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Abstract

We consider the dynamics of the Danish mortgage loan system and
propose several models to re�ect the choices of a mortgagor as well as
his attitude towards risk. The models are formulated as multi stage
stochastic integer programs, which are di�cult to solve for more than
10 stages. Scenario reduction and LP relaxation are used to obtain
near optimal solutions for large problem instances. Our results show
that the standard Danish mortgagor should hold a more diversi�ed
portfolio of mortgage loans, and that he should rebalance the portfolio
more frequently than current practice.

1 Introduction

1.1 The Danish mortgage market

The Danish mortgage loan system is among the most complex of its kind
in the world. Purchase of most properties in Denmark is �nanced by issuing
�xed�rate callable mortgage bonds based on an annuity principle. It is also
possible to raise loans, which are �nanced through issuing non�callable short
term bullet bonds. Such loans may be re�nanced at the market rate on an
ongoing basis. The proportion of loans �nanced by short�term bullet bonds
has been increasing since 1996. Furthermore it is allowed to mix loans in a
mortgage loan portfolio, but this choice has not yet become popular.

Callable mortgage bonds have a �xed coupon throughout the full term of
the loan. The maturities are 10, 15, 20 or 30 years. There are two options
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embedded in such bonds. The borrower has a Bermudan type call option,
i.e. he can redeem the mortgage loan at par at four predetermined dates
each year during the lifetime of the loan. When the interest rates are low the
call option can be used to obtain a new loan with less interest payment in
exchange for an increase in the amount of outstanding debt. The borrower
has also a delivery option. When the interest rates are high this option can
be used to reduce the amount of outstanding debt, in exchange for paying
higher interest rate payments. There are both �xed and variable transaction
costs associated with exercising any of these options.

Non�callable short�term bullet bonds are used to �nance the adjustable�
rate loans. The bonds' maturities range from one to eleven years and the
adjustable�rate loans are o�ered as 10, 15, 20 or 30�year loans. Since 1996
the most popular adjustable�rate loan has been the loan �nanced by the one�
year bond. From 2001, however, there has been a new trend, where demand
for loans �nanced by bullet bonds with 3 and 5�year maturities has risen
substantially.

1.2 The mortgagor's problem

It is known on the investor side of the �nancial markets that investment
portfolios should consist of a variety of instruments in order to decrease
�nancial risks such as market, liquidity and currency risk while maintaining
a �xed level of return. The portfolio is also rebalanced regularly to take best
advantage of the moves in the market.

The portfolio diversi�cation principle and re�balancing is, however, not com-
mon in the borrower side of the mortgage market. Most mortgagors �nance
their loans in one type of bond only. Besides they do not always re�balance
their loan when good opportunities for this have arisen.

There are two major reasons for the mortgagors reluctance to better taking
advantage of their options (that they have fully paid for) through the lifetime
of the mortgage loan.

1. The complexity of the mortgage market makes it impossible for the
average mortgagor to analyze all the alternatives and choose the best.

2. The mortgage companies do not provide enough quantitative advice to
the individual mortgagor. They only provide general guidelines, which
are normally not enough to illuminate all di�erent options and their
consequences.

The complexity of the mortgage loan system makes it a non�trivial task
to decide on an initial choice of mortgage loan portfolio and on �nding a
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continuing plan to readjust the portfolio optimally. See e.g. Zenios et. al.
([19], [14], [18], [20], [21], [22]).

We assume in the following that the reader is familiar with the dynamics of
a mortgage loan market such as the Danish one, as well as the basic ideas
behind the mathematical modeling concept of stochastic programming.

The Danish mortgagor's problem has been introduced by Nielsen and Poulsen
(N&P, [13]). They use a two factor term structure model for generating
interest rate scenarios. They have developed an approximative pricing scheme
to price the mortgage instruments in all nodes of the scenario tree and on
top of it have built a multi�stage stochastic program to �nd optimal loan
strategies. The paper, however, does not describe the details necessary to
have a functional optimization model, and it does not di�erentiate between
di�erent types of risks in the mortgage market. The main contribution of this
article is to make Nielsen & Poulsen's model operational by reformulating
parts of their model and adding new features to it.

We reformulate the Nielsen & Poulsen model in section 2. In section 3 we
model di�erent options available to the Danish mortgagor, and in section 4
we model mortgagor's risk attitudes. Here we consider both market risk and
wealth risk.

In the basic model we incorporate �xed transaction costs using binary vari-
ables. We use a non�combining binomial tree to generate scenarios in an 11
stage problem. This results in 51175 binary variables, making some versions
of the problem extremely challenging to solve. Dupačová, Gröwe�Kuska,
Heitsch and Römisch (Scenred, [7, 8]) have modeled the scenario reduc-
tion problem as a set covering problem and solved it using several heuristic
algorithms. We review these algorithms in section 5 and use them in our
implementation to reduce the size of the problem and hereby reduce the so-
lution times. Another approach to getting shorter solution times is proposed
in section 6, where we solve an LP�approximated version of the problem. In
section 7 we discuss and comment on our numerical results and we conclude
the article with suggestions for further research in section 8. We use GAMS
(General Algebraic Modeling System) to model the problem and CPLEX
9.0 as the underlying MP and MIP solver. For scenario reduction we use the
GAMS/SCENRED module (scenred manual, [9]).

The obtained results show that the average Danish mortgagor would bene�t
from choosing more than one loan in a mortgage loan portfolio. Likewise
he should readjust the portfolio more often than is the case today. The
developed model and software can also be used to develop new loan products.
Such products will consider the individual customer inputs such as budget
constraints, risk pro�le, expected lifetime of the loan, etc.

Even though we consider the Danish mortgage loan market, the problem is
universal and the practitioners in any mortgage loan system should be able to
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use the models developed in this paper, possibly with minor modi�cations.

2 The basic model

In this section we develop a risk�neutral optimization model which �nds a
mortgage loan portfolio with the minimum expected total payment.

We consider a �nite probability space (Ω,F , P ) whose atoms are sequences of
real�valued vectors (coupon rates and prices of mortgage backed securities)
over discrete time periods t = 0, · · · , T. We model this �nite probability
space by a scenario tree borrowing the notation from (A. J. King, [11]).

Consider the scenario tree in Figure (1). The partition of the probability
atoms ω ∈ Ω generated by matching path histories up to time t corresponds
one�to�one with nodes n ∈ Nt at depth t in the tree.

In the scenario tree, every node n ∈ N for 1 ≤ t ≤ T has a unique parent
denoted by a(n) ∈ Nt−1, and every node n ∈ Nt for 0 ≤ t ≤ T − 1 has a
non�empty set of child nodes C(n) ⊂ Nt+1. The probability distribution P
is modeled by attaching weights pn > 0 to each leaf node n ∈ NT so that∑

n∈NT
pn = 1. For each non�terminal node one has, recursively,

pn =
∑

m∈C(n)

pm ∀n ∈ Nt, t = T − 1, · · · , 0

and so each node receives a probability mass equal to the combined mass of
the paths passing through it.

We assume that we have such a tree at hand with information on price and
coupon rate for all mortgage bonds available at each node as well as the
probability distribution P for the tree at hand.

In the basic model we only consider �xed�rate loans, i.e. loans where the
interest rate does not change during the lifetime of the loan. For the sake
of demonstration we consider an example with 4 stages, t ∈ {0, 1, 2, 3}, and
15 decision nodes, n ∈ {1, · · · , 15}, with the probability pn for being at the
node n.

We want the basic model to �nd an optimal portfolio of bonds from a �nite
number of �xed�rate bonds. Consider the 4 bonds shown in Figure (1). Each
bond is represented as (Index:Type�Coupon/Price), so (3:FRM32�06/98.7)
is a �xed�rate callable mortgage bond with maturity in 32 years, a coupon
rate of 6% and a price of 98.7.

To generate bonds information we can use term structure and bond pricing
theories (see [10, 12, 4] for an introduction to these topics and further ref-
erences to articles.). It is also possible to use expert knowledge to predict
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1:FRM29−05/88.8
2:FRM32−06/95.3

1:FRM29−05/95.4

3:FRM32−06/98.7

1:FRM29−05/95.4
3:FRM32−06/98.7

1:FRM29−05/105.4
4:FRM32−04/98.3

1:FRM28−05/108.4
4:FRM31−04/101.4

4:FRM31−04/94.2
1:FRM28−05/96.9

3:FRM31−06/100.7
1:FRM28−05/96.9

3:FRM31−06/98.4
1:FRM28−05/93.7

3:FRM31−06/100.7
1:FRM28−05/96.9

3:FRM31−06/98.4
1:FRM28−05/93.7

1:FRM28−05/93.7

1:FRM28−05/84.4
2:FRM31−06/92.5

2:FRM31−06/98.4

Figure 1: A binomial scenario tree, representing our expectation of future bond prices

and coupon rates. All bonds are callable �xed�rate bonds.

possible bond prices in the future. A combination of theoretical pricing and
expert information can also be used to generate such scenario trees. Nielsen
and Poulsen (N&P, [13]) propose an approximative approach for pricing �xed
rate bonds with embedded call and delivery in a scenario tree. In this pa-
per we use the Black Derman & Toy ([5]) interest rate tree to represent the
underlying interest rate uncertainty and estimate the prices of the mortgage
backed bonds in all the nodes of the tree using the commercial pricing module
RIO 4.0 developed by Scanrate Financial Systems A/S ([17]).

Given a scenario tree with T stages and its corresponding coupon rate and
price information on a set of bonds i ∈ I we can now de�ne the basic model.

Parameters:

pn: The probability of being at node n.
dt: Discount factor at time t.
IA: The initial amount of loan needed by the mortgagor.
rin: Coupon rate for bond i at node n.
kin: Price of bond i at node n.
Callkin: Price of a callable bond i at node n. We have Callkin = min{1, kin}
for callable bonds and Callkin = kin for non�callable bonds.
γ: Tax reduction rate from interest rate payment.
β: Tax reduction rate from administration fees.
b: Administration fee given as a percentage of outstanding debt.
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η: Transaction fee rate for sale and purchase of bonds.
m: Fixed costs associated with re�balancing.

Next we de�ne the variables used in our model:

Btn: Total net payment at node n, time t.
Xitn: Outstanding debt of bond i at node n, time t.
Sitn: Units sold of bond i at scenario n, time t.
Pitn: Units purchased of bond i at node n, time t.
Aitn: Principal payment of bond i at node n, time t.

Litn :
{

1 if there are any �xed costs associated with bond i, node n, time t.
0 otherwise.

The multi stage stochastic integer model can now be formulated as follows:

min
T∑

t=0

∑
n∈Nt

pn · dt · Btn (1)

∑
i∈I

ki1 · Si01 ≥ IA (2)

Xi01 = Si01 ∀i ∈ I (3)

Xitn = Xi,t−1,a(n) −Aitn − Pitn + Sitn ∀i ∈ I, n ∈ Nt, t = 1, · · · , T (4)∑
i∈I

(kin · Sitn) =
∑
i∈I

(Callkin · Pitn) ∀n ∈ Nt, t = 1, · · · , T (5)

Aitn = Xi,t−1,a(n)

[ ri,a(n)

1 − (1 + ri,a(n))−T+t−1
− ri,a(n)

]
∀i ∈ I, n ∈ Nt, t = 1, · · · , T

(6)

B01 =
∑
i∈I

(
η · Si01 +m · Li01

)
(7)

Btn =
∑
i∈I

(
Aitn + ri,a(n) · (1 − γ)Xi,t−1,a(n) + b · (1 − β)Xi,t−1,a(n)+

η · (Sitn + Pitn) +m · Litn

)
∀n ∈ Nt, t = 1, · · · , T (8)

BigM · Litn − Sitn ≥ 0 ∀i ∈ I, n ∈ Nt, t = 0, · · · , T (9)

Xitn , Sitn , Pitn ≥ 0 , Litn ∈ {0, 1} ∀i ∈ I, n ∈ Nt, t = 0, · · · , T (10)

The objective is to minimize the weighted average payment throughout the
mortgage period. The payment for all the nodes except the root is de�ned
in equation (8) as the sum of principal payments, tax reduced interest pay-
ments, taxed reduced administration fees (Danish peculiarity), transaction
fees for sale and purchase of bonds and �nally �xed costs for establishing
new mortgage loans. The principal payment is de�ned in equation (6) as
an annuity payment. The payment in the root (equation 7) is based on the
transaction costs only.
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The dynamics of the model are formulated in constraints (2) to (5). Con-
straint (2) makes sure that we sell enough bonds to raise an initial amount,
IA, needed by the mortgagor. In equation (3) we initialize the outstanding
debt. Equation (4) is the balance equation, where the outstanding debt at
any child node for any bond equals the outstanding debt at the parent node
minus principal payment and possible prepayment (purchased bonds), plus
possible sold bonds to establish a new loan. Equation (5) is a cash�ow equa-
tion which guarantees that the money used to prepay comes from the sale
of new bonds.

Finally constraint (9) adds the �xed costs to the node payment, if we perform
any readjustment of the mortgage portfolio. The BigM constant might be
set to a value slightly greater than the initial amount raised. If a too large
value is used, numerical problems may arise.

3 Modeling mortgagor's options

The model described in section 2 has three implicit assumptions which limit
its applicability:

1. We assume that a loan portfolio is held by the mortgagor until the end
of horizon.

2. We assume that all bonds are �xed�rate and callable, i.e. they can be
prepaid at any time at a price no higher than 100.

3. The mortgagor is assumed to be risk�neutral.

We will relax the �rst two assumptions in this section and the third in the
following section.

The �rst assumption can be easily relaxed by introducing a constant H
indicating mortgagors horizon, such that H ≤ T , where T is the maturity
time of the underlying mortgage portfolio. The decision nodes represent only
the �rst H stages, while the cash�ows (principal and interest rate payments)
are calculated based on a T year maturity.

These changes mean that the outstanding debt at stage t = H is a posi-
tive amount which needs to be prepaid. We de�ne this prepayment amount
(PPHn) as:

PPHn =
∑

i

(XiHn · Callkin) ∀n ∈ NH , (11)
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We add this equation to the model and we update the object function as
follows:

min
H∑

t=0

∑
n∈Nt

pn · dt · Btn +
∑

n∈NH

pn · dH · PPHn. (12)

The objective is now to minimize the weighted payments at all nodes plus
the weighted prepayments at time H.

The problem with the second assumption is more subtle. Consider the sce-
nario tree at Figure (2), where two adjustable�rate loans have been added
to our set of loans at time 0. Loan 5 (ARM1) is an adjustable�rate loan
with annual re�nancing and loan 6 (ARM2) is an adjustable�rate loan with
re�nancing every second year
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t = 1t = 0     t = 2

n=3

n=1
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n=7

t = 3
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n=9
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n=14
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5:ARM1−04/99.1
6:ARM2−04/98.2

1:FRM31−05/96.8

1:FRM30−05/92.35
5:ARM1−06/101.2
6:ARM1−04/95.8

1:FRM30−05/101.8
5:ARM1−02/99.1
6:ARM1−04/104.7

6:ARM2−03/101.2
5:ARM1−01/99.2

4:FRM32−04/98.3
1:FRM29−05/105.4

    6:ARM2−05/100.1

5:ARM1−04/99.2
3:FRM32−06/98.7
1:FRM29−05/95.4

6:ARM2−05/100.1

5:ARM1−04/99.2
3:FRM32−06/98.7
1:FRM29−05/95.4

6:ARM2−08/100.6

5:ARM1−08/102
2:FRM32−06/95.3
1:FRM29−05/88.8 1:FRM28−05/84.4

2:FRM31−06/92.5        6:ARM1−08/97.8
        5:ARM1−10/101.5

    

1:FRM28−05/93.7
2:FRM31−06/98.4

1:FRM28−05/93.7
3:FRM31−06/98.4

1:FRM28−05/96.9
3:FRM31−06/100.7

1:FRM28−05/93.7
3:FRM31−06/98.4

1:FRM28−05/96.9
3:FRM31−06/100.7

1:FRM28−05/96.9
4:FRM31−04/94.2

1:FRM28−05/108.4
4:FRM31−04/101.4

       5:ARM1−01/102.4
       6:ARM1−03/108.4

     6:ARM1−03/98.6
     5:ARM1−03/99.9

     6:ARM1−05/105.4
     5:ARM1−03/99.9

     6:ARM1−05/102.9
     5:ARM1−07/99.6

    6:ARM1−05/105.4
    5:ARM1−03/99.9

      6:ARM1−05/102.9
      5:ARM1−07/99.6

       6:ARM1−08/103.2
       5:ARM1−07/99.6

Figure 2: A binomial scenario tree where both �xed�rate and adjustable�rate loans are

considered.

For adjustable�rate loans (ARMm�loans) the underlying m�year bond is
completely re�nanced every m years by selling another m�year bond. But
unlike normal re�nancing this kind of re�nancing does not incur any ex-
tra �xed or variable transaction costs since an ARMm�loan is issued as a
single loan rather than a series of bullet�bonds following each other. We
model an ARMm�loan by using the same loan index for an adjustable�rate
loan throughout the mortgage period. For example index 5 is used for the
loan with annual re�nancing, even though the actual bonds behind the loan
change every year. Since we use the same index, the model does not register
any actual sale or purchase of bonds when re�nancing occurs. We should,
however, readjust the outstanding debt given that the bond price is normally
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di�erent from par. To take this into account we introduce the set I ′ ⊆ I of
non�callable adjustable�rate loans. For these loans we use the following bal-
ance equation instead of equation (4).

kin ·Xitn = Xi,t−1,a(n) −Aitn − Pitn + Sitn ∀i ∈ I ′, n ∈ Nt, t = 1, · · · , T. (13)

Note that variables Pitn and Sitn remain 0 as long we keep an adjustable�
rate loan i ∈ I ′ in our mortgage portfolio. The outstanding debt in the child
node is however rebalanced by multiplying the bond price.

When we consider the adjustable�rate loans we should remember that these
loans are non�callable, so for prepayment purposes we have:

Callkin = kin ∀i ∈ I ′, n ∈ Nt, t = 0, · · · , T.

Another issue to be dealt with is that if a bond is not available for establishing
a loan at a given node, we have to set the corresponding value of kin to 0 to
make sure that the bond is not sold at that node in an optimal solution. For
example bond (6:ARM1�04/95.8) at node 2 is not open for sale but only for
prepayment.

4 Modeling risk

So far we have only considered a risk neutral mortgagor who is interested in
the minimum weighted average of total costs. Most mortgagors however have
an aversion towards risk. There are two kinds of risk which most mortgagors
are aware of:

1. Market risk: In the mortgage market this is the risk of extra interest
rate payment for a mortgagor who holds an adjustable�rate loan when
interest rate increases, or the risk of extra prepayment for a mortgagor
with any kind of mortgage loan when the interest rate decreases so the
bond price increases.

2. Wealth risk: In the mortgage market this is a potential risk which
can be realized if the mortgagor needs to prepay the mortgage before
a planned date or if he needs to use the free value of the property to
take another loan. It can be measured as a deviation from an average
outstanding debt at any given time during the lifetime of the loan.

We will in the following model both kinds of risk. To that end we use the
ideas behind minmax optimization and utility theory with use of budget
constraints.
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4.1 The minmax criterion

An extremely risk averse mortgagor wants to pay least in the worst possible
scenario. In other words if we de�ne the maximum payment as MP then we
have the following minmax criterion:

min MP, (14)

MP ≥
T∑

t=0

∑
n∈NPts

Btn ∀s ∈ S, (15)

where NP ts is a set of nodes de�ning a unique path from the root of the
tree to one of the leaves. Each of these paths de�ne a scenario s ∈ S. For
the example given in Figure 2 we have:

NPt,1 = {1, 2, 4, 8}
NPt,2 = {1, 2, 4, 9}
· · ·
NPt,8 = {1, 3, 7, 15}

4.2 Utility function

Instead of minimizing costs we can de�ne a utility function, which represents
a saving and maximize it. Nielsen and Poulsen (N&P [13]) suggest a concave
utility function with the same form as in Figure (3).

Utility

Saving

Figure 3: A concave utility function. An increase of an already big saving is not as
interesting as an increase of a smaller saving.

The decreasing interest for bigger savings is based on the idea that bigger
savings are typically riskier than small savings. Nielsen and Poulsen use a
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logarithmic object function, which can be formulated as follows:

max
T∑

t=0

∑
n∈Nt

pn · log(dt · (Bmax
tn −Btn)), (16)

where Bmax
tn is the maximum amount a mortgagor is willing to pay. Nielsen

and Poulsen �x Bmax
tn to a big value so that the actual payment will never

rise above this level.

Adding this non�linear objective function to our stochastic binary problem
makes the problem extremely challenging to solve. There are no e�ective
general purpose solvers for solving large mixed integer non�linear programs
(see Bussieck and Pruessner, [6]). There are three ways of circumventing the
problem: Either we use a linear utility function in conjunction with budget
constraints (mip) or relax the binary variables and solve the non�linear prob-
lem (nlp) or both (lp). We demonstrate the �rst approach in the following
and comment on the second and third approach in section 6.

Instead of maximizing the logarithm of the saving at each node we can
simply maximize the saving: Bmax

tn −Btn. If B
max
tn is so large that the saving

is always positive, then we are in e�ect minimizing the weighted average
costs similar to the risk neutral case presented in section 2. However if we
allow the saving to be negative at times and add a penalty to the objective
function whenever we get a negative saving, we can introduce risk aversion
into the model. For this reason we need to have a good estimate for Bmax

tn .
The risk neutral model can be solved to give us these estimates. Then we
can use the following objective function and budget constraints.

max
T∑

t=0

∑
n∈Nt

(
pn · dt

(
(Bmax

tn −Btn) − PRtn ·BOtn

))
(17)

Bmax
tn +BOtn −Btn ≥ 0 ∀n ∈ Nt, t = 0, · · · , T (18)

BOtn ≤ BOmax
tn ∀n ∈ Nt, t = 0, · · · , T. (19)

We allow crossing the budget limit in constraint (18) by introducing the
slack variable BOtn. This value will then be penalized by a given penalty
rate (PRtn) in the objective function (17). The penalty rate can for example
be a high one time interest rate for taking a bank loan. The budget over�ow
(BOtn) is then controlled in constraint (19) where the over�ow is not allowed
to be greater than a maximum amount BOmax

tn .

4.3 Wealth risk aversion

So far we have only considered the market risk or the interest rate risk. In
the following we will model the other important risk factor in the mortgage
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market, namely the wealth risk.

Wealth risk is the risk that the actual outstanding debt becomes bigger than
the expected outstanding debt at a given time during the lifetime of the loan.
For example selling a 30�year bond at a price of 80, we have a big wealth risk
given that a small fall in the interest rate can cause a considerable increase
in the bond price, which means a considerable increase in the amount of the
outstanding debt.

We consider the deviation from the average outstanding debt, which we
de�ne as DXtn:

DXtn = X t −
∑

i

Xitn, ∀n ∈ Nt, t = 0, · · · , T,

where X t is the average outstanding debt for a given time t:

X t =
∑
i∈I

∑
n∈Nt

pn ·Xitn, ∀t = 0, · · · , T.

A positive value of DXtn means that we have a saving and a negative value
means a loss as compared to the average outstanding debtXt. We introduce a
surplus variable XStn to represent the amount of saving and a slack variable
XLtn to represent the amount of loss:

(
X t −

∑
i

Xitn

) −XStn +XLtn = 0 ∀n ∈ Nt, t = 0, · · · , T, (20)

To make the model both market risk and wealth risk averse we update the
objective function with weighted values of XStn and XLtn as follows:

max
∑

n∈Nt

T∑
t=0

pn · dt

(
(Bmax

tn −Btn) − PRtn · BOtn + PWn ·XStn −NWn ·XLtn

)
,

(21)

where PWn is a parameter which can be used to encourage savings and NWn

is a parameter to penalize a loss as compared to the average outstanding debt.
If we set PWn = NWn, it means that the model is indi�erent towards wealth
risk. On the other hand PWn < NWn, means that the model is wealth risk
averse, since it penalizes a potential loss harder than it encourages a potential
saving.
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Figure 4: A binomial scenario tree with 11 stages.

5 Scenario reduction

Since the number of scenarios grows exponentially as a function of time steps
the stochastic binary model is no longer tractable when we have more than
10 time steps. For an 11�stage model we have the scenario tree in Figure (4).

As of today there are no general purpose solvers which can solve stochastic
integer problems of this size in a reasonable amount of time. Notice however
that a great number of nodes in the last 3-4 time steps have such a close
distance that a reduction of nodes for these time steps might not e�ect
the �rst�stage results. We are in other words interested in �nding a way to
optimally reduce the number of scenarios. If we get the same �rst stage result
for a reduced and a non�reduced problem, it su�ces to solve the reduced
problem, and then at each step resolve the problem until horizon. In that
case the �nal result of solving any of the two problems will be the same. The
reason for this is that we initially only implement the �rst stage solution. As
the time passes by and we get more information we have to solve the new
problem and implement the new �rst stage solution each time.

Nicole Gröwe�Kuska, Holger Heitsch, Jitka Dupačová and Werner Römisch
(see [7, 8]) have de�ned the scenario reduction problem (SRP) as a special
set covering problem and have solved it using heuristic algorithms.

The authors behind the SCENRED articles have in cooperation with �GAMS
Software GmbH� and �GAMS Development Corporation�, developed a num-
ber of C++ routines, SCENRED, for optimal scenario reduction in a given
scenario tree. Likewise they have developed a link, GAMS/SCENRED, which
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connects the GAMS program to the SCENRED module (see [9]). The sce-
nario tree in Figure 5 is obtained after using the fast backward algorithm
of the GAMS SCENRED module for a 50% relative reduction, where the
relative reduction is measured as an average of node reductions for all time
step. If we for example remove half of the nodes at the last time step, we
get a 50% reduction for that time step only. Then we measure the reduction
percentages for all other time steps in the same way. The average of these
percentages corresponds to the relative reduction (see [7, 8]). In our example
the number of scenarios is reduced from 1024 to 12.
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Figure 5: A binomial scenario tree with 11 stages after a 50% scenario reduction using

the fast backward algorithm of the SCENRED module in GAMS.

We use GAMS/SCENRED and SCENRED modules for scenario reduction,
and compare the results with those found by solving the LP�relaxed non�
reduced problem.

6 LP relaxation

Whenever we re�nance the mortgage portfolio we need to pay a variable and
a �xed transaction cost. The variable cost is 100 · η percent of the sum of
the sold and purchased amount of bonds and the �xed cost is simply DKK
m (see constraint 8 and 9). The binary variables in the problem (1 to 10)
are due to incorporation of �xed costs m. The numeric value of these �xed
costs is about DKK 2500 whereas η = 0.15%. While the value of the variable
transaction costs decreases as the time passes by, the �xed costs remain the
same. Besides �xed costs are incurred per loan and not per loan portfolio
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which is why we cannot simply approximate the �xed costs by adding a small
percentage to the variable transaction costs, even if we let this percentage
increase as a function of time to adjust for the decreasing outstanding debt
of the total loan portfolio. We therefore suggest an iterative updating scheme
for the variable transaction costs, so that we can approximate the �xed costs
without using binary variables. We do that by iteratively solving the LP
problem k times as follows.

We de�ne a ratio ψk
itn and initialize it to ψ0

itn = 0. The ratio ψk
itn can then

be used in the de�nition of a node payment (8) in the k + 1st iteration as
follows:

Btn =
∑

i

(
Aitn + rin · (1 − γ)Xitn+

b · (1 − β)Xitn + η · (Sitn + Pitn) + ψk+1
itn · Sitn

)
∀n ∈ Nt, t = 0, · · · , T

(22)

Solving the LP problem at each iteration k we get S∗k
itn as the optimal value

of the sold bonds at the kth iteration. Before each iteration k > 0, the ratio
ψk

itn is then updated according to the following rule:

ψk
itn =

{
m

S∗k
itn

∀i, n ∈ Nt, t = 0, · · · , T if S∗k
itn > 0,

ψk−1
itn otherwise.

(23)

This brings us to our approximation scheme for an LP relaxation of the
problem:

1. Drop the �xed costs and solve the LP relaxed problem.

2. Find the ratios ψitn according to (23).

3. Incorporate the ratios in the model so that DKK m is added to the
objective function for each purchased bond, given the same solution as
the one in the last iteration is obtained. Solve the problem again.

4. Stop if the solution in iteration k + 1 has not changed more than α
percent as compared to the solution in iteration k. Otherwise go to
step 5.

5. Update ψitn according to (23).

6. Repeat from step 3.

Our experimental results show that for α ' 2% we �nd near optimal solutions
which have similar characteristics to the solutions from the original problem
with the �xed costs.
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7 Numerical results

We consider an 11 stage problem, starting with 3 callable bonds and 1 1�
year bullet bond at the �rst stage. We then introduce 7 new bonds every
3 years. An initial portfolio of loans has to be chosen at year 0 and it may
be rebalanced once a year the next 10 years. We assume that the loan is a
30�year loan and that it is prepaid fully at year 11.

The 24 callable bonds used in our test problem are seen in Table 1. The table
only presents the average coupon rates and prices for these bonds at their
dates of issue. Note that only the �rst three bonds have already been issued,
so the start prices for these three bonds are market prices on 20/02/2004,
which is the date for the �rst stage in the stochastic program. The next 21
bonds are not issued yet, and we �nd their estimated prices at their future
dates of issue. Since there are several states representing the uncertainty in
the future we have several of these estimated start prices. In Table 1, however,
we only give an average of these prices. Besides these 24 callable bonds we
use a 1�year non�callable bullet bond, bond 25. The e�ective interest rate
on this bond is about 2% to start with. Using a BDT tree (see [5, 3]) with
the input term structure given in Table 2 and annual steps the e�ective rate
can increase to 21% or decrease to slightly under 1% at the 10th year. The
term structure of Table 2 is from 20/02/2004 and is provided by the Danish
mortgage bank Nykredit Realkredit A/S. The BDT tree has also been used
for estimating the prices and rates of the 24 callable bonds during the lifetime
of the mortgage loan using the bond pricing system Rio 4.0 (see [17]).

A practical problem arises when writing the GAMS tables containing the
stochastic data. The optimization problem is a path dependent problem,
whereas the BDT tree is path independent. GAMS is not well suited for such
programming tasks as mapping the data from a combining binomial tree (a
lattice) to a non�combining binomial tree. A general purpose programming
language is better suited for this task. We have used VBA to generate the
input data to the GAMS model, and we have run the GAMS models on a
Sun Solaris 9 machine with a 1200 Mhz CPU, 16 GB of RAM and 4 GB of
MPS.

The purpose of our tests can be summarized as the following:

1. Comparing the results of the 4 versions of our model with simple sell
and hold strategies.

2. Observing the e�ects of using the GAMS/SCENRED module.

3. Trying our LP approximation on the problem.

For each of these objectives we consider all four versions of the model and
compare the results.
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Bond nr. rate Average start price Date of issue Date of maturity

1 6% 103.06 3/10-02 3/10-35
2 5% 98.5 3/10-02 3/10-35
3 4% 89.4 3/10-02 3/10-35

4 9% 107.33 3/10-05 3/10-38
5 8% 103.16 3/10-05 3/10-38
6 7% 103.09 3/10-05 3/10-38
7 6% 100.51 3/10-05 3/10-38
8 5% 94.01 3/10-05 3/10-38
9 4% 84.55 3/10-05 3/10-38
10 3% 74.46 3/10-05 3/10-38

11 9% 105.4 3/10-08 3/10-41
12 8% 101.98 3/10-08 3/10-41
13 7% 100.3 3/10-08 3/10-41
14 6% 96.19 3/10-08 3/10-41
15 5% 89.5 3/10-08 3/10-41
16 4% 80.74 3/10-08 3/10-41
17 3% 71.32 3/10-08 3/10-41

18 9% 104.41 3/10-11 3/10-44
19 8% 100.9 3/10-11 3/10-44
20 7% 98.51 3/10-11 3/10-44
21 6% 94.07 3/10-11 3/10-44
22 5% 87.49 3/10-11 3/10-44
23 4% 79.25 3/10-11 3/10-44
24 3% 70.26 3/10-11 3/10-44

Table 1: The callable bonds used as input to the problem.

7.1 The original stochastic MIP problem

Figure 6 shows the solutions found for the �rst three stages of the problem for
all four instances of our model, namely the risk neutral model, the minmax
model, the model with interest rate risk aversion with budget constraints
and �nally the model with interest rate and wealth risk aversion with budget
constraints. Notice, however, that no feasible solution could be found for the
model with interest rate and wealth risk aversion with budget constraints
within a time limit of 10 hours.

A full prescription of the solution with all 11 stages will not contribute to
a better understanding of the dynamics of the solution, which is why we
present the solution to the �rst three stages of the problem only. It is though
enough to give us an indication of the behaviour of each solution. In the risk
neutral case we start by taking a 1�year adjustable�rate loan. If the interest
rate increases after a year, the adjustable�rate loan is prepaid by taking a
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Maturity Yield Yield Volatility Maturity Yield Yield Volatility
(Year) (%) (%) (Year) (%) (%)

1 2.23% � 16 4.87% 17.25%
2 2.35% 32.20% 17 4.93% 17.00%
3 2.73% 32.10% 18 4.99% 16.85%
4 3.08% 29.50% 19 5.05% 16.75%
5 3.41% 27.00% 20 5.11% 16.70%
6 3.68% 25.00% 21 5.16% 16.65%
7 3.92% 23.00% 22 5.21% 16.60%
8 4.12% 22.00% 23 5.25% 16.56%
9 4.30% 20.90% 24 5.29% 16.52%
10 4.44% 20.10% 25 5.34% 16.48%
11 4.56% 19.40% 26 5.37% 16.45%
12 4.62% 18.80% 27 5.40% 16.42%
13 4.68% 18.30% 28 5.43% 16.39%
14 4.74% 17.90% 29 5.46% 16.36%
15 4.80% 17.55% 30 5.49% 16.34%

Table 2: The input term structure to the BDT model.

�xed�rate loan. Even if it means an increase in the amount of the outstanding
debt, it proves to be a pro�table strategy since if the rates increase again
in the next stage we can reduce the amount of outstanding debt greatly
by re�nancing the loan to another �xed�rate loan with a higher price. The
minmax strategy chooses a �xed�rate loan with a price close to par to start
with. This loan is not re�nanced until the 9th stage of the problem.

The risk neutral and the minmax model represent the two extreme mort-
gagors as far as the risk attitude is concerned. The third model re�ects a
mortgagor with a risk attitude between the �rst two mortgagors. The solu-
tion to this model guarantees that the mortgagor will not pay more than
what his budget allows at any given node. Table 3 indicates the di�erence
in the characteristics of the solutions for the three di�erent models.

Loan strategy Total costs Std. dev. max min time

1 - Risk neutral 1.281.857 92.289 1.502.042 1.004.583 276 s
2 - Minmax 1.353.713 19.729 1.374.183 1.117.084 10 h
3 - Int. rate risk averse 1.288.405 66.019 1.431.857 1.005.412 10 h
4 - Int./Wealth risk averse No solution found within 10 h.
5 - Loan25 (ARM1) 1.310.495 115.085 1.821.388 1.120.053 < 10 s
6 - Loan2 (Fixed�rate 5%) 1.353.438 72.582 1.410.190 993.056 < 10 s

Table 3: Comparison of the four strategies for the original problem.

The risk neutral model gives the lowest average total cost. The standard
deviation from this average cost is, however, rather high. The minmax model
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Figure 6: Presentation of the solutions for the �rst 3 stages of the problem. Variable s
is for sale and p for purchase and the units are given in 1000 DKK, so s3 = 1128 means

that the mortgagor should sell approximately 1.128.000 DKK at the given node. The short
rates from the BDT tree are indicated using the letter r.

has a much smaller standard deviation. This higher level of security against
variation has though an average cost of about 72000 DKK. The third model
has reduced the risk considerably without having increased the total average
cost with more than about 7000 DKK.

We see also that these results outperform the simple sell and hold strate-
gies (strategies 5 and 6). A traditional market risk�neutral mortgagor who
chooses an ARM1 loan and keep it until horizon (year 11) is better o� fol-
lowing either strategy 1 or 3 and a traditional market risk�averse mortgagor
who chooses a �xed�rate loan and keeps it until horizon is better o� following
either strategy 2 or 3.

Regarding the budget constraints in model 3 and 4 we use the constants in
Table 4. Note that we are reporting these budget constraints on an aggre-
gate level. Furthermore we de�ne the constants PPmax

Hn and PPOmax
Hn as the

target prepayment amount and maximum deviation allowed from this target
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respectively.

Constant De�nition Value

BMAX
∑H−1

t=0

∑
n∈Nt

pn · Bmax
tn 570842

PPMAX
∑

n∈NH
pn · PPmax

Hn 711015

BOMAX
∑H−1

t=0

∑
n∈Nt

pn · BOmax
tn 50000

PPOMAX
∑

n∈NH
pn · PPOmax

Hn 100000

Table 4: Budget limits used in model 3 and 4 for the original data.

These constants are chosen after considering the average payments and the
standard deviations from these in the risk neutral model.

The major problem with these solutions is the computing time taken to
�nd near optimal solutions by CPLEX 9.0. Except for the �rst strategy, we
cannot �nd solutions within 1% of a lower bound after 10 hours of CPU time.
For the fourth strategy no feasible solution is found at all. Strategies 5 and
6 take a few seconds to calculate, however we do not need the optimization
model for these calculations.

7.2 The reduced stochastic MIP problem

After reducing the number of scenarios from 1024 to 12 we get the solutions
given in Figure 7 and Table 6.

Regarding the budget constraints in model 3 and 4 we use the constants in
Table 5.

Constant De�nition Value

BMAX
∑H−1

t=0

∑
n∈Nt

pn · Bmax
tn 565915

PPMAX
∑

n∈NH
pn · PPmax

Hn 601983

BOMAX
∑H−1

t=0

∑
n∈Nt

pn · BOmax
tn 50000

PPOMAX
∑

n∈NH
pn · PPOmax

Hn 35000

Table 5: Budget limits used in model 3 and 4 for the reduced data.

Model type Total costs Std. dev. max min time

1 - Risk neutral 1.169.173 49.765 1.274.079 1.064.525 12 s
2 - Minmax 1.187.938 0.00 1.187.938 1.187.938 52.2 s
3 - Int. rate risk averse 1.171.926 24.270 1.229.897 1.136.655 300 s
4 - Int./Wealth risk averse 1.172.479 25.610 1.229.742 1.128.412 300 s
5 - Loan25 (ARM1) 1.301.237 120.958 1.560.244 1.129.983 < 1 s
6 - Loan2 (Fixed�rate 5%) 1.356.228 59.356 1.410.190 1.249.483 < 1 s

Table 6: Comparison of the four strategies for the reduced problem.
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Figure 7: Presentation of the solutions for the �rst 3 stages of the reduced problem.
Units are given in 1000 DKK.

We can see in Table 6 that the behaviour of the solutions for the di�erent
models is similar to that of the original problem. Notice also that we get a
feasible solution here for the fourth model with interest rate and wealth risk
aversion.

The numeric values of the total costs for the �rst four strategies have however
decreased considerably. Except for the risk neutral model we do not obtain
the same �rst stage solutions as we saw for the original problem. It seems
that the reduced problem gives a more optimistic view of the future as com-
pared to the original problem. By testing the scenario reduction algorithms
for di�erent levels of reduction on our problem we notice that even much less
aggressive scenario reductions do not guarantee that the same initial solu-
tions as found for the original problem are found. One explanation for this
more optimistic view of the future is that since scenario reduction destroys
the binomial structure of the original tree, signi�cant arbitrage opportuni-
ties arise in parts of the new tree structure. Another explanation is that for
all levels of reduction which we have performed the reduced problem has an
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overweight of scenarios with lower interest rates.

We therefore need a method which 1) optimally reduces the number of sce-
narios while the tree remains balanced and 2) modi�es bond prices in the
reduced tree so that the arbitrage opportunities which are introduced as a
result of scenario reduction are removed.

The question here is whether points 1 and 2 play an equally important role in
getting similar �rst stage solutions for the original and the reduced problem.
Comparing strategies 5 and 6 in Tables 3 and 6 indicates that performing
point two might remove most of the di�erence between the solutions in the
reduced problem as compared to the original problem. Apparently the aver-
age total costs for the ARM1 loan are slightly decreased in the reduced tree
whereas the average total costs for the �xed�rate loan are slightly increased.
This slight change in opposite directions can only be explained by the ob-
servation that the reduced tree has an overweight of scenarios with lower
interest rates, since no trading is allowed for these two strategies and there-
fore the arbitrage opportunities cannot be used. We are currently working
on better ways of reducing scenario trees taking into accounts points 1 and
2.

7.3 The reduced and LP�approximated problem

When we use our LP�approximation algorithm on this problem we get the
solution as presented in Table 7 and Figure 8.

The algorithm uses 10�18 runs for the di�erent problems to �nd solutions
which are over all less than 2% di�erent from the solutions found in the last
iteration.

Model type Total costs Std. dev. max min time

1 - Risk neutral 1.169.147 49.775 1.274.078 1.064.524 25 s
2 - Minmax 1.179.654 11.150 1.185.795 1.154.602 22 s
3 - Int. rate risk averse 1.172.364 26.436 1.239.168 1.130.196 28 s
4 - Int./Wealth risk averse 1.174.038 29.128 1.249.520 1.131.185 44 s
5 - Loan25 (ARM1) 1.301.237 120.958 1.560.244 1.129.983 �
6 - Loan2 (Fixed�rate 5%) 1.356.228 59.356 1.410.190 1.249.483 �

Table 7: Comparison of the four strategies for the reduced problem with LP approxima-
tion.

It is important to point out that simply dropping the �xed costs results in
solutions which deviate considerably from the problems with the �xed costs,
whereas approximating the �xed costs using our algorithm gives very similar
results as found by the MIP model.
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Figure 8: Presentation of the solutions for the �rst 3 stages of the LP approximated
reduced problem. Units are given in 1000 DKK.

7.4 Comments on results

The results presented in this section are in agreement with the �nancial
arguments used in the Danish mortgage market. Even though the original
problem is hard to solve we have shown that useful results can be found by
solving the reduced problems. The reduced scenario trees represented a more
optimistic prediction of the future, but the results found are still quite useful.
In practice the mortgage portfolio manager should try several scenario trees
with di�erent risk representations as an input to the model. This way the
optimization model can be used as an analytical tool for performing �what�
if� analyses on a high abstraction level.
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8 Conclusions

We have developed a functional optimization model that can be used as the
basis for a quantitative analysis of the mortgagors decision options. This
model in conjunction with di�erent term structures or market expert opin-
ions on the development of bond prices can assist market analysts in the
following ways:

Decision support: Instead of calculating the consequences of the single loan
portfolios for single interest rate scenarios, the optimization model allows for
performing �what if� analysis on a higher level of abstraction. The analyst can
provide the system with di�erent sets of information such as the presumed
lifetime of the loan, budget constraints and risk attitudes. The system then
�nds the optimal loan portfolio for each set of input information.

Product development: Traditionally, loan products are based on single
bonds or bonds with embedded options. In some mortgage markets such as
the Danish one it is allowed to mix bonds in a mortgage portfolio and there
are even some standard products which are based on mixing bonds. The
product P33 is for example a loan portfolio where 33% of the loan is �nanced
in 3�year non�callable bonds and the rest in �xed�rate callable bonds. These
mixed products are currently not popular since the rationale behind exactly
this kind of mix is not well argued. The optimization model gives the pos-
sibility to tailor mixed products that, given a set of requirements, can be
argued to be optimal for a certain mortgagor.

The greatest challenge in solving the presented models is on decreasing the
computing times. We have experimented with scenario reduction (scenred,
[7, 8, 9]) and we have suggested an LP approximation method to reduce the
solution times while maintaining solution quality. It is, however, an open
problem to develop tailored exact algorithms such as decomposition algo-
rithms (see [1, 2]) to solve the mortgagors problem. Another approach for
getting real time solutions is to investigate di�erent heuristic algorithms or
make use of parallel programming (see [15, 16]) to solve the problem.

Integration of the two disciplines of mathematical �nance and stochastic pro-
gramming combined with use of the state of the art software has a great po-
tential, which has not yet been realized in all �nancial markets in general and
in mortgage companies in particular. There is a need for more detailed and
operational models and high performing easy to use accompanying software
to promote use of the mathematical models with special focus on stochastic
programming.
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