair to the final result set T , we assume that {(`, ı), (`′, ı′)} is the same as
{(`′, ı′), (`, ı)}, which means we will only add one of them to the result set T ,
not both of them.

Example 5.8 Now we are ready to compute of enable(E) function from Table
5.5. Here we inspect four cases from Example 5.6, where E = Ep

? [[P0]]. The
calculation is based on the result of Example 3.1 and Example 5.7, by utilizing
the function matchaction. The results are shown below:
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enable(Ep
? [[P0]])

Case (a) (b) (c) (d)
(3, 01) : (1, 00) (3, 01) : (1, 00) (3, 01) : (1, 000) (3, 01) : (1, 000)

(3, 01) : (1, 001) (3, 01) : (1, 001)
(1, 000) : (1, 001)

Fact 5.4 The function enabled is monotonic.

5.4 Correctness result

We now show the correctness of the automaton constructed by Table 5.1. We
shall define P B E by

P B E iff Ep
? [[P ]] ≤Mex E

and say that a state denoting the extra extended multiset E represents a process
P whenever P B E.

We now establish the main result which is independent of the choice of the
granularity function H:

Theorem 5.5 First suppose that the algorithm of Table 5.1 terminates and
produces a finite automaton (Q, q0, δ, E). Second suppose that If P →

e`ı Q then˜̀ı ∈ enabled(Ep
? [[P ]]). Then if

P B E[qs] and P →
e`ı Q

then there exists a unique qt ∈ Q such that

Q B E[qt] and (qs, ˜̀ı, qt) ∈ δ

Proof. Let us first inspect one specific transition occurred when generate the
automaton. This is related to line (4-6) of Table 5.1.

We have assumed P B E[qs], which indicates Ep
? [[P ]] ≤Mex E[qs].

Since P →
e`ı Q it follows that ˜̀ı ∈ enabled(E[qs]) using the second assumption

and Fact 5.4 and hence that ˜̀ı is selected for consideration in line(4) of Table
5.1. It follows that line (5) of Table 5.1 produces an extra extended multiset E
that E = transfer

e`ı(E[qs]).



66 Constructing the Automaton

By line (6) of Table 5.1 and definition of update in Table 5.2, it is immediate
that we identify a state qt in lines(1-4) of Table 5.2 and after the excution of
lines (5-8) of Table 5.2 we have

(qs, ˜̀ı, qt) ∈ δ and E ≤Mex E[qt] (5.1)

Since Ep
? [[P ]] ≤Mex E[qs] and the monotonicity of transfer

e`ı function, we have

transfer
e`ı(E

p
? [[P ]]) ≤Mex transfer

e`ı(E[qs]) = E (5.2)

Since P →
e`ı Q from the Proposition 4.6, we have

Ep
? [[Q]] ≤Mex transfer

e`ı(E
p
? [[P ]]) (5.3)

Combine equation (5.1)(5.2) and (5.3), we have

Ep
? [[Q]] ≤Mex E[qt] and (qs, ˜̀ı, qt) ∈ δ

this equal to the conclusion of the theorem that

Q B E[qt] and (qs, ˜̀ı, qt) ∈ δ

The proof above try to inspect line (4-6) of Table 5.1 and capture one specific
transition P →

e`ı Q that satisfies the theorem. This could ensure (qs, ˜̀ı, qt) is in
the growing automaton after one specific transition.

However, if we consider all transitions happen during the constructing of au-
tomaton, from line (5-8) of Table 5.2, we know a previously calculated qt(q in
Table 5.2, which is generated by the previous transition , here we label it with
qt1 ) might be removed and replaced with an new qt(see line (7) of Table 5.2,
we label it with qt2). In this case,(qs, ˜̀ı, qt1) will be replaced with (qs, ˜̀ı, qt2).
This doesn’t contradict our conclusion: we already have

Q B E[qt1] and (qs, ˜̀ı, qt1) ∈ δ

Because E[.] grows in a non-decreasing manner during the generation of the
automaton (that could be seen from line (6) of Table 5.2), E[qt1] ≤Mex E[qt2],
from this we know Q B E[qt2]. We get

Q B E[qt2] and (qs, ˜̀ı, qt2) ∈ δ

This means even all transitions are considered, the conclusion is still correct.
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The uniqueness of qt is due to the fact that automation is partially deterministic.
�

The first assumption has already been established which is shown in Theory
5.3. However, due to the restricted time schedule of the project, the second
assumption: suppose that If P →

e`ı Q then ˜̀ı ∈ enabled(Ep
? [[P ]]), has not been

formally proved yet. Here we only give what we have already established and
what need further investigation in order to complete the proof:

In Table 5.5, in the end we need to show: ˜̀ı ∈ R (**). Since ˜̀ı is formed from
the set S that is at line(3) in Table 5.5, then first we need to prove:

for some α and C, (`, ı, α, C) ∈ S always holds. (*)

Since S is computed at line (2) in table 5.5, by invoking the function removehidd,
we shall look into removehidd in Table 5.8. At line (3) of Table removehidd,
the C and α could be easily obtained from Z((`, ı)) for each (`, ı). Here α is
directly chosen to be part of the element of S. For C, at line(4) in Table 5.8,
no matter C = ∅ is true or not, there will be a subset of C being chosen for
forming an element of S. Thus, (*) holds.
Then line (4)-(5)in Table 5.5) shows if C = ∅ , ˜̀ı ∈ R holds immediately, which
is the first case for proving (**). For the second case, we need to prove: if
c 6= ∅, ˜̀ı ∈ R. However, this part of proof we have not figured out yet, we guess
we should use some invariant comes from Yp

? [[P ]], and then go through function
matchaction for completing the proof.

5.5 Termination of the worklist Algorithm

In SubSection 5.2.3, from Fact 5.2 we pinpoint that k 6= > doesn’t guarantee the
granularity function to be finitary as well as stable(finitary is the requirement
for worklist algorithm to terminate, which is stated in Theorem 5.3). We also
state that we still adopt the granularity function with k = > for our analysis in
this thesis. Here we give the reason by discussing under what condition must
we use the granularity function with k 6= > to ensure the algorithm terminate
while under what condition k = > would also ensure the program terminate.

Let’s see two PEPA programs in Table 5.10 (we already annotated them with
labels and layers). They describe the same system behaviors which are written
in two styles.
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let P1 , (f1, r).P2 + P3

P2 , (g2, r).P1 + P3

P3 , (h3, r).P1

in P 0
1

(a)

let P1 , (f1, r).P2 + (h2, r).P1

P2 , (g3, r).P1 + (h4, r).P1

in P 0
1

(b)

Table 5.10: PEPA programs written in two styles

`ex Ep
? [[P1]] Gp

? [[P1]](`ex) Kp
?[[P1]](`ex)

(1, 0) 1 ⊥Mex[(2, 0) 7→ 1, (3, 0) 7→ 1] ⊥Mex[(1, 0) 7→ 1, (3, 0) 7→ 1]

(2, 0) 0 ⊥Mex[(1, 0) 7→ 1, (3, 0) 7→ 1] ⊥Mex[(2, 0) 7→ 1, (3, 0) 7→ 1]

(3, 0) 1 ⊥Mex[(1, 0) 7→ 1, (3, 0) 7→ 1] ⊥Mex[(3, 0) 7→ 1]

Table 5.11: functions defined for (a) in Table 5.10

The difference of these program is the behavior of P3 in program (a) is directly
added to P1 and P2 in program (b). And consequently the program (a) will not
terminate while the program (b) will. This could be explained by their kill and
gen functions, which are shown in Table 5.11 and Table 5.12 respectively.

First let’s see the reason that (a) will not terminate with k = >: Initially
action (3,0) is enabled (from function Ep

? [[P1]]). If we take this transition, it
will kill (3,0) (from function Kp

?[[P1]]) and at the same time generate both (1,0)
and (3,0) as enable actions (from function Gp

? [[P1]]). Now the system will be
at state ⊥Mex[(1, 0) 7→ 2, (3, 0) 7→ 1] and we could take transition (3,0) again!
Noticed the occurrence of enable action (1,0) from 1 becomes to 2, while the
occurrence of enable action (3,0) remains the same: take transition (3,0), the

`ex Ep
? [[P1]] Gp

? [[P1]](`ex) Kp
?[[P1]](`ex)

(1, 0) 1 ⊥Mex[(3, 0) 7→ 1, (4, 0) 7→ 1] ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1]

(2, 0) 1 ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1] ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1]

(3, 0) 0 ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1] ⊥Mex[(3, 0) 7→ 1, (4, 0) 7→ 1]

(4, 0) 0 ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1] ⊥Mex[(3, 0) 7→ 1, (4, 0) 7→ 1]

Table 5.12: functions defined for (b) in Table 5.10
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enabled actions being generated always include the actions being killed! If we
keep executing action (3,0), the new state will contain a growing number of
enabled action (1,0) but always keeps one occurrence of action (3,0). Since in
this way all new states generated will be discriminated by granularity function
with k = > and they can’t be reused among each other, the program will never
stop. Now it is easy to know why Fact 5.2 doesn’t hold for k = >: it is not
finitary any more: recall in Subsection 5.2.3, the definition of finitary requires to
have finite sets Labexfin. Our growing new state doesn’t satisfy this condition.

The program (b) will not suffer the problem program (a) encounters. This is
because the kill function of (b) is much more accurate than that in program (a).
Let’s see (2,0) and (4,0), they will kill themselves as well as the actions in other
branches of the sequential process: (2,0) will kill (1,0) and (2,0); (4,0) will kill
(3,0) and (4,0). However, the action (3,0) in program (a) will only kill itself,
even though they stay in both P1 and P2 and should kill the branch next to it,
like the action (2,0) and (4,0) in program (b) perform (from the semantic point
of view). In program (a), just executing (3,0), we don’t know weather it comes
from P1 or P2, thus we only kill itself: it is safe to kill less!

From this example, we can see that program (b) owns the kill and gen functions
that directly correspond to the semantics of the program, while program (a)
doesn’t.

We can conjecture that if we write PEPA program in the style of program (b):
always put constant sequential component into a prefix sequential component,
our kill and gen function will always be accurate and they could capture the
system behavior exactly. Since there will be no approximation any more, the
system will only have a finite number of states.

Our PEPA programs in the thesis are all written in the style of program (b), so
it is very safe to use k = > when specifying the granularity function.
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Chapter 6

Accelerate the Analysis

In the previous chapters, we have defined essential domains and several auxiliary
functions. With worklist algorithm we build the automaton that could capture
the properties of the interactions among several sequential processes.

Each sequential process is simulated and allocated a layer depending on its
position, determined by the model component definition of the program. So we
could actually discriminate the same actions which belong to different sequential
processes even though they behave exactly the same. For instance, recall two
sequential processes S in Example 2.4. Their layers are determined by the model
component definition as shown below:

( S︸︷︷︸
000

��
{}

S︸︷︷︸
001

) ��
{g,p}

Q︸︷︷︸
01

The actions in S000 and S001 take different seats in the extra extended multiset
when we come to the analysis. Taking the definition of S from Example 2.3,
already equipped with label, we annotate the actions of S000 as: (1,000) and
(2,000) while actions of S001 as: (1,001) and (2,001). The entry of extra ex-
tended domain for this program will contain these four items. Since the worklist
algorithm will work on this domain, we will build an automaton that consists
of states and transitions contributed by these four items(cf. Figure 5.1).

However, sometimes we are not that concern about the difference of same actions
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between S000 and S001(for example, action labeled 1 will only be noted as (1,00)
instead of (1,000), (1,001)). In this way, we could cut down the total number
of items in the domain of the analysis. In other words, we are willing to reduce
the precision of the analysis by ignoring the difference of sequential process
with similar behavior. The motivation for doing so is the benefits from two
perspective:

• Generally, lowing the precision (ignore unnecessary details) is always ac-
companied the speed improvement of analysis. In other words, it will cut
down the computing demands.

• In our case, we will build up a more succinct automaton that contains
fewer states and transitions. Consequently the graphic representations of
the automaton will be illustrated in fewer nodes and edges that enhance
the readability of the pictures.

In the following subsections, we will develop techniques to address this issue.

6.1 Method 1

The first method is to address the situation mentioned above: given a program,
if there exists some sequential processes conjointly cooperating with each other
on ∅ set: (((S ��

{}
S) ��

{}
S) · · · ��

{}
S) , we could group them and remain only

one sequential process S to represent all of them. Take it one step further,
we could group any subparts of program together if they behave exactly the
same and conjointly cooperate on ∅. The subpart of the program could be some
sequential processes operating on the hidden or cooperate combinator with non
empty set or empty set. For instance: ((S ��

{β}
S)/{α}) ��

{}
((S ��

{β}
S)/{α}) could

be simplify to ((S ��
{β}

S)/{α}).

Specifically, we will modify the analysis we have already developed in two steps
to accomplish the above goal:

Step1 First we should simplify the model component definition of the program
as much as we can as long as we conform to the idea presented above.
Furthermore, we will track the number of subparts(should be same) that
participate in grouping event. They will be used in the second step.
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

Ep[[P1 ��
L

P2]]ıλ = λ·Mex(Ep[[P1]]ı0 +Mex Ep[[P2]]ı1)
Ep[[P/L]]ıλ = λ·Mex(Ep[[P ]]ı)
Ep[[S]]ıλ = let (`1 7→ n1, · · · , `n 7→ nn) = Es

? [[S]]
in λ·Mex(⊥Mex[(`j , ı) 7→ nj ]) where `j ∈ domExlayer(⊥Mex, ı)
and j ∈ {1, · · · , n}

Ep
? [[P ]] = Ep[[P ]]0

Table 6.1: The redefined Ep function

Example 6.1 For instance,

(((S ��
{}

S) ��
{}

S)/{α}) ��
{}

(((S ��
{}

S) ��
{}

S)/{α})

could be transformed into
(S3/{α})2

where 3 is annotated to S to indicate we have three copy of S cooperating
∅ , and 2 is annotated to the hidden combinators to memorize there are
two entities of (S3/{α}).

Step2 Second we will calculate the Es
? and Ep

? . Es
? is defined exactly the same

as in Table 3.1. However, Ep
? is redefined to take into account the number

of the same subparts of the program, which is shown in Table 6.1.

In Table 6.1, ·Mex is scalar multiplication defined by 0·MexM = ⊥Mex and
(λ + 1)·MexM = (λ·MexM) +Mex M . Notice we have added a new para-
meter λ to each model component Ep[[]]ıλ, representing the number of same
copy of this model component(subpart of program), which is recorded in
the first step. The new function scalar multiplies λ to the result of old
function for each case.

Example 6.2 Look into the Example 6.1 again. Once we get (S3/{α})2,
we apply the Ep[[]]ıλ function to it. Suppose in S we will have one occurrence
of each exposed actions, finally we will obtain 3 ∗ 2 = 6 occurrence of the
each exposed actions.

The differences of method1 from the original analysis are presented in Step1
and Step2. Other functions like Gs

?, Ks
? and worklist algorithm related functions

just remain unchanged (However, they will work on the new domain which is
caused by the modification in step1). The key point is: the simplification and
grouping shouldn’t violate the original semantics of the automaton.
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q_0

q_1(<3,01>:<1,00>)

q_2

<4,01>

(<5,01>:<2,00>)

q_3(<3,01>:<1,00>)

q_4

<4,01>

(<5,01>:<2,00>)

Figure 6.1: Automaton of
(S ��

{}
S) ��

{g,p}
Q built by method 1

q_0

q_1(<1,000>:<3,01>)

q_2

(<1,001>:<3,01>)

q_3

<4,01>

q_4
<4,01>

(<2,000>:<5,01>)

q_5

(<1,001>:<3,01>)

(<2,001>:<5,01>)
(<1,000>:<3,01>) q_6

<4,01>

(<2,001>:<5,01>)

(<2,000>:<5,01>)

Figure 6.2: Automaton of
(S ��

{}
S) ��

{g,p}
Q built by original analysis

Example 6.3 Let’s reconstruct the automaton build in Example 5.1, on the
case (S ��

{}
S) ��

{g,p}
Q originally from Example 2.1, this time we obtain the finite

automaton shown in Figure 6.1. The initial state is q0 and there are five states
in the automaton: q0, · · · , q4, instead there was seven states in Example 5.1.
The transitions among these states are clearly illustrated in the Figure 6.1. We
redrawn the automaton generated by the original analysis in Example 5.1(Fig-
ure 5.1), and shown in Figure 6.2. This time, if we only observe the blue nodes
(q0, q1, q3, q5, q6) in Figure 6.2, it is obviously that the shape of those nodes are
exactly the same as shape formed from all nodes in Figure 6.1. Essentially, the
Figure 6.2 is symmetric which illustrates the new automaton is able to differ-
entiate between action (1,000) and (1,001) while Figure 6.1 can’t do so but just
regard them as one action (1,00). This is easily seen by looking into transitions
relationship from these two figures.

The exposed actions(the extra extended multisets) correspond to each state are
listed below
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q E[q]
q0 ⊥Mex[(1, 00) 7→ 2, (3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(1, 00) 7→ 1, (2, 00) 7→ 1, (4, 01) 7→ 1]

q2 ⊥Mex[(1, 00) 7→ 1, (2, 00) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

q3 ⊥Mex[(2, 00) 7→ 2, (4, 01) 7→ 1]

q4 ⊥Mex[(2, 00) 7→ 2, (3, 01) 7→ 1, (5, 01) 7→ 1]

If we look into q0, we will see the number of exposed actions at (1,00) is 2. It
replaces the counterpart in Example 5.1, where (1,000) is 1 and (1,001) is 1.

6.2 Method 2

In the previous section, we are able to speed up the analysis in case the program
includes a subpart whose structure in the form: (((S ��

{}
S) ��

{}
S) · · · ��

{}
S).

Now we attempt to go one step further: to simplify a program with a subpart
whose structure looks like (((S ��

{L}
S) ��

{L}
S) · · · ��

{L}
S).

The idea is again to group the subparts of program with the same behavior
into one identity(subpart) and let it represent all of them, in order to decrease
the total number of actions in the working domain when constructing the au-
tomaton. However, the job is not as easy as in method one, because now these
subparts themselves cooperating on a non-empty set L. If we just do the same
job as before, we will lose all possible interaction between them, which appar-
ently violate the semantics of the program! Imagine there exist two exposed
actions of the same labex from S, they might cooperate with themselves!

Example 6.4 For example: if we use method one to analysis the case from
Example 2.1: (S ��

{g,p}
S) ��

{g,p}
Q. In step 1, we will simplify the formulae to

(S2 ��
{g,p}

Q)1. Even though in step 2 we will double the occurrence of all the
exposed actions from S in state q0 and let them cooperate with actions from
Q, we still lose the possible interaction between two S: (1,001) and (1,000) or
(2,001) and (2,000).

From the example above, we learn that if we want to group S at this situation
and not lose interactions, we shouldn’t simply get rid of the cooperation set L
without taking further action. We have to track set L because for each action
within S, set L judges whether it should cooperate with action with the same
type in S. Then when calculate the enable function, we should treat the actions
from S exceptionally. Not only should we find all possible interactions between
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actions from S and actions from other part of the program, we will also try
to evaluate the actions from the same layer(all actions in S will have the same
layer, but with various labels), based on the information we already know–the
type of actions should cooperate within S.

Now we will modify the analysis again and try to follow the idea above and
design a new version of analysis in several steps.

Step1 First we will simplify the model component definition of program, similar
to what we have done at step1 in method one. However this time not only
will we track the number of subparts that participate in grouping event,
we also append an additional information to S(in the program tree): the
set L. This information would be used in step2 for new version of function
Yp

? .

Example 6.5
(S ��

{g,p}
S) ��

{g,p}
Q

will be transformed it into

(S2
{p,g} ��

{p,g}
Q)1

The difference from method one is we annotate another parameter to S,
shown as the subscript {p, g}, to depict cooperation set for S.

Step2 Second step is exactly the same as that in method one, where we choose
Ep

? defined in Table 6.1.

Step3 Third step is to modify the function Yp
? . First, we will present a new

domain Yp
? works on. Instead of the Y domain defined on page 56 in

section 5.3.1, we modify it to a new domain Y′ with another Bool field.

Y′ = Labex → (Act× ℘(Layer)× ℘(Layer)×Bool))

Value in Bool field tells that if this Labex(action) needs to cooperate with
other actions situated at the same layer of the same type(include itself).
Then the redefined Yp

? is shown in Table 6.2. Only the case for constant
component is changed. This constant component has an extra parameter
L which is obtained in step 1 (L = {p, g} for S2

{p,g} in Example 6.5). We
will then set the Bool field for each Labex according to whether its action
type is in set L. and it will be used in our new function matchgroupaction
which will be demonstrated in step 5.

Example 6.6 Here we take (c)(d) cases in Example 5.6 and recalculate
the Yp

? for each of them, which could be seen below:
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Exposed actions for let C1 , S1; · · · ;Ck , Sk in P0

Yp[[P1 ��
L

P2]](ı, coop, hidd) = let coop′ = addlayers(coop, L, ı)

in Yp[[P1]](ı0, coop′, hidd) ∪ Yp[[P2]](ı1, coop′, hidd)
Yp[[P/L]](ı, coop, hidd) = let hidd′ = addlayers(hidd, L, i′)

and ı = ı′0 or ı = ı′1
in Yp[[P ]](ı, coop, hidd′)

Yp[[S]](ı, coop, hidd)L = let [(`1, α1), · · · , (`n, αn)] = Ys
? [[S]]

in [(`1, ı) 7→ (α1, ∂(coop, α1), ∂(hidd, α1), t1), · · · ,

(`n, ı) 7→ (αn, ∂(coop, αn), ∂(hidd, αn), tn)]

where ti =
{

true if α ∈ L
false if α /∈ L

Here i ∈ {1, · · · , n}

Yp
? [[P ]](0, ∅, ∅) = Yp[[P ]](0, ∅, ∅)

Table 6.2: The redefined Yp function

Yp
? of ( S︸︷︷︸

000

��
{}︸︷︷︸
00

S︸︷︷︸
001

) ��
{g,p}︸ ︷︷ ︸

0

Q︸︷︷︸
01

( S︸︷︷︸
000

��
{g,p}︸ ︷︷ ︸
00

S︸︷︷︸
001

) ��
{g,p}︸ ︷︷ ︸

0

Q︸︷︷︸
01

labex action coop hidd t action coop hidd t
(1, 00) g {0} ∅ false g {00, 0} ∅ true
(2, 00) p {0} ∅ false p {00, 0} ∅ true
(3, 01) g {0} ∅ false g {0} ∅ false
(4, 01) h ∅ ∅ false h ∅ ∅ false
(5, 01) p {0} ∅ false p {0} ∅ false
Case (c) (d)

In both cases, we get 5 labex in the domain compared with 7 labex in
Example 5.6. Case(c) doesn’t have any item whose t value is set to true,
while Case(d) shows a little different: we set t value of (1,00) and (2,00)
to be true, indicating they might further cooperate with actions at layer 00
within S.

Step4 The fourth step is to modify the function removehidd. First, we will
present a new domain that removehidd works on. Instead of the U domain
defined on page 56 in section 5.3.1, we modify it to a new domain U′ (in
Table 6.2,S ∈ U′) with new field Bool that already discussed in step 3,
and another new field N ∪ {>} , which records the number of exposed
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The procedure removehidd(E,Z)

(1) S := ∅;
(2) for each (`, ı) ∈ domEx(E) do

(3) let (α, C, H, t) = Z((`, ı)) and n = E((`, ı))

(4) in if ¬(C = ∅)
(5) then for each ıc ∈ C do

(6) if there exists ih ∈ H

(7) with ℵ(ıc) <= ℵ(ıh)
(8) then C := C \ ıc;
(9) S := S ∪ (`, ı, α, C, n, t);
(10) return S;

Table 6.3: The redefined function removehidd

actions of this labex.

U′ = ℘(Labex × Act × ℘(Layer)× N ∪ {>} ×Bool)
= ℘(Lab × Layer × Act × ℘(Layer)×N ∪ {>} ×Bool)

The redefined removehidd is shown in Table 6.2, where we emphasize
the place we changed with bold font, based on the original function that
defined in Table 5.8. Clearly, line (3) generates the t and n, while line (9)
put these two additional parameters to variable S.

Step5 In the last step, we have already introduced parameters n,t in S(S is a
set that contains all labex and thier relevant information to be used for
performing the analysis)at redefined function removehidd. Based on the
new information, now we are able to detect: for each labex in S, if there
exists other labex (include itself) in S to cooperate with. This is done by
a new developed function matchgroupaction((`, ı, α, C, n, t), S), as shown
in Table 6.4, which will then be used in the redefined enabled function to
be presented in the next step.

Line (3) to (5) of Table 6.4 indicate that under two conditions any two
actions might cooperate within a group:

• Two actions are under the same layer(ı = ı′). They are in fact the
same actions(` = `′), and the number of exposed actions is larger
than 2(n ≥ 2), in addition they are ready to cooperate within a
group(t = true).



6.2 Method 2 79

matchgroupaction((`, ı, α, C, n, t), S)

(1) T := ∅;
(2) for each (`′, ı′, α′, C ′, n′, t′) ∈ S do

(3) if (ı = ı′ ∧ ` = `′ ∧ n ≥ 2 ∧ t = true) ∨
(4) (ı = ı′ ∧ α = α′ ∧ t = true ∧ t′ = true)
(5) then T := T ∪ {((`, ı), (`′, ı′))};
(6) return T ;

Table 6.4: function matchgroupaction

• Two actions are under the same layer(ı = ı′). However, even though
they are not the same actions, they have the same action type(α =
α′), and they both ready to cooperate within a group(t = true and
t′ = true).

Step6 Now we come to the last change of the analysis: the enable function,
which is illustrated in Table 6.5. Compared to the old function specified in
Table 5.5, we invoke a new defined function matchgroupaction to collect
all actions that could cooperate at the same layer. It then proceed basic
function just as we defined in the old function, except we add an additional
condition at Line (6), meaning only the action that is unable to cooperate
with other actions at the same layer(t = false) and needn’t cooperate
with actions outside this group(C = ∅), will we believe this action could
proceed independently and then we add it alone to the R set.

Other than these six main changes, nothing has been changed including the
worklist algorithm, and any other parts of the analysis such as Gp

? ,Kp
? etc. In

this way we further speed up the analysis.

Example 6.7 To show the effect of this analysis(method 2), let’s look into
(S ��

{g,p}
S) ��

{g,p}
Q again. Here we will compare two automatons, generated by

the original analysis and the new analysis we developed here(method 1 and the
original analysis will have the same result on this program). The automaton
built by original analysis is shown in Figure 5.9, and now we redrawn it in Figure
6.3, while the states information is illustrated in Example 5.2 at table ”Round
8”.

The automaton drawn by method2 is shown in Figure 6.4, while the states in-
formation is shown below:
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enabled(E)

(1) Z := Yp
? [[P0]](0, ∅, ∅); R := ∅;

(2) S := removehidd(E,Z);
(3) for each (`, ı, α, C, n, t) ∈ S do

(4) R := R ∪ matchgroupaction((`, ı, α, C, n, t), S)

(5) if C = ∅
(6) then if t = false

(7) then R := R ∪ {(`, ı)}
(8) else for each ıc ∈ C do

(9) R := R ∪ matchaction(ıc, (`, ı, α, C), S)
(8) return R;

Table 6.5: The redefined enabled(E) procedure

q_0

q_1
(<1,001>:<1,000>)

q_2

(<1,000>:<3,01>)

q_3(<1,001>:<3,01>)

(<2,001>:<2,000>)

q_4

(<2,001>:<5,01>)

q_5
(<2,000>:<5,01>)

<4,01>

<4,01>

(<2,000>:<5,01>)

q_6(<1,001>:<3,01>)

(<2,001>:<5,01>)
(<1,000>:<3,01>)

<4,01>

q_7
(<2,001>:<2,000>)

<4,01>

(<1,001>:<1,000>)

Figure 6.3: Automaton of
(S ��

{g,p}
S) ��

{g,p}
Q built by Original Analysis

q_0

q_1
(<3,01>:<1,00>)

q_2
(<1,00>:<1,00>)

q_3

<4,01>
(<2,00>:<2,00>)

(<5,01>:<2,00>)

(<5,01>:<2,00>)

q_4

(<3,01>:<1,00>)

<4,01>

q_5
(<2,00>:<2,00>)

<4,01>

(<1,00>:<1,00>)

Figure 6.4: Automaton of
(S ��

{g,p}
S) ��

{g,p}
Q built by Method 1
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q E[q]
q0 ⊥Mex[(1, 00) 7→ 2, (3, 01) 7→ 1, (5, 01) 7→ 1]

q1 ⊥Mex[(1, 00) 7→ 1, (2, 00) 7→ 1, (4, 01) 7→ 1]

q2 ⊥Mex[(2, 00) 7→ 2, (3, 01) 7→ 1, (5, 01) 7→ 1]

q3 ⊥Mex[(1, 00) 7→ 1, (2, 00) 7→ 1, (3, 01) 7→ 1, (5, 01) 7→ 1]

q4 ⊥Mex[(2, 00) 7→ 2, (4, 01) 7→ 1]

q5 ⊥Mex[(1, 00) 7→ 2, (4, 01) 7→ 1]

Now if we only observe the blue nodes (q0, q1, q3, q5, q6, q7) in Figure 6.3, it is
obviously that the shape of those nodes are exactly the same as the shape formed
from all nodes in Figure 6.4. Essentially, the Figure 6.3 is partly symmetric(q2

and q3; q4 and q5) and its automaton could differentiate actions from S with the
same label, while Figure 6.4 can’t do so but just regard them as one action. This
is easily seen by looking into transitions relationship from these two figures.

6.3 Three Approaches of Analysis on Two Ex-
amples

In this section we are going to present the effect by adopting two methods for
improving the speed of analysis. Here we will consider two variants of Milner’s
process for a jobshop [31].

The program Jobshop1 is displayed in Table 6.6, processes PoliteWorker0 to
PoliteWorker6 and Worker0 to Worker8 describe the behavior of a worker that
try to get both tools (hammer and chisel) to work. Normally afterwards it
will release these two tools, however the worker could cooperate with other
workers to go on strike and then throw away both tools. Processes Hammer free
and Hammer taken simulate the behavior of one hammer while Chisel free and
Chisel taken describe the behavior of one Chisel. The program starts with
processes involving two workers, three hammers and three chisels.

The program Jobshop2 is displayed in Table 6.7. Other than the processes in
Jobshop1, it has another worker with deferent behavior which will simply get
two tools in sequence and then release them without intention to go on strike.
The program starts with processes involving three workers. Two of them behave
as workers in Jobshop1 and the other worker behaves as described just now, four
hammers and one chisel.
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PoliteWorker0
def
= (get hammer, r).PoliteWorker1 +(get chisel, r).PoliteWorker2

PoliteWorker1
def
= (get chisel, r).PoliteWorker3 +(release hammer, r).PoliteWorker0

PoliteWorker2
def
= (get hammer, r).PoliteWorker3 + (release chisel, r).PoliteWorker0

PoliteWorker3
def
= (work, r).PoliteWorker4 + (strike, r).Worker4

PoliteWorker4
def
= (release hammer, r).PoliteWorker5 + (release chisel, r).PoliteWorker6

PoliteWorker5
def
= (release chisel, r).PoliteWorker0

PoliteWorker6
def
= (release hammer, r).PoliteWorker0

Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work, r).Worker4 + (go on strike, r).Worker7

Worker4
def
= (release hammer, r).Worker5 + (release chisel, r).Worker6

Worker5
def
= (release chisel, r).Worker0

Worker6
def
= (release hammer, r).Worker0

Worker7
def
= (throw away tools, r).Worker8

Worker8
def
= (resolve strike, r).Worker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(PoliteWorker0 ��
{strike}

PoliteWorker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free ��
{}

Hammer free) ��
{}

(Chisel free ��
{}

Chisel free ��
{}

Chisel free))

Table 6.6: jobshop 1
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PoliteWorker0
def
= (get hammer, r).PoliteWorker1 +(get chisel, r).PoliteWorker2

PoliteWorker1
def
= (get chisel, r).PoliteWorker3 +(release hammer, r).PoliteWorker0

PoliteWorker2
def
= (get hammer, r).PoliteWorker3 + (release chisel, r).PoliteWorker0

PoliteWorker3
def
= (work, r).PoliteWorker4 + (strike, r).Worker4

PoliteWorker4
def
= (release hammer, r).PoliteWorker5 + (release chisel, r).PoliteWorker6

PoliteWorker5
def
= (release chisel, r).PoliteWorker0

PoliteWorker6
def
= (release hammer, r).PoliteWorker0

Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work, r).Worker4 + (go on strike, r).Worker7

Worker4
def
= (release hammer, r).Worker5 + (release chisel, r).Worker6

Worker5
def
= (release chisel, r).Worker0

Worker6
def
= (release hammer, r).Worker0

Worker7
def
= (throw away tools, r).Worker8

Worker8
def
= (resolve strike, r).Worker0

SimpleWorker0
def
= (get hammer, r).SimpleWorker1

SimpleWorker1
def
= (get chisel, r).SimpleWorker2

SimpleWorker2
def
= (work, r).SimpleWorker3

SimpleWorker3
def
= (release chisel, r).SimpleWorker4

SimpleWorker4
def
= (release hammer, r).SimpleWorker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(PoliteWorker0 ��
{strike}

PoliteWorker0 ��
{strike}

SimpleWorker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free ��
{}

Hammer free ��
{}

Hammer free)

��
{}

(Chisel free))

Table 6.7: jobshop 2
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These two programs are much larger than the programs in the previous ex-
amples. For each program we performed the original analysis, analysis based
on method 1 and analysis based on method 2 and build their corresponding
automatons.

The basic configuration of the computer performing the analysis(throughout the
whole thesis) is: Intel Pentium M processor 1.60GHz, 1.00GB of RAM and runs
on Microsoft Windows XP Professional Service Pack 2.

The results is shown in Table 6.8. It could be seen clearly that in both cases,
methods 2 generates the automatons with least states and spends least time,
while the original analysis consumes the maximum time among three analysis
and also generates the number of states that higher than the others.

The accelerating rates between time used for running jobshop1 by method2 and
original analysis is:

r20 =
4 hours 32 minutes 37 seconds

6 seconds
= 2726

While the accelerating rates between time used for running jobshop1 by method1
and original analysis is:

r10 =
4 hours 32 minutes 37 seconds

1 minutes 1 second
= 268

The accelerating rates between time used for running jobshop1 by method2 and
method1 is:

r21 =
1 minutes 1 seconds

6 seconds
= 10

Obviously, the acceleration of the analysis works! Method 1 greatly improves the
original analysis(r10 = 258), the method 2 slightly improves the method1(r21 =

Program Item Original analysis Method1 Method2
jobshop1 States of Automaton 1371 235 131

Time Cost 4 hours 1 minute 6 seconds
32 minutes 1 second
37 seconds

jobshop2 States of Automaton 557 117 66
Time Cost 31 minutes 17 seconds 2 seconds

59 seconds

Table 6.8: Analysis results on jobshop1 and jobshop2



6.4 Discussion of method1 and method2 85

q_0

(<1,01>:<1,00>) q_2

(<2,01>:<1,00>)

q_3
(<1,01>:<2,00>)

q_1
(<2,01>:<2,00>)

<3,01>

<3,00>

<3,00>

<3,01>

Figure 6.5: Automaton built by original analysis

10) and lastly method2 improves the original analysis by 2726 times(r20 = 2726).
The result from jobshop2 shows the similar conclusion and we will not explain
it here.

6.4 Discussion of method1 and method2

We have seen that both method1 and method2 could increase the speed of the
analysis, nevertheless these two techniques hold essentially different character-
istics from each other.

Since method2 is based on the development of method1, it inherits all features
method1 have: both of them could collapse sequential processes conjointly co-
operating on empty set. What is more, method 2 goes one step further than
method 1 on that it could collapse sequential processes conjointly cooperating
on non-empty set. Here we pinpoint that this extra feature the method2 owns
will potentially add more interactions (some actions are not allowed to cooperate
with each other based on the original semantics of the program, but method2
might make them possible) to the automaton built by the original analysis. In
contract, method1 will not add more interactions(from the semantics point of
view) than the automaton built before.

Example 6.8 Let’s take the following program

let S , (g1, r1).S + (g2, r2).(p3, r3).S
in S00 ��

{g}
S01

If we use original analysis, we will get an automaton shown in Figure 6.5. The
table below shows the exposed actions corresponding to each state.
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q_0

(<1,0>:<1,0>)

q_1

(<1,0>:<2,0>)

q_2
(<2,0>:<2,0>)

<3,0>

q_3
(<1,0>:<2,0>)

q_5(<1,0>:<2,0>)

q_4

<3,0>
<3,0>

Figure 6.6: Automaton built by method2, round 4

q E[q]
q0 ⊥Mex[(1, 00) 7→ 1, (2, 00) 7→ 1, (1, 01) 7→ 1, (2, 01) 7→ 1]

q1 ⊥Mex[(3, 00) 7→ 1, (3, 01) 7→ 1]

q2 ⊥Mex[(1, 00) 7→ 1, (2, 00) 7→ 1, (3, 01) 7→ 1]

q3 ⊥Mex[(1, 01) 7→ 1, (2, 01) 7→ 1, (3, 00) 7→ 1]

What we are interested in with this automaton is states q2 and q3, which are gen-
erated by interaction < 1, 00 >:< 2, 01 > from q0, and interaction < 1, 01 >:<
2, 00 > from q0. Take q2 for instance, the original analysis will ensure that
(1,00) and (2,00) will not interact with each other, this is because that both of
them are actions from the same sequential process which layered 00 and they
should cooperate with actions from other layers but not themselves. The only
enabled transition at q2 is (3,01). However, this is not the case in automaton
built by method2.

If we use the method2 to construct the automaton and keep using granularity
function HLabex,>, the automaton will not terminate at all. Figure 6.6 shows
the automaton we get after the round 4 of execution of the worklist algorithm
in Table 5.1. Notice that red edges marking with transition < 1, 0 >:< 2, 0 >
in Figure 6.6 connect all blue nodes (q0, q1, q3, q5) together. If we compare tran-
sitions in Figure 6.5, there is no similar structure, where the transition after
< 1, 00 >:< 2, 01 > ( or < 1, 01 >:< 2, 00 >) will always come with an transi-
tion < 3, 01 > (or < 3, 00 >). Lets take a look at the exposed actions of each
state after executing round 4 by constructing the automaton with method2:
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q E[q]
q0 ⊥Mex[(1, 0) 7→ 2, (2, 0) 7→ 1]

q1 ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1, (3, 0) 7→ 1]

q2 ⊥Mex[(3, 0) 7→ 2]

q3 ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1, (3, 0) 7→ 2]

q4 ⊥Mex[(1, 0) 7→ 2, (2, 0) 7→ 2, (3, 0) 7→ 1]

q5 ⊥Mex[(1, 0) 7→ 1, (2, 0) 7→ 1, (3, 0) 7→ 3]

If we look closely at q1, we will find exposed actions including (1,0) and (2,0).
This state is essentially the states of q2 and q3 in Fugure 6.5. The action
(1,0) and (2,0) should come originally from the same sequential process but
now method2 can’t differentiate between them and will make a wrong judgement
that they are enabled! Thus the transition < 1, 0 >:< 2, 0 > that from q1 to
q3 shouldn’t be there and it is the extra transition caused by method2. The
transition from q3 and q5 is generated by the same reason. Furthermore , the
occurrence of exposed actions of (1,0) and (2,0) are all to be 1 in q1, q3 and q5,
but the occurrence of exposed actions of (3,0) are gradually increased in these
states. The automaton will follow this trend and build more extra states and
transitions if we didn’t terminate the constructing procedure by hand.

Method1 will not encounter the problem demonstrated in the above example,
this is because all superfluous transitions made by method2 are actions cooper-
ating within the same sequential components(due to the grouping). In method1,
only sequential components cooperating on empty set will be grouped together
and then there is no cooperation within the same sequential components.

In this sense, we say method1 doesn’t loose any precision of the original analysis,
it just speed up the analysis by hiding information we don’t want to differentiate.
However, to some extent, method2 will lose some precision from the original
analysis. Even though it accelerate the analysis, it might built more interactions
and make over-approximation of the original analysis.

Anyway, there still exists situation where method2 will not lose any precision
from the original analysis: when there are same sequential processes conjointly
cooperating on non-empty set, and all actions in this set only have maximum
one occurrence in the sequential process, then the automaton we build will not
encounter problem as shown in the above example and we still get a improvement
of the speed without losing any precision.
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Example 6.9 For example, we define a sequential process S1 below:

S1 , (g, r).S2;
S2 , (p, r).(h, r).S1;

Sequential process S1 doesn’t have two actions with the same type(g,p,h only
occur once) and then it is safe to group this kind of sequential process (S1)
that cooperating on set containing action g, p, h. However, if we define another
sequential processes P1 below:

P1 , (g, r).P2;
P2 , (p, r).(g, r).P1;

Sequential process P1 does have two actions with the same type(g occur twice)
and then if we group this kind of sequential process (P1) that cooperating on set
containing action g, we might lose precision and built more edges than we want.

The processes in Example 6.7, in Table 6.6 and Table 6.7 are all the cases that
could safely use method2 for improving the speed of analysis without losing any
precision from the original analysis.



Chapter 7

Deadlock Verification

In the previous chapters we have developed several static analysis techniques for
PEPA. We are able to build up an automaton reflecting the interactions among
several PEPA processes. In this chapter, we are going to explore the deadlock
property of PEPA program by our analysis, for answering the two questions
proposed in Chapter 1.

7.1 Deadlock of PEPA

In the operating system area, deadlock can be defined formally as follows [32]:

A set of processes are deadlocked if each process in the set is waiting
for an event that only another process in the set can cause.

Remember in PEPA, some actions in a sequential process can only be accom-
plished when there exists another action in other sequential processes to coop-
erate with.

Thus we say a program written by PEPA is deadlocked if each sequential process
in the program is waiting for the actions required to cooperate, and only another
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sequential process in the same program may has the actions required but these
actions currently are not enabled (The word may means sometimes there is no
such actions at all in the other process, in this case, there must be a deadlock).
In other words, we say a deadlock occurs if all sequential processes execute to
a state where there is no interaction or single action that could take the system
to another state.

7.2 Detect the Deadlock by Our Analysis

The analysis we developed in the previous chapters could help us capturing
all possible transitions that might occur in a program, which is represented by
an automation (cf.Theorem 5.5). Theorem 5.5 also indicates that whenever an
interaction happens in the semantic of the program, there will be a transition
in the automaton. This is because we actually build more transitions and states
in our automaton than the semantics of PEPA program ought to have, due to
the approximations we made.

The deadlock of the automaton is defined as follows: whenever there exists a
state in the automaton with no out-going transition to other states (including
transition to itself), we say there is a deadlock in the automaton. In contrast, if
for every state in the automaton there exists at least one out-coming transition
to other states(including transition to itself), then there is no deadlock in the
automaton.

From the above arguments, we can conclude: whenever there exists a deadlock
in the automaton, there may have a deadlock in the PEPA program. If there
is no deadlock in the automaton, then there must not be any deadlock in the
PEPA program.

Based on the automaton that is built by worklist algorithm displayed in Table

(1) D := ∅;
(2) for each qs ∈ Q

(3) if there doesn’t exist (qs, ˜̀ı, q) ∈ δ

(4) then D := D ∪ {qs};
(5) return D;

Table 7.1: The algorithm for collecting all deadlock states from automaton.
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5.1, we introduce another algorithm for collecting all deadlock states from the
automaton. The algorithm is displayed in Table 7.1. In the algorithm, D is a
set that holds all deadlock states which are detected. The other variables just
remain the same as before. Line(2)-Line(4) describe that we go through each
state of the automaton and check whether the state has any out-going transition.
If there doesn’t exist any such transition for a certain state, this state will be
included in the set D.

Example 7.1 Let’s take the definition of the sequential process from Example
2.1. Now we focus on two model components of the program as shown below in
Case1 and Case2.

S , (g1, r1).(p2, r2).S
Q , (g3, r3).(h4, r4).Q + (p5, r5).Q

Case1 : S00 ��
{g,p,h}

Q01

Case2 : S00 ��
{g,p,h}

Q01/h

q E[q] D = {q1}
q0 ⊥Mex[(1, 00) 7→ 1, (3, 01) 7→ 1,

(5, 01) 7→ 1]

q1 ⊥Mex[(2, 00) 7→ 1, (4, 01) 7→ 1,

q E[q] D = ∅
q0 ⊥Mex[(1, 00) 7→ 1, (3, 01) 7→ 1,

(5, 01) 7→ 1]

q1 ⊥Mex[(2, 00) 7→ 1, (4, 01) 7→ 1,

q2 ⊥Mex[(2, 00) 7→ 1, (3, 01) 7→ 1,

(5, 01) 7→ 1]

q_0 q_1
(<3,01>:<1,00>)

Figure 7.1: The automaton of Case 1

q_0

q_1(<3,01>:<1,00>)

q_2

<4,01>

(<5,01>:<2,00>)

Figure 7.2: The automaton of Case 2

We construct two automatons shown in Figure 7.1 and Figure 7.2.

In Figure 7.1, the state q1 doesn’t have any out-going transition(D = {q1}), this
is because all the exposed actions in q1(p in process S and h in process Q) need to
cooperate with their corresponding actions in the other sequential process. Since
there isn’t any required actions available at that time, the program just comes to
a deadlock.

In Figure 7.2, even though state q1 have the same exposed action as in Figure 7.1,
the state q1 has one transition < 4, 01 > to q2. This is because the exposed action
h in process Q is hidden by the hidden set {h} and doesn’t need to cooperate
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with other actions. Furthermore, all states have out-going transitions to other
states(D = ∅), so we can guarantee that there is no deadlock in this case.

For Case 1, we have found a possible deadlock by the deadlock collecting al-
gorithm executing on our automaton where there is indeed a deadlock for the
semantic execution of the program. For Case 2, we don’t detect any deadlock
from our automaton and we can guarantee that there is no deadlock in the pro-
gram.

In the example above, it demonstrate clearly that our automaton could facilitate
us finding deadlock or guarantee the absence of deadlocks in a given program.

In the mean time, it also shows us that our analysis is able to answer the
question 1 introduced in Chapter 1: our analysis could verify whether the system
potentially have chance to go into the deadlock states.

7.3 Detect the Deadlock of Jobshop Examples

In this part, we are going to utilize our analysis to detect the deadlock in sev-
eral variants of Milner’s process for a jobshop. Quite different from the simple
programs presented above, they are programs far more complex and it is of-
ten impossible for people to check manually. However, our analysis shows its
competence in this scenario.

7.3.1 The deadlock path-finding algorithm

Before analyzing any jobshop examples, we introduce a simple path-finding al-
gorithm, which could be used to find several paths from the initial state q0 to
each deadlock state of the automaton.

The algorithm applies Depth-First searching methodology to find the deadlock
states and will track each path leading to them. When traverse the graph
of the automaton, we will not visit a non- deadlock state twice to guarantee
the termination of the algorithm. Actually, the algorithm only traverses the
program tree once and complete the job.

This algorithm could help us find some paths on the way to deadlock state.
However, we can’t guarantee any property of the paths we find: they are not
necessarily the shortest paths to the deadlock states, nor do the paths cover
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let Worker0 , (get hammer1, r).Worker1 + (get chisel2, r).Worker2;

Worker1 , (get chisel3, r).Worker3;

Worker2 , (get hammer4, r).Worker3;

Worker3 , (work5,r).Worker4;

Worker4 , (release hammer6, r).Worker5 +(release chisel7, r).Worker6;

Worker5 , (release chisel8,r).Worker0;

Worker6 , (release hammer9,r).Worker0;

Hammer free , (get hammer10, infty).Hammer taken;

Hammer taken , (release hammer11, infty).Hammer free;

Chisel free , (get chisel12, infty).Chisel taken;

Chisel taken , (release chisel13, infty).Chisel free;

in (Worker0000 ��
{}

Worker0001)

�� {get hammer,release hammer,get chisel,release chisel}

(Hammer free010 ��
{}

Chisel free011)

Table 7.2: jobshop 3

all possible routes to each state (sometimes finding all possible paths to each
deadlock state is impossible because there often exists circle path in the graph
of the automaton). The purpose of developing this algorithm is just to help us
find some paths leading to the deadlock states.

Here, we only presented the basic idea of the algorithm and will not make further
discussion in the following subsections.

7.3.2 Analysis of the Jobshop3

Firstly, let’s take jobshop3 displayed in Table 7.2 as an example, where we add
label to all sequential components and add layer to all model components.

7.3.2.1 Analysis by Method 1

From the characteristic of model components((Worker0 ��
{}

Worker0)), we are
able to choose method 1 and ignore the difference of them to accelerate analysis
speed. Using method 1, we obtain an automaton which is shown in Figure 7.3.

The automaton has 10 states, in which q4 is the deadlock state represented
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q_0

q_1

(<12,011>:<2,00>)

q_2(<10,010>:<1,00>) q_4

(<10,010>:<1,00>)

q_3
(<10,010>:<4,00>)

(<12,011>:<2,00>)

(<12,011>:<3,00>)

q_5
<5,00>

q_6
(<11,010>:<6,00>)

q_7
(<13,011>:<7,00>)

(<13,011>:<8,00>)

q_8(<10,010>:<1,00>)

(<11,010>:<9,00>)

q_9

(<12,011>:<2,00>)

(<13,011>:<8,00>)

(<11,010>:<9,00>)

Figure 7.3: Automaton of jobshop3 by method1

by a gold node. The red edges are two paths from the initial state q0 to the
deadlock state q4 computed by our path-finding algorithm. The path from q0

via q2 to q4 illustrates the case that if a worker(layered 00) gets a hammer and
then a worker(layered 00) gets a chisel, then there might be a deadlock state,
while the path from q0 via q1 to q4 illustrates that picking up the tools in an
opposite sequence might still lead to a deadlock state. However, just from these
oversimplified information it is not straightforward to guess why a deadlock
exists. The worker0 defined in 7.3 only tells us a typical worker will always
pickup two tools and then release them, in any order. The information obtained
from our deadlock paths seems to illustrate a case that the workers behavior
regularly!

7.3.2.2 Analysis by Original Method

Since we already know there might be a deadlock state from the result of Method
1, now we will use the original analysis without ignoring any information and
try to distinguish the behavior of two workers. We want to find out what exactly
would happen when we go into a deadlock state!

We built the automaton shown in 7.4, which has 19 states. Two gold states
q6 and q8 are deadlock states. As before, deadlock paths found by our path-
finding algorithm are represented by red edges in the figure. It can be easily
seen from the graph that the deadlock path q0 via q2 to q8 is not figured out by
our path-finding algorithm, but some much longer paths are found, for example:
q0, q1, q5, q9, q12, q16, q2, q8. This is due to the fact our algorithm bases on Depth-
First searching methodology and will not revisit any non deadlock state.

Now we inspect some deadlock paths in the automaton. Take q0 via q1 to q6 for
example, the transitions during this paths explain clearly that worker layered
000 first gets a chisel, and then worker layered 001 gets a hammer. And we start
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q_0

q_1
(<12,011>:<2,000>)

q_2

(<12,011>:<2,001>)

q_3

(<10,010>:<1,000>)

q_4

(<10,010>:<1,001>)

q_5(<10,010>:<4,000>)

q_6
(<10,010>:<1,001>)

q_7
(<10,010>:<4,001>)

q_8
(<10,010>:<1,000>)

(<12,011>:<3,000>)

(<12,011>:<2,001>)

(<12,011>:<2,000>)

(<12,011>:<3,001>)

q_9

<5,000>

q_10

<5,001>

q_11(<11,010>:<6,000>)

q_12

(<13,011>:<7,000>)

q_13
(<13,011>:<7,001>)

q_14

(<11,010>:<6,001>)

(<13,011>:<8,000>)

q_15
(<10,010>:<1,001>)

(<11,010>:<9,000>)
q_16

(<12,011>:<2,001>)
(<11,010>:<9,001>)

q_17(<12,011>:<2,000>)

(<13,011>:<8,001>)
q_18

(<10,010>:<1,000>)

(<13,011>:<8,000>)

(<11,010>:<9,000>)

(<11,010>:<9,001>)

(<13,011>:<8,001>)

Figure 7.4: Automaton of jobshop3 by original analysis

the system with one hammer and one chisel. Now we could know what exactly
happen when we go into a deadlock state: each worker gets a tool and waits for
the other one to release the tool!

Up to now, we have shown that the two analysis methods indeed could help
us study the deadlock property of the program. Method1 is much faster but
can’t give us all information we want, while the original analysis needs more
computing power but is very precise and provides us with more information.

This example also shows us our analysis not only could answer question 1, it also
be able to answer the question 2 introduced in Chapter 1: our analysis could
tell that if there exist deadlock states, how the system behaves before reaching
those states.

7.3.3 Analysis of the Jobshop1 and Jobshop2

In Section 6.3, we have already introduced jobshop1(cf. Table 6.6) and job-
shop2(cf. Table 6.7) and built automatons in three approaches for each of
them. Now we study the deadlock property of these two programs from three
approaches.

Table 7.3 lists the results produced by the deadlock states collecting algorithm
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Program Item Original analysis Method1 Method2
jobshop1 Overall States 1371 235 131

Time Cost 4 hours 1 minute 6 seconds
32 minutes 1 second
37 seconds

Deadlock States {q 1359, {q 224, {q 126,
q 1361, q 225, q 130}
q 1370} q 234}

jobshop2 Overall States 557 117 66
Time Cost 31 minutes 17 seconds 2 seconds

59 seconds
Deadlock States ∅ ∅ ∅

Table 7.3: Deadlock results on jobshop1 and jobshop2

shown in Table 7.1, and it also includes the result from Table 6.8.

For jobshop1, all three analyses have detected out deadlock states in the au-
tomaton. While for jobshop2, nothing has been reported from each analysis.
We conclude that to check the existence of deadlock in an automaton, method
1 or method 2 are good choices since they are much faster and still correct.
However, to understand how comes the deadlocks, we should try to proceed the
original analysis, even though sometimes it costs too much time and becomes
impossible.

7.3.4 Analysis of Jobshop4-Jobshop11

Now we are going to analyze jobshop4 to jobshop11 shown in Appendix A. Since
most of them are very complex and they all meet the condition of method 1, we
just use method 1 to analyze and verify these programs. The results are listed
in Table 7.4.

7.3.4.1 Jobshop4 and Jobshop5

Our analysis shows that jobshop4 and jobshop5 both may have deadlock states,
which is easily understood: the worker0 will pick up hammer and chisel to work,
but its behavior determines that sometimes he will throw away tools. When it
comes to a state that all tools have been thrown away by worker0, the deadlock
occurs since they can’t pick up tools anymore.
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Program Overall States Deadlock States Time Cost
jobshop4 87 {q 49, q 77} 2 seconds
jobshop5 868 {q 596, q 771, q 841} 37 minutes 29 seconds
jobshop6 28 ∅ less then 1 second
jobshop7 10 ∅ less then 1 second
jobshop8 122 ∅ 10 seconds
jobshop9 164 ∅ 21 seconds
jobshop10 1199 {q 256} 3 hours and 34 seconds
jobshop11 1672 ∅ 10 hours 51 minutes

38 seconds

Table 7.4: Deadlock results on jobshop4 to jobshop11 by method1

7.3.4.2 Jobshop6 to Jobshop9

Jobshop6 to Jobshop9 doesn’t show any deadlock states by our analysis. They
contain two kinds of workers:

• The worker0 who won’t throw away tools. If there are enough tools, they
will work continually without stopping.(No matter how many tools are
available at the start of the program, if a program contains a worker0 that
behaves as the one (could throw away tools) in jobshop4 and jobhshop5,
the program will definitely go to the deadlock state)

• The politework0 who doesn’t necessarily request for two tools at one time.
If there exists one tool(no matter it is a hammer or a chisel)in the system,
the politework0 will always be satisfied.

From the description above, these two workers will not throw away tools. Thus
if we start the system with enough tools, all workers will be satisfied. Since
we don’t get any deadlock from the report of our analysis, there must be no
deadlock. Thus we believe that the tools are enough for the workers in these
programs.

7.3.4.3 Jobshop10 and Jobshop11

Jobshop10 and jobshop11 are both larger examples. One contains 1199 states
and the other contains 1672 states(by method 1)! There are two kinds of work-
ers: LeftHandedWorker0 and RightHandedWorker0, characterized by picking
up hammer first and picking up chisel respectively.
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One deadlock state has been detected in jobshop10, showing that there may be
a deadlock. After carefully considering some extreme cases, we believe there
should be one deadlock: image that if all four LeftHandedWorker0 pick up all
four hammers, while all four RightHandedWorker0 pick up all four chisels, all
workers will be stuck, which comes to the deadlock state.

There is no deadlock state in jobshop11, reported from our analysis, and there
must not have deadlock. The only difference from jobshop11 and jobhshop10
is: in jobhsop11 the system starts with five hammers instead of four. Since the
RightHandedWorker0 will still get hammer even if all LeftHandedWorker0 have
already picked their hammers. It seems that at least one RightHandedWorker0
will always be satisfied, which should be the reason the program doesn’t have
deadlock state.

Through jobshop4 to jobshop11, we just verify the deadlock property for each
of them by the deadlock state collecting algorithm. Based on the results we
got, some speculation on the result are presented, and we try to explain why
there exists a deadlock or why not. Instead, we could also use path-finding
algorithm to show the path leading to each deadlock state, and based on those
information and we can make a much more accurate explanation of the result.
We didn’t show the result generated by path-finding algorithm since in some of
these examples, the number of transitions along these pathes are quite huge and
it doesn’t worth showing them all. Please refer to the CD attached with this
thesis to see all results generated by our analysis from the jobshop1-11.



Chapter 8

Conclusion

The initial goal of the project is to develop static analysis and answer the two
questions proposed in Chapter 1:

• Does the system potentially have chance to go into the deadlock states?

• If there exist deadlock states, how does the system behave before reaching
those states?

8.1 Achievement

To solve these questions, we developed our analysis and constructed an automa-
ton to capture the control structure of the PEPA program, which is presented
from Chapter 2 to Chapter 5. The automaton could faithfully reflect the in-
teractions by transitions, while track the configuration of their exposed actions
by states. Once we get this automaton, the questions above could be easily
solved, as shown in Chapter 7. The initial version of the analysis developed
are very precise that could be used to proceed exhaustive study of the system
behavior. However, sometimes it is not necessary to be that accurate. Thus we
developed two methods in Chapter 6 to lower the precision of the analysis, and
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these modification would generate much more succinct automatons in a shorter
time.

Even though our work adopts the approach originally developed for analyzing
CCS [16, 15], it owns its unique feature. In [16, 15], the authors annotate label
to the CCS program. Not only did we annotate label, but also annotate layer
to PEPA program. Consequently, we could do a much more precise approxima-
tion than theirs could do. Simply speaking, their analysis is quite similar to the
method 1 and method 2 we proposed and the common characteristic of them is
that they don’t differentiate sequential processes with the same name. In con-
trast, our original analysis is able to distinguish those processes. Subsequently,
our original analysis is much more accurate and informative, and could capture
the controlstructure of the program much better.

8.2 Limitation

Our analysis could only handle PEPA program in a certain scale, depending on
the approach we chose. The original analysis could get the most precise result
comparing two other methods, however it could only handle PEPA program in
the least scale. Method 2 and Method 1 could handle the program with a much
larger scale, as long as the program fulfills certain requirements.

However, from Table 7.4, we could see that even by Method 1, constructing the
automaton of jobshop11 costs 10 hours 51 minutes 38 seconds, which is not a
short time indeed. It can be imagined that our program can’t efficiently handle
an arbitrary large program. In other words, our analysis suffers the so-called
state explosion problem[33].

8.3 Future Work

Due to the restricted time schedule of the project, there are some tasks worth
doing in the future.

8.3.1 Prove the Conjectures

The formal proof for one of the assumption in Theorem 5.5 is not completely
done yet, we only give several steps of the proof in this thesis. We believe
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this assumption could be proved after finding more invariants in the enabled
function and all its auxiliary functions.

Moreover, under certain condition(the PEPA program is written in the style
of program (b) in Subsection 5.5), we hypothesize that our original analysis
performs the approximation of system behavior with one hundred percent pre-
cision. In other words, we believe our analysis could faithfully capture the
system behavior exactly, and there will be no more edges in the automaton we
built than the transitions in the semantic world. We believe this conjecture
could be formally proven to be true.

8.3.2 Optimize the Path-finding Algorithm

In Chapter 7, we have discussed that we developed a path-finding algorithm
to find paths leading to deadlock states. We also admit that this algorithm
can’t guarantee the found paths hold any property. Thus, we could change this
algorithm to show much more interesting paths for people to study the system
property, e.g. algorithm of finding the shortest path from the initial state to a
deadlock state (Dijkstra’s algorithm [14]). Basically, different algorithms could
generate pathes with different properties. The various algorithms could be freely
picked up from the graph theory.

8.3.3 Integrate activity rate into the Analysis

In PEPA, an activity a is defined as a pair (α, r) where α is the action type
and r is the activity rate that indicates the duration of this activity. In our
analysis, we only deal with activity type α, which will directly be influenced by
cooperation or hiding combinators, telling whether the activity should proceed
or not. For the activity rate r, we just get rid of it. The automaton we obtained
in this way could answer the two questions proposed in Chapter 1, however,
it can’t answer other questions like: in what probability does the system enter
into a certain state? In other words, our analysis could capture all transitions
in the system, however, it doesn’t keep track of any properties(the rate r) of the
transitions.

Thus, in order to get a much more comprehensive understanding of the system
behavior, we shall integrate the activity rate into the analysis in an appropriate
way. For example, we shall redefine a set of functions like : Ep

? ,Gp
? etc, and put

r into them according to the semantics of PEPA shown in Table 2.1. And this
direction definitely worth further investigation.
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The Syntax of Jobshop 4 - 11
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Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work, r).Worker4 + (go on strike, r).Worker7

Worker4
def
= (release hammer, r).Worker5 + (release chisel, r).Worker6

Worker5
def
= (release chisel, r).Worker0

Worker6
def
= (release hammer, r).Worker0

Worker7
def
= (throw away tools, r).Worker8

Worker8
def
= (resolve strike, r).Worker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(Worker0 ��
{}

Worker0 ��
{}

Worker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free))

Table A.1: jobshop 4
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Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work, r).Worker4 + (go on strike, r).Worker7

Worker4
def
= (release hammer, r).Worker5 + (release chisel, r).Worker6

Worker5
def
= (release chisel, r).Worker0

Worker6
def
= (release hammer, r).Worker0

Worker7
def
= (throw away tools, r).Worker8

Worker8
def
= (resolve strike, r).Worker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(Worker0 ��
{}

Worker0 ��
{}

Worker0 ��
{}

Worker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free ��
{}

Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free ��
{}

Chisel free ��
{}

Chisel free))

Table A.2: jobshop 5
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Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work,r).Worker4

Worker4
def
= (release hammer, r).Worker5 +(release chisel, r).Worker6

Worker5
def
= (release chisel,r).Worker0

Worker6
def
= (release hammer,r).Worker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(Worker0 ��
{}

Worker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free))

Table A.3: jobshop 6

PoliteWorker0
def
= (get hammer, r).PoliteWorker1 +(get chisel, r).PoliteWorker2

PoliteWorker1
def
= (get chisel, r).PoliteWorker3 +(release hammer, r).PoliteWorker0

PoliteWorker2
def
= (get hammer, r).PoliteWorker3 + (release chisel, r).PoliteWorker0

PoliteWorker3
def
= (work, r).PoliteWorker4

PoliteWorker4
def
= (release hammer, r).PoliteWorker5 + (release chisel, r).PoliteWorker6

PoliteWorker5
def
= (release chisel, r).PoliteWorker0

PoliteWorker6
def
= (release hammer, r).PoliteWorker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(PoliteWorker0 ��
{}

PoliteWorker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Chisel free)

Table A.4: jobshop 7
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Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work,r).Worker4

Worker4
def
= (release hammer, r).Worker5 +(release chisel, r).Worker6

Worker5
def
= (release chisel,r).Worker0

Worker6
def
= (release hammer,r).Worker0

PoliteWorker0
def
= (get hammer, r).PoliteWorker1 +(get chisel, r).PoliteWorker2

PoliteWorker1
def
= (get chisel, r).PoliteWorker3 +(release hammer, r).PoliteWorker0

PoliteWorker2
def
= (get hammer, r).PoliteWorker3 + (release chisel, r).PoliteWorker0

PoliteWorker3
def
= (work, r).PoliteWorker4

PoliteWorker4
def
= (release hammer, r).PoliteWorker5 + (release chisel, r).PoliteWorker6

PoliteWorker5
def
= (release chisel, r).PoliteWorker0

PoliteWorker6
def
= (release hammer, r).PoliteWorker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(Worker0 ��
{}

Worker0 ��
{}

PoliteWorker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free))

Table A.5: jobshop 8



108 The Syntax of Jobshop 4 - 11

Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work,r).Worker4

Worker4
def
= (release hammer, r).Worker5 +(release chisel, r).Worker6

Worker5
def
= (release chisel,r).Worker0

Worker6
def
= (release hammer,r).Worker0

PoliteWorker0
def
= (get hammer, r).PoliteWorker1 +(get chisel, r).PoliteWorker2

PoliteWorker1
def
= (get chisel, r).PoliteWorker3 +(release hammer, r).PoliteWorker0

PoliteWorker2
def
= (get hammer, r).PoliteWorker3 + (release chisel, r).PoliteWorker0

PoliteWorker3
def
= (work, r).PoliteWorker4

PoliteWorker4
def
= (release hammer, r).PoliteWorker5 + (release chisel, r).PoliteWorker6

PoliteWorker5
def
= (release chisel, r).PoliteWorker0

PoliteWorker6
def
= (release hammer, r).PoliteWorker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(Worker0 ��
{}

Worker0 ��
{}

Worker0 ��
{}

PoliteWorker0)

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free))

Table A.6: jobshop 9
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LeftHandedWorker0
def
= (get hammer, r).LeftHandedWorker1

LeftHandedWorker1
def
= (get chisel, r).LeftHandedWorker2

LeftHandedWorker2
def
= (work, r).LeftHandedWorker3

LeftHandedWorker3
def
= (release chisel, r).LeftHandedWorker4

LeftHandedWorker4
def
= (release hammer, r).LeftHandedWorker0

RightHandedWorker0
def
= (get chisel, r).RightHandedWorker1

RightHandedWorker1
def
= (get hammer, r).RightHandedWorker2

RightHandedWorker2
def
= (work, r).RightHandedWorker3

RightHandedWorker3
def
= (release hammer, r).RightHandedWorker4

RightHandedWorker4
def
= (release chisel, r).RightHandedWorker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

((LeftHandedWorker0 ��
{}

LeftHandedWorker0 ��
{}

LeftHandedWorker0

��
{}

LeftHandedWorker0) ��
{}

(RightHandedWorker0 ��
{}

RightHandedWorker0 ��
{}

RightHandedWorker0

��
{}

RightHandedWorker0))

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free ��
{}

Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free ��
{}

Chisel free ��
{}

Chisel free))

Table A.7: jobshop 10
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LeftHandedWorker0
def
= (get hammer, r).LeftHandedWorker1

LeftHandedWorker1
def
= (get chisel, r).LeftHandedWorker2

LeftHandedWorker2
def
= (work, r).LeftHandedWorker3

LeftHandedWorker3
def
= (release chisel, r).LeftHandedWorker4

LeftHandedWorker4
def
= (release hammer, r).LeftHandedWorker0

RightHandedWorker0
def
= (get chisel, r).RightHandedWorker1

RightHandedWorker1
def
= (get hammer, r).RightHandedWorker2

RightHandedWorker2
def
= (work, r).RightHandedWorker3

RightHandedWorker3
def
= (release hammer, r).RightHandedWorker4

RightHandedWorker4
def
= (release chisel, r).RightHandedWorker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

((LeftHandedWorker0 ��
{}

LeftHandedWorker0 ��
{}

LeftHandedWorker0

��
{}

LeftHandedWorker0) ��
{}

(RightHandedWorker0 ��
{}

RightHandedWorker0 ��
{}

RightHandedWorker0

��
{}

RightHandedWorker0))

�� {get hammer,release hammer,get chisel,release chisel}

((Hammer free ��
{}

Hammer free ��
{}

Hammer free ��
{}

Hammer free ��
{}

Hammer free)

��
{}

(Chisel free ��
{}

Chisel free ��
{}

Chisel free ��
{}

Chisel free))

Table A.8: jobshop 11
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Design and Demonstration of
the Tool

In this part, we will first give a short description of the tool we designed for
static analysis of PEPA. Later we will show a concrete example of using the
tool.

The overall procedure of utilizing our tool with other auxiliary software is
demonstrated in Figure B.1. From the figure, it is seen that our tool takes
a plain-text PEPA file and output the result into two files:

• One file contains the important datastructure generated during the an-
alyzing procedure, text representation of the automaton in the form as
introduced at start of Chapter 5, as well as the information of all deadlock
states that has been found;

• The other one contains the text representation of the automaton which
follows the syntax of dot language [17, 4]. The dot format file could be
input into the dot tool(one part of the the open source graphic visualiza-
tion software Graphviz [1]), from which a graphic representation of the
automaton could be generated.

Our tool is developed under Java language and contains two main parts: the
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PEPA File

(Based on Concrete 
Syntax of PEPA 

Language)

Parser
(Build by ANTLR 

Parser Generator)---
Front-end

Intermediate 
Representation of 

the PEPA 
program
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(Core Program)---
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Dot File
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Figure B.1: The Workflow of the Static Analysis

front-end, a parser; the back-end, the core program. We will introduce them in
the following subsections.
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B.1 The Parser

The parser could transform plain-text PEPA programs into the intermediate rep-
resentations that are ready for the back-end program to work on, implemented
using Antlr [2], an open source parser generating tool. Here the plain-text PEPA
is written in concrete syntax of PEPA. The reason to introduce this new syntax
is that the mathematical notation of PEPA introduced in Chapter 2.1 is really
hard to input into the plain-text file.

Refering to some other concrete syntaxes of PEPA [30, 18, 19], we developed our
own syntax more or less the same as theirs. The only difference is we get rid of
the rate initialization at the front of the program (such as r1 = 1; r2 = 5; · · · ),
since our static analysis doesn’t take care of rate. Most of the combinators
remain the same as displayed in Chapter 2.1, except for the cooperation combi-
nator: e.g. S ��

{g,p}
Q would be transformed into S < g, p > Q. The program will

start with the sequential component definition that contains one or more se-
quential components, separated by semicolon, with model component definition
being the following part for further processing.

Example B.1 Let’s see how we transform a program written in mathematic
syntax into our new concrete syntax. Figure B.1 shows jobshop3 in original
mathematic notation. After the transformation, it becomes the program in Fig-
ure B.2, which could be directly taken into our parser for further processing.

B.2 The Analyzer

The analyzer is the core part of our tool which takes the intermediate represen-
tation of the PEPA program as input, and after finishing the computation, it
outputs the analysis result into two files. The analyzer implements the worklist
algorithm, all its auxiliary functions, and functions related to deadlock detecting
and displaying, which are well defined through Chapter 3 to Chapter 7. Here
we won’t dig into any details, please refer to the source code that included in
the Appendix CD.

We thoroughly tested our tool, using Junit[3], an open source unit-testing frame-
work for java. The test covers most significant classes and methods, and will
significantly ensure the correctness of our design and implementation.
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Worker0
def
= (get hammer, r).Worker1 + (get chisel, r).Worker2

Worker1
def
= (get chisel, r).Worker3

Worker2
def
= (get hammer, r).Worker3

Worker3
def
= (work,r).Worker4

Worker4
def
= (release hammer, r).Worker5 +(release chisel, r).Worker6

Worker5
def
= (release chisel,r).Worker0

Worker6
def
= (release hammer,r).Worker0

Hammer free
def
= (get hammer, infty).Hammer taken

Hammer taken
def
= (release hammer, infty).Hammer free

Chisel free
def
= (get chisel, infty).Chisel taken

Chisel taken
def
= (release chisel, infty).Chisel free

(Worker0 ��
{}

Worker0)

�� {get hammer,release hammer,get chisel,release chisel}

(Hammer free ��
{}

Chisel free)

Table B.1: jobshop 3 in mathematic notation of PEPA

Worker0 = (get hammer, r).Worker1 + (get chisel, r).Worker2;
Worker1 = (get chisel, r).Worker3;
Worker2 = (get hammer, r).Worker3;
Worker3 = (work,r).Worker4;
Worker4 = (release hammer, r).Worker5 +(release chisel, r).Worker6;
Worker5 = (release chisel,r).Worker0;
Worker6 = (release hammer,r).Worker0;

Hammer free = (get hammer, infty).Hammer taken;
Hammer taken = (release hammer, infty).Hammer free;
Chisel free = (get chisel, infty).Chisel taken;
Chisel taken = (release chisel, infty).Chisel free;

(Worker0<>Worker0)
< get hammer, release hammer, get chisel, release chisel >

(Hammer free<>Chisel free)

Table B.2: jobshop 3 in concrete syntax of PEPA
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B.3 A Guide for Using the Tool through an Ex-
ample

In order to use the tool, the standard Java Runtime Environment should be set
up appropriate. In addition, we also need to put antlr package (antlr.jar) to the
right class path. If we want to see the graph representation of the result, the
Graphviz package should also be installed. Once we set up the environment, we
could use the tool to analyze PEPA program.

An Example

Here we demonstrate the tool through an example. Suppose the program we
plan to analyze is stored in jobshop3.txt, with the content shown in Table B.2.

The Input

To start the program, type

java -classpath PEPATool.jar automaton.Automaton jobshop3.txt -v2 -pt -kn

In this command, PEPATool.jar contains all classes relevant to our tool, an-
tomaton.Automaton is the main entry of the tool, jobshop3.txt is the PEPA file
we are going to analyze. The parameters afterwards could control the tool to
behave differently.

• -v: controls the version of the analysis. -v1 means using the original
analysis; -v2 means using method 1 for accelerating the analysis; -v3 means
using method 2 for accelerating the analysis.

• -p: controls graph output. -pt means to draw the graph while -pf means
no.

• -k: controls the granularity function of the analysis. -kn means k = >,
-k0 means k = 0, -k1 means k = 1, etc.

If omit any number of these three parameters, the default setting is: -v2 -pf -kn.

In this example, we choose to use version 2(method1) with k = >. The graph
would be automatically drawn by the tool.

The Output
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We will obtain the follow files: jobshop3 Result.txt (cf.Appendix B.4.1), job-
shop3.dot (cf.Appendix B.4.2), and jobshop3.ps (cf.Appendix B.4.3).

Here jobshop3 Result.txt is the analysis result. jobshop3.dot is the automaton
with dot format. jobshop3.ps is graphic representation of the automaton drawn
from jobshop3.dot.

B.4 Analysis Results

B.4.1 jobshop3 Result.txt

-----------------------------------------------------------------------
Initially the program is....

Worker0=(<get_hammer,r>_0.Worker1+<get_chisel,r>_0.Worker2);
Worker1=<get_chisel,r>_0.Worker3; Worker2=<get_hammer,r>_0.Worker3;
Worker3=<work,r>_0.Worker4;
Worker4=(<release_hammer,r>_0.Worker5+<release_chisel,r>_0.Worker6);
Worker5=<release_chisel,r>_0.Worker0;
Worker6=<release_hammer,r>_0.Worker0;
Hammer_free=<get_hammer,infty>_0.Hammer_taken;
Hammer_taken=<release_hammer,infty>_0.Hammer_free;
Chisel_free=<get_chisel,infty>_0.Chisel_taken;
Chisel_taken=<release_chisel,infty>_0.Chisel_free;
((Worker0[]^1<>Worker0[]^1)^1<release_hammer,get_chisel,release_chisel,

get_hammer>(Hammer_free[]^1<>Chisel_free[]^1)^1)^1
-----------------------------------------------------------------------
The Simplified Program is:

Worker0=(<get_hammer,r>_1.Worker1+<get_chisel,r>_2.Worker2);
Worker1=<get_chisel,r>_3.Worker3; Worker2=<get_hammer,r>_4.Worker3;
Worker3=<work,r>_5.Worker4;
Worker4=(<release_hammer,r>_6.Worker5+<release_chisel,r>_7.Worker6);
Worker5=<release_chisel,r>_8.Worker0;
Worker6=<release_hammer,r>_9.Worker0;
Hammer_free=<get_hammer,infty>_10.Hammer_taken;
Hammer_taken=<release_hammer,infty>_11.Hammer_free;
Chisel_free=<get_chisel,infty>_12.Chisel_taken;
Chisel_taken=<release_chisel,infty>_13.Chisel_free;
(Worker0[]^2<release_hammer,get_chisel,release_chisel,get_hammer>
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(Hammer_free[]^1<>Chisel_free[]^1)^1)^1
---------------------------------------------------------------------
Important Data of the program, for constructing Automaton:

YEx: <12,011>={get_chisel,[0],[],null,false,}
<13,011>={release_chisel,[0],[],null,false,}
<10,010>={get_hammer,[0],[],null,false,}
<11,010>={release_hammer,[0],[],null,false,}
<1,00>={get_hammer,[0],[],null,false,}
<2,00>={get_chisel,[0],[],null,false,}
<3,00>={get_chisel,[0],[],null,false,}
<4,00>={get_hammer,[0],[],null,false,}
<5,00>={work,[],[],null,false,}
<6,00>={release_hammer,[0],[],null,false,}
<7,00>={release_chisel,[0],[],null,false,}
<8,00>={release_chisel,[0],[],null,false,}
<9,00>={release_hammer,[0],[],null,false,}

EEx: {<12,011>=1, <13,011>=0, <10,010>=1, <11,010>=0, <1,00>=2,
<2,00>=2, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

GEx: <12,011>={<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=0,
<1,00>=0, <2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0,
<7,00>=0, <8,00>=0, <9,00>=0}

<13,011>={<12,011>=1, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<10,010>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=1, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<11,010>={<12,011>=0, <13,011>=0, <10,010>=1, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<1,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=1, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<2,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=1, <5,00>=0, <6,00>=0, <7,00>=0,



118 Design and Demonstration of the Tool

<8,00>=0, <9,00>=0}

<3,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=1, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<4,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=1, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<5,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=1, <7,00>=1,
<8,00>=0, <9,00>=0}

<6,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=1, <9,00>=0}

<7,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=1}

<8,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<9,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

KEx: <12,011>={<12,011>=1, <13,011>=0, <10,010>=0, <11,010>=0,
<1,00>=0, <2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0,
<7,00>=0, <8,00>=0, <9,00>=0}

<13,011>={<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<10,010>={<12,011>=0, <13,011>=0, <10,010>=1, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<11,010>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=1, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
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<8,00>=0, <9,00>=0}

<1,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<2,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<3,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=1, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<4,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=1, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<5,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=1, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

<6,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=1, <7,00>=1,
<8,00>=0, <9,00>=0}

<7,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=1, <7,00>=1,
<8,00>=0, <9,00>=0}

<8,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=1, <9,00>=0}

<9,00>={<12,011>=0, <13,011>=0, <10,010>=0, <11,010>=0, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=1}

---------------------------------------------------------------------
---------------------------------------------------------------------
The Automaton is:

States: [q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9]
Transition: q_0: {(<12,011>:<2,00>)=q_1, (<10,010>:<1,00>)=q_2}
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q_1:{(<10,010>:<1,00>)=q_4, (<10,010>:<4,00>)=q_3}
q_2:{(<12,011>:<2,00>)=q_4, (<12,011>:<3,00>)=q_3}
q_3:{<5,00>=q_5}
q_5:{(<11,010>:<6,00>)=q_6, (<13,011>:<7,00>)=q_7}
q_6:{(<13,011>:<8,00>)=q_0, (<10,010>:<1,00>)=q_8}
q_7:{(<12,011>:<2,00>)=q_9, (<11,010>:<9,00>)=q_0}
q_8:{(<13,011>:<8,00>)=q_2}
q_9: {(<11,010>:<9,00>)=q_1}

E: q_0: {<12,011>=1, <13,011>=0, <10,010>=1, <11,010>=0, <1,00>=2,
<2,00>=2, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

q_1: {<12,011>=0, <13,011>=1, <10,010>=1, <11,010>=0, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=1, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

q_2: {<12,011>=1, <13,011>=0, <10,010>=0, <11,010>=1, <1,00>=1,
<2,00>=1, <3,00>=1, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

q_3: {<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=1, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=1, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

q_4: {<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=1, <1,00>=0,
<2,00>=0, <3,00>=1, <4,00>=1, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=0}

q_5: {<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=1, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=1, <7,00>=1,
<8,00>=0, <9,00>=0}

q_6: {<12,011>=0, <13,011>=1, <10,010>=1, <11,010>=0, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=1, <9,00>=0}

q_7: {<12,011>=1, <13,011>=0, <10,010>=0, <11,010>=1, <1,00>=1,
<2,00>=1, <3,00>=0, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=1}

q_8: {<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=1, <1,00>=0,
<2,00>=0, <3,00>=1, <4,00>=0, <5,00>=0, <6,00>=0, <7,00>=0,
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<8,00>=1, <9,00>=0}

q_9: {<12,011>=0, <13,011>=1, <10,010>=0, <11,010>=1, <1,00>=0,
<2,00>=0, <3,00>=0, <4,00>=1, <5,00>=0, <6,00>=0, <7,00>=0,
<8,00>=0, <9,00>=1}

---------------------------------------------------------------------
The deadlock info of the Automaton:

Deadlock states: [q_4]

DeadlockPath:

<<<---q_4--->>>
(1):[q_0,(<12,011>:<2,00>)-->q_1,(<10,010>:<1,00>)-->q_4]
(2):[q_0,(<10,010>:<1,00>)-->q_2, (<12,011>:<2,00>)-->q_4]

---------------------------------------------------------------------
Constructing the Automaton Finished in: 0 hour(s) 0 minute(s) 0
second(s) PEPA tool version 2.0 k=<><>

B.4.2 jobshop3.dot

digraph lab1 {
rankdir=LR;
size="7,7";
edge [color="midnightblue"];
node [style=filled,color="pink1"];
q_0 [shape=doublecircle];
q_0 -> q_1 [label="(<12,011>:<2,00>)"];
q_0 -> q_2 [label="(<10,010>:<1,00>)"];
q_1 -> q_4 [label="(<10,010>:<1,00>)"];
q_1 -> q_3 [label="(<10,010>:<4,00>)"];
q_2 -> q_4 [label="(<12,011>:<2,00>)"];
q_2 -> q_3 [label="(<12,011>:<3,00>)"];
q_3 -> q_5 [label="<5,00>"];
q_5 -> q_6 [label="(<11,010>:<6,00>)"];
q_5 -> q_7 [label="(<13,011>:<7,00>)"];
q_6 -> q_0 [label="(<13,011>:<8,00>)"];
q_6 -> q_8 [label="(<10,010>:<1,00>)"];
q_7 -> q_9 [label="(<12,011>:<2,00>)"];
q_7 -> q_0 [label="(<11,010>:<9,00>)"];
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q_8 -> q_2 [label="(<13,011>:<8,00>)"];
q_9 -> q_1 [label="(<11,010>:<9,00>)"];
}

B.4.3 jobshop3.ps

q_0

q_1

(<12,011>:<2,00>)

q_2

(<10,010>:<1,00>)

q_4
(<10,010>:<1,00>)

q_3

(<10,010>:<4,00>)

(<12,011>:<2,00>)
(<12,011>:<3,00>)

q_5
<5,00> q_6(<11,010>:<6,00>)

q_7

(<13,011>:<7,00>)(<13,011>:<8,00>)

q_8
(<10,010>:<1,00>)

(<11,010>:<9,00>)

q_9

(<12,011>:<2,00>)

(<13,011>:<8,00>)

(<11,010>:<9,00>)

Figure B.2: Automaton of jobshop3

B.5 Source Code

Please refer to the CD attached with this thesis.
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