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Summary 
 
 
 
 
 
 
 
Structure from Motion deals with 3D reconstruction from 2D images and it is 
one of the most widely researched problems within computer vision area. 
Recently, it was successfully integrated in many medical oriented applications.  

Reconstruction of accurate models of the ear canal is a key step in the 
design and production of hearing aids. Actual methods are based on an invasive 
procedure (ear canal impression taking), require time, special trained skills and 
sophisticated and expensive hardware as 3D laser scanners. On the other side, 
the video otoscope became a standard tool in the hearing specialist office and it 
is able to provide images of the ear canal.   

This thesis is about 3D reconstruction of the human ear canal from images 
using Structure from Motion methods. Two aspects are studied. First, the 
images of the ear canal are analyzed in order to see if they provide enough 
information for reconstruction algorithms. Second, the reconstruction accuracy 
of tube-like objects is analyzed in the context of a specific Structure from 
Motion algorithm. 
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Resumé 
 
 
 
 
 
 
 
Structure from Motion handler om 3D rekonstruktion af 2D billeder og er én af 
de mest undersøgte problemerstillinger indenfor computervisionen. For nylig, 
blev den integreret med succes i mange medicinske metoder. 

Rekonstruktion af præcise modeller af hørekanalen er nøglen i design og 
produktion af høreapparatter. Nuværende metoder er basserede på invasive 
procedurer (udformelse af hørekanalen)  og de tager tid og har brug for special 
trænede egenskaber, sofistikerede og dyre hardware såsom 3d laser scannere. 
På den anden side, video otoskopien blev et standard redskab hos hørelægerne 
og er i stand til at gendanne billeder af hørekanalen.  

Dette projekt handler om 3D rekonstruktion af den humane hørekanal ved 
hjælp af billeder ved brug af Structure from Motion metoder. Man undersøger 
to aspekter. Til at starte med, analyserer man billederne af hørekanalen for at 
samle nok informationer for rekonstruktions algorytmerne. Derefter 
rekonstruktions nøjagtigheden af cylinderagtige objekter er analyseret i 
sammenhæng med et specifik Structure from Motion algorytm. 
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CHAPTER  1 

 
 
 

Introduction 
 
 
 
 
 
 
 
 
Recovering the 3D structure of a scene together with the camera motion from a 
sequence of images is known as the Structure from Motion (SFM) problem and 
challenged researchers over the last two decades. If in the past the most 
important applications were in visual inspection and robot guidance, in recent 
years an increasingly interest has shown for visualization. Creating accurate 
models of existing scenes has now applications in virtual reality, video 
conferencing, manufacturing and medical visualization, to mention only a few.  
 
Some of the current solutions designed to extract 3D information of the objects 
or scenes are often based on expensive specialized hardware like laser scanners. 
The recent developments in computer hardware and digital imaging devices, as 
well as the requirement of robust and low cost systems encouraged the 
development of image-based approaches. Many of new developed methods can 
produce 3D models of real scenes with just a simple consumer camera and a 
computer processing images acquired with the camera (e.g. [1, 2]). 
 
Structure from motion it is not a single, well defined problem. It covers a range 
of problems related to different imaging scenarios, camera motion, and models 
of the scene [4]. The complexity of SFM is also reflected in the extensive 
research in the area over such a long period of time. Even if many aspects 
related to SFM reached a kind of maturity, SFM is still subject of further 
research. There is not a generally applicable SFM algorithm capable to recover 
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the 3D information from any kind of real scenes and under any conditions.  
Current SFM algorithms may perform well on a certain type of scenes and 
under very well defined conditions, but when these conditions change they fail. 
This is a very strong argument to design specific SFM algorithms for specific 
problems [5]. 
 
In the last years Structure from Motion methods have proved their applicability 
in medical area.  The endoscopic camera became a popular and powerful tool in 
minimum invasive surgery, providing the possibility to visualize the internal 
organs and structures for diagnosis.  Structure and motion estimation 
techniques were successfully applied on images provided by video-endoscope 
systems [6-16]. 3D reconstruction from CT or MRI data is well known in 
virtual endoscopy systems, but it provides only 3D shape visualization without 
real textures [3]. Structure from motion was successfully used in mapping 2D 
images provided by the endoscope to volume data (e.g. [13, 14]), thus 
contributing to the construction of very accurate textured 3D models of the 
inner structures of human body. Some success was also achieved in recovering 
the 3D structure of different organs or parts of them only from endoscopic 
images [3, 6, 8, 9]. In [8] the 3D model of the operating field is obtained using 
a stereoscopic endoscope. Other applications in the minimal invasive surgery 
are endoscope tracking [7, 12], or the 3D modeling of deformable surfaces [9, 
10]. These results are encouraging and probably in the near feature SFM will be 
used in many other medical applications. 
 
At the time of writing of this thesis, to the best of my knowledge, there was not 
any known research related to the 3D modeling of the ear canal from 
endoscopic image sequences.  
 
Building accurate models of the ear canal has a direct application in the hearing 
aid industry.  The miniaturization of hearing aids allows them to be placed 
directly in the ear canal. Thus they are able to provide better acoustic 
performance and in the same time they are cosmetically appealing. If until 
recently the manufacturing of hearing aids was a completely manual task, the 
actual trend is to automatize the production process. Of course, this requirement 
implies the construction of a digital model of the ear canal. Currently, this 
model is obtained by scanning an impression of the ear canal with laser 
scanners. Taking an impression of the ear canal is a task done completely 
manually, requires time and special trained skills of the operator.  The 3D 
modeling step is based on expensive and specialized scanning equipment. The 
invasive nature of the impression taking process is probably one of the most 
negative aspects of this procedure, and can be a very unpleasant experience for 
the patient. There is also a risk of producing injuries of the ear canal, or worse 
of the ear drum, if the procedure is not performed properly. All these aspects 
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suggest that, if possible, a better solution for modeling the ear canal should be 
found. Recovering the 3D model using the endoscopic image sequences may be 
a good candidate to possible solutions as it is less invasive, faster, cheaper, and 
does not require special trained skills.  
 
The purpose of this thesis is not to provide a full SFM solution for the given 
problem, but rather to study the applicability of SFM methods to the 3D 
reconstruction of the ear canal. 
 
 
 
1.1 Thesis overview 
 
Chapter 2 is a short introduction to the techniques used in present for 3D 
modeling of the ear canal, emphasizing the reasons of writing this thesis. 
 
Chapter 3 gives the theoretical fundaments for feature based structure and 
motion estimation from images. 
 
Chapter 4 is an overview of different feature detection and tracking methods, 
and also presents the results of experiments performed with otoscopic images.   
 
Chapter 5 deals with the reconstruction accuracy of tube-like objects. Several 
experiments with synthetic and real data are performed and analyzed. 
 
Chapter 6 presents the conclusions of this work. 
 

1.2 Nomenclature     
 
BTE Behind The Ear hearing aid 
CIC Completely In the Ear hearing aid 
CS Coordinate System 
EBR Edge Based Region 
IBR  Intensity Based Region 
ICP Iterative Closest Point 
ITC In The Canal hearing aid 
ITE In The Ear hearing aid 
KLT  Kanade-Lucas-Tomasi tracking method 
MSER Maximally Stable Extremal Region detector 
NCC Normalized Cross-Correlation 
PC Principal Components 
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PCA Principal Components Analysis 
RANSAC  Random Sampling Consensus 
SFM Structure from Motion 
SIFT Scale Invariant Feature Transform 
SSD  Sum of Square Differences 
SURF Speeded Up Robust Features 
SVD Singular Value Decomposition 
TPS Thin Plate Spline 
VO Video Otoscope / Video Otoscopy 
 



 

 
 
 
 
 
 

CHAPTER  2 

 
 
 
 

Background 
 
 
 
 
 
 
 

2.1 Ear Canal Anatomy 
 
The external ear consists of the auricle or pinna, ear canal (also called external 
auditory canal) and the outer surface of the eardrum (or tympanic membrane). 
The pinna is the outside portion of the ear and it is normally referred as ear. 
Pinna is made of skin-covered cartilage. 

 
Figure 2.1 The anatomy of the external ear 

 
The ear canal extends from the pinna to the ear drum and it has an oblong S-
shape. It is a small, tunnel like tube, about 26mm long and 7mm in diameter. 
Size and shape of the canal vary among individuals. 
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a) The inner ear canal b) The ear drum 

 
Figure 2.2 Otoscopic images of the ear canal 

 
 
The eardrum (outer layer of the tympanic membrane) is located at the inside 
end of the ear canal where it separates the external canal from the middle ear. 
The eardrum has a slightly circular shape. 
 
The outer 2/3rds of the ear canal is surrounded by cartilage, has thick skin, 
numerous hairs and contains glands that produce cerumen (ear wax). 
 
The inner portion of the ear canal (aprox. 1/3rd) is narrower and surrounded by 
bone. This part is covered by very thin and hairless skin. The skin in this 
section is very sensitive to touch, and it can be easily injured. Due to obliquity 
of tympanic membrane inferior wall of the inner canal is about 5 mm longer 
than superior wall. 
 
The size and shape of the ear canal (subject of change for example when a 
person is speaking or chewing) are important factors to consider in the hearing 
aids manufacturing. 
 
 

2.2 Hearing aids 
 
The hearing aid is an instrument that amplifies the sounds for people with 
hearing problems. As technology evolves the hearing aids become more 
advanced and highly sophisticated devices. If in the past the hearing aids were 
analogical devices, today digital aids are programmable to fit the specific 
acoustic needs of each user. The miniaturization of hearing aid components it 
still an area of research and experiments but it already makes possible the 
construction of hearing aids small enough to be placed completely in the ear 
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canal. This type of hearing aids offer many advantages for the user comparing 
with the more traditional ones we normally can see behind the ear of wearers.  
 
Even if the hearing aids come in different forms, basically all of them contain 
the same main elements:  

• a microphone to capture the sounds,  
• an electronic amplifier to amplify the signal provided by microphone,  
• an earphone or receiver (speaker),  
• an ear mold or plastic shell that transfers the amplified sound from the 

earphone to the eardrum (directly or through plastic tubes), 
• a power source / battery. 
 

There are four types of hearing aids: 
• Behind the ear (BTE) hearing aid: the case housing the electronics is 

fixed behind the ear. An earmold is fixed in the canal and the sound is 
directed through a tube. They are the largest hearing aids available, can 
provide higher amplification of the sound, and can house larger 
batteries. 

• In the ear (ITE) hearing aids fill the outer ear. 
• Completely in the canal (CIC) are the smallest hearing aids available 

and are customized for the wearer’s ear. They are placed deep inside 
the ear canal, in this way resembling a natural reception of the sound, 
since the microphone and the speaker are both in the canal. Being 
barely visible from exterior, this type of hearing aids is cosmetically 
appealing for the wearer.  

• In the canal (ITC) hearing aid are just a little bit larger than the CIC 
ones, but can house a larger battery. 

 
  

 

2.3 Hearing aids production 
 
 
Until recently, the production of a CIC for a given ear was completely a manual 
and difficult task and the quality of the finished instrument was dependent on 
the skill of the operator. As the hearing aids are made individually for each 
patient, it is very important to have the possibility to build hearing aid shells 
and earmolds that fit properly in the ear.  
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A hearing aid that is not properly fitted in the canal cannot ensure a good 
functionality of the device, and it is also uncomfortable for the wearer [18]. 
 
The traditional manual processing technique can not offer high accuracy and it 
is a long time process. On a production basis, accuracy and timing are very 
important factors. These are good reasons to eliminate as much as possible the 
human intervention from the production line. Thus, the production of hearing 
aids shells is today much more automatized, even if it’s still dependent on 
human actions. As showed in Figure 2.3, three main steps are required to be 
completed in order to build a custom hearing aid shell or earmold:  
 

1. Take an impression of the ear; 
2. Create a digital model of the ear impression using a 3D scanner; 
3. Create the physical shell or earmold reproducing the digital model 

using a rapid prototyping system (a kind of 3D printer). 
 

Only one out of the three steps requires extensive human intervention, namely 
the ear impression taking process. In the followings these three steps are 
discussed and detailed. 
 
 

2.4 Ear impressions 
 
In order to create a custom hearing aid or earmold, a replica of the ear called 
ear impression has to be created. Techniques available today allow hearing 
professionals to make the ear impressions in the office. An ear impression is 
made by injecting a soft silicone material into the ear canal and outer portion of 
the ear. In order to protect the ear drum, a dam made from special cotton or 
foam material is placed in the ear canal. The impression material is inserted 
using a syringe or a silicon gun. The “gun” has two separated containers, one 
for the silicon material and one for a stabilizer, and these two are mixed on 
injection.  

Take an ear 
impression 

Create a digital 
model of the 

ear impression 
using a 
scanner 

Create the hearing 
aid shell using a 

Rapid prototyping 
system 

Figure 2.3 Main steps of hearing aids shells manufacturing
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Figure 2.4 Example of ear impression 

 
Depending on the type of material used, after 5-15 minutes the mix hardens and 
thus it provides a detailed replica of the ear. This is then removed by the 
specialist along with the protection dam. The ear impressions obtained in this 
way, individually from each patient’s ear, are used to build very precisely the 
shells of the hearing aids or earmolds. The execution precision of the hearing 
aid shell or earmold is very important since the comfort of the patient depends 
on it. 
 
Considerable professional skill and care must be exercised in selecting the size, 
material and placement of the protection dam within the external ear canal [68]. 
The material compressibility of the dam should be also related to the density of 
the silicone material used to take the impression.   
 
Impression taking is an invasive procedure for the patient since a foreign object 
is introduced in the ear canal and then extracted. There is always the risk of 
producing some medical problems when taking an ear impression, varying from 
minor patient discomfort to some slight trauma of the ear. The incidence of 
significant trauma to the external or middle ear seems to be low anyway [17]. It 
is also showed in [68] that the material mix consistency and injection force 
have a profound otic impact in the case of improper ear impression-taking 
technique. Particular risks present patients with a damaged ear drum or with a 
previous surgery. 
 
 

2.5 Ear Impression 3D Scanners 
 
3D scanners are used to create a 3D digital model of an ear impression. Of 
course they are not dedicated to scan only ear impressions; they can also be 
used to obtain 3D models of other small objects. 
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Cyberware's Model 7G 3D scanner 3Shape S-200 3D scanner 

Figure 2.5 Ear Impression 3D Scanners 

 
There are many producers offering 3d scanners and most of them are based on 
laser technology. The laser beams are used to determine the depth of points on 
the surface of the scanned object. Two models of 3D scanners based on laser 
technology are presented in the Figure 2.5. Other 3D scanners use a structured 
light pattern projected onto the surface of the object in order to recreate its 3D 
model. 
 
The object is placed on a rotating support and multiple scans are performed 
from different viewing angles.  From these views a software application creates 
completely assembled digital 3D models. 
 
The 3D scanners are small and compact enough to easily fit on the desk. They 
are able to acquire accurate and highly detailed 3D models of ear impressions 
in just a few minutes. For example, S-200 scanner model from 3Shape is able 
to scan up to app. 200,000 points, and the final 3D model contains app. 25,000 
triangles. 
 
Even if the 3D scanners are in general expensive pieces of equipment, some 
integrated low-cost packages can be also found on the market. 
 
 

2.6 Rapid prototyping systems 
 
Rapid prototyping is a generic name given to a class of technologies used to 
produce physical objects from a digital model [69]. These technologies are also 
known under different names like three dimensional printing, solid freeform 
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fabrication, additive fabrication or layered manufacturing (in order to form a 
physical object the materials are added and bounded layer by layer). 
 
Rapid prototyping is a completely automated process. The digital model is 
transformed into cross sections, and then each cross section is physically 
recreated. Different technologies have advantages and weaknesses related to 
the processing speed, accuracy of reproduction, materials that can be used, 
surface finish, size of the object, and system price. 
 
One of the most widely used rapid prototyping technology is stereolithography. 
With this technology the objects or parts of them can be reconstructed from 
plastic materials. The layers are built by tracing a laser beam on the surface of a 
vat of liquid photopolymer [69]. The liquid solidifies very quickly when it is hit 
by the laser beam, and the layers bound together due to the self-adhesive 
property of the material. Some of the advantages of stereolithography are the 
accuracy of reproduction and the larger size of objects that can be reproduced. 
 
Stereolithography bas been successfully deployed in production-ready systems 
for automated hearing aid shell production. An example of such system is Viper 
SLA in Figure 2.6 capable to construct very accurate and fine detailed hearing 
aid shells on production basis. 
 
With the help of rapid prototyping systems the production of hearing aid shells 
is converted from a manual process to a digitally automated process. 
 
 

 

 

 
 

Figure 2.6 Left: Viper SLA rapid prototyping systems; Right: Hearing aid 
shells produced with this system 
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2.7 Video otoscopy 
 
An otoscope or auriscope is a medical device used to visualize the external ear 
canal. The examination of the ear canal with an otoscope is called otoscopy. In 
the most basic form an otoscope consists of a handle and a head containing a 
light source and a magnifying lens. Disposable plastic ear speculums can be 
attached in the front end of the head. The speculum is the part of the otoscope 
inserted in the ear canal. Its conical shape limits the insertion depth in order to 
protect the ear drum of injuries. The examiner can visualize the inside of the ear 
canal through the lens. 

 
The video otoscope (VO) is an optical device very similar to a standard 
otoscope where the eye is substituted by a miniaturized high resolution color 
camera at the focal point of a rod lens optical system. The rod lens is 
surrounded by a fiber optic bundle with the role of transmitting the source light 
[19]. Such a device transfers images of the ear canal to the internal CCD sensor 
of the camera and outputs them to a Video Monitor or to Image-Video 
Capturing device. For most VO systems the high intensity light is produced 
remotely by a fan-cooled halogen light bulb. Transmission of the light through 
the fiber optic bundle avoids heat generation at viewing point [19]. 

The examination of the ear with a video otoscope is called video otoscopy and 
this practice continues to gain acceptance as an integral component of hearing 
health care practice today [18].  

The video otoscopes come in different forms and shapes from a large number 
of manufacturers including Welch Allyn, MedRx, Siemens Hearing Instruments, 
GN Otometrix, and others. The miniaturization of different parts of a video 
otoscope allows manufacturers to build very small, portable and self-contained 
units as CompacVideo Otoscope from Welch Allyn in Figure 2.7 a). This kind 
of video otoscopes have completely internal optical system, light source and 
video camera and are powered by rechargeable batteries hosted by the handle. 
They offer all the advantages of other sophisticated units while keeping a small 
size and a relative low price. 
 
Image freezing buttons, conectivity with video monitors, VCRs, printers or 
computers through video capturing devices are common features for most of 
the video otoscopes. 
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a) Welch Allyn CompacVideo 

Otoscope 
b) GN Otometrics OTOCam Video 

Otoscope System 
 

Figure 2.7 Examples of Video Otoscopes 
 
 
Video otoscopes have many applications in audiologists practice including 
examination of the ear canal and ear drum, physician communication, hearing 
aids selection and fitting, cerumen management, patient education [18].  

With the help of video otoscopy the specialists can make recommendations 
regarding the type of hearing aid best suited for a patient, can detect the factors 
that may cause problems in the impression-taking process, or can pre-select and 
verify an oto-block placement site before taking the ear impression [19].  

Video otoscopy is the first essential step performed in the fitting and selection 
of custom hearing aids. 
 
 

2.8 Discussion 
 
Among different types of hearing aids, CIC present many advantages. They are 
invisible for the others (cosmetically appealing), and assure a natural sound 
reception. A good CIC hearing aid has to fit very well in the ear canal in order 
to give maximum performance and also to be comfortable for the wearer.  
 



Background 14 

The production of hearing aids shells is a complex and time consuming process 
mainly because it is based on ear impressions. Taking the ear impression is a 
very invasive procedure for the patients and requires extremely qualified skills 
of the operator. If this process is not properly done, there is always the risk of 
producing traumas of the ear canal or ear drum. In general, taking the ear canal 
impression is an unpleasant experience for the patients. Despite of these 
negative aspects, it is the key step in the creation of a customized hearing aid. 
This is because the shape accuracy of the hearing aid shell is as good as the ear 
canal impression accuracy. 
 
In order to produce a physical shell for a hearing aid, the ear canal impression 
is scanned normally with 3D laser based scanner. Even if today many producers 
offer ear impressions scanner, these are in general expensive systems. The 
digital model obtained after 3D scanning process is used to create an accurate 
replica of the ear canal using a rapid prototyping system. 
 
On the other side, the video otoscope becomes standard equipment in the ear 
specialist office. It is widely used for the inspection of the ear canal, diagnose, 
hearing instrument selection and fitting. The shape of the otoscope head makes 
examination of the ear canal very safe for the patients and doesn’t require 
specialized skills. Today the video otoscopes became very popular because they 
can offer both the advantages of a very small size and affordable prices. 
 
If we consider the video otoscope is a special camera able to take images inside 
the ear canal, then the question that comes is if it’s possible to use these images 
for building the 3D model of the ear canal. Building 3D models of real scenes 
from sequences of images (known as Structure from Motion problem) has been 
largely studied in the last two decades, and some techniques reached their 
maturity and are successfully used in many real systems including medical 
area. If it would be possible to model the ear canal directly from otoscopic 
images, then two out of the three steps required to build a custom shell are 
eliminated: 1) taking the ear canal impression and 2) scanning the impression. 
The result will be a simpler and cheaper system based on standard equipment 
that normally can be found in many of the ear specialist offices. But the greatest 
advantages are on the patient side where a risky and very specialized procedure 
(ear impression taking) may be replaced with a very usual and less invasive one 
(video otoscopy). 
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The reason of this short review is to emphasize the motivation of writing this 
thesis. The first question we try to find the answer here is if it’s possible to use 
the otoscopic images and Structure from Motion techniques in order to create a 
3d model of the ear canal. This also includes the conditions under which this is 
possible. Another important issue that will be covered in the second part of this 
thesis is to see how accurately the tube-like objects can be reconstructed with 
SFM methods. 
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CHAPTER  3 

 
 
 
 

The Structure from Motion 
problem 

 
 
 
 
 
 
 
Structure from Motion refers to the 3D reconstruction of a rigid (static) object 
(or scene) from 2D images of the object /scene taken from different positions of 
the camera.  
 
A single image doesn’t provide enough information to reconstruct the 3D scene 
due to the way an image is formed by projection of a three-dimensional scene 
onto a two-dimensional image. As an effect of the projection process the depth 
information is lost. Anyway, for a point in one image, its corresponding 3D 
point is constraint to be on the associated line of sight. But it is not possible to 
know where exactly on this line the 3D point is placed. Given more images of 
the same object taken from different poses of the camera, the 3D structure of 
the object can be recovered along with the camera motion. 
 
In this chapter the relation between different images of the same scene is 
discussed. First a camera model is introduced. Then the constraints existing 
between image points corresponding to the same 3D point in two different 
images are analyzed. Next it will be shown how a set of corresponding points in 
two images can be used to infer the relative motion of the camera and the 
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structure of the scene. Finally, a specific structure from motion algorithm is 
presented. 
  
The relations between world objects and images are subject of Multiple View 
Geometry, used to determine the geometry of the objects, camera poses, or 
both. An excellent review of the Multiple View Geometry can be found in [20]. 

As the 3D reconstruction process of an object is based on images, it is 
important to understand before how the images are formed. Thus a 
mathematical model of the camera has to be introduced. 

 

Figure 3.1 Pinhole camera 

 

3.1  Camera model  
 
The most basic camera model but used on a large scale in different computer 
vision problems is the perspective camera model. This model corresponds to an 
ideal pinhole camera and it is completely defined by a projection center C (also 
known as focal point, optical center, or eye point) and a focal plane (image 
plane).  
 
The pinhole camera doesn’t have conventional lens, it can be imagined as a box 
with a very small hole in a very thin wall, such as all the light rays pass through 
a single point (see Figure 3.1).  

Some basic concepts are illustrated in Figure 3.2. The distance between 
projection center and the image plane is called focal length. The line passing 
through the center of projection and it is orthogonal to the retinal plane is called 

The pine 
hole 
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optical axis (or principal axis), and defines the path along which light 
propagates through the camera. The intersection of the optical axis with the 
focal plane is a point c called principal point. The plane parallel to the image 
plane containing the projection centre is called the principal plane or focal 
plane of the camera. 

The relationship between the 3D coordinates of a scene point and the 
coordinates of its projection onto the image plane is described by the central or 
perspective projection. For the pinhole model, a point of the scene is projected 
onto the retinal plane at the intersection of the line passing through the point 
and projection center with the retinal plane [2], as sown in Figure 3.2. In 
general, this model can approximate well most of the cameras. 

 

Figure 3.2 Pinhole camera geometry 
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Figure 3.3 Pinhole camera geometry. The image plane is replaced by a virtual 
plane located on the other side of the focal plane 

It is not important from geometric point of view on which side of the focal 
plane it is located the image plane. This is illustrated in Figure 3.2 and Figure 
3.3. 

In the most basic case the world coordinate system origin is placed at the 
projection center, with the plane x-y parallel to the image plane, and Z-axis is 
identical to the optical axis. 

If the 2D coordinates of the projected point m in the image are (x, y), and the 
3D coordinates of the point M are (X, Y, Z), then applying Thales theorem for 
the similar triangles in Figure 3.4 results in: 

Z
f

Y
y
= , and similarly 

Z
f

X
x
=     (3.1) 
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Figure 3.4 The projection of camera model onto YZ plane 

Any point on the line CM project into the same image point m. This is 
equivalent to rescaling of point represented in homogenous coordinates. 

( ) ( ) ( )sZsYsXZYXsZYX ,,,,~,, = . “~” means “equal up to a scale 
factor”. 

sZ
sXf

Z
Xfx ==  ,and 

sZ
sYf

Z
Yfy ==   (3.2) 

 

3.2  The camera projection matrix 

If the world and image points are represented by homogeneous vectors, then the 
equation (3.2) can be expressed in terms of matrix multiplication as  
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The matrix 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0100
000
000

f
f

P  is called perspective projection matrix. 

If the 3d point is [ ]TZYXM = and its project onto the image plane 

is [ ]Tyxm = , and if [ ]TZYXM 1~ =  and [ ]Tyxm 1~ = are the 
homogenous representation of M and m (obtained by adding 1 in the end of the 
vectors), then the equation (3.3) can be written in a more simple way as: 

MPms ~~ =       (3.4) 
 
Introducing homogenous representation for the image points and the world 
points made the relation between them to be linear. 
  
The camera model is valid only in the special case when the z-axis of the world 
coordinate system is identical to the optical axis. But it is often required to 
represents the points in an arbitrary world coordinate system. 
 
The transformation from the camera CS with center in C to the world CS with 
center in O is given by a rotation 33xR followed by a translation COt x =13 as 
shown in Figure 3.5. These fully describe the position and orientation of the 
camera in the world CS, and are called extrinsic parameters of the camera.  

 
 

Figure 3.5 From camera coordinates  to world coordinates 
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If a point CM  in the camera coordinate system corresponds to the point 

WM in the world coordinate system, then the relation between them is: 
 

tRMM WC += , or in homogenous coordinates: 
 

WC MGM ~~ =       (3.5) 
 
where the matrix G4x4 is  
  

 ⎥
⎦

⎤
⎢
⎣

⎡
=

103
T

tR
G       (3.6) 

 
From (3.4) and (3.5) results that   
 
 WnewWC MPPGMPMm ==~    (3.7) 
 
 
In real cases the origin of the image coordinate system is not the principal point 
and the scaling corresponding to each image axis is different. For a CCD 
camera these depend on the size and shape of the pixels (it may happen that 
they are no perfectly rectangular), and also on the position of CCD chip in the 
camera [2]. Thus, the coordinates in the image plane are further transformed by 
multiplying the matrix P to the left by a 3 × 3 matrix K. The relation between 
pixel coordinates and image coordinates is depicted in Figure 3.6. The camera 
perspective model becomes: 
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K is usually represented as an upper triangular matrix of the form: 
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Figure 3.6 Relation between pixel coordinates and image coordinates. 
 

 
where uk and vk represent the scaling factors for the two axes of image plane, 

θ is the skew between the axes, and ( )00 ,vu are the coordinates of the 
principal point. These parameters encapsulated in the matrix K are called 
intrinsic camera parameters. K it is not dependent on camera position and 
orientation.   
 
Including K in (3.8) then the camera model becomes: 
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where uu fk=α and vv fk=α . 
 

If we note ⎥
⎦

⎤
⎢
⎣

⎡
=

103
T

tR
G , then this equation can be written in a simpler form  

 
[ ] MPMtRAMGAPm N

~~~~ ===    (3.11) 
  

where P from the above equation is the camera projection matrix. 
 

The new matrix  
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contains only intrinsic camera parameters and it is called camera calibration 
matrix. The values 0u and ov  correspond to the translation of the image 
coordinates such as the optical axis passes through the origin of image 
coordinate. 
 
For a camera with fixed optics, intrinsic parameters are the same for all the 
images taken with the camera. But these parameters can obviously change from 
one image to another for the cameras with zooming and auto-focus functions. 
 
In practice the angle between axes it is often assumed to be 2/πθ = . Then the 
final camera model is: 
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3.3  Normalized coordinates 
 
We say that the camera coordinate system is normalized when the image plane 
is place at unit distance from the projection center (focal length 1=f ). If we 
go back to the equation (3.3) it can be seen that in this case the projection 
matrix P  becomes: 
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Assuming that calibration matrix A from relations (3.10), (3.11) is known, then 
the image coordinates in a normalized camera coordinate system are: 
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      (3.15) 

where normalized image coordinates corresponding to a 3D point M(X,Y,Z) are 
as simple as: 

Z
Xx =ˆ  and 

Z
Yy =ˆ      (3.16) 

 
 

 
Figure 3.7 Orthographic projection 
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3.4  Approximations of the perspective model 
 
The perspective projection as formulated in equation (3.2) is a nonlinear 
mapping. Often it is more convenient to work with a linear approximation of 
the perspective model. The most used linear approximations are: 
  

• Orthographic projection (Figure 3.7): is the projection through an 
infinite projection center. The dept information disappears in this case. 
It can be used when distance effect can be ignored. 

• Weak perspective projection (Figure 3.8). In this model, the points are 
first orthographically projected onto a plane CZ (all the points have the 
same depth) and then the new points are projected onto the image 
plane with a perspective projection. This model is useful when the 
object is small comparing with the distance from the object to the 
camera. 

 
The projection matrix for orthographic model (Figure 3.7) is: 
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For the weak perspective projection (Figure 3.8), assuming normalized 
coordinates (focal length f=1) we can write: 

CZ
Xx = , and

CZ
Yy = ;     (3.18) 

The projection matrix for the weak perspective model is: 
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The weak perspective model becomes: 
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Figure 3.8 Weak perspective projection 
 
Adding intrinsic and extrinsic camera parameters, the final weak perspective 
model becomes: 

MGAPms wp
~~ = ,      (3.21) 

where A contains intrinsic camera parameters (same as in equation 3.10), and G 
contains extrinsic camera parameters (see equation 3.11). 
 
 

3.5 Two-view geometry 
 
Two-view geometry, also known as epipolar geometry, refers to the 
geometrical relations between two different perspective views of the same 3D 
scene. 

 
 

Figure 3.9 Corresponding points in two views of the same scene. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Z
Y
X

M  

C
c

X 

Y

Z
x

y

CZ

⎥
⎦

⎤
⎢
⎣

⎡
=

C

C

ZY
ZX

m
/
/

⎥
⎦

⎤
⎢
⎣

⎡
=

Y
X

m

M 

C1 C2 

m1 
m2 



The Structure from Motion problem 
 

29 

The projections m1 and m2 of the same 3D point M in two different views are 
called corresponding points (see Figure 3.9). The epipolar geometry concepts 
are illustrated in Figure 3.10. 
 
A 3D point M together with the two centers of projection C1 and C2 form a so 
called epipolar plane. The projected points m1 and m2 also lie in the epipolar 
plane. An epipolar plane is completely defined by the projection centers of the 
camera and one image point. 
 
The line segment joining the two projection centers is called base line and 
intersects the image plane in points 1e and 2e called epipoles representing the 
projection of the center of projection in opposite image. 
 
The intersection of the epipolar plane with the two image planes forms the lines 

1l and 2l called epipolar lines. 
 
It can be observed that all the 3D points located on the epipolar plane project on 
the epipolar lines 1l and 2l .Another observation is that the epipoles are the 
same for all the epipolar planes. 
 
Given the projection m1 of an unknown 3D point M in the first image plane, the 
epipolar constraint limits the location of the corresponding point in the second 
image plane to lie on the epipolar line 2l . The same is valid for a projected 
point 2m  in the second image plane; its corresponding point in the first image 
plane is constrained to lie on the epipolar line 1l . 

 
Figure 3.10 Epipolar geometry and the epipolar constraint 
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In order to find out the equation of the epipolar line, the equation of the optical 
ray going through a projected point m is obtained first (for a given projection 
matrix P). 
 
The optical ray is the line going through the projection center C and the 
projected point m. All the point on this ray also projects on m. Then a point D 
on the ray can be chosen such as its scale factor is 1; 
 

⎥
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⎤
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⎡
=

1
~ D

Pm        (3.22) 

 
As P is a 3x4 matrix, we can write [ ]bBP = , where 33xB is formed by the 

first 3 columns in P, and 13xb is the last column in P. 
 

The relation (3.22) becomes [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

1
~ D

bBm , and the 3D point D is obtained 

as: 
 

( )mbBD ~1 +−= −       (3.23) 
 
Then a point on the optical ray is given by the next equation: 
 

( ) )~(1 mbBCDCM λλ +−=−+= −     (3.24) 
 
with ( )∞∈ ,0λ  , or 
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M λ      (3.25) 

 
As it was mentioned above, the equation of the optical ray will be used in order 
to estimate the equation of the epipolar line. It is assumed that the projected 
point in the first image plane 1m is known, and the corresponding epipolar line 
in the second image plane will be determined. 
 
Let 1P and 2P be the projection matrices of the two cameras corresponding to 
the two views, and 1m a projected point on the first image plane. The projection 
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of the optical ray going through the point 1m  onto the second image plane 
gives the corresponding epipolar line. This can be written as: 
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In a simplified form, the equation of the epipolar line 2l  can be written as: 
 

1
1

121222
~~ mBBems −+= λ      (3.27) 

 
The above equation describes a line going through the epipol 2e and the point 

1
1

12
~mBB −  - the projection of the point at infinite of the optical ray of 1m  onto 

the second image plane. In a similar way the epipolar line in the first image 
plane can be obtained. 
 
The equation (3.27) describes the epipolar geometry between two views in the 
term of projection matrices, and assumes that both intrinsic and extrinsic 
parameters of the camera are known. When only the intrinsic parameters of the 
camera are known, the epipolar geometry is described by the essential matrix, 
and when both intrinsic and extrinsic parameters are unknown, the relation 
between the views is described by the fundamental matrix. 
 
In the case of three views it is also possible to determine the constraint existing 
between them. This relationship is expressed by the trifocal tensor and it is 
described for example in [23]. 
 
 

3.5  The essential matrix 
 
Let’s suppose that two cameras view the same 3D point M, projecting onto the 
two image planes at 1

~m  and 2
~m . When the intrinsic parameters of the camera 

are known (cameras are calibrated), the image coordinates can be normalized, 
as explained in section 3.3.  
 
If the world coordinates system is aligned with the first camera, then the two 
projection matrices are: 
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[ ]01 IP = , and [ ]tRP =2      (3.28) 
 
Substituting 1P and 2P in the equation (3.27) gives  
 

1122
~~ mRtms λ+=       (3.29) 

 
The interpretation of the equation (3.29) is that the point 2

~m is on the line 
passing through the points t and 1

~mR . In homogenous coordinates the line 
passing through two given points is their cross product, and a point lies on a 
line if the dot product between the point and the line is 0. Thus the equation 
(3.29) this can be also expressed as: 
 

0)~(~
12 =× mRtmT       (3.30) 

 

The cross product of two vectors in 3d space can be expressed by the product of 
a skew symetric matrix and a vector. If [ ]Taaaa 321= and 

[ ]Tbbbb 321= then the cross product ba× is: 
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In the context of the above definition of the cross product, the equation (3.30) 
can be also written as: 
 

0~~~][~
1212 ==× mEmmRtm TT     (3.32) 

 
where the matrix E is called the essential matrix. 

RtE ×

Δ

= ][       (3.33) 
 
One property of the essential matrix is that it has two equal singular values, and 
a third one hat is equal to zero. Then the singular values decomposition (SVD) 
of the matrix E can be written as: 
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If E is the essential matrix of the cameras ( )21 , PP , then TE is the essential 
matrix of cameras ( )12 , PP . 
 
If 1

~m and 2
~m are projected points in image planes, then the corresponding 

epipolar lines in the other image are: 
 

12
~mEl =   

21
~mEl T=       (3.35) 

 
Since the epipolar lines contain the epipoles then: 
 

0~
12 =mEeT for all 1

~m ⇒   

02 =EeT and 01 =Ee      (3.36) 
   
The essential matrix encapsulates only information about extrinsic parameters 
of the camera, and has five degrees of freedom: three of them correspond to the 
3D rotation, and two correspond to the direction of translation. The translation 
can be recovered only up to a scale factor.  
 
 

3.6 The fundamental matrix 
 
When the cameras intrinsic parameters are not known, the epipolar geometry is 
described by the fundamental matrix. This matrix is derived in a similar way as 
the essential matrix, but this time starting from the general equation of the 
camera model (3.11). If the world’s coordinate system is aligned with the first 
camera, then the projection matrices are: 
 

[ ]011 IAP =  and [ ]tRAP 22 =    (3.37) 
 
Substituting these general projection matrices in the equation of the epipolar 
line (3.27) results in: 
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1
1

122222
~~ mRAAems −+= λ , and tAe 22 =   (3.38) 

 
The signification of the equation (3.28) is that the point 2

~m is placed on the line 

going through the points 2e and 1
1

12
~mRAA − , and in homogenous coordinates it 

can be rewritten in the form: 
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0~~
12 =mFmT       (3.40) 

         
          
The matrix F 
 

1
122 ][ −

×= RAAeF      (3.41) 
 
is the fundamental matrix and encapsulates the relation between corresponding 
points in the two images in pixel coordinates. 
 
A property of the fundamental matrix is that it is singular (it has rank 2) 
since [ ] 0det =t . The fundamental matrix has seven degrees of freedom (even 
if there are nine parameters) because of the constraint [ ] 0det =t  and the 
scaling that is not significant. 
         
    

3.7 Estimation of the fundamental matrix 
 
From the equation (3.40) it can be observed that the fundamental matrix is 
defined only by the correspondences of the points in pixel coordinates. It means 
the fundamental matrix can be calculated for a given set of point 
correspondences in two images. 
 
If the matrix F is written as: 
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then the equation (3.40) can be written as: 
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If f is a vector containing the elements of the matrix F then from (3.43) results 
that: 
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        (3.44) 
Often the constraint 0det =F is not taken in consideration and the matrix F is 
estimated from a set of 8≥n point correspondences by the so called eight 
point algorithm. Each point correspondence gives an equation linear in 
elements of F. Then the linear set of equations is given by  
 

0=Bf       (3.45) 
     
where a line of the matrix B corresponds to a pair of points. 
 
The solution for F is obtained by solving the linear system of equation in 
(3.45). The least squares solution of F is obtained by performing a singular 
value decomposition of the matrix BBT . Then F is the eigenvector 
corresponding to the smallest eigen value. 
 
The eight point algorithm doesn’t give the optimal solution for F since the 
constrained 0det =F is not enforced. But this approximation can be used to 
initialize more complex algorithms (see for example [20]).    
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If SVD of the computed F is: 
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then the closest rank two approximation for F is: 
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A better solution for computing F is presented in [21] where the points’ 
coordinates are normalized before solving the homogenous system of linear 
equations:  they are translated such as their centroid is at the origin and are 
scaled such as their average distance from the origin is 2 . The normalized 8-
point algorithm is summarized in Table 3.1 

Given the set of corresponding points in two images 
{ }2Im,1Im|1),,( ageqagepNiqpC iiii ∈∈== K , perform following 

steps: 

1. Center the points in each image around their centroid and scale them 
such as their average distance from the origin is 2 : ii pTp 1

' = , and 

ii qTq 2
' =  

2. From the points '
ip and '

iq compute matrix F using 8-point algorithm. 
3. Enforce the rank 2 constraint on F 
4. Return 21 FTT T  

Table 3.1 Normalized 8-point algorithm 
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3.8 Robust estimation of the fundamental matrix 
 
As it was already seen, the relations between different views of the same scene 
is based on the correspondences between points in different views. Extracting 
and matching points in images is a topic largely addressed in computer vision 
literature, since many other algorithms are based on these correspondences. 
This problem, also known as feature detection and tracking, will be addressed 
in a separate section.  
 
A common problem of the feature detection and matching algorithms is that in 
some situations they provide false correspondences. This will drastically affect 
the quality of the reconstruction since the computed essential/fundamental 
matrix is not the correct one. It is difficult to split the set of matches in inliers 
and outliers before having the correct solution for essential/fundamental matrix 
[2]. 
 
A solution for this problem was proposed in [24]. The algorithm is called 
RANSAC (Random Sampling Consensus) and can be used to estimate 
parameters of a mathematical model from a set of observed data containing 
outliers. The main idea is to iteratively select a random subset of the original 
data and build the model using this subset. Then the data set can be segmented 
in inliers and outliers according to this model. Repeting this procedure with 
randomly selected subsets, the correct solution is the one with the largest 
number of inliers.  
 
When the fundamental matrix is estimated, a potential set of point matches is 
provided. Random samples of 8 matches are taken and based on them the 
fundamental matrix is computed using the normalized 8-point algorithm. 
Matches are considered inliers if the distance from the points to their 
corresponding epipolar line is not larger than a certain threshold (0.5 or 1 pixel 
according to [2]). 
 
The remaining problem is how many samples should be taken, since testing all 
the possibilities can be impractical. In [24] it is shown that the numbers of 
samples can be computed such as a good sample is selected with a certain 
probability. 
 
If z is the probability that at least one of the random samples is error-free the 
minimal number k of samples is: 
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)1log(
)1log(
nw

zk
−
−

=      (3.49) 

where n is the number of points in the sample, and w is the probability that any 
selected data point is within the error tolerance of the model. In other words, if 
ε is the probability for a point to be an outlier then ε−= 1w and the number 
of samples k is: 
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)1log(
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=      (3.50) 

 
In practice the standard deviation of k (or multiplies) is added to this minimal 
number of samples. The standard deviation is given by 
 

n

n

w
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=
1)(       (3.51) 

  
For example, we have a set of possible matches with a probability of 
outliers %20=ε , and we want to estimate the fundamental matrix with a 
probability of z=95% that a good sample was selected, for a number of 8 points 
per sample. 
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A practical approach is to decide in advance the fraction of outliers the 
algorithm can deal with, and set the number of samples accordingly [2]. The 
number of samples function of the probability of outliers is shown in Table 3.2, 
for a probability of 95% that a good sample is selected. 
 
Outliers 5% 10% 20% 30% 40% 50% 60% 70% 80% 
k 3 5 16 50 177 765    4570   45658   1170206 
SD(k) 1 2 5 17 59 255 1525 15241   390624 
 
Table 3.2 The minimum number of 8-point samples along with their standard 
deviation to ensure a probability of 95% for the given fraction of outliers. 
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The algorithm that computes the fundamental matrix in a robust way can be 
summarized in the following steps: 
 

1. Find a set of potential matches 
2. while the probability of getting a good sample < 95% do 

2.1 select a sample (8 matches) 
2.2 compute the fundamental matrix F 
2.3 determine the inliers 
2.4 if the number of inliers is bigger than previous maximum, 

retain the configuration 
3. Refine F based on the inliers given by the best configuration 
4. Find more matches under the constraint imposed by F 
5. Refine F based on all the correct matches 

 
Table 3.3 Robust estimation of the fundamental matrix. 

 
 

3.9 Triangulation  

The triangulation refers to the reconstruction of the 3D point X, given the 
camera projection matrices P1, P2 (intrinsic and extrinsic parameters known) 
and a pair of corresponding points in the two images x and x’ (projections of the 
same point X in the images). In the ideal case, the point X is located at the 
intersection of the two rays going through the points x and x’, as shown in 
Figure 3.11. 

For an image point x, projection of a 3D point X, we have  
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Figure 3.11 Exact triangulation 
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Then the triangulation can be written as: 
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This least squares problem can be solved through singular value decomposition. 
If TVUA ∑= then the solution is the last column of V. 

Now let’s consider two corresponding points 1m and 2m , projections of the 3D 
point M in two images. In reality the two rays going through the points 

1m and 2m don’t intersect due to the noise in the images, and the 3D point M is 
often chosen in practice as the mid point of the common perpendicular to the 
two rays, as shown in Figure 3.12. 

 

X 

x 

x’ 

C1 C2 
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Figure 3.12 The reconstruction of a point in 3D from the projections in two 

images 
 

 
Figure 3.13 Optimal reconstructions in epipolar plane 

 
For real images, the points 1m and 2m are not located on their corresponding 
epipolar lines. To find the optimal 3D point for a given epipolar plane, the 
closest point '

1m and '
2m are selected on the epipolar line (see Figure 3.13) and 

then the 3D point is computed through exact triangulation. This solution 
guarantees minimal reprojection error in the given epipolar plane. 
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3.10 3D reconstruction 

The reconstruction of 3D points from corresponding image points depends on 
how much information is known about cameras. When both intrinsic and 
extrinsic parameters of the cameras are known, then the 3D points can be 
reconstructed by triangulation. When only the intrinsic parameters are known, 
then the structure can be recovered up to an arbitrary scale factor (also known 
as Euclidean reconstruction). If both intrinsic and extrinsic parameters are 
unknown then the structure can be recovered up to a projective transformation 
[2].  

In this thesis the problem of reconstruction with calibrated cameras (known 
intrinsic parameters) is addressed. In this case the epipolar geometry is 
described by the essential matrix E (normalized image coordinates are 
assumed). 

In equation (3.33) we have seen that the essential matrix encapsulates only the 

extrinsic parameters of the camera RtE ×

Δ

= ][ , when the world coordinate 
system is aligned with the first camera. The extrinsic parameters of the second 
camera (R,t) have to be solved in order to be able to recover the structure. 

The essential matrix can be estimated from a number of point correspondences 
using normalized 8-point algorithm. The Rotation R, and translation t can be 
extracted from the matrix E, with the respect of the following theorem 
formulated and demonstrated in [22]: 

Theorem: A 3 X 3 matrix is decomposable into a skew-symmetrical matrix 
postmultiplied by a rotation Matrix if and only if one of its singular values is 
zero and the other two are equal. 

The solution is not unique, but there is only a correct one corresponding to 
positive depth values. The rotation can be fully recovered and the translation 
can be recovered only up to a scale factor. This is because the essential matrix 
itself it is known only up to a scale factor (different scales of t in equation 3.33 
give the same essential matrix). 

If the recovered rotation R and translation t are used to build the cameras’ 
matrices as in equation (3.28), then the structure of the scene can be recovered 
by triangulation from known point correspondences. Knowing the translation t 
only up to a scale factor, will result in a reconstruction up to a scale. 
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3.11 Structure and motion from multiple views 
 
To this point it was shown how two images of the same scene can be related. 
Moving further to multiple views, the structure from motion problem can be 
formulated as finding the structure njM j K1, = and the motion iR and 

miti K1, = that beast fit to the data jm , given the perspective camera model. 

More formally, given mi K1=  views of nj K1= feature points describing a 
rigid object, find jM , iR , it  that minimize: 

2
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]|[minarg
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= =
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n

j
jiiiij

tR
MtRAm

ii

   (3.54) 

 
This problem can be solved by a non-linear optimization algorithm like 
Levenberg Marquardt method. In general calibration matrix iA is known. In 
order to avoid local minima, an initialization close to the real solution has to be 
provided. 
 
In practice, other methods are used to obtain the initial guess for structure and 
motion, and the above optimization invariantly appears as the last optimization 
step in many structure from motion algorithms. This optimization step it is also 
known as bundle adjustment. For further details please refer to [29].  
 
The large number of unknowns in this problem makes it very expensive from 
computational point of view. A very efficient implementation of this 
optimization method can be found in [30], where the sparse block structures in 
the normal equations are exploited. This publicly available software package 
was used in the experiments performed in this thesis. 
 
 

3.12 Factorization method 
 
The factorization method was first proposed by [25]. It provides an initial guess 
of the structure and motion by linearizing the perspective camera model under 
orthographic projection. 
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Let’s consider number P of 3D points ( ) PpZYXs pppp K1,,, =  and the 

corresponding image points in F frames ( ){ }PpFfyx fpfp KK 1,1|, == . 

The notation ( )fpfp yx ,  refers to the point p in the frame f. 
 
The horizontal coordinates of the points are arranged in a matrix PFX × , each 
row corresponds to one frame, and each column to one point. Similarly the 
vertical coordinates are arranged in the matrix PFY × . Then the two matrices are 
combined to form the measurement matrix 
 

⎥⎦
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⎢⎣
⎡=× Y

XW PF2       (3.55) 

The rows are updated by subtracting from each value the mean of the values in 
the same row: 
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The matrix W~ is called registered measurement matrix. 
 
The world reference system is placed at the centroid of points Pps p K1, =  as 
shown in Figure 3.14. 
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Figure 3.14 The world reference system placed at the object centroid 

 
 
For a frame f, the camera reference system is determined by a pair of unit 
vectors ff ji , (given in the world reference) oriented in the direction of the 
lines and columns of the image. It can be shown that under orthographic 
projection  
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Then the matrix W~ can be written as the product of two matrices R and S 
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The matrix R encodes the camera orientations (on rows), and the matrix S 
encodes the coordinates of the points Pps p K1, =  (when the world reference 
is their centroid). 
The matrix W~ is factorized through singular value decomposition in 
 

TVUW ∑=~
      (3.60) 

 
If U~ and V~ are the first three columns of the matrices U and V respectively 
and ∑

~
is the top left 3x3 sub-matrix of  ∑ , then it can be shown that the least 

square solution fit is: 
 

∑=
~~ˆ UR and TVS ~~ˆ ∑=     (3.61) 

 
This solution is not unique since for any invertible 3x3 matrix Q it holds that 

QR̂ and SQ ˆ1− are also a valid decomposition. Moreover, R̂ and Ŝ are in 
general different of the true solution. In general the matrix Q is found by 
imposing the rows of QR̂ to be as orthonormal as possible. Then the solution 
becomes: 
 

QRR ˆ= and SQS ˆ1−=      (3.62) 
 
Many other factorization algorithms were proposed in literature, and they all 
relay one some kind of linearization of the camera model. For a deeper 
understanding of the subject the reader is referred to [26, 27, 28]. 
 
 

3.13 The proposed structure from motion algorithm 
 
Putting all the pieces together, a general and simple structure from motion 
algorithm can be summarized. It is assumed that the images are captured with a 
calibrated camera (with known intrinsic parameters). Camera calibration is 
briefly discussed in the next section. More complex SFM algorithms can 
perform the reconstruction task with uncalibrated cameras (see for example 
[2]). The idea here is to keep the algorithm as simple as possible, as the scope 
of this thesis is only to see if SFM can be applied to the reconstruction of the 
ear canal, and not to propose a certain method for doing that. 
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The main steps of the algorithm are:  
 

1. Detect and track features points in all the images 
2. Assuming calibrated camera, transform the coordinates of the feature 

points in normal coordinates 
3. Find an initial guess for structure and motion using the factorization 

algorithm 
4. Refine the structure and motion with bundle adjustment 

 
The detection and tracking of feature points is discussed in Chapter 4. 
The above algorithm was used for the experiments performed in Chapter 5. 
 
 

3.14 Camera calibration  
 
Camera calibration refers to the estimation of the intrinsic and/or extrinsic 
parameters of the camera. The intrinsic parameters correspond to the physical 
camera parameters (focal length, principal point, skewness), while the extrinsic 
ones describes the position and orientation of the camera in the world 
coordinate system. In practice, these parameters can be estimated by knowing 
the correspondence between a set of 3D points and their projections in the 
images, and solving a system of linear equation based on the camera model. 
Many calibration techniques exist. A common approach for most of them is to 
use a calibration object with known geometry, and then to compute calibration 
parameters from a set of images of this calibration object. For example, in [31] 
the calibration object is a cube with circular patterns on its sides, while in [32, 
33] the calibration object is a planar pattern of squares.  
 
One of the problems with the perspective camera model is that it only 
approximates the image formation process for a real camera. In general this 
model is good enough to describe most of the cameras. However, the optics of 
the real cameras can be very complex, and in many cases the light rays have to 
go through multiple lenses in order to form the image. In this situation the light 
rays coming from a certain point of the scene do not project to the prescribed 
geometric position [2]. If in ideal case the light rays pass through the optical 
center linearly, in reality the optics introduce a non linear distortion to the 
optical path [31]. When a high accuracy is required, the camera model has to 
consider these distortions induced by the camera optics, and to correct them.   
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The most commonly used corrections are for radial distortions and decentering 
distortions [34]. The radial distortion is the displacement of the image points 
radially in the image plane, relative to the center of the image. The decentering 
distortion appears when the centers of curvature of the lenses are not collinear, 
and has both a radial and a tangential component [35]. 
 
Thus, a point in the image plane undergoes further transformations. 
 
Following notations are made:  
 

[ ]Tvu 00 is the principal point; 

[ ]Tdd vu are the distorted coordinates; 

[ ]cc vu are the corrected coordinates. 
 
The radial distortion is: 
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The tangential distortion is: 
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where  

0uuu dd −= 0vvv dd −= 22
ddd vur +=   (3.65) 

 
L,, 21 kk are radial distortion coefficients and L,, 21 pp are tangential 

distortion parameters.  
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In practice, only the first two or three radial distortion coefficients and the first 
two tangential distortion coefficients are estimated. 
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Most of the calibration applications take into account these distortions and 
evaluate the distortions coefficients together with the other camera parameters. 
 
The calibration procedure using planar calibration patterns became very 
popular being easy to use and accurate in the same time, and it is supported by 
many software libraries. Probably the most widely used are Matlab Camera 
Calibration Toolbox [70] and Intel OpenCV library [71]. Both of them use a 
checkerboard planar pattern. While the Matlab Toolbox seems to be a little bit 
less appealing because it needs a lot of user interaction in the corner extraction 
process, the OpenCV calibration method is completely automatic, once the user 
provided a set of images of the calibration pattern. 
 
A large amount of work was dedicated to the calibration of endoscopic cameras 
[36-43]. Characteristic to rod lenses of the endoscopic cameras is their wide 
field of view. This introduces in general significant radial distortions and they 
have to be considered in all the applications based on images taken with 
endoscopic cameras. 
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CHAPTER  4 

 
 
 

Features detection and 
tracking 

 
 
 
 
 
 
 
 
It was shown in the previous chapters that finding correspondences between 
different images is the key point in many computer vision applications, and 
recovering the 3D structure of the scene and the camera motion in only one of 
them. Other applications are camera calibration, image registration, object 
recognition, robot navigation, indexing and database retrieval, to remember 
only a few. It is clear then that results produced by these applications cannot be 
better than the matching methods themselves. The process of relating images of 
the same scene it is known as the feature detection and matching. Feature 
detection refers to finding interest regions in images, while feature matching 
refers to the process of relating these regions in different images. When the 
images represent the frames of a video sequence, the matching process is 
referred as feature tracking. 
 
As the feature detection is the first step in so many computer vision 
applications, a very large number of feature detection algorithms have been 
developed in time. Relating all the points in images can be very 
difficult/impossible and computational expensive task. As a result, in practice 
only a relative small number of correspondences are detected in different 
images. Thus the reconstruction is rather a sparse set of 3D points. In some 
cases this is however not sufficient to reconstruct full surface models. For 
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specific applications a dense model can be obtained by 3D interpolation. There 
are also methods to obtain dense reconstructions starting from a small set of 
correspondences (see for example [ch3-2]). 
 
 

4.1 Definition of a feature 
 
There is no an exact definition of a feature. Rather this notion is general and is 
related to a certain application. Then a feature can represent any kind of 
information that can be extracted from an image and it is relevant for solving 
the given task. In general, features can encapsulate the result of a general 
neighborhood operation applied to an image, or can represent certain structures 
present in the image, like points, edges, or connected regions. 
 
A feature has to be: 

• Localized 
• Meaningful 
• Detectable 

 
An important property of the features is their repeatability rate and it refers to 
the percentage of the correspondences found in different images. In order to be 
“good”, a feature has to be distinctive enough to be detected in more than one 
image. Another property of a feature is its computational complexity. This is 
important, for example, in real time applications, where there is a time 
constraint and, as a consequence, the features have to be easy to extract. In 
some cases, the computational complexity of features can limit the detection 
process only to certain regions in the images. 
 
Features should be reasonably tolerant to a certain level of noise in image. As 
the illumination conditions can change in different images, they should be 
invariant to these changes. Ideally the features have to be also invariant to 
scaling, rotation and perspective distortions. 
 
Feature detection is a low level image processing operation. When the feature 
detection is related to a neighborhood operation, then a local decision is made 
at every image point, weather there is or not a certain type of feature.  
 
A plus of robustness may be added in some applications if two or more 
different types of features are extracted from the images. 
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4.2 Types of features 
 
Features extracted from images can be  

• Corners / interest points: In the literature, the notions of corner and 
interest point are often used interchangeable. In a traditional way, a 
corner is defined by the intersection of two edges, or a point with two 
different edge directions in its neighborhood.  An interest point, on the 
other side, can be any point with a well-defined position in the image 
and that can be robustly detected. The early algorithm performed 
corner detection by finding edges in a first step and then looking for 
the points on the edges with rapid changes in direction. Modern 
algorithms do not relay anymore on the edge detection, for example 
the corners can be detected by looking for high levels of curvature in 
image gradients. Other points than traditional corners can be detected 
by this kind of methods. They are interest points, even if by tradition 
they are still named corners.   

• Edges. An edge is defined as a boundary between two regions in the 
image. In practice edges are detected as sets of points with high 
gradient magnitude.  

• Blobs (also called regions of interest): The notion of blob refers to a 
meaningful region in the image, and sometimes the blobs correspond 
to objects in the image. Usually blobs are associated to a certain point 
(e.g. the center of mass or the local maximum of an operator response).   

• Ridges: are used to describe elongated objects, and they occur 
normally along the center of such objects.  Ridges can be considered a 
generalization of the medial axis. In general it is more difficult to 
extract these features than corners, lines or blobs. 

 
 
Once a feature has been detected, an image patch (neighborhood) around the 
feature can be used to define some attributes or feature descriptors, forming a 
so called feature vector. The feature detection step itself can provide some of 
these attributes, e.g. the magnitude of the gradient. The descriptor has to be 
distinctive, robust to noise, and geometric and photometric deformations. The 
matching is often based on a distance between the feature vectors, e.g. the 
Mahalanobis or Euclidean distance. The dimension of the descriptor has a 
direct impact on the time this task takes.  
 
When talking about feature detectors and their applicability in solving different 
problems, one should consider the possible transformations of the images that 
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can occur in a sequence of images. The transformations can be either 
geometrical or photometrical. The geometrical transformations can be: rotation, 
similarity (rotation and uniform scale), and affine (rotation and non-uniform 
scale, e.g. the perspective effect). Photometrical transformations refer to the 
illumination conditions that can occur from one image to another.  
 
Selecting a feature detector depends not only on the content of the images but 
also on the way the images are captured. For example, in a sequence of images 
captured with a video camera, it is not very probable that the image changes too 
much from one frame to another. In this case the scale and perspective effects 
may be not considered. On the other hand, if the images are taken separately 
from very different points of view, then the shape of the features can 
significantly change, and the affine transformations should be taken into 
account. Affine invariant feature detectors are in general complex and may 
require high computational costs. Sometimes, selecting features that are only 
rotational and scale invariant offer a good compromise.  
 
 

4.3 Comparing image regions 
 
In some cases, the feature matching process requires to compare image regions. 
This is typically done using two measures: dissimilarity based on sum-of-
square-differences (SSD) and similarity based on normalized cross-correlation 
(NCC) [2].  
 
For a region W in image I and corresponding region T(W) in image J, the 
dissimilarity is defined as:  

( )( ) ( )[ ] dxdyyxwyxIyxTJD
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with ),( yxw is a weighting  function typically constant and equal to 1, or a 
Gaussian function to emphasize the central area of the region. 
 
The similarity is: 
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where  
( )( )∫∫=

W
dxdyyxTJJ , , and  

( )∫∫=
W

dxdyyxII ,      (4.3) 

 
are the mean intensity in the regions. Subtracting the mean intensity at every 
location of image regions makes this measure to be invariant to intensity 
changes.  
 
 

4.4 Harris corner detector 
 
One of the most widely used interest point detector is Harris corner detector 
[45]. The basic idea is simple: if we consider a small window centered on the 
point, then shifting the window in any direction should results in large changes 
in intensity. Anyway, there is no change in the case of a smooth region and, if 
the point is located on an edge, there is no change along the edge direction.  
 
For a shift [u,v] of the window, the change in intensity can be expressed by the 
dissimilarity as: 
 

[ ]2
,

),(),(),(),( ∑ −++=
yx

yxIvyuxIyxwvuE  (4.4) 

where w is a weighting function normally chosen w=1, or Gaussian function to 
emphasize the center of the window. 
 
 

Figure 4.1 Two principal signal changes in the vicinity of a point. 
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When the shift is small, the equation (4.4) can be approximated by: 
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where 22×M  is called the second-moment matrix (or auto-correlation matrix) 
and it is computed from image derivatives: 
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The point is considered a feature or not depending on the eigenvalues of the 
matrix M. The eigenvalues correspond to the two principal signal changes in 
the neighborhood of the point. If 1),( =vuE is the ellipse centered on the 
point, then the eigenvectors give the orientation of the ellipse, and the 
eigenvalues give the magnitude of ellipse axes, as shown in Figure 4.1. 
 
If both eigenvalues are very small, then there is no feature at the considered 
point. If one of them is very small and the other one is a large positive value, 
then an edge was found. Large, distinct positive values correspond to a corner.  
 
In practice it is often desirable to avoid the complexity associated with the 
computation of the eigenvalues of the matrix M. Then the corner response 
function is defined as: 
 

22
2121 )(det)( traceMkMkR −=+−= λλλλ  (4.7) 

 where 04.0=k .  
 
The response function depends only on the eigenvalues of the matrix M. 
 
The corner response function is a large positive for a corner, a large negative 
for an edge, and close to zero for smooth regions.  
 
The corners can be detected by fixing a threshold for the response 
function thresholdR > , and finding local maxima. 
 
Harris corner detector is invariant to rotation (the shape of the ellipse depends 
only on the eigenvalues), and it is also invariant to changes in intensities since 
it is based on derivatives. Anyway, this detector is not invariant to image scale. 
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4.5 The KLT tracker 
 
The KLT (Kanade-Lucas-Tomasi) tracker [57, 58, 64] is one of the most 
popular tracking algorithms. For a sequence of images, the algorithm detects in 
a first stage a set of interest points and then, each of them being then tracked in 
the next frames. 
 
One of the principle this method is based on is to find features that are optimal 
for tracking. The detection stage is identical with Harris corner detector (based 
on the eigenvalues of the second moment matrix), but a different criteria is used 
to select features. 
The authors suggest that features selected with threshold>),min( 21 λλ are 
the ones that can be tracked well. The algorithm is able to determine an affine 
transformation that maps the neighborhood of a feature point in one image to 
the corresponding one in the next image by minimizing the dissimilarity 
between these image regions (see equation 4.1). When the distance between 
frames is small, the transformation is a simple translation. 
 
When a feature is lost, (couldn’t be tracked anymore), the algorithm is able to 
find a new one, in order to keep constant the number of tracked features. To 
keep the algorithm fast there is a limit for the maximum allowed displacement 
between the frames. 
 
 

4.6 Scale invariant feature detectors 
 
Sometimes, a desirable property for a feature detector is to be invariant to scale 
changes in images. The basic idea in finding a scale invariant feature point is to 
define a function on a variable size region around the feature point (e.g. the 
average intensity) and to find the local maximum of this function. The region 
size found in this way is invariant to scale changes. Then the feature is 
described together with its characteristic scale. 
 
The concept of automatic scale selection was proposed by [52]. The scale space 
of an image is obtained by convolving the image with Gaussian kernels at 
different scales. 
 

),(*),,(),,( yxIyxGyxL σσ =    (4.8) 
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where I, is the image, G is the Gaussian kernel, and “*” is the convolution 
operator. 
 

222 2/)(
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σ yxeyxG +−=    (4.9) 

 
In [53] a scale invariant feature detector is introduced, namely Harris-Laplace.  
The feature points are detected with the Harris detector, and then corresponding 
scales are determined for each feature point using the Laplacian of Gaussian:  
 

( )),,(),,(),,( 2 σσσσ yxLyxLyxLap yyxx +=   (4.10) 
 
The characteristic scale is selected by searching for a local maximum of the 
Laplacian over scales. The authors showed that the characteristic scale is 
relatively independent of the image scale and that the ratio of the characteristic 
scales for two images is equal to the scale factor between the images. 
 
In [49] a similar feature detector is presented, but this time the features are 
located using the determinant of the Hessian matrix. 
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        (4.11) 
 
Due to the second derivatives in the Hessian matrix, this detector gives strong 
responses for blobs and ridges. The shape of an elliptical region is determined 
with the second moment matrix of the intensity gradient, and the scale with 
Laplacian. This detector is known as Hessian-Laplace feature detector. 
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Figure 4.2 Comparing one dimensional Laplacian and Difference of Gaussians 
 
In [54] the feature points and their associated scales are found by looking for 
local maximum of difference of Gaussian in scale and space: 
 

),,(),,(),,( σσσ yxLkyxLyxDoG −=   (4.12) 
 
The difference of Gaussians approximates the Laplacian (see Figure 4.2), and 
can be computed more efficiently.  
 

( )),,(),,()1(),,(),,( 2 σσσσσ yxLyxLkyxLkyxL yyxx +−≈−  
        (4.13) 
 
This approximation is compensated by the gained speed of detection process. 
The detector is called SIFT (Scale Invariant Feature Transform) and it comes 
together with a very efficient feature descriptor. The combination of SIFT 
feature detector and descriptor is widely used in many computer vision 
problems. 
 
In [51] it is shown that the features detected with Harris-Laplace detector are 
more repeatable than other detectors. 
 
Another scale and rotation invariant interest point detector and descriptor was 
recently introduced in [46]. The detector is called SURF (Speeded Up Robust 
Features) and it is based on a measure of the Hessian matrix, and a distribution-
based descriptor. As the name may suggest, the detector is focused on speed. 
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According to the experiments performed by the author, the performance of 
detector/descriptor is very similar and even outperforms many of the previosly 
proposed detectors/descriptors with respect to repeatability, distinctiveness, and 
robustness. 
 

4.7 Affine invariant region detectors 
 
The affine-invariant feature detectors deal with view-point changes in different 
images. Several affine-invariant region detectors have been proposed in 
literature. 
 
In [51, 49], two affine invariant region detectors are constructed on the top of 
Harris-Laplace and Hessian-Laplace detectors. The shape of the affine region 
is determined with the second moment matrix and then it is normalized to a 
circular one. 
 
In [44] two affine invariant region detectors are presented. The first one is 
geometry-based. Some anchor points are detected in images with Harris corner 
detector [45], and also edges close to the anchor point are extracted with Canny 
edge detector [47]. Two points are moved along the edges until they reach a 
position where some photometric measures of the parallelogram region spanned 
by them together with the anchor point go through an extremum (see Figure 
4.3). 
 
In the second method the anchor points are local intensity extrema. An intensity 
function along the rays emanating from this point is evaluated (see Figure 4.4). 
Local extrema of this function give the points of the region border. 
 
The function evaluated along the rays is: 

 
Figure 4.3. Edge based region detector 
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where 0I is the intensity at the extremum, t is a parameter along the ray, I(t) is 
intensity at the position t, d is just a small number to avoid division by zero. 
 
The regions detected with this method can have arbitrary shape, but they are 
approximated with ellipses. If f is the characteristic function of a region (1 
inside, 0 outside), the geometric moments corresponding to a region R are: 
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The geometric moments up to the second order are computed for the regions. 
Then the ellipse that approximates the region has the same geometrical 
moments as the original regions.  
 
Another affine invariant region detector is the salient region detector proposed 
in [48], which maximizes the entropy within elliptical regions centered on a 
point.  
 
A different approach was used to develop the Maximally Stable Extremal 
Region (MSER) detector [50] witch performed very well in comparative 
studies [49]. The detected regions are connected components having the 
property that all the pixels inside the region are either brighter or darker than 

 
Figure 4.4 Intensity based region detector 

t 
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the pixels outside the boundary. The regions are detected by optimizing the 
threshold selection process. A maximally stable region corresponds to a 
threshold for which the relative area function of relative change of threshold is 
at a local minimum. 
 
 

4.8 Feature Descriptors  
 
A large number of features descriptors have been proposed, like shape context 
[59], steerable filters [60], moment invariants [61], spin images [62], SIFT [54], 
differential invariants [63], to remember only a few of them. Choosing a proper 
feature descriptor depends in general on the feature detector itself. It is 
important that descriptors are distinctive and in the same time invariant to 
different image transformations. For example, the Harris corner response is 
invariant to rotation and photometrical changes.  
 
In comparative studies [55, 56] the SIFT descriptor [54] proved to be superior 
to all the other descriptors tested. Its capacity to be very distinctive, invariant to 
image rotation, scale, intensity change, and to moderate affine transformations, 
made it to be the most widely used descriptor. The descriptor computes 
gradient orientation histograms for several small windows around the interest 
point stored in 128 elements vector, in this way being able to capture a large 
amount of information about the intensity patterns in the neighborhood of the 
point. 
 
Its high dimensionality can be a small disadvantage when talking about feature 
matching, in application where the speed is very important. 
 
It was also shown in [55] that the performance of the descriptors doesn’t 
depend on the feature detector and, in general, region based descriptors seem to 
perform better than point-wise descriptors.  
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Figure 4.5 Otoscopic images: left-visible specular reflection; middle-hair 
blocking the field of view; right-bad illumination conditions 

 
 
 

4.9 Features detection and tracking in otoscopic 
images   
 
A simple visual inspection of the otoscopic images shows that a normal ear 
canal has a rather smooth and uniform colored surface. Excepting the region 
close to the ear drum where some very tiny blood vessels are visible (e.g Figure 
4.5-left), the rest of the ear canal doesn’t offer any visual clue. The light source 
placed on the tip of the otoscope points in the direction of view. This can result 
is specular reflections especially on the surface of ear drum, generating high 
intensity regions in the images that can be easily interpreted as features by the 
detectors. Sometimes, it is difficult to manipulate the otoscope in such a way 
that the tip is always in the middle of the canal. When the light source comes 
too close to the ear canal surface, the effect seen the images is an intensely 
illuminated region while the other parts become darker (Figure 4.5-right). 
Moreover, the outer region of the ear canal has hairs that can totally block the 
field of view (Figure 4.5-middle). 
 
The otoscope is relatively big comparing to the ear canal. Being operated by 
hand makes it very sensitive to movements. The result is visible motion blur in 
many of the images. Together with an evident low contrast, all these 
unfavorable conditions make the otoscopic images a challenging input for the 
feature detection and tracking methods.  
 
Despite of these discouraging observations, some experiments were performed 
in order to see how the feature detectors perform in relative “well” images. The 
original binaries or source codes provided by the authors of different detectors 
were used in these experiments. 
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Figure 4.6 Three frames from a sequence of 20 frames 
 
 

 
 

Figure 4.7 Features detection with Harris corner detector, and tracking with 
KLT tracker 

 
 

 
 

Figure 4.8 Corner selection with the standard KLT method (minimum 
eigenvalue) 

 
In the first experiment the Harris corner detector was tested together with the 
KLT tracker (implementations available in OpenCV library) for a sequence of 
20 frames, 720x576 pixels. In Figure 4.6 frames 1, 10, and 20 are shown. The 
results are presented in Figure 4.7. Only a small number of “corners” are 
detected and tracked with this method, and most of them are placed (as 
expected) on the circular edge generated by the tip of otoscope. Other points 
are detected around the ear drum corresponding to some small structures on the 
ear drum. The natural curvature of the ear canal wall, close to the ear drum, 
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generates a false edge due to the view angle, and some points are detected in 
this region (upper-right region in the images in Figure 4.7). No feature is 
detected on the surface of the canal. 
 
A very similar experiment is performed with the same sequence of images, but 
this time the features are selected with minimum eigenvalue method. The 
results are shown in Figure 4.8. A slightly larger number of points are detected 
this time, most of them in the same regions as in the previous experiment. A 
larger number of points appear around a high intensity spot generated by 
specular reflections.  
 
The SIFT detector is tested with two similar images shown in Figure 4.9. The 
images are selected such as blood vessels structures are visible in both of them. 
A number of 188 key points are detected in the first image, and 150 in the 
second one.  
 

 
 

Figure 4.9 SIFT feature points detected in two different views 
 

 
 

Figure 4.10 Matching SIFT features from Figure 4.9 
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Once again many key points are detected on the circular frame. Only 9 matches 
are found between these two images (Figure 4.10). Inspecting these matches, it 
can be observed that two of them correspond to small blood vessels, one of 
them to the specular spot, and the others correspond to some structures on the 
ear drum. 

 

 
 

Figure 4.11 Intensity based feature detector (left); MSER detector (right) 
 

 
Figure 4.12 Haris-Laplace (top-left), Hessian-Laplace (top-right), Haris-Affine 
(bottom-left), Hessian-Affine (bottom-right) feature detector for the same test 
image 
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In Figure 4.11 and Figure 4.12 the results produced by other detectors are 
demonstrated: Intensity based detector, MSER, Harris-Laplace, Hessian-
Laplace, Harris-Affine and Hessian-Afine. These results are very pure. Only 
the intensity based detector was able to identify more regions on the ear canal 
surface, but they are not well localized (large area of the ellipses), and they are 
generated more by the illumination variation in the images. 
 
In the last experiment a number of artificial features (some black spots) were 
manually placed onto the surface of a silicon model of the ear. Three region 
detectors were tested in this case: Edge based detector, Intensity based detector 
and MSER. The results are in Figure 4.13. Remarkable is the large number of 
regions correctly detected by the intensity based detector and the precision of 
the MSER detector. 
 
 

 
 

 
 
 

Figure 4.13 Edge based detector (left), intensity based detector (right), MSER 
(middle) tested for images of a silicon model of the external ear with manually 

added features 
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4.10 Discussion 
 
It was shown that the otoscopic images don’t provide valuable information for 
the feature detectors. A reconstruction of the ear canal cannot be possible as 
long as there are no features that can be detected and tracked in images 
provided by the video otoscope. Then it is obvious that a way to place artificial 
features inside the ear have to be found. Spraying some high contrast paint 
inside the ear canal can be such a solution. The features created in this way 
would be blob-like, and detectors like MSER or Intensity based one can 
successfully detect them. A combination of detectors can add a plus of 
robustness.  
 
Another important issue is the presence of the hairs in the external part of the 
ear canal, blocking the field of view of the otoscope in a certain segment of the 
canal. Removing this hair is a must before taking the images.  
 
Some image preprocessing techniques like contrast adjustment or color 
normalization could be of great help in improving the quality of images before 
performing feature detection and tracking step.   
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Reconstruction accuracy of 
tube-like objects 

 
 
 
 
 
 
 
 
In this chapter the reconstruction accuracy of tube-like structures will be 
measured. We would like to figure out if SFM methods are good enough for 3D 
reconstruction of this kind of objects. Several experiments with synthetic data 
are made. The general framework is similar for all the experiments: a number 
of points are placed over the surface of a known cylinder (radius, orientation), 
and several cameras are defined in such a way that they point inside the 
cylinder. The SFM method is the same for all the experiments: factorization 
method for obtaining an initial estimation of the model, and sparse bundle 
adjustment for optimization, as described in Section 3.13. As SFM can recover 
the model up to an arbitrary scale factor, the recovered model is first aligned 
with the real model using a 3D registration algorithm (scale adapted Iterative 
Closest Point). Then the accuracy of reconstruction can be measured as the 
registration error between two points data sets. A better way to estimate the 
reconstruction accuracy is to measure the radius of the recovered cylinder and 
to compare it with the real one. To do that, the problem of optimally fitting a 
cylinder to a set a 3D point has to be solved. Experiments with synthetic data 
are made in order to see how the reconstruction error is affected by the noise 
present in the images (localization accuracy of feature points), by the radius of 
cylinder, and by the number of feature points. In the end, an experiment with 
real data is presented. 
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5.1 Reconstruction problem validation 
 
Before experimenting with real data, it is desirable to see if SFM methods are 
indeed appropriate for the given problem: reconstruction of a cylinder from a 
sequence of images taken from different positions of a camera pointing inside 
of the cylinder. At this step no quantitative analysis will be made, only the 
visual quality of the reconstruction will be inspected. 
 
The experiment is performed using pure synthetic data. A number of 28 points 
are distributed over the surface of a cylinder with a radius of 40 units. The 
points form three rings at a distance of 20 units away of each other. The 
cylinder axis coincides with the z axis of the coordinate system. Two camera 
configurations are defined as in Figure 5.1. A camera is fully defined by its 
position in 3D space and its orientation. The direction along witch a camera is 
pointing is colored in red. In the first configuration (Figure 5.1 a), five cameras 
are placed along the cylinder axis. The first camera (in the bottom) is at a 
distance of 90 units away of the first ring of points. The other four cameras’ 
positions and orientations are obtained by translating the previous camera with 
10 units along the z axis. 
 
In the second configuration (Figure 5.1 b) the first camera is placed at the 
origin of coordinate system, and for the other four cameras the positions and 
orientations are randomly generated.  
 
 
 

 
a)     b) 

 
Figure 5.1 Two camera configurations used to test reconstruction of a cylinder 

using SFM methods 
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In the case of the first configuration, the camera motion is a pure translation 
along optical axis, while the second configuration corresponds to a general 
motion. The cameras are considerate to be calibrated. The reason of choosing 
this configuration for the cameras is that recovering the 3D model   when 
camera motion is pure translation is ill posed for many of projective SFM 
methods. Of course, the factorization method used in these experiments 
recovers the Euclidean structure, but it is interesting to see how it behaves in 
this case. 
  
The 3D points located over the surface of cylinder are projected on the frames 
of each of five cameras. The projection corresponds to image formation process 
in a real experiment, and projected points correspond to feature points. In real 
images feature detection may not be very accurate due to factors as image 
noise, or algorithm itself. To make our experiment more realistic, Gaussian 
noise with 0.005=σ is added to the projected points in order to simulate the 
imprecision of feature detection step. The projected values corresponding to x 
axis of image frame range between (-0.4767, 0.6084), and corresponding to y 
axis range between (-0.5698, 0.5326). That means the Gaussian noise added to 
the projected points corresponds on average to a 0.45% localization error on 
both x and y axis. For example, in the case of a 512x512 pixels image, the 
localization error of features is 2.3 pixels on average. 
 
The coordinates of noisy projected points are passed to the SFM algorithm and 
processed in the two steps.  In the first step an initial Euclidean reconstruction 
(and also camera positions and orientations) is obtained with the factorization 
algorithm. It is already known that factorization method is not optimal due to 
the linearization of camera model. In the second step the recovered structure 
(and also cameras) is refined by a bundle adjustment process.  
 
The results obtained for the two considered configurations are listed in Figure 
5.2 and Figure 5.3. A simple visual inspection of these results is more than 
enough to point out a few conclusions. Both experiments produced very similar 
results so we cannot conclude that a configuration behaved worse or better than 
the other. The reconstruction obtained with the factorization algorithm is quite 
bad qualitatively.  While the top views show us that x, and y coordinates are 
estimated correctly (points follow the contour of the circle), the side views 
show us that the factorization method has a deficiency in the estimation of the 
depth information. In both cases the optimization performed by the bundle 
adjustment step corrected the errors and the recovered structure corresponds to 
the real one.  
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Figure 5.2. The recovered structure for the configuration of the cameras shown 
in Figure 5.1 a). Left column corresponds to the structure recovered after 
factorization method, the right column after bundle adjustment. Middle row is 
side view, while bottom row is top view of the recovered structures 
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Figure 5.3. The recovered structure for the configuration of the cameras shown 
in Figure 5.1 b). Left column corresponds to the structure recovered after 
factorization method, the right column after bundle adjustment. Middle row is 
side view, while bottom row is top view of the recovered structures 
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Figure 5.4. Side and top view of the reconstructed structure for the 
configuration in Figure 5.1 b) in the absence of noise 

 
 
 
It is very clear from the side views that the recovered points form three groups 
corresponding to the three rings of the cylinder. The deviations reflect the 
Gaussian noise added to projections.  
 
Figure 5.4 shows the side views and the top views of the reconstructed points 
in the case of second configuration in the absence of noise, before and after 
bundle adjustment. The reconstruction was almost perfect even after the 
factorization step; the small errors visible in the middle ring should be 
associated more with computational errors than with other causes. In this case 
the bundle adjustment couldn’t improve the result, as it was already optimal 
after factorization step. 
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5.2 Registration of 3D point sets – ICP algorithm 
 
The SFM algorithms recover the 3D structure of a scene only up to an arbitrary 
scale factor. In order to estimate the quality (accuracy) of the results, it is 
necessarily to register the points produced by SFM algorithm to the points of 
real structure.  
 
The most popular algorithm used to register two 3D point sets is Iterative 
Closest Point (ICP), and there are many extensions and variations of the basic 
algorithm. All the algorithms require the two data sets to be roughly aligned 
otherwise there is a risk of converging to a local minimum. The original 
algorithm doesn’t recover the scale factor between two data sets. The 
integration of the scale factor in the basic ICP algorithm is described in [65] 
and for convenience will be reviewed here. 
 
The registration problem can be formulated in the following way: For two point 
sets A, B of 3D points corresponding to model points and data points, find a 
rotation matrix 33×∈ RR  and a translation vector 3Rt ∈ that optimally align 
the data points set to the model points set. 
 
The ICP algorithm is an iterative one and can be summarized in the next steps: 
 
Repeat until convergence 

1. Find correspondences between points from the two data sets 
2. Compute the rotation matrix and translation vector from the found 

correspondences. 
 
The processing of finding correspondences between points is the most 
expensive in terms of processing resources. In the standard ICP for each point 
from the set of data points the corresponding one in the model set is found 
using nearest neighbor search. At the end of this process the set 
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The rotations and translation are obtained by minimizing the sum of squared 
distances between the corresponding points: 
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If a and b  are the centroids of the two data sets then the translation can be 
eliminated from the minimization problem by centering the points. 
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Thus the optimum rotation can be computed as 
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The solution of this problem is given by solving the singular value 
decomposition (SVD) of the matrix K: 
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and 
TUVR =* .  

 
The translation vector *t can be computed as 

 
aRbt ** −= . 

 
 

5.2.1 Scale integration 
 
In [65], rotation, translation, and scale factor are estimated simultaneously at 
each iteration. Integrating the scale factor, the minimization problem becomes: 
 

( ) 2

),(,,

*** minarg,, ∑
∈

−−=
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ij
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tsRabstR    (5.5) 

 
The introduction of the scale factor in the problem doesn’t affect the 
computation of rotation, as the matrix K will be the previous one multiplied 
with the scale factor, and the SVD problem remains the same. 
 



 Reconstruction accuracy of tube-like objects 
 

77 

Knowing *R , the scale factor can be estimated as: 
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Making following notations 
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~

 and ( )aaRa ii −= *
~

    (5.7) 
 
the scale factor becomes: 
 

i

T

Cji
i

Cji
i

T

j aaabs
~

),(

~

),(

~~
* / ∑∑

∈∈

=     (5.8) 

 
and  
 

aRsbt *** −= .      (5.9) 
 
According to [65], computing the scale factor at each iteration, slightly 
increases the overall computation time, and also the number of iterations 
required to converge. 
 
Convergence of the algorithm can be declared when the registration error is 
smaller than a given threshold, or a maximum number of iteration is performed.  
 
 

5.2.2 Iterative Closest Point (ICP) algorithm test 
 
An experiment is performed in order to test ICP algorithm. Two sets of points 
are generated and then passed to the ICP algorithm. The first points set (model 
points) consists of 100 points randomly distributed over the surface of a 
cylinder having a length of 100 units and a radius of 35 units. The cylinder 
center line coincides with the x axis of the coordinate system. The second 
points set (data points) is obtained from the first one applying a few 
transformations: translation with 25 units along y axis, rotation with 3/π  
around z axis, and then the points are scaled with a scale factor of 0.5. Finally 
Gaussian noise with 1=σ is added to the coordinates of the points. The two 
sets of points used in this experiment are presented in Figure 5.5, where the 
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points from the model data set have blue color, and the points from data set 
have red color. The ICP algorithm aligns the data points set to the model points 
set. 
 
It was already mentioned that, in order to converge to the real minimum, the 
ICP algorithm needs the two datasets to be roughly aligned. From this reason, 
an additional step is performed before starting the main loop of the ICP 
algorithm. In this step, three pairs of control points with known 
correspondences are selected and used to compute initial rotation, translation 
and scale factor that roughly align the two sets of points. The control points are 
also randomly chosen and are represented by the green circles in Figure 5.5. 
 
The results obtained after running the ICP algorithm are presented in Figure 5.6 
a) and b). The coarse alignment performed by the additional step is showed in 
Figure 5.6 a), while the final (refined) result is showed in Figure 5.6 b). A 
visual inspection of these results demonstrates that the algorithm converged to 
the optimal results, as it can be seen that the red circles are in general around 
the blue points. A quantitative evaluation of the accuracy of registration is 
given by the mean Euclidean distance between the final corresponding points, 
and its standard deviation. In the case of this experiment, the values are 1.6187 
units for the mean distance, and 0.6620 units for standard deviation. These 
registration errors directly reflect the noise added to the points coordinates. 

 
Figure 5.5 Model points set (blue), data points set (red), and control points 

(green) used to test the ICP algorithm 
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An experiment very similar with the one described above is performed, but this 
time in the absence of noise. Only geometric transformations are applied in 
order to construct the data points set. The final result obtained with the ICP 
algorithm can be seen in Figure 5.7.  On average, the registration error in this 
case is 5.7026e-014 with a standard deviation of   2.2924e-014. The error can 
be fairly approximated to zero, as it is mostly generated by the computational 
errors.  
 

 
 

Fig. 5.6 Results obtained by the ICP algorithm: a) coarse alignment, b) refined 
alignment 
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Figure 5.7 Alignment of two sets of points in the absence of noise 

 
 
The registration step was required in order to measure the accuracy of the 
reconstruction using the proposed SFM method: factorization + bundle 
adjustment. Even if the average registration error can give a clue about the 
accuracy of the reconstruction, this measure is not the best choice for the 
specific problem of cylinder reconstruction. It is more interesting to see how 
accurately the reconstructed cylinder fits to the real cylinder. Due to the noise, 
the reconstructed points are not precisely placed over the surface of a cylinder. 
But a cylinder can be optimally fitted to the reconstructed points, averaging in 
this way the errors produced by individual points. Then the radiuses of both 
reconstructed and real cylinder can be used to define the reconstruction error 
as: 
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        (5.10) 
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5.3 Cylinder fitting algorithm 
 

In this section an algorithm that fits a cylinder to a set of points is presented and 
analyzed.  

A cylinder is completely defined by its radius, and the line that runs through its 
center, referred in the followings as cylinder’s center line. The cylinder fitting 
problem can be solved by finding the center line and radius that minimize the 
sum of the squared distances between the set of points and the surface of the 
cylinder. Thus the fitting problem is performed in two steps: in the first step the 
central line is fitted to the points, and in the second step the optimal radius is 
computed. Once the center line is calculated, then the distance from a point to 
the cylinder surface can be obtained subtracting the radius from the distance 
from the point to the center line.  Then the fitting problem becomes: 

( )∑
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−=
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i
R

RclpdistR
,1

2* ),(minarg    (5.11) 

where *R denotes the optimal radius of the fitted cylinder, N is the number of 
the points, },1,{ Nipi = is the set of points, and cl is the estimated central line 
of the cylinder. 

In order to solve the above minimization problem, the central line has to be 
estimated. A line in 3D space is defined by a point on the line and a direction 
vector that specifies the direction of the line. As the line that optimally fits to a 
set of points passes through the centroid of the points, then only the direction of 
center line remains to be estimated. 
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c
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1

      (5.12) 

is the centroid of the points and d is the direction of the center line, then the 
equation of the center line is dtc *0 + , where t is the parameter of the line. 
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The remaining unknown, direction of the center line, can be very elegantly 
computed using Principal Component Analysis (PCA). PCA is a technique that 
reduces multidimensional datasets to lower dimensions, retaining only those 
characteristics of the dataset that contribute most to its variance. To determine 
the principal components of a dataset, the eigenvectors and eigenvalues of the 
dataset covariance matrix have to be computed. The eigenvectors with the 
largest eigenvalues correspond to the dimensions that have the strongest 
correlation in the dataset. For a deeper understanding of PCA technique, the 
reader is referred to [66, 67]. 
 
The direction vector of the cylinder’s center line is given by the coefficients of 
the first principal component. The second and third PCs are orthogonal to the 
first, and their coefficients define directions that are perpendicular to the line. 
 
Several experiments are performed in order to evaluate the performance a 
cylinder fitting algorithm. In the first experiment it is tested the way the number 
of the points influences the radius of fitted cylinder. A variable number of 
points are randomly placed over the surface of a cylinder having a radius of 35 
units and a length of 250 units. The number of the points varies between 5 and 
500. No noise was added to the points. To be noted that in this experiment the 
length is much bigger than the diameter of the cylinder.  

 
Figure 5.8 Fitted cylinder radius function of the number of points 

 
 



 Reconstruction accuracy of tube-like objects 
 

83 

The fitted cylinders radiuses are plotted against the number of the points in 
Figure 5.8. It is obvious that a small number of points results in a very bad 
estimation of the radius. This is due to the fact that the center line of the 
cylinder cannot be accurately estimated. 
 
As the points are randomly distributed – and the same they are in a real 
configuration – there is no symmetry and centroid of the points doesn’t 
coincide with the center of the real cylinder, and thus the estimated center line 
has also a direction different of the real one. These can be seen in the Figure 
5.9 – a closer look for 3 configurations corresponding to 10, 50, and 200 points. 
The computed radiuses of the fitted cylinders are in this case: 26.8964, 34.1071 
and 34.5704. 
 

  

  

  
Figure 5.9 Left column: three configurations for 10, 50 and 200 points 
distributed over the surface of a cylinder. Right column: the center line of fitted 
cylinders 
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Figure 5.10 Fitted cylinder radius function of the number of the cylinder length 
 
 
 
The second performed experiment shows the influence of the cylinder length on 
the fitted cylinder radius. A number of 200 points are randomly placed over the 
surface of a cylinder having a radius of 35 units and a length varying between 
10 and 260 units. The results are depicted in Figure 5.10. It can be observed the 
estimation error of the radius is big when the length of the cylinder is smaller 
than its diameter. That happens because in that case the dominant direction of 
the variance is not anymore along the cylinder center line. This behavior can be 
seen in the Figure 5.11 for three different lengths of the cylinder: 30, 70 and 
90.  
 
It was shown that not all the configurations are well tolerated by the cylinder 
fitting algorithm. The estimation accuracy of the fitted cylinder highly depends 
on the number of the points and the ratio of cylinder length and diameter. The 
symmetry of the points’ distribution also affects the accuracy of estimation. For 
example, if a higher number of points are concentrated in the same area of the 
cylinder, they will influence more the position of the fitted center line. The 
cylinder fitting algorithm allows us to use the estimated radius as a measure of 
reconstruction accuracy. As it is, the algorithm doesn’t perform well for many 
general configurations, and will generate additional errors when measuring the 
reconstruction accuracy. On the other side, only the center line of the cylinder 
cannot be accurately estimated. As the reconstructed points are aligned to the 
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model points before estimating the reconstruction accuracy, then the best 
practice would be to skip the line fitting step and to use the center line of the 
model. Thus only the radius of the reconstructed points needs to be estimated. 
 
 
 
 
 

  

  

  
 

Figure 5.11 The fitted cylinder center line for three different lengths of the 
cylinder: 30, 70, 90. 
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5.4 A complete reconstruction experiment using 
synthetic data 
 
At this stage all the tools needed to reconstruct a cylinder and to measure the 
reconstruction accuracy are available. In this experiment a number of 30 points 
are distributed over the surface of a cylinder with a radius of 43 units and a 
length of 100 units. The points form 3 identical rings, each of them containing 
10 equidistant points, and the distance between two consecutive rings is 50 
units. Five camera frames are defined as shown in the Figure 5.12 a). Gaussian 
noise with 005.0=σ is added to the projected points into the frame of each 
camera. This amount of noise corresponds to 0.53% localization error (on 
average) of the feature points in the image plane (or 2.75 pixels for a 512x512 
image). The recovered structure after factorization method and after bundle 
adjustment step is shown if Figure 5.12 b).  
 
 
 
 

  

a) b) 
 
Figure 5.12 a) The configuration of the model points and camera frames. b) 
The recovered structure after factorization (red points) and after bundle 
adjustment (blue points) 
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Figure 5.13. Side view and top view of the recovered structure after 
factorization (red points) and after bundle adjustment (blue points) 
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Figure 5.14 The alignment of the recovered structure to the model. 
 a) coarse alignment and  b) refined alignment 
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Figure 5.15. a) Side view and b) top view of the refined alignment of the 
recovered structure to the model. 
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The top view and the side view of the recovered structure are presented in 
Figure 5.13. It can be observed again that the factorization step is not able to 
recover accurately the structure, especially the error in estimating the depth for 
some of the points is very big. But the bundle adjustment fixes the problem, 
and it can be seen that after this step the points follow the shape of cylinder. 
Figure 5.14 shows the alignment of the recovered points to the model points 
after the coarse alignment step and after optimization, and The Figure 5.15 
shows the side view and top view of the refined alignment. It can be observed 
that the points farther away from the cameras are recovered with larger errors.  
The explanation is very simple. When projecting the points onto the camera 
frame, the coordinates of the projected points have smaller values when the 
distance from the point to the camera is larger. As the noise in the image plane 
is the same for all the points, the smaller values will be more affected. The 
same happens in a real scenario. Imagine that a picture is taken by pointing a 
camera inside a pipe. Closer sections of the pipe will appear on the sides of the 
image, while section far away from the camera get smaller and smaller and are 
placed in the center of the image. 
 
After aligning the recovered structure to the model, the average point to point 
registration error is 2.9877 with a standard deviation 2.4116. The computed 
radius of the cylinder fitted to the reconstructed points is 42.5356. In other 
words the cylinder the radius of the recovered cylinder is estimated with an 
error of 1.08%. 
 
 

5.5 The influence of the noise on the reconstruction 
accuracy 
 
It is interesting to see how the noise in the images influences the accuracy of 
reconstructed cylinders. That means to find the maximum tolerated level of 
noise in the images in order to obtain o reconstruction accuracy of a certain 
level. The noise is directly reflected in the localization error of the feature 
points. The accuracy of the reconstruction is measured by the estimation error 
of the radius of fitted cylinder, as defined in the equation 5.10. 
 
The required accuracy of the reconstruction depends on the application. As this 
work is related to the reconstruction of the ear canal, the need to find an 
acceptable level of tolerance in this case arises.  As it was already seen, the 3D 
model of the ear canal is obtained by scanning an ear impression. The scanning 
process reconstructs very accurately the 3D model of the impression. It is also 
known that that the ear canal is not very rigid and its shape can change in 
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different situation, for example when chewing, opening mouth, etc. Different 
impression taking techniques assume the mouth opened, half opened, or closed. 
It is clear that the obtained 3D models will be also different in these situations. 
Anyway, the differences are small. The hearing aid shell built using this model 
should also fit properly in the ear canal. If is too small, there is the risk to fall 
down, and if it is too large it can produce discomfort for the wearer. It is clear 
that the tolerance level of the reproduction error is very small. To see how 
exactly small it is this level, people working in the hearing aids industry were 
asked about this problem. An exact number couldn’t be obtained, but finally it 
was agreed that an error of 0.1 mm is acceptable. If we assume that the ear 
canal (or only a segment of the ear canal) is a cylinder with a diameter of 7 
mm, then the reconstruction error of the cylinder radius shouldn’t be bigger 
than 1.42%.  
 
In the following experiment we try to determine the maximum level of noise 
(corresponding to the localization of the feature points in the images) such as 
the reconstruction error is smaller than 1.42%. 
 
The same configuration of the points and cameras as in the previous experiment 
was used: 30 point (3 rings of 10 points) distributed on a cylinder with radius 
43 units, and length 100 units. The noise was progressively added up to a value 
of 0.01, corresponding to a localization error of approximately 1.3% (6.5 pixels 
localization error of the features for a 512x512 image). The dependence of the 
localization error on the noise is depicted in Figure 5.16. 

 
 

Figure 5.16 The relation between the noise and the localization error of the 
points projected into the camera frame 
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Figure 5.16 The dependence of the point to point registration error on the noise 

 
 
In Figure 5.16 it can be seen that the point to point registration error increases 
linearly with the noise. For each value of σ  only one test was performed. That 
was enough to see the main trend of this dependency of the registration error on 
noise. A better experiment would perform more tests for each value of σ  noise 
and average the results. Only one test was performed for each configuration due 
to the computational times. The point to point registration errors along with 
corresponding standard deviations are depicted in Figure 5.17. 
 
In Figure 5.18 the fitted cylinder radius is plotted against the localization error 
of the points. It can be seen that when the point localization error increases, the 
estimated cylinder radius has a decreasing trend. In the same figure the green 
curve is optimally fitted to the data with a certain degree of smoothness (a 
smoothing Thin Plate Spline or TPS). The black horizontal line in the figure 
represents the real radius, while the area between the two red lines belongs to 
the configurations with a reconstruction error below 1.42%. Once again, 
generating more tests for each configuration and averaging results can show 
more clearly the trend of estimated radius. In this case the fitted green curve 
intersects the red line at a value of 0.9 for the localization error.  
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Figure 5.17 Point to point registration error (blue) and its standard deviation 

(black segments) function of noise.  

 
Figure 5.18 Fitted cylinder radius function of point localization error. The 

black line represents the real radius, and the red lines represent the accepted 
level of error: %42.1±  of radius 

 
It means that, in order to reconstruct a cylinder such as the reconstruction error 
is less than 1.42%, the localization error of the feature points may have a 
maximum value of 0.9% (corresponding to 4.7 pixels for a 512x512 image). 
For safety reasons, a smaller value should be considered. For example a value 
of 0.6% corresponds to 3 pixels localization error for a 512 by 512 pixels 
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image. This value is not critical since many of the feature detectors have 
subpixel accuracy. 
 
 

5.6 The influence of the cylinder radius on the 
reconstruction accuracy 
 
The experiment is very similar with the previous one, but this time a fixed 
amount of noise is added for every configuration ( 002.0=σ ). The only 
variable parameter is the cylinder radius. In Figure 5.19 and Figure 5.20 the 
point to point registration error and the reconstruction error are plotted function 
of the cylinder radius. The both errors decrease while the radius increases. The 
explanation is simple: while the z coordinates of the points are the same in all 
the configurations, it results that the values of projections on cameras frames 
depend only on the radius. As the radius increases, also the projection values 
increase and become less sensitive to the noise.  

 

 
Figure 5.19 Point to point registration error function of cylinder radius 
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Figure 5.20 Reconstruction error function of cylinder radius 

  
 

5.7 The influence of the number of points on the 
reconstruction accuracy 
 
The experiment is similar with the two previous ones: same cylinder, same 
camera configurations. Noise with 005.0=σ  is added to the projected points. 
But this time the number of the points is not constant anymore. A variable 
number of points are randomly distributed over the cylinder’ surface and the 
reconstruction errors are measured. In Figure 5.21 and Figure 5.22 the 
registration error and the reconstruction error are plotted against the number of 
the points. A larger number of the points don’t necessarily improve the 
accuracy of the reconstruction. As long as the cylinder parameters (radius and 
length) don’t change, the noise affects the projected points in a similar way for 
all the configurations. Only the position of the points in the 3D space is 
important, because the ones closer to the camera are less affected by noise. 
 
It is also interesting to remark that in all the cases the reconstruction error is 
smaller then 1.42% (for 005.0=σ the localization error is approximately 
0.6%). 
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Figure 5.21 Registration error function of the number of points 

 
 

 
Figure 5.22 Reconstruction error function of the number of points 
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5.8 An experiment with real data 
 
In this section a reconstruction of a real scene is performed with the proposed 
methods, and the reconstruction accuracy is measured.  
 
The setup is very simple. It mainly consists from a camera (USB Labtec 
notebook web cam with adjustable focus) and a cylinder with 31 feature points. 
In order to obtain the 3D structure of the model, the exact positions of the 
points on the cylinder have to be known. Initially a grid with 1 cm square size 
is printed on a sheet of paper. To obtain exactly the same dimensions on the 
printed paper, automatically resizing features of the printer have to be disabled. 
The feature points are placed with a black marker on the corners of the grid at 
known positions, as it can be seen in Figure 5.23. The real coordinates of the 
feature points are assumed to be at the intersection of the crossing lines. There 
are four lines each of them having seven feature points, placed at two 
centimeters away of each other. The piece of paper with the points marked in 
the way described above is mapped to the inner part of a glass cylinder, as 
shown in Figure 5.24. As ruler marks were placed in advance on the paper, it is 
very easy to get the width of the unfolded paper mapped to the cylinder: 142.5 
mm. Dividing this number by π2 the radius of the cylinder id obtained. Now 
that the radius of the cylinder is known, and the planar coordinates of the 
feature points (on the unfolded paper) are also known, then the 3D positions of 
the points on the cylinder are also obtained. The radius is in this case 22.67 
mm. The cylinder model is shown in Figure 5.25. At this point the cylinder 
model is known and the reconstruction step can be performed. 
 
 

 
 

Figure 5.23 The placement of the feature points onto a rectangular grid with 
the size of the squares of 1 cm. 
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Figure 5.24 The setup used for the experiment with real data 
 
 
A camera calibration is performed in order to obtain the internal camera 
parameters (the calibration matrix) and distortion coefficients. Camera 
calibration features of OpenCV (open computer vision) library are used in this 
case. The calibration grid is a checkerboard 6x7 squares, with square size of 
7.05 mm printed onto an A4 sheet of paper. A number of 25 images of the 
calibration grid are taken at a resolution of 320x240 pixels. The images cover 
different positions of the camera, different view angles, and different 
orientations of the CCD sensor. The camera was fixed on a small support 
before taking each picture, to avoid the motion blur. The setup is shown in 
Figure 5.26. The built-in functionality of OpenCV is able to automatically 
detect the corners of the checkerboard, and based of their coordinates in 
different images it recovers accurately the camera calibration matrix together 
with distortion parameters. 
 

 
Figure 5.25 The cylinder model used in the experiment 
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Figure 5.26 The setup used to calibrate the camera 
 
 

  

  
 

Figure 5.27 Camera calibration – detection of the calibration pattern 
 
 
Several images of the calibration pattern along with detected corners are shown 
in Figure 5.27. After the calibration, camera internal parameters (focal length, 
principal point) and radial and tangential distortion coefficients are recovered. 
The camera calibration matrix K, principal point c, focal length f, and distortion 
coefficients are listed bellow: 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
27.12357.4450
14.172038.446

K ; c = [172.14, 123.27]; 

f = [446.38, 445.57]; 
 
d = [0.075, 0.945, -0.0025, -0.0038], where the first two parameters correspond 
to radial distortions, and the last two correspond to tangential distortion. 
 
 

 
 

Fig 5.28 Example of undistorted image 
 
The distortion parameters are used to undistort the taken images before 
processing. An example of an undistorted calibration grid image is in Figure 
5.28. 
 
In the next step four images of the cylinder are taken from different positions of 
the camera. The camera positions doesn’t follow a specific pattern, they are as 
general as possible. The only restriction imposed is that all the feature points 
have to be visible in all the images. The relative positions of the cameras to the 
cylinder are not measured since we are interested only to see the accuracy of 
the recovered structure. The four images are shown in Figure 5.29. 
 
In the next step the images are rectified using distortion parameters obtained 
after the calibration step (see Figure 5.30). The feature detection step is made 
manually for each image, trying to point the center of the features as good as 
possible. Manual selection of the points has also the advantage to provide the 
correspondences between the features in different images. The reason of 
performing manual annotation of the features is to make abstraction of the 
accuracy or robustness of a specific feature detector and tracker, and to avoid 
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the detection of features points which are not part of the model. For example, a 
blob detector would probably perform well in detecting the features in this 
particular example since the regions are black on a white background. A 
threshold properly chosen would eliminate other possible regions from the 
images. The feature points can be the centers of mass of the regions. A simple 
normalized cross-correlation associated with a distance constraint for the same 
feature in different images can determine the correspondences of the feature 
points. 
 
 
 

 
 

    
 

    
 

Figure 5.29 Four images of the test cylinder 
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Figure 5.30 Distortion rectifications of the images  
 
 
 

 
 

Figure 5.31 Annotated feature points in the images (green points) 
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The points manually selected in the four images are shown in Figure 5.31. In 
the following steps the 3D structure of the cylinder is recovered in the same 
way as in the experiments with synthetic data. Recovered points after 
factorization step and after bundle adjustment are shown in the Figure 5.32, 
coarse alignment of the recovered structure to the model in Figure 5.33, and the 
final alignment in Figure 5.44. 
 
The average point to point registration error after the alignment is 0.7565 mm, 
with a standard deviation of 0.5664 mm, and the recovered radius of the fitted 
cylinder is 22.8179 mm. As the real radius is 22.67 mm, it means the cylinder 
radius is recovered with an error of 0.61%, less than the maximum tolerated 
level 1.42%. 
 
 
 

 
Figure 5.32 The recovered structure after factorization step (red points) and 

after bundle adjustment (blue points) 
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Figure 5.33 Coarse alignments of the recovered points to the model 

 
 
 

 
Figure 5.34 Refined alignment of the recovered structure to the model 



 

 
 
 
 
 
 

CHAPTER  6 

 
 
 

Conclusions 
 
 
 
 
 
 
 
 
This thesis addressed the problem of 3D reconstruction of the human ear canal 
using feature based Structure from Motion methods. As seen in the previous 
chapters, these methods are based on the detection and tracking of interest 
points or regions (features) in different images of the same object or scene. The 
relations existing between same features in different images make possible the 
reconstruction of a sparse set of points onto the surface of object. 
 
The otoscopic images proved to be a challenge for the feature detection 
algorithms. Several of state of the art feature detectors have been tested with 
images of the ear canal. Both interest point detectors and region detectors failed 
to find reliable features on the surface of the ear canal. Besides of this lack of 
features due to the natural smoothness of the ear canal surface, there are other 
negative aspects that can directly influence the performance of the feature 
detection algorithms. The specific illumination conditions created by the light 
source of the otoscope (specular reflections, poor or over illuminated regions), 
low contrast of images, blur generated by the motion of otoscope are the most 
important ones.  Thus, some image preprocessing techniques like contrast 
adjustment or color normalization would be necessary. It was shown that the 
specular reflections and the circular border in the images generated by the tip of 
otoscope can fool the feature detection algorithms. Thus, many of the 
“features” are detected in regions that do not correspond to the real surface of 
the ear canal. Especially when an interest points detector is used, the ones 
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detected too close to the circular border should be discarded. The interest point 
detectors are not recommended, due to the natural curvature of the ear canal 
that can produce false edges in the images, and consequently strong responses 
of these detection methods.  
 
Probably one of the most painful issues is the presence of the hair in the 
external part of the ear canal that practically blocks the field of view of the 
otoscope in some regions.  The hair should be removed in advance in order to 
obtain useful images of the entire ear canal. 
 
In the absence of robustly detectable features, the structure from motion 
methods can no be applied for the 3D reconstruction of the ear canal. Adding 
artificial features is then a necessary condition in order to make this solution 
possible. The natural opening of the ear allows, at least theoretically, the 
placement of artificial features inside. For example, one can imagine spraying 
some high contrast paint inside the canal. Such a procedure can create regions 
that can be easily identified by the interest region detectors, despite of the other 
unfavorable conditions. For example, if a dark color is used to create these 
regions, the specular reflections or over saturated areas in the images can be 
avoided by limiting the searching procedure in a certain band of image 
intensities.  
 
A specific SFM algorithm was used in all the cylinder reconstruction 
experiments. In a first stage, the structure and camera motion are estimated 
with a factorization algorithm. This method is based on a linearization of the 
pinhole camera model under orthographic projection. An initial guess of the 
scene structure and camera motion obtained with this method is used to 
initialize a bundle adjustment algorithm. This is the optimization step refining 
the structure and motion such as the projection error of the reconstructed points 
is minimized. The experiments showed the deficiency of the factorization step 
in estimating the depth of the points. While for the points placed closer to the 
camera the depths are correctly estimated, the errors increase for the points 
farer away. In all the cases the bundle adjustment step was able to correct these 
errors. This makes me believe that the optimization step is mandatory for any 
SFM algorithm used for the reconstruction of cylindrical objects, when high 
accuracy is required. 
 
Several experiments were performed with synthetic data in order to understand 
how the reconstruction accuracy is influenced by the localization error of the 
feature points, cylinder radius, or the number of feature points. The radius of 
the cylinder best fitted to the reconstructed points was used to measure the 
reconstruction error. After consulting people working in hearing aids industry, 
it was agreed that a model of the ear canal estimated with an error of 0.1 mm is 
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acceptable (considering that the ear canal is not rigid, and its shape can change 
when opening mouth, chewing or yawning). The hearing aids shells produced 
within this level of error fit well enough in the ear canal. Reported to the 
diameter of the ear canal (7 mm), the maximum cylinder reconstruction error is 
1.42% of the real radius. The results of the experiments showed that a cylinder 
can be reconstructed within this level of error if the localization error of the 
feature points is about 0.6% of the image size. For example, in the case of a 
512x512 pixels image, the features points have to be localized with an accuracy 
of 3 pixels. This value is not critical, since many feature detectors have 
subpixel accuracy. It was also shown that an increasing radius of the cylinder, 
relative to the same camera configuration, also improve the reconstruction 
accuracy. This result was expected since a larger cylinder also appears larger in 
the images, and the feature points are more accurately localized. A bigger 
number of feature points do not necessarily improve the quality of 
reconstruction. Not the number, but the positions of the points on the cylinder 
relative to the camera are important. The sections of cylinder farer away from 
the camera correspond to smaller regions closer to the center of image (camera 
pointing inside and along the cylinder axis). In this case, the features cannot be 
precisely localized.  
 
In a real data experiment, a cylinder with a radius of 22.67 mm and 31 feature 
points was reconstructed with an error of 0.6%, using only four 320x240 pixels 
images.  After the alignment to the model, the average point to point 
registration error was 0.75 mm with a standard deviation of 0.56mm.  
 
The experiments performed with both synthetic and real data showed that 
cylindrical objects can be accurately reconstructed with SFM methods, as long 
as it is possible to detect and track features in multiple images within an 
acceptable level of accuracy. 
 
To summarize, in my opinion there are two conditions that have to be satisfied 
in order to successfully apply the SFM methods to the 3D modeling of the ear 
canal: 1) the hairs inside the ear canal are removed and 2) some features are 
manually added. 
 
There are many aspects not addressed in this thesis.  It is known that the SFM 
methods are able to reconstruct an object only up to an unknown scale factor. If 
we assume that a model of the ear canal is successfully obtained with a SFM 
method, then recovering this scale factor is very important since it can 
drastically affect the accuracy of the final model. This can be a difficult task 
given that the real model is not known in advance. An idea is to place some 
control points onto the surface of the ear canal that can be easily identified in 
the reconstructed model. Assuming that some metric relations between these 
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points can be estimated, then the same metric constraints can be imposed to the 
model. 
 
Another issue not addressed here is the density of reconstructed points. Feature 
based SFM methods in general produce a sparse set of 3D points on the surface 
of the object. The rapid prototyping systems require a very large number of 3D 
points in order to create a precise replica of the model. Dense reconstruction is 
in general a topic close related to SFM. It is shown for example in [2] how 
starting from a sparse set of corresponding points in the images, a dense 
reconstruction can be performed. Anyway, the number of reconstructed points 
is limited by the number of points in the images, and it is evident that not all the 
points in one image can be matched to points in other images. Considering the 
almost regular shape of the ear canal it is very probable that a simple 3D 
interpolation of a large enough set of reconstructed point can offer a very good 
dense estimation of the model. 
 
Key frame selection should be also considered in longer sequences, in order to 
obtain the initial guess for the structure and motion. A large number of 
corresponding features is desirable in these frames, and a sufficient base line 
between them to obtain an initial structure by triangulation. 
 
Modeling the ear canal with SFM methods is subject of further research. 
Creating the necessary conditions (hairs removal, artificial features addition) 
opens the possibility to perform real experiments. A final conclusion can be 
made only performing such experiments, and comparing the results with very 
precise models obtained by scanning ear impressions with laser rangers. 
 
3D reconstruction of the ear canal from otoscopic images is a very large and 
challenging topic and it is my regret that the time constraints limited this work 
to the form presented here. 
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