
A Static Analysis of Value Passing
CCS with Application to Workflows

Sergiu Zavrotschi

Kongens Lyngby 2007

Introduction

The growth of web services in recent years attracts a lot of attention to their
interaction, choreography and orchestration. A number of technologies have
been developed for defining, executing and managing workflows targeted at web
services. Examples of such technologies include the Business Process Execu-
tion Language (BPEL)[16] and the Windows Workflow Foundation (WWF)[17].
However, technologies used for implementing workflows focus mainly on their
functional aspects; there is a clearly identified need for formal foundations as
well as techniques and tools for analysing their quantitative and qualitative
properties.

We will look into expressing of workflows in process calculi and design analy-
sis of one of calculi, namely value passing CCS, with application to workflows
expressed with the help of this calculus.

Workflow is the movement of information, documents and task through the
work processes. In order to analyse workflows, they should be represented in
a calculus which possesses a number of properties. This calculus should sup-
port parallelism, synchronization between processes, exchanging data between
processes and manipulation with data.

It is natural to draw attention to process calculi that implement formal mod-
elling of concurrent systems. The most popular and widely used calculi include
CSP[5], PEPA[4], Orc[9], CCS and π-calculus[8]. In the last years it has been
shown that both CCS and π-calculus are capable of representing workflows and
services ([3], [11], [13]). This fact as well as strong mathematical foundation of
CCS led to its choice as an underlying language for implementation of analysis
of workflows and services.

In recent paper “A Monotone Framework for CCS”[10] it was proposed a static
analysis that approximates the control structure of concurrent systems models
in CCS. In this thesis we will take a monotone framework as a starting point and
extend it in order to meet requirements imposed by its application to workflow
modelling.

The goal of the analysis introduced in [10] is to construct a finite automaton that
approximates the behavior of processes. But that analysis does not pay attention
to the communication of information over channels of the processes. We will
improve the analysis so that it takes into account variables of the CCS program
and creates a more precise automaton. In order to be able to modify analysis
we need to extend the original CCS language. The result of the analysis of value
passing CCS will consist in automaton represented as a graph, that describes
the bahaviour of the CCS program. A number of analyses of the resulting graph
will be also made.

Chapter 1 introduces syntax and semantics of CCS with a number of additional
syntactic constructs intended to pass values between processes, what is aimed to
better mapping of workflows. In chapters 2–4 present sets of exposed, generated
and killed actions from “A Monotone Framework for CCS” that are needed for
the developed analysis. Chapter 5 describes the compatible actions extended
to handle the modified syntax of CCS. Chapter 6 introduces a notion of free
names, that will later be used for determination of possible values of variables.
Chapter 7 is devoted to the propagation of values through the CCS model. It
describes a worklist algorithm created to capture the approximation of sets of
values for all variables at different points the CCS program. Chapter 8 the
automaton constructed by the monotone framework is extended in order to
include the information about variables. The resulting automaton may become
rather big, that’s why chapter 8 describes also how the graph corresponding to
the finite automaton may be modified in order to express not the behaviour of
the whole system but of its part. In chapter 9 some analyses of the obtained
automaton are shown. Chapter 10 describes the creation of a GUI tool that
implements the whole process of editing, creation of automaton and its analysis.
Chapter 11 gives a number of more complex examples of workflows and services
expressed in CCS and analysed using the developed technique. Chapter 12
contains some concluding remarks and directions of future work.

The reader of this thesis is expected to be familiar with the basic principles of
process calculi, what is equivalent to reading of Chapters 3–4 of Milner’s “Com-
municating and Mobile Systems: The π-calculus”[8], and with main ideas of pro-
gram analysis described in Chapters 1–2 of “Principles of Program Analyses”[2].

Contents

Introduction i

1 Calculus of Communicating Systems 1

1.1 Syntax . 1

1.2 Semantics . 2

1.3 Implementation . 4

2 Exposed actions 7

2.1 Implementation . 9

3 Generated actions 11

3.1 Implementation . 13

4 Killed actions 15

4.1 Implementation . 16

5 Compatible actions 19

5.1 Implementation . 21

6 Free names 23

6.1 Implementation . 25

7 Propagation of values 27

7.1 Introduction . 27

7.2 The worklist algorithm . 28

7.3 Result . 30

7.4 Implementation . 30

8 Automaton 35

8.1 The function enabled . 37

8.2 The function transfer . 38

8.3 The function update . 38

8.4 The granularity function . 39

8.5 The function squeeze . 40

8.6 Implementation issues . 41

8.7 Examples . 41

9 Analysis of the resulting automaton 45

10 GUI front-end 49

11 Worked examples 51

11.1 How To Become a Recording Star 51

11.2 Car repair . 53

11.3 Traveller . 55

12 Conclusion 57

A Appendices 59

A.1 Syntax of CCS with value passing 59

A.2 Vin and Vout for Example 7.2 . 61

A.3 Screenshot of GUI . 63

A.4 How to Become a Recording Star workflow 65

A.5 Modified example of Traveller workflow 66

Chapter 1

Calculus of Communicating

Systems

We have chosen to use Calculus of Communicating Systems (CCS) with value
passing, that permits its application to model workflows. In this section syntax
and semantics of CCS will be introduced and issues concerning implementation
will be described.

1.1 Syntax

The main paradigm of the calculus is process P .

P ::= P1|P2 |
∑

i∈I

αli
i . Pi | new x P | A | ∅

Composition P1|P2 is used to model concurrent execution of P1 and P2. Sum-
mation

∑
i∈I αli

i . Pi is the exclusive choice among the finite number of guarded
processes αi. Pi, where action αi is called a guard of process Pi. new x P re-
stricts the scope of the name x to process P . A is a process identifier, defined
with a equation of the form A , P . ∅ is inaction.

Processes in sums are guarded by actions of the form:

α ::= x〈v1, . . . , vk〉 | x(z1, . . . , zk) | τ | γ

γ ::= [v = x] | [v 6= x]

The action of the form x〈v1, . . . , vk〉 sends the names v1, . . . , vk over the channel
x.

The action of the form x(z1, . . . , zk) receives names z1, . . . , zk over the channel
x. If this action guards process P , then after its execution model continues as
P with z1, . . . , zk replaced by the received names (see Semantics).

The unobservable action is written by τ . It is used to model the internal action
of the process.

There are two types of match actions γ: [v = x] and [v 6= x]. [v = x] checks
values of v and x for equality and continues execution of the process guarded by
it, only if v is equal to x. [v 6= x] does the reverse: the execution of the process
guarded by it continues only if v and x are different.

We will analyse programs of the form

let A1 , P1; . . . ; Ak , Pk;
in P0

where P0 is the main process of the program and A1 , P1; . . . ; Ak , Pk; are
definitions of the subprocesses with identifiers A1, . . . Ak. Identifiers can be used
anywhere in the program, they must not duplicate.

1.2 Semantics

Semantics of CCS is based on a reduction relation → presented in Figure 1.1.

Equation (1.1) shows that internal action τ will always occur.

Equation (1.2) states that reaction between an action and its complement will
always occur, if there is such a possibility. Process P2 continues with z1, . . . , zk

having values v1, . . . , vk, respectively. Relations (1.3) and (1.4) show that when-
ever a matching action [v1 = v2]

lP + Q →l P is true the program may continue

τ l. P + Q →l P (1.1)

(x〈v1, . . . , vk〉
l1 . P1 + Q1) | (x(z1, . . . , zk)l2 . P2 + Q2) →l2l1 (1.2)

P1 | P2{
v1,...,vk/z1,...,zk

}

[v1 = v2]
lP + Q →l P if v1 = v2 (1.3)

[v1 = v2]
lP + Q →l Q if v1 6= v2 (1.4)

P →l̄ Q

P | P ′ →l̄ Q | P ′
(1.5)

P →l̄ P ′

new x P →l̄ new x P ′
(1.6)

P ′ →l̄ Q′

P →l̄ Q
if P ≡ P ′ and Q′ ≡ Q (1.7)

Figure 1.1: Reduction relation → for CCS

as P . Equations (1.5) and (1.6) show that reaction can occur inside a parallel
composition or restriction. Equation (1.7) indicates that structural congruence
described in [8] may be used.

Example 1.1 Let us consider a system with a server and a client working in
parallel.

They communicate via two channels. Client receives two values x and y via
these channels and checks them for equality. If they are equal, client sends
response to the server and continues from the beginning. If they are different,
client sends another response and terminates. Server sends either two different
values or two identical values, waits for the response from the client and repeats
this procedure forever.

This example may be written in CCS with value passing as:

let

Client , p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0);
Server , p〈a, c〉7.q〈a〉8.r(w)9.Server + p〈a, d〉10.q〈b〉11.r(w)12.Server;

in

Client | Server

There are two possible ways of reduction of the model:

Client | Server ≡ p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0) |

(p〈a, c〉7.q〈a〉8.r(w)9.Server + p〈a, d〉10.q〈b〉11.r(w)12.

Server)

→1 7 q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0) |

q〈a〉8.r(w)9.Server

→2 8 ([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0) |

r(w)9 .Server

→3 r〈x〉4.Client | .r(w)9.Server

→4 9 Client | Server

and

Client | Server ≡ p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0) |

(p〈a, c〉7.q〈a〉8.r(w)9.Server +

p〈a, d〉10.q〈b〉11.r(w)12.Server)

→1 10 q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0) |

q〈b〉11.r(w)12 .Server

→2 11 ([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0) |

r(w)12.Server

→5 r〈z〉6.0 | r(w)12 .Server

→6 12 Server

After the first variant of reduction system returns to its initial state and con-
tinues execution from the beginning. The second variant leads to termination
of Client process, Server process remains active. �

1.3 Implementation

First, it is important to define a programming language for CCS. Then we need
a system that converts program written in this programming language to the
internal representation suitable for analysis. It was chosen to write a lexical
analyser using JLex: A Lexical Analyzer Generator for Java (described in [1])

and parser with the help of CUP: LALR Parser Generator for Java (described
in [12]).

The scheme of generation of syntax tree from the source code is shown in Fig-
ure 1.2.

CCS

source code

syntax

tree

lexical

analyzer

JLex

parser

CUP

Figure 1.2: Syntax tree generation

Definition of the syntax of CCS with value passing used for building of parser
is presented in the Appendix A.1.

Program is labelled during parsing. Labels are assigned incrementally beginning
with ′′1′′. Internal actions (τ), send and receive actions and match actions are
annotated with unique labels l ∈ Lab. Comment lines begin with symbol #.

Example 1.2 Client-Server program from Example 1.1 may be written as:

let

Client ::= (p(x, z).q(y).([x = y] r<x>.Client + [x != y] r<z>.0));

Server ::= (p<a, c>.q<a>.r(w).Server + p<a, d>.q.r(w).Server);

in

Client | Server

�

The next chapters will be devoted to the sets of actions that are used in the
algorithm for the propagation of values through the CCS program and for the
construction of the automaton.

Chapter 2

Exposed actions

Exposed actions are actions, that may participate in the next step of the process.
Processes may contain several occurrences of the same action. Due to possibility
of recursive definition of the processes there may be infinitely many exposed
actions. For example, process A , a1〈x〉.0 | A contains infinite number of
action a1〈x〉, and all these occurrences are exposed.

In order to represent exposed actions we will introduce the notion of an extended
multiset M as an element of:

M = Lab → N ∪ {∞}

M(l) is the number of occurrences of the label l. It may be either a natural
number or infinity. The partial ordering ≤M is defined as:

M ≤M M ′ iff ∀l : M(l) ≤ M ′(l) ∨ M ′(l) = ∞

The domain (M,≤M) is a complete lattice with leas element ⊥M, given by ∀l :
⊥M(l) = 0 and largest element ⊤M given by ∀l : ⊤M(l) = ∞. For calculation

of the exposed actions we need to define operation +M, addition operation on
extended multisets:

(M +M M ′)(l) =

{
M(l) + M ′(l) if M(l) ∈ N ∧ M ′(l) ∈ N

∞ otherwise

Given a process

let A1 , P1; . . . ; Ak , Pk in P0

our object of interest is the exposed function E⋆ that maps process P0 to the
extended multiset, corresponding to actions that are exposed in the initial pro-
cess:

E⋆ : Proc → M

As P0 uses definitions of the processes A1, . . . , Ak, we need to introduce the
environment envE that maps process names A1, . . . , Ak to the extended multisets
(PN → M). We can now define E⋆JP K = EJP KenvE , where

E : Proc → (PN → M) → M

E takes two parameters – process P and environment envE . We define a func-
tional FE(env) = [A1 7→ EJP1K, . . . , Ak 7→ EJPkKenv] and initial environment
env⊥M

= [A1 7→ ⊥M, . . . , Ak 7→ ⊥M] that maps process names to the empty

multisets. We can now define envE = ⊔j≥0F
j
E(env⊥M

), where j is the number
of unfoldings of functional FE .

Now we may introduce equations for calculation of the exposed actions for dif-
ferent syntactic entities of CCS. They are presented in the Figure 2.1:

EJnew x P Kenv = EJP Kenv

EJP | P ′Kenv = EJP K +M EJP ′Kenv

EJAKenv = env(A)

EJ
∑

i∈I

αli
i .PiKenv =

∑

i∈I

M
⊥M[li 7→ 1]

Figure 2.1: Exposed actions

Exposed actions of the new construct are equal to the exposed actions of the
process P it is applied to. Exposed actions of the parallel composition P | P ′

are equal to the sum of the exposed actions of two subproceses P and P ′. As for
the exposed actions of a sum, they are equal to the sum of multisets that have
form ⊥M[li 7→ 1], because in the i-th component of the sum only one action
with label ii is exposed. To calculate exposed actions of a process name, the
environment needs to be queried.

2.1 Implementation

Extended multiset M , M and T were implemented as a number of classes. Class
M contains all operation over the elements of extended multisets (+M, −M,
≥M, ⊔M, ⊓M, ⊲⊳M, ▽M). Classes Multiset and Multisets contain pointwise
extensions of these action to the level of M and T.

After parsing of CCS source code we received syntax tree with nodes being
objects of classes corresponding to all syntactic categories of the language. Each
class has a function Multiset exp (int num) used for recursive calculation of
function E , described in the previous section.

The initial environment env⊥M
is calculated at the parse time. To ensure ter-

mination envE is calculated according to the formula:

envE = Fk
E (env⊥M

) ⊲⊳ F2k
E (env⊥M

)

where k is the number of definitions in the program and ⊲⊳ is the pointwise
extension of the operation ⊲⊳M defined by

(M ⊲⊳M M ′)(l) =

{
M(l) ifM(l) = M ′(l)
∞ otherwise

This formula ensures that we take into consideration the effect from unfoldings
of the recursively defined k processes. We use only operation +M in calculation
of E in the Figure 2.1, thus numbers in the extended multisets may only grow.
If they are equal after k and 2k unfoldings, then operation ⊲⊳M returns the
same number. Otherwise it is obvious, that they will grow indefinitely and ⊲⊳M

returns ∞.

Using envE we easily calculate exposed actions E⋆ for the whole program and
save it in a table in class Env for the later use.

Example 2.1 For the program from Example 1.1 we have:

envE = [Client 7→ ⊥M[1 7→ 1],

Server 7→ ⊥M[7 7→ 1, 10 7→ 1]]

E⋆JClient | ServerK = ⊥M[1 7→ 1, 7 7→ 1, 10 7→ 1]

�

Chapter 3

Generated actions

For construction of automaton with the help of worklist algorithm we need to
introduce generated actions and killed actions. This chapter will describe how
generated actions are defined and calculated and the next chapter will do the
same for the killed actions.

Generated actions are such actions, that become exposed after executing an
action. It will always be safe to generate more actions, than will be actually
generated at the run-time, therefore we will calculate an over-approximation.

Function G⋆ that approximates information about generated actions will work
with elements of:

T = Lab → M

that maps labels of the program of interest to the extended multisets M. We
will define ordering ≤T on T as the pointwise extension of the ordering ≤M,
described in Chapter 2. The domain (T,≤T) is a complete lattice and operator
⊔T is defined as the pointwise extension of the operation ⊔M defined as:

(M ⊔M M ′)(l) =

{
max{M(l), M ′(l)} if M(l) ∈ (N) ∧ M ′(l) ∈ N

∞ otherwise

In analogy with exposed actions we are interested in function G⋆ that maps

process P0 of the program of interest to the function T:

G⋆ : Proc → T

G⋆ may be defined as G⋆JP K = GJP KenvG , where envG is the environment that
maps process names A1, . . . , Ak to T and GJP K is defined as:

G : Proc → (PN → T) → T

To calculate envG a monotonic functional FG(env) = [A1 7→ GJP1K, . . . , Ak 7→
GJPkKenv] and empty environment env⊥T

= [A1 7→ ⊥T, . . . , Ak 7→ ⊥T] are

needed. Thus, envG = ⊔j≥0F
j
G(env⊥G

), where j is the number of unfoldings of
functional FG .

Functional FG uses GJP Kenv that needs to be defined for all syntactic entities
of CCS. This is shown in Figure 3.1.

GJnew x P Kenv = GJP Kenv

GJP | P ′Kenv = GJP K ⊔G GJP ′Kenv

GJAKenv = env(A)

GJ
∑

i∈I

αli
i .PiKenv =

⊔

i∈I

T
(⊥T[li 7→ E⋆JPiK] ⊔T GJPiKenv)

Figure 3.1: Generated actions

Generated actions of the new construct are equal to the generated actions of the
process P it is applied to. Generated actions of the parallel composition P | P ′

are equal to the least upper bound ⊔T of the generated actions of two subproceses
P and P ′, where ⊔T is the pointwise extension of the operation ⊔M defined
earlier. To calculate generated actions of a process name, the environment needs
to be queried. Generated actions of a sum are equal to the least upper bound
⊔Ti∈I

of all components of the sum. All components of summation in CCS

have form αli
i .Pi. Generated actions for this case are defined as GJαli

i .PiKenv =
⊥T[li 7→ E⋆JPiK]⊔T GJPiKenv. The usage of ⊥T[li 7→ E⋆JPiK] is based on the fact
that execution of action αli

i makes actions from Pi exposed. The least upper
bound with GJPiKenv is needed to cover the situation when label li is used inside
process Pi.

3.1 Implementation

The initial environment env⊥T
is initialised at the parse time. Calculation of

G⋆ may be invoked only after calculation of E⋆, because GJ∑i∈I αli
i .PiKenv uses

information from it.

k iterations are needed in order to calculate envG :

envG = Fk
G(env⊥T

)

where k is the number of recursively defined processes in the program of interest.
k iterations are needed to make sure that all process names are unfolded at least
once, and hence no additional information may be added by the operation ⊔T

used for the calculation of G.

The calculation of generated actions is realised via recursive calls of function
Multisets gen (int num) of the class CcsTree that implements syntax tree.
The result is saved as table in class Env.

Example 3.1 For the program from Example 1.1 we have the following envi-
ronment envG :

l Client
1 ⊥M[2 7→ 1]
2 ⊥M[3 7→ 1, 5 7→ 1]
3 ⊥M[4 7→ 1]
4 ⊥M[1 7→ 1]
5 ⊥M[6 7→ 1]
6 ⊥M

l Server
7 ⊥M[8 7→ 1]
8 ⊥M[9 7→ 1]
9 ⊥M[7 7→ 1, 10 7→ 1]
10 ⊥M[11 7→ 1]
11 ⊥M[12 7→ 1]
12 ⊥M[7 7→ 1, 10 7→ 1]

and G⋆:
l G⋆JClient | ServerK
1 ⊥M[2 7→ 1]
2 ⊥M[3 7→ 1, 5 7→ 1]
3 ⊥M[4 7→ 1]
4 ⊥M[1 7→ 1]
5 ⊥M[6 7→ 1]
6 ⊥M

7 ⊥M[8 7→ 1]
8 ⊥M[9 7→ 1]
9 ⊥M[7 7→ 1, 10 7→ 1]
10 ⊥M[11 7→ 1]
11 ⊥M[12 7→ 1]
12 ⊥M[7 7→ 1, 10 7→ 1]

�

Chapter 4

Killed actions

Killed actions are such actions that were exposed before an action was executed
and became not exposed after execution of this action. It will always be safe to
kill fewer actions than will be actually killed at the run-time, therefore under-
approximation of killed actions will be computed.

Function K⋆ that approximates information about killed actions will like func-
tion G⋆ work with elements of:

T = Lab → M

that maps labels of the program of interest to the extended multisets M. Need
of under-approximation leads to the usage of the least upper bound operator
⊓T over T defined as the pointwise extension of the operator ⊓M:

(M ⊓M M ′)(l) =





min{M(l), M ′(l)} if M(l) ∈ (N) ∧ M ′(l) ∈ N

M(l) if M ′(l) = ∞
M ′(l) if M(l) = ∞

We are again interested in function K⋆ that maps process P0 of the analysed
program to the function T:

K⋆ : Proc → T

K⋆ is be defined as K⋆JP K = KJP KenvK, where envK is the environment that
maps process names A1, . . . , Ak to T and KJP K is defined as:

K : Proc → (PN → T) → T

For calculation of envK we define as monotonic functional FK(env) = [A1 7→
KJP1K, . . . , Ak 7→ KJPkKenv] and empty environment
env⊤T

= [A1 7→ ⊤T, . . . , Ak 7→ ⊤T]. Thus, envK = ⊓j≥0F
j
K(env⊤T

), where j is
the number of unfoldings of functional FK.

Functional FK uses KJP Kenv that needs to be defined for all syntactic entities
of CCS. This is shown in Figure 4.1.

KJnew x P Kenv = KJP Kenv

KJP | P ′Kenv = KJP K ⊓K KJP ′Kenv

KJAKenv = env(A)

KJ
∑

i∈I

αli
i .PiKenv =

l

i∈I

T
(⊤T[li 7→ M] ⊓T KJPiKenv)

where M = +Mj∈I
⊥M[lj 7→ 1]

Figure 4.1: Killed actions

Killed actions of the new construct are equal to the killed actions of the process
P it is applied to. Killed actions of the parallel composition P | P ′ are equal
to the greatest lower bound ⊓T of the killed actions of two subproceses P and
P ′, where ⊓T is the pointwise extension of the operation ⊓M defined earlier.
To calculate generated actions of a process name, the environment needs to be
queried.

Killed actions of a sum are equal to the greatest lower bound ⊓Ti∈I
of all compo-

nents of the sum that have form αli
i .Pi. After execution of one action from the

sum, all actions of the sum that are exposed will be killed. Therefore each label
li should be mapped to M = +Mj∈I

⊥M[lj 7→ 1]. The greatest lower bound with
KJPiKenv is needed to cover the situation when label li occurs inside process Pi.

4.1 Implementation

The initial environment env⊤T
is initialised at the parse time. Calculation of

K⋆ may be invoked at any time, because it does not use information from the

exposed actions E⋆ or generated actions G⋆.

The key operation used in calculation of K⋆ i the greatest lower bound ⊓T

and the monotonic functional FK on a complete lattice (T,≤T), that leads to
termination after some number of unfoldings of FK.

The calculation of killed actions is realised via recursive calls of function Multisets

kill (int num) of the class CcsTree that implements syntax tree. The result
is saved as table in class Env.

Example 4.1 For the program from Example 1.1 we have the following envi-
ronment envK:

l Client
1 ⊥M[1 7→ 1]
2 ⊥M[2 7→ 1]
3 ⊥M[3 7→ 1, 5 7→ 1]
4 ⊥M[4 7→ 1]
5 ⊥M[3 7→ 1, 5 7→ 1]
6 ⊥M[6 7→ 1]

l Server
7 ⊥M[7 7→ 1, 10 7→ 1]
8 ⊥M[8 7→ 1]
9 ⊥M[9 7→ 1]
10 ⊥M[7 7→ 1, 10 7→ 1]
11 ⊥M[11 7→ 1]
12 ⊥M[12 7→ 1]

and K⋆:
l K⋆JClient | ServerK
1 ⊥M[1 7→ 1]
2 ⊥M[2 7→ 1]
3 ⊥M[3 7→ 1, 5 7→ 1]
4 ⊥M[4 7→ 1]
5 ⊥M[3 7→ 1, 5 7→ 1]
6 ⊥M[6 7→ 1]
7 ⊥M[7 7→ 1, 10 7→ 1]
8 ⊥M[8 7→ 1]
9 ⊥M[9 7→ 1]
10 ⊥M[7 7→ 1, 10 7→ 1]
11 ⊥M[11 7→ 1]
12 ⊥M[12 7→ 1]

�

Chapter 5

Compatible actions

Another important notion is the set of compatible actions. Compatible actions
are the pairs of actions that may interact in parallel processes.

We introduce a new datatype — tuple, which will be used by the function that
computes the set of compatible actions for the program of interest. The tuple
has form (L, C) and contains two components:

• L ∈ ℘(Lab) is the set of labels of all actions of the process

• C ∈ ℘((Lab × Lab) ∪ Lab) is the set consisting of the pairs of labels
of actions that may interact and labels that may be executed without
interaction with other labels. There are two types of such actions:

– τ - internal action of the process,

– and γ ::= [v = x] | [v 6= x] — match actions that check whether two
names are equal or not.

Function C⋆ will return such tuple and it may be defined as:

C⋆ : Proc → ℘(Lab) × ℘((Lab × Lab) ∪ Lab)

In analogy with generated and killed actions C⋆ may be defined as C⋆JP K =
CJP KenvC , where envC is the environment that maps process names A1, . . . , Ak

to T and CJP K is defined as:

C : Proc → (PN → ℘(Lab) × ℘((Lab × Lab) ∪ Lab))

→ ℘(Lab) × ℘((Lab × Lab) ∪ Lab)

The domain used in this definition (℘(Lab) × ℘((Lab × Lab) ∪ Lab)) has
partial ordering ⊑ because its components ℘(Lab) and ℘(Lab × Lab) also
have this ordering and therefore is a complete lattice. We define functional
FC(env) = [A1 7→ CJP1K, . . . , Ak 7→ CJPkKenv] and empty environment env∅ =
[A1 7→ (∅, ∅), . . . , Ak 7→ (∅, ∅)]. Thus, envC = ⊔j≥0F

j
C(env∅), where j is the

number of unfoldings of monotonic functional FC .

Function CJP Kenv is defined for all syntactic categories of CCS in Figure 5.1.

CJnew x P Kenv = CJP Kenv

CJP | P ′Kenv = let (L, C) = CJP K && (L′, C′) = CJP ′Kenv

in (L ∪ L′, C ∪ C′ ∪ comp(L, L′))

CJAKenv = env(A)

CJ
∑

i∈I

αli
i .PiKenv = let (Li, Ci) = CJPiKenv

in (
⋃

i∈I

Li ∪ {li},
⋃

i∈I

Ci)

Figure 5.1: Compatible actions

For calculation of compatible actions of parallel composition P | P ′ compatible
actions of its two subprocesses are computed. The first component of the result-
ing tuple is set to the union of L and L′, meaning that the set of labels of the
composition is equal to the union of all labels in its subprocesses. The second
element of the resulting tuple is set to the union of pairs of labels for actions that
may interact inside the subprocesses (C and C′) and pairs of labels for potential
interacting actions, one of which is in P and another in P ′ (comp(L, L′)).

Function comp(L, L′) may be defined with the help of canonical name associated

with each label l (∂(l)) that is preserved by alpha-renaming.

comp(L, L′) = {(l, l′) ∈ L × L′|∃x : ∂(l) = ⌊x⌋ ∧ ∂(l′) = ⌊x⌋}

∪ {(l′, l) ∈ L′ × L|∃x : ∂(l′) = ⌊x⌋ ∧ ∂(l) = ⌊x⌋}

∪ {l ∈ L ∪ L′|∃τ l}

∪ {l ∈ L ∪ L′|∃γl}

Each pair from the set returned by function comp has a label associated with a
“send” action as the first and a label associated with a “receive” action as the
second element.

As for the sums that have components in the form αli
i .Pi, the first element of

the tuple returned by C is the union of labels Li from Pi with labels li of actions
αli

i . The second element is the union of Ci from Pi, because actions αli
i cannot

interact with each other.

5.1 Implementation

The initial environment env∅ is initialised at the parse time. Calculation of C⋆

may be invoked at any time, because it doesn’t use information from E⋆ or any
other function introduced before.

In analogy with envG only k iterations are needed in order to calculate envC :

envC = Fk
C (env∅)

where k is the number of recursively defined processes in the program of interest.
k iterations are needed to make sure that all processes are recursively unfolded
at least once, and hence no additional information may be added.

The calculation of killed actions is realised via recursive calls of function CompSet

kill (int num) of the class CcsTree that implements syntax tree. CompSet

class is the realisation of tuple (L, C). The result is saved as table in class Env.

Example 5.1 For the program from Example 1.1 we have:

envC = [Client 7→ ({1, 2, 3, 4, 5, 6}, {3, 5}),

Server 7→ ({7, 8, 9, 10, 11, 12}, ∅)]

C⋆ = ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},

{(3), (5), (7, 1), (10, 1), (8, 2), (11, 2), (4, 9), (4, 12), (6, 9), (6, 12)})

�

Chapter 6

Free names

For taking care of values passing we need to to divide names used in the program
into variables and constants. Variables are the names, that are bound to some
values during the execution of the program – bound names. Constants are the
names, that don’t change – free names.

Given a program:
let

A1 , P1; . . . ; Ak , Pk;
in

P0

we define function FN , that returns free names, for all syntactic constructs of
the CCS language described in Chapter 1.1. This function along with function
bn for bound names is shown in Figure 6.1.

Free names of the parallel composition is equal to the union of free names
of parallel processes. Free names of summation is equal to the union of sum
components. Free names of a guarded process α.P is equal to the free names
of process P without names, that are bound in α and including free names of
α. For free names of a process definition environment is queried. Free names
of sending action are equal to the names of variables, that are sent, but set of
bound names is empty. As for the receiving action, set of free names is empty,

FN JP | P ′Kenv = FN JP Kenv ∪ FN JP ′Kenv

FN J
∑

i∈I

αli
i .PiKenv =

⋃

i∈I

FN Jαli
i .P Kenv

FN Jα.P Kenv = FN JP Kenv \ bn(α) ∪ FN JαKenv

FN JAiKenv = env(Ai)

FN Jnew x P Kenv = FN JP Kenv \ {x}

FN Jx〈v1, . . . , vk〉Kenv = {v1, . . . , vk}

bn(x〈v1, . . . , vk〉) = ∅

FN Jx(z1, . . . , zk)Kenv = ∅

bn(x(z1, . . . , zk)) = {z1, . . . , zk}

FN JτKenv = ∅

bn(τ) = ∅

FN J[v = x]Kenv = {v, z}

bn([v = x]) = ∅

FN J[v 6= x]Kenv = {v, z}

bn([v 6= x]) = ∅

Figure 6.1: Free names

but bound names are all the variables that are assigned in this action. Both free
and bound names of an internal action τ are ∅. Free names of two matching
constructs [v = x] and [v 6= x] are equal to the variable names that participate
in these actions, and set of bound names is empty.

Our object of interest is the free names function FN ⋆ that maps process P0 to
the set of names that are free in this process:

FN ⋆ : Proc → N

P0 uses recursively defined process names A1, . . . , Ak. We introduce environ-
ment envFN that maps process names A1, . . . , Ak to the set of names (PN →
N). Now it is possible to define FN ⋆JP K = FN JP KenvFN , where

FN : Proc → (PN → N) → N

FN takes two parameters – process P and environment envFN . We define
a functional FFN (env) = [A1 7→ FN JP1K, . . . , Ak 7→ FN JPkKenv] and initial

environment env⊥FN
= [A1 7→ ∅, . . . , Ak 7→ ∅] that maps process names to the

empty sets of free names. We can now define envFN = ⊔j≥0F
j
FN (env⊥FN

),
where j is the number of unfoldings of functional FFN .

6.1 Implementation

The key operations over the set of names are union (∪) and subtraction (\)
leading to the fact that recursion needs to be unfolded only once. Additional
unfolding will have no effect. We need at most k iterations to calculate envFN :

envFN = Fk
FN (env⊥N

)

where k is the number of recursively defined processes.

The calculation of free names is realised via recursive calls of function Vector

<String> kill (int num) of the class CcsTree that implements syntax tree.
Vector <String> contains free names. The result is saved as table in class Env.

Example 6.1 For the program from Example 1.1 we have the following envi-
ronment envFN :

envFN = [Client 7→ ∅, Server 7→ {a, b, c, d}]

and free names for the whole program:

FN ⋆ = {a, b, c, d}

�

Chapter 7

Propagation of values

7.1 Introduction

The idea is to extend a finite automaton, that captures the control structure of a
CCS model, in such a way that it will be capable to analyse values passed along
the channels. This is essential for models of workflows, when it is important that
processes exchange information and their actions depend on the information
received.

In value passing CCS variables may be sent along channel x (i. e. x〈v1, . . . , vk〉)
or received along channel x (i. e. x(v1, . . . , vk)). Variables may be later com-
pared using constructs [vi = vj] and [vi 6= vj]. We will construct an algorithm
that for each label of the CCS model will determine a set of possible values
for variables. Using this knowledge it will be possible to detect whether com-
parisons [vi = vj] and [vi 6= vj] are true or false. The procedure enabled of
the automaton will then detect that a comparison is always false and can never
be executed. Therefore all actions of the process after it become unreachable.
Thus the number of enabled actions will be reduced. With fewer enabled ac-
tions automaton will become simpler, its number of states will be reduced. The
automaton will also be more precise.

For the implementation of propagation of values we will construct an algorithm

based on worklist.

7.2 The worklist algorithm

Given a program
let A1 , P1; . . . ; Ak , Pk in P0

and functions

E⋆ : Proc → M, G⋆ : Proc → (Lab → M) FN ⋆ : Proc → N

C⋆ : Proc → ℘(Lab) × (℘((Lab × Lab) ∪ Lab))

defined in the previous chapters, we can create a graph with the following com-
ponents:

• A set of nodes Q, with a node for each label l ∈ Lab.

• A transition relation δ containing transitions of the form ls ⇒ lt reflecting
that the label lt is generated by the label ls, i. e. lt ∈ G⋆(ls).

• An additional node l0 ∈ Q and a number of transitions of the form l0 ⇒ li,
where states li are the labels of the exposed actions from the function
E⋆JP0K.

The main data structures of the algorithm are:

• A set of labels Q and transaction relation δ introduced so far;

• a worklist W being a subset of Q containing those labels, that have yet to
be processed;

• two functions Vin and Vout for each label. Vin maps each variable of the
program to a set of possible values that it may take before execution of
the action. Vout does the same thing, but after the execution of the action.
Vin : Lab → (Var → P(Const)). Functions Vin and Vout were inspired
by the entry and exit sets used for Data Flow Analysis described in [2].

All names of the program are divided into variables (Var) and constants (Const).
This division is made with the help of free names described in Chapter 6. Con-
stants are all names, that are elements of FN ⋆ and variables are all other names
of the program. As we use CCS and not its more general form π-calculus that

permits exchange of channel names between processes, function FN ⋆ and there-
fore Const does not contain names of channels.

The overall algorithm is shown in the Figure 7.1.

(01) W = {li|li ∈ E⋆};
(02) while W 6= ∅ do

(03) select ls from W ; W := W \ {ls};
(04) Vtmp = ∅
(05) for each elf⇒ls do

(06) Vtmp := Vtmp ∪ Vout(lf)
(07) Vin(ls) := Vtmp

(08) Vout(ls) := Vin(ls)
(09) Vtmp := ∅
(10) for each (l, l′) ∈ C⋆ do

(11) if l′ = ls do

(12) Vtmp := Vtmp ∪ Vin(l)
(13) if l = ls do

(14) W := W ∩ l′

(15) replace(Vout(ls), Vtmp)
(16) for each els⇒lt do

(17) if Vin(lt) 6= Vout(ls) do
(18) W := W ∩ lt

Figure 7.1: Worklist algorithm

The worklist algorithm begins with initialisation. First the graph Q is created
as described before. Then the worklist is initialised to contain the initial labels
li (line (01)). For the additional label l0 in Vout(0) all variables are mapped to
⊤ element of P(Const). All constants are mapped to themselves.

Algorithm proceeds while the worklist is not empty (line (02)).

A label ls is selected and removed from the worklist in line (03). Lines (04-07)
contain calculation of the union of Vout(lf) for all labels lf , that are connected
with the incoming edges to the current label ls. This union is assigned to Vin(ls).

Vout(ls) of the current label ls is assigned the value of Vin(ls) in line (08).

Cycle in lines (10-14) analyses all pairs of labels (l, l′) that are compatible.

Lines (11-12) contain calculation of the possible values for variables updated in
the action labeled with the current label. This is done by calculating a union of

Vin(l) for all compatible actions of the form (l, l′) ∈ C⋆, where l′ = ls, i. e. for
all “send” actions compatible with the current “receive” action.

Lines (13-14) update the worklist. If the current label is a label of the “send”
action, then all the labels, that are compatible with it, are added to the worklist.

Procedure replace of line (15) consists of replacing of sets of possible values
for variables in Vout(ls) by the sets from Vtmp. Sets of values for the variables
of Vout(ls), that are not present in Vtmp, are left unchanged.

Lines (16-18) contain the update of the worklist. A label is added to the worklist,
if it is a target label lt of an edge, going out of the current label ls and Vin(t) 6=
Vout(s), i. e. it is possible that new information will be added to the label.

7.3 Result

After execution of the worklist algorithm the function Vin : Lab → (Var →
P({Const}) which may be used in the enabled function of the worklist algo-
rithm to construct a finite automaton.

7.4 Implementation

Algorithm for the propagation of values was implemented as an instance of class
ValList, that fills tables for Vin and Vout in the class Env.

Example 7.1 Let us show how the worklist algorithm works for the Client-
Server from Example 1.1.

let

Client , p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0);
Server , p〈a, c〉7.q〈a〉8.r(w)9.Server + p〈a, d〉10.q〈b〉11.r(w)12.Server;

in

Client | Server

E⋆, G⋆ and C⋆ are calculated as shown in Examples 2.1, 3.1 and 5.1). Then graph
based on the function G⋆ is created with additional node “0” that is connected

to all nodes corresponding to labels from E⋆. Graph is shown in Figure 7.2.
Worklist is initialised with the same labels. W = {1, 6, 8}.

Figure 7.2: Graph based on function G⋆

After execution of 26 rounds of the algorithm we receive tables for Vin and Vout,
shown in Figure 7.3.

From these tables the points, where variables receive new values, may be de-
tected. For variables x and z this is label 1, for variable y — label 2 and for w
— labels 9 and 12. As the worklist algorithm shown in Figure 7.1 uses union
in line (12), all possible values of variables are detected. For example, action
with label 9 may interact with actions labelled by 4 and 6. Variable w may be
assigned to x and z, which may take values of {a} and {c, d}, correspondingly.
Hence, Vout(9)w = {a, c, d}.

The usage of additional node l0 ∈ Q with all variables in Vout(0) mapped to
the ⊤ element of P(Const) ensures that recursion is handled correctly and that
variables at the entry point of labels 1, 7 and 10 are still mapped to the ⊤ as
the algorithm doesn’t detect whether the recursion was already unfolded or not.
�

l Vin(l)
1 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
2 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b, c, d}K
3 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
4 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
5 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
6 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
7 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
8 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
9 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
10 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
11 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
12 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K

l Vout(l)
1 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b, c, d}K
2 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
3 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
4 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
5 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
6 Jx 7→ {a}, w 7→ {a, b, c, d}, z 7→ {c, d}, y 7→ {a, b}K
7 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
8 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
9 Jx 7→ {a, b, c, d}, w 7→ {a, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
10 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
11 Jx 7→ {a, b, c, d}, w 7→ {a, b, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K
12 Jx 7→ {a, b, c, d}, w 7→ {a, c, d}, z 7→ {a, b, c, d}, y 7→ {a, b, c, d}K

Figure 7.3: Tables for Vin and Vout

Example 7.2 Now we construct a modification of the Client-Server from Ex-
ample 1.1 by changing constant b transmitted via channel p in the action with
label “11” to a:

let

Client , p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0);
Server , p〈a, c〉7.q〈a〉8.r(w)9.Server + p〈a, d〉10.q〈a〉11.r(w)12.Server;

in

Client | Server

Functions E⋆, G⋆ and C⋆ remain the same, but after execution of 23 rounds of
the algorithm we receive new Vin and Vout shown in Appendix A.2. �

Chapter 8

Automaton

Given a program
let A1 , P1; . . . ; Ak , Pk in P0

and functions

E⋆ : Proc → M, G⋆ : Proc → (Lab → M) K⋆ : Proc → (Lab → M)

C⋆ : Proc → ℘(Lab) × ℘((Lab × Lab) ∪ Lab)

defined in the previous chapters, it is possible to create automaton (Q, q0, δ, E),
where Q is a set of states with a number of states qi, each of them associated
with an extended multiset E, such that E⋆JP K ≤M E[q]. q0 is the initial state
associated with the exposed actions E⋆JP0K of the main process of the program.
δ is a transition relation containing transitions of the form:

• qs ⇒ll′ qd meaning that in the state qs two actions labeled l and l′ with
canonical actions ∂(l) and ∂(l′) such that

∃x : (∂(l) = ⌊x⌋ ∧ ∂(l′) = ⌊x⌋) ∨ (∂(l′) = ⌊x⌋ ∧ ∂(l) = ⌊x⌋)

may interact and give rise to the state qd.

• qs ⇒l qd meaning that in the state qs an internal action τ or a matching
action γ with label l may occur and give rise to the state qd.

The worklist algorithm is used to construct automaton. The main data struc-
tures of the algorithm include:

• a set of states Q with each state associated with extended multiset de-
scribed above;

• a worklist W ⊆ Q of states that need to be processed;

• a set of edges δ with each edge of the form (qs, l̃, qd), where qs is the source
state, qd is the destination state and l̃ ∈ C⋆ where (L⋆, C⋆) = C⋆JP0K.

The worklist algorithm is shown in Figure 8.1.

(1) Q := {q0}; W := {q0}; δ := ∅; E[q0] := E⋆JP0K;
(2) while W 6= ∅ do

(3) select qs from W ; W := W \ {qs};
(4) for each l̃ ∈ enabled(E[qs]) do
(5) let E = transferl̃(E[qs])

(6) in update(qs, l̃, E, L);
(7) squeeze(Q, δ, L);

Figure 8.1: The worklist algorithm

Input for the worklist algorithm is a set of labels of interest L. This set is used as
a parameter for granularity function H and for squeeze function defined later.

Algorithm begins with initialisation in line (1), where initial state q0 is added to
the empty Q. Transition relation δ is initialised to the empty set. Worklist W
is also initialised to contain only q0. E[q0] is assigned to the extended multiset,
corresponding to the exposed actions of the initial process P0.

The algorithm continues while worklist W is not empty (lines (2-6)). In line
(3) a “source” state is selected and removed from the worklist W . Then for
all l̃, corresponding to the enabled actions of the current state, returned by
the enabled(E[qs]) function transferl̃(E[qs]) and update(qs, l̃, E, L) are called.
Function transfer receives extended multiset of labels of exposed actions in at
the entry point of state qs and returns the extended multiset of labels of exposed
actions after execution of actions in the current state. Function update modifies
Q and δ in such a way the the loop in lines (2-6) terminates.

The worklist algorithm ends with function squeeze that modifies Q and δ in
such a way that it contains only information about labels from L in order to
track only some part of interactions occurring in the process.

8.1 The function enabled

The function enabled used in line (4) of the worklist algorithm from Figure 8.1
takes extended multiset associated with the current state qs as its argument.
It returns a set L̃ of labels for actions that may interact or be executed by
themselves. L̃ ⊆ C⋆, where (L⋆, C⋆) = C⋆JP0K. Therefore, L̃ ∈ ℘((Lab×Lab)∪
Lab).

Function enabled(E) will add a label l or a pair of labels (l, l′) to L̃ in following
cases:

• if l ∈ dom(E) is the label of a τ action, and therefore it is always is enabled;

• if l ∈ dom(E) and l′ ∈ dom(E) are labels of matching “send” and “receive”
actions and occur in parallel processes, and therefore (l, l′) are enabled;

• if l ∈ dom(E) is the label of a match action γ (e. g. [v1 = v2] or [v1 6= v2]):

– l is enabled if the action has form [v1 = v2] and the following condition
holds: Vin(l)v1 ∩ Vin(l)v2 6= ∅, i. e. intersection of Vin(l)v1 and
Vin(l)v2 is not empty and v1 and v2 may be equal at the entry point
of label l.

– l is enabled if the action has form [v1 6= v2] and the following condition
doesn’t hold: Vin(l)v1 = Vin(l)v2 ∧ |Vin(l)v1| = |Vin(l)v2| = 1, i. e.
when cardinality of Vin(l)v1 and Vin(l)v2 is equal to 1 and they are
equal, which means that v1 and v2 must be equal.

The overall function enabled(E) may be expressed as:

enabled(E) = (C⋆ ∩ dom(E){l
∣∣∣ ∂(l) = τ})

∪ (C⋆ ∩ (dom(E) × dom(E)))

∪ (C⋆ ∩ dom(E) ∩

{l
∣∣∣ ∂(l) = [v1 = v2] ∧ Vin(l)v1 ∩ Vin(l)v2 6= ∅})

∪ (C⋆ ∩ dom(E) ∩ {l
∣∣∣ ∂(l) = [v1 = v2]} \

{l
∣∣∣ Vin(l)v1 = Vin(l)v2 ∧ |Vin(l)v1| = |Vin(l)v2| = 1})

8.2 The function transfer

The function transfer is analogous to the transfer function for While-language
described in [2]. It is implemented as:

transferl̃(E) = (E −M K⋆JP K(l̃)) +M G⋆JP K(l̃)

This function takes the extended multiset E at the current point of the program
and l̃ ∈ (Lab×Lab∪Lab) enabled at this point. Then it removes information
“killed” by l̃ and adds information “generated” by l̃. Instead of operations on
sets that are used in classical transfer function for the imperative languages here
operations on the extended multiset M are used.

8.3 The function update

The function update takes as its parameters the following:

• qs — the state being currently analysed;

• l̃ — a pair of labels or a single label of action(s) that occurred in the state
qs;

• E — the extended multiset corresponding to the actions that became
exposed after occurrence of l̃.

The overall function is shown in Figure 8.2.

(1) if ∃q ∈ Q ∧ HL(E[q]) = HL(E)
(2) then qd := q;
(3) else select qd 6∈ Q

(4) Q := Q ∪ {qd}; E[qd] := ⊥M;
(5) if ¬(E[qd] ≥M E)
(6) then E[qd] := E[qd]▽ME; W := W ∪ {qd};
(7) δ := δ \ {(qs, l̃, q)|q ∈ Q} ∪ {(qs, l̃, qd)};
(8) clean-up(Q, W, δ)

Figure 8.2: The function update

This function checks in line (1) if there exists a state in Q that has the same
granularity as E. If there is such state, the further work is performed with this

Qreach := {q0} ∪ {q | ∃n, ∃q1, . . . , qn : (q0, . . . , q1) ∈ δ ∧ . . . ∧ (qn, . . . , q) ∈ δ)
Q := Q ∩ Qreach; δ := δ ∩ (Qreach × (Lab ∪ (Lab × Lab)) × Qreach);
W := W ∩ Qreach;

Figure 8.3: The function clean-up

state (line (2)). Otherwise a new state is added in lines (3-4) to Q and extended
multiset associated with it is set to be empty.

In line (5) the test whether new extended multiset E contains additional infor-
mation in comparison with extended multiset of the destination state. If it does,
then the destination state qd is added to the worklist and its extended multiset is
updated using so called widening operator ▽M over extended multisets, defined
by:

(M1▽MM2)(l) =






M1(l) if M2(l) ≤ M1(l)
M2(l) if M1(l) = 0 ∧ M2(l) > 0
∞ otherwise

In line (7) δ is updated with the new transition (qs, l̃, qd) and all old transitions
labeled with l̃ are removed.

In line (8) function clean-up is called. It performs reachability analysis of Q

and removes all states that are unreachable from the initial state q0 and all
transitions that may have these states. The worklist is also updated to contain
only the reachable states of Q. The overall implementation of the function
clean-up is shown in Figure 8.3.

8.4 The granularity function

The granularity function is a function that allows to reuse some states of the
automaton Q although they may have different extended multisets. This is
useful, if we are interested in a specific part of the system. For example, only
some labels of the program or labels independent of their counts may be taken
into consideration.

Our choice of granularity function is defined as:

HL(E) = {l,∞ | l ∈ L ∧ (E(l) > 0 ∨ E(l) = ∞)}

(01) for each qs ∈ Q do

(02) for each (qs, l̃, qd) ∈ δ do

(03) if l̃ 6∈ (L × L ∪ L) ∧ qs 6= qd then

(04) for each (qd, l̃•, q) do
(05) δ := δ \ (qd, l̃•, q) ∩ (qs, l̃•, q)
(06) for each (q, l̃•, qd) do
(07) δ := δ \ (q, l̃•, qd) ∩ (q, l̃•, qs)
(08) Q := Q \ qd;
(09) if l̃ 6∈ (L × L ∪ L) ∧ qs = qd then

(10) δ := δ \ (qs, l̃•, qs)
(11) for each (l 7→ M) ∈ E(qs)
(12) ifl 6∈ L then

(13) E(qs) := E(qs) \ (l 7→ M)

Figure 8.4: The behaviour of squeeze function

If L = Lab, then the function takes into consideration all labels of the program,
but if L ⊂ Lab information about some labels is ignored.

8.5 The function squeeze

The motivation for the function squeeze is that automaton obtained as a re-
sult of the worklist algorithm contains information about all labels of the CCS
program. But it may be useful to have automaton especially its graphical repre-
sentation in form of a graph that emphasizes only a part of the whole program.
The decision is to “squeeze” automaton in such a way that it contains only the
desired set of labels L.

Function squeeze takes L ⊂ Lab as its argument. L was also given to the gran-
ularity function. But granularity function doesn’t prevent information about
labels outside of L from entering the automaton. For example, granularity
function detects a situation, when in two states a label is mapped to differ-
ent extended multisets. But when a transaction leads not only to the change
in an extended multisets corresponding to some labels but also to introduction
of new labels of the exposed action, granularity function permits creation of a
new state. The need to merge these states explains the necessity of squeeze
function.

The overall algorithm is shown in Figure 8.4.

Line (1) introduces cycle for each state qs of Q all its outgoing edges (transitions)

are analysed (line (2)). If l̃ associated with an edge is not present in the set
L × L ∪ L and destinations state qd is not the same as the source state qs (line
(3)), then all incoming and outgoing edges of qd are deleted from δ. Instead of
them edges that contain qs instead of qd are added to δ (lines (4-7)). Then the
state qd is itself deleted from Q in line (8).

If ∧l associated with an edge is not present in the set L×L∪L and destinations
state qd is the same as the source state qs (line (9)) then this edge is removed
from δ in line 10.

Then all entries in E(qs) where label l does not present in the set of labels of
interest L are removed from E(qs) in lines (11-13).

8.6 Implementation issues

Both algorithm for propagation of values and for construction of the automaton
use information that may be presented as graphs. That was the reason for the
choice to represent Q and δ in both algorithms as graphs with the help of a
software library JUNG described in [15]. JUNG is an open-source library for
Java that provides a number of functions for creation and manipulation of graphs
as well as a visualization framework used to make graphical representation of
the obtained automaton.

The algorithm itself was implemented as an instance of class WL that has func-
tions enabled, transfer, update and squeeze. The main function of the al-
gorithm is called go. The worklist algorithm uses functions G⋆, K⋆, E⋆, C⋆, Vin

and Vout that were stored in the class Env.

8.7 Examples

Example 8.1 Let us now show an an automaton constructed for the workflow
from the Example 1.1. Using Vin received by the propagation of values algorithm
(see Figure 7.3) we may apply the algorithm for constructing an automaton.
After 10 rounds of the algorithm the automaton shown in Figure 8.5 is obtained.

Loops (V0 → V15 → V17 → V20 → V0) and (V0 → V14 → V16 → V18 → V0)
correspond to the choice of the first component of the sum [x = y]3r〈x〉4.Client+
[x 6= y]5r〈z〉6.0) where Client doesn’t terminate. State V22 may occur if the

Figure 8.5: Automaton for the program from Example 1.1

second component of the sum was chosen and Client terminated leaving only
Server process active.

If Client-Server program is modified by changing constant b transmitted via
channel q in the action with label “11” to a:

let

Client , p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0);
Server , p〈a, c〉7.q〈a〉8.r(w)9.Server + p〈a, d〉10.q〈a〉11.r(w)12 .Server;

in

Client | Server

the automaton shown in Figure 8.6 is received.

Now the algorithm for the propagation of values detected that at the entry
points of labels 3 and 5 variables x and y will always take the same value “a”
thus making it impossible for action with label 5 to be performed. The workflow
algorithm that constructed automaton used this information and left only two
loops (V0 → V15 → V17 → V20 → V0) and (V0 → V14 → V16 → V18 → V0)
without adding states V19, V21 and V22 that can not occur with this setup.

Figure 8.6: Automaton for the modified program from Example 1.1

Figure 8.7: Automaton for the modified program from Example 1.1

Another modification of this program consists in transmission of constant b via
channel q in actions with both label 8 and 11:

let

Client , p(x, z)1.q(y)2.([x = y]3r〈x〉4.Client + [x 6= y]5r〈z〉6.0);
Server , p〈a, c〉7.q〈b〉8.r(w)9.Server + p〈a, d〉10.q〈b〉11.r(w)12.Server;

in

Client | Server

Now the automaton shown in Figure 8.7 is received.

Here the fact that at the entry point of labels 3 and 5 variables x and y are always
different was detected and the loop of “eternal” interaction between Client and
Server was not included into automaton. �

Example 8.2 Let us consider an example with two parallel processes. Process

Figure 8.8: Automatons for Example 8.2

Q sends a variable a to process S, which sends it back. Then Q sends a received
variable to S one more time. The idea is to check whether analysis detects, that
variables recieved by S are the same.

CCS code for this example is the following:

let

S , (g(x)1.p〈x〉2.m(z, y)3.([x = z]4S + [x 6= z]50));
Q , (g〈a〉6.p(c)7.m〈c, b〉8.Q);

in

S | Q

Algorithm for the propagation of values calculates Vout(3)x = Vout(3)y = {a}.
Thus, Vin for “match” actions 4 and 5 are also equal. Action [x = z]4 is enabled,
but action [x 6= z] is not enabled anymore. The automaton shown in Figure 8.8
(left) arises instead of more general case shown in Figure 8.8 (right).

�

Chapter 9

Analysis of the resulting

automaton

When we are use value passing CCS with application to workflows, it is useful to
know whether there are states where no further actions may be executed. This
may be easily done by analysis of the automaton graph (Q, q0, δ, E). These states
correspond to the nodes of this graph with no output edges. After analysis of
the extended multisets E(q) corresponding to these states it is possible to detect
whether the whole system has the desired behaviour, for example, parts of the
system that according to the extended multiset remain enabled were meant to
be enabled at the design time. This analysis makes it possible to detect design-
defects of the workflows.

Another analysis is detection of states that have transactions leading only to
themselves.

Example 9.1 Let us consider a system with a server and a client working in
parallel. They communicate via two channels. Client receives two values x and
y via these channels and checks them for equality. If they are equal, client and
server continue their execution from the beginning. If they are different, client
performs an internal action and terminates. Server sends either two different
values or two identical values and repeats this procedure forever.

This example may be written in CCS with value passing as:

let

Client , p(x)1.q(y)2.([x = y]3Client + [x 6= y]4τ5.0);
Server , p〈a〉6.q〈a〉7.Server + p〈a〉8.q〈b〉9.Server;

in Client | Server

After execution of the workflow algorithm the graph, shown in Figure 9.1 was
received.

Figure 9.1: Automaton for the Example 9.1

After performing of the analysis state with the extended multiset ⊥M[6 7→
1, 8 7→ 1] was detected. It means that only actions p〈a〉6 and p〈a〉8 of the
Server process are enabled, what corresponds to the correct performance of the
program. �

Worklist algorithm may show that some labels of the analysed program become
unreachable. For example, automaton may show that some component αl

i.Pi in
a sum

∑
i∈I αl

i.Pi will never be executed. This may happen if αl
i doesn’t have

compatible actions from (L⋆, C⋆) = C⋆JP K or if αl
i is is a “match” action γ that

can never be true due to the analysis of the propagation of values described in
Chapter 7.

In this case Pi will never be executed. If it contains actions of the form
xl〈v1, . . . , vk〉 then variables in actions compatible with x will never receive
values v1, . . . , vk. It means, that if we are interested in the values of variables
at different points of the CCS program, functions Vin and Vout need to be re-
calculated taking into consideration that some actions of the program became

unreachable.

To capture this the algorithm for the propagation of values must be executed
once again. But its initialization must be changed so, that its graph (Q, δ)
built on basis of the function G⋆ doesn’t contain labels that don’t present in the
automaton. This is done by the following code:

(1) V L := ∅;
(2) for each q ∈ Q do

(3) for each [l 7→ M] ∈ E[q] do
(4) V L := V L ∪ {l};

Then at the initialization stage of the worklist algorithm for the propagation
of values Q is modified so that Q := Q ∩ V L. We also modify line 10 of the
algorithm from Figure 7.1 so that it contains an extra condition:

(10) for each (l, l′) ∈ C⋆ where l ∈ LV ∧ l′ ∈ LV do . . .

After execution of the modified algorithm Vin and Vout will contain more tight
approximation of the values of all variables in the program.

Example 9.2 To illustrate the benefit of recalculation of Vin and Vout let us
again consider program from the Example 7.2 Vin and Vout for which are shown
in Appendix A.2 and automaton in Figure 8.7.

Originally Vout(9)w = Vout(12)w = {a, c, d} but after construction of the au-
tomaton V L = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12} is received. The algorithm for the
propagation of values modifies Vout which now gives Vout(9)w = Vout(12)w =
{a}. �

Usually workflows are designed in such a way that all actions should sometime
become active and be either be executed by themselves or interact with other
action. If an action was never active, it signals a possible error in the design of
the workflow or in its expression in CCS. An analysis that detects unused label
was created. It looks through all the edges of the automaton and creates a set
L̃ that contains all labels the l̃ associated with the edges. Then subset Lab \ L̃,
where Lab is a set of all labels of the CCS program, is calculated. This set
contains unused labels.

Chapter 10

GUI front-end

To illustrate the work of the algorithms and analyses described in previous
chapters and for the testing purpose a GUI front-end was developed. This
application permits opening and editing of programs in CCS language with
value passing.

Front-end allows to invoke the procedure for creation of the automaton for the
currently edited program and displays the obtained graph. It is also possible
to create automaton that emphasises only a part of labels in the program by
specifying the set of labels L that is given as an argument go the granularity
and “squeeze” functions.

For the obtained graph the front-end may show the information about the sets
of values that variables of the analyzed program may take at the entry and exit
points of all labels of the program (Vin and Vout). This information is shown
after the second pass of the workflow algorithm for the propagation of values,
thus it has a better approximation of the actual behaviour of the program.

It is also possible to display information about the exposed labels associated
with each state of the automaton.

The resulting graph may be displayed using several layouts, including circle
layout, when vertices are arranged in the circle, 3D layout, when the nodes are

placed in a 3-dimensional grid, and self-organising graph layout [7]. The graph
may be saved as PNG file.

Information about variables, exposed actions in different states and labelled
version of the program are shown in HTML format, as textual format doesn’t
allow showing of all special symbols used in notation of this thesis. There is a
possibility to export information from the front-end to HTML, LATEX or simple
ASCII files, with LATEX format giving the best representation corresponding to
the notation of this thesis.

Based on the obtained graph the next analyses were implemented: the search
for the states that don’t have outgoing transactions and/or have only self-loops
and search for the unused labels.

Screenshot of the application is provided in Appendix A.3. Source code and
binaries of the developed program along with examples used in this thesis are
included on CD-ROM.

Chapter 11

Worked examples

11.1 How To Become a Recording Star

Let us consider an example of workflow “How To Become a Recording Star”
described in [14]. The proposed behaviour is shown in Figure 11.1.

The CCS code, that corresponds to the workflow is shown below.

let

Phase1 , ChooseOne1 | WorkY ourWayUp | TryToGetLucky | Sync1;

ChooseOne1 , (callWork
1
.0 + callT ry

2
.0);

Sync1 , (retWork3.next
4
.0 + retT ry5.next

6
.0);

WorkY ourWayUp , (callWork7.τ8.retWork
9

.0);

TryToGetLucky , (callT ry10.τ11.retT ry
12

.0);

Phase2 , (next13.callRec
14

.retRec15.next2
16

.0) | MakeRec;

MakeRec , (callRec17.τ18.retRec
19

.0);
Phase3 , (next220.(Tour | SubPhase3 | Sync3));

Tour , (callRehearse
21

.retRehearse22.callDo
23

.retDo24.SendSync)
| RehearseTour | DoTour;

RehearseTour , (callRehearse25.τ26.retRehearse
27

.0);

TryToGetLucky WorkYourWayUp

Choose one

Sync

MakeRecord

Do all

Choose one

DevelopBadHabits DevelopAsArtist

Sync

RehearseTour

DoTour

Sync

Phase3

Phase1

Phase2

Figure 11.1: How To Become a Recording Star

DoTour , (callDo28.τ29.retDo
30

.0);
SubPhase3 , ChooseOne2 | DevelopBadHabits | DevelopAsArtist | Sync2;

ChooseOne2 , (callHabits
31

.0 + callArtist
32

.0);
Sync2 , (retHabits33.SendSync + retArtist34.SendSync);
SendSync , (sync35.0);

DevelopBadHabits , (callHabits36.τ37.retHabits
38

.0);

DevelopAsArtist , (callArtist39.τ40.retArtist
41

.0);
Sync3 , (sync42.sync43.0);

in Phase1 | Phase2 | Phase3

The whole workflow is divided into three phases. The first phase implements
choosing and executing only one of two processes. It is done with the help of
summation and sending signals to the processes (ChooseOne1). Synchroniza-
tion is implemented as a summation as well (Sync1), but now it receives signals
from the processes. The second phase executes a subprocess and proceeds to
the next phase. The third phase consists in parallel execution of two branches.
The first branch is a sequence of two processes and the second branch executes
one of two processes. The phase ends with synchronization.

Building of the automaton resulted in a graph shown in Appendix A.4. The

branches V0, V1, V3, V5, V7 and V0, V2, V4, V6, V7 correspond to the first phase, se-
quence V7, V8, V9, V10 corresponds to the second phase. The rest of the graph
corresponds to the third phase. As the third phase consists in parallel execution
of processes, this part of the graph is a grid, that captures all possible interleav-
ings of actions. Labels on the horizontal edges correspond to the actions from
the branch RehearseTour; DoTour;. Labels on the vertical edges correspond
to the actions from the branch ChooseOne2. The two last rows of vertices model
the synchronization (Sync3).

The analysis that searches for the unused labels shows that all labels of the
initial programs were used in the automaton. The analysis of deadlocks and
termination states shows that there is only one termination state, namely V65

with no exposed actions associated with it (E[V65] = ⊥M). These facts confirm
the correctness of the model.

11.2 Car repair

Let us consider a part of a state machine from [6]. CarRepair process requests
from Reasoner process a services: credit, and then garage. In case of timeout
modelled by a signal via channel after the CarRepair process stops normal
execution and requests compensation. It should be checked, that the previous
reservation is also revoked.

The code for this model is shown below:

let CarRepair , (getService〈id, the credit〉1.
(after2.compensate〈null〉3.0 + offer(id, credit)4.

(after5.compensate〈credit〉6.0 + getService〈id, the garage〉7.
offer(id, garage)8.(after9.compensate〈garage〉10.0))));

Reasoner , (getService(xid, name)11.
(compensate(what)12.Compensator + [name = the credit]13

offer〈xid, credit〉14.compensate(what)15.Compensator
+ [name = the garage]16offer〈xid, garage〉17.
compensate(what)18.Compensator + [name = the truck]19

offer〈xid, truck〉20.compensate(what)21.Compensator))
| Reasoner;

Compensator , ([what = null]220
+ [what = credit]23revoke〈credit〉24.0
+ [what = garage]25revoke〈garage〉26.revoke〈credit〉27.0);

Revoker , (revoke(smth)28.0) | Revoker;

Deadline , (after
29

.Deadline);

in CarRepair | Reasoner | Deadline | Revoker

The obtained automaton contains 37 states, but in order to capture the be-
haviour of the program we may simplify it using “squeeze” function and elim-
inating information concerning communication via channel after. We get the
automaton with 27 states shown in Figure 11.2.

Figure 11.2: Car Repair Workflow

As our model is an over-approximation, it contains more states than the actual
execution would result into. For example, there is a transaction (V1, (16), V3),
while only (V1, (13), V2) and (V1, (3, 12), V6) would be really possible during
the actual execution. But nevertheless, it can be seen from the graph, that
every time after compensation of the garage (transactions (V11, (26, 28), V16),
(V23, (26, 28), V26) and (V25, (26, 28), V27)) the compensation of the credit fol-
lows (transaction (V16, (27, 28), V9), (V26, (27, 28), V17) and (V27, (27, 28), V19)).

11.3 Traveller

The next example models the workflow between a traveller, travel agent, plane
company and bank. A traveller requests travel agent about destination, the
agent queries a plane company about the possibility of flight reservation to this
destination. In case of negative response it sends “cancel” message to the trav-
eller goes into initial state. In case of positive response, travel agent asks trav-
eller for confirmation. If a confirmation is sent along with bank details, travel
agent makes reservation in the plane company. If reservation succeeds, travel
agent connects with bank, gets the money from traveller’s account and transfers
it to the plane company. The plane company returns reservation details, which
are sent by the travel agent to the traveller.

The resulting code in CCS is shown below:

let Traveller , (request〈destination〉1.(cancel2.T raveller+approve(det)3.τ4.
(no5.T raveller + yes〈bankDetails〉6.

(cancel7.T raveller + reply(resDet)8.T raveller))));
TravelAgent , (request(d)9.query〈d〉10.response(isav, det)11.

([isav = false]12cancel
13

.T ravelAgent + [isav = true]14approve〈det〉15.
(no16.T ravelAgent + yes(bankDet)17.reserve〈details〉18.

reserveok(flag)19.([flag = false]20cancel
21

.T ravelAgent +
[flag = true]22connectBank〈taID, bankD〉23.transferMoney24.

moneyToP lane〈det〉25.done(reserveDet)26.reply〈reserveDet〉27.
T ravelAgent))));

PlaneCompany , (query(dd)28.τ29.(response〈true, details〉30.0 +
response〈false, details〉31.0)) | (reserve(details)32.τ33.

(reserveok〈true〉34.0 + reserveok〈false〉35.0))
| (moneyToP lane(ds)36.τ37.done〈resDetails〉38.0) | PlaneCompany;

Bank , (connectBank(travelAgentID, bankDs)39.τ40.

transferMoney
41

.Bank);
in Traveller | TravelAgent | PlaneCompany | Bank

The created automaton is presented in Figure 11.3. The interesting property
of this automaton is that there are two cases, when two edges lead to the same
state: (V3, (30, 11), V4), (V3, (31, 11), V4) and (V11, (34, 19), V12), (V11, (35, 19), V12).
These edges correspond to sending of different values via channels. Let’s anal-
yse the second case. Here plane company sends “true” or “false” constant
via channel reserveok. Travel agent receives a variable flag via this channel
and analyses its value with the help of “match” actions [flag = false] and
[flag = true]. Here the fork (V12, (20), V13), (V12, (22), V13) arises leading to the
different further execution.

Figure 11.3: Traveller example

The system was designed in such a way that it should enter the initial state
both after the correct execution and after all failures. The analysis detected
that graph is circular and does not contain any deadlocks. The automaton
also uses all the labels of the CCS model. This confirms the correctness of the
intended design.

If we modify this example so that the traveller process terminates after the
positive reply from the travel agent by adding ∅ action after reply(resDet)8, but
still continues execution from the beginning in case of all negative replies, the
resulting automaton will no longer be circular. It will have one termination state
V21 with exposed actions ⊥M[39 7→ 1, 36 7→ ∞, 32 7→ ∞, 9 7→ 1, 28 7→ ∞]. These
exposed actions show that now processes TravelAgent, PlaneCompany and
Bank are ready to begin interaction, but none of the actions from the process
Traveller is exposed and system cannot continue execution. The automaton
for this case is shown in Appendix A.5.

Chapter 12

Conclusion

In the undergone work the extension of Calculus for Communicating Systems
(CCS) with value passing was chosen for performing of a static analysis with
application to workflos.

A Monotone Framework for CCS described in [10] was selected as a starting
point for the analysis that captures transitions among configurations that arise
during the running of CCS processes. As the original analysis doesn’t focus on
the values passed via channels to the different processes, what is crucial for the
workflows, it was extended. The extension consists in approximations of the
actual values that variables of CCS processes may take at execution time and
strengthening of conditions for constructing a finite automaton.

The syntax of CCS was also extended to support additional operations on vari-
ables — comparison and conditional execution of the processes.

The analysis was presented as a transition graph that approximates execution
states of the CCS program.

A graphical front-end was developed to include the overall process of editing
CCS programs, parsing them, performing the analysis, visualising the results in
form of the graph and showing information about properties of the transition
graph, variables and different states of the CCS program. During the work,

different parts of developed analysis were tested on a number of small examples,
and in the end several more complex examples were studied.

The version of CCS used in analysis described in this thesis does not support
specification of arguments for the definitions let Ai(x1, . . . , xm) , Pi;. Further
work may consist in adding this feature to the language, what leads to the more
complex analysis. Another possibility is to extend CCS with value passing
to π-calculus, that permits transfer of channel names. Another direction of
the further work is the deeper investigation of the structure of the resulting
automaton. As transfer of real-world workflows directly to CCS may lead to
the great size of models and and is a time-consuming task, the further research
may concern the development of automatic tools for this purpose.

Appendix A

Appendices

A.1 Syntax of CCS with value passing

let ::= let in proc list

| let def list in proc list

def list ::= def ;

| def list def ;

def ::= process ::= proc list

proc list ::= proc

| proc list | proc

| (proc list)

proc ::= new CHANNEL (proc list)

| (sum)

| process

| 0

sum ::= seq

| sum + seq

seq ::= prefix proc list

| prefix seq

prefix ::= τ.

| CHANNEL (param list).

| CHANNEL < param list >.

| [V AR = V AR]

| [V AR != V AR]

param list ::= /* empty */

| param

| param list , param

param ::= V AR

A.2 Vin and Vout for Example 7.2

l Vin(l)
1 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
2 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a, c, d}K
3 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
4 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
5 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
6 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
7 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
8 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
9 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
10 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
11 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
12 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K

l Vin(l)
1 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a, c, d}K
2 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
3 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
4 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
5 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
6 Jx 7→ {a}, w 7→ {a, c, d}, z 7→ {c, d}, y 7→ {a}K
7 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
8 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
9 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
10 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
11 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K
12 Jx 7→ {a, c, d}, w 7→ {a, c, d}, z 7→ {a, c, d}, y 7→ {a, c, d}K

A.3 Screenshot of GUI

A.4 How to Become a Recording Star workflow

A.5 Modified example of Traveller workflow

Bibliography

[1] Elliot Joel Berk and C. Scott Ananian. JLex: A Lexical Analyzer Generator
for Java. http://www.cs.princeton.edu/~appel/modern/java/JLex/.

[2] C. L. Hankin F. Nielson, H. Riis Nielson. Principles of Program Analysis.
Springer, second edition, 2005.

[3] Frank Puhlmann Hagen Overdick and Mathias Weske. Towards a Formanl
Model for Agile Service Discovery and Integration. Hasso-Plattner-Institute
for IT Systems Engineering at the University of Potsdam.

[4] J. Hillston. Process algebras for quantitative analysis. In Proceedings of
the 20th Annual IEEE Symposium on Logic in Computer Science (LICS’
05), pages 239–248, Chicago, June 2005. IEEE Computer Society Press.

[5] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[6] S. Gilmore M. Wirsing, A. Clark and other. Semantic-
Based Development of Service-Oriented Systems.
http://homepages.inf.ed.ac.uk/stg/publications/forte2006.pdf.

[7] Bernd Meyer. Self-organizing graphs — a neural network perspective of
graph layout. Lecture Notes in Computer Science, 1547:246–262, 1998.

[8] Robin Milner. Communicating and Mobile Systems: The π−calculus. Cam-
bridge University Press, 1999.

[9] Jayadev Misra and William R. Cook. Computation Orchestration. A Basis
for Wide-Area Computing. The University of Texas at Austin.

[10] Hanne Riis Nielson and Flemming Nielson. A Monotone Framework for
CCS. Informatics and Mathematical Modelling, Technical University of
Denmark, 2006.

[11] Weske M. Puhlmann F. Using the pi-calculus for formalizing workflow
patterns. In van der Aalst, W. Benatallah, B., Casati, F., eds.: BPM
2005, volume 3649 of LNCS, pages 153–168, Berlin, 2005. Springer-Verlag.

[12] C. Scott Ananian Scott Hudson, Frank Flannery. CUP: LALR Parser
Generator for Java. http://www2.cs.tum.edu/projects/cup/.

[13] Christian Stefansen. Expressing Workflow Patterns in CCS. De-
partment of Computer Science. University of Copenhagen, 2005.
http://www.stefansen.dk/papers/workflowpatterns.pdf.

[14] Christian Stefansen. SMAWL: A SMAll Workflow Language Based on CCS.
CAiSE Forum, 2005. http://www.stefansen.dk/papers/smawl.pdf.

[15] The JUNG Framework Development Team. JUNG: Java Universal Net-
work/Graph Framework. http://jung.sourceforge.net/index.html.

[16] Hitesh Dholakia Tony Andrews, Francisco Curbera.
Business process execution language for web services.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf,
2003.

[17] Windows workflow foundation official site. http://wf.netfx3.com/.

	Introduction
	1 Calculus of Communicating Systems
	1.1 Syntax
	1.2 Semantics
	1.3 Implementation

	2 Exposed actions
	2.1 Implementation

	3 Generated actions
	3.1 Implementation

	4 Killed actions
	4.1 Implementation

	5 Compatible actions
	5.1 Implementation

	6 Free names
	6.1 Implementation

	7 Propagation of values
	7.1 Introduction
	7.2 The worklist algorithm
	7.3 Result
	7.4 Implementation

	8 Automaton
	8.1 The function enabled
	8.2 The function transfer
	8.3 The function update
	8.4 The granularity function
	8.5 The function squeeze
	8.6 Implementation issues
	8.7 Examples

	9 Analysis of the resulting automaton
	10 GUI front-end
	11 Worked examples
	11.1 How To Become a Recording Star
	11.2 Car repair
	11.3 Traveller

	12 Conclusion
	A Appendices
	A.1 Syntax of CCS with value passing
	A.2 Vin and Vout for Example 7.2
	A.3 Screenshot of GUI
	A.4 How to Become a Recording Star workflow
	A.5 Modified example of Traveller workflow

