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Summary

This thesis deals with statistical modelling of asthma and wheezing symptoms in
childhood. The main purpose of the thesis is to search for and explore patterns in
the occurrence of wheezing in order to understand the development of asthma in
childhood.

Asthma has grown to be the most common chronic paediatric illness. The Copen-
hagen Study of Asthma in Childhood (COPSAC) maintains and collects data from
a cohort of high-risk children. The objective of COPSAC is primarily to investigate
into the causes of increasing asthma prevalence in society and identify methods for
reducing the symptoms and discomforts hereby. Symptom diaries from COPSAC
have been analysed in this thesis to find patterns in the occurrence of wheezing.

The thesis deals with a variety of statistical methods with emphasis on longitudinal
data analysis. The applied methods include latent class regression, linear and non-
linear mixed effects models, generalized estimating equations and logistic regression.
The aim of the analysis has been to find sub-groups (or clusters) of children with the
same longitudinal development of wheezing symptoms in order to gain understand-
ing of the dynamics involved in the occurrence of wheezing. The analysis has been
performed on different response scales and time-scales to investigate the consistency
of the results. Furthermore, a comparison between sub-groups and the subsequent
asthma diagnosis at the age of 5 years has been done.

Besides the analysis of sub-groups, a number of issues have been addressed in the the-
sis, including: analysis of seasonal variations in the occurrence of wheezing, analysis
of the impact of medication use, and analysis of risk factors with respect to occur-
rence of wheezing and later diagnosis of asthma. Together these analysis provides
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insight into the development of asthma in childhood.

Results

The thesis shows that the children in the cohort can be subdivided into three groups
according to their symptom patterns. The three groups are, 1: Children with a high
level of symptoms and an increasing symptom-rate until the age of 3 years, 2: Children
with a medium level of symptoms initially and a decreasing rate and 3: Children with
a low initial symptom-rate and a decreasing or constant rate. Analysis shows that
the first group corresponds to the asthmatic group and the low and middle group to
the non-asthmatic group. The agreement between group and diagnosis is satisfactory.
The results coincide well with important, but sparse, results from literature.

The risk-factor analysis shows that the congenital resistance measured at the age
of 1 month is related to the risk of being diagnosed as asthmatic at the age of 5
years. Wheezing and asthma is much more frequent in children with a low congenital
resistance compared to children with an above average congenital resistance. No
significant risk-factors besides age, season and diagnosis were found for the week
to week symptoms. The seasonal component shows that one period corresponds to
one year and that the risk of symptoms is higher in winter compared to summer.
The seasonal component measures symptoms unrelated to asthma, since the seasonal
component is seen to be common for all children.

The thesis shows that accurate predictions of the asthma diagnosis can be obtained
by finding patterns in the yearly symptom-rates, since asthmatic and non-asthmatic
children have different symptom characteristics for the relation between symptoms
and age.



Resumé

Dette eksamensprojekt omhandler statistisk modellering af astma og hvæse symp-
tomer i barndommen. Hovedform̊alet med eksamensprojektet er at søge efter og un-
dersøge mønstre i forekomsten af hvæse symptomer med henblik p̊a at forst̊a astma
i barndommen.

Astma er vokset til at være den mest almindelige kroniske pædiatriske lidelse. COPen-
hagen Study of Asthma in Childhood (COPSAC) varetager and indsamler data fra en
kohorte med højrisiko børn. Målet med COPSAC er primært at undersøge årsagerne
til den stigende astma prævalens og identificere metoder til at reducere symptomerne
og generne ved dem. Symptomdagbøger fra COPSAC er i dette projekt analyseret
for at finde mønstre i forekomsten af hvæse symptomer.

Projektet omfatter forskellige statistiske metoder med hovedvægt p̊a den aldersmæs-
sige data analyse. De anvendte metoder inkluderer latent class regression, lineær og
ikke-lineær mixed effects modeller, generalized estimation equations and logistisk re-
gression. Målet med analyserne er at finde undergrupper (eller clustre) af børn med
samme aldersmæssige udvikling i symptomer for at forst̊a dynamikken i forekomsten
af disse. Analysen blev udført p̊a forskellige skalaer for s̊avel tid som respons for at
undersøge konsistensen af de fundne resultater. Endvidere blev en sammenligning af
undergrupperne og den efterfølgende astma diagnose udført.

Udover analysen af undergrupper er et antal andre omr̊ader blevet undersøgt i pro-
jektet, disse inkluderer: Analyse af sæsonmæssige variationer i forekomsten af astma
og hvæse symptomer, analyse af effekten af medicinering samt en analyse af risiko-
faktorer med hensyn til forekomsten af hvæse symptomer og senere ogs̊a astma diag-
nosen. Sammen bibringer disse analyser indsigt i udviklingen af astma i barndommen.
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Resultater

Projektet viser, at børnene i kohorten kan inddeles i tre grupper efter deres symp-
tommønstre. De tre grupper er, 1: Børn med en høj forekomst af symptomer som
er stigende indtil tre års alderen, 2: Børn med en middelhøj forekomst af symp-
tomer i de første leve̊ar men med en aftagende forekomst og 3: Børn med en lav
start forekomst, der er faldende eller konstant. Analysen viser, at den første gruppe
svarer til den astmatiske gruppe, samt at den lave og den mellemste gruppe svarer
til den ikke-astmatiske gruppe. Overensstemmelsen mellem grupper og diagnoser er
tilfredsstillende. Resultaterne passer endvidere godt med vigtige, men sparsomme,
resultater fra litteraturen.

Risikofaktoranalysen viser, at den medfødte følsomhed ved 1 måneds alderen er re-
lateret til risikoen for at have astma ved 5 års alderen. Hvæse og astma symptomer
er mere hyppige blandt børn med en høj medfødt følsomhed sammenlignet med børn
med en gennemsnitlig følsomhed. Ingen andre risikofaktorer udover alder, sæson og
diagnose blev fundet for risikoudviklingen i uge til uge symptomer. Sæsonkomponen-
ten viste, at en periode svarer til et år, samt at risikoen for symptomer er højere om
vinteren sammenlignet med sommeren. Sæsonkomponenten måler symptomer, der
ikke er relateret til astma, da sæsonkomponenten er fælles for alle børn.

Projektet viser, at præcise prædiktioner af astma diagnosen kan opn̊as ved at finde
mønstre i årlige symptom-rater. Astmatisk og ikke-astmatiske børn har forskellige
mønstre for sammenhængen mellem symptomer og alder.
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Chapter 1

Introduction

The data analyzed in this project originates from the COPenhagen Study of Asthma
in Childhood (COPSAC) [4], which is a longitudinal cohort for children having moth-
ers with asthma. Since asthma to some extend is heritable, the children are thought
as being at high risk of having or getting asthma. The data divides in three parts:
Risk-factors, symptom diaries and diagnoses. The children are followed from birth
and in this thesis to the age of 5 years.
The risk-factors are accessed at birth or at the age of 3 years and were analyzed
in the preparatory thesis [13]. In the thesis a number of significant risk-factors and
confounders were found with respect to the congenital lung-function in terms of the
forced expiratory volume (FEV) and the dosis to give an 15 % decrease in the partial
pressure of oxygen in the capillaries (PD15 PtcO2). The first measurement describes
the lung-function in terms of size, whereas the other describes the resistance or re-
sponsiveness to the provocation.
FEV was seen to be correlated with the length at birth and the age of measurement,
which leads to a corrected measure. This measure corrects the measurement for age
and length. FEV was furthermore seen to be positive correlated with the gestational
age and negatively with the mother smoking in the third trimester. PD15 PtcO2
was seen to be positively correlated with mutations in the fillagrin gene, which imply
that having the gene-mutation increases the resistance at birth. The fillagrin gene-
mutation has been shown to be related to eczema (atopic dermatitis) in the study by
Palmer et al. [29].
At the age of 3 years the lung-function was evaluated by means of the specific resis-
tance in the airways (sRAW) measured before and after a bronchodilator treatment,
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which opens the airways. The analysis showed that use of allergy quilt was corre-
lated with sRAW and that a high pre bronchodilator sRAW gave the largest relative
reductions after treatment.
For the diary data some analysis has been done in the preparatory thesis [13], which
consisted of a population study of the prevalence and incidence and an analysis of
the individuals in a mixed effects model. The population study will be reanalyzed in
Chapter 2, where episodes lasting 3 days or longer are included. For the individual
symptoms the redefinition of an episode leads to a new analysis of the mixed effects
model, which is analyzed on two different scales. In the preparatory thesis all episodes
were analyzed, now only episodes lasting 3 days or more are analyzed, since the third
day with symptoms requires a visit at the COPSAC facilities. This imply that the
third day with symptoms is an indicator of a more severe episode and the response
is therefore seen to be different.
The diary data consists for each child of records of periods with symptoms and
records of periods where the diary has been kept and validated. A day outside the
recorded periods contains no information on whether the child has an episode at the
day in question. The population study is based on aggregated episodes over children,
whereas the individual symptom study is based on aggregated episodes over a year
or a week for each child, i.e. contrasting between the number of sick children and the
number of sick-days for a child. Furthermore, the individual time-series are considered
on a week to week basis to analyze these changes.
An asthma diagnosis at the age of 5 years is established. The diagnosis is based on
the symptom-picture in the fifth year of life and was not know until after the analysis
in Chapter 2 and 3 had been carried out. Finally records of relevant medication have
been kept, i.e. medication related to treatment of asthma and wheezing symptoms.
Both use of medication and the risk-factors can be used as explanatory variables in
the different model for the individual symptoms.



Chapter 2

Temporal development in
population aggregated

symptoms

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Descriptive analysis . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Seasonal effect in symptoms . . . . . . . . . . . . . . . . . 9

2.3.1 Prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Introduction

In this chapter the symptom-data from the COPSAC cohort is analyzed on a popula-
tion level. Two measures are central in the analysis of the cohort, namely the preva-
lence and the incidence. The definition of an episode is a recorded incident lasting
at least 3 days, since the children are required to consult the COPSAC clinic with
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episodes lasting 3 days or longer. This should hopefully filter the mildest episodes
away and thereby help to make the distinction between mild and more severe episodes.
It is furthermore clear that the third day with symptoms is special, due to the design
of the study and a difference between episode lasting 1 and 2 days and episode la-
sting at least 3 days may be present. By excluding the short episodes, the remaining
episodes may be more homogeneous, i.e. reflecting the same types of symptoms.

2.2 Descriptive analysis

The data consists of records of wheezing episodes for the COPSAC children [4]. For
each episode, a startdate and a finishdate is given as well as the COPSAC number
and the date of birth for the child. Furthermore, a table with records of start and
end dates of periods, where the diary has been kept and validated, is included. The
diaries are not complete, since they have not been kept at all time. The type of data
is illustrated in Figure 2.1, i.e. showing the temporal connection between kept diary
and recorded symptoms. It is clear that symptoms can only occur in periods, where
the diary has been kept and validated.

Symptoms

Diary data
Child 1

Child N

Symptoms

Diary data

Time

Figure 2.1: Illustration of diary data. Horizontal lines indicates, where
the dairy has been kept and when symptoms have been present.

The size of the study population over time is shown in Figure 2.2, which shows that
the number of participants younger than 5 years peaks around the end of December
2001 with 341 participants. The population is seen to have more than 100 participants
from approximately January 1st 2000 to January 1st 2006. The overall percentage of
boys is 49 %. The severe fall in participation in summer 2003 is caused by a slip in
the diaries for some of the children at the age of three years. The slip is present since
the study was prolonged from 3 to 6 years, which imply that some children lack diary
for the period corresponding to the shift from the first 3 years to the last 3 years.
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Figure 2.2: The number of participants over time

2.2.1 Prevalence

The prevalence, i.e. the number of children wheezing a given day, is shown in the left
part of Figure 2.3. The prevalence is seen to vary over the year the same way for
all years, eg the prevalence is always higher in the winter compared to the summer.
The difference in levels in the middle compared to the ends is mostly caused by fewer
participants in these periods. The normalized prevalence, the prevalence at day t
divided by the number of participants at day t, is plotted in the right part of Figure
2.3. From this figure the season effect is even more clear and shows that the intensity
of the prevalence is varying from year to year.
Analysis of the seasonal effect the analysis should be reduced to the middle five
years from June 1999 to June 2005 to have a reasonable number of children in the
study. This will reduce the uncertainty of the prevalence, since the uncertainty of the
prevalence is inverse proportional to the number of children, which can be seen from
the fluctuations in the beginning and end of the considered time range.

Yearly trend

The yearly trend in the time-series of the prevalence can be investigated by the
autocorrelation function, Madsen p. 102 [25]

ACF (k) = Cov(yt, yt−k)/Cov(yt, yt) (2.1)

For a given lag/time-difference k, the autocorrelation-function measures the correla-
tion between measurements taken k timesteps apart. A 95 % confidence interval is
±
√

1/N , where N is the number of time-points.



6 Temporal development in population aggregated symptoms

Time

P
re

va
le

nc
e

0

10

20

30

40

1Jan2000 31Dec2001 1Jan2004 1Jan2006

Time

P
re

va
le

nc
e

no
rm

al
iz

ed
 b

y 
nu

m
be

r 
of

 p
ar

tic
ip

an
ts

0.0

0.1

0.2

0.3

0.4

0.5

1Jan2000 31Dec2001 1Jan2004 1Jan2006

Figure 2.3: The prevalence over time. Left: the prevalence, right: the
relative prevalence

From Figure 2.4 the yearly trend is clear, furthermore the prevalence is strongly
persistent from day to day, i.e. the correlation decays slowly. The correlation for days
30 days apart is ACF (30) = 0.53, and for 1, 2 and 5 days apart 0.96, 0.92 and 0.80,
respectively. From the upper right part of the figure it is seen that the correlation
for days one year apart is 0.41 and 0.29 for days two years apart. Hence the seasonal
trend is strong and persistent even over long time, which imply that one year tends
to look like the other.
In the considered time range, the correlation is seen to be significant both the short
term and the long term correlation. The long term correlation is related to the yearly
patterns, whereas the short term correlation is related to a carry-over effect. The
prevalence at day t is seen to be the prevalence at day t− 1 plus the number of new
children with symptoms and minus the number of children exiting an incident. The
correlation is very persistent and one method to stabilize the correlation could be
the considered the differense, i.e. ∇Yt = Yt − Yt−1. The difference correspond to the
number of new children with symptoms (the incidence) minus the number of children
exiting an incident. In section 2.2.2 the incidence is analyzed, which should be less
correlated compared to the prevalence.
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malized prevalence (bottom)
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2.2.2 Incidence

As mentioned the incidence may an interesting measure and given as the number of
new wheezing episodes each day. The temporal development of the relative incidence
is shown in Figure 2.5 and a yearly variation is seen to be present. The pattern is
weaker compared to the prevalence. It is also seen that the relative incidence is much
higher in the beginning, which is caused by the large impact an individual has in this
parts since the number of children is sparse. The incidence is lower compared to the
prevalence, which can be explained by the fact that the new cases are included in the
prevalence as well as the old cases. This imply that the prevalence at day t is at least
as large as the corresponding incidence.

Time
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0.00

0.01
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0.04

0.05

0.06

1Jan99 1Jan2000 31Dec2000 1Jan2002 1Jan2003 1Jan2004 1Jan2005

Figure 2.5: Incidence over time

From Figure 2.6 it is seen that the correlation is much weaker compared to the
prevalence, eg ACF (1) = 0.13 and ACF (31) = 0.12. The difference in correlation
can be explained by the fact that the prevalence can be formulated as the dynamic
process:

prevalencet = (1 − λt) · prevalencet−1 + incidencet (2.2)

where λt is the rate by which wheezing children comes out of an episode at day t.
It is seen that there is a carry-over effect in the prevalence, since children having an
episode at day i are likely to have an episode at day i+ 1.
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2.3 Seasonal effect in symptoms

In the following section an analysis of the prevalence and incidence, respectively, will
be carried out. The analysis is done by fitting a generalized linear model to the two
measures. Both the prevalence and incidence are characterized by being counts in the
non-relative version, hence a poisson distribution with an intensity parameter may
be fitted. The objective for the model is to describe the seasonal variations seen in
the previous sections, which can be utilized in removing the seasonal component in
the individual timeseries of wheezing episodes.

2.3.1 Prevalence

The prevalence over time as analyzed in section 2.2.1 may be modelled by a genera-
lized linear model. The prevalence at a given day is assumed to be poisson-distributed
with parameter µt. The poisson distribution probability function is defined as

f(yt;µt) =
µytt e

−µt

yt!
(2.3)



10 Temporal development in population aggregated symptoms

The number of participants varies over time, which imply that the relative prevalence
is modelled as noted previous. The link-function is the canonical link for a poisson-
model g(µt) = log(µt) and in the following the quasi-poisson distribution will be
used implying that the variance function is changed from V [Yt] = µt to V [Yt] = φµt,
where φ is the overdispersion parameter, see Wood p. 59-75 [42]. The overdispersion
parameter is needed in cases where the variance is too large in the data compared to
the theroretical variance. The model for the mean of the relative prevalence is

log
(
µ̂t
nt

)
= Xβ ⇔ log (µ̂t) = log (nt) + Xβ (2.4)

where log (nt) is an offset (or baseline) for the relative prevalence and µt is the mean
value in the poisson distribution. As explanatory variable only the season (time) is
considered for now. It was seen from previous analysis (section 2.2.1 and 2.2.2) that
a time-trend is present, which is a yearly pattern with a peak at in the winter and a
minimum at summer.
An initial generalized additive model, see Wood p. 121-140 [42], given as

log (µ̂t)− log (nt) = s1(t) (2.5)

is fitted and the corresponding smoother for the time variable is shown in Figure 2.7.
s1(t) is a smoothed function estimated with the data in order to describe the curvature
in the relation between log(µ) and t. The smoothed function is based on a thin plate
regression spline: The default for the procedure, see Wood p. 154-160 and 226 [42].
The number of degrees of freedom for the smoother is chosen such that the generalized
cross validation score is minimized, see Wood p. 178 [42]. The generalized cross
validation score is given as

GCV =
nD(β̂̂β̂β)

(n− tr(A))2

where A is the influence matrix (hat matrix) and D(β̂) the deviance for the model
with parameters β̂̂β̂β, see Wood p. 70 [42]. The deviance is defined as

D = 2 · (l(full model)− l(current model))

where l is the likelihood and the full model corresponds to the saturated model, i.e.
a model with as many parameters as observations. The hat matrix describes the
relation between the observations and the fitted mean value, i.e. µ̂̂µ̂µ = Ay.
The deviance is 5894 on 2189 − 8.63 − 1 degrees of freedom. The overdispersion,
Wood p. 71 [42], is estimated to be

φ̂ = D/(n− p) = 5894/2179.37 = 2.7

This imply that the variance is 2.7 times as large as it should be if the data really
is poisson distributed. The quasi-poisson distribution is seen to be necessary if the
deviance can not be reduced be a different (better) description of the prevalence.
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Figure 2.7: Smoothed curve for s(t) in generalized linear model

From Figure 2.7 it is seen that there is a seasonal variation over the year, which was
also seen from Figure 2.3. The oscillations could be described by the periodic function:
cos(t). It is furthermore clear that the period should be one year, the amplitude may
vary from year to year and peak at different times from year to year and finally the
prevalence may have a different baseline for each year. This can be modelled by using
one of the relations for the trigonometric functions and parameterize s(t) as

s(t) =ayear +Ayear · cos
(
t · 2π
365

+ θyear

)
=ayear +Ayear · cos

(
t · 2π
365

)
· cos(θyear)

−Ayear · sin
(
t · 2π
365

)
· sin(θyear)

(2.6)

where Ayear is the amplitude, θyear the phase (a forward shift of the maximum preva-
lence) and ayear the baseline prevalence for a given year. Including sin(t) as well as
cos(t) makes it possible to estimate the phaseshift, θyear and the amplitude and still
maintain a linear predictor, which imply that the generalized linear model framework
can be used. Updating the model in (2.5) with the parametric function for s(t) and
furthermore including the fraction of boys and the median age at each day yields



12 Temporal development in population aggregated symptoms

Model 1:

log (µt) = log (nt) + α+ ai + β1 · cos
(
t · 2π
365

)
+ β2 · sin

(
t · 2π
365

)
+ β3i · cos

(
t · 2π
365

)
+ β4i · sin

(
t · 2π
365

)
+ β5 · sexfract + β6 ·+median aget (2.7)
i ∈ {2000, 2001, 2002, 2003, 2004, 2005}

The model has a separate prevalence baseline rate, amplitude and phase for each
year. The summary for the model is given in Table 2.1, from which it is seen that the
estimated overdispersion, φ̂1 = 1.23, is rather low. The overdispersion is estimated
in the procedure since the quasi-binomial distribution is used as model-family, see
Wood p. 74-76 [42]. A test for the overdispersion is found by finding the probability
p = Pr(X > φ̂1), which is χ2

n−p distributed, this gives a p-value around 1. It is
noticed that the non-parametric model uses 9.63 degrees of freedom, whereas the
parametric model uses 23. The plot in the first row in Figure 2.9 shows that severe

Estimate Std. Error t value Pr(>|t|)
(Intercept) −4.09 0.57 −7.13 <0.0001
year2000 −0.47 0.10 −4.55 <0.0001
year2001 −0.28 0.08 −3.53 0.0004
year2002 −0.12 0.09 −1.43 0.1523
year2003 −0.39 0.10 −3.76 0.0002
year2004 −0.66 0.14 −4.88 <0.0001
year2005 −0.85 0.18 −4.72 <0.0001
cosi 0.37 0.08 4.89 <0.0001
sinus 0.63 0.13 4.89 <0.0001
MedianAge 0.00 0.00 0.77 0.4442
sexfrac 3.15 1.21 2.61 0.0092
year2000:cosi 0.10 0.09 1.05 0.2951
year2001:cosi 0.03 0.07 0.42 0.6749
year2002:cosi 0.11 0.08 1.44 0.1511
year2003:cosi −0.03 0.08 −0.35 0.7236
year2004:cosi 0.05 0.08 0.60 0.5485
year2005:cosi 0.00 0.08 0.02 0.9854
year2000:sinus −0.31 0.14 −2.15 0.0313
year2001:sinus −0.45 0.13 −3.50 0.0005
year2002:sinus −0.61 0.13 −4.69 <0.0001
year2003:sinus −0.30 0.13 −2.32 0.0202
year2004:sinus −0.40 0.14 −2.91 0.0036
year2005:sinus −0.24 0.17 −1.41 0.1587

Table 2.1: Model 1 (2.7), Dispersion: 1.23

dis-continuities occurs at the shift from one year to another. Changing the years to
go from June 1st to May 31st and removing the insignificant term median age yields a
new model with an estimated dispersion of φ̂2 = 1.21. The fit has a residual deviance
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of 2733 on 2170 degrees of freedom. A comparison with Model 1 shows that the
deviance is reduced by 73 with a reduction in the model complexity by 4 parameters,
1 for the median age and the remaining three arise since the number of unique years
are reduced from 7 (1999-2005) to 6 (0-5). The updated model is seen to be a better
description of the prevalence. Model 2 is given as

log (µt) = log (nt) + α+ ai + β1 · cos
(
t · 2π
365

)
+ β2 · sin

(
t · 2π
365

)
+

β3i · cos
(
t · 2π
365

)
+ β4i · sin

(
t · 2π
365

)
+ β5 · sexfract (2.8)

i ∈ {1, 2, 3, 4, 5}

Estimate Std. Error t value Pr(>|t|)
(Intercept) −3.79 0.46 −8.22 <0.0001
yearshift1 −0.06 0.05 −1.08 0.2813
yearshift2 0.06 0.04 1.62 0.1054
yearshift3 0.20 0.04 5.17 <0.0001
yearshift4 −0.19 0.04 −4.54 <0.0001
yearshift5 −0.24 0.05 −5.06 <0.0001
cosi 0.52 0.05 11.23 <0.0001
sinus 0.28 0.06 5.02 <0.0001
sexfrac 1.93 0.95 2.02 0.0430
yearshift1:cosi −0.20 0.05 −3.69 0.0002
yearshift2:cosi −0.11 0.05 −2.19 0.0287
yearshift3:cosi 0.02 0.05 0.48 0.6302
yearshift4:cosi −0.17 0.05 −3.24 0.0012
yearshift5:cosi −0.15 0.05 −3.00 0.0027
yearshift1:sinus 0.04 0.08 0.48 0.6304
yearshift2:sinus −0.06 0.06 −1.00 0.3181
yearshift3:sinus −0.28 0.06 −4.93 <0.0001
yearshift4:sinus −0.16 0.06 −2.73 0.0064
yearshift5:sinus −0.08 0.06 −1.25 0.2122

Table 2.2: Model 2 (2.8): Shifted year and without median age, Disper-
sion: 1.21

From the estimates of β1, β3i, β2 and β4i it is possible to estimate the yearly ampli-
tudes and phases. This gives eg for year 2 two equations to solve for θ2 and A2, the
phase and amplitude for year 2. The equations are described previously and gives for
years 2 the following set of equations

Â2 · cos(θ̂2) = ĉ2 = 0.52 + (−0.11)

−Â2 · sin(θ̂2) = d̂2 = 0.28 + (−0.06) (2.9)

Â2 ≥ 0 ∧ θ̂2 ∈ [−π;π]

cyear corresponds to the estimated coefficient for cosine and dyear to sine, i.e. the sum
of the reference and the contrast corresponding to the relevant year. The solution to
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the equations is

θ̂2 = arctan(−d̂2/ĉ2) = arctan(−(0.22)/(0.41))

Â2 = ĉ2/ cos(θ̂2) = 0.41/ cos(θ̂2) (2.10)

Â2 ≥ 0 ∧ θ̂2 ∈ [−π;π]

the latter can be simplified, since (see Figure 2.8)

θ2 = arctan(−d̂2/ĉ2) = − arctan(d̂2/ĉ2)

where −θ2 is the angle in a right-angled triangel with cathetes ĉ2 (adjacent) and d̂2

(opposite) (the lower triangle in Figure 2.8). This imply that

cos(−θ2) = cos(θ2) =
ĉ2√
ĉ22 + d̂2

2

and hence that

Â2 =
ĉ22

ĉ22/

√
ĉ22 + d̂2

2

=
√
ĉ22 + d̂2

2 (2.11)

The standard errors of the phase shifts can be calculated by means of the law of error
propagation, Conradsen p. 69 [8]. The variance for a stochastic quantity, Z given by
a function, f , of N stochastic variables (X1, . . . , XN) is approximately

s2
Z ≈

(
∂f

∂X1
(x̄1, . . . , x̄N )

)2

s2
x1

+ · · ·+
(

∂f

∂XN
(x̄1, . . . , x̄N )

)2

s2
xN

+2 ·
(
∂f

∂X1
(x̄1, . . . , x̄N )

)(
∂f

∂X2
(x̄1, . . . , x̄N )

)
sx1x2 + . . . (2.12)

+2 ·
(

∂f

∂XN−1
(x̄1, . . . , x̄N )

)(
∂f

∂XN
(x̄1, . . . , x̄N )

)
sxN−1xN

where sx1 is the variance of X1, sx1,x2 the covariance of X1 and X2 and x̄1 the mean
of X1. For the phaseshift this gives

s2
θi ≈

(
s2
d + s2

di + 2sddi
) 1
c̄2i · n2

i

+
(
s2
c + s2

ci + 2scci
) d̄2

i

c̄4i · n2
i

− 2 · (sdc + sdici + sdci + sdic)
d̄i

c̄3i · n2
i

c̄2i

(2.13)

where ni =
(

1 + d̄2
i

c̄2i

)
, c̄i = c + ci, d̄i = d + di. d is the estimate for sine for the

reference year and di the additional contribution for the i’th year. For the reference
year all parts with a subscript i is zero, which imply that c̄i = c for i = 0.
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Figure 2.8: Illustration of connection between phase, amplitude and
parameter estimates for periodic terms

The uncertainties can likewise be estimated for the amplitudes. This gives

s2
Ai ≈(s2

c1 + s2
c + 2 · scc1) · c̄

2

N
+ (s2

d1
+ s2

d + 2 · sdd1) · d̄
2

N

+ 2 · (scd + sc1d + scd1 + sc1d1) · c̄ · d̄
N

(2.14)

where c̄i = c+ ci, d̄i = d+ di and N = c̄2 + d̄2.
For the estimates, a table of estimated phases and amplitudes is shown in Table 2.3.
It is seen that the prevalence peaks varies by 0− (−0.8) = 0.8 days. Furthermore, it
is seen that the estimated amplitudes, the size of the yearly variations, are between
0.37 and 0.59. This gives rate-ratios of 2.1 and 3.24 for comparison of winter rates
against summer-rates. From the second row of Figure 2.9 it is seen that the predicted
prevalence seems to be nice and smooth, the only discontinuity is at the point, where
the number of participants fall markedly. The fit to the observed prevalence is seen
to be good.
From Table 2.3 it is seen that the modelling of individual phase-shifts and the ampli-
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Year cyear dyear Ayear sA θyear delay (days) sθyear
0 0.52 0.28 0.59 0.04 −0.49 28.46 0.08
1 0.32 0.31 0.45 0.02 −0.77 44.91 0.06
2 0.41 0.22 0.47 0.02 −0.49 28.62 0.04
3 0.54 −0.00 0.54 0.02 0.01 −0.49 0.03
4 0.35 0.12 0.37 0.02 −0.32 18.54 0.06
5 0.36 0.20 0.42 0.02 −0.50 29.27 0.05

Table 2.3: Interpretation for prevalence model

tudes seems to be necessary, since significant variations from year to year are seen.
For a model with the same amplitude and phase for each year, the deviance increases
by 265 on 10 degrees of freedom and the estimated overdispersion is φ̂ = 1.33. The
test for the increase in deviance is highly significant, since the deviance increases by
265 on 10 degrees of freedom, yielding p<0.0001. Furthermore it is seen from row
2 and 3 in Figure 2.9 that Model 2 is performing better around year 3 compared to
Model 3. Model 3 can be formulated as

log (µt) = log (nt) + α+ ai + β1 · cos
(
t · 2π
365

)
+

β2 · cos
(
t · 2π
365

)
+ β5 · sexfract (2.15)

i ∈ {1, 2, 3, 4, 5}

The model is constrained to estimate a common seasonal part for all years. The
difference in the fits for the two models is small, however Model 2 is statistically
better compared to Model 3.

Estimate Std. Error t value Pr(>|t|)
(Intercept) −2.68 0.29 −9.37 <0.0001
cosi 0.42 0.01 43.49 <0.0001
sinus 0.15 0.01 16.20 <0.0001
sexfrac −0.21 0.58 −0.36 0.7194
yearshift1 −0.05 0.04 −1.36 0.1751
yearshift2 0.01 0.03 0.37 0.7135
yearshift3 0.17 0.03 5.15 <0.0001
yearshift4 −0.25 0.03 −7.20 <0.0001
yearshift5 −0.26 0.04 −7.07 <0.0001

Table 2.4: Model 3 (2.15), Dispersion: 1.33

A problem with Model 2 is that the residuals are correlated, Figure 2.10 shows that
especially the short term correlation is present. It is seen that even the long term
correlation is present but is greatly reduced. This makes the inference wrong, since
the uncertainty on the parameters is too small, see Diggle et al. p. 59-73 [15]. The
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Figure 2.9: Predicted prevalence (black) and observed (red) as function
of time. Model 1: The years follow the calendar years, Model 2: The
years runs from June to June, Model 3: Same as Model 2, but with the
same phase-shift

short term correlation can be explained by the carry over effect, children being sick
at day i is more likely to be sick at day i+ 1.
From Figure 2.10 it is also seen that the deviance residuals, see Olsson p. 57 [28],
seem to coincide as being standard gaussian random variables. This imply that no
outliers seem to be present in the data, since they would be situated away from the
straight line. The correlation is however a problem, which may be dealt with by
considering the incidence, since the incidence was seen to have a much smaller short
term correlation.

Interpretation

The interpretation is based on Model 2 (Table 2.2 and Table 2.3), which has the
best fit of the models considered. Model 2 has a baseline level, α, corresponding
to year 0 and a cohort with only females of α = −3.79, which gives a normalized
prevalence baseline of e−3.79 = 0.02. For a cohort with only boys the baseline is
e−3.79+1·1.93 = 0.16, both is way out of the data range since the fraction of boys is
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Figure 2.10: Top: Autocorrelation function for residuals from Model 2,
middle left: Deviance residuals against predicted linear predictor, middle
right: Deviance residuals against predicted response, bottom left: De-
viance residuals against calendar time and bottom right: QQ-plot of de-
viance residuals

between 38 % and 75 %. However it illustrates that boys tend to have more episodes
compared to girls. Considering a cohort with the same number of girls and boys,
the baseline prevalence becomes e−3.79+0.5·1.93 = 0.06. Each percent point more boys
gives an increase in prevalence by a factor e0.01·1.93 = 1.02.
For each year a separate rate-ratio is estimated by the model, the first year is reference
and has rate ea0 = e−3.79 = 0.02. For year i 6= 0 the rate-ratio can be calculated
as eai , which gives 0.94, 1.06, 1.22, 0.83, 0.79 for year 1, 2, 3, 4 and 5 respectively
compared to the reference year.
The periodic part of the model shows that the amplitude varies between 0.37 and 0.59,
which imply ratios between e−0.37 = 0.69 and e0.37 = 1.45 respectively e−0.59 = 0.56
and e0.59 = 1.8 for these two extremes. This shows that the relative prevalence is 2-3
times higher in the winter compared to the summer.
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2.3.2 Incidence

In the following the incidence will be analyzed and modelled. The incidence is the
number of new episodes at day t. The short term correlation is expected to be lower
compared to the prevalence, since there is no carry over effect in the incidence. On
the contrary children having an incidence at day i definitely do not have an incidence
the next day, since two incidences are separated by at least 3 days: 1 day without
symptoms after the first episode and two days corresponding to the two first days with
symptoms. The lower short term correlation will hopefully imply that no correlation
in the residuals is present after taking the long term correlation into account contrary
to the results for the prevalence.
The initial model considered for the incidence corresponds to the final model for the
prevalence. The model has different phase, amplitude and baseline level for each
year and the incidence is assumed to depend on the fractions of boys of the children.
Model 1 for the incidence therefore becomes

log (µt) = log (nt) + α+ ai + β1 · cos
(
t · 2π
365

)
+ β2 · sin

(
t · 2π
365

)
+

β3i · cos
(
t · 2π
365

)
+ β4i · sin

(
t · 2π
365

)
+ β5 · sexfract (2.16)

i ∈ {1, 2, 3, 4, 5}

where the years are defined the same way as for the prevalence model. The residual
deviance for the model is 2449 on 2170 degrees of freedom, which gives a χ2-test on
one degree of freedom with the p-value, p = P (X > D/df) = 0.29. This shows that
the fit is adequate, i.e. that the dispersion can be assumed to be 1.
The summary for the model is given in Table 2.5 and shows that the estimated over
dispersion in the quasi-poisson distribution is 1.03, which imply that the variance is
close to the mean as the test indicated. A reduction to a model without the fraction
of boys gives an insignificant increase in residual deviance of 0.01 on 1 degrees of
freedom implying a χ2-test with a p-value of 0.92.
The updated summary is shown in Table 2.6, which shows that further reduction
is not possible, although a large subset of the parameter estimates for the periodic
terms are insignificant. A test against a model without year-specific cosine and sine
parts (Model 3) gives p = 0.01. In the middle left panel in Figure 2.11, the observed
and fitted incidence are plotted in the same plot, in the right the fitted incidence
alone. The figure shows that there are discontinuities, which is seen to be present for
both model 2 and 3. However, these are not severe and the problem is not solved
by complicating the model by re-including the fraction of boys. The discontinuities
arise, since the model do not force the curve to be continuous in the year-shifts and
furthermore at the time-point with a high number of missing diary-data.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) −5.06 1.37 −3.70 0.0002
yearshift1 −0.06 0.17 −0.35 0.7254
yearshift2 0.08 0.12 0.74 0.4618
yearshift3 0.23 0.12 2.00 0.0453
yearshift4 0.03 0.12 0.26 0.7985
yearshift5 −0.08 0.14 −0.53 0.5974
cosi 0.44 0.14 3.13 0.0018
sinus 0.31 0.17 1.82 0.0689
sexfrac −0.33 2.83 −0.12 0.9075
yearshift1:cosi −0.05 0.16 −0.31 0.7544
yearshift2:cosi −0.11 0.15 −0.75 0.4528
yearshift3:cosi 0.07 0.15 0.46 0.6468
yearshift4:cosi −0.05 0.15 −0.34 0.7365
yearshift5:cosi −0.13 0.15 −0.86 0.3886
yearshift1:sinus −0.05 0.24 −0.20 0.8377
yearshift2:sinus −0.06 0.17 −0.34 0.7334
yearshift3:sinus −0.28 0.17 −1.59 0.1110
yearshift4:sinus −0.23 0.18 −1.31 0.1908
yearshift5:sinus −0.19 0.18 −1.06 0.2874

Table 2.5: Model 1 (2.16), Dispersion: 1.03

The resulting model for the incidence (Model 2) therefore becomes

log (µt) = log (nt) + α+ ai + β1 · cos
(
t · 2π
365

)
+ β2 · sin

(
t · 2π
365

)
+ β3i · cos

(
t · 2π
365

)
+ β4i · sin

(
t · 2π
365

)
(2.17)

i ∈ {1, 2, 3, 4, 5}

with the summary in Table 2.6 from which it is seen that year 0, June 1999-June 2000,
has the highest relative baseline incidence. The periodic terms can be translated into
a phase/delay and an amplitude as for the prevalence, which is shown in Table 2.8.
For the prevalence is was seen that the residuals were autocorrelated, which gives
incorrect model inference. The residuals from the incidence model are uncorrelated
as seen from Figure 2.12, which imply that the inference in this case is correct with
respect to the correlation assumption. It was seen for the prevalence, that even if
the long term correlation was removed, substantial short term correlation was still
present in the residuals. This short term correlation may be a result of the carry over
effect in the prevalence, children having an episode at day i is also likely to have one
at day i+ 1, whereas for the incidence a child having an incidence at day i the child
is certain not to have a new incidence at day i+ 1.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) −5.2186 0.1039 −50.2429 <0.0001
yearshift1 −0.0724 0.1206 −0.6000 0.5485
yearshift2 0.0815 0.1115 0.7304 0.4653
yearshift3 0.2292 0.1107 2.0699 0.0386
yearshift4 0.0257 0.1127 0.2284 0.8194
yearshift5 −0.0852 0.1141 −0.7469 0.4552
cosi 0.4345 0.1374 3.1626 0.0016
sinus 0.2937 0.1361 2.1585 0.0310
yearshift1:cosi −0.0478 0.1602 −0.2981 0.7656
yearshift2:cosi −0.1108 0.1485 −0.7462 0.4556
yearshift3:cosi 0.0716 0.1474 0.4860 0.6270
yearshift4:cosi −0.0488 0.1503 −0.3248 0.7454
yearshift5:cosi −0.1309 0.1525 −0.8581 0.3909
yearshift1:sinus −0.0282 0.1583 −0.1784 0.8585
yearshift2:sinus −0.0481 0.1468 −0.3274 0.7434
yearshift3:sinus −0.2655 0.1457 −1.8222 0.0686
yearshift4:sinus −0.2193 0.1485 −1.4767 0.1399
yearshift5:sinus −0.1827 0.1513 −1.2077 0.2273

Table 2.6: Model 2 as model 1 but without the fraction of boys., Dis-
persion: 1.03

Estimate Std. Error t value Pr(>|t|)
(Intercept) −5.1691 0.0892 −57.9252 <0.0001
yearshift1 −0.0937 0.1040 −0.9009 0.3678
yearshift2 0.0316 0.0967 0.3265 0.7440
yearshift3 0.2013 0.0960 2.0963 0.0362
yearshift4 −0.0290 0.0981 −0.2954 0.7677
yearshift5 −0.1492 0.1003 −1.4873 0.1371
cosi 0.3884 0.0270 14.3765 <0.0001
sinus 0.1383 0.0264 5.2376 <0.0001

Table 2.7: Model 3: Same seasonal part for all years, Dispersion: 1.03

Interpretation

The incidence is seen to vary during a year and has its maximum around the beginning
of the calendar year. The baseline incidence (incidence when the periodic part is 0)
is e−5.22 = 0.01. For each year a separate incidence rate is estimated by the model,
the first year (year 0) is reference and has the incidence rate corresponding to the
baseline. For year i (i 6= 0) the incidence rate can be calculated as the product of
ea0 and eai , which gives 0.005, 0.006, 0.007, 0.006, 0.005 for year 1, 2, 3, 4 and 5
respectively.
The periodic part of the model shows that the amplitude varies between 0.32 and 0.52,
which imply ratios between e−0.32 = 0.72 and e0.32 = 1.38 respectively e−0.52 = 0.59
and e0.52 = 1.69 for the two extremes. This imply that the relative incidence is 2-3
times higher in winter compared to summer as seen for the model for the prevalence.
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Year cyear dyear Ayear sA θyear delay (days) sθyear
0 0.43 0.29 0.52 0.11 −0.59 34.53 0.21
1 0.39 0.27 0.47 0.07 −0.60 34.95 0.14
2 0.32 0.25 0.41 0.04 −0.65 37.71 0.11
3 0.51 0.03 0.51 0.05 −0.06 3.24 0.10
4 0.39 0.07 0.39 0.06 −0.19 11.08 0.15
5 0.30 0.11 0.32 0.06 −0.35 20.37 0.19

Table 2.8: Interpretation for incidence model

2.3.3 Discussion

The analysis of the prevalence and the incidence shows that adequate parametric
models can be found. For the prevalence model, the residuals are seen not to be
white noise as required, since they are autocorrelated. Residuals from the incidence
model shows that the residuals are uncorrelated, i.e. that both the long term and short
term correlation is removed by the model. Both models show that the proportion of
children having symptoms is highest in the winter and the rates are 2-3 times higher
intensity in the winter compared to the summer. The models indicate that some of
the symptoms are related to seasonal patterns, i.e. cold or flu. However, there may
as well be parts of the variations caused be asthma.
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3.1 Introduction

This chapter contains an analysis of the temporal development of yearly wheezing
symptoms. Based on the diaries on wheezing symptoms an yearly aggregation within
each child is considered as the response to be modelled. This should hopefully average
out the seasonal pattern seen in Chapter 2, since one season was seen to last one year.
The analysis is carried out by first analyzing the symptom-rates as being gaussian.
This is done in order to simplify the initial analysis. The gaussian response can be
analyzed by a generalized additive mixed effects model (GAMM) to analyze curvature
for the age-related part of the model. Mixed effects models (MM) can be applied if
the curvature can be parameterized adequate, which furthermore may give a model
which is easier to interpret compared to the GAMM. MM may give clusters of identical
children, however latent class regression (LCR) will also be applied to automate the
clustering.
The gaussian approach may be adequate, however a more natural way to model the
symptom-rates is to assume that the number of symptoms is poisson distributed.
Again the GAMM can be used, but the parameterization must be done by a genera-
lized linear mixed effects model (GLMM). LCR can be applied to cluster the children
on the poisson scale in order to find possible subgroups of children. Both the gaus-
sian and the poisson approach will be analyzed in the following chapter and finally
compared in order to find possible similarities and differences.

3.2 Mixed effects model for wheezing intensity

The data considered consists of the number of wheezing episodes and days at risk per
year for each child (the number of days the diary has been both kept and validated
each year) as described in the population study in Chapter 2. The aggregation is
done such that, an episode is recorded if the episode starts in the given interval,
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eg between the age of 1 and 2 years of life. In the following the relative count is
modelled in order to analyze the longitudinal development in the wheezing symptoms.
Mixed effects models will be used to model heterogeneity between children and to
account for correlation between observations taken on the same child. Furthermore
significant risk-factors for the congenital resistance and lung-function [13] are used as
explanatory variables.

3.2.1 Yearly aggregated episodes

Since the number of days at risk varies from year to year, due to the fact that
the children do not have complete diaries, the proportion of days with symptoms,
i.e. the symptom rate, is considered as response. The observations are defined as
yij = nepisodes,ij/ndays,ij , where nepisodes,ij is the number of episodes in year j for child
i. The observations are bound to the interval [0; 1], which for a gaussian response nat-
urally leads to a root-arcsine transformation of the proportions, see Olsson p. 92 [28].
The root-arcsine transformation transforms the observations to ỹ = arcsin(

√
y), which

stretches the observations to [0; π/2]
The transformed relative count is shown in Figure 3.1, which shows that the variations
in the longitudinal development from child to child are large. It is furthermore seen
that most children have a transformed rate below 0.2 and that a small subset have
much higher transformed rate between 0.3 and 0.4 in a short period of time often as
their last observation. The number of episodes per year is summarized in Table 3.2,
which shows that the majority of children has almost no symptoms.

Quantiles
Age 0 % 25 % 50 % 75 % 100 % Mean (SD)
1 year 0.00 0.00 1.08 3.10 29.92 1.93 (2.56)
2 year 0.00 1.00 2.00 4.39 33.18 3.31 (4.20)
3 year 0.00 0.00 1.00 3.00 34.76 2.43 (3.73)
4 year 0.00 0.00 0.00 3.00 19.21 2.07 (3.38)
5 year 0.00 0.00 0.00 2.00 52.14 2.07 (4.92)

Table 3.1: Summary for the number of episodes per year, i.e. the cor-
rected number: nepisodes/ndays · 365 days/year

3.2.2 Missing data

The number of days at risk in each year should be 365 if all observations in a given
year are present. This is however not the case in the ends of the considered age-range,
i.e. the diaries do not start at birth and some of the children are dropouts, which
influence the end. However, if the number of days in mean is sufficiently high this
should not be a severe problem. The mean number of days per year is 335, 352, 344,
294 and 301 for first, second, third, fourth and fifth year of life, which shows that the
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Figure 3.1: Longitudinal development of root-arcsine transformed rela-
tive count grouped by birth month

right tail is affected the most. However on average around 300 days at risk is seen
for all years, which imply that the impact is not too big.
There are three types of participation status: Active (normal), resting and passive,
where the difference between resting and passive is that the passive group actively
has quit the study. In the upper part of Figure 3.2 histograms of the age at dropout
for the resting and passive groups are shown. It is seen that most children drops out
before the age of 3 years and that the highest number of children dropping out is
seen in the first quarter of the fourth year of life. The latter may explain the lower
number of mean days at risk in the fourth year of life, since these observation may
lower the average considerable. The same pattern is seen for the active group for
the age at the end of each diary-sequences ending before the age of 5 years. A large
number of children have a break in the diary around the age of 3 years (last quarter
of third year of life and first of the fourth year of life). This is caused by the fact that
the study was initial only meant to include the first three years of life, which later in
the study was changed to six years.
From the bottom right part of Figure 3.2 it is seen that diary-sequences in general end
more frequently in March to August for the active children, whereas the non-active’s
sequences ends most frequent from March to September. Obviously the analysis of the
yearly aggregated data will be biased if the children systematic are having less diary
coverage in the some part of the years. The argument for using yearly aggregated
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Figure 3.2: Upper left: Histogram of dropout age for passive group,
upper right: Histogram of dropout age (last recorded observation) for
resting, bottom left: histogram for age at end of record for the active
group, i.e. the age at the last observation in each period where diary has
been kept (more than 50 % of the individuals have more than 1 period
with recorded diary), bottom right: The month at the last observation in
each period for the active children (1 corresponds to January) with the
corresponding histogram for non-active children in the upper right corner.

data is that it should cancel out the seasonal patterns, this will however not be the
case if the missing data has a pattern. It is seen that the dropouts and end dates are
sufficiently even distributed over the year.
The left part of Figure 3.3 shows that the monthly coverage is seen to be different
over the year. The figure indicates how many times a given month is covered by a
sequence, which should indicate if some months in general are seen less frequent than
others. August is seen to be the month with fewest hits, which should not give too
big problems, since most episodes are recorded in the winter, see the lower left corner
of Figure 3.3. It is furthermore seen that the dropout rate and the month coverage
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is linked, such that the dropout-rate is highest in months, where the coverage is low.
The right part of Figure 3.3 shows that the lengths of adjacent episodes in more than
70 % of the cases are longer than one year and that pauses of more than 4 years
are seen. 221 children have more than one diary-sequence, whereas 169 children only
have one.

Type Mean (SD) Range
Length of pause (all) 2.1 (1.2) 0 - 4.7
Length of pause (active) 2.1 (1.3) 0 - 4.7
Length of pause (non-active) 2.1 (1.1) 0.5 - 3.4
Number of sequences (all) 2 (1.2) 1 - 7
Number of sequences (active) 2 (1.2) 1 - 7
Number of sequences (non-active) 1 (0.6) 1 - 3
Age at last record (all) 5 (1.4) 0.3 - 7.9
Age at last record (active) 5 (1.1) 0.4 - 7.9
Age at last record (non-active) 3 (1.2) 0.3 - 5.7

Table 3.2: Mean, standard deviation (SD) and range for length of pause
(years), number of sequences and age of last record (years). The latter
corresponds to the dropout age for non-active children.

The analysis of the dropouts shows that children are more likely to dropout/end a
sequence in the period from March to August. However, the analysis of the prevalence
and the incidence, Chapter 2, showed that the prevalence and incidence was much
higher in the winter compared to the summer. Even though Figure 3.3 shows that
the number of episodes are lowest in the months with the lowest coverage by diary
data, the analysis of the prevalence and the incidence shows that the relative number
of episodes is significant higher in the winter compared to the summer. The analysis
of the prevalence/incidence was based on more than 200 individuals in the majority
of the considered time-interval, which should make the analysis sufficiently accurate.
One could analyze the missing data further, which however do not seem to be nec-
essary in this case. One method for analyzing the missingness is to account for the
additional randomness introduced by missing data as described by Borgan et al. [6].
This can be done by having a set of models: one for the outcome in question and one
for the missingness, which gives the joint probability of the observed data and the
missing data, see eg Albert [1]. The likelihood for the data and the missingness can
then be maximized with respect to the model parameters by use of the EM-algorithm,
see Dempster et al. [14]. However in the analysis of the symptoms, it is seen that the
missingness mostly is relates to dropouts and longer pauses, which makes the miss-
ingness more static than dynamic. Dropouts and missing data will not be analyzed
further in this thesis, which imply that imputing or modelling the missingness will
be left for further studies.
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Figure 3.3: Left: The number of times a given months has been covered
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3.2.3 Generalized additive mixed effects model

The average longitudinal development can be examined with a generalized additive
mixed effects model, which can be formulated as

ỹij = arcsin
(√

ncoughij/ndaysij

)
= b0i + s1(ageij) + s2(log10(pdi))+

s3(fevi) + s4(daycarei) + εij i = 1, . . . ,m j = 1, . . . , ni
(3.1)

b0i ∼ N (0, σ2
0) εij ∼ N (0, σ2)

where si is a smoothed function describing the curvature for ỹ against the i’th variable
and b0i is an individual intercept for each child uncorrelated with the εij ’s. b0i
represents the random component, i.e. the heterogeneity between the children. The
GAMM is more elaborately described in Wood p. 316-318 [42] and is in this initial
analysis only accounting for different baseline symptom-rates and Chapter 2.
pd corresponds to the congenital PD15 PtcO2 measurement, which is the interpolated
dose to give a 15 % decrease in PtcO2 (partial pressure). The PD15 is interpolated
from a base level and 5 medication levels, which in the preparatory thesis [13] was seen
to be rather right skewed. A log-transformation of the variable is therefore applied to
give a more adequate measure. PD15 PtcO2 is a measure of the congenital resistance,
i.e. a high PD15 PtcO2 value implies that the child is very resistant to a medication
provoking the airways.
Day-care start is the child’s age in days at day care start and fev is the corrected
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FEV0.5 at the age of around 1 month. The correction of FEV0.5 is done with respect
to age of measurement and length at birth as described in the preparatory thesis
[13], since the FEV0.5 is highly correlated with both age and length at birth. The
FEV0.5 should have been measured at the age of 1 month but some children were
measured later than that, which implied that these children had a higher FEV0.5

than expected.
The smoothed functions from the GAMM, s1, . . . , s4, are shown in Figure 3.4. The
figure shows that the smoothed function for age probably can be parameterized with
a second order polynomial, whereas the other three variables can be parameterized
with linear functions. It is furthermore seen that the FEV probably has insignifi-
cant influence on the symptom-rate, since 0 is seen to be included in the confidence
intervals at all measured values.
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Figure 3.4: Smoothed function for age, log(PD PtcO2), day-care start
and FEV0.5 vs. ỹ. —: fitted line, - - -: confidence bands.

3.2.4 Mixed effects model

A parametric mixed effects model can be fitted to the data, which should give a
model, which is easier to interpret compared to the GAMM. As seen from Figure 3.4
the parameterization of the smoothed for to age could be a second order polynomial,
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whereas the remaining three risk-factors are seen to be linear curves. The model with
a random intercept, slope and curvature for age becomes

ỹij =β0 + b0i + (β1 + b1i) · ageij + (β2 + b2i) · age2
ij+

β3 · log10(pdi) + β4 · daycarestart,i+

β5 · smoking.3rdi + β6 · genderi + β7 · fevi + εij

(3.2)

i = 1, . . . ,m j = 1, . . . , ni εεε ∼ N (0, σ2I), b0i ∼ N (0, σ2
0)

b1i ∼ N (0, σ2
1), b2i ∼ N (0, σ2

2), bi =
[
b0i b1i b2i

]T ∼MVN(0,G)

where G is a positive definite covariance matrix with no imposed structure a priori.
This imply that the random components may be correlated, which is likely to be the
case for a second order polynomial.
In order to analyze the arcsine-root transformed symptoms rates appropiate, the ob-
servations should be weighted with ndays [11]. This is necessary since the proportions
are most precisely estimated when the number of days is large. Consider for instance
a child having 2 episodes on 10 days compared to a child having 60 episodes during
300 days. This gives the same proportions, but the uncertainty is much higher for
the proportion based on 10 days, since one episode more increase the proportion by
50 % for the proportion based on 10 days, whereas the proportion based on 300 days
will increase by 1.67 %. Hence the variance is inverse proportional with the days at
risk implying V [eij ] = σ2/ndays

The observations within each individual are seen to be correlated due to the random
components. This is seen by first separating the mean and covariance structure as
(see Diggle et al. p. 83[15])

Y = Xβ + e (3.3)

with
eij = d′ijBi + Zij (3.4)

where Zij are independent identical distributed gaussian variables with zero mean
and variance σ2. Bi is the random component for individual i, the intercept, the
slope and the intercept and has the covariance matrix G. di is the design matrix for
the random component, which for a given j is dij =

[
1 tj t2j

]
.

The covariance for two observations taken on the same individual is then given by

Cov[ej , ek] = Cov[d′ijBi + Zj ,d′ikBj + Zk] =

Cov[d′ijBi,d′ikBk] = d′ijCov[Bi,Bi]dik = d′ijGdik
(3.5)

whereas the variance for a single observation is given as

d′ijGdij + σ2 (3.6)

In the simple case where G is a diagonal matrix, i.e. uncorrelated random components,
the correlation between measurements taken on the same individual at time k and j
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is

ρ =
σ2

0 + tktjσ
2
1 + t2kt

2
jσ

2
2√

(σ2
0 + t2kσ

2
1 + t4kσ

2
2 + σ2)

(
σ2

0 + t2jσ
2
1 + t4jσ

2
2 + σ2

) (3.7)

which imply that the correlation is a function of (tk, tj). Furthermore the model is
subject-specific rather than population averaged (see Zeger et al. [46]), which imply
that the estimated fixed effects are effects for an individual and can not be interpreted
as the effect for the population.

Diagnostics

In Figure 3.5 diagnostic plots are shown. The figure shows that the normality as-
sumption for the residuals seems to be correct. Furthermore, it is seen that no pattern
is present in the residuals plotted against each of the covariates, which shows that the
model is adequate. The weighing with the number of days is important, which can be
seen from the lower right plot with a QQ-plot for the residuals from an unweighted
version of the model, where deviation for normality is seen in the two tails.
It is seen that the Pearson residuals, which in this case correspond to normalized
residuals, since no within individual correlation is modelled (Pinheiro and Bates p.
239 [32]), is below 3.08 in absolute value. The Pearson residuals should be compared
to a standard gaussian distribution, which gives p = 0.001 for a value of 3.08, which
in a Bonferroni outlier test (p-value adjusted by the number of observations) gives
padj > 1. Thus, there do not seem to be any outliers in the data, i.e. 3 is not an
extreme observation in a large dataset.
Furthermore the random components should be examined to check the normality
assumption. This is done with a QQ-plot for each of the 3 components BLUPs (best
unbiased linear predictors) [37], which is seen in Figure 3.6. The QQ-plots show that
the random components seems to coincide well with gaussianity, although some lower
tail issues may be present for b0i.

Estimation

The model is estimated by means of maximum likelihood (ML) for testing the fixed
effects, since this allow likelihood ratio tests for the fixed effects. Using the restricted
maximum likelihood (REML) technique gives more correct estimates of the random
components, but mixed effects models with different fixed effect structure can not
be compared with respect to their restricted likelihoods (Pinheiro and Bates p. 75-
76 [32]). For the random components REML-estimates can be compared to ML-
estimates to insure that the ML-estimates are not underestimated.
The summary for the fixed effects is given in Table 3.3, which shows that the age
variables are highly significant, the congenital resistance, PD15 PtcO2 is significant
as well as the age of daycare start. Reducing the model by removing the factors
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Figure 3.5: Residual diagnostics

gender, exposure to smoking in the third trimester and the congenital corrected FEV
leads to an insignificant decrease in the likelihood (p=0.0865).

Value Std.Error DF t-value p-value
(Intercept) 0.0528 0.0081 1097 6.5207 <0.0001
age 0.0172 0.0035 1097 4.9219 <0.0001
(age2 ) -0.0037 0.0006 1097 -6.2676 <0.0001
(log10(pd)) -0.0105 0.0029 308 -3.5638 0.0004
(daycare.start/30) -0.0012 0.0005 308 -2.4281 0.0158
genderMale 0.0004 0.0044 308 0.0998 0.9206
(fev/100) -0.0134 0.0160 308 -0.8343 0.4047
factor(smoking3rd)1 0.0062 0.0065 308 0.9674 0.3341

Table 3.3: Summary for fixed effects

The variance-covariance matrix for the random components for the reduced model is
given in Table 3.4, which shows that the variance for the curvature is low. However
the maximum likelihood estimate of σ2 is σ̂2 = 0.02 ·10−3, which should be compared
to the estimate of β̂2 = −0.0038. A test for the decrease in the likelihood gives
p = 0.02 for a likelihood ratio of 7.6 on 3 degrees of freedom (the variance of the
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Figure 3.6: QQ-plots of the random components

random curvature and the covariance with the intercept and the slope).

Intercept age (age2 ) Intercept age (age2 )
Intercept 1.4927 -0.1947 −1.1494 · 10-6 1.4000 -0.1807 −0.0058 · 10-6

age 0.1110 −0.0647 · 10-6 0.1119 −0.0008 · 10-6

(age2 ) 0.2284 · 10-6 0.0027 · 10-6

Intercept 1.0000 -0.4784 -0.0020 1.0000 -0.4565 <0.0001
age 1.0000 -0.0004 1.0000 <0.0001
(age2 ) 1.0000 1.0000

Table 3.4: Variance-covariance matrix for the random components mul-
tiplied by 103 above horisontal line and corresponding correlation matrix
below the line (the first tre columns are for the ML-estimation and the
last 3 for the REML estimation)

Applying the same test for REML estimations of the two model gives p ≈ 1, which
leads to the opposite conclusion. This is mainly due to the fact that the estimated
variance in the REML estimation is σ̂2 = 1.64 · 10−6. The REML estimate of the
random component is much smaller compared to the ML-estimate. Since the REML
method is a better method to test the variance components the individual curvature
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is removed with basis in the REML-test (see Diggle et al. p. 69 [15] for a discussion
of REML vs. ML).
The REML estimation of the random components shows that the random second
order term is insignificant and furthermore uncorrelated with the intercept and the
first order term. The correlation matrix for the fixed effects is shown in Table 3.5
(based on REML estimation), it shows that substantial negative correlations between
the first and second order parameters for age are present.
From Figure 3.6 it is seen that the normality assumption for the random components
seems to be fullfilled. The QQ-plots are seen to be linear with some small deviations,
though not severe.

(Intercept) age (age2 ) (log10(pd)) (daycare.start/30)
(Intercept) 1.00 −0.57 0.51 0.14 −0.72
age −0.57 1.00 −0.96 0.01 −0.00
(age2 ) 0.51 −0.96 1.00 −0.01 0.00
(log10(pd)) 0.14 0.01 −0.01 1.00 0.09
(daycare.start/30) −0.72 −0.00 0.00 0.09 1.00

Table 3.5: Correlation-matrix for fixed effects in model with random
intercept, slope and curvature

An updated model without the random component corresponding to the second order
parameter can be formulated as

ỹij = β0 + b0i + (β1 + b1i) · ageij + β2 · age2
ij+

β3 · log10(pdi) + β4 · daycarestart,i + εij
(3.8)

i = 1, . . . ,m j = 1, . . . , ni, εεε ∼ N (0, σ2Λ)
Λ = diag(1/ndaysi1, 1/ndaysi2, . . . , 1/ndaysini)

b0i ∼ N (0, σ2
0), b1i ∼ N (0, σ2

1), bi =
[
b0i b1i

]T ∼MVN(0,G)

A problem with the model, which may lead to incorrect analysis, is seen in the plot of
the residuals vs. daycare start in Figure 3.5. The figure shows that a small number of
children have skipped the nursery and are first starting in kinder-garden. This imply
that these children start at the age of 3 compared to 75 % of the total cohort starting
before the age of 1.1 and 90 % before 1.5 age of years.

Transformed daycare start

The covariate day care start is seen to be skewed and furthermore, there seems to
be some pattern in the residuals for this covariate. In the following day-care start is
replaced by log(daycarestart) to reduce the skewness of day-care start. This leads to
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the model

ỹij = β0 + b0i + (β1 + b1i) · ageij + β2 · age2
ij+

β3 · log10(pdi) + β4 · log(daycarestart,i) + εij
(3.9)

i = 1, . . . ,m j = 1, . . . , ni, εεε ∼ N (0, σ2Λ)
Λ = diag(1/ndaysi1, 1/ndaysi2, . . . , 1/ndaysini)

b0i ∼ N (0, σ2
0), b1i ∼ N (0, σ2

1), bi =
[
b0i b1i

]T ∼MVN(0,G)

Since the model in (3.8) has the same number of parameters as the model in (3.9),
the models can be compared by the either Akaike’s Information Criterion, AIC =
−2 · log-likelihood + 2 · npar, (see Michael Crawley p. 208 [10]) or the Bayesian
Information Criterion, BIC = −2 · log-likelihood + log(nobs) · npar.
Throughout the thesis, BIC will be used since AIC gives too many parameter, Ripley
p. 34-35 [36] or Hurvich and Tsai’s discussion of model selection [20]. In this par-
ticular example it really does not matter, since the number of both the observations
and parameters are the same in the two models. This correspond to comparing the
likelihood and choosing the model having the highest.
Model (3.8) has a BIC of −4583.71 compared to model (3.9)’s −4583.95, which shows
that the updated model is marginally better in terms of minimizing the BIC, i.e.
maximizing the likelihood.
The residuals from the updated model are shown in Figure 3.7, which shows that
the improvement from the model with day-care start as a linear effect is very small.
The p-value for the estimate of the transformed variable is now 0.0045 compared to
0.0053 for the model with the untransformed variable. From a parsimonic point of
view the model without the log-transformed day care start is preferred and hence is
therefore the model preferred from this point on.

3.2.5 Interpretation

The fixed effects for the model with the untransformed day care start as in (3.8)
are shown in Table 3.6. The table shows that the remaining fixed effects are highly
significant and further reduction leads to significant loss of information.

Value Std.Error DF t-value p-value
(Intercept) 0.0555 0.0073 1097 7.5897 <0.0001
age 0.0172 0.0035 1097 4.9683 <0.0001
(age2 ) -0.0038 0.0006 1097 -6.5325 <0.0001
(log10(pd)) -0.0108 0.0029 311 -3.7233 0.0002
(daycare.start/30) -0.0013 0.0005 311 -2.8103 0.0053

Table 3.6: Summary for fixed effects for mixed effects model with linear
relation between the symptom rate and the day-care start.
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Figure 3.7: Residual diagnostics for re-fitted model (3.8)

Based on the estimated model the effect of the risk-factors PD PtcO2 and age at day
care start can be investigated. Since the estimation is based on the root-arcsine scale
the effect of PD PtcO2 will depend on the age and childs age at day care start and
the effect of day care start will depend on the age and the PD PtcO2. The effects
are seen not to be additive nor multiplicative on the original scale. The effect of
PD PtcO2 for different ages and different times of day care start can be investigated
by considering the fraction

1− ŷ(PD PtcO2 = 10 · x)
ŷ(PD PtcO2 = x)

(3.10)

for a given age and age of day care start. The expression correspond to the relative
reduction for an increase by a factor 10 in PD15 PTcO2. This gives a rather complex
expression, which for a child with average intercept and slope (b0 = b1 = 0) can be
expressed as

1− ŷ(PD PtcO2 = 10 · x)
ŷ(PD PtcO2 = x)

= 1− sin2(c+ β3 · (1 + log10(x)))
sin2(c+ β3 · log10(x))

(3.11)

c = β0 + β1 · age + β2 · age2 + β4 ·median(daycarestart)
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The effect of an individual increasing its PD15 level by a factor 10 is a function of
both age, day care start and the reference PD15 level. A contour plot for the effect is
shown in Figure 3.8 for day care start kept at the median value (11.3 months), which
shows that the reductions are largest at the age of 5 years with reductions between 37
and 60 %. Obviously the interpretation is a little awkward, since the PD15 PtcO2 can
not be increased for an individual, it however shows in which direction a population
effect will be, see Zeger et al. [46].
It is furthermore seen in the upper part of the PD15 PtcO2’s, this correspond to
comparing PD15 PtcO2 = 10 with PD15 PtcO2 = 1 at the age of 5 years that the
reductions are above 50 %. The high reduction are caused by comparing children
being very resistant at birth (97 % quantile) with children not being so resistant
(77 % quantile). It is seen that an increase in PD15 PtcO2 decreases the symptom-
rate.

Contourplot for PD15−effect
for median age at day care start
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Figure 3.8: Contour plot of (3.11), each contour gives the reduction in
percent of ŷ(pd, age) when pd = PD15 PtcO2 is increased by a factor 10
(note the contours are not equally spaced)

Instead of considering the contour plot in Figure 3.8 the estimated reductions as
function of the denominator PD15 PtcO2 for each year of life is shown in the upper
part of Figure 3.9. It is seen that the effect of an increase in PD15 PtcO2 is highest
for the age of 5.
For day care start a similar analysis can be done by keeping the PD15 PtcO2-value
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Figure 3.9: Top: Reduction for increasing PD15 by a factor 10, bottom:
reduction for increasing daycare start by 1 month for each of the five
considered years of life

fixed at the median value (0.26). A plot of

1− ŷ(daycarestart = 1 + x)
ŷ(daycarestart = x)

= 1− sin2(d+ β4 · (daycarestart + 1))
sin2(d+ β4 · daycarestart)

(3.12)

d = β0 + β1 · age + β2 · age2 + β3 ·median(log10(x))

is shown in the lower part of Figure 3.9. The figure shows that the age of 5 years
is different compared to the other years of life, since it gives much higher reductions
for a late day care start compared to the four other years of life. This which could
be caused by the relative few observations in this part of the day-care range (see
Table 3.7). Age 1 to 4 give reductions between 5 and 10 % for starting in day care
start one month later. In general the reductions are seen to be highest at the age 5
years, i.e. the symptoms-rates at the age of 5 years are more sensitive to the PD15
PtcO2 measurements and the age of day-care starts compared to the first years. This
imply that the children in this model have increased benefit as they grow older.
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Quantiles in day-care start 0.00 0.05 0.25 0.50 0.75 0.95 1.00
Number of children 5 6 8 11 14 21 36

Table 3.7: Quantile for day-care start in months at the age of 5 years

Age at maximum Maximum
symptom-rate Freq symptom-rate Freq

1 18 1 176
2 103 2 85
3 131 3 32
4 50 4 8
5 10 5 8
6 2 6 4

Table 3.8: Distribution of the children’s estimated age at maximum and
fitted max proportion

3.2.6 Predictions

Based on the model found in (3.8) predictions of the longitudinal development can
be estimated. To be able to compare children across different levels of PD15 and
different ages at day care start, the predictions are based on all children having
the median-value of PD15 and the median age at day care start. Furthermore, the
proportion/rate is considered, which corresponds to the number of episodes per day.
In Figure 3.10 the predictions of the longitudinal development of the symptom-rate
are shown, in which the children are grouped by the estimated age of their maximum
symptoms-rates, agemax. This divides the children into a group with decreasing
symptom-rate, a group with an initial increase until the age of 2 years and then a
decline, a group topping between the age of 2 and 3 years, one group tops between
3 and 4, one between 4 and 5, and finally a group which has its maximum after the
age of 5 years. The last group is seen to have an increasing symptom-rate in the
considered age interval.
The plot for the 75 % quantile of PD15 PtcO2 and day-care start (Figure 3.10 right
part) gives essentially the same results, the curves are shifted downwards due to the
negative correlation between PD15 PtcO2 and the symptoms rate and between day-
care start and the symptom rate. It is seen from both types of predictions that there
seems to be a large group of children with more or less no symptoms. These children
are seen to be distributed over the intervals (1, 2] and (2, 3] in Figure 3.10.
The distribution of the age at maximum is given in Table 3.8, which shows that
the majority of the children have their maximum before the age of 3 years. The
interpretation of a maximum before the age of 1 years is that these children keep
getting better, i.e. having a lower symptom-rate. The opposite effect is seen for
children with a maximum after the age of 5 years, which imply that the children keep
having more symptoms. It is furthermore seen that the majority of the children have
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Figure 3.10: Left: predicted proportions for median PD15 and median
age at day care start, right predicted proportions for 75 % quantile for
PD15 and day care start. Both plots are grouped by the age of the
estimated maximum proportion of days with episodes

close to no symptoms.

Unscaled predictions

In the upper part of Figure 3.11 the predicted proportions for all children with their
respective values of PD15 PtcO2 and age of day-care start are shown. This gives
a little more spread in some of the groups compared to the predictions based on
quantiles of PD15 and day care start. It is noted that a group of children with a low
maximum proportion is seen in both group (1, 2] and (2, 3].
There seems to be indications of a clustering of the children: one group has a low
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Figure 3.11: Top: Predicted proportions for observed values of PD15
and age at day care start grouped by the estimated age of their maximum
symptom-rate.

maximum but can have their maximum at different ages, one starts at a medium
level, but keeps getting fewer symptoms, one group starts at a medium level but does
not have any improvement in the symptom-rate and finally one group starts at a
medium or high level and keep getting more symptoms.
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3.3 Latent class models for gaussian response

In the following section Latent Class Regression (LCR) is considered, which is a
model-class using the data to find clusters of observations or individuals. LCR may
therefore give the possibility to identify groups of children having the same type of
temporal development of symptom-rates. The model class is more complex than a
standard general linear model, but may be easier to interpret compared to a mixed
effects models in terms grouping the children. The analysis of the mixed effects model
indicated that there may be sub groups of children, it was however not clear how the
children should be grouped.

3.3.1 Existing LCR litterature

The Latent Class Regression has been studied in many research fields. Erichsen
et al. [16] and Poulsen et al. [33] used LCR and random coefficients on principal
components analysis in a sensory analysis to identify latent segments within a given
population and to decribe characteristics of these segments.
Garrett et al. [17] discuss latent class analysis in an epidemiologic study in order to
identify similar individuals with respect to a questionnaire on mental health. The
prevalence for each of the found groups and questions were estimated, which showed
that the population could be divided into three groups, normals, a group with mod-
erate depression and a group with severe depression.
The studies illustrate the main purpose of using latent class regression, namely that
some underlying grouping of the population is present, but the grouping is hidden
or latent. Consider a study of the muscle growth-curves for children at the age of
13-18 years exposed to different types of treatment. Furthermore, assume that one
subgroup is girls and the other is boys, but the gender for some reason is unknown.
The muscle growth-curves will probably differ from one group to another, which may
be picked up by the Latent Class Regression.
A short simulation case is analyzed in the following to illustrate the model-class, the
theory behind the estimation will be presented in section 3.3.2. Assume a phenomena
measured in the variable y is measured from a population with a underlying grouping,
which is unknown. In this simulation study two groups are assumed and the variable
x is a covariate (see upper left part of Figure 3.12), which is correlated with y through
the following expression

y =

{
0.6 · x− 0.1 · x2 + e1 group 1
0.2 · x+ e2 group 2

(3.13)

where V [e1] = 4 · V [e2] = 1. The upper right part of Figure 3.12 shows that the
optimal number of clusters is 2. The predicted clusters agree perfectly with the
grouping (known since it is a simulation) and the estimated parameters are shown in
Table 3.3.1. It is seen that the agreement between estimated and true parameters is
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good. The standard errors for the parameters are not shown, but the intercepts are
both insignificant as well as the curvature in the second cluster, as required from the
model formulation.

Group1 Group 2
(Intercept) −0.19 0.22
x 0.76 0.14
(x2 ) −0.12 0.00
σ 0.94 0.53
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Figure 3.12: Upper left: x vs. y without grouping, upper right: BIC
(Bayesian Information Criteria) vs. the number of clusters and bottom:
x vs. y with observations colored according to their predicted cluster

3.3.2 Model specification

The basis for the estimation of a mixture model in the following section is the model
structure found in section 3.2. The model had the following structure for the fixed
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effects

ỹij =β0 + β1 · ageij + β2 · age2
ij + β3 · log10(pdi)

+ β4 · daycarestart,i + εij
(3.14)

i = 1, . . . ,m j = 1, . . . , ni εεε ∼ N (0, σ2Λ)
Λ = diag(1/ndaysi1, 1/ndaysi2, . . . , 1/ndaysini)

Model formulation for latent class regression

Based on the √ndaysij weighted observations, Ỹ and design matrix, X , a LCR can
be formulated. The background for the model formulation of the latent class regres-
sion is found in Leisch’s vignette for the R-package FlexMix [23] and the following
model formulation is with some small deviations entirely based on that. Letting ỹij
be observation j for individual i and xij be the row-vector from the design matrix
corresponding to observation ỹij . The conditional density for ỹij is

h(ỹij |xij , ψ) =
K∑
k=1

πkf(ỹij |xij , θk) (3.15)

where πk is the prior probability of cluster k, θk is the parameters for cluster k, θk =
(βk, σ2

k), f the density function for the k’th cluster and ψ = (π1, . . . , πK , θ1, . . . , θK)
the whole set of parameters. The prior probabilities are the probabilities for any
observation to belong to one of the clusters, i.e. before using the information in that
particularly observation. The prior probabilities are non-negative and sum to 1, i.e.
the k clusters are the entire event space.

πk ≥ 0 ∧
K∑
k=1

πk = 1 (3.16)

Parameter estimation can be done with the E-M algorithm, see Dempster et al. [14],
which alternates iteratively between an Estimation step and a Maximization step.
The E step is to estimate the posterior probabilities for individual i in cluster k with
ni observations

p̂ik =
πk

ni∏
j=1

f(ỹij |xij , θk)

K∑
k′=1

πk′
ni∏
j=1

f(ỹij |xij , θk′)
(3.17)

and then to estimate the prior probabilities, the overall probability of cluster k given
the posteriors. The prior probabilities are estimated by

π̂k =
1
m

m∑
i=1

p̂ik (3.18)
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The maximization step is to maximize the log-likelihood with respect to the para-
meters for each cluster. In the maximization the posterior probabilities are used as
weights, which leads to the M-step

θ̂k = arg max
θk

m∑
i=1

mi∑
j=1

p̂ik · log f(ỹij |xij , θk) (3.19)

This imply that observation i has weight p̂ik in the estimation of cluster k. The EM-
algorithm runs iteratively between the two steps until the likelihood stops improving
more than a specified threshold. On top of the iterative EM-algorithm, the LCR is
started at different initial parameter values to insure convergence to the maximum
likelihood solution.

3.3.3 LCR applied to root-arcsine symptomrate

In the following a LCR will be estimated based on the linear model described in
(3.14). To insure that the number of clusters is chosen in an optimal way, the Bayesian
Information Criterion is calculated for models with k ∈ 1, 2, . . . , 5 clusters, from which
the optimal number of clusters can be found by maximizing the BIC. Furthermore,
to obtain information on the uncertainty of the BIC, the BIC is determined in m
estimations for each cluster size, where the i’th estimation is based on the dataset
not containing individual i, i.e. a jackknife strategy.
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Figure 3.13: BIC as function of the number of clusters, K. With 90 %
confidence bands based on jackknife strategy

It is seen from Figure 3.13 that the optimal number of clusters is K? = 3. The
corresponding estimates are given in Table 3.9, which could be compared to the fixed
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Parameter Cluster 1 Cluster 2 Cluster 3 Mixed effects
Number of individuals 171 86 59 316
Number of observations 753 392 278 1423
Intercept 0.0768 0.0358 0.0489 0.0553
age 0.0122 -0.0043 0.0570 0.0173
age2 -0.0036 0.0000 -0.0087 -0.0038
log10(pd) -0.0046 -0.0013 -0.0135 -0.0108
daycare.start/30 -0.0020 -0.0006 -0.0012 -0.0013
σ 0.7521 0.4915 0.7182 0.6292

Table 3.9: Parameters for the clusters in the optimal mixture model
with the estiamtes from the mixed effects model as reference

effects from the mixed effects model considered in last column in the table. It is seen
that the intercepts in the three clusters are located around the estimated average
intercept in the mixed effects model. Although numerical similarities, the mixed
effects parameters are subject specific and the cluster estimates are cluster averages,
which imply that the interpretation is not quite the same. However, it is seen that
congenital resistance and age at day-care start is pointing in the same direction as
the mixed effects model. The slopes are seen to be both positive (two clusters) and
negative for one cluster compared to the positive slope for an average individual in
the mixed effects model. It is furthermore seen that the residual variance is compared
to the mixed effects estimate in one cluster and higher in the two others.
The three clusters are characterized by

• Cluster 1

– highest intercept, a postive median slope and curvature

– estimate for PD15 PtcO2 lies between the two other clusters

– day care start effect parameter lowest of the 3 groups

– estimated maximum at age?1 = 1.7 years

• Cluster 2

– lowest intercept, slope (different sign compared to the other clusters) and
absolute curvature

– highest estimate for PD15 and day care start

– estimated standard deviation is 60 % of the standard deviation in the other
two groups

– estimated maximum at age?2 = −68.2 years

• Cluster 3

– median intercept, highest slope and absolute curvature
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– lowest estimate of PD15 and median estimate for day care start

– estimated maximum at age?3 = 3.3 years

Predictions for median values of PD15 PtcO2 and day-care start are shown in Fi-
gure 3.14. The figure shows that three distinct groups are found, corresponding to
the groups described above. The grouping yields one group with many symptoms and
two groups with a decreasing level of symptoms of which one of them has essentially
no symptoms.
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Figure 3.14: Predictions for (3.24) for each of the three clusters with
confidence bands. PD15 and day care start are kept fixed at median level
in all clusters

From the jackknife estimation it is possible to estimate the optimal number of clusters
in each iteration (when omitting individual i from the estimation), this gives K? = 3,
315 times and K? = 4, 1 time. It is seen that the optimal number of clusters is not
affected of the individual observations and only in the direction of expanding with
an additional cluster in one case.
The individuals with divergent assignment from the complete analysis compared to
the jack-knife analysis have posterior probabilities given in Table 3.10 for the three
clusters considered, which shows that the 2 observations with the lowest maximum
posterior have posteriors close to 0.5. These two individuals are seen to be borderline
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cases, which obviously make them sensitive to even small changes in the parameters
in the model.

Post 1 Post 2 Post 3
1 0.48 0.52 0.00
2 0.51 0.49 0.00
3 0.00 0.19 0.81

Table 3.10: Posteriors for individuals with different cluster assignment
in overall estimation and jack-knife assignment

id pd daycare.start age ncough ndays cluster jack.knife
171 11.15 250 1 0 353 1 2
171 11.15 250 2 2 365 1 2
171 11.15 250 3 1 365 1 2
171 11.15 250 4 0 365 1 2
171 11.15 250 5 0 365 1 2
352 0.20 428 1 1 333 2 1
352 0.20 428 2 2 365 2 1
352 0.20 428 3 0 365 2 1
352 0.20 428 4 0 365 2 1
352 0.20 428 5 0 365 2 1
376 0.28 158 1 1 347 3 2
376 0.28 158 2 1 365 3 2
376 0.28 158 3 7 359 3 2
376 0.28 158 4 7 328 3 2
376 0.28 158 5 3 282 3 2

Table 3.11: Summary for observations with divergent classifications
from jack-knife compared to full estimation

The three individuals observations are tabulated in Table 3.11, which shows that the
mis-classifications correspond to a child from the high group being misclassified as a
child in the low group, a child in the low group being classified as a medium and a
child from the medium classified as low. Mainly the first child is problematic, since
the penalty from going from the high to the low should be much higher compared
to shifting between the low and the medium, since they are much more similar.
The child being classified as high and low for the full estimation and the jack-knife,
respectively, is characterized by having a rather low day-care start age (1 % quantile)
and an average PD15 PtcO2 measurement, see Table 3.11. The child is furthermore
seen to start at a low level, since the first two years have only 1 episode each. The
high group is characterized by starting at a high level, which imply that leaving an
observation in the lower part of group will tend to give an even higher estimated
proportion and thereby making it more unlikely to belong to the high cluster for
children in the low end of the group.
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Normality assumption

Before considering the model further the residuals are examined for normality. The
QQ-plot for the residuals from each of the three clusters (soft assignment, all obser-
vations included with weight pik) and for the combined residuals (hard assignment,
only those observations in cluster k, which are assigned to cluster k are considered).
It is seen that the residuals seem to be gaussian, whereas the individual plots have
some departures from normality for the lower values (in particularly for the cluster
with the lowest intercept). As a whole the residuals do not seem too bad, i.e. from
the upper left part of the QQ-plot.
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Figure 3.15: Residual examination for the three clusters in the optimal
Latent Class Regression

Cluster characteristics

Based on the final posterior probabilities from the EM-algorithm the children can be
divided into three groups. Each child is assigned to group k if p̂ik ≥ p̂ik′ ∀k′, hence
the children are assigned to the most likely group. The sizes of the groups can be seen
from Table 3.9, which shows that group 1 has more than twice as many individuals
as the other two groups.
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In Figure 3.16 box plots of log(PD15 PtcO2) and day care start are shown for each
cluster. It is seen that the three clusters seem to have more or less the same distribu-
tion of the two variables. Bartlett’s test for variance homogeneity in the three groups
gives p = 0.08 and p = 0.01 for log(PD15 PtcO2) and day care start, respectively.
The latter test is mainly due to the skewed distributions of day care start as noted
in section 3.2.4 p. 37, where especially cluster 3 has some old starters, testing the
corresponding log-transformed variable gives p = 0.66.
To check if a cluster effect is present for log(PD15 PtcO2) and log(day care start)
an one-way ANOVA can be applied. The analysis can be carried out by the model
(Petrucelli et al. p. 542-545 [30]) for PD15 PtcO2

log(PD15 PtcO2,ij) = µ+ αj + eij (3.20)

with the hypotheses

H0 : α1 = α2 = α3

H1 : ∃(i, j) | αi 6= αj (3.21)

Testing the cluster effect for the variables gives p = 0.05 and p = 0.20 for PD15 PtcO2
and log day-care start. This shows that the mean levels are not significantly diffe-
rent for the three clusters, hence the differences in the corresponding parameters are
related to effects rather than differences in the group means.
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Figure 3.16: Box plots of PD15 and day care starting age for the three
clusters
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One can furthermore consider the mixed effects model from section 3.2 equation (3.8),
where two random components were included. The BLUP (best unbiased linear
prediction) estimates of the random components [37] can be compared to the clusters,
which gives the possibility to see if a connection between the two models is present.
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Figure 3.17: Box-plots for b0i and b1i obtained from mixed effects model
grouped by clusters obtained from Latent Class Regression

From Figure 3.17 it is clear that the b0i’s differ from cluster to cluster. Testing as
in (3.21) but with log(PD15 PtcO2) replaced by the BLUP-estimates gives p<0.0001
and p<0.0001 for b0i and b1i, respectively. It is seen that for b0i all clusters are
different, whereas for b1i cluster 3 differ from the other two and that cluster 1 and 2
seem to have the same mean slope (p = 0.9468).
It follows that there is a connection between the clusters and the predictions of the
random parameters: Cluster 3 has the highest b0i’s and b1i’s, whereas the difference
between the two other clusters is that cluster 2 has the lowest b0i’s. For the LCR
an extra feature is that the estimates for day care start and PD15 PtcO2 differ from
cluster to cluster compared to the fixed estimates in the mixed effects model.

Parameter comparison

The posterior probabilities can be used as weights in a general linear model, such
that the uncertainty on the parameters can be obtained. Having the uncertainty
implies that testing parameters from different clusters can be done with a Wald-test
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(see Wood p. 110 [42])

χ2 =
(β̂ik − β̂ik′ )2

σ2(β̂ik) + σ2(β̂ik′ )
∼ χ2(1) (3.22)

Where the correlation between parameters for different clusters are assumed absent,
which imply that the variance of the differences become the sum of the parameter
variances. Testing all pairwise comparison would be troublesome, since the probabil-
ity of making type I errors would blow up, however calculating the χ-values for all
comparisons will give some insight information on how different the clusters really
are.
Furthermore, since all observations are weighted in all three clusters the standard
error for the estimates are smaller compared to a hard clustering (only using obser-
vations classified as low in the estimation for the low group etc.). The uncertainty on
the parameters decrease with the number of observations, since the dispersion matrix
for the parameter-vector is (see for example Conradsen p. 114 [9])

D(β̂) = σ2(xTΣ−1x)−1 (3.23)

where Σ is a diagonal matrix with the posteriors in the diagonal and x the design
matrix. Since Σ has non-negative weights and is a diagonal matrix, the parenthesis
in (3.23) will increase for an increasing number of observations, which imply that
the uncertainty decreases. The χ-scores will therefore be estimated based on a model
with hard clustering but with the posteriors corresponding to the included individuals.
This gives higher standard errors for the parameters, which should reflect the actual
amount of information at hand and hence give more reasonable comparisons.
The χ-scores are shown in Table 3.12, which shows that the estimated intercept for the
high group (group 3) is seen to have a large standard error making it insignificantly
different from the middle and low group (critical χ2(1) is 3.84 at a 5 % level). The
other parameter comparisons show that the low and middle group have the same
effect of PD15 PtcO2 and that the middle and high group have the same effect of
starting late in day-care. The main differences between the groups are seen to be
the age-related development in symptoms, which is seen to be highly significantly
different from cluster to cluster.

Parameter 1-2 1-3 2-3
Intercept 17.0006 3.3781 1.4742

age 6.6438 23.7358 49.0353
age2 11.3402 11.8021 37.4737

log10(pd) 0.8553 5.3323 9.4150
daycare.start/30 7.4530 0.8270 2.6331

Table 3.12: χ-scores for parameter comparisons across clusters
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Predictions from mixture model

Based on the mixture model with the optimal number of clusters, K?, predictions
can be made. For each of the K? clusters the median age of day care start and the
median PD15 value are used to predict one line per cluster.
From Figure 3.18 it is seen that the three clusters have different temporal shapes.
Cluster 2 keeps a constant low level, cluster 1 starts at a medium level has a minor
increase towards the age of 2 years and then a decline. Cluster 3 starts higher than
the other two more than doubles the fraction from age 1 to 3 and then declines back
to a level higher than the starting point. The model differentiates between three
types of children: Children with many symptoms, which probably are the asthmatic
children, a middle group, which may consists of non-asthmatic children or perhaps
asthmatic children and a group with no symptoms and hence probably non-asthmatic
children.
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Figure 3.18: Prediction for each of the clusters at the median PD15 and
age of day care start
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3.3.4 Mixed effects model revisited

With the starting point in the mixed effects model from section 3.2 formulated in
equation (3.8) and the clusters obtained from the LCR, a transformation from a
mixed effects model to a purely deterministic model is sought. This can be done by
introducing a cluster variable, which is a grouping variable giving the clusters from
the LCR. By introducing the cluster and its interaction with all other variables, a
new model can be formulated

ỹijk =β0 + αk + β1k · ageijk + β2k · age2
ijk + β3k · log10(pdi)

+ β4k · log(daycarestart,i) + εijk
(3.24)

i = 1, . . . ,m j = 1, . . . , ni k = 1, . . . , 3 εεεk ∼ N (0, σ2
kG)

where αk + β0 is the mean level for cluster k, βik is the estimated for parameter i in
cluster k and σ2

k is the variance for cluster k and G is a matrix describing the within
subject correlation. The correlation structure is assumed to be exponential, which
imply that observations taken on the same child are correlated by the amount

ρ(yijk, yij′k) = e−d/r (3.25)

where d is the distance in age and r the range (to be estimated). The corresponding
semi-variogram then becomes γ(d) = σ2(1− e−d/r). The separate variances for each
cluster are included, since cluster 2 has lower variance compared to the two other
clusters.
The model uses 19 degrees of freedom compared to 9 for the original mixed effects
model, which for the likelihood ratio 632.1543 gives a test value of p<0.0001. This
shows that the complication of the model leads to a highly significant increase in the
log-likelihood.
The estimated semivariogram with the theoretical semivariogram appended is shown
in Figure 3.19. It is seen that the fit is not too bad, but has a tendency to underesti-
mate for high values of d. However the deviations are not too severe and changing the
correlation-structure does not solve the problem nor change the parameter estimates
significantly. Accounting for some type of correlation within each individuals obser-
vation is important, since each observation will contribute with too much information
otherwise and hence give too small standard errors on the parameter estimates and
thereby making it too easy to obtain significance. The estimated range of the correla-
tion is 0.40 years, which shows that the correlation is small. The estimated correlation
for observations 1 year apart is e−1/0.41 = 0.09. A likelihood ratio test against not
having a correlation structure gives p=0.0084, which shows that the correlation is
significant, although small.
A summary for the model is given in Table 3.13, which shows that eg the effect of day
care start differ from cluster to cluster. This is seen to be case for all interactions terms
and the model can not be reduced any further. The estimated ratios in standard de-
viations for cluster 2 and 3 compared to cluster 1 are 0.6472 and 0.9217, respectively.
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Figure 3.19: Semivariogram for residuals from model in (3.24) with as-
sumed exponential correlation for the within-individual error. o: Sample
semivariogram; —: fitted exponential semivariogram (range=0.40)

Comparing to a model without cluster specific variance, i.e. σ1 = σ2 = σ3, gives a test
of p<0.0001, which shows that the clusters have significant different variance levels.

Residual checking

The residuals from the model are examined by means of a QQ-plot to check the
normality assumption. It is seen from Figure 3.20 that the normality assumption
seems to be fulfilled with some minor deviations in the upper tail. It is also seen
that the residuals have no pattern when plotting it against the covariates, whereas
when plotting residuals against clusters, cluster 1 is seen to have the residuals skewed
towards large positive values. This could indicate that some of the children in the
middle group may indeed belong to the high. Furthermore, the difference in variance
in group 2 is apparent in the lower right part of Figure 3.20.

Predictions

Based on the model in (3.24) predictions with confidence bands can be estimated. For
simplicity the correlation within individual is neglected since it is low. In Figure 3.21
predictions and corresponding confidence bands are shown. The confidence bands
are based on confidence bands on the root-arcsine scale and then scaled back to the
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Value Std.Error t-value p-value
(Intercept) 0.0362 0.0073 4.9849 <0.0001
factor(cluster)1 0.0410 0.0109 3.7620 0.0002
factor(cluster)3 0.0162 0.0140 1.1573 0.2473
age -0.0049 0.0048 -1.0120 0.3117
(age2 ) 0.0001 0.0008 0.1448 0.8849
(log10(pd)) -0.0010 0.0022 -0.4600 0.6456
(daycare.start/30) -0.0008 0.0003 -2.2855 0.0224
factor(cluster)1:age 0.0187 0.0072 2.5881 0.0097
factor(cluster)3:age 0.0649 0.0095 6.8631 <0.0001
factor(cluster)1:(age2 ) -0.0039 0.0012 -3.2653 0.0011
factor(cluster)3:(age2 ) -0.0094 0.0016 -5.9908 <0.0001
factor(cluster)1:(log10(pd)) -0.0035 0.0031 -1.1496 0.2505
factor(cluster)3:(log10(pd)) -0.0103 0.0037 -2.7907 0.0053
factor(cluster)1:(daycare.start/30) -0.0013 0.0005 -2.6383 0.0084
factor(cluster)3:(daycare.start/30) -0.0007 0.0005 -1.3272 0.1847

Table 3.13: Summary for model in (3.24)

rate scale, which imply that the bands are not entirely correct. They do however give
some insight information on the uncertainty of the predicted fractions in the three
clusters.
Figure 3.21 shows that the three clusters are different, the two clusters with the lowest
levels seem to approach each other at the age of 5 years. It is seen that 257 children
have few episodes (either a consistent low level or a median level at start and then a
decline) and 59 have a consistent high level of episodes. The LCR gives some rather
clear prototypes of children compared to the mixed effects model, where a grouping
of the children was not immediately apparent. However, it has been shown that the
estimated BLUPs from the mixed effects model and the cluster are connected and
the heterogeneity related to group differences.

3.3.5 Existing literature

In the pediatric asthma field the study by Martinez et al. [26] is the main reference.
In the study, the authors operates with two measurements times: 3 years and 6 years
of life and two states: Wheezing and no wheezing. This gives 4 possible combinations
and hence groups of children; no wheezing: no wheezing at age 3 and 6, transient
wheezing; wheezing at age 3 but not at age 6, late onset wheezing; no wheezing at
age 3 but wheezing at age 6 and persistent wheezing; wheezing at both age 3 and 6.
The analysis above for 3 groups was carried out, since 3 clusters was the optimal
number of clusters based on data. One could do a similar analysis for 4 clusters to
analyze the types of temporal development this would lead to. The LCR analysis is
therefore done for a 4 cluster model, which gives the predictions shown in Figure 3.22.
It is seen from Figure 3.22 that the results from Martinez et al. [26] seem not to be
reflected in the model. In the 4 cluster model three clusters ends at a low level and
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Figure 3.20: QQ-plot for linear model with cluster as factor

one ends at a high level. Two clusters starts at a high level of which one rapidly
declines to the lowest level at the age of 5 years, whereas the other increases until the
age of 3 and then declines to a level above the starting level but still at the highest
level of all clusters. Another cluster starts at a median level then increases until the
age of 2-3 years and then declines to a level a little above the two clusters with the
lowest end-level. The last cluster starts and maintains a constant low level. To reflect
the scheme by Martinez et al. [26], here for age 1 and 5, the group with a median
starting level should have increased to a higher level at the end corresponding to late
onset wheezing.
In Table 3.14 comparisons between cluster assignments in the k = 3 and k = 4 models
are done. It is seen that the middle curve in k = 3 is a mixture of the three lowest
curves in k = 4, the highest in k = 3 is composed of the middle and the highest curves
in k = 4 and the lowest curve in k = 3 of the lowest curve and the curve starting
high but ending low in k = 4. The estimated parameters compared to the estimates
obtained from the mixed effects model are shown in Table 3.15, which shows that
the most obvious difference is the fact that the high onset, low final level group has
a positive curvature compared to the others having a negative curvature.
The model with k = 4 gives some extra information with respect to types of children,
since a group with a high onset and an improvement in the symptoms is seen. However
the results do not conform with the results found by Martinez et al. [26] and the model
with k = 3 was seen to be statistically better. This imply that the 4 cluster model
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Figure 3.21: Predictions for (3.24) for each of the three clusters with
confidence bands. PD15 and day care start are kept fixed at median level
in all clusters

does not give significant additional information in the description of the symptom-
rates.

Middle High-high Low-low High-low
Middle 137 0 7 27
Low 0 0 74 12
High 6 53 0 0

Table 3.14: Cross tabulation for clusters assignment for k=3 (rows) and
k=4 (columns)

3.3.6 Cluster size analysis

In Figure 3.23 a comparison of the maximum likelihood solutions for K ∈ {1, 2, 5, 6}
is shown, see Figure 3.18 and Figure 3.22 for K = 3 and K = 4, respectively. It is seen
that for K = 1 a rather flat curve with more or less no temporal development (there
is a tendency to some curvature) is estimated, which corresponds to deflating all
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Figure 3.22: Fitted curves for 4 cluster model

Parameter Middle High-high Low-low High-low Mixed effects
Number of individuals 143 53 81 39 316
Number of observations 634 248 369 172 1423
Intercept 0.0682 0.0546 0.0159 0.1342 0.0553
age 0.0283 0.0582 0.0092 -0.0601 0.0173
age2 -0.0057 -0.0089 -0.0019 0.0063 -0.0038
log10(pd) -0.0046 -0.0124 -0.0008 -0.0110 -0.0108
daycare start -0.0028 -0.0015 -0.0006 0.0004 -0.0013
sigma2 0.7427 0.7023 0.4874 0.5010 0.6292

Table 3.15: Parameters for the 4 cluster model

children to a no-symptom group. Expanding to a two cluster model gives a linearly
decreasing curve and a parabola i.e. a symptom and a no-symptom group. The
estimation in K = 3 gives a flat curve, a linearly decreasing curve and a parabola.
Estimation for K = 4 gives a constant low group, an improving group, a group with
no improvement (from and to a medium level) and a group worsening from a high
level.
K = 5 gives two groups worsening but from different starting levels but at the
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same rate, the lines are close to being parallel. Two groups are improving, one with
symptoms only at the first year of life and the other with symptoms declining through
the whole interval, and finally a group at a constant low level. For K = 6, a group
with a high starting and end level is seen (worsening group). The end-level is much
higher compared to the other curves for K < 6. Furthermore, a group starts at a
medium level with a worsening and then an improvement to a level below the starting
level, a group is starting at the lowest level and increases a little. Finally the same
three groups as the last three described for K = 5 are seen, i.e. two improving with
different speed and one has a constant low level.
The comparison shows that there are some similarities for the clusters for different
K’s as one would expect. It is seen that most of the extra information when including
additional clusters is related to children with few symptoms, whereas the high group
is split into two as K is 5 or 6. This could explain why K? = 3 is the optimal number
of clusters, since the clusters becomes more and more specialized to a certain group
of children and hence do not attribute with enough extra information to justify the
extra parameters.
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Figure 3.23: Comparison between different cluster sizes. Top-left: 1
cluster, top-right: 2 clusters, bottom-left: 5 clusters and bottom-right: 6
clusters (3 clusters: see Figure 3.21. 4 clusters: see Figure 3.22)

3.3.7 Consistency of grouping

Based on the parameters obtained from the optimal LCR model the likelihood for
each child and year can be calculated. In the regression, the posterior probabilities
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were the posteriors for each individual and cluster (a cumulative probability of being
in cluster k for all observations for individual i). In the following the posterior
probabilities are allowed to vary within each individual’s observations. The density
for the j’th observation on individual i in cluster k is

f(ỹijk|xijk , θk) =
1√

2πσ2
k

· e
−

(ỹijk−xijkβk)2

2σ2
k (3.26)

where xijk is the observation matrix and θk the parameter-vector given as θk =
(β1, . . . , βn, σk). From LCR the prior probabilities are estimated to be 0.52, 0.27 and
0.21 for cluster 1, 2 and 3. Hence the cluster corresponding to the middle group
in Figure 3.18 is more than twice as likely a priori as the two other groups. The
posterior probabilities can then be estimated by

p̂ijk =
πkf(ỹijk|xijk, θk)

3∑
k′=1

πk′f(ỹijk′ |xijk′ , θk′ )
(3.27)

Based on the posterior probabilities the cluster for observation j on individual i, cij ,
can be estimated by

ĉij = arg max
k

p̂ijk (3.28)

hence assigning the observation to the most likely cluster. Comparing the ci’s (each
individual belongs to one and only one cluster) with the cij gives the cross tabulation
shown in Table 3.16, which shows that all groups are assigned the same way in above
50 % of the time. The children in the cluster corresponding to the group with the
highest symptom rates (cluster 3) seem to be the most difficult to classify at each
time-point.

Type A1C1 A1C2 A1C3
count 532 166 55

C1 r-% 71 22 7
c-% 66 40 27
count 152 240 0

C2 r-% 39 61 0
c-% 19 59 0
count 123 4 151

C3 r-% 44 1 54
c-% 15 1 73

Table 3.16: Cross-tabulation of ci vs. cij . Columns correspond to cij
and rows to ci. Counts the actual counts, r% the row per cent and c%
the column per cent.
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Yearly grouping

Instead of considering all times points one could analyze, how early a cluster predic-
tion can be done consistenly. This would give the possibility to classify children at a
lower age than the age of 5. Using the predicted cluster at age j and comparing with
the cluster found when using all observations in the clustering gives Table 3.17 and
3.18.
From the tables it is seen that age 1, 4 and 5 years are the worst-performing ages to
predict the clusters, whereas the age of 2 and 3 seem to perform better. The overall
aggrements are 59 %, 71 %, 70 %, 67 % and 57 % for the information in age 1, 2, 3,
4 and 5 years, respectively. The agreement is seen not to be too high, which can be
explained by the relatively little amount of information used at each age. It is however
seen that children classified overall as coming from the low group (group 2) is never
classified as belonging to the high group in the yearly classifications. Furthermore,
only 4 children from the high group is classified as belonging to the low grouping at
the age of 1 years. It is important that the model gives consistent group and that
the group-changes are limited to changing to the nearest group (i.e. from the low to
the middle or the middle to the high), which is seen to be fulfilled.

Type A1C1 A1C2 A1C3 A2C1 A2C2 A2C3
count 121 44 4 125 16 21

C1 r-% 72 26 2 77 10 13
c-% 61 42 40 71 24 34
count 30 56 0 32 52 0

C2 r-% 35 65 0 38 62 0
c-% 15 54 0 18 76 0
count 47 4 6 18 0 40

C3 r-% 82 7 11 31 0 69
c-% 24 4 60 10 0 66

Table 3.17: Cross-tabulation of ci vs. cij . Columns correspond to cij for
the age of 1 and 2 years respectively and rows to ci. count shows the actual
number for the given cell, whereas r-% shows the row percent (within age)
for the given cell and c-% the column percent. (A’s correspond to Age
and C’s to cluster)

Grouping on cumulated information

Another possibility is to use cumulated probabilities for observations up to the age
of j′ years, i.e. use (ỹijk, xijk) for j = 1, . . . , j′ and then base the clustering on these
new probabilities. This can be done as for the posterior probabilities in (3.17) but
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Type A3C1 A3C2 A3C3 A4C1 A4C2 A4C3 A5C1 A5C2 A5C3
count 108 42 6 90 45 8 88 19 16

C1 r-% 69 27 4 63 31 6 72 15 13
c-% 72 42 14 70 44 19 56 54 33
count 22 58 0 18 58 0 50 16 0

C2 r-% 28 72 0 24 76 0 76 24 0
c-% 15 58 0 14 56 0 32 46 0
count 19 0 37 21 0 35 18 0 33

C3 r-% 34 0 66 38 0 62 35 0 65
c-% 13 0 86 16 0 81 12 0 67

Table 3.18: Cross-tabulation of ci vs. cij . Columns correspond to
cij for the age of 3, 4 and 5 years respectively and rows to ci. count
shows the actual number for the given cell, whereas r-% shows the row
percent(within age) for the given cell and c-% the column percent. (A’s
correspond to Age and C’s to cluster)

with a different product term

p̂ik(j′) =
πk

j′∏
j=1

f(ỹij |xij , θk)

K∑
k′=1

πk′
j′∏
j=1

f(ỹij |xij , θk′)
(3.29)

Based on the new posterior probabilities p̂ik(j′), clustering can be done for the age of
2-5 years, since the age of 1 years is covered by the approach leading to Table 3.17.
The procedure utilizes the information at hand at the age of j′ years, rather than
just using the local information and neglecting the past.
It is seen from the Tables 3.19 and 3.20 that the agreement between using all infor-
mation and cumulated information increases for increasing age as expected, to total
agreement for the age of 5 as required. The overall aggrement is 75 %, 88 %, 93 %
and 100 % for the cumulative information from age 1 to age 2, 3, 4 and 5 years
respectively.
It is seen that going from j′ = 1 to j′ = 2 improves the agreement the most, whereas
the steps from j′ = 3 to j′ = 4 and j′ = 4 to j′ = 5 give smaller increases. This can
be explained by considering the curves in Figure 3.21, which shows that the 3 groups
are close at the age of 1 years and then evolve in separate directions, which are quite
distinct at the age of 2 years. This imply that knowing the symptom history for the
first two years of life, reduces the need for additional information, i.e. the significance
of the information in the third, fourth and fifth years of life is small when relative to
the first two years of life.
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Type A2C1 A2C2 A2C3 A3C1 A3C2 A3C3
count 126 15 21 140 8 8

C1 r-% 78 9 13 90 5 5
c-% 76 19 34 88 11 14
count 21 63 0 13 67 0

C2 r-% 25 75 0 16 84 0
c-% 13 81 0 8 89 0
count 18 0 40 7 0 49

C3 r-% 31 0 69 12 0 88
c-% 11 0 66 4 0 86

Table 3.19: Cross-tabulation of ci vs. ci(1:j). Columns correspond to
ci(1:j) for the age of 2 and 3 years respectively and rows to ci. count shows
the actual number for the given combination, whereas r-% shows the row
percent (within age) for the given cell and c-% the column percent. The
table is based on information from the age of 1 to 2 and 3 years respectively
(A’s correspond to Age and C’s to cluster)

Type A4C1 A4C2 A4C3 A5C1 A5C2 A5C3
count 137 3 3 123 0 0

C1 r-% 96 2 2 100 0 0
c-% 91 4 5 100 0 0
count 9 67 0 0 66 0

C2 r-% 12 88 0 0 100 0
c-% 6 96 0 0 100 0
count 4 0 52 0 0 51

C3 r-% 7 0 93 0 0 100
c-% 3 0 95 0 0 100

Table 3.20: Cross-tabulation of ci vs. ci(1:j). Columns correspond to
ci(1:j) for the age of 4 and 5 years respectively and rows to ci. count shows
the actual number for the given combination, whereas r-% shows the row
percent (within age) for the given cell and c-% the column percent. The
table is based on information from the age of 1 to 4 and 5 years respectively
(A’s correspond to Age and C’s to cluster)

3.4 Generalized additive mixed model

In the following sections yearly aggregated episodes and corresponding days at risk
are considered on a poisson scale. A generalized additive mixed effects model is fitted
to grasp the curvature for the relation between age and the link. Previous modelling
of the yearly aggregated data was based on the assumption that the relative number
of wheezing episodes was gaussian, which can be questionable. Another possibility
would be to model the data as binomial, i.e. model the probability of an episode a
given days. In that analysis, which will not be done, the number of days at risk
would correspond to the number of trials and the number of episodes to the number
of successes. However since the number of days at risk is large and the proportion
under 50 % the poisson distribution should not be affected by the theoretical upper
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limit for the number of episodes.

3.4.1 Model formulation

A perhaps more reasonable approach, than considering the relative number of episodes
to be gaussian as in section 3.2, would be to assume that the number of episodes is
poisson distributed. Yij is the number of episodes for individual i at age j, ndaysij
is the number of exposure days and Yij is assumed to come from a poisson distribu-
tion with mean E[Yij ] = µij and variance V [Yij ] = µij . However, in the following
the quasi-poisson distribution is used giving V [Yij ] = φ · µij , where φ is the over-
dispersion, see Wood p. 74 [42]. The canonical link function is used, which for a
poisson distribution is a log-link: η = log(µ).
A spline to estimate the curvature for age is fitted in order to model the symptom-rate.
To account for the difference in the number of exposure days an offset of log(ndaysij )
is included, which gives the model

ηij = log(µij) = log(ndaysij ) + α+ b0i + s1(ageij)

+ s2(log(pd)) + s3(daycarestart)
(3.30)

b0i ∼ N (0, σ2
0)

where b0i is an individual baseline (for individual i) coming from a gaussian dis-
tribution with standard deviation σ0. s1(age) is the spline fitting the curvature
for age, s2 for PD15 PtcO2, etc. By including the offset, log(ndaysij ), the rate
rather than the absolute number of symptoms is modelled, since log(µij/ndaysij ) =
log(µij)− log(ndaysij ).

3.4.2 Results

From Figure 3.24 it is seen that the link-function for the yearly aggregated wheezing
symptoms with respect to age probably is the right part of a parabola. The figure
confirms the results from the mixed effects model based on the gaussian assumption,
where a second order polynomial was used to model the temporal development. For
PD15 and daycare start linear relations are seen, which shows that these variables
can be included linearly. This leads to the same conclusion as for the gaussian model.
A parabolic relation between age and the linear predictor seems appropriate, which
change the model for the yearly aggregated symptoms to a parametric model given
by

ηij = log(µij) = log(ndaysij ) + α+ b0i + β1 · ageij + β2 · age2
ij

+ β3 · log(pdi) + β4 · daycarestart,i

(3.31)

b0 ∼ N (0, σ2
0I)
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The scale parameter for the quasi-poisson distribution and the random effects will
be dealt with in section 3.5 when modelling the age effects as well as the other effect
with parametric models, since the non-parametric modelling is applied to be able to
analyze the curvature.
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Figure 3.24: Generalized additive mixed effects model. Link functions in
the left part, response in the right (scaled) for yearly aggregated episodes

3.5 Parametric modelling for poisson response

In section 3.4 a non-parametric method was used in order to find appropriate para-
metric functions for the relation between the linear predictor, η, and age, pd and
day-care start. It was seen that for the yearly aggregated data a parabola could
replace the spline to obtain a parametric representation. First only the age is consid-
ered as explanatory variable to analyze the amount of randomness to be incorporated
in the model. This gives the initial model

ηij = log(µij) = log(ndaysij ) + α+ b0i + β1 · ageij + β2 · age2
ij (3.32)

b0 ∼ N (0, σ2
0I)

which is a generalized linear mixed effects model (GLMM) with poisson response and
gaussian random effects. The model is seen to be equal to the age part of the GAMM
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with exception of the smoothed function is replaced by a second order polynomial. It
is assumed that the observation, Yij , comes from a quasi poisson distribution having
E[Yij |b0i] = µij and V [Yij |b0i] = φ · µij .
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Figure 3.25: Comparison between non-parametric and parametric
model for yearly aggregated wheezing symptoms (black: non-parametric
model, red: parametric model)

Estimating the model gives a deviance of 2984 on 1565 degrees of freedom, which
shows that the quasi-poisson distribution should be used due to the over-dispersion
(φ̂ = 1.91). The random effect, β0i has variance σ̂2

0 = 0.72, which is highly significant
since a model without the individual baselines has deviance 4678 on 1566 degrees of
freedom. The children are seen to be heterogeneous, which the latent class regression
also showed.
In Figure 3.25 the non-parametric model and the parametric model from (3.32) are
plotted. The figure shows that the parametric model seems to give the same mean
link-function as the non-parametric, which imply that the parameterization is seen
to be adequate.
Different levels of randomness are now considered, which is shown in Table 3.21. It
is seen that having individual intercept, first and second order parameters for age is
significantly better compared to only having random intercept and slope, which again
is significantly better compared to only having random intercept.
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Df BIC logLik Chisq Chi Df Pr(>Chisq)
Random intercept 4 3013.58 −1492.08
and slope 6 2772.19 −1364.02 256.11 2 <0.0001
and quadratic term 9 2767.28 −1350.53 26.98 3 <0.0001

Table 3.21: Comparison of models for yearly aggregated wheezing
episodes

The most adequate model of the considered is

η̂ij = log(ndaysij ) + α+ b0i + β1 · ageij + b1i · ageij+

β2 · age2
ij + b2i · age2

ij

(3.33)

b0i ∼ N (0, σ2
0) b1i ∼ N (0, σ2

1) b2i ∼ N (0, σ2
2)[

b0 b1 b2

]T ∼MVN(0,G)

This imply that each child have a separate intercept, slope and curvature and that
these estimates may be correlated as described by the matrix G. The corresponding
summary for the fixed effects is given in the upper part of Table 3.22, whereas the
estimates of the random components and correlations are shown in lower part of
Table 3.22. The random components are estimated as variances and covariances, the
individual parameters can be estimated by means of BLUP-estimation (best linear
unbiased predictor) [37]. It is seen that considerable correlations between the random
components are present, which will be dealt with later.

Fixed effects
Estimate Std.error t-value

(Intercept) -5.6675 0.0113 -502.7725
age 0.4421 0.0071 62.4684
age2 -0.1122 0.0002 -492.4423

Random components
Variance-estimate Correlation

(Intercept) 0.99 (Intercept) age
age 0.53 -0.61
age2 0.02 0.47 -0.89
residuals 0.97

Table 3.22: Top: Summary for fixed effects in initial GLMM with ran-
dom intercept, slope and curvature. Bottom: Random components for
initial GLMM with random intercept, slope and curvature

3.5.1 Risk-factors

Including the log(PD15PtcO2) and the time of day-care start in the model (the
significant risk-factors in the gaussian model) gives an increase in the log-likelihood
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of 8.7 for 2 extra degrees of freedom, which imply that the congenital responsiveness
and day-care start are significant (p= 0.0002). The relation between residuals and
the variables from Figure 3.26 are seen to be linear. The updated model therefore
becomes

η̂ij = log(ndaysij ) + α+ b0i + (β1 + b1i) · ageij+

(β2 + b2i) · age2
ij + β3 · log10(PD15 PtcO2)i+

β4 · daycarestart,i
b0i ∼ N (0, σ2

0) b1i ∼ N (0, σ2
1) b2i ∼ N (0, σ2

2)[
b0 b1 b2

]T ∼MVN(0,G)

(3.34)

The fixed effects and random components are summarized in Table 3.23. The esti-
mated coefficient for log10(PD15PtcO2) is -0.24, which imply that the rate-ratio for
an individual increasing it’s PD15PtcO2 with a factor 10 is e−0.24 = 0.7866 (for high
PD15PtcO2 divided with low PD15PtcO2). The rate-ratio corresponds to the effect
of changing the PD15 PtcO2 with all other variables kept fixed and corresponds to a
decrease in the symptom-rate by 21 %. For the day-care start variable the estimated
coefficient is -0.0296, which imply that the ratio for a child starting in day-care one
month later is e−0.0296 = 0.9708, which is a decrease by 3 %.
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Figure 3.26: Smoothed curves for log(PD15 PtcO2) and day-care start

The estimated second order polynomial is seen to be highly significant, since both
the first and second order parameters are significant. Furthermore, the random com-
ponents are significant, i.e. a test for σ2

2 = 0 gives a likelihood ratio of 23.08 on 11
degrees of freedom, which gives p<0.0001. The heterogeneity of the slopes is seen to
be large, eg σ1 > β1. This could be a result of an underlying grouping as analyzed in
section 3.3 for the gaussian model or may reflect that the children are heterogeneous.
The random components are seen to be heavily correlated, which may be reduced by
introducing orthogonal polynomials to replace age and age2. Orthogonal polynomials
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Fixed effects
Estimate Std.error t-value

(Intercept) -5.5305 0.0295 -187.5948
age 0.5129 0.0074 69.5582
agekvar -0.1248 0.0002 -521.7878
I(log10(pd)) -0.2400 0.0048 -49.5281
I(daycare.start/30) -0.0296 0.0001 -229.1517

Random components
Variance-estimate Correlation

(Intercept) 0.84
age 0.41 -0.55
agekvar 0.01 0.37 -0.86
residuals 0.98

Table 3.23: Top: Summary for fixed effects in updated GLMM with
random intercept, slope and curvature. Bottom: Random components
for updated GLMM with random intercept, slope and curvature

of order 2, see Wood p. 305 [42], are defined such that the inner-product of the vectors
containing the transformed first and second order for any two observations is zero.
Re-fitting the model with orthogonal polynomials gives an updated summary shown
in Table 3.24. It is seen that the correlations for the random components are greatly
reduced, but not entirely.
Using centering of the age variable (Wood p. 305 [42]) gives almost the same results as
using orthogonal polynomials, which shows that the correlation between the random
components is high. Since introducing the orthogonal polynomials and the centering
do not give a large reduction of the correlation, the original model without orthogonal
polynomials and centering is kept for simplicity.

Fixed effects
Estimate Std.error t-value

(Intercept) -5.3290 0.0216 -246.3834
I(log10(pd)) -0.2400 0.0048 -49.5281
I(daycare.start/30) -0.0296 0.0001 -229.1517
poly(age, 2)1 -12.3812 2.7100 -4.5687
poly(age, 2)2 -8.2143 1.0359 -7.9295

Random components
Variance-estimate Correlation

(Intercept) 0.86
poly(age, 2)1 386.11 0.52
poly(age, 2)2 58.04 -0.07 0.37
residuals 0.98

Table 3.24: Top: Summary for fixed effects in updated GLMM with
random intercept, slope and curvature. Bottom: Random components
for updated GLMM with random intercept, slope and curvature
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Diagnostics

In Figure 3.27 diagnostics based on the deviance residuals are shown. It is seen
that the quantile plot seems to be sufficiently linear. The deviance residuals plotted
against the age is seen to be skewed toward the negative side, however not giving
severe problems. The QQ-plot shows that no outliers seem to be rpesent and it is
furthermore seen that the variance of the deviance residuals seem to be the same for
different ages.
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Figure 3.27: Diagnostics plot for model in (3.33). Left: Quantile plot
of deviance residuals compared to N(0,1) quantiles. Right: Deviance
residuals against age

Random component analysis

In Figure 3.28 QQ-plots of the estimated individual parameters (the Best Linear Un-
biased Predictors as described by Robinson [37]) are shown. From the figure it is
seen that the intercept has a skewed distribution, whereas the other two parame-
ters seems to be closer to normality. A Shapiro-Wilk test for normality [39] gives
p=0.0001, p<0.0001 and p<0.0001 for b0i, b1i and b2i respectively, hence there is
strong evidence against the normality assumption for the individual starting levels.
A this stage the model is kept as it is, since the deviations do not seem too severe
from the QQ-plots.

3.5.2 Prediction

Figure 3.29 shows the predictions for the model with three random components in
(3.33). The curves for the individuals are seen to vary from increasing curves to
decreasing curves. It is seen that a large group has more or less linear curves, β2 +



3.6 Latent class regression for poisson response 75

−3 −2 −1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Normal QQ Plot: b0i

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3
−

20
0

20
40

Normal QQ Plot: b1i

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−3 −2 −1 0 1 2 3

−
10

−
5

0
5

10
15

Normal QQ Plot: b2i

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 3.28: QQ-plots of individual parameters for model with yearly
aggregated data

b2i ≈ 0. As seen for the gaussian model the children divides in roughly four groups:
No symptoms, some symptoms but declining, many symptoms and an increasing
symptom-rate and some symptoms and increasing rate. However, a clear grouping is
not seen, which makes grouping based on the random components difficult.
As for the mixed effects model with gaussian errors the grouping can be examined
by means of Latent Class Regression, which may give the possibility to find groups
and compare them to the results from the gaussian case.
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Figure 3.29: Predictions from model with individual parameters 0, 1.
and 2. order parameters. The panels are different combinations of highest
rate and age of highest rate, eg (0, 0.1] : (1, 2] contains prediction for
children with a maximum rate between 0 and 0.1 which occur between
the age of 1 and 2 years of life.

3.6 Latent class regression for poisson response

In this section LCR is considered for the poisson response as described in section 3.5.
The basis for the LCR is the model found in section 3.5.1 and the goal is to find groups
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of children having different between groups but same within groups longitudinal de-
velopment in episode rate. The episodes are considered to be poisson distributed with
an offset corresponding to log(ndays) and the canonical link as link function (log(µ)).
This leads to the formulation for cluster k

η̂ijk = log(µ̂ijk) = log(ndaysij ) + β0k + β1k · ageij + β2k · age2
ij (3.35)

+β3k · log10(pdi) + β4k · (daycarestart,i)

where µijk is the intensity for the episodes and ηijk = g(µijk) = log(µijk) the linear
predictor to be modelled. As for the gaussian latent class regression each individuals
observations contribute to each cluster with the amount pik (posterior probability)
and each cluster has a prior probability in each iteration which is πk and is the
probability a priori to be in cluster k. The estimation method follows the procedure
outlined in section 3.3.2 with the density function though being different.

3.6.1 Model complexity

The optimal number of clusters can be found by means of BIC as seen for the gaussian
case. For the gaussian case K? was found to be 3, so for comparison reasons a similar
number for a poisson model would be appreciated. In Figure 3.30 BIC as function of
the number of clusters is shown, which shows that the optimal number of clusters is
K? = 5. It is however seen that the biggest improvement in BIC is from a 1 cluster
model to a 2 cluster model and an elbow is seen at K = 4. A 3 cluster model is
seen not to be quite as good as the five cluster model, but is however better than a
2 cluster model.
In the gaussian case K? was found to be 3, which imply that this model is of special
interest for comparison purposes. This imply that both the 5 cluster situation and
the 3 cluster model will be considered in the following. The three cluster model is
easier to interpret since it has fewer trajectories, whereas the five cluster model is
statistical better.

3.6.2 Five cluster model

For K = 5 the parameter estimates for each of the 5 clusters are shown in Table 3.25
and the corresponding fitted values are shown in Figure 3.31. The figure shows
that the clusters (the one with the highest levels) are not quite the same as for the
gaussian case in Figure 3.23. However some similarities are seen: A group with
many symptoms and a group with no symptoms. It is furthermore seen that one
of the clusters is rather small, which makes it highly dependent on the particularly
individuals in the cluster.
To evaluate the level of overdispersion, a standard generalized linear model is fitted
to each cluster with weights corresponding to the posterior probabilities, pik. The
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Figure 3.30: BIC for different K’s

Parameter Cluster 1 Cluster2 Cluster 3 Cluster 4 Cluster 5 GLMM
# of ind 75 34 16 57 134 316
# of obs 319 164 75 266 599 1423
Intercept -5.3729 -6.2062 -4.7711 -5.6050 -6.2278 -5.5188
age 1.1267 0.0984 0.8113 0.9291 0.3652 0.5126
age2 -0.3299 0.0247 -0.1153 -0.1661 -0.1145 -0.1248
log10(pd) -0.1125 -0.4021 -0.1907 -0.2729 -0.4281 -0.2395
daycare -0.0308 0.0164 -0.0289 -0.0008 -0.0403 -0.0308

Table 3.25: Parameters for the clusters in the optimal poisson mixture
model (K = 5)

relevant degrees of freedom for the residuals for cluster k is then

dfk =
m∑
i=1

ni · pik − df(model) (3.36)

where ni is the number of observations for individual i and df(model) = 5. Using the
number of observations in the full observation set would be highly misleading, since
most observations contributes to only one cluster, i.e. has posteriors around 1 for one
cluster and 0 for the rest. The 25 % quantile for the largest posterior is 0.72, the
smallest is 0.3 and the median is 0.91.
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Cluster  1 :
   Median pd:  0.1909 
   − day−care:  327 
   # individuals:  75

Cluster  2 :
   Median pd:  0.3121 
   − day−care:  369 
   # individuals:  34

Cluster  3 :
   Median pd:  0.1479 
   − day−care:  308 
   # individuals:  16

Cluster  4 :
   Median pd:  0.305 
   − day−care:  301 
   # individuals:  57

Cluster  5 :
   Median pd:  0.2604 
   − day−care:  345 
   # individuals:  134

Figure 3.31: Predictions of the number of episodes per day for K = 5
for poisson LCR

The residual deviances are

D = {400.79, 298.22, 130.83, 351.51, 601.28}

with an estimated number of degrees based on the posterior probabilities

df = {317.34, 191.61, 80.94, 258.12, 549.99}

This gives estimated overdispersions of

φ̂ = {1.26, 1.56, 1.62, 1.36, 1.09}

which do not seem too bad. The cluster having the largest overdispersion is the cluster
with the fewest observations, which shows that the inference in this cluster might be
questionable if the over-dispersion is not taking into account. The overdispersion is
seen to be highest in the clusters with the fewest individuals.
The above estimation is based on the assumption that the observations within an
individual are uncorrelated, which is questionable to be true. One could use Genera-
lized Estimation Equations (GEE) to estimate both the (possible) over-dispersion i.e.
the scale parameter and the correlation. The GEE-approach is to solve the GEE (see
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Olsson p. 165 [28])
m∑
i=1

∂µµµi
∂βββ

V−1
i (Yi − µµµi(βββ)) = 0 (3.37)

where Yi is the observations, µµµi the corresponding mean values, Vi the covariance
matrix for Yi and βββ the parameters to be estimated. The V matrix is left unspecified
to allow any type of covariance, since the number of correlation elements is moderat
(10).

gee/glm1 gee/glm2 gee/glm3 gee/glm4 gee/glm5
β0 0.874 0.939 9.390 1.053 0.957
β1 0.936 0.913 28.909 0.975 0.997
β2 0.912 0.961 28.677 0.919 0.985
β3 0.794 0.802 9.953 0.779 0.847
β4 0.811 1.043 25.295 0.796 0.876

Table 3.26: Standard errors for parameter estimates for GEE divided
by standard error for GLM

The estimated standard errors for the generalized linear model and from the GEE-
approach are compared in Table 3.26, which shows that the difference is largest for
the parameter corresponding to the log10(pd) measurement and day-care start. It is
furthermore seen that the differences are extremely high for cluster 3, which shows
that the parameter estimates in the GEE-model is very uncertain. The gee estimates
are consistently as the number of individuals goes to infinity, Diggle p. 139-140 [15],
even for a wrong specified correlation structure. However, for cluster 3 the number
of individuals is small, which imply that the nice properties can not be guaranteed.
The estimated scale parameters (over-dispersion) are

φ̂ = {1.39, 1.72, 59.26, 1.3, 1.29}

with estimated standard errors

σ̂φ = {0.3204, 0.2703, 4.7299, 0.0839, 0.1177}

Since the estimated scale-parameters are asymptotically normally distributed with
mean 1, see Yan et al. [44], a Wald test can be performed on the quantity

χ2 =

(
φ̂− 1
σφ̂

)2

∼ χ2(1) (3.38)

For the 5 cluster model, this gives the test-statistics

χ2 = 1.5, 7.03, 151.74, 12.58, 5.98

which shows that φ̂1 is insignificant, whereas the others are significantly larger than
1 (critical value is 3.84).
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It is furthermore seen that for cluster 3, the gee-estimation tends to give questionable
results, hence giving a very high scale-parameter and much higher standard errors
for the parameters (including the scale-parameter). This is probably caused by the
small number of individuals in this particular group.
For the correlation matrix, 3 significantly correlations are estimated (for the upper
triangle in the correlation matrix), which are distributed as 0, 2, 0, 0 and 1 on
cluster 1, . . . , 4 and 5. The number of correlation parameters is 10 for each cluster,
which shows that there do not seem to be much evidence for correlation between
observations on the same individual. This was also the conclusion in section 3.3.4 for
the gaussian three cluster case.
Finally the residuals can be inspected, this is done by taking the residuals from
the ordinary generalized linear model, since the correlation in the gee-model was
moderate. The deviance residuals are used, which imply that the sample quantiles of
the residuals can be compared to quantiles in a standard gaussian distribution in a
QQ-plot for outlier detection (see Olsson p. 57 [28]). From Figure 3.32 it is seen that
deviance residuals seem to follow a standard gaussian distribution. For cluster 5 some
deviations from normality is seen, but they do not seem to be severe. However, since
normality is an approximation and none of the observations seems to be outliers, the
residuals are found adequate.
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Figure 3.32: QQ-plot for deviance residuals for K = 5

3.6.3 Three cluster model

For the 3 cluster model the parameter estimates for each of the 3 clusters are shown
in Table 3.27 and the corresponding predictions in Figure 3.33. The figure shows
that the longitudinal development in the three clusters seems to coincide well with
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the longitudinal development in Figure 3.18 (the gaussian 3 cluster model) but with
some differences. The cluster of children with the lowest level of symptoms starts
higher in the poisson LCR compared to the gaussian LCR. The shapes of the curves
and the corresponding interpretations seem to be similar, however.

Parameter Cluster 1 Cluster 2 Cluster 3
# of ind 105 55 156
# of obs 469 250 704
(Intercept) -4.5559 -5.0362 -5.5561
age 0.3849 0.8787 0.3226
(age2 ) -0.0841 -0.1329 -0.1321
(log10(pd)) -0.2701 -0.2579 -0.4378
(daycare.start/30) -0.0777 -0.0335 -0.0654

Table 3.27: Parameters for the clusters in the 3 cluster model poisson
mixture model

age

P
re

di
ct

ed
 n

um
be

r 
of

 e
pi

so
de

s 
pe

r 
da

y

0.00

0.01

0.02

0.03

1 2 3 4 5

1 1 1
1

1

2

2

2 2

2

3 3 3 3 3

Cluster  1 :
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   Median pd:  0.259 
  − day care:  315 
   # individuals:  156

Figure 3.33: Predictions of the number of episodes per day for K = 3
for poisson LCR

It is seen that the group with the highest amount of episodes is the smallest, whereas
the group with the fewest is the largest. In the gaussian case the middle group was
the largest group and the two other groups half the size of it, which shows that the
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two methods do not lead to the same grouping. For the three cluster model the
residuals deviances are

D = {857.28, 431.69, 803.92}
with an estimated number of degrees based on the posterior probabilities

df = {495.94, 234.03, 678.03}

This gives an estimated overdispersions of

φ̂ = {1.73, 1.84, 1.19}

The over-dispersion parameters, φ, are in general seen to be a little higher compared
to the 5 cluster model, which reflects that more heterogeneous children are placed in
the same cluster for K = 3 compared to K = 5. However the difference is small and
the heterogeneity are probably close to be the same.

gee/glm1 gee/glm2 gee/glm3
β0 0.656 0.632 1.047
β1 0.567 0.570 1.181
β2 0.491 0.578 1.416
β3 0.664 0.876 1.136
β4 0.854 0.674 1.409

Table 3.28: Standard errors for parameter estimates for GEE divided
by the standard error from GLM

As for the five cluster model, the model can be examined by means of GEE, this leads
to the comparison between the estimated standard errors for a standard generalized
linear model and from the GEE-approach in Table 3.28. The table shows that the
differences are largest for the parameter corresponding to the curvature and that the
standard errors in the gee model are higher compared to the GLM-model for the first
two clusters. The estimated scale parameters (over-dispersion) are

φ̂ = {1.85, 1.82, 1.42}

with the standard errors

σ̂φ = {0.2018, 0.2004, 0.1668}

The Wald-test statistic for testing φ̂k = 1 therefore becomes

χ2 = 17.73, 16.92, 6.2

which shows that all scale-parameters are significantly larger than 1, since the critical
value for a χ2-distribution on 1 degree of freedom at a 5 % level is 3.84.
For the correlation structure 9 significantly elements are estimated, which are dis-
tributed as 4, 4 and 1 on cluster 1, 2, 3, where the number of correlation elements is
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10 for each cluster.This imply that there do seem to be some evidence for correlation
between observations on the same individual.
For cluster 1 the significant elements are: 1:5, 2:4, 2:5 and 3:5 with corresponding
estimates of -0.31, -0.29, -0.34 and -0.28. For cluster 2: 1:2, 1:3, 3:4 and 4:5 with
corresponding estimates of 0.47, 0.41, 0.24 and 0.41 and for cluster 3: 1:2 with cor-
responding estimate of 0.13. It is hard to interpret how the correlation structure
should be formulated, since most of the significant correlation parameters are small
and distributed over many different combinations for the three clusters. Furthermore,
the significant estimates are negative in cluster 1 and positive in cluster 2 and 3. It
probably reflects that the correlation may be zero or at least of little significance.
Finally the residuals can be inspected, this is done by taking the residuals from the
ordinary generalized linear model, since the correlations in the GEE-model were seen
to be somewhat unstructured and small. The deviance residuals are used, which
imply that a QQ-plot for the sample quantiles of the residuals can be used, where
the reference distribution is a standard gaussian distribution (see Olsson p. 57 [28]).
From Figure 3.32 it is seen that the deviance residuals seem to follow a standard
gaussian distribution. For cluster 3 some deviations from a linear QQ-plot are seen,
but they do not seem to be severe. The QQ-plot serves more as an analytic tool for
outlier detection, since the outliers will be situated away from the straight line, which
is seen not to be the case.
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Figure 3.34: QQ-plot for deviance residuals for K = 3
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3.6.4 GEE-model

The three models, corresponding to the 3 groups found for K = 3, are now combined
in a total model. Interactions between clusters obtained from the LCR and the effects
in the model are included to model cluster differences in the parameters. This leads
to the model

η̂ij = log(µ̂ij) = log(ndaysij ) + β0k + β1k · ageij + β2k · age2
ij (3.39)

+β3k · log10(pdi) + β4k · (daycarestart,i)

k = 1, 2, 3

where β32 for instance is the parameter for log10(pd) for the individuals in cluster 2.
The correlation is assumed to be unstructured in the GEE-estimation. Combining in a
total model gives one scale parameter, φ, which seems reasonable since the individual
dispersion parameters were seen to be insignificantly different.
Fitting the model gives an estimated over-dispersion of φ̂ = 1.57, which shows that
the over-dispersion is at the same level as for the individual models. The parameter-
estimates are shown in Table 3.29 with corresponding rate-ratios appended for each
parameter, the latter corresponds to the effect of increasing the related variable one
unit.
It is seen that the group with the highest number of episodes has high estimates of
the first order variable, i.e. a high initial increase in the relative number of episodes.
As the age increases the second order term begins to dominate and cancel most of
the high slope out, which gives the decline from age 3 to 5 years for the high group.
The two other groups are seen to have the same slope but the low group has a more
negative curvature-parameter. It is furthermore seen that the low group has a lower
intercept compared to the other groups.
The three groups are seen not to start from the same level at the artificial start-
ing point, age = 0, when neglecting the contribution to the intercept coming from
log10(pd) and day-care start. The cluster with the fewest symptoms starts signifi-
cantly lower than the group with the middle level of symptoms. It is seen that the
group with the fewest symptoms benefits the most of having a high congenital resis-
tance and starting late in day-care. The estimated cluster difference for log10(pd) is
seen to be insignificant, whereas the interaction for day-care start is seen to be sig-
nificant. It is furthermore seen that the estimate of the interaction between cluster
and curvature is insignificant.
Removing the interaction between cluster and pd and the curvature gives a new model
with an esimated over-dispersion of φ̂ = 1.57 for a model with 4 parameters fewer.
The heterogeneity is seen to be the same after the reduction, i.e. the reduction do
not introduce additional heterogeneity. The updated model is shown in Table 3.30,
which shows that the children as a group get a reduction in the starting level of
1− e−0.30 = 26 % from increasing their PD15 PtcO2 level with a factor 10.
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estimate san.se wald p eβ

(Intercept) -5.1116 0.2072 608.8829 <0.0001 0.0060
cluster1 0.5272 0.2663 3.9207 0.0477 1.6943
cluster3 -0.4371 0.3433 1.6211 0.2029 0.6459
age 0.9324 0.1129 68.1931 <0.0001 2.5405
(age2 ) -0.1408 0.0183 58.9708 <0.0001 0.8687
(log10(pd)) -0.2653 0.0658 16.2696 <0.0001 0.7669
(daycare.start/30) -0.0339 0.0077 19.4274 <0.0001 0.9666
cluster1:age -0.5205 0.1734 9.0094 0.0027 0.5942
cluster3:age -0.5284 0.2327 5.1564 0.0232 0.5896
cluster1:(age2 ) 0.0516 0.0303 2.8910 0.0891 1.0529
cluster3:(age2 ) -0.0042 0.0433 0.0095 0.9225 0.9958
cluster1:(log10(pd)) -0.0398 0.0763 0.2724 0.6017 0.9609
cluster3:(log10(pd)) -0.1433 0.0903 2.5177 0.1126 0.8665
cluster1:(daycare.start/30) -0.0435 0.0110 15.5958 <0.0001 0.9575
cluster3:(daycare.start/30) -0.0406 0.0143 8.0644 0.0045 0.9602

Table 3.29: Summary for combined gee model. San.se are the robust
standard errors, which account for the correlation within an individuals
observations as described by Prentice [34] or Diggle et al. p. 347 [15].

estimate san.se wald p eβ

(Intercept) -5.0006 0.1845 734.8688 <0.0001 0.0067
cluster1 0.2322 0.2016 1.3270 0.2493 1.2614
cluster3 -0.3638 0.2413 2.2740 0.1316 0.6950
age 0.8175 0.0879 86.4747 <0.0001 2.2649
(age2 ) -0.1214 0.0139 76.3842 <0.0001 0.8857
(log10(pd)) -0.3042 0.0358 72.3842 <0.0001 0.7377
(daycare.start/30) -0.0341 0.0078 19.2797 <0.0001 0.9665
cluster1:age -0.2283 0.0492 21.5468 <0.0001 0.7959
cluster3:age -0.5286 0.0613 74.3160 <0.0001 0.5894
cluster1:(daycare.start/30) -0.0435 0.0111 15.4328 <0.0001 0.9574
cluster3:(daycare.start/30) -0.0408 0.0144 8.0496 0.0046 0.9600

Table 3.30: Summary for updated combined GEE model

For the day-care start the rate-ratios for an increase of 1 month are(
e−0.08, e−0.03, e−0.07

)
= (0.93, 0.97, 0.93)

for cluster 1, 2 and 3, respectively. The rate-ratios show that cluster 1 and 3, which
corresponds to the children with the two lowest levels of symptoms, have the highest
benefit of starting later in day-care.
For the longitudinal development it was seen that the curvature was the same in the
three clusters, whereas the slopes are different. The estimated slopes are

β̂11 = 0.5892, β̂12 = 0.8175, β̂13 = 0.2889

eβ̂11 = 1.8025, eβ̂12 = 2.2649, eβ̂13 = 1.3350
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which shows that cluster 2 has the highest increase in the number of symptoms (if
the curvature is neglected), which gives the high initial increase for the high group.
The clusters have a maximum predicted rate at the age of

ˆage?k=1 = − β̂11

2 · β̂2

= − 0.5892
2 · (−0.1214)

= 2.4271

ˆage?k=2 = − β̂12

2 · β̂2

= − 0.8175
2 · (−0.1214)

= 3.3677

ˆage?k=3 = − β̂13

2 · β̂2

= − 0.2889
2 · (−0.1214)

= 1.1901

It is seen that the cluster with the highest level symptoms tops the latest (age=3.37
years), then the middle group and the lowest group tops first. The uncertainty on
the age of the maximum can be found by using the law of error propagation (see
Conradsen, p. 69 [8]), which for the mapping Y = f(X,Z) states the uncertainty for
Y around the means x̄ and z̄, i.e. the mean of Y, as

s2
y =s2

x

(
∂Y

∂X
(x̄, z̄)

)2

+ s2
z

(
∂Y

∂Z
(x̄, z̄)

)2

+ 2 · sxz
(
∂Y

∂X
(x̄, z̄)

)(
∂Y

∂Z
(x̄, z̄)

) (3.40)

where s2
x is the estimated variance of X and sxz is the covariance between X and Z.

For the maximum for a parabola the mapping is Y = −X
2·Z , which gives

s2
y =s2

x ·
(
−1
2 · z̄

)2

+ s2
z ·
( x̄

2 · z̄2

)2

+ 2 · sxz ·
(
−1
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)( x̄

2 · z̄2
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x ·
(

1
4 · z̄2

)
+ s2

z ·
(

x̄2

4 · z̄4

)
− 2 · sxz ·

( x̄

4 · z̄3

) (3.41)

The predicted age of maximum with corresponding variances can then be estimated
to be (by setting x̄ = β̂1i and z̄ = β̂2)

ˆage?k=1 = 2.4271 s2
ˆage?k=1

= 0.0227

ˆage?k=2 = 3.3677 s2
ˆage?k=2

= 0.0184

ˆage?k=3 = 1.1901 s2
ˆage?k=3

= 0.0693

The approximately 95 % confidence intervals for age at maximum rate can be esti-
mated to

[2.4271± 1.96 · 0.1506] = [2.1319, 2.7223]
[3.3677± 1.96 · 0.1358] = [3.1015, 3.6339]
[1.1901± 1.96 · 0.2632] = [0.6742, 1.7060]
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Since the estimated mean vector and the covariance-matrix for the multivariate
normal distribution desribing the slope in the k’th cluster and the overall curva-
ture is known, simulation can be used to produce the confidence intervals as well
(Z = [X,Y ]). The multivariate gaussian distribution is defined as

f(z) =
1

2π|Σ|1/2 e
− (z−µµµ)wTΣ−1(z−µµµ)

2 (3.42)

where the mean is µ̂̂µ̂µ = [β̂1k, β̂2] and the estimated covariance matrix is Σk, which
consists of the variances of the slope and the curvature in the diagonal and the
covariance in the two off-diagonal elements. Simulating 100.000 samples for each
cluster, computing the maximum age as in (3.6.4) and then finding the 2.5 % and
97.5 % quantiles gives the confidence intervals

[2.1182, 2.7227]
[3.1149, 3.6644]
[0.5836, 1.6527]

which is seen to coincide well with the results found using the law of error propagation
as expected. It is seen that none of the intervals are close to overlap, which shows
that the 3 groups have their maximum-rates at significant different ages. This imply
that one of characteristic is a different age of maximum.
The starting points at age = 1 are

β̂01 + β̂11 + β̂2 = −4.3006, eβ̂01+β̂11+β̂2 = 0.01356

β̂02 + β̂12 + β̂2 = −4.3045, eβ̂02+β̂12+β̂2 = 0.01351

β̂03 + β̂13 + β̂2 = −5.1969, eβ̂03+β̂13+β̂2 = 0.00553

where the right part corresponds to the estimated number of symptoms per days in
the first year of life for a child with a pd value of 1 and a day-care start at the age of
0 months. It is seen that the middle and high groups start at similar levels and this
imply that the difference between the groups is the longitudinal development from
this point on. The low group is seen to start lower compared to the two other groups
and the low level is seen to be kept throughout the considered interval.

3.6.5 Poisson model for gaussian LCR clusters

Based on the clusters found in section 3.3, a model as in (3.39) can be estimated.
The advantage of doing this is that the clusters in the gaussian model were identified
different compared to the grouping from the poisson response, i.e. may pick up diffe-
rent symptoms patterns. For the poisson response the majority of the children ends
in the cluster with the fewest symptoms, whereas the middle cluster is the largest
for the gaussian model. The two strategies lead to different groupings, which can
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be compared on the same scale by fitting a poisson model for the gaussian clusters.
Using the gaussian clusters but on a poisson scale gives a model, which will be much
easier to interpret and compare to the original gaussian LCR.
Estimating the model gives the summary in Table 3.31, which shows that the cur-
vature and the effect of the congenital resistance are close to be the same for the
three clusters. The curvature for the low cluster is seen to be significant, however
for comparison reasons the parameter is omitted. The parameter is either way not
highly significant different from the two other clusters.

estimate san.se wald p eβ

(Intercept) -5.1250 0.1944 695.2497 <0.0001 0.0059
clusterlow -0.4139 0.4935 0.7033 0.4017 0.6611
clustermiddle 0.2985 0.2619 1.2982 0.2545 1.3478
age 0.8659 0.1015 72.7766 <0.0001 2.3772
(age2 ) -0.1328 0.0165 64.8695 <0.0001 0.8757
(log10(pd)) -0.1839 0.0570 10.4107 0.0013 0.8321
(daycare.start/30) -0.0245 0.0070 12.0589 0.0005 0.9758
clusterlow:age -1.2487 0.3871 10.4036 0.0013 0.2869
clustermiddle:age -0.5777 0.1687 11.7272 0.0006 0.5612
clusterlow:(age2 ) 0.1489 0.0711 4.3847 0.0363 1.1605
clustermiddle:(age2 ) 0.0479 0.0309 2.4025 0.1211 1.0491
clusterlow:(log10(pd)) 0.1020 0.1054 0.9355 0.3334 1.1074
clustermiddle:(log10(pd)) 0.0867 0.0742 1.3645 0.2428 1.0906
clusterlow:(daycare.start/30) -0.0316 0.0153 4.2632 0.0389 0.9689
clustermiddle:(daycare.start/30) -0.0218 0.0114 3.6341 0.0566 0.9785

Table 3.31: Summary for GEE model with clusters from gaussian LCR.
San.se indicates robust standard errors.

The model shows that the groups with the low and middle level of symptoms have
a greater benefit of starting later in day-care with a reduction of 4 % respectively
2 % compared to the group with a high level. The effect of the congenital PD15
PtcO2 is seen to the same for all 3 groups, but indicates that the benefit increases
with the level of episodes. The reduction in symptom intensity for an increase in
PD15 PtcO2 is 14 %, whereas the effects for the each cluster before removing the
interaction between cluster and PD15 PtcO2 were 8 %, 10 % and 17 % for the group
with a low, middle and high level of symptoms, respectively.
The results from using the clusters obtained from the gaussian LCR seem more plau-
sible, since one would expect that the children coming from the group with the most
symptoms with a high congenital resistance would start at a lower symptom level
compared to the rest of the group. It is seen that compared to the results obtained
when using a poisson LCR the effect of PD15 PtcO2 has the opposite effect, i.e. the
effect of PD15 PtcO2 is highest in the group with the fewest symptoms in the poisson
LCR.
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estimate san.se wald p eβ

(Intercept) -4.9062 0.1748 787.4544 <0.0001 0.0074
clusterlow -1.2609 0.3180 15.7198 <0.0001 0.2834
clustermiddle -0.0680 0.1932 0.1239 0.7248 0.9343
age 0.7161 0.0920 60.6285 <0.0001 2.0465
(age2 ) -0.1080 0.0147 54.2153 <0.0001 0.8976
(log10(pd)) -0.1456 0.0377 14.9414 0.0001 0.8645
(daycare.start/30) -0.0246 0.0071 12.1345 0.0005 0.9757
clusterlow:age -0.4685 0.1084 18.6889 <0.0001 0.6260
clustermiddle:age -0.3075 0.0491 39.2153 <0.0001 0.7353
clusterlow:(daycare.start/30) -0.0319 0.0151 4.4334 0.0352 0.9686
clustermiddle:(daycare.start/30) -0.0220 0.0116 3.5880 0.0582 0.9783

Table 3.32: Summary for updated GEE model with clusters from gaus-
sian LCR

3.6.6 Diagnostics

The model having poisson response and clusters based on the gaussian LCR grouping
has an estimated scale-parameter of φ̂ = 1.88, which is seen to be higher than the
model based on poisson grouping. Deviance residuals for the model are shown in a
QQ-plot in Figure 3.35, which shows that there seems to be a little too many large
positive residuals. The high residuals are seen to be related to the age of 2 and 5
years and the middle cluster.

high low middle high low middle high low middle
|Residuals| > x 2.57 3.00 4.00
1 3.00 1.00 3.00 2.00 0.00 2.00 0.00 0.00 0.00
2 4.00 1.00 7.00 2.00 0.00 4.00 0.00 0.00 1.00
3 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00
4 1.00 1.00 3.00 0.00 0.00 1.00 0.00 0.00 0.00
5 2.00 3.00 9.00 0.00 1.00 7.00 0.00 0.00 1.00

Table 3.33: Distribution of residuals larger than x on group and age for
two different

The residual analysis in Table 3.33 shows that observations in the middle group are
causing most of the high residuals (> 3), whereas the low group have a low number
of high residuals and is furthermore seen to have a smaller variance than the other
groups. The large positive residuals correspond to children having a too low estimated
symptom intensity, since the deviance residuals are defined as

rD = sign(yi − µ̂i)
√
wid(yi, µ̂i) (3.43)

where d(yi, µ̂i) is the unit deviance of observation i and wi is the weight of observation
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i (Wood p. 74 [42]). Tthe link between the deviance and the unit-deviance is

D =
∑
i

wid(yi, µ̂i) (3.44)

The sign-part of the definition of the deviance residuals shows that a positive residual
corresponds to yi > µ̂i, which imply that the observed intensity is higher than the
fitted. This can occur if eg an individual from the middle group at some time-point
have too many symptoms and hence approaching the high group. A Bonferroni type
of test shows that a residual with a value of 4 gives an adjusted p-value of around
9 %, which shows that the residuals are not too bad.
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Figure 3.35: QQ-plot for deviance residuals along with deviance resid-
uals against the explaining the variables. In deviance vs. age the obser-
vations are colored according to their group: black (circle) = high, blue
(x) = low group, red (triangle) = middle group

3.7 Comparing LCR models

In Figure 3.36, a comparison between the three methods based on LCR is shown. It
is seen that the poisson and gaussian arcsine-root methods based on gaussian LCR



3.7 Comparing LCR models 91

clustering are seen to be close to equal for the low and high group, whereas the middle
group has a higher poisson model. The model based on the poisson LCR clustering
is seen to give predictions some what higher than the two other models, but is not
far away either. It is seen that the estimated curves from the three methods are close
to parallel and the differences are small.
It is seen that the data can be described almost equally good with a poisson response
model based on the gaussian LCR grouping as for the gaussian response. The ad-
vantage of the poisson model is that the effects become easier to interpret, since the
effects are multiplicative on the response scale. Hence if the grouping based on the
gaussian LCR is proven to be the best grouping, the groups can be used as grouping
variable in a model with poisson response. This gives almost the same model, how-
ever the effects are multiplicative and hence easier to interpret. With respect to the
deviance the poisson model based on gaussian clustering is poorer model compared
to the poisson model from the poisson clustering. This have to be the case, since
latent class regression is optimized on that scale.
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3.8 Discussion

In the previous sections the yearly aggregated symptoms were analyzed by different
statistical methods. The methods lead to more or less the same results, which will
be summarized in the following.
The first method considered was a mixed effects model (MM) based on the relative
number of episodes, nepisodes/ndays at risk. The model showed that the children were
heterogeneous and thus needed to be modelled with individual longitudinal develop-
ments. The analysis showed that the congenital responsiveness, PD15 PtcO2, and
the age at day care start had significant influence on the level of symptoms. The
congenital responsiveness was seen to give reductions for age 1-4 of 20-35 %, whereas
the age of 5 years showed reductions of 40-60 % for a factor 10 increase in PD15
PtcO2. For day care start reductions between 5 and 10 % for an increase of 1 month
were seen for the age of 1-4 years and 5-50 % for the age of 5 years.
The MM showed that the longitudinal development could be divided in different
groups according to the pattern of the longitudinal development: No symptoms at
all, some initial symptoms and then a decline, some symptoms at all ages, many
symptoms at all ages, many symptoms initially and increasing level. The optimal
way to identify subgroups or clusters of children was however not clear.
With the basis in MM, latent class regression (LCR) was applied to find groups of
children having similar parametric characteristics. This led to 3 subgroups of children:
A group with no symptoms, a group with some symptoms initially and then a decline
to fewer symptoms and a group with many symptoms with an increase to the age of
3 and then a decline back to around, but above, the starting level. 50 children were
assigned to the high group, 171 to the middle and 86 to the low group.
A general linear model based on the grouping obtained from the LCR showed that the
individuals in the group with the fewest symptoms benefited the least from having a
high congenital PD15 PtcO2 and the group with the most symptoms benefited the
most. The effect of day start was seen to give the highest reductions for individuals
in the middle group and the high group.
It was furthermore shown that the LCR was able to identify the group for each child
with reasonable accuracy at the age of 3 years. An early classification is interesting,
since this may give the possibility for more direct treatment of the children with
many symptoms. Obviously borderline cases with children having high probabilities
of belonging to more than one group will occur, which will involve some level of
medical judgment or additional data to give a better estimate of the group (a wait
and see strategy).
Since the analysis of the symptoms in the MM and LCR were based on the arcsine-root
transformations, interpretation of the effects was seen to be troublesome. The effects
were neither additive nor multiplicative on the untransformed scale. This implied
that the effect of eg PD15 PtcO2 should be evaluated conditional on the value of
the other variables in the model and the current level of PD15 PtcO2. To avoid
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the awkward interpretation, a non-gaussian approach was analyzed. The method
modelled the relative number of symptoms with a generalized linear model based on
the assumption of poisson distributed symptom intensity.
On the poisson scale both the congenital PD15 PtcO2 and the day-care start were seen
to be significant in a generalized linear mixed effects model. A factor 10 increase in
PD15 PtcO2 gave a reduction of the intensity by 21 %, whereas starting 1 month later
in day-care gave a reduction of 3 % for an individual. The longitudinal development
was seen to lead to the same type of curve as the mixed effects model based on arcsine-
root transformed values. The difference between the model with gaussian response
and the model with poisson response was that the latter model is much easier to
interpret, since the effects became multiplicative on the response scale.
As for the gaussian response LCR was applied to find latent groups in the population.
The analysis showed that the optimal number of groups was 5, however since the
decision criterion for 3 clusters was low as well and mostly for comparison reasons,
the 3 cluster model was analyzed more thoroughly. This led to similar longitudinal
development types, but with a different number of children in each cluster. Most
children were now assigned to the group with the fewest symptoms (increased from
86 to 156), the group with the most symptoms was reduced from 59 children to 55
and finally the middle group was reduced from 171 to 105 children. It was seen that
the size of the high group was to being unaffected by the change of scale.
The LCR with poisson response showed that the benefit of a high congenital PD15
PtcO2 was the same for all clusters, whereas the benefit of starting late in day-care
was largest in the group with the fewest symptoms. The effect of the congenital PD15
PtcO2 was seen to be a reduction of 26 % for an increase in PD15 PtcO2 with a factor
10, whereas the day-care start was seen to give reductions of 3-7 % for increases in
age at day-care start by 1 month. The highest reductions were seen for the groups
with the fewest symptoms.
The clusters obtained from the gaussian LCR were furthermore used as grouping
variable in a GEE-model with poisson response, which showed that the effect of the
congenital PD15 PtcO2 was the same for all clusters and gave reductions of 14 %
for a factor 10 increase. The model indicated that if an effect should be present the
group with the most symptoms would benefit the most and the group with the fewest
symptoms the least. The parameters for the curvature were seen to be the same for
all groups but the slopes were significantly different.
Since the cluster-difference of the PD15 PtcO2 was seen to be insignificant for 2 out
of 3 models, it may be concluded that the difference probably is insignificant. The
two models based on gaussian LCR grouping both indicated that the group with the
most symptoms benefited the most of having a large PD15 PtcO2, which seemed
most plausible, whereas the poisson clusters indicated that the group with the fewest
symptoms benefited the most, although a trend was indicated.
Finally comparing the gaussian and poisson models showed that the differences were
small. The gaussian model classified most children to the middle group, whereas the
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poisson model classified most to the low group. It was furthermore seen that the high
group had almost the same size for the two different models. The poisson model had
obviously advantages over the gaussian model, since the effects were multiplicative on
the response scale, which gave a nice interpretation. In Chapter 4 the two model are
compared with respect to the asthma-diagnoses, which may lead to the conclusion
that one of the method is to be preferred in this perspective.
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4.1 Introduction

In the following chapter the groups found in the LCR having gaussian and poisson
response, respectively, are compared to the diagnosis established by the COPSAC-
group [4]. The asthma-diagnosis is given if the child went to the 5 year visit, has
been treated with Bricanyl (Terbutalin)1 in the fifth year of life, has been treated
with Spirocort2 in the fifth year of life, has been having symptoms in the fifth year
of life and therefore the symptom-diary for the fifth year of life is also required.
The children are diagnosed as either having asthma, not having asthma or not having
a diagnosis due to lack of information. In the LCR modelling three subgroups were
found, namely the low (no or very few symptoms), the middle (few and a decreasing
number of symptoms) and the high group (a consistenly high level of symptoms,
which peaks around the age of 3 years). Comparing the groups with the diagnoses
will possibly give two subgroups of children in the middle group, which are diagnosed
as either non-asthmatic or asthmatic. However if either one of the groups are small
or empty the middle group may be interpreted as the asthmatic or non-asthmatic
group depending on which group is empty. This is under the assumption that the
high group and low groups correspond to the asthmatic and non-asthmatic groups,
respectively.
The comparison between the two classifications can be summarized in a cross-tabulation
table of dimension 3x2 (or 2x2 if the middle group is neglected or merged with either
the low or the high group). These types of tables are usually analyzed by means of
the two concepts: Sensitivity and specificity (see eg Kirkwood [22]). Sensitivity is
defined as the proportion of true positives (asthma) correctly classified, which equals
the proportion of the doctor-diagnosed asthma children classified as belonging to the
high group. Specificity is the proportion of true negatives (non-asthma) classified
correctly, hence the proportion of doctor-diagnosed non-asthma children classified as
belonging to the low group. Finally the overall agreement (accuracy) can be used
as a combined measure of the accordance of the different grouping methods and the
diagnoses.

Observed
Non-asthma Asthma Total

Predicted Non-asthma a b r1

Asthma c d r2

Total c1 c2 n

Table 4.1: Contigency table for predicted asthma status vs. observed
(doctor-diagnosed)

In Table 4.1 the possible outcomes of comparing predicted vs. observed/doctor-
1a short acting β2-agonist, relaxes the bronchial smooth muscles, see p. 112 in “Kompendium i

Farmakologi”, Christophersen et al. [7]
2an inhalation steroid (budesonid) for anti inflammatory treatment of asthma [7]
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diagnosed asthma are summarized. The table covers a 2x2 situation, in a 3x2 situation
an additional row will occur. In the 2x2 table a number of measures are interesting
as mentioned above, which will be defined in the following. The sensitivity is given
as d/c2, the specificities likewise as a/c1 and the overall agreement as (a+ d)/n.
For the doctor-diagnosed classification 47 children are classified as having asthma,
249 children as not having asthma and 115 children have no classification. For the
grouping based on a gaussian LCR the distribution on low, middle and high is 86,
171 and 59 children, whereas the grouping based on poisson LCR gives 156, 105 and
55 children, respectively. A total of 245 children have both a diagnosis and a group
from the LCR analysis.

4.2 Validation on all five years

Table 4.2 shows the cross-tabulations between the doctor-diagnosed asthma-status
and the groups from gaussian and poisson LCR, respectively. It is seen that the
sensitivities for the two methods are 78 % and 67 % for the gaussian and poisson
grouping, respectively. The specificities are 34 % and 60 % and the overall agreements
are 42 % and 61 %. It is seen that the gaussian approach classify more true positives,
but fewer true negatives compared to the poisson model. Furthermore both methods
classify a small number (but close to being the same) of non-asthmatic children in
the high, but no asthmatic children as belonging to the low group. It is seen that the
low group in both models only contains non-asthmatic children.

Gaussian Poisson
LCR-group Non-asthma Asthma Non-asthma Asthma
Low 69 0 120 0
Middle 114 10 64 15
High 17 35 16 30

Table 4.2: Cross-tables of subgroups from gaussian LCR vs. doctor
diagnosed asthma-status and poisson LCR vs. doctor diagnosed asthma-
status, respectively

It can be argued that classifying a non-asthmatic child in the middle group is not
really a misclassification, since for both methods the majority of the middle group is
non-asthmatic children, 92 % and 81 % for the gaussian and poisson model, respec-
tively. Furthermore, the middle and low group are seen to be similar, in particularly
at the age of 5 years. Merging the two groups, low and middle, gives updated speci-
ficities of 91 % and 92 %, whereas the sensitivities stays the same. The overall
agreements are 89 % and 87 %, hence more than doubled for the gaussian model.
Classifying the middle group as belonging to the high group (asthmatic group) gives
sensitivities of 100 % and 100 % and specificities of 34 % and 60 %. The overall
agreements are 47 % and 67 %. It follows from the two ways of classifying the middle
group that assigning the middle group to the low group improves the specificity
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significantly, whereas assigning it to the high group improves the sensitivity to perfect
agreement. However the overall agreement is best when merging the low and middle
group and these groups are also seen to be similar at the age of 5 years.
Neglecting the children classified as belonging to the middle group gives sensitivities
of 100 %, 100 % and specificities of 80 % and 88 %. However this implies that a large
number of children is left out (124 and 79), hence either using the middle group as
an unique group or as a part of the low group seems more adequate.
The methods are seen not to give any false-negatives, when the middle group is kept
as a unique group or merged to the high group. This is typically wanted, since it
is often better to maintain the suspicion of an illness rather than falsely claiming
the child to be healthy. However even with the middle and low group merged the
sensitivity and specificity are high. The grouping based on the poisson response is
seen to find the most non-asthmatic children, whereas the gaussian grouping finds
the most asthmatic children. The poisson model is additionally seen to give a smaller
middle group, hence giving a more clear initial diagnosis before merging.
For the grouping with the low and middle group merged together as the non-asthmatic
group, the predicted positive value [40] is now calculated. The predicted positive
value is the percentage of the children classified in the LCR as having asthma, who
also have a doctor-diagnosed asthma-diagnosis (d/r2 in Table 4.1). This imply that
the positive predicted values become 35/52 % = 67% and 65 % for the gaussian
and poisson model, respectively. The negative predictive values (a/r1) are likewise
183/193 = 95% and 92 % for the gaussian and poisson model, respectively. It is seen
that the gaussian model is performing better in terms of both the positive predictive
value and the negative, which is seen in the overall agreements as well. For the
grouping with the middle and high group merged, the negative predictive values are
100 % for both the gaussian and the poisson model, whereas the positive predictive
values are 26% and 36 %. The latter imply that this grouping is rather poor, since
most of the positive indeed are false.
In Figure 4.1 boxplots of the posterior probabilities are shown. It is seen that the
asthmatic group has low posterior probabilities of belonging to the low group for
both the gaussian and poisson model. The middle group is seen mostly to be related
to the non-asthmatic group for the gaussian model, whereas the poisson model in
median has a higher posterior probability of the middle group. The high group is
likewise seen to be related to the asthmatic group, however it is seen that some of the
children in the non-asthmatic group have high posteriors for belonging to the high
group. The latter is also seen from Table 4.2, where the high group is seen to consists
of around 33 % non-asthmatic children. It is seen that in both models the asthmatic
children are very unlikely to belong to the low group (posteriors are zero), whereas
for the other groups the posteriors for asthmatic and non-asthmatic children become
less separated.
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Figure 4.1: Top: Boxplots for posterior probabilities for low (left),
middle and high group (right) in the gaussian model, grouped by the
asthma-diagnosis. Bottom: Boxplots for posterior probabilities for low
(left), middle and high group (right) in the poisson model, grouped by
the asthma-diagnosis

4.3 Yearly classifications

As seen in section 3.3.7 the models give the possibility to estimate the posterior proba-
bilities based on a subset of the data, eg the second year of life (local information)
or the first two years of life (cumulated information). This imply that the diagnoses
provided by the COPSAC-group can be evaluated on subsets of the diaries, which
again imply that the models may give an earlier predicted diagnosis or at least some
indication of how the diagnosis at the age of 5 years and the model for the symptoms
at previous age are related.
The basis for the posterior probabilities is a parametric model and the prior probabi-
lities of being in the low, middle and high group, respectively. Each observation has
a probability of belonging to each of the three groups [23], which is given as

p̂ijk =
πkf(yijk|xijk, θk)

3∑
k′=1

πk′f(yijk′ |xijk′ , θk′)
(4.1)
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where f(yijk|xijk , θk) is the density for the observation in group k and πk is the
prior probability of group k. The probabilities in (4.1) are seen to vary within each
individuals observations, which imply that they reflect severity of the individual year
in terms of symptoms.
Instead of using only the local information at the age of j, the past information from
the age of 1 years to the age of j years can be included to estimate the probabilities
at the age of j years. The posteriors are found by the joint probabilities [23], given
by

p̂ik(j′) =
πk

j′∏
j=1

f(yij |xij , θk)

K∑
k′=1

πk′
j′∏
j=1

f(yij |xij , θk′)
(4.2)

The probabilities in (4.1) gives yearly classifications (local), whereas the probabilities
in (4.2) gives classifications based on cumulated information, namely the episode-rates
in the first j′ years of life. The probability in (4.2) is an approximation, since the
joint probability is the product of the marginal probabilities only if the observations
are uncorrelated. However as shown in Chapter 3, the correlation is seen to be low.
Density-functions for the two types of response are needed in order to calculate the
posterior probabilities. The density-functions need two parameters for each observa-
tion, namely the observation and the predicted response (µ̂). This holds for both the
model with gaussian response and the model with poisson response. With the ob-
servation, y (arcsin(

√
nepisode/ndays), and nepisode for the gaussian and poisson case,

respectively), and the predicted response µ̂ the likelihood can be calculated as

f(yijk|µ̂ijk)gaus =
1√

2πσ̂2
k

· e
−

(yijk−µ̂ijk)2

2·σ̂2
k (4.3)

f(yijk|µ̂ijk)pois =
µ̂
yijk
ijk · e−µ̂ijk
yijk!

(4.4)

where σ̂2
k is the residual variance for the k’th group. The analysis in section 3.3.4

showed that the variances were different over clusters in the gaussian model, the low
group had a smaller residual variance. The predicted mean values are described in
section 3.3.4 and 3.6.4.
Three types of groupings are now considered, 1: The middle group is considered as
a special group (Table 4.3), 2: Children in the middle group are assigned to the low
group (Table 4.4) and 3: The children in the middle group are assigned to the high
group (Table 4.5). For each of these three groupings 4x5 sensitivities, specificities
and overall agreements are computed corresponding to 2 grouping methods (gaussian
and poisson), 2 types of information (local and cumulated) and 5 different ages.
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4.3.1 No merging

Table 4.3 shows that the overall agreement is seen to be highest for the grouping
based on the poisson LCR with a maximum of 67 % for the local information at the
age of 4 years. The sensitivity is clearly highest for the gaussian grouping, whereas
the specificity is highest for poisson response. Grouping based on a poisson LCR gives
a markedly better specificity for the cost of a little lower sensitivity, which imply that
the overall agreement becomes higher for this method.

Group Type Age 1 Age 2 Age 3 Age 4 Age 5

Gaussian

Local

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 7 % sen: 56 % sen: 56 % sen: 64 % sen: 77 %

spe: 36 % spe: 29 % spe: 43 % spe: 48 % spe: 19 %
all: 31 % all: 34 % all: 45 % all: 51 % all: 31 %

Cumulated

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 7 % sen: 60 % sen: 71 % sen: 73 % sen: 77 %

spe: 36 % spe: 32 % spe: 33 % spe: 32 % spe: 35 %
all: 31 % all: 38 % all: 40 % all: 40 % all: 43 %

Poisson

Local

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 20 % sen: 53 % sen: 44 % sen: 56 % sen: 61 %
spe: 71 % spe: 55 % spe: 68 % spe: 69 % spe: 67 %
all: 62 % all: 54 % all: 63 % all: 67 % all: 66 %

Cumulated

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 20 % sen: 56 % sen: 58 % sen: 58 % sen: 66 %
spe: 71 % spe: 57 % spe: 58 % spe: 60 % spe: 59 %
all: 62 % all: 57 % all: 58 % all: 60 % all: 60 %

Table 4.3: number of observations, sensitivity, specitivity and overall
agreement for the gaussian and poisson grouping, local and cumulated
information at different ages. The cumulated information corresponds to
the information from the age of 1 year to the age in the column, whereas
the local information correspond to using only the observation correspond-
ing to the age in the column. An assignment of a child in the middle group
is a mis-classification for both the asthmatic and non-asthmatic group.

It is seen that the difference between using local and cumulated information is moder-
ate. The cumulated information strategy tends to give higher sensitivities but lower
specificities compared to the local information strategy. The specificities are seen
to be constant or decreasing as the children get older, whereas the sensitivities are
increasing, which is particularly apparent from the age of 1 to the age of 2.

4.3.2 Middle and low group merged

With the middle group classified as belonging to the low group, the specificities for
the two grouping methods increase and become close to identical (Table 4.4). The
overall agreements are increased compared to having the middle group as an unique
group, due to the increase in the specificity on the same sensitivity. Obviously the
merging of the low and middle group greatly improves the specificity for the gaussian
grouping, since the middle group is the largest group of the 3 and mostly consists of
non-asthmatic children. The poisson grouping is however also seen to be improved
significantly with increases by 20-30 %-points.
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Group Type Age 1 Age 2 Age 3 Age 4 Age 5

Gaussian

Local

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 7 % sen: 56 % sen: 56 % sen: 64 % sen: 77 %

spe: 97 % spe: 89 % spe: 92 % spe: 94 % spe: 92 %
all: 81 % all: 82 % all: 85 % all: 88 % all: 89 %

Cumulated

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 7 % sen: 60 % sen: 71 % sen: 73 % sen: 77 %

spe: 97 % spe: 88 % spe: 89 % spe: 90 % spe: 91 %
all: 81 % all: 83 % all: 86 % all: 87 % all: 88 %

Poisson

Local

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 20 % sen: 53 % sen: 44 % sen: 56 % sen: 61 %
spe: 92 % spe: 89 % spe: 93 % spe: 95 % spe: 93 %
all: 79 % all: 82 % all: 84 % all: 88 % all: 86 %

Cumulated

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 20 % sen: 56 % sen: 58 % sen: 58 % sen: 66 %
spe: 92 % spe: 90 % spe: 91 % spe: 92 % spe: 92 %
all: 79 % all: 83 % all: 84 % all: 85 % all: 86 %

Table 4.4: number of observations, sensitivity, specitivity and overall
agreement for the gaussian and poisson grouping, local and cumulated
information at different ages when classifying the middle group as being
low.

Table 4.4 shows, that the highest overall agreements are found at the age of 4 and
5 and that the local information is just as good as the cumulated information in
terms of total agreement. The cumulated information strategy tends to give a higher
sensitivity at the age of 4-5 years, but a lower specificity compared to the local
information. It is seen that the specificity is high at the age of 1 and keeps a high
level, whereas the sensitivity is improving as the children get older (same as for the
analysis with no groups merged).

4.3.3 Middle and high group merged

Table 4.5 shows that merging the middle group with the high group gives a poorer
overall agreement compared to merging the middle and the low groups. The reduced
overall agreement is a results of an increase in sensitivity (now close to 100 % at the
age of 2-5 years for the gaussian grouping and at the age of 5 years for the poisson
grouping) and a severe reduction in the specificity from above 90 % to below 50 %
for the gaussian grouping and below 70 % for the poisson grouping.
The age related patterns for the specificity and sensitivity are seen to be the same for
the merging of the middle and high groups as seen for the analysis with no merging
and the analysis with the middle and low groups merged. The main difference is that
sensitivities start at higher levels, whereas the specificities are the same as for the
analysis without merging of groups.

4.3.4 2 cluster model

In previous analysis it was shown that collapsing the two lowest groups gives the best
ability to predict the diagnosis correct. It is therefore interesting to analyze the 2
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Group Type Age 1 Age 2 Age 3 Age 4 Age 5

Gaussian

Local

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 86 % sen: 98 % sen: 96 % sen: 98 % sen: 100 %
spe: 36 % spe: 29 % spe: 43 % spe: 48 % spe: 19 %
all: 45 % all: 42 % all: 53 % all: 58 % all: 35 %

Cumulated

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 86 % sen: 96 % sen: 96 % sen: 98 % sen: 100 %
spe: 36 % spe: 32 % spe: 33 % spe: 32 % spe: 35 %
all: 45 % all: 44 % all: 45 % all: 45 % all: 48 %

Poisson

Local

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 45 % sen: 84 % sen: 82 % sen: 87 % sen: 98 %
spe: 71 % spe: 55 % spe: 68 % spe: 69 % spe: 67 %
all: 66 % all: 60 % all: 71 % all: 73 % all: 73 %

Cumulated

n: 242 n: 237 n: 235 n: 233 n: 221
sen: 45 % sen: 80 % sen: 87 % sen: 91 % sen: 100 %
spe: 71 % spe: 57 % spe: 58 % spe: 60 % spe: 59 %
all: 66 % all: 62 % all: 63 % all: 66 % all: 67 %

Table 4.5: number of observations, sensitivity, specitivity and overall
agreement for the gaussian and poisson grouping, local and cumulated
information at different ages when classifying the middle group as being
high.

cluster model with respect to sensitivity, specificity and overall agreement. The two
cluster model was deselected by means of the bayesian information criteria, which
imply that an optimal model was not found with respect to the ability to diagnose
the children correct, but to describe the symptoms at different ages. It can however
be the case that the 2 cluster model is better to predict the asthma-diagnosis.
In the following the 2 cluster models are considered, namely one with a gaussian
response for the arcsine-root transformed values and one with poisson response. A
comparison of the predictions from the model is shown in Figure 4.2, which shows
that the models are very similar, eg the two lines for the low groups are parallel. The
poisson model gives higher predicted rates compared to the gaussian model, which
was seen to be the case in the 3 cluster models as well (Figure 3.36).
Since only two groups are present and it therefore is relatively easy to identify which
group should be the asthmatic, an analysis of the performance in terms of sensitivity,
specificity and overall agreement can be done. In the previous analysis of the LCR
children were assigned to the most likely group, which for the two cluster model imply
that individual i is assigned to group j if pij > 0.5. It is however simple in the two
cluster group to evaluate upon this criteria, i.e. trying different threshold values for
the posterior probabilities for the high group.
In Figure 4.3 the sensitivity, specificity and overall agreement for the two LCR’s is
plotted as function of the cut-point for the posterior probability of the high group,
i.e. an individual is classified as belonging to the high group if the posterior pi,high is
larger than pcut. The figure shows that the sensitivity at most is 60 % for pcut > 0,
which is seen to be rather bad compared to the 3 cluster model. The specificity
and the overall agreement are increasing as the high group is forced to be more and
more unlikely, which is caused by the over-weight of non-asthmatic children, i.e. a
200 to 45 ratio. It is seen that the two cluster models are rather bad at finding the
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Figure 4.2: 2 cluster model prediction for gaussian and poisson model.
Line 1: High cluster for gaussian LCR, 2: Low cluster for gaussian LCR,
3: High cluster for poisson LCR and 4: Low cluster for poisson LCR

asthmatic children compared to the three cluster models, where the sensitivity was
77 % for the best gaussian model. So maximizing the overall-agreement implies that
all children are classified as non-asthmatic. The figure also shows that the poisson
model performs better compared to the gaussian model. As such the models are seen
to be poorer compared to the three cluster models, which imply that the three cluster
model do predict the asthma diagnosis better.

Cutpoint in 3 cluster model

As for the two cluster models a cut-point analysis can be done for the three cluster
models. This can be done by considering the posterior probability for the high group,
since the best performance was seen when collapsing the two other groups. Using the
same classification-method as for two cluster analysis, i.e. an individual is classified as
belonging to the high group if pi,high > pcut, gives the ability to do the same analysis
as for the 2 cluster model.
In Figure 4.4 the sensitivity, specificity and overall agreement for the gaussian and
poisson three cluster models are shown. It is seen for the gaussian model that a
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Figure 4.3: Sensitivity, specificity and overall agreement for gaussian
two cluster model (left) and poisson two cluster model (right) for various
cut-points for the high group. A cut-point, pcut, imply that an individual
is classified as belonging to the high group if pi,high > pcut. In both plots
1 corresponds to sensitivity, 2 to specificity and 3 to overall agreement.

reasonable good model can be obtained for a cut-off value at 0.26, which gives a
sensitivity of 87 %, a specificity of 89 % and an overall agreement of 89 % compared
to 77 %, 91 % and 86 % for classifying to the most likely group and then merge the
low and middle group. The low cut-point may be a result of the weighing with the
prior probabilities, where the middle group a priori is twice as likely compared to the
low and high group for the gaussian model.
For the poisson model the sensitivity is quickly reduced to 67 %, which is the same
value as for the analysis in Table 4.4. If a significant improvement in the sensitivity
is wanted the cut-point should be around 0.01, which leads to a sensitivity of 78 %,
a specificity of 83 % and an overall agreement of 82 %. This should be compared to
66 %, 92 % and 86 % for the sensitivity, specificity and overall agreement in Table 4.4.
In Figure 4.4 a cut-point analysis is shown for the cumulated posterior for the first
two and three years of life, respectively for the high group in the gaussian model. It is
seen that with 3 years of information a sensitivity, specificity and overall agreement
of around 80 % at the same time is obtainable for a threshold value around 0.22.
For information contained in the first two years of life, the performance is poorer
compared to the first three years, the sensitivity falls to 60 for an overall agreement
of 80 %.

4.4 Existing literature

In section 3.3.5 the results from the gaussian 4 cluster LCR was compared to the
results from Martinez et al. [26]. The comparison showed that the agreement was
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Figure 4.4: Sensitivity, specificity and overall agreement for gaussian
three cluster model (upper left), poisson three cluster model (upper right)
and for gaussian model for cumulated information until the age of 2 (bot-
tom left) and 3 years (bottom right) for various cut-points for the high
group. A cut-point, pcut, imply that an individual is classified as belong-
ing to the high group if pi,high > pcut. In both plots 1 corresponds to
sensitivity, 2 to specificity and 3 to overall agreement.

low, i.e. the group corresponding to late onset wheezing was missing. In the following
the age of 3 years and the age of 5 years are considered to approximate the procedure
suggested by Martinez et al. [26], who considered the age of 3 and 6 years, respectively,
and mainly the types of changes in the wheezing status from the age of 3 years to
the age of 6 years.
From the gaussian and the poisson model groups at the age of 3 and 5 years can be
estimated either as a local information or as a cumulated information as shown in
section 4.2 and 4.3. Cross-tabulations over the group-assignments at the age of 3 and
5 years are shown in Table 4.6, which shows that the cumulated grouping has fewer
shifts from the age of 3 to the age of 5 compared to the local information. This is
however expected, since the cumulated information at the age of 3 years is used at
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Age 5
Local Cumulated

Method Group Low Middle High Low Middle High

A
g
e

3

Gaussian
Low 17 54 6 54 8 0
Middle 17 85 16 12 104 7
High 1 14 26 0 8 43

Poisson
Low 97 25 13 97 19 1
Middle 34 25 8 19 50 6
High 2 13 19 0 8 36

Table 4.6: Cross-tabulation of grouping from LCR between the age of 3
years (rows) and the age of 5 years (columns). The numbers correspond
to the number of children for a given combination

the age of 5 as well.
Denoting the low and the middle group the non-asthmatics and the high group the
asthmatics, a table for non-wheezers, transient early wheezers, late-onset wheezers
and persistent wheezers can be made as seen in Martinez et al [26]. The result is
seen in Table 4.7 and comparing the 4 proportions can be done by a 2× c χ2-test as
described at p. 93 in Kirkwood [22] with the following test-quantity

χ2 =

N2 ·
(

c∑
i=1

R2
1i/ni −

(
c∑
i=1

R1i

)2

/N

)
(

c∑
i=1

R1i

)(
N −

c∑
i=1

R1i

) (4.5)

and is χ2 distributed with c-1 degrees of freedom. R1i corresponds to the size of the
i’th group size in the LCR grouping, ni to the sum of the size of i’th group in the
LCR and the size of the i’th group in Martinez et al. and N to the total number
of children in the groups, i.e. the sum of the ni’s. The null-hypothesis is that the
two sample distributions come from the same distribution. The tests show that it is
highly unlikely to believe that the proportions come from the same distribution.

Group Method No Transient Late Persistent P (> χ2)

Gaussian
Local 73 6 9 11 <0.0001
Cumulated 75 3 3 18 <0.0001

Poisson
Local 77 6 9 8 <0.0001
Cumulated 78 3 3 15 <0.0001

Martinez et al 52 20 15 14

Table 4.7: Asthma status shift (in %) based on LCR. In the last row
the corresponding distribution for Martinez et al. [26] is shown and in the
last column χ2 goodness-of-fit test for LCR shift vs. Martinez et al.

The study by Martinez et al. is however based on a cohort with children regardless
of their mothers asthma status, which is the main inclusion criteria for the COPSAC
children, i.e. only children with asthmatic mothers are included in the COPSAC study.
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Hence adjusting Martinez et al. proportion such that only children with asthmatic is
considered mothers seems to be a better approach. The updated table is shown in
Table 4.8, which shows that the proportions still differ significantly. Mainly the non-
wheezing group in for the LCR method is too large compared to Martinez et al. but
also the late-onset group is seen to be too small. This may be caused by a difference
in horizon, i.e. that the children in Martinez et al. have had a year longer to develop
asthma. It is seen that the local information is better in terms of identifying both the
transient wheezers and the late onset wheezers. This shows that the local information
is more important than the general symptom-picture for the groups, which changes
pattern in the first 5 years of life.

Group Method No Transient Late Persistent P (> χ2)

Gaussian
Local 73 6 9 11 <0.0001
Cumulated 75 3 3 18 <0.0001

Poisson
Local 77 6 9 8 <0.0001
Cumulated 78 3 3 15 <0.0001

Martinez et al. adj 33 18 22 27

Table 4.8: Asthma status shift (in %) based on LCR. In the last row the
corresponding distribution for Martinez et al. [26] is shown and in the last
column χ2 goodness-of-fit test for LCR shift vs. Martinez et al. adjusted
such that only children with asthmatic mothers are considered

4.5 Modelling with diagnosis

The models with gaussian and poisson response, respectively, could be reconsidered
with a new grouping variable, namely the diagnosis. Diagnosis can be thought as a
way of dividing the cohort in to two subgroups, which then can be analyzed to see
the longitudinal development, the effect of PD15 PtcO2 and day care start in the two
groups.
If a connection between group and diagnosis is present, one would expect the esti-
mated models to be close to identical. Since the agreement was seen to rather good
in Table 4.3 and 4.4, it is likely that the asthma group will be similar to the high
group and the non-asthmatic comparable with the low and middle groups.

4.5.1 Gaussian model

The gaussian model with the arcsine-root transformed relative number of episodes
is considered first. To make the analysis simple, the final model with the 3 groups
considered in (3.24) at p. 57, but with untransformed age at day-care start, is used
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as the starting model, i.e.

ỹijk =β0 + αk + β1k · ageij + β2k · age2
ij + β3k · log10(pdi)

+ β4k · daycarestart,i + εijk
(4.6)

i = 1, . . . ,m j = 1, . . . , ni k = 1, 2 εεεk ∼ N (0, σ2
kG)

where k now has two levels asthma and non-asthma. The model is estimated by
means of generalized least squares and the corresponding summary shows that a
reduction to

ỹijk =β0 + αk + β1k · ageij + β2k · age2
ij

+ β3 · log10(pdi) + εijk
(4.7)

i = 1, . . . ,m j = 1, . . . , ni k = 1, . . . , 2 εεεk ∼ N (0, σ2
kG)

is possible. The reduction leads to a likelihood-ratio test of 5.38 on 3 degrees of
freedom, which is seen to be an insignificant decrease in the likelihood (p = 0.15).
The summary is shown in Table 4.9, which shows that the asthmatic group has a
higher slope, a slightly more negative curvature and the same intercept as the non-
asthmatic group. The model estimates are seen to be similar to the analysis with
the model with 3 groups, although some deviations are seen. The main similarity is
the temporal development for the asthmatic/high group, whereas the non-asthmatic
group is seen to be a mixture of the low and middle group (see curve 1 and 2 in
Figure 4.5). The residual variance in the two groups is seen to be close to identical,
the asthmatic group has a variance being 1.12 times higher compared to the non-
asthmatic group. A test for equal variances gives p=0.29, which shows that the
variances can be assumed to be equal.

Value Std.Error t-value p-value
(Intercept) 0.0472 0.0069 6.8279 <0.0001
diagnosisAsthma -0.0060 0.0166 -0.3610 0.7182
age 0.0077 0.0053 1.4640 0.1435
(age2 ) -0.0026 0.0009 -2.9673 0.0031
(log10(pd)) -0.0047 0.0018 -2.6040 0.0093
diagnosisAsthma:age 0.0411 0.0126 3.2559 0.0012
diagnosisAsthma:(age2 ) -0.0042 0.0021 -2.0395 0.0416

Table 4.9: Summary for gaussian model with diagnosis as grouping
variable, which can be compared to Table 3.9 at p. 49 or Table 3.13 at
p. 59.

Figure 4.5 shows that the asthmatic group’s curve (curve 2) is different compared to
the dashed curves (the models considered in Figure 3.36). It is characterized by an
initial increase to the age of 3-4 years and a decrease from the age of 4 to 5 years,
where the LCR models top at the age of 2-3 years. The non-asthmatic group is seen
to be a mixture of the low and the middle group (curve d and c), hence starting at a
lower level compared to the asthmatic group and having a decreasing rate.
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Fitting the same model structure (the model in (4.7)) with the groups from the
gaussian LCR regression gives the possibility to compare the two grouping methods
with the Bayesian Information criteria (−2 · log-lik + npar · log(nobs)). The grouping
based on the diagnosis has a BIC of -3698.64, whereas the grouping based on the
gaussian LCR has a BIC of -4143.85. This shows that the inclusion of the middle
group, which essentially corresponds to dividing the low group into two subgroups
gives significantly extra information in describing the symptoms. This confirms the
results found in the LCR, i.e. that three clusters are optimal in order to describe the
symptoms.

4.5.2 Poisson model

Likewise a model with poisson response can be estimated with the diagnosis-variable
as the grouping variable. The estimation is done with GEE as seen in section 3.6.4
with an unstructured correlation for the observations within individual. Modelling is
based on the model in (3.39) at p. 84, which is

η̂ij = log(µ̂ij) = log(ndaysij ) + β0k + β1k · ageij + β2k · age2
ij

+β3k · log10(pdi) + β4k · (daycarestart,i) (4.8)

k = {non-asthma, asthma} Corr(Yij , Yik) = αjk

The model can be reduced to a model without PD15 PtcO2 and day-care start and
the same curvature for both groups. The summary corresponding to the reduced
model is shown in Table 4.10 and the predictions are shown in Figure 4.5 (curve
3 and 4). The predictions are seen to be higher compared to gaussian model with
diagnosis as grouping variable. However the asthma group is seen to be closer to the
curves from the LCR compared to the gaussian model.

estimate san.se wald p
(Intercept) -5.6755 0.1220 2164.5702 <0.0001
diagnosisAsthma 0.3384 0.1789 3.5799 0.0585
age 0.4407 0.0868 25.7431 <0.0001
(age2 ) -0.1147 0.0153 56.0579 <0.0001
diagnosisAsthma:age 0.3615 0.0533 45.9998 <0.0001

Table 4.10: Parameter summary for GEE model with diagnosis as group-
ing variable, san.se corresponds to robust standard errors for the esti-
mates.

4.5.3 Comparison of models for yearly symptom rate

In Figure 4.5 predictions for the 5 different models, the two diagnosis models and the
three LCR models, for the symptom rate are shown. It is seen that the 5 models all
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have a high group (curve 2, 4, 5, 8 and 11), which has an initial increase to the age of
3-4 years and a decrease from that point on. For children not in the high group two
groups are seen for the LCR approach, whereas the diagnosis only has one group. It
is seen that curve 1 and 3 for non-asthmatic children for the gaussian and poisson
response, respectively, are located between the corresponding low and middle curves
for the LCR, i.e. curve 1 between curve d and c and curve 2 between curve a and 9.
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Figure 4.5: Comparison between gaussian model based on diagnosis (1
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red lines), poisson model based on gaussian grouping in LCR (5-7, dashed
green lines), poisson model based on poisson grouping (8, 9 and a, dashed
blue lines) and gaussian model for gaussian grouping (b-d, dashed pink
lines)
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4.6 Mixed effects models and diagnosis

In the analysis of the random effects in both the gaussian and poisson model, the
question of a precise grouping of the estimates was not easily addressed. However
with the diagnosis at hand, the estimates can be analyzed by grouping by diagnosis.
The LCR models showed that the estimates differed for the three clusters, i.e. that
grouping based on the diagnosis may be possible.

4.6.1 Mixed effects vs. diagnosis

In equation (3.8) in section 3.2.4 a mixed effects model given as

ỹij = β0 + b0i + (β1 + b1i) · ageij + (β2 + b2i) · age2
ij+

β3 · log10(pdi) + β4 · daycarestart,i + εij
(4.9)

i = 1, . . . ,m j = 1, . . . , ni, εεε ∼ N (0, σ2Λ)
Λ = diag(1/ndaysi1, 1/ndaysi2, . . . , 1/ndaysini)

b0i ∼ N (0, σ2
0), b1i ∼ N (0, σ2

1), bi =
[
b0i b1i

]T ∼MVN(0,G)

was fitted. The BLUP-estimates [37] from this model can be compared to the diag-
nosis to analyze if patterns are present. The BLUP-estimates is plotted against the
diagnosis for each child in Figure 4.6, which shows that the asthmatic group tends to
have a higher baseline rate, but the most pronounced tendency is that the children in
the asthmatic group have steeper slopes. Corresponding Wilcoxon-test, see Petrucelli
et al. p. 657 [30], for the group-differences in mean gives p<0.0001 and p<0.0001 for
the intercept and the slope, respectively. This confirms the results from the gaussian
LCR, which showed that the group with the steepest slopes were most related to the
high group.
In section 3.5.1 a generalized linear mixed effects model was considered, where the
response was assumed to be poisson distributed. The model was formulated as

η̂ij = log(ndaysij ) + α+ b0i + (β1 + b1i · ageij+

(β2 + b2i) · age2
ij + β3 · log(PD15 PtcO2)i+

β4 · daycarestart,i
b0i ∼ N (0, σ2

0) b1i ∼ N (0, σ2
1) b2i ∼ N (0, σ2

2)[
b0 b1 b2

]T ∼MVN(0,G)

(4.10)

The model has three random components from which BLUP-estimates are estimated.
As for the linear mixed effects model, the BLUP-estimates are compared to the
diagnoses, which is done in Figure 4.7.
It is seen that the parameter corresponding to the curvature is the same for the two
groups, which coincide well with the results from the poisson LCR. The GEE model
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Figure 4.6: Boxplot of b0i (left) and b1i (right) vs. diagnosis obtained
from the linear mixed effects model
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Figure 4.7: Boxplot of b0i (left),b1i (middle) and b2i (right) vs. diagnosis
from generalized linear mixed effects model

based on the poisson LCR (p. 85) was reduced to a model with the same curvature
parameter for all three groups. Wilcoxon-tests for the three random components give
p=0.0008, p<0.0001 and p=0.4236 for the intercept, slope and curvature, respectively.
The Wilcoxon-tests show that the asthmatic group has higher intercept and slope
compared to the non-asthmatic group, which was seen for the gaussian case as well.
It is seen that the different approaches lead to the same results. However LCR is
seen to be a more useful tool in order to identify the groups of children compared to
the mixed effects models without knowledge of the diagnoses.
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4.6.2 BLUP estimates as predictor

As seen from Figure 4.6 and 4.7 BLUP-estimates of the slope and intercept in the
mixed effects model are closely linked to the diagnoses. Using these two measures
as the cutpoints for an asthma prediction are shown in Figure 4.8, which shows that
setting the b1-criteria to b̂1i > 0.004→ asthma leads to an overall agreement of 85 %
on a sensitivity and specificity of 80 % and 86 %, respectively. For b0 the performance
is lower and it is furthermore seen that the gaussian model is better than the poisson
model. The lower performance for b0 is expected, since the boxplots showed that
the b0i are overlapping for the asthmatic and non-asthmatic children more than seen
for b1i. The gaussian estimates are seen to be better separated compared to the
estimates for the poisson model, which explain the better performance in the gaussian
separation analysis.
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Figure 4.8: Cut-points for gaussian (top row) and poisson (bottom row)
mixed effects model. Each plot shows sensitivity: o, specificity: ∆ and
overall agreement: +

By using both the intercept and the slope as a combined cut-off for the gaussian
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model the performance may be improved. This can be obtained by replacing the
1-parameter cut-offs by the criteria b0i > b̃0 ∨ b1i > b̃1 → asthma. This imply that
if at least one the BLUP-estimates are higher than their respective threshold-value
the child is classified as asthmatic. The sensitivity, specificity and overall agreements
are shown in Figure 4.9, which shows that using both parameters are seen not to
improve the sensitivity or the overall agreement significant. It is possible to obtain
sensitivity, specificity and overall agreement above 86 % with the threshold values
b0i > 0.0362∨ b1i > 0.0075→ asthma. It is seen that this improves the sensitivity on
the same specificity as only using the b1i values, however the difference is small and
entirely related to improving the sensitivity.
Compared to the LCR-approach it is seen that the method is better, i.e. compared to
the gaussian model with the middle and low groups merged. However, the improved
version with a cut-point for the posterior probability of the high group in the gaussian
model is better compared to the cutting based on the mixed effects. For the cutting
on posterior probabilities the sensitivity is 87 % for a specificity of 89 %, which gives
an overall agreement of 89 %, which is seen to be higher compared to cutting in the
mixed effects.
Another difference in the two methods is that the LCR (without cut-point) is able
to find the groups without knowing the asthma status. This is however not the case
in the mixed effects case, since no apparent grouping in seen in the estimates. It
was furthermore seen that a strategy based on a subset of the age-range was easy
to incorporate in LCR, which for the mixed effects model would imply that a new
model should be estimated.

4.7 Diagnosis and five cluster grouping

In section 3.6.2 the optimal poisson LCR was estimated, which had 5 clusters. The
clusters from that model (see Figure 4.10) can be compared to the diagnoses as for
the 3 cluster models, which has been done in Table 4.11. The table contains the cross-
tabulation between the 5 clusters and the diagnosis, which shows that group 1 and 5
clearly contains non-asthmatic children and group 3 asthmatic children. Using these
definitions and defining group 2 and 4 as misclassification for both the asthmatic and
non-asthmatic group gives a specificity of 76 % with a sensitivity of 31 % and an
overall agreement of 68 %.
Group 2 and 4 are difficult to interpret, however if they are regarded as asthmatic
children, the sensitivity becomes 100 % with a specificity of 76 % and an overall
agreement of 80 %. This is a higher sensitivity compared to the three cluster models,
but lower overall agreement. Another possibility is to assign cluster 2 and 4 to
the non-asthmatic groups (1 and 5), which increase the specificity to 100 % for a
sensitivity of 31 % and an overall agreement of 87 %. If group 2 is classified as
asthmatic and group 4 as non-asthmatic the specificity becomes 88 % for a sensitivity
of 49 % and an overall agreement of 81 %
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Figure 4.9: Contour-plots for sensitivity (upper left), specificity (up-
per right, overall agreement (lower left) for gaussian model and overall
agreement for poisson model (lower right).

The five cluster model is seen not to be markedly better in terms of predicting the
diagnoses even though it uses more parameters. The five clusters are seen to be more
specialized, since two groups with symptoms at the age of 1 and 5 years are seen, one
with some symptoms and one with many symptoms. Furthermore, one group with
late onset symptoms, one group with early transient symptoms and one group with
no symptom are seen.
As mentioned in section 4.4, Martinez et al. [26] operate with 4 prototypes of children,
which the five clusters can be compared to. Group 3 and 4 can be interpreted as
persistent wheezers, since they both keep a high level respectively medium level,
group 2 is classified as late onset wheezers, group 1 as early transient wheezers and
finally group 5 as children not wheezing at all. The distribution of the children in
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Group Non-asthma Asthma
5 104 0
1 48 0
4 25 23
2 22 8
3 1 14

Table 4.11: Cross-tables of subgroups from 5 cluster poisson LCR vs.
doctor diagnosed asthma-status
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Cluster  5 :
   Median pd:  0.2604 
   − day−care:  345 
   # individuals:  134

Figure 4.10: 5 cluster model

the five cluster model can be compared to the distribution found by Martinez et al,
which is shown in Table 4.12. Comparing the 4 proportions can be done by a 2× c,
χ2-test as described at p. 93 in Kirkwood [22] and section 4.4.
From the table it is seen that too few children have no symptoms, whereas too
many have persistent symptoms. However some similarities are seen, namely that
the non-wheezing group is the largest group and the transient early wheezing group
the second largest. The inclusion criteria may influence the distribution, since the
COPSAC children are included only if their mothers have asthma, whereas the chil-
dren in Martinez et al. do not have this inclusion criteria [26]. However both the
late-onset wheezers and the persistent wheezers in Martinez et al. had a significant
odds-ratio for maternal asthma, 95 % confidence intervals are [1.4; 5.5] and [2.1; 7.9],
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respectively, compared to the non-wheezers. So including only the newborns with
asthmatic mothers may increase the number of wheezers compared to a population
representing newborns in general as seen in section 4.4.

Method No Transient Late Persistent P (> χ2)
5 cluster 42 24 11 23 0.3202·10−4

Martinez et al 52 20 15 13
Pearson residuals -2.22 1.46 -1.6 3.72

Table 4.12: Asthma status shift (in %) based on 5 cluster poisson LCR.
In the middle row the corresponding distribution for Martinez et al. [26]
is shown, the last row the pearson residuals and in the last column χ2

goodness-of-fit test for 5 cluster LCR shift vs. Martinez et al.

If only the children with asthmatic mothers are used from the study by Martinez
et al. [26] the number of children in each of the four group is 27, 15, 18 and 22.
The updated table for comparison of the 5 cluster model and Martinez et al. is
shown in Table 4.13, which shows that there still is a significant difference at a 5 %
level between the two populations although the p-value is 100 times larger. It is
seen that the corrected distribution for Martinez et al. has a lower proportion non
wheezers compared to the proportion for all children and a twice as large proportion
of persistent wheezers compared to the original distribution. The persistent wheezing
groups are seen to be of equal sizes, whereas the late onset group is smaller for the 5
cluster model compared to the corrected Martinez et al. proportion and is contributing
by 70 % of the total test-statistic.
It is seen that the late-onset group in the five cluster model is significant lower com-
pared to Martinez et al. The Pearson residuals are N(0, 1) distributed, which imply
that the residual for the late-onset group is highly significant. The non-wheezing
group is seen to be too large, however not significantly (p = 0.11). The intersections
in Martinez et al. are the age of 3 and the age of 6 years, whereas the analysis in the
LCR is based on the first 5 years of life, which imply that the late-onset group may
increase in the sixth year of life and thereby reducing the non-wheezing group. How-
ever the deviations between the two studies are seen not to be large for the remaining
three prototypes.

Method No Transient Late Persistent P (> χ2)
5 cluster 42 24 11 23 0.0304
Martinez et al. corrected 33 18 22 27
Pearson residuals 1.2 0.92 -2.5 -0.62

Table 4.13: Asthma status shift (in %) based on 5 cluster poisson LCR.
In the middle row the corresponding distribution for Martinez et al. [26]
for children with asthmatic mothers is shown, the last row the pearson
residuals and in the last column χ2 goodness-of-fit test for 5 cluster LCR
shift vs. Martinez et al. for children with asthmatic mothers
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4.8 Medication

All previous analysis has been done without taking the symptom related medication
into account. This may influence the inference, since correct medication decreases
the amount of symptoms. In the following use of medication will be analyzed with
respect to the symptoms, the diagnosis and the longitudinal development.
Through the first 3 years of life the children are randomly assigned to either inhaled
corticosteroid (budesonide) or placebo [4]. The children are treated for 14 days from
the third day with symptoms. Each child is assigned to one and only one treatment,
however if an asthma diagnosis is given the trial is stopped.
Aside from the treatment in the nested trial, the children have been treated with
spirocort (budesonide) and prednisolon. Both drugs are glucocorticoids, but spirocort
has local effect and is inhaled, whereas prednisolon is a systemic drug. Prednisolon is
given only at severe acute asthma episodes. Budesonide is given for each episode the
first 3 years of life as described in the previous paragraph and the general treatment
with spirocort the first 6 years of life is roughly as follows: If 5 episodes have occurred
the last 6 months a three month trial medication with spirocort is initiated. If relapse
after the trial period is observed, a 6 months period is started otherwise the treatment
is stopped, if relapse after the 6 months period is observed the treatment length is
increased to 12 months.
It is seen that the length of the treatment is increased as long as the treatments have
an effect, i.e. that relapse is seen when stopping the treatment. All medication is seen
to be related to the level of symptoms, since it is given according to the symptoms.

4.8.1 Longitudinal development in medication amount

In Figure 4.11 boxplots of the relation between the number of days with the initial
medication (placebo/budesonide) and the asthma diagnoses is shown. For the placebo
treatment it is seen that the non-asthmatic group has fewer days with medication
compared to the asthmatic group. The asthmatic group is seen to have more days
with placebo treatment in the second year of life compared to the first, whereas the
third year is seen to be comparable with the non-asthmatic group, which can be
explained by the fact that the asthmatic children typically will be excluded from the
initial experiment and put on an active asthma treatment with spirocort.
For the active treatment in the initial trial the number of days is highest at the
age of 2 for the non-asthmatic group and at the age of 1 for the asthmatic. The
asthmatic group is seen only to receive budesonide in the first year of life, which
could be explained by the fact that they receive spirocort treatment instead as seen
from Figure 4.12.
Figure 4.12 shows the boxplots for spirocort and prednisolon the first 6 years of
life, respectively. It is seen that the majority of the non-asthmatic children are seen
not to be medicated with spirocort, whereas the level of spirocort treatment for the
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Figure 4.11: Boxplots of medication the first three years vs. asthma
diagnosis. Medication is here either placebo or budesonide

asthmatic children is seen to be increasing. The prednisolon treatment level is seen
to be similar across the two groups and it is furthermore seen to be sparse, which is
explained by the fact that prednisolon is given only at acute severe asthma, i.e. under
special circumstances.
At a yearly aggregated level the number of episodes and the number of days with
eg spirocort will be positively correlated, which do not reveal the benefits of the
treatment. However on a weekly basis the faster dynamics may reveal the benefits of
the medication.

4.9 Risk-factors for asthma

In the previous sections the diagnosis and the clustering from LCR was analyzed.
In the following section the risk-factors for the diagnosis are analyzed by means of
logistic regression. The logistic regression is a model for the probability of getting
the asthma-diagnosis given that the children have certain risk-factors, eg a mother
smoking in the third trimester. A subset of the risk-factors obtained at birth and the
age of 3 are considered to reduce the analysis, the same risk-factors will be analyzed
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Figure 4.12: Boxplot of medication the first 6 years of life vs. asthma
diagnosis. Medication types are spirocort and prednisolon.

in section 5.6. A description of the risk-factors and confounders is given in the
preparatory thesis [13].
In Figure 4.13 a NA-plot from Harrels Hmisc package [21] is shown. It is seen that
the variable with the most missing values is the sraw measurement with over 40 %
missing values followed by the diagnosis with ≈ 25% missing values in a dataset with
316 children. The remaining variables are seen to have less than 10 % missing values
and furthermore most have none.
The logistic regression aims at modelling the probability of having asthma, hence the
success in each of the Bernoulli trials is a positive asthma-diagnosis. The usual way to
model a logistic regression is in a generalized linear model framework, which calls for
the specification of a distribution, a link-function and a linear-predictor. Obviously
the distribution is the binomial-distribution, which has the logit as the canonical
link-function for the mean p, i.e. f(p) = log (p/(1− p)), see Wood p. 61 [42]. The
linear predictor consists of the risk-factors, which for simplicity is assumed additive
(however with an interaction between the two rhinitis variables) on the logit-scale,
hence multiplicative on the probability scale.
A few things are noted on the generalized linear model for a Bernoulli trial (binomial
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Figure 4.13: NA-plot for risk-factor dataframe. Top left: Fraction of
missing values, top right: Frequency of number of missing values per
observation, bottom left: Mean number of missing values given that a
certain variable is missing and bottom right: Fraction of missing-values
vs. mean of other variables missing

with n = 1), the mean value is modelled through the link-function, the variance is
a known function of the mean value V [Y ] = p · (1 − p) and over-dispersion may be
present due to heterogeneity or an inadequate model, i.e. V [Y ] = φ · p · (1− p), where
φ > 1. The overdispersion can be modelled by quasi-likelihood, see Wood p. 74 [42],
by including the scale-parameter φ.
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The logistic regression model therefore becomes

logit (p̂i) =η̂i = β0 + β1 · fillagrin + β2 · smoking3rd,i + β3 · smokinghome,i

+ β4 · smokingdaycare,i + β5 · genderi + β6 · father asthmai

+ β7 · pets3rd,i + β8 · alcohol3rd,i + β9 · smoking3rd,i

+ β10 · srawi + β11 · father rhinitisi + β12 ·mother rhinitisi

+ β13 · log10(pd)i + β14 · daycare starti + β15 · petshome,i

(4.11)

The measurement of the specific resistent in the airways variable, sraw, is the relative
increase in sRAW after inhalation of terbutaline. sraw, amount of passive smoking in
the home and exposure to furred pets in the home are all continuous and therefore
needs to be analyzed with a generalized additive model to see if curvature is present.
PD15 PtcO2 has previous been shown to be linear after a logarithmic transformation,
whereas age at day-care start is linear.
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Figure 4.14: Smoothed function for continuous variables in logistic re-
gression for asthma diagnosis

A model with smoothed functions for the three continuous variables is fitted in order
to evaluate the curvature. The resulting smoothed functions are shown in Figure 4.14,
which shows that neither of the variables seem to be significant and furthermore the
relation to the linear predictor seems linear. Test for the smoothed functions, see
Wood p. 194-195, can be done with a F-test as

β̂Tj V̂r
β̂j
β̂j/r

φ̂/(n− edf)
∼ Fr,edf (4.12)

where β̂j is the parameters corresponding to the smoothed function j, V̂r
β̂j

the corre-
sponding variance-covariance matrix, r the estimated degrees of freedom for smooth
function j and edf the estimated degrees of freedom for the model. A F-test is used
if the scale parameter is to be estimated otherwise a χ2 test is used on the numerator
without the scaling by r, which is a test with r degrees of freedom.
The F-tests gives p= 0.77, p= 0.19 and p= 0.07 for furred pets, passive smoking in
the home and sraw, respectively. It is furthermore seen from Table 4.14 that the
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interaction can be removed as well as exposure to pets in the third trimester, fathers
asthma, gender, fillagrin gene mutation, smoking in day-care and age at day care
start. It is furthermore seen that the alcohol variable gives some numerical problems,
since the groups corresponding to 2 units and 3 or more units per week are small (7
and 4 children). Collapsing the two groups to one joint group seems to be a reasonable
approach, since the standard error of the group corresponding to 3 or more units is
astronomic in size. It is also seen that the over-dispersion parameter is below 1,
φ̂ = 0.81, which shows that it is appropriate to estimate the model with a standard
binomial distribution, i.e. without the scale parameter φ.
In the following the tests for the reductions are done on datasets of equal sizes,
whereas the number of observations in general will be increasing in the summaries,
due to fewer incomplete observations as the number of variables is decreased.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.8508 1.1518 -2.4752 0.0148
genderMale -0.0451 0.5087 -0.0887 0.9295
fillagrin1 1.1567 0.9292 1.2448 0.2157
daycare.start -0.0023 0.0021 -1.0970 0.2749
fev -0.0468 0.0238 -1.9681 0.0514
(log10(pd)) -1.3192 0.4033 -3.2709 0.0014
smoking3rdYes 1.8211 0.8260 2.2046 0.0294
fatherashtmaYes 0.9732 0.7771 1.2524 0.2129
pets3rd -0.5223 1.1157 -0.4681 0.6406
alcohol1 0.4353 0.7401 0.5881 0.5576
alcohol2 2.9137 1.3883 2.0987 0.0380
alcohol3 18.3673 3563.8058 0.0052 0.9959
smokingdaycare1 0.6655 0.5593 1.1899 0.2365
father.rhiniYes 0.3744 1.0564 0.3544 0.7237
mother.rhiniYes -0.3136 0.8313 -0.3772 0.7067
father.rhiniYes:mother.rhiniYes 1.0918 1.2586 0.8675 0.3875

Table 4.14: Summary for parametric terms in GAM model. n= 137

A model without the smoothed functions and corresponding variables and with the
reductions outlined is estimated by means of a standard generalized linear model. The
updated model gives an increase in the residual deviance of 14.88 on 12.35 degrees
of freedom, which gives a F-test with a p-value of p=0.14, which shows that the
reduction leads to an insignificant increase in the residual deviance.
It is furthermore seen that the number of observations are increased by more than 100,
since the sRAW is excluded, which had more than 40 % missing values. The extra
observations are appreciated for variables with few observations in a given category,
eg the alcohol variable doubles the number of children with a mother drinking at
least one unit of alcohol per week in the third trimester from 23 to 51. This gives
smaller standard error and a much more accurate estimates of the effects in the small
groups, since the estimates will rely on more children.
The updated model summary is shown in Table 4.15, which shows that for instance
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7563 0.4986 -5.5276 <0.0001
fev -0.0127 0.0140 -0.9132 0.3611
(log10(pd)) -0.7497 0.2563 -2.9254 0.0034
smoking3rdYes 0.8754 0.4941 1.7719 0.0764
alcohol1 0.0867 0.5126 0.1691 0.8657
alcohol>1 0.3104 0.8534 0.3638 0.7160
father.rhiniYes 0.5068 0.3759 1.3484 0.1775
mother.rhiniYes 0.4056 0.4631 0.8759 0.3811

Table 4.15: Summary for reduced model without smoothed functions
and only a subset of the initial risk-factors, n= 235

smoking in the third trimester increases the risk, OR = 2.4, of getting the asthma
diagnosis, however not significantly (p=0.08). The summary shows that mothers
and fathers rhinitis history are insignificant as well as drinking alcohol and smoking
cigarettes in the third trimester and the congenital FEV. Reducing the model gives
an increase in the deviance of 6.19 on 6 degrees of freedom, which gives a F-test with
a p-value of p=0.40. It is seen that the only significant risk-factor is the congenital
responsiveness, which shows that including more risk-factors to the LCR probably
will not give a better grouping.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0324 0.2526 -8.0467 <0.0001
(log10(pd)) -0.8205 0.2389 -3.4346 0.0006

Table 4.16: Summary for final model for risk of asthma, n= 245

The model shows that congenital responsiveness is a predictor for the risk of getting
the asthma diagnosis at the age of 5 years. It is seen from Figure 4.15 that the risk
of asthma is about 40 % for the children with the lowest resistance and drops to
below 20 % at the median pd (a 34.1 times increase in PD15 PtcO2). In general the
odds-ratio for an increase by a factor 10 in the PD15 PtcO2 gives an odds-ratio for
high versus low of

OR = e−0.82 = 0.44

The ratio between the lowest PD15 PtcO2-value and the highest is 2110.63, which
corresponds to an odds-ratio of

OR = e3.32·(−0.82) = 0.07

hence the risk at the highest level is 7 % of the risk at the lowest level.
It is seen that even the lowest PD15 PtcO2 does not lead to a predicted risk above
50 %, i.e. the PD15 PtcO2 may need additional inspection to find the relevant cut-
ting point and will probably not be good at finding the children with asthma. In
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Figure 4.15: Prediction and prediction interval for risk of getting asthma
diagnosis at the age of 5 years as function of PD15 PtcO2

Figure 4.16 it is seen that the overall agreement tops for a PD15 PtcO2 value of
around 0.05 with a value of 81 %. This is lower compared to the LCR, where the
overall agreement was around 90 % for the best models. It is furthermore seen that
the model has a good specificity for a low cutting point and that the sensitivity is
improved only by decreasing the overall agreement (and the specificity) significantly.
The model is seen not to be sensitive to the asthma diagnosis, which is expected due
to low fitted risks. Compared to the LCR the sensitivity for the logistic regression is
more than 40 %-points lower on a lower overall agreement, however it is comparable
with the results obtained by only using the information in the first year of life in the
LCR. This shows that using the full 5 year range in a LCR (or even just the two first
years) gives a better model in terms of identifying the asthmatic children, which is
should be a natural consequence of including more information in the decision criteria:
LCR has the PD15 PtcO2 as one of the variables. However as a single measure at
the birth, PD15 PtcO2 gives good predictions of the asthma status at the age of 5
years. The main reason for LCR’s improved performance in predicting the diagnosis
is that the longitudinal patterns are used.
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Figure 4.16: Overall agreement, sensitivity and specificity as function
of the cut-point for PD15 PtcO2, i.e. PD15 PtcO2i < PD15 PtcO2cut →
asthma diagnosis for child i. Above PD15 PtcO2 the corresponding proba-
bilities of asthma, eg a PD15 PtcO2 of 1 gives a 12 % risk of asthma.

4.10 Discussion

In this chapter the diagnoses were compared to the groups found in the LCR based
on both gaussian and poisson response on the first five years of life. It was seen that
the gaussian approach gave the highest sensitivity and that the poisson response gave
the highest specificity. However merging the middle and low group gave nearly the
same specificity for the two methods with the same sensitivities.
The grouping methods were seen to give a fairly good classification at the age of two-
three years. However the best results are obtained at the age of 5 years, which might
be related to the fact that the diagnoses are established based on the medication
and symptoms in the fifth year of life. The possibility for an early classification is
interesting, since it may give some insight information on exactly how the asthmatic
children’s symptoms are developing. Furthermore, it was seen that the classification
was good at the age of 2-3 years, which imply that future studies of childhood asthma
might be reduced from considering children the first five years of life to the first 3
years. This is obviously desirable due to costs, participation percent and the waiting
time for results.
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It was seen that using the diagnosis as grouping variable gave the same estimated
temporal development for the asthmatic and high group of children, whereas the
non-asthmatic children had a curve which was a combination of the low and middle
group.
In section 4.8 medication patterns for various combination of group and diagnosis
were analyzed. It was seen that the misclassifications were related to either an in-
crease (asthma-middle group) in the symptom-rate in the fifth year of life or an
decrease (non-asthma-high). The grouping by LCR was seen to be more related to
the entire symptom-pattern, which gave some dissimilarities compared to the diag-
nosis established at the age of 5 years. However the overall-agreement was good and
the dissimilarities may be explained by the fact that there might be more than 2-3
groups as discussed by Martinez et al. [26]. The latter was seen to be indicated in the
analysis of the 5 cluster model, where the corrected results by Martinez et al. were
seen to be close to results found for the five cluster model.
Finally a logistic regression for the asthma diagnosis at the age of 5 years was ana-
lyzed. The regression showed that the only significant riskfactor was the congenital
PD15 PtcO2 measurement, i.e. the dose to give a 15 % decrease in the PtcO2 (partial
pressure). It was seen that the most resistant children have highly reduced risks of
getting the asthma diagnosis, however no children had a fitted risk above 50 %. It
was furthermore seen that finding a good cutting point for classification of asthma
was possible, the performance was lower compared to the latent class regression. The
logistic model was seen not to be particular sensitive to asthma, eg the highest overall
agreement of 81 % was obtained for a specificity around 95 % and a sensitivity of
20 %. To increase the sensitivity to above 50 % a deterioration of the specificity to
below 66 % and the overall agreement to below 63 % was seen.
Analysis of different cut-points strategies showed that the mixed effects gaussian
model was capable of giving quite precise prediction based on the individual slope
and intercept. It was seen that using the cumulated posterior probability at the age of
3 years for the gaussian model led to a good model, which had a sensitivity, specificity
and overall agreement above 80 %. Using the posterior for all three years increased
the performance to above 87 %. The analysis showed that the gaussian LCR tended
to favor the groups with few symptoms, i.e. that the children should be assigned to
the asthmatic group for a posterior above 0.26.
The methods discussed in this chapter showed that good prediction of the asthma
diagnosis can be made. It was furthermore seen that diagnoses could be established
at the age of 3 years with an acceptable precision above 80 %. Analysis showed that
the asthmatic and non-asthmatic groups had distinct temporal development in the
symptom-rate, which enabled the good predictions.
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Weekly episodes
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5.1 Introduction

In the following chapter an analysis of the individual weekly symptoms is considered.
For each child a time-series from the first year of life to the fifth year of life with as
many observations as days in the considered time-range is the basis for the analysis.



130 Weekly episodes

For each day three outcomes are possible: an episode has occurred (day 3 or later in
an incident), an episode has not occurred (indicated with a 0), which corresponds to
either the two first days with symptoms or a day without symptoms and the day can
be without diary data (marked as not available, see section 3.2.2 for more information
on missing data). The response is seen to be the prevalence of episodes lasting 3 days
or longer. 3 days was the length of an episode, which required a visit at the facilities
at COPSAC.
From previous analysis of the population in Chapter 2, it is known that the symptoms
vary over the year. The yearly variations can be modelled with the inclusion of the
periodic functions, sine and cosine, with a period of 365 days. From the analysis of
the yearly aggregated symptoms it was shown that the temporal development of the
symptoms was seen to have a form corresponding to a second order polynomial in
the age.
The LCR-regression analysis in Chapter 3 showed that the children could be divided
into three groups according to their symptoms development. This may be used in
terms of evaluating the odds-ratios between the different groups, in particularly the
(probably) increased odds for the group with a high level of symptoms. However, the
diagnosis considered in Chapter 4 may be used instead, in order to evaluate differences
between asthmatic and non-asthmatic children.
The observation set consists of approximately 600.000 observations distributed on
around 400 individuals. This imply that data analysis is a computer extensive task,
which limits the level of complexity in the models. A problem of more theoretical
matter with using daily episodes is that since an episode is recorded only if it last 3
days or longer, the 3 days up to the episodes will always be 0 (where 0 corresponds to
no symptoms), since the first 0 is the last day in a period without symptoms and the
next 2 the two first days with symptoms in a period lasting 3 days or longer. This
gives severe negative correlations, which are some what artificial and entirely caused
by the way the study and dataset are designed.
To avoid this problem one can analyze weeks, where a week is defined to contain an
episode if at least one day of an episode having lasted 3 days or longer is contained
in the week. The weeks go from Monday to Sunday, which should be fairly arbitrary
with respect to the analysis, the same results should be reached having weeks from
eg Wednesday to Tuesday.
The relation between the symptoms, the episodes and the weekly symptoms is illus-
trated by a sequence of symptoms with corresponding episodes and weekly symptoms
as shown in Table 5.1. Since a week is used, the issues with strange negative corre-
lations may to some extend be avoided. This may give a better analysis in terms of
being able to estimate the autocorrelation, which will be seriously affected in a day
to day analysis.
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Week no. 1 2 3 4 5 6
Symptoms 0000000 0000001 110111 100100- 0111111 - - - - - - -
Episodes 0000000 0000000 010001 100000- 0001111 - - - - - - -
Weeks 0 0 1 1 1 -

Table 5.1: Illustration of relation between symptoms, episodes and week

5.2 Initial model formulation

The weekly data can be seen as a sequence of bernoulli trials: Week j for child i has
a probability, pij , of being a week with an episode and 1−pij of not being one. Since
a Bernoulli trial is a special case of a binomial trial with n = 1, a generalized linear
model can be used to model the probability. The individual bernoulli trial has the
probability function

f(symptom) = psymptom(1− p)1−symptom (5.1)

where p is the probability of having symptoms and symptom is 1 if symptoms are
present and 0 if not. The mean of a binomial distribution is p ·n = p and the variance
of the response is V [Y ] = n · p · (1− p) = p · (1− p).
In a generalized linear model framework one need to specify the distribution for the
response, the link-function and the linear predictor. The distribution has been speci-
fied and the link-function is the canonical link (the logit) for the binomial distribution

g(µ) = g(p) = log
(

p

1− p

)
= θ (5.2)

with the inverse

g−1(θ) = p =
eθ

1 + eθ
(5.3)

the linear predictor, η, is linear in the explanatory variables, which gives model
equations of the form

η̂ij = xijβ = β0 + xij1 · β1 + · · ·+ xijp · βp (5.4)

for the fitted value of the linear predictor. The subscript i is the individual i and j
the j’th observation for individual i. p/(1− p) is the called the odds, which can vary
between 0 for p = 0 and infinity for p = 1. exp(β1) is the odds-ratio (OR) for an
increase in x1 of 1 unit, which is seen from

OR =
p1/(1− p1)
p0/(1− p0)

=
exp(β0 + (x1 + 1) · β1 + · · ·+ xp · βp)

exp(β0 + x1 · β1 + · · ·+ xp · βp)
= exp(β1) (5.5)

Odds ratios are typically used in the context of comparing two different populations,
which is modelled by indicator variables, eg. xijk = 1 if individual i belongs to
population 1 and 0, otherwise.



132 Weekly episodes

Since the dataset is longitudinal correlation between the observation for an individual
may be present. The correlation can be utilized in the sense that lagged values can
be used as predictors, which changes the modelling from

logit(P (Yij = 1|x1, . . . , xp)) = xijβ (5.6)

to

logit(P (yij = 1|x1, . . . , xp, yi(j−1), . . . , yi(j−m))) = xijβ + yij′βy (5.7)

hence the modelling becomes conditional on the history. Considering two neighboring
weeks two things can happen: either the symptom state is the same or it shifts to
the other state. The state diagram is illustrated in Figure 5.1, which contains four
probabilities, each a function of the current state (0 or 1), the explanatory variables
and possibly more history than current state. These types of models are called
transition models, since the transition probabilities are modelled. The state diagram
may be complicated further if the probabilities depend on more history than the
current state, i.e. if the first order Markov property is not fulfilled.

State 0 State 1

P01

P11

P10

P00

Figure 5.1: State diagram for week to week evolvement

In modelling the individual time-series an usual generalized linear model can not be
used, since the observations within an individual are likely to be correlated. Three
approaches are therefore possible: generalized mixed effects models (GLMM), genera-
lized estimating equations (GEE) or transition models (hence regressing on old values
of the response). Zeger et al. [46] have shown the connection between the estimates
in GEE and in the GLMM. It is important to note that the interpretation of the
estimates in the three approaches is different, since the first (GLMM) is subject spe-
cific, the middle (GEE) is population averaged and unconditional and the latter is
marginal but conditional on the history. In the following only GEE and transition
models are considered.
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5.3 Lorelogram analysis

The association between different weeks can be investigated by the lorelogram (see
Diggle et al. p. 52 [15] and Heagerty and Zeger [19]), which is defined as

LOR(tj , tk) = log(γ(yj , yk)) (5.8)

γ(y1, y2) =
P (y1 = 1, y2 = 1)P (y1 = 0, y2 = 0)
P (y1 = 1, y2 = 0)P (y1 = 0, y2 = 1)

The LOR can be estimated by considering 2 by 2 tables for each individual, where
the 2 by 2 table is a contingency table for observation with tj − tk time-points apart
(tj > tk). γ is seen to be larger than 1 for a positive relation between weeks u
time-points apart, values around 1 correspond to no relation and values below 1 to
negative relation. The numerator is the probability of staying in the same state and
the denominator is the probability of different states. For tables containing cells with
zero counts a correction is applied, which imply replacing 0 with 0.5. This is done
in order to calculate the log odds-ratio, which otherwise would be ±∞ depending on
whether the zero-count appears in the denominator or the numerator.
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Figure 5.2: Lorelograms for week symptoms with fitted smoother for the
mean (solid line) and lower and upper limit in a 95 % confidence interval
(broken lines). The panels correspond to cluster found in section 3.3.3,
where low is the group of children with the fewest symptoms and high the
group with the most

The lorelograms for the weekly symptoms are shown in Figure 5.2, which shows that
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long-range correlations are present. The log odds-ratios are seen to be above 0 for
k ≤ 9. It is seen that the log odds-ratios decline the most from lag 1 to lag 7, where
they flatten out for all three groups. From the lorelograms it is seen that the group
with few symptoms have large odds-ratios, whereas the other two is somewhat lower.
The high group is seen to go zero, whereas the medium group flattens out around 0.5
and the low group flattens out at 3.5.
The low group is characterized by the fact that the children have few symptoms,
which imply that the response in this group mostly will be 0. The number of weeks
overall in the low group with symptoms is 255 compared to 18553 weeks without
( 255

18553 = 0.01). This imply that the probability of staying in the no-symptoms state
is much higher compared any of the three other probabilities. The high odds-ratios for
the low group are therefore caused by the fact that the no-symptoms weeks are highly
correlated due to the sparse number of symptoms, which imply that P (yj = 0, yk = 0)
tends to dominate the γ-expression in (5.8). For the medium and high groups the ratio
between weeks with symptoms and weeks without symptoms are 0.08 and 0.28, which
shows that especially the high group is much more likely to shift states compared to
the medium and low group. This is also seen from the odds-ratio, which is much
lower compared to the low group.
The standard errors for the log odds-ratio can be approximated by the square-root
of the inverse sum of the cell-numbers as illustrated by Bland and Altman [5],

σ̂(LOR) =

√√√√ 2∑
i=1

2∑
j=1

1
Tij

(5.9)

where Tij is the i’th row in the j’th column in the contingency-table from which the
odds-ratio is calculated. A 95 % confidence interval is L̂OR ± 1.98 · σ̂(LOR). From
Figure 5.2 it is seen that especially the lower group and medium group have broad
confidence limits, whereas the high group’s confidence interval is seen to be quite
narrow. The uncertainties of the low and the medium groups are mainly caused be
the fact the children tends to stay in the no-symptoms state, i.e. that Tij is small for
all other combination, which makes the overall sum large. It is seen that the low and
medium group have confidence intervals for the LOR that contains 0 from k ≈ 2 and
the intervals are broad, which shows that the many 0 counts have a severe impact on
the estimation of the LOR.
In Figure 5.3 four overall lorelograms are shown, overall in the sence that the individ-
ual are neglected and one lorelogram is estimated instead of m. From Figure 5.3 it is
seen that the confidence bands are broadest for the low group, which is caused by the
fact that 3 out of four table entries are small. The two other groups are seen to have
much tighter bands. The difference between Figure 5.2 and Figure 5.3 illustrates the
difference between the individual LOR’s and the mean LOR’s: The mean LOR’s are
more accurately estimated (σ̂(LOR) ≈ σ̂(LOR)√

n
). For the low group the impact of the

high probability of being in the no symptoms state is reduced, since data from all
individuals in the low group is used and more shifts therefore are seen.
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Figure 5.3: Lorelograms estimating overall correlation neglecting indi-
viduals: all clusters (upper left), low group (upper right), medium (lower
left) and high group (lower right)

The analysis of the lorelograms shows that the group with few symptoms are highly
correlated from week to week, which is caused by the fact that the children have
no-symptoms in 99 % of the time. The high group is seen to have a significant
correlation up to lags equal to 7 weeks, however the elbow is situated at k = 2,
which indicates that the correlation is most pronounced for weeks up to two weeks
apart. The medium group is seen to look like the low group, but has lower LORs
but the same order of uncertainty caused by the many no-symptoms observations. A
transition model should therefore contain group specific parameters with respect to
the regression on lagged values in order to model the different transitions.

5.4 Marginal model

Based on the initial model statements and the analysis of the lorelogram models for
the probability of having a week with an episode can be proposed. The response is
bernoulli trials, which can be modelled with a binomial distribution having n = 1.
The link-function is the logit of the probability of success (having an episode).
As explanatory variables cos(week/52 · 2π) and sin(week/52 · 2π) are included to
account for the seasonal variations (as described in Chapter 2), age and age2 are
included to describe the temporal development related to age (as described in Chap-
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ter 3), the groups found in the gaussian LCR and finally the risk-factor PD15PtcO2
are included to describe the differences between individuals.
The probability of symptoms, p, is modelled through its link-function and the model
becomes

η̂ij =β0k + β1k · log10(pdi) + β2k · ageij + β3k · age2
ij

+ β4k · cos
(

week · 2π
52

)
+ β5k · sin

(
week · 2π

52

)
+ β6k · genderi

(5.10)

η = log
(

p

1− p

)
In the model, β1k is the estimate of the parameter for PD15PtcO2 for the k’th group,
β2k the estimate for age for the k’th group, etc. In the basic generalized linear model,
the observations are assumed to be being mutually independent, which from the
lorelograms were seen to be a doubtful assumption. However as an initial analysis
the model is estimated with the identity matrix as the assumed variance-covariance
matrix corresponding to mutually independence. The season component is simplied
to having the same amplitude and phaseshift for each year in order to keep the
complexity down.
The estimated model is shown in Table 5.2, which shows that the seasonal part is the
same for the three groups. The high group is seen to have the highest intercept and
the highest benefit of a high PD15PtcO2 as seen in the previous analysis as well.
Figure 5.4 shows that the residuals from the generalized linear model are correlated
within each individual. It is seen that the correlation is autoregressive and that
adjacent weeks are correlated by 50 %.

5.4.1 GEE model

The analysis of the symptoms as being mutually independent within individual may
however be wrong since correlation within individual is present. The correlation can
be dealt with by using generalized estimation equations, where correlation is intro-
duced as a working correlation. A correlation corresponding to an AR(1)-structure is
assumed, since the lorelograms are exponentially decaying. The basis for the estima-
tion is the model in (5.10), but with an AR(1) correlation for the within individual
correlation.

η̂ij =β0k + β1k · log10(pdi) + β2k · ageij + β3k · age2
ij

+ β4k · cos
(

week · 2π
52

)
+ β5k · sin

(
week · 2π

52

)
+ β6 · genderi

(5.11)

Corr(yij , yik) = ρ|weekj−weekk|
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.4033 0.1708 -19.9202 <0.0001
clusterMedium 0.8144 0.1827 4.4575 <0.0001
clusterHigh 0.8890 0.1889 4.7074 <0.0001
(log10(pd)) 0.1731 0.0941 1.8391 0.0659
genderMale -0.4628 0.1274 -3.6335 0.0003
age -0.7672 0.1647 -4.6574 <0.0001
(age2 ) 0.1404 0.0333 4.2220 <0.0001
cosine 0.6709 0.0972 6.9004 <0.0001
sine 0.2107 0.0927 2.2739 0.0230
clusterMedium:(log10(pd)) -0.2795 0.0981 -2.8491 0.0044
clusterHigh:(log10(pd)) -0.4650 0.0980 -4.7424 <0.0001
clusterMedium:genderMale 0.4413 0.1341 3.2901 0.0010
clusterHigh:genderMale 0.7557 0.1345 5.6178 <0.0001
clusterMedium:age 1.0113 0.1755 5.7630 <0.0001
clusterHigh:age 1.7115 0.1774 9.6492 <0.0001
clusterMedium:(age2 ) -0.2437 0.0358 -6.8147 <0.0001
clusterHigh:(age2 ) -0.3272 0.0357 -9.1704 <0.0001
clusterMedium:cosine -0.0948 0.1021 -0.9284 0.3532
clusterHigh:cosine -0.1887 0.1021 -1.8489 0.0645
clusterMedium:sine -0.0338 0.0975 -0.3464 0.7290
clusterHigh:sine -0.0809 0.0975 -0.8297 0.4067

Table 5.2: Summary of estimated parameters of simple generalized linear
model

The summary for the parameters in the linear predictor is shown in Table 5.3, which
shows that the standard errors for the parameters are larger compared to the model
assuming independent observations within subject (Table 5.2).
The standard errors are increased, since the analysis of the mutually independent ob-
servations is incorrect, i.e. too much information is used from each observation. GEE
accounts for the fact that the observations within each child are correlated and hence
that observation j to some degree can be explained by the value of observation j− 1.
GEE gives robust standard errors in contrast to the naive standard errors obtained
in the generalized linear model. Furthermore, GEE gives consistent estimates even
with an incorrect correlation structure if the number of individuals is high, Diggle et
al. p. 140 [15].
The procedure estimates a scale parameter of 0.9989, which shows that the model is
adequate with respect to the expected variance-function (there are no excess hetero-
geneity among the observations). It is seen that the seasonal parts of the model for
the three clusters are insignificantly different. Furthermore, the cluster difference for
genders is seen to be insignificant. The model can be reduced to having the same
seasonal risk and gender risk.
The updated summary is shown in Table 5.4, which shows that the model can not
be reduced any further. The seasonal part of the model is seen to be the same for all
children, which imply that it can be interpreted as a common background variable
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Figure 5.4: Autocorrelation for deviance residuals from initial GLM
model, autocorrelation estimated only on observations belonging to the
same individual.

that may explain symptoms related purely to the season. The model shows that a
child coming from the high level group has the same odds-ratio of getting symptoms
due to the season as a child coming from the low level group, whereas the difference
in risk for the three groups is seen to be related to the longitudinal development.

Seasonal part

The seasonal part in Table 5.4 can be converted to a pure cosine-function with an
amplitude and phaseshift using the relation

A · cos
(

week · 2π
52

+ θ

)
=A · cos

(
week · 2π

52

)
· cos (θ)

−A · sin
(

week · 2π
52

)
· sin (θ)

(5.12)

This gives the following two equations to solve for θ and A

A · cos(θ) = β4

−A · sin(θ) = β5

(5.13)
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Estimate Std.err Wald p(>W)
(Intercept) -3.4772 0.3813 83.1764 <0.0001
clusterMedium 0.8553 0.4031 4.5023 0.0338
clusterHigh 0.9239 0.4195 4.8516 0.0276
(log10(pd)) 0.1737 0.1093 2.5263 0.1120
genderMale -0.4764 0.3520 1.8318 0.1759
age -0.6597 0.4173 2.4990 0.1139
(age2 ) 0.1204 0.1221 0.9720 0.3242
cosine 0.6424 0.1524 17.7746 <0.0001
sine 0.2054 0.1563 1.7267 0.1888
clusterMedium:(log10(pd)) -0.2800 0.1327 4.4502 0.0349
clusterHigh:(log10(pd)) -0.4624 0.1528 9.1561 0.0025
clusterMedium:genderMale 0.4603 0.3698 1.5492 0.2133
clusterHigh:genderMale 0.7713 0.3931 3.8507 0.0497
clusterMedium:age 0.9196 0.4356 4.4564 0.0348
clusterHigh:age 1.6356 0.4350 14.1355 0.0002
clusterMedium:(age2 ) -0.2243 0.1265 3.1451 0.0762
clusterHigh:(age2 ) -0.3123 0.1247 6.2748 0.0122
clusterMedium:cosine -0.0762 0.1603 0.2263 0.6342
clusterHigh:cosine -0.1485 0.1602 0.8590 0.3540
clusterMedium:sine -0.0167 0.1634 0.0104 0.9186
clusterHigh:sine -0.0791 0.1669 0.2243 0.6358

Table 5.3: Summary of estimated parameters of GEE

Estimate Std.err Wald p(>W)
(Intercept) -3.6894 0.2513 215.5298 <0.0001
clusterMedium 1.0663 0.2770 14.8125 0.0001
clusterHigh 1.2855 0.3008 18.2659 <0.0001
(log10(pd)) 0.1509 0.1356 1.2399 0.2655
age -0.6511 0.4212 2.3897 0.1221
(age2 ) 0.1174 0.1222 0.9223 0.3369
cosine 0.5347 0.0343 242.4774 <0.0001
sine 0.1593 0.0366 18.8914 <0.0001
clusterMedium:(log10(pd)) -0.2572 0.1551 2.7498 0.0973
clusterHigh:(log10(pd)) -0.4263 0.1743 5.9791 0.0145
clusterMedium:age 0.9117 0.4392 4.3096 0.0379
clusterHigh:age 1.6246 0.4388 13.7084 0.0002
clusterMedium:(age2 ) -0.2211 0.1266 3.0531 0.0806
clusterHigh:(age2 ) -0.3081 0.1248 6.1007 0.0135

Table 5.4: Summary of estimated parameters of updated GEE

with respect to A ≥ 0 θ ∈ [−π, π]. This leads to the solution

θ̂ = arctan
(
−β5

β4

)
= −0.29 = −16.82 days

Â =
√
β2

4 + β2
5 = 0.56 (5.14)
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It is seen that the seasonal part of the odds of symptoms tops at January 18th, which
is seen to be within the range of the prevalence and incidence peaks considered in
Chapter 2. The log odds-ratio from summer to winter is 2 · A, which gives an odds-
ratio of e2·A = 3.05. It is therefore seen to be 3 times as likely to have symptoms
during winter compared to the summer regardless the level of symptoms.
In Figure 5.5 the ratio corresponding to the seasons effect on the odds is plotted as
function of the calender year in weeks. A value below 1 imply that the odds is drawn
down by the season and a value above the opposite. The season effect is negative
(decreasing the odds) from week 15 to 41, which corresponds to the period from the
beginning of March to the beginning of September and is obviously positive from
week 41 to 15. The seasonal part shows that the risk of an episode is increased in
the winter.
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Figure 5.5: Odds-ratio related to the season as function of the week
number (week 1 corresponds to first week of January)

Age part

The contribution to the odds coming from the age variables can be examined the
same way as for the season. However the age variables depends on which group the
child comes from, which imply that 3 curves for the age effect on the odds of getting
a symptom are obtained from the model. Since the linear predictor is a second order
polynomial with respect to age the effect on the odds becomes the right part of the
product in (

p

1− p

)
k

= erest of model · eβ1k·agej+β2k·age2
j (5.15)
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The amount eβ1k·age+β2k·age2
is interpreted as the odds-ratio for comparing the current

age (age = agej) against age = 0 at the same time of year (since a contribution from
the season would be added otherwise).
From Figure 5.6 it is seen that the high group has an odds-ratio, which is more than
1.5 from the age of 1 years and tops with a value of 3.5 at the age of 3 years. The
low group has odds-ratios from age below 1, which correspond to a decrease in the
odds compared to birth. Consistently decreasing effect is seen for the medium group
for age ≥ 2 years after an initial increase the first year of life. The curvature for
especially the low group is questionable since the standard error for the estimate is
high. However the effect corresponding to age is seen to be small for the low and
medium group and stable, whereas the high group both vary more over age and is
larger than 1, which imply that the risk of symptoms is increasing to the age of 3
years and in general more likely compared to the starting level.
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Figure 5.6: Odds-ratio of age = agej compared to age = 0

Correlation and residuals

The estimated correlation parameter is 0.5841 with a standard error of 0.1249. This
imply that observations on the same individual are correlated with by amount

Corr(yij , yik) = ρ|weekij−weekik| = 0.5841|weekij−weekik| (5.16)

The correlation is seen to decay rapidly as the time-difference increases. This was
seen to be the case in the lorelograms as well, i.e. that the elbow was seen for k = 2.
The estimated correlation is seen to be 0.3412 for observation taken on the same
individual two weeks apart.
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In Figure 5.7 the qq-plot for the pearson residuals is plotted, which shows that the
pearson residuals seems normal but coming from two different distributions corre-
sponding to whether the response was 0 or 1. This is caused by the way the pearson
residuals behave in the bernoulli trial. The Pearson residuals are defined as

ri =
yi − ŷi√
V̂ [ŷi]

(5.17)

and since yi ∈ {0, 1} and ŷi ∈ [0, 1] the sign of the residuals is seen to be dependent
of the value of yi. For yi = 0 the residuals are restricted to negative values and for
yi = 1 to positive. The QQ-plot serves as a outlier detection tool and shows that no
outliers seem present.
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Figure 5.7: QQ-plot of Pearson residuals. The black points correspond
to the weeks with no symptoms and the red to the weeks with symptoms

Diagnosis

In the GEE-model the groups obtained from the gaussian LCR were used, in the
following the diagnoses for the asthma status are used instead as grouping factor.
This imply that the initial GEE-model must be reestimated to evaluate the differences
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between the two groups in terms of parameters estimates. The initial model is

η̂ij =β0k + β1k · log10(pdi) + β2k · ageij + β3k · age2
ij

+ β4k · cos
(

week · 2π
52

)
+ β5k · sin

(
week · 2π

52

)
+ β6 · genderi

(5.18)

η = log
(

p

1− p

)
Corr(yij , yik) = ρ|weekj−weekk|

where k ∈ {Non-asthma,Asthma}. The model is estimated and the summary in
Table 5.5 shows that the model can be reduced to the model in Table 5.6.

estimate san.se wald p
(Intercept) -2.8410 0.1488 364.7708 <0.0001
diagnosisAsthma 0.5736 0.2737 4.3918 0.0361
(log10(pd)) -0.1542 0.1189 1.6819 0.1947
genderMale -0.1328 0.1549 0.7345 0.3914
age 0.2717 0.1507 3.2497 0.0714
(age2 ) -0.1102 0.0393 7.8650 0.0050
cosine 0.5592 0.0455 150.9258 <0.0001
sine 0.2193 0.0509 18.5835 <0.0001
diagnosisAsthma:(log10(pd)) 0.0328 0.1818 0.0327 0.8566
diagnosisAsthma:genderMale 0.2968 0.2634 1.2697 0.2598
diagnosisAsthma:age 0.5105 0.1996 6.5423 0.0105
diagnosisAsthma:(age2 ) -0.0299 0.0472 0.4006 0.5268
diagnosisAsthma:cosine -0.0944 0.0760 1.5425 0.2142
diagnosisAsthma:sine -0.1281 0.0803 2.5409 0.1109

Table 5.5: Initial gee with grouping by diagnosis

Furthermore the scale-parameters corresponding to the over-dispersions are estimated
to 1.0073 and 1.0069 in the full-model and the reduced model, respectively. The
reduced model is seen to be adequate and the updated summary is shown in Table 5.6.
Compared to the model with the grouping obtained from the gaussian LCR, the new
model estimates a common curvature parameter, whereas the previous model had a
highly significant different estimate for the high group. The model with the asthma
diagnosis is expanded in the following to see differences between asthmatic and non-
asthmatic children.

5.5 Medication

Based on the reduced GEE model the medication variables as considered in section 4.8
can be analyzed. The model considered until now is estimating the temporal patterns,
the seasonal pattern and the difference between children having different diagnosis



144 Weekly episodes

estimate san.se wald p
(Intercept) -2.9376 0.1145 658.5110 <0.0001
(log10(pd)) -0.1380 0.0901 2.3455 0.1256
diagnosisAsthma 0.8018 0.2119 14.3193 0.0002
age 0.3393 0.0928 13.3582 0.0003
(age2 ) -0.1250 0.0245 26.0260 <0.0001
cosine 0.5144 0.0373 189.8584 <0.0001
sine 0.1593 0.0398 16.0382 <0.0001
diagnosisAsthma:age 0.3672 0.0760 23.3566 <0.0001

Table 5.6: Reduced gee with grouping by diagnosis

and is given by

η̂ij =β0k + β1k · log10(pdi) + β2k · ageij + β3 · age2
ij

+ β4 · cos
(

week · 2π
52

)
+ β5 · sin

(
week · 2π

52

) (5.19)

Corr(yij , yik) = ρ|weekj−weekk|

where k ∈ {Non-asthma,Asthma}. The model is seen to have a common seasonal
part, which can be interpreted as a risk purely related to seasonal variations. In
this model the medication variables can be included. The fast dynamics may reveal
the positive effect of the medication, which was seen not to be the case for the
yearly aggregated symptoms. The level of medication and the level of symptoms
is positive correlated in the yearly aggregated analysis, which may change with the
faster dynamics.
In Table 5.7 cross-tabulations of medication types and the episodes are shown. It is
seen that placebo and budesonide are positively correlated with having symptoms,
which is caused by the fact that the medication in the initial trial is symptom initiated:
A two week treatment period is applied for each symptom period. The odds-ratios are
23.08 and 19.51 for receiving placebo and budesonide vs. not receiving this treatment,
respectively. Prednisolon is given only in weeks with symptoms, since it is used
against acute severe asthma symptoms and therefore given in weeks with symptoms.
For weeks with spirocort treatment 69 % of the weeks are symptom free and the
odds-ratio is 7.25
One can furthermore analyze the more long term implications of medication, namely
given that a child has been treated with drug k in the previous week, which is the
probability of having an episode this week. In Table 5.8 lagged values of the medi-
cation data is tabulated against the episodes. It is seen that the proportion of weeks
without episodes given that the child was medicated the previous week is increased
compared to the direct tabulation in Table 5.7.
One needs to evaluate whether the one week lagged values of medication are related
to the episodes or if the shifts from Table 5.7 to Table 5.8 is a result of the natural
shifts from week to week. To analyze the results, a cross-tabulation of the lagged
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Episode (Yij)
Type Medication 0 1 total

placebo
0 45063 3712 48775

(0.92) (0.08) (1.00)
1 435 827 1262

(0.34) (0.66) (1.00)

budesonide
0 44947 3663 48610

(0.92) (0.08) (1.00)
1 551 876 1427

(0.39) (0.61) (1.00)

spirocort
0 62370 3880 66250

(0.94) (0.06) (1.00)
1 5004 2258 7262

(0.69) (0.31) (1.00)

prednisolon
0 67374 6066 73440

(0.92) (0.08) (1.00)
1 0 72 72

(0.00) (1.00) (1.00)

Table 5.7: Cross-tabulation of medication types and episodes, i.e. a (0,1)
combination for a given medication type and the episodes imply that the
drug have not been used and that the child had an episode that week. The
two first medication types are only given i nthe first three years of life,
whereas the other two has been given in the whole period, but primarily
the latter part of the period. The table has counts and (row-percents).

medication and lagged episode and current episode is shown in Table 5.9. It is seen
that the distribution of the current symptoms is similar regardless of the medication
the previous week, i.e. the lagged medication seems not to be related to the symptoms.
Obviously one need to access whether the correspondence between medication and
episode is different for asthmatic children and non-asthmatic children. This can be
done by expanding Table 5.7 and 5.9 with the diagnosis. Table 5.10 and 5.11 corre-
spond to the expansion with diagnosis. It is seen from Table 5.10 that the asthmatic
group is more likely to have an episode regardless of the medication status. Further-
more, it is seen that a week with some kind of medication has a higher proportion of
symptoms-weeks. This may be caused by the close relationship between symptoms
and medication, i.e. that only children with symptoms receives medication.
Table 5.11 shows the lagged medication for the two types of asthma status and given
the symptoms status the previous week. It is seen that the non-asthmatic group has a
high probability of keeping the no-symptoms status, which is decreased if medication
has been given the previous week. The asthmatic group is seen to have a higher
proportion of symptom-weeks, however the response on medication is seen to be an
increase in the proportion of symptoms.
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Episode (Yij)
Type Medicationij−1 0 1 total

placebo
0 44381 4046 48427

(0.92) (0.08) (1.00)
1 764 491 1255

(0.61) (0.39) (1.00)

budesonide
0 44235 4025 48260

(0.92) (0.08) (1.00)
1 910 512 1422

(0.64) (0.36) (1.00)

spirocort
0 61859 4075 65934

(0.94) (0.06) (1.00)
1 5160 2061 7221

(0.71) (0.29) (1.00)

prednisolon
0 66994 6090 73084

(0.92) (0.08) (1.00)
1 25 46 71

(0.35) (0.65) (1.00)

Table 5.8: Cross-tabulation of one week lagged medication types and
episodes, i.e. a (0,1) combination for a given medication type and the
episodes imply that the drug have not been used the previous week and
that the child had an episode that week. The two first medication types
are only given in the first three years of life, whereas the other two has
been given in the whole period, but primarily the latter part of the period.
The table has counts and (row-percents).
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Episode (Yij)
Type Medicationij−1 Yij−1 0 1 total

placebo
0 0 42768 1929 44697

(0.96) (0.04) (1.00)
1 0 382 52 434

(0.88) (0.12) (1.00)
0 1 1577 2111 3688

(0.43) (0.57) (1.00)
1 1 381 439 820

(0.46) (0.54) (1.00)

budesonide
0 0 42657 1925 44582

(0.96) (0.04) (1.00)
1 0 493 56 549

(0.90) (0.10) (1.00)
0 1 1542 2094 3636

(0.42) (0.58) (1.00)
1 1 416 456 872

(0.48) (0.52) (1.00)

spirocort
0 0 59967 1984 61951

(0.97) (0.03) (1.00)
1 0 4218 751 4969

(0.85) (0.15) (1.00)
0 1 1772 2082 3854

(0.46) (0.54) (1.00)
1 1 934 1308 2242

(0.42) (0.58) (1.00)

prednisolon
0 0 64185 2735 66920

(0.96) (0.04) (1.00)
1 0 0 0 0

- - -
0 1 2681 3344 6025

(0.44) (0.56) (1.00)
1 1 25 46 71

(0.35) (0.65) (1.00)

Table 5.9: Cross-tabulation of one week lagged medication types and
lagged and current episodes, i.e. a (0,0,1) combination for a given medi-
cation type and the episodes imply that the drug have not been used the
previous week, that no symptoms was recorded the previous week and
that the child had an episode that week. The two first medication types
are only given in the first three years of life, whereas the other two has
been given in the whole period, but primarily the latter part of the period.
The table has counts and (row-percents).
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Episode (Yij)
Diagnosis Type Medication 0 1 total

N
o
n
-a

st
h
m

a

placebo
0 29942 1677 31619

(0.95) (0.05) (1.00)
1 281 444 725

(0.39) (0.61) (1.00)

budesonide
0 29894 1596 31490

(0.95) (0.05) (1.00)
1 329 525 854

(0.39) (0.61) (1.00)

spirocort
0 45861 2235 48096

(0.95) (0.05) (1.00)
1 1121 444 1565

(0.72) (0.28) (1.00)

prednisolon
0 46982 2660 49642

(0.95) (0.05) (1.00)
1 0 19 19

(0.00) (1.00) (1.00)

A
st

h
m

a

placebo
0 5375 1398 6773

(0.79) (0.21) (1.00)
1 64 211 275

(0.23) (0.77) (1.00)

budesonide
0 5335 1419 6754

(0.79) (0.21) (1.00)
1 104 190 294

(0.35) (0.65) (1.00)

spirocort
0 5180 907 6087

(0.85) (0.15) (1.00)
1 3614 1674 5288

(0.68) (0.32) (1.00)

prednisolon
0 8794 2534 11328

(0.78) (0.22) (1.00)
1 0 47 47

(0.00) (1.00) (1.00)

Table 5.10: Cross-tabulation of medication types and episodes for the
two types of asthma status, i.e. a (0,1) combination for a given medication
type and the episodes imply that the drug have not been used and that
the child had an episode that week. The two first medication types are
only given in the first three years of life, whereas the other two has been
given in the whole period, but primarily the latter part of the period. The
table has counts and (row-percents).
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Episode (Yij)
Diagnosis Type Medicationij−1 Yij−1 0 1 total

N
o
n
-a

st
h
m

a

placebo
0 0 (0.97) (0.03) (1.00)
1 0 (0.88) (0.12) (1.00)
0 1 (0.45) (0.55) (1.00)
1 1 (0.54) (0.46) (1.00)

budesonide
0 0 (0.97) (0.03) (1.00)
1 0 (0.91) (0.09) (1.00)
0 1 (0.46) (0.54) (1.00)
1 1 (0.50) (0.50) (1.00)

spirocort
0 0 (0.97) (0.03) (1.00)
1 0 (0.88) (0.12) (1.00)
0 1 (0.48) (0.52) (1.00)
1 1 (0.46) (0.54) (1.00)

prednisolon
0 0 (0.97) (0.03) (1.00)
1 0 (NaN) (NaN) (NaN)
0 1 (0.48) (0.52) (1.00)
1 1 (0.50) (0.50) (1.00)

A
st

h
m

a

placebo
0 0 (0.89) (0.11) (1.00)
1 0 (0.81) (0.19) (1.00)
0 1 (0.38) (0.62) (1.00)
1 1 (0.29) (0.71) (1.00)

budesonide
0 0 (0.89) (0.11) (1.00)
1 0 (0.87) (0.13) (1.00)
0 1 (0.37) (0.63) (1.00)
1 1 (0.38) (0.62) (1.00)

spirocort
0 0 (0.91) (0.09) (1.00)
1 0 (0.84) (0.16) (1.00)
0 1 (0.37) (0.63) (1.00)
1 1 (0.41) (0.59) (1.00)

prednisolon
0 0 (0.88) (0.12) (1.00)
1 0 (NaN) (NaN) (NaN)
0 1 (0.40) (0.60) (1.00)
1 1 (0.32) (0.68) (1.00)

Table 5.11: Cross-tabulation of one week lagged medication types and
lagged and current episodes for the two types of asthma status, i.e. a
(0,0,1) combination for a given medication type and the episodes imply
that the drug have not been used the previous week, that no symptoms
was recorded the previous week and that the child had an episode that
week. The two first medication types are only given in the first three
years of life, whereas the other two has been given in the whole period,
but primarily the latter part of the period. The table has only (row-
percents).
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5.5.1 Initial GEE estimation medication

As an initial analysis two models are considered: One for the nested trial with budes-
onide/placebo treatment and one for the prednisolon and spirocort treatment. GEE
is applied to account for the correlation along the individual time-series. The lorelo-
grams (section 5.3) indicates that an AR(1) correlation structure might be adequate
for describing the correlation.

Initial trial medication

The model for the probability of having an episode for the medication types in the
initial trial can based on the previous analysis be formulated as

η̂ij =β0k + β1k · log10(pdi) + β2k · ageij + β3 · age2
ij

+ β4 · cos
(

week · 2π
52

)
+ β5 · sin

(
week · 2π

52

)
+ β6k · budesonideij + β7k · placeboij

(5.20)

η = log
(

p

1− p

)
Corr(yij , yik) = ρ|weekj−weekk|

where k ∈ {Non-asthma,Asthma}. It is seen that each group has an individual
parameter for both placebo, budesonide and age. Furthermore, the groups start at
different levels to model the possible different baseline risks.

estimate san.se wald p
(Intercept) -3.9941 0.1353 871.3815 <0.0001
(log10(pd)) -0.1778 0.1004 3.1365 0.0766
diagnosisAsthma 0.6157 0.2400 6.5789 0.0103
age 1.5544 0.1837 71.5790 <0.0001
(age2 ) -0.5352 0.0617 75.2056 <0.0001
cosine 0.4839 0.0390 153.8472 <0.0001
sine 0.1409 0.0420 11.2328 0.0008
budesonid1 2.4343 0.1770 189.1358 <0.0001
placebo1 2.1706 0.1658 171.3045 <0.0001
diagnosisAsthma:age 0.6094 0.1069 32.5203 <0.0001
diagnosisAsthma:budesonid1 -0.6934 0.2374 8.5282 0.0035
diagnosisAsthma:placebo1 -0.0999 0.2598 0.1478 0.7006

Table 5.12: Summary for GEE-model with initial trial medication pre-
dictor

The summary for the model is shown in Table 5.12, which shows that the effect
of placebo is the same for non-asthmatic and asthmatic children. The model can
therefore be reduced to a model with one parameter for placebo treatment, which is
shown in Table 5.13.
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The updated summary shows that placebo treatment increases the risk of having an
episode in the same week, which is expected since the treatment is initiated in weeks
with symptoms. For the active treatment, budesonide, a difference is seen between the
two groups. The odds-ratio is twice as large for the non-asthmatic group compared
to the asthmatic group. However, both groups have an increased risk of symptoms
in week with active medication, which is explained the same way as for the placebo
treatment. The summary indicates that asthmatic children respond more positive on
the treatment compared to the non-asthmatic children, since the odds-ratio is lower.
The analysis of the initial medication highlights an important problem, namely that
using the medication in week j as predictor for the probability of symptoms in the
same week gives a non-causal model. Medication in week j is given due to symptoms
in week j or j − 1, since the trial medication is given in two weeks periods from
the third day with symptoms. This imply that lagged values of medication may be
more appropiate, which correspond to analyzing the effect of the treatment given the
previous week.

estimate san.se wald p OR
(Intercept) -3.9895 0.1343 882.0777 <0.0001 0.0185
(log10(pd)) -0.1787 0.1003 3.1746 0.0748 0.8364
diagnosisAsthma 0.5932 0.2319 6.5427 0.0105 1.8097
age 1.5569 0.1827 72.6383 <0.0001 4.7441
(age2 ) -0.5366 0.0613 76.6032 <0.0001 0.5847
cosine 0.4844 0.0390 153.9708 <0.0001 1.6232
sine 0.1410 0.0420 11.2964 0.0008 1.1514
budesonid1 2.4319 0.1755 192.1019 <0.0001 11.3807
placebo1 2.1468 0.1321 264.0398 <0.0001 8.5571
diagnosisAsthma:age 0.6167 0.1080 32.6193 <0.0001 1.8529
diagnosisAsthma:budesonid1 -0.6875 0.2344 8.5992 0.0034 0.5028

Table 5.13: Summary for GEE-model with initial trial medication pre-
dictor reduced to only one parameter for placebo treatment

Prednisolon and spirocort

As for the initial analysis of the medication, a model for the use of prednisolon and
spirocort can be formulated as

η̂ij =β0k + β1k · log10(pdi) + β2k · ageij + β3 · age2
ij

+ β4 · cos
(

week · 2π
52

)
+ β5 · sin

(
week · 2π

52

)
+ β8k · spirocortij + β9k · prednisolonij

(5.21)

Corr(yij , yik) = ρ|weekj−weekk|

where k ∈ {Non-asthma,Asthma}. However since Table 5.7 shows that the observed
probability of having symptoms in a week with prednisolon treatment is 1, the pa-
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rameters corresponding to prednisolon will be estimated to values → ∞, since this
correspond to µ = p→ 1. The estimates are odd, but are indeed reflecting the data.

estimate san.se wald p
(Intercept) -2.8670 0.1056 737.5000 <0.0001
(log10(pd)) -0.1089 0.0743 2.1520 0.1424
diagnosisAsthma 0.8471 0.1882 20.2500 <0.0001
age 0.0852 0.0928 0.8433 0.3585
(age2 ) -0.0705 0.0241 8.5740 0.0034
cosine 0.5199 0.0392 176.1000 <0.0001
sine 0.1411 0.0438 10.3900 0.0013
spirocort1 1.8110 0.1815 99.6100 <0.0001
prednisolon1 4.5·1015 1373·104 1.0·1017 <0.0001
diagnosisAsthma:age 0.2193 0.0760 8.3150 0.0039
diagnosisAsthma:spirocort1 -0.9343 0.2177 18.4300 <0.0001
diagnosisAsthma:prednisolon1 -55240·104 1964·104 791.0000 <0.0001

Table 5.14: Summary for GEE-model with spirocort and prednisolon as
part of the linear predictor

The summary for the model with both spirocort and prednisolon in shown in Ta-
ble 5.14, which shows that the estimates for prednisolon are large as expected. It
is furthermore seen that the odds-ratio for spirocort treatment for both groups are
above 1 as seen for placebo and budesonide treatment. Reducing the model by re-
moving the prednisolon treatment gives almost the same estimates for the remaining
parameters as seen from Table 5.15.

estimate san.se wald p OR
(Intercept) -2.8903 0.1054 751.9751 <0.0001 0.0556
(log10(pd)) -0.1116 0.0723 2.3795 0.1229 0.8944
diagnosisAsthma 0.8609 0.1848 21.6953 <0.0001 2.3653
age 0.1125 0.0916 1.5095 0.2192 1.1191
(age2 ) -0.0764 0.0241 10.1014 0.0015 0.9264
cosine 0.5204 0.0382 185.5444 <0.0001 1.6826
sine 0.1392 0.0426 10.6540 0.0011 1.1493
spirocort1 1.8664 0.1814 105.8586 <0.0001 6.4648
diagnosisAsthma:age 0.2132 0.0743 8.2271 0.0041 1.2376
diagnosisAsthma:spirocort1 -0.9649 0.2178 19.6312 <0.0001 0.3810

Table 5.15: Summary for GEE-model with spirocort as part of the linear
predictor

5.5.2 Lagged medication effects

From the models summarized in Table 5.13 and 5.15 it is seen that the effect of the
medication has an awkward interpretation. Using the medication status the previous
week could be a way of avoiding the close link between symptoms and medication.
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For the initial medication both budesonide and placebo lead to decrease in risk for
the non-asthmatic group, whereas the asthmatic group only benefits from treatment
with budesonide. However none of the estimates are significant, which imply that
receiving the initial treatment the previous week has no effect on the risk in the
current week. For spirocort treatment the risk is increased for the asthmatic and
non-asthmatic groups. It is furthermore seen that the difference between the groups
is insignificant, which shows that the medication gives no additional description of
the risk of an episode.

estimate san.se wald p OR
(Intercept) -3.6624 0.1431 655.3924 <0.0001 0.0257
(log10(pd)) -0.1830 0.1038 3.1086 0.0779 0.8327
diagnosisAsthma 0.4898 0.2386 4.2120 0.0401 1.6320
age 1.8532 0.1901 95.0393 <0.0001 6.3805
(age2 ) -0.6740 0.0657 105.1928 <0.0001 0.5097
cosine 0.5852 0.0437 179.3367 <0.0001 1.7953
sine 0.2016 0.0476 17.9502 <0.0001 1.2234
budelag1 -0.5993 0.5010 1.4308 0.2316 0.5492
placebolag1 -0.6142 0.4801 1.6362 0.2008 0.5411
diagnosisAsthma:age 0.5798 0.1195 23.5430 <0.0001 1.7856
diagnosisAsthma:budelag1 0.4713 0.5945 0.6285 0.4279 1.6021
diagnosisAsthma:placebolag1 0.9667 0.5198 3.4595 0.0629 2.6294

Table 5.16: Summary for GEE-model with lagged values of budesonide
and placebo as part of the linear predictor

estimate san.se wald p OR
(Intercept) -2.9171 0.1124 673.9138 <0.0001 0.0541
(log10(pd)) -0.1324 0.0832 2.5318 0.1116 0.8759
diagnosisAsthma 0.8459 0.1998 17.9263 <0.0001 2.3302
age 0.2548 0.0918 7.7091 0.0055 1.2902
(age2 ) -0.1078 0.0243 19.6598 <0.0001 0.8978
cosine 0.5140 0.0376 186.8388 <0.0001 1.6719
sine 0.1502 0.0398 14.2076 0.0002 1.1621
spirolag1 0.7632 0.2759 7.6539 0.0057 2.1451
diagnosisAsthma:age 0.3249 0.0768 17.9071 <0.0001 1.3838
diagnosisAsthma:spirolag1 -0.5247 0.3044 2.9717 0.0847 0.5918

Table 5.17: Summary for GEE-model with lagged spirocort as part of
the linear predictor
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5.6 Risk-factors for weekly episodes

In the following risk-factors recorded at and prior to the birth of the COPSAC children
and risk-factors recorded at the age of 3 years are analyzed with the basis in the model
formulated in (5.18). The model is changed to having a common seasonal part for
the two groups: Asthma and non-asthma. In the analysis of the risk-factors and
confounders the model with season, age and diagnosis correction is used as the basis,
i.e. the model is expanded with the risk-factors. This is done in order to analyze the
risk-factors in a framework where background variations have been eliminated.
A model with a common season part and a part related to age, which differ from
asthmatic to non-asthmatic children, and the congenital PD15 PtcO2 as explanatory
variables was previous seen to be an adequate description of the background variation.
This model is therefore used as the basis for the following analysis of risk-factors and
confounders and is formulated as

ηij =µij + β0k + β1k · ageij + β2 · age2
ij

+ β3 · cos(weekij · 2π/52) + β4 · sin(weekij · 2π/52)
+ β5 · log10(pdi) + risk-factors

(5.22)

Corr(yij , yij′) = ρ|weekij−weekij′ | η = log
(

p

1− p

)
where k ∈ {non-asthma, asthma}. The correlation between observations for the same
individual is autoregressive of order 1, which is seen to be a reasonable structure from
the lorelograms in section 5.3. For a more elaborate description of the missing risk-
factor see section 4.9.
As an initial model, risk-factors and their interaction with the diagnosis to model
differences in the two groups can be considered. This gives a risk-factor part of the
model, which is given as

risk-factors =β6k · fillagrini + β7k · smoking3rd,i + β8k · smokinghome,i

+ β9k · smokingdaycare,i + β10k · genderi
+ β11k · father asthmai + β12k · pets3rd,i + β13k · alcohol3rd,i

+ β14k · smoking3rd,i + β15k · petshome,i

(5.23)

where all variables are indicator variable, i.e. indicating whether the child is boy or
girl, whether the mother has smoked in the third trimester or not, etc. The variable
alcohol has four levels, 0, 1, 2 and ≥ 3 corresponding to the alcohol intake in the third
trimester of the pregnancy in units. The variable smoking in the home is divided into
four levels: 0, ]0, 100], ]100, 200] and > 200 days per year.
The summary of the estimated model is shown in Table 5.18, which shows that
all interactions between diagnosis and risk-factors, besides alcohol, are insignificant.
However the significant interaction seems rather odd, since an alcohol intake of two
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estimate san.se wald p OR
(Intercept) -2.1696 0.3143 47.6528 <0.0001 0.1142
cosine 0.5057 0.0387 170.6358 <0.0001 1.6582
sine 0.1634 0.0422 15.0078 0.0001 1.1775
diagnAsthma -0.0382 0.6578 0.0034 0.9537 0.9625
age 0.3210 0.1030 9.7176 0.0018 1.3785
(age2 ) -0.1229 0.0271 20.5683 <0.0001 0.8843
log10(pd) -0.1493 0.1159 1.6588 0.1978 0.8613
SEXMale -0.1500 0.1586 0.8950 0.3441 0.8607
smoking3rdYes -0.1354 0.2843 0.2268 0.6339 0.8734
fatherashtmaYes 0.3208 0.2037 2.4801 0.1153 1.3782
pets3rd -0.2493 0.2795 0.7952 0.3725 0.7794
alcohol1 0.0079 0.2522 0.0010 0.9749 1.0080
alcohol2 -0.0422 0.4638 0.0083 0.9275 0.9587
alcohol3 -0.6240 1.0745 0.3373 0.5614 0.5358
fillagrin1 0.4233 0.2871 2.1747 0.1403 1.5271
smokinghome1<100 -0.7348 0.3000 5.9992 0.0143 0.4796
smokinghome1[100,200] -0.6807 0.5041 1.8236 0.1769 0.5063
smokinghome1>200 -0.6100 0.3913 2.4305 0.1190 0.5433
smokingdaycare1 -0.1662 0.1776 0.8752 0.3495 0.8469
petshome 0.0005 0.0009 0.2771 0.5986 1.0005
diagnAsthma:age 0.3653 0.0837 19.0422 <0.0001 1.4409
diagnAsthma:log10(pd) 0.0249 0.2115 0.0139 0.9061 1.0253
diagnAsthma:SEXMale 0.4704 0.3043 2.3892 0.1222 1.6006
diagnAsthma:smoking3rdYes 0.2737 0.5314 0.2653 0.6065 1.3148
diagnAsthma:fatherashtmaYes -0.1096 0.3097 0.1253 0.7233 0.8962
diagnAsthma:pets3rd 0.4846 0.6408 0.5719 0.4495 1.6235
diagnAsthma:alcohol1 -0.3241 0.4241 0.5839 0.4448 0.7232
diagnAsthma:alcohol2 2.1413 0.5046 18.0097 <0.0001 8.5103
diagnAsthma:alcohol3 0.9375 1.3057 0.5156 0.4727 2.5537
diagnAsthma:fillagrin1 0.1069 0.5082 0.0442 0.8334 1.1128
diagnAsthma:smokinghome1<100 0.4930 0.5451 0.8177 0.3658 1.6371
diagnAsthma:smokinghome1[100,200] 1.1466 0.7505 2.3342 0.1266 3.1475
diagnAsthma:smokinghome1>200 -0.7807 0.7378 1.1197 0.2900 0.4581
diagnAsthma:smokingdaycare1 0.2131 0.3125 0.4653 0.4952 1.2376
diagnAsthma:petshome -0.0010 0.0021 0.2050 0.6507 0.9990

Table 5.18: Summary for initial risk-factor analysis (5.23)

units in the third trimester increases the risk of getting an episode more than for 3
or more units. Asthmatic children with a mother drinking two units per week have
an increased risk: ÔR = 8.51 for comparison with non-asthmatic children having
mothers with had no alcohol intake in the third trimester. The model can however
be reduced, such that only the interaction between diagnosis and alcohol is kept of
the interactions between diagnosis and risk-factors.
Estimating the updated model gives the summary in Table 5.19, which shows that
an alcohol intake of two units still increase the odds significantly. It is furthermore
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estimate san.se wald p OR
(Intercept) -2.4918 0.2950 71.3533 <0.0001 0.0828
diagnAsthma 0.7134 0.2616 7.4368 0.0064 2.0409
age 0.3283 0.1032 10.1182 0.0015 1.3887
(age2 ) -0.1246 0.0272 21.0658 <0.0001 0.8828
cosine 0.5046 0.0391 166.2368 <0.0001 1.6563
sine 0.1635 0.0422 15.0263 0.0001 1.1776
log10(pd) -0.1533 0.0991 2.3950 0.1217 0.8579
SEXMale 0.0067 0.1343 0.0025 0.9605 1.0067
smoking3rdYes 0.1112 0.2164 0.2640 0.6074 1.1176
fatherashtmaYes 0.1620 0.1645 0.9694 0.3248 1.1758
pets3rd -0.1091 0.1393 0.6136 0.4334 0.8967
alcohol1 -0.0094 0.2522 0.0014 0.9701 0.9906
alcohol2 -0.0478 0.4356 0.0120 0.9127 0.9534
alcohol3 -0.6167 1.0176 0.3673 0.5445 0.5397
fillagrin1 0.4027 0.2372 2.8826 0.0895 1.4959
smokinghome1<100 -0.4668 0.2575 3.2857 0.0699 0.6270
smokinghome1[100,200] -0.2491 0.4054 0.3775 0.5389 0.7795
smokinghome1>200 -0.5253 0.3747 1.9653 0.1610 0.5914
smokingdaycare1 -0.1391 0.1496 0.8637 0.3527 0.8702
diagnAsthma:age 0.3621 0.0838 18.6680 <0.0001 1.4363
diagnAsthma:alcohol1 -0.1085 0.3494 0.0964 0.7562 0.8972
diagnAsthma:alcohol2 1.3496 0.5344 6.3771 0.0116 3.8558
diagnAsthma:alcohol3 -0.2686 1.0487 0.0656 0.7978 0.7644

Table 5.19: Summary for reduced model for risk-factor analysis

seen that the estimates for ≥ 3 units are very uncertain, which gives the χ2-statistic,

χ2 =
(βp1 − βp2)2

σ2(βp1 − βp2)
=

(βp1 − βp2)2

σ2
βp1

+ σ2
βp2
− 2 · σp1,p2

(5.24)

for comparing the ≥ 3 unit group with the 2 unit group-estimate. The statistics have
the values 2.07 and 0.26 for the asthmatic and non-asthmatic group, respectively.
The statistics should be compared to a χ2-distribution with one degree of freedom,
which has the critical 10 % quantile 2.71. It is therefore possible to join the two levels
in a common level ≥ 2.
It is furthermore seen from Table 5.19 that the risk-factors: Pets in third trimester,
smoking in the third trimester, smoking in the day-care and gender, can be removed
from the model, since the estimates are insignificant. The resulting model for the
risk-factors is

risk-factors =β6 · fillagrini + β8k · smokinghome,i

+ β13k · alcohol3rd,i

(5.25)

The summary for the reduced model (5.25) is shown in Table 5.20, which indicates
that drinking 2 or more units of alcohol per week do increase the probability of an
episode for the asthmatic children, however not significantly. The model can therefore
be reduced, to a model without the diagnosis-specific effect of alcohol.
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estimate san.se wald p OR
(Intercept) -2.5217 0.2793 81.4940 <0.0001 0.0803
diagnAsthma 0.7491 0.2500 8.9778 0.0027 2.1151
age 0.3262 0.1029 10.0483 0.0015 1.3856
(age2 ) -0.1241 0.0272 20.8205 <0.0001 0.8833
cosine 0.5027 0.0391 165.6231 <0.0001 1.6532
sine 0.1619 0.0419 14.8993 0.0001 1.1757
log10(pd) -0.1523 0.0956 2.5377 0.1112 0.8587
alcohol1 0.0266 0.2606 0.0104 0.9187 1.0270
alcohol>2 -0.2361 0.4159 0.3222 0.5703 0.7897
fillagrin1 0.3514 0.2463 2.0359 0.1536 1.4211
smokinghome1<100 -0.4693 0.2384 3.8761 0.0490 0.6254
smokinghome1[100,200] -0.3077 0.3865 0.6337 0.4260 0.7352
smokinghome1>200 -0.5124 0.3379 2.2988 0.1295 0.5991
diagnAsthma:age 0.3601 0.0831 18.7559 <0.0001 1.4335
diagnAsthma:alcohol1 -0.0894 0.3464 0.0666 0.7964 0.9145
diagnAsthma:alcohol>2 0.5733 0.8113 0.4993 0.4798 1.7741

Table 5.20: Summary for reduced model for risk-factor analysis after
collapsing the two highest levels in the variable alcohol intake in the third
trimester

estimate san.se wald p OR
(Intercept) -2.5313 0.2771 83.4575 <0.0001 0.0796
diagnAsthma 0.7642 0.2384 10.2772 0.0013 2.1473
age 0.3258 0.1027 10.0523 0.0015 1.3851
(age2 ) -0.1240 0.0272 20.7820 <0.0001 0.8834
cosine 0.5025 0.0390 165.9336 <0.0001 1.6528
sine 0.1619 0.0419 14.9176 0.0001 1.1757
log10(pd) -0.1514 0.0949 2.5442 0.1107 0.8595
alcohol1 -0.0032 0.1885 0.0003 0.9863 0.9968
alcohol>2 0.0804 0.4219 0.0363 0.8488 1.0838
fillagrin1 0.3622 0.2447 2.1918 0.1388 1.4365
smokinghome1<100 -0.4740 0.2399 3.9030 0.0482 0.6225
smokinghome1[100,200] -0.3180 0.3764 0.7137 0.3982 0.7276
smokinghome1>200 -0.4489 0.3229 1.9329 0.1644 0.6383
diagnAsthma:age 0.3599 0.0831 18.7352 <0.0001 1.4332

Table 5.21: Summary for reduced model for risk-factor analysis after
collapsing the two highest levels in the variable alcohol intake in the third
trimester and removing the corresponding interaction with diagnosis as
well as some of the other risk-factors

After removing the diagnosis-specific effect of alcohol, the summary in Table 5.21
shows that essentially none of the risk-factors besides diagnosis influence the risk of
an episode. The smoking in the home variable is seen not to be significant at more
than on a 5 % level for one of the categories. The analysis shows that the probability
of an episode is determined by the season, diagnosis and the different age-progress
for each of the corresponding groups.
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Finally the specific resistance at the age of 3 years is considered, since it has around
40 % missing values and therefore would lead to a seriously affected dataset in the
previous analyses. The basis for the estimation is the model in (5.22), where the risk-
factor now is the interaction between diagnosis and sRAW. sRAW was previously
seen to be sufficiently linear in relation to the probability of having asthma, see
Figure 4.14, which results in that the variable is treated as such in the following
analysis.
The model is estimated and the summary shown in Table 5.22. From the table it
is seen that the relative increase in the specific resistance at the age of 3 years does
not have significant influence on the risk of an episode. It is however seen that the
asthmatic group has a negative estimate (although insignificant), which shows that
the tendency for this group is a reduction in the risk if the relative increase is high.
This imply that the asthmatic children which benefit the most of the bronchodilator
treatment have a higher risk of an episode compared to other asthmatic children.
This is not surprising, since a large relative decrease in the specific airway resistance is
seen for children with a narrow airway, who respond well on the airway-relaxationing
treatment. These children are seen to be more likely of having asthma [27].

estimate san.se wald p OR
(Intercept) -2.7819 0.1789 241.6729 <0.0001 0.0619
diagnAsthma 0.6703 0.3492 3.6842 0.0549 1.9548
age 0.3452 0.1239 7.7702 0.0053 1.4123
(age2 ) -0.1308 0.0334 15.3461 <0.0001 0.8774
cosine 0.5050 0.0429 138.3702 <0.0001 1.6570
sine 0.1284 0.0499 6.6167 0.0101 1.1370
sraw 0.0067 0.7082 0.0000 0.9924 1.0067
diagnAsthma:age 0.4116 0.1065 14.9272 0.0001 1.5093
diagnAsthma:sraw -0.3306 1.0380 0.1015 0.7501 0.7185

Table 5.22: Summary for reduced model for risk-factor analysis after
collapsing the two highest levels in the variable alcohol intake in the third
trimester and removing the corresponding interaction with diagnosis as
well as some of the other risk-factors and including the sraw measurement
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5.7 Transition model

Another approach to analyze the longitudinal evolvement of the symptoms is to
regress on historic observations of the symptoms. This leads to a model, which
describes the transition from a week to the following week. Diggle et al. [15] formulates
the q’th order transition model as

logit(P (Yij |Hij)) = xijβ +
q∑
r=1

αryi,(j−r) (5.26)

Hij : Yi,(j−1) = yi,(j−1), . . . , Yi,(j−q) = yi,(j−q)

This imply that the interpretation of the parameters is conditional on the history.
In the following the analysis with q = 1 is considered to keep things simple, this
corresponds to assuming the system to be Markovian of first order. Diggle et al. p.
131 [15] describes the model by the transition matrix

yi,j−1

yi,(j)

0 1
0 1

1+exp(xijβ)
1

1+exp(xijβ+α1)

1 exp(xijβ)
1+exp(xijβ)

exp(xijβ+α1)
1+exp(xijβ+α1)

(5.27)

From the analysis of the lorelograms it was seen that the correlation pattern was
different for the three groups, which should be incorporated in the model (however
here only the diagnosis is used, i.e. asthma/non-asthma). The probability of staying
in the no symptoms state was seen to much higher for the non-asthmatic group, since
the children in this group had no symptoms most of the weeks.

Non-asthma Asthma
Previous week

No Yes No Yes

Current No 97 48 88 40
Yes 3 52 12 60

Table 5.23: Contingency tables corresponding to the two groups in
percent (each column sums to 100 %). Columns correspond to yi,(j−1)

(lagged value/previous state) and rows to yi,j (observed/current state)

In Table 5.23 the evolvement for the both groups is shown, it is seen that the non-
asthmatic is more likely to stay in the no symptoms state given that they had no
symptoms in the previous week (P (yij = 0|yi,(j−1) = 0)) compared to the asthmatic
group. The probability of staying in the symptom state, P (yij = 1|yi,(j−1) = 1), is
seen to be more similar for the two groups. It is seen that P (yij = 1|yi,(j−1) = 1) >
52 %, which shows that having symptoms in week j− 1 in over 52 % of the cases will
lead to an episode in week j.
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5.7.1 Modeling

With the consideration about the group dependent transition, the model in (5.10) is
expanded with the interaction between group and the state the week before, which
gives the new model

η̂ij =β0k + β1k · ageij + β2k · age2
ij

+ β3k · cos
(

week · 2π
52

)
+ β4k · sin

(
week · 2π

52

)
+ α1k · yi,(j−1)

(5.28)

η = log
(

p

1− p

)
This essentially reduces the data-set by 1 observation per period the diary has been
kept per child, which is 394 observations on 357 individuals from a dataset with
61036 observations. Furthermore the probability to be modelled is changed from
P (Yij = 1) to P (Yij = 1|Yi,(j−1) = yi,(j−1)), i.e. the interpretation will depend on
the value of Yi,(j−1). The model is estimated by standard generalized linear model
techniques, since the correlation is explained by the regression on old values. The
autocorrelation function for the residuals is shown in Figure 5.8, which clear shows
that no correlation is present.
The summary for the estimation of the model in (5.28) is shown in Table 5.24, which
shows that the seasonal part can be reduced to a common structure for both groups.
Testing for the same seasonal part for both groups gives an increase in the deviance of
6.22 on 6 degrees of freedom, which shows that the reduction leads to an insignificant
increase in the deviance.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.3656 0.0705 -47.7598 <0.0001
diagnosisAsthma 0.8662 0.1169 7.4115 <0.0001
age 0.0384 0.0682 0.5627 0.5736
(age2 ) -0.0466 0.0139 -3.3475 0.0008
cosine 0.4047 0.0340 11.8918 <0.0001
sine 0.1111 0.0329 3.3733 0.0007
lag11 3.5130 0.0488 71.9590 <0.0001
diagnosisAsthma:age 0.4455 0.1059 4.2085 <0.0001
diagnosisAsthma:(age2 ) -0.0422 0.0208 -2.0299 0.0424
diagnosisAsthma:cosine -0.0968 0.0503 -1.9262 0.0541
diagnosisAsthma:sine -0.0805 0.0492 -1.6359 0.1019
diagnosisAsthma:lag11 -1.1503 0.0719 -15.9900 <0.0001

Table 5.24: Summary transition model with group dependent transition

Updating the model with a mutual seasonal part gives the summary in Table 5.25,
which shows that the amplitude for the seasonal part, A · cos(t · π/365− θ), is 0.37
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Figure 5.8: Autocorrelation for residuals in transition model. The au-
tocorrelation is estimated by considering the correlation between obser-
vations taken on the same individual.

and the phaseshift is -0.2 or -11.85 days, which is seen to be 7 days before compared
to the marginal unconditional model, see equation (5.4.1).

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.3580 0.0703 -47.7392 <0.0001
diagnosisAsthma 0.8474 0.1167 7.2600 <0.0001
age 0.0390 0.0682 0.5716 0.5676
(age2 ) -0.0466 0.0139 -3.3455 0.0008
lag11 3.5197 0.0487 72.2236 <0.0001
cosine 0.3599 0.0250 14.3955 <0.0001
sine 0.0745 0.0245 3.0447 0.0023
diagnosisAsthma:age 0.4502 0.1059 4.2506 <0.0001
diagnosisAsthma:(age2 ) -0.0431 0.0208 -2.0724 0.0382
diagnosisAsthma:lag11 -1.1615 0.0718 -16.1693 <0.0001

Table 5.25: Summary transition model with group dependent transition
with mutual seasonal part

From the summary it is furthermore seen that the odds-ratios for the lagged variables
(the ratio between the odds coming form a week with symptoms and coming form
a week without symptoms) are largest for the non-asthmatic group and smallest
for the asthmatic group. The odds-ratios are 33.77 and 10.57 for respectively the
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non-asthmatic and asthmatic group. This coincide well with Table 5.23, where the
corresponding odds-ratios can be estimated to

ORnon-asthma =
P (Yij = 1|Yi,(j−1) = 1)/P (Yij = 0|Yi,(j−1) = 1)
P (Yij = 1|Yi,(j−1) = 0)/P (Yij = 0|Yi,(j−1) = 0)

=
0.52/0.48
0.03/0.97

= 35.03

ORasthma =
0.60/0.40
0.12/0.88

= 11.00

The large estimated odds-ratio for the non-asthmatic group is caused by the low
probability of staying in the high symptom state and the high probability of staying
in the non-symptom state. For both groups it is seen that a week with symptoms is
much more likely after a week with symptoms compared to a week without. It is seen
that the empirical odds-ratios are close to identical when comparing to the model
estimates. The analysis shows that the episodes tend to influence adjacent weeks,
i.e. either lasting more than a week or goes across the week-shift. In Table 5.26
the estimated transition probabilities are shown, it is seen that they are close to the
results found in Table 5.23.

Non-asthma Asthma
Previous week

No Yes No Yes

Current No 0.97 0.53 0.86 0.38
Yes 0.03 0.47 0.14 0.62

Table 5.26: Predicted transition probabilities at the age of 3 years. The
probabilities correspond to the time of year, where the risk is average
(cosine and sine cancels out), i.e. around April or October

The longitudinal development is seen to be similar to the results found in the diagnosis-
analysis: The non-asthmatic group starts lowest, has a negative slope and weak cur-
vature and the asthmatic group is seen to have the highest onset a positive slope and
a negative curvature.

5.7.2 Expansion

In the analysis above only the lagged response of order 1 was used, which corresponds
to assuming that the first order Markov condition is fulfilled. This imply that all
historic information relevant for the current state is contained in the previous. The
lorelograms showed that correlations might be present beyond week to week.
One method to investigate the level of the transition model is to consider for example
the probabilities P (Yij |Yi,(j−1) = yi,(j−1), Yi,(j−2) = yi,(j−2)) and P (Yij |Yi,(j−1) =
yi,(j−1), Yi,(j−2) = yi,(j−2), Yi,(j−3) = yi,(j−3)), which correspond to a second and
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third order model, respectively. For the second order model four probabilities are to
be estimated, namely

P (Yij = 1|Yi,(j−1) = 0, Yi,(j−2) = 0)
P (Yij = 1|Yi,(j−1) = 1, Yi,(j−2) = 0)
P (Yij = 1|Yi,(j−1) = 0, Yi,(j−2) = 1)
P (Yij = 1|Yi,(j−1) = 1, Yi,(j−2) = 1)

The model can be specified by including an interaction term between yi,(j−1) and
yi,(j−2). For the third order model the number of probabilities to be modelled is 8 (2
times the number for q = 2). The model is seen to be a modification of the model in
(5.26), which is seen not to allow the interaction.
In Table 5.27 transition probabilities based on second order information for the three
groups are shown. It is seen that the two combinations with no symptoms in week
j − 1 gives nearly the same transition probabilities regardless of the symptoms in
week j − 2.

Asthma Current Week j − 2 No Yes
status state j − 1 No Yes No Yes

Non-asthma No 97 45 91 50
Yes 3 55 9 50

Asthma No 89 36 80 42
Yes 11 64 20 58

Table 5.27: Transition probabilities for second order information in %,
i.e. a column within a box sums to 100 %.

Table 5.27 indicates that if week j − 1 is a no symptom week then the odds increase
when j − 2 is changed from no symptoms to symptoms. If the state in week j − 1
is the symptom state then the odds decreases for a change from no symptoms to
symptoms in week j − 2. This shows that an interaction between the state in week
j − 1 and j − 2 is likely to be present.
An model corresponding to the second order transition probabilities can be formulated
as

η̂ij =β0k + β1k · ageij + β2k · age2
ij

+ β3k · cos
(

week · 2π
52

)
+ β4k · sin

(
week · 2π

52

)
+ α1k · yi,(j−1) + α2k · yi,(j−2)

+ α3k · (yi,(j−1) × yi,(j−2))

(5.29)

In Table 5.28 the summary for the model is shown. It is seen that all estimates
corresponding to yi,(j−2) are significant, which indicates that the effect of the 2 weeks
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.4039 0.0711 -47.8512 <0.0001
diagnosisAsthma 0.8689 0.1179 7.3716 <0.0001
age 0.0093 0.0687 0.1349 0.8927
(age2 ) -0.0394 0.0140 -2.8126 0.0049
lag11 3.7066 0.0644 57.5271 <0.0001
lag21 1.2054 0.1022 11.7887 <0.0001
cosine 0.3495 0.0251 13.9100 <0.0001
sine 0.0613 0.0245 2.4962 0.0126
lag11:lag21 -1.4294 0.1291 -11.0764 <0.0001
diagnosisAsthma:age 0.4247 0.1069 3.9744 <0.0001
diagnosisAsthma:(age2 ) -0.0412 0.0210 -1.9686 0.0490
diagnosisAsthma:lag11 -1.0732 0.0994 -10.7963 <0.0001
diagnosisAsthma:lag21 -0.6036 0.1350 -4.4720 <0.0001
diagnosisAsthma:lag11:lag21 0.5278 0.1776 2.9711 0.0030

Table 5.28: Summary transition model with group dependent transition
and second order information

lagged values is present. The estimates show that the asthmatic group is significant
different from the non-asthmatic group.
Odds-ratios for yi,(j−1) = 0, yi,(j−2) = 1 against yi,(j−1) = 0, yi,(j−2) = 0, yi,(j−1) =
1, yi,(j−2) = 1 against yi,(j−1) = 1, yi,(j−2) = 0 and yi,(j−1) = 1, yi,(j−2) = 1 against
yi,(j−1) = 0, yi,(j−2) = 0 can be estimated to evaluate the effect of 2 weeks lagged
values against 1 week lagged values for each of the three groups. This corresponds
to eα2k , eα3k+α2k and eα3k+α2k+α1k . The odds-ratios are summarized in Table 5.29,
which shows the three comparisons

Odds-ratio
Comparison Parameters Non-asthma Asthma
Odds(yi,(j−1)=0,yi,(j−2)=1)

Odds(yi,(j−1)=0,yi,(j−2)=0) α2 3.34 1.83
Odds(yi,(j−1)=1,yi,(j−2)=1)

Odds(yi,(j−1)=1,yi,(j−2)=0) α3 + α2 0.80 0.74
Odds(yi,(j−1)=1,yi,(j−2)=1)

Odds(yi,(j−1)=0,yi,(j−2)=0) α3 + α2 + α1 32.54 10.31

Table 5.29: Odds-ratios for different comparisons for 2 level transition
model

It is seen that the effect of having an episode two weeks ago and no episode in the
previous week increases the odds with between 234 % and 83 % compared to 3971 %
and 1292 % for having symptoms in the previous week but not to week ago. The
odds of an episode decreases by 20 % and 26 % when having an episode in both
the previous week and the week before that compared to only having symptoms in
the previous week. It is seen that having had symptoms in two consecutive weeks
decreases the probability of a new episode compared to having had only 1 consecutive
week. Finally it is seen that the effect of two consecutive week with symptoms is a
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little lower than just having symptoms in the previous week, however much higher
compared to just having symptoms two weeks ago.

Asthma Current Week j − 2 No Yes
status state j − 1 No Yes No Yes

Non-asthma No 98 51 93 56
Yes 2 49 7 44

Asthma No 88 34 80 41
Yes 12 66 20 59

Table 5.30: Estimated transition probabilities from transition model for
second order information in %, i.e. a column within a box sums to 100 %.

The analysis shows that for the asthmatic and the non-asthmatic group the odds of
an episode after two consecutive weeks with symptoms is smaller compared to having
only one week with symptoms. This could be explained by short episodes, hence if
the episode last no more than 7-14 days, the risk will decrease the longer the current
episode has lasted. It is however seen that having had an episode two week ago
increases the risk of an episode by 234 % and 83 % for having had symptoms in week
j − 2 but not in week j − 1 and 3154 % and 931 % for having had symptoms in both
weeks for the non-asthmatic group and the asthmatic group, respectively.

5.8 Discussion

In this chapter weekly episodes were considered in order to analyze a faster dynamic
than yearly aggregated symptoms. It was seen that the symptoms typically lasted
1-2 weeks, which could be seen from the lorelograms having an elbow at k = 2 and
from the modelling of the transition probabilities. The transition probabilities were
seen to indicate that a new episode was less likely after two weeks with symptoms
compared to only one week.
The risk of an episode was seen to be related to the longitudinal pattern as seen for
the yearly aggregated symptoms, i.e. the non-asthmatic children had a decreasing
risk as they got older and the asthmatic children started at a higher level and had an
increasing risk until the age of 3 years. It was furthermore seen that the risk of an
episode was 2-3 times higher in the winter compared to the summer. The seasonal
risk was seen to be the same for the asthmatic and non-asthmatic children, which
indicated that the seasonal part was an indicator of symptoms not related to asthma.
The analysis showed that the non-asthmatic children were likely to be in the non-
symptom state, which gave them high odds-ratios of staying in the same state. The
odds-ratios of an episode in the following week were 33 and 11 for a week with
symptoms against a week with non symptoms for the non-asthmatic and asthmatic
groups, respectively. The high odds-ratio for the non-asthmatic group was caused
by the high probability of staying in the no-symptom state, whereas the proba-
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bilities of an new episode given the previous week was with symptoms are more
equal. The asthmatic children were more likely of getting an episode compared to
the non-asthmatic children, the odds-ratios were (0.12/0.88)/(0.03/0.97) = 4.41 and
(0.60/0.40)/(0.52/0.48) = 1.38 for no symptoms and symptoms the previous week,
respectively. This showed that the main difference was seen for the weeks preceded
by no symptoms.
The analysis of the risk-factors and medication showed that none of the considered
risk-factors increased the risk of an episode after correction for age, diagnosis and
season. Medication was seen to be difficult to model due to the tight connection
between symptoms and medication and lagged values were needed in order to obtain
a causal system.
The analysis of the weekly episodes did not contribute by additional information
on the risk of symptoms. It was seen that the analysis confirmed the results found
previous and gave a model combining the model-elements from Chapter 2, 3 and 4.



Chapter 6

Conclusion

The work in this thesis has shown that yearly symptom rates can be subdivided
into three sub-categories. Latent class regression was applied to year aggregated
symptoms rates in order to find unique patterns in the longitudinal development.
The identified groups are characterized by having different longitudinal development,
which separate the groups well as early as the age of 2 years. Using different as-
sumptions for the response, i.e. gaussian rates and poisson counts, yield some minor
differences, which mainly leads to slight changes in grouping. However, the identified
groups for the two methods were seen to have almost the same longitudinal develop-
ment. The grouping was based on symptoms rates in the first five years of life and
was estimated prior to the knowledge of the asthma diagnosis at the age of 5.
Prior to the analysis of subgroups mixed effects models were considered to analyze
the heterogeneity of the longitudinal developments. The analysis by means of mixed
effects model revealed a highly significant heterogeneity in the longitudinal patterns.
The analysis of the mixed effects models was carried out for two different response
scales, but led to the same conclusion, namely that the children differed mainly on
their starting level and the first order parameter for age. This implied that 3-4
different patterns were seen according to the age-related trend.
The predictions of individual parameters from the mixed effects models were seen to
differ for the three groups found later in the latent class regression, both in starting
level and development. The groups were seen to start at different levels and the group
with most symptoms had increasing initial symptom rate compared to a decreasing
or constant symptom rate for the other groups. The heterogeneity between individ-
uals was seen to insignificant within the three groups, which implied that the initial
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heterogeneity in the mixed effects model was caused by the differences between the
three groups.
The identified groups were compared to the asthma diagnosis at the age of 5 years,
which showed that the agreement was good. The two groups with the lowest symp-
toms rates were classified as non-asthmatic and the last as asthmatic, which gave the
possibility to estimate sensitivity, specificity and overall agreements. Sensitivity was
higher for the gaussian model, whereas the specificity was marginal better for the
poisson model. It was seen that using the first 3 years of observations gave convinc-
ing results, indicating that the episodes from the first years of the childrens life were
most important in predicting asthma.
In further analysis of the symptom patterns and the ability to predict the diagnosis,
one could analyze whether the patterns could be identified at a lower age. The
patterns leading to the three groups were based on the symptoms of the first five
years of life and since the diagnosis is based on the symptoms in the fifth year of life,
this implied that the grouping was partially based on the same information as the
diagnoses were determined on. The parameters used in an early identification in this
thesis is estimated from all five years, i.e. a classification at the age of three years of
life was obtained by calculation a likelihood on the first three years of life for a model
based on all five years of life. However, the pattern recognition was initial proposed
in order to find subgroups of children, i.e. finding unique longitudinal patterns among
the children and led to the three different groups. Prediction of the asthma-diagnosis
was not the original aim of the analysis of symptom patterns, however the analysis
showed that the patterns found were in accordance with the diagnosis. Since the
symptom-patterns are quite distinct at the age of 3 years, predictions based only on
the first three years of life may be possible, which will lead to a prediction model
separated from the information on which the diagnosis was determined.
Analysis of the mixed effects models showed that the heterogeneity could be described
by the diagnosis. The asthmatic children had a significant higher starting level com-
pared to the non-asthmatic children and had a significant higher initial slope as well.
Heterogeneity was seen to be related to the differences between asthmatic and non-
asthmatic children or to differences between the groups found in latent class regression
and not to heterogeneity between children with the same diagnosis or from the same
group.
Comparison of the longitudinal development for the asthmatic group showed that it
was similar to the pattern seen for the high symptom group and the non-asthmatic
group was a mixture of the low and middle groups. It was seen that in describing
the symptoms a three cluster model was optimal for the gaussian model, whereas the
poisson model had five clusters as optimum. The five cluster model gave patterns,
which were seen to be in agreement with the results found by Martinez et al. [26]
after adjusting their results by the prevalence of maternal asthma. The comparison
showed that fewer late onset wheezers and more non-wheezers were identified in the
COPSAC-group compared to the study by Martinez et al, which might be explained
by the fact that the children in Martinez et al. received their second classification at
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the age of six, which gave them a year longer to development asthma.
Risk-factors for the risk of getting the asthma-diagnosis at the age of 5 years were
analyzed by means of logistic regression. The analysis showed that a high congenital
resistance reduced the risk of asthma significant. The risk of asthma for the lowest
resistance was 40 % and was seen to decline to around 10 % for the mean resistance.
Congenital resistance was seen to have a inconsistent effect in the cluster models,
i.e. having positive, negative or no effect depending on the model. The longitudinal
medication pattern at a yearly aggregated level were analyzed and was seen to be
closely related to both the diagnosis and the symptom rate. It was seen that in
years with many symptoms a high level of medication was given. However since the
medication was given according to the symptoms, the medication could not be used
as predictor for the symptoms without establishing a non-causal relation.
In the first part of the thesis the population was analyzed at a daily basis in order to
determine the seasonal variations. The seasonal risk was analyzed in both a preva-
lence model and a incidence model, this led to models for the daily percentages for
the total number of children with symptoms and the number of new children with
symptoms. The analysis showed that a season lasted approximately one year and that
the prevalence as well as the incidence were 2-3 times higher in the winter compared
to the summer. The seasonal variations were seen to be adequately described by a
periodic function with a period of a year.
In the last part of the thesis weekly episodes were discussed as a method for analyzing
the fast dynamics. A logistic regression for the probability of having an episode in a
given week was applied. Results from the yearly aggregated symptoms were reused
in order to account for the age effect, i.e. that asthmatic and non-asthmatic children
had different risk due to age. The parametric model for seasonal effect was included
in order to evaluate the risk for different seasons. It was seen for both the prevalence
and incidence models and the model for the day to day model that the risk was 2-3
times higher in the winter compared to the winter and that the risk related to season
was the same for asthmatic and non-asthmatic children. The seasonal effect may
therefore be interpreted at being un-related to the asthma symptoms and instead
related to more general wheezing variations, i.e. cold and flu. The risk of an episode
was seen to have the same pattern for the asthmatic and non-asthmatic children as
seen in the analysis of the yearly symptoms rates.
The analysis of the weekly episodes showed that none of the risk-factors were signifi-
cant and modelling of the medication use was seen to give the same problems as for
the yearly aggregated symptoms. The medication status in the week considered was
seen to increase the risk of symptoms, which was caused by the causality of symp-
toms and medication. Furthermore, lagged medication information was seen have
an insignificant impact on the risk of symptoms. The significant differences in the
risk for an episode were seen to be related to the season and to a difference in the
age-related risk between asthmatic and non-asthmatic children.
A transition model for the transition probabilities for the weekly data was analyzed,
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which showed that having had an episode the previous week increased the odds of
an episode markedly by more than 11 times. The transitions in the non-asthmatic
group were seen to be difficult to model, since this group had very few symptoms and
thereby few shifts in symptom status. Furthermore, the analysis showed that two
consecutive weeks with symptoms decreased the odds of symptoms compared to hav-
ing had symptoms the previous week, which indicated that the length of the periods
with symptoms typically were around 1-2 weeks. The transition model analysis may
be extended to analyze risk-factors on week to week dynamics, but in the thesis the
transition model did not give additional insight into the weekly dynamics.
The main result in the thesis was the identification of three distinct symptom patterns.
The connection to the diagnosis showed that the patterns could be used for predicting
the asthma diagnosis. Future work will show if the prediction can be based on a
shorter time-range than all five years of life, eg the first three years, in order to
separate the information used for prediction and the information used to determine
the diagnosis. If an adequate model can be established, the model can be used
in statistic process control for the symptoms, i.e. if parents reports the wheezing
symptoms continuously then the model can estimate the probability of belonging to
the high level symptom group in an automated way.



Appendix A

Conclusion from preparatory
thesis

A.1 Conclusion

In chapter 3 and 4 the congenital lung-function was analyzed to find risk-factors
or confounders describing FEV and PD15 PtcO2. The analysis showed that FEV
was described by the childrens length at birth and their age of measurement, which
accounted for 38 % of the variation in the congenital FEV. Furthermore a model
with a general size measure used instead of length at birth was seen to give the same
degree of explanation as the length, whereas using the body mass index gave a poorer
model in terms of describing the FEV.
A model for age of measurement and length at birth corrected FEV showed that
smoking in the third trimester significantly decreased the corrected FEV. The model
also showed an increasing corrected FEV for increasing gestational age. It was seen
that the risk-factor smoking was insignificant for the uncorrected FEV, which was
solved with the modelling of the corrected FEV.
For the PD15 PtcO2 measurement at the age of approximately one month, the only
certain risk-factor found was the gene mutation variable. Having at least one of the
two gene mutation increased the resistance against the provocation, hence children
having at least one of the mutations are less sensitive. The model for PD15 PtcO2
was capable of describing 4-9 % of the variation depending on how complex the model
was allowed to be. The initial modelling had a significant interaction between the
mothers asthma status in the first trimester and having contractions in the second,
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which seemed rather unlikely to be true. A model restricted to work on third trimester
variables, when second and first were available, proposed that the gene variable and
use of paracetamol both influenced the resistance significantly.
The congenital lung-function was seen to depend on rather few of the risk-factors and
confounders recorded. For FEV length at birth, age of measurement and gestational
age as confounders and smoking in the third trimester as a risk-factor and for PD15
PtcO2 the gene mutation risk-factor were the only estimated effects.
At the age of three years the specific airway resistance for pre (base) and post
bronchidilator treatment was considered (chapter 5). It was seen that the base mea-
surement showed a difference between boys and girls as the only significant effect
and it explained 4 % of the variation in specific airway resistance. The boys had a
11 % higher specific airway resistance compared to girls. The corrected FEV was
negatively correlated with the pre-bronchodilator measurement, but it was question-
able if the effect was significant. If significant it would imply that children with a
relatively good lung-function at the age of 1 month have a lower resistance in the
airways. However, the corrected FEV was only significant in the model with the vari-
able home-type included (different lung-function for children living in terrace houses
compared to children living in house or apartment)
The variations in post bronchidilator measurements of the specific airway resis-
tance were describing 38 % of the pre-bronchodilator measurements. A high pre-
bronchodilator resistance gave an estimated low ratio between the post and the base
measurements, which implied that children with a high pre-bronchodilator resistance
benefited the most of bronchodilator treatment. The model identified that use of al-
lergy quilt decreased the specific airway resistance by up to 9 %. The results for the
pre-bronchodilator measurements influence on the post measurements were confirmed
for the modelling of the relative increase in the specific airway resistance.
In chapter 6 models for the prevalence and the incidence were analyzed. This gave
two models, which modelled the seasonal pattern in the two time-series. The model
for the prevalence showed that even after removing the seasonal effect correlation
between neighboring days was still present, which was shown not to be the case
for the incidence. Having modelled the incidence and prevalence in a parametric
model, the incidence or prevalence can be used as confounders for the modelling of
the individual time-series of wheezing symptoms. The model showed that the peak of
the prevalence and incidence varied from year to year and that the incidence peaked
before the prevalence.
The individual wheezing symptoms were analyzed in the latter part of chapter 6. The
analysis showed that dividing the children into two groups, one where the children
had many symptoms and one where the symptoms was rather low, gave a good model
for describing the longitudinal progress of the wheezing symptoms. It was seen that
the two groups both had a decreasing number of symptoms as the children got older.
The decrease was seen to be the same for the two groups and low (two days per
year). Even though the model accounted for difference in variance for the two groups
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and was taking care of the correlation within the individuals the residuals still had a
pattern, which implied that the model tended to underestimate the symptoms.
Finally the relation between the two groups of children, defined by the amount of
symptoms, and the congenital PD15 PtcO2-measurements was examined. The ana-
lysis showed that the group with few symptoms was more likely to have a high PD15
PtcO2, which implied that children with a low congenital sensitivity tended to be
classified in the group with few symptoms. The mean levels of PD15 PtcO2 were
significant different for the two groups and were highest in the low group.
The work in this report points forward to the analysis of patterns in the wheezing
data. Primarily chapter 6 is the basis for the extension of the work presented in this
report. The parametric models of the incidence and prevalence are important to be
able to remove confounders in the individual time-series, such that the interesting
patterns becomes visible. The confounder-list may be extended with data on for
example influenza-prevalence, which hopefully can remove more of the population
related variation from the individual time-series.
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