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ABSTRACT
Image registration is an important task in most medical imaging applications. Numerous algorithms have been
proposed and some are widely used. However, due to the vast amount of data collected by eg. a computed
tomography (CT) scanner, most registration algorithms are very slow and memory consuming. This is a huge
problem especially in atlas building, where potentially hundreds of registrations are performed. This paper
describes an approach for accelerated image registration. A grid-based warp function proposed by Cootes and
Twining, parameterized by the displacement of the grid-nodes, is used. Using a coarse-to-�ne approach, the
composition of small di�eomorphic warps, results in a �nal di�eomorphic warp. Normally the registration is
done using a standard gradient-based optimizer, but to obtain a fast algorithm the optimization is formulated in
the inverse compositional framework proposed by Baker and Matthews. By switching the roles of the target and
the input volume, the Jacobian and the Hessian can be pre-calculated resulting in a very e�cient optimization
algorithm. By exploiting the local nature of the grid-based warp, the storage requirements of the Jacobian and
the Hessian can be minimized. Furthermore, it is shown that additional constraints on the registration, such
as the location of markers, are easily embedded in the optimization. The method is applied on volumes built
from CT-scans of pig-carcasses, and results show a two-fold increase in speed using the inverse compositional
approach versus the traditional gradient-based method.
Keywords: Image registration, Lucas-Kanade algorithm, Inverse Compositional algorithm

1. INTRODUCTION
Registration of images is an important an actively researched area of medical imaging. It is the task of trans-
forming the geometry of two or more images such that their corresponding regions are aligned. The need may
arise from comparison of images from di�erent imaging modalities, from images obtained at di�erent times, from
di�erent patients, or from comparison with a patient atlas. Registration is needed in a wide variety of medical
applications, eg. for diagnostic purposes, for pre-surgery planning or for treatment estimation. The medical
imaging hardware of today produce images of high resolution, and as a consequence a huge amount of data need
processing in order to solve the registration problem. The requirements on the processing hardware are very
high in terms of storage capability, CPU speed, and maybe most importantly in memory capacity.

A range of di�erent registration algorithms have been produced in the recent years. The algorithm described
in this paper, belongs to the class of parameterized methods. Hence the registration can be described by a set
of parameters. Existing methods includes Rueckert1 et al. using B-splines on a grid to de�ne the warp-�eld,
Cootes2 et al uses bounded di�eomorphisms, warping pixels inside a unit sphere based on the displacement of
the sphere center. An example of the non-parametric approach is found in Christensen3 et al. which solve partial
di�erential equations for �uid motions to align images.

This paper presents the acceleration of an image registration algorithm4 by Cootes et al.. An inverse compo-
sitional5 optimization scheme, proposed by Baker and Matthews, is used. It is a Gauss-Newton approach, but in
which the Jacobian and the estimated Hessian can be precomputed. However, to be tractable memory wise, this
requires exploitation of the properties of the registration algorithm. An additional bene�t of the Gauss-Newton
approach is the ease of which addition of soft constraints on the registration can be added. Comparison is made
with optimization using the Lucas-Kanade scheme.

Further author information: Send correspondence to Martin Vester-Christensen, E-mail: mvc@imm.dtu.dk, Tele-
phone: +45 4525 5228
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(a) Before. (b) After.

Figure 1. The displacement of a pixel is governed by the displacement of its surrounding grid nodes.7

The paper consist of the following. First the registration algorithm is described. In 2.1 the image registration
algorithm is described, followed by outlining of the Lucas-Kanade algorithm, in 2.2, and the inverse compositional
optimization algorithm, in 2.3. Addition of soft constraints is described in 2.4. Section 3 describes the results
obtained by comparing the two optimization schemes.

2. METHODS
The image registration algorithm utilized in this paper is proposed by Cootes4 et al. which builds on the
algorithms presented by Rueckert6 et al. The image registration is performed by composing a series of grid-
based di�eomorphic warps which ensures the resulting warp being di�eomorphic.

2.1. Grid-Based Di�eomorphisms
A grid-based warp is represented by a grid of nodes∗, see �gure 1. The transformation W of a pixel x = (x, y, z)
is found by interpolating the displacement d of its surrounding grid nodes. In 3D the interpolating scheme is as
below,

W(x; α) = k(x− i)k(y − j)k(z − l)di,j,l + k(i + 1− x)k(y − j)k(z − l)di+1,j,l

+ k(x− i)k(j + 1− y)k(z − l)di,j+1,l + k(i + 1− x)k(j + 1− y)k(z − l)di+1,j+1,l

+ k(x− i)k(y − j)k(l + 1− z)di,j,l+1 + k(i + 1− x)k(y − j)k(l + 1− z)di+1,j,l+1

+ k(x− i)k(j + 1− y)k(l + 1− z)di,j+1,l+1 + k(i + 1− x)k(j + 1− y)k(l + 1− z)di+1,j+1,l+1,
(1)

where k() denotes a suitable kernel function which is non-zero only for i ≤ x < i + 1, j ≤ y < j + 1 and
l ≤ z < l + 1. The warp is parameterized with the components of the displacement vectors d. Thus, with a
3 × 3 × 3 grid in 3D, the warp consist of 81 parameters. The kernel is chosen as k(r) = 1

2 (1 + cos(πr)) which
gives a smooth and invertible mapping4 given that − 1

π < r < 1
π . Using the interpolating scheme the warp is

regularized by the coarseness of the grid. Thus, a pixel cannot move outside the bounding box provided by the
surrounding grid nodes. However, to represent a complex transformation several simple warps can be composed,

W(x;p) = W(x; δ1) ◦W(x; δ2) . . .W(x; δn−1) ◦W(x; δn), (2)

where W(x; δ1) ◦W(x; δ2) = W(W(x; δ2); δ1) denotes the composition of two warps. The warps are applied in
a �ne to coarse manner.

2.2. Image Registration using the Lucas-Kanade Algorithm
The goal of the image registration algorithm is to align a target and a input image such that the di�erence is
minimized. This is quanti�ed by the minimization of the sum of squared residuals,

F(p) =
∑
x

[T (x)− I(W(x;p))]2, (3)

∗The following is an elaboration on the paper4 by Cootes et al, but is included here for completeness.
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where I is the input image and T is the target image. This can be minimized using a Gauss-Newton optimization
scheme,8

F (p) =
1
2

∑
x

[T (x)− I(W(x;p + ∆p))]2 , (4)

which by Taylor expansion and solving for ∆p gives,

∆p = H−1
∑
x

[
∇I(W(x;p))

∂W(x;p)
∂p

]>
E(x), (5)

where H is the Gauss-Newton approximation to the Hessian,

H =
∑
x

[
∇I(W(x;p))

∂W(x;p)
∂p

]> [
∇I(W(x;p))

∂W(x;p)
∂p

]
, (6)

and the error is,
E(x) = T (x)− I(W(x;p)). (7)

The warp parameters p are updated using,
p ← p + ∆p. (8)

The Jacobian is found to be,
J =

∑
x

[
∇I(W(x;p))

∂W(x;p)
∂p

]
, (9)

where ∇I(W(x;p)) is the image gradient of the input image sampled at the points W(x;p), and ∂W(x;p)
∂p is the

derivative of the warp function with respect to the parameters.
This optimization scheme requires computation of the Jacobian J and the inverse Hessian H−1 at each

iteration. For large volumes and large grids, this is very computationally demanding. However, the Hessian is
symmetric and very sparse thus enabling the utilization of fast schemes for solving large sparse linear equations.9

2.3. Inverse Compositional Image Registration
To overcome the drawbacks of the Gauss-Newton scheme of calculating the Jacobian and the Hessian in each
iteration, Baker and Matthews5 recently proposed the Inverse Compositional Algorithm, in which the Jacobian
and the Hessian can be precomputed. As the name implies the algorithm consists of two innovations. The
compositional part refers to the updating of the parameters and the inverse part indicates that the image and
the target switches roles. The cost function in 4 is changed to,

Fic(p) =
1
2

∑
x

[T (W(x;∆p))− I(W(x;p))]2 . (10)

Solving for ∆p gives,

∆p = −H−1
ic

∑
x

[
∇T (x)

∂W(x;0)
∂p

]>
E(x). (11)

The update to the warp is,
W(x;p) = W(x;p) ◦W(x;∆p)−1, (12)

In equation 10 it can be seen that the incremental warp W(x;∆p) applies only to the target T , and thus the
Taylor expansion is around p = 0, yielding the Jacobian

Jic =
∑
x

[
∇T (W(x;0))

∂W(x;0)
∂p

]
. (13)
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and thus the Hessian Hic is,

Hic =
∑
x

[
∇T (x)

∂W(x;0)
∂p

]> [
∇T (x)

∂W(x;0)
∂p

]
. (14)

The Jacobian is independent of p and ∇T (x) is the image gradient of the target, thus enabling precomputation
of the Jacobian and the Hessian.

Baker and Matthews5 proves that the update ∆p calculated using the inverse compositional algorithm is
equivalent, to a �rst order approximation, to the update calculated using the Lucas-Kanade algorithm.

2.4. Adding Constraints
Baker et al.10 describe how to incorporate prior information on the warp parameters. This could for instance
be landmark or volume constraints formulated as an additional term in the expression to be minimized, i.e. as
weighted soft constraints to equation 3,

1
2

∑
x

[T (x)− I(W(x;p))]2 + α

K∑

i=1

C2
i (p). (15)

K is the number of constraints, Ci is a vector of functions containing the prior on the parameters for the ith

constraint and α is a weight controlling the emphasis on the prior term. In the inverse compositional framework
this corresponds to equation 10,

1
2

∑
x

[T (W(x;∆p)− I(W(x;p))]2 + α

K∑

i=1

C2
i (p +

∂p′

∂∆p
∆p). (16)

Approximating this with a �rst order Taylor expansion gives the following update equations for the gradient ∆p
and the Hessian,

∆p = −H−1
ic,Ci

[∑
x

[
∇T (x)

∂W(x;0)
∂p

]>
E(x) + αGr

K∑

i=1

[
∂Ci

∂p
∂p′

∂∆p

]T

Ci(p)

]
(17)

Hic,Ci = Hic + αHe

K∑

i=1

[
∂Ci

∂p
∂p′

∂∆p

]T [
∂Ci

∂p
∂p′

∂∆p

]
. (18)

The computational cost of adding priors is that the Hessian is not constant anymore. The costs is O(nN +
n2K + n3) compared to O(nN + n2) without priors. As long as the number of constraints and the number of
parameters are smaller than the number of pixels/voxels (K << N and n << N), this cost is negligible. In order
to make the prior terms robust to the number of constraints, the α weights are chosen relative to the L2-norm
of the term without priors,

αGr = αRel

∥∥∥∑
x

[
∇T (x)∂W(x;0)

∂p

]T

E(x)
∥∥∥

L2∥∥∥∑K
i=1

[
∂Ci

∂p
∂p′
∂∆p

]T

Ci(p)
∥∥∥

L2

(19)

αHe = αRel

∥∥∥Hic

∥∥∥
L2∥∥∥∑K

i=1

[
∂Ci

∂p
∂p′
∂∆p

]T [
∂Ci

∂p
∂p′
∂∆p

] ∥∥∥
L2

, (20)

where αRel >= 0 is the relative weighting between the two terms. αRel = 0 corresponds to the inverse composi-
tional without the prior term.
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Figure 2. The derivative of the warp with respect to the node in the lower left corner. It is non-zero only in the region
bounded by the neighboring nodes.

2.5. Fast Grid-Based Image Registration
The inverse compositional scheme described above requires the computation the Jacobian from equation 13 and
subsequently the Hessian from equation 14. To take full advantage of the inverse compositional method, they
must be precalculated and stored. However, the storage requirement of the Jacobian can be very large. In a
naive implementation using a simple 3×3×3 grid, space is needed for 81 ·N �oating point numbers with N being
the number of pixels in the image and potentially very large. So great care must be taken in the implementation
in order to exploit the speed gain provided by the inverse compositional framework.

2.5.1. Calculating the Jacobian and the Hessian
The Jacobian consist of the gradient ∇T (x) =

[
∂T
∂x

∂T
∂y

∂T
∂z

]
of the target image and the derivative of the warp

∂W
∂p . ∇T (x) can be found using a simple �nite di�erence method or more elaborate methods using B -splines or
similar interpolating methods. The warp derivatives are very simple to calculate. As mentioned, the parameters
of the warp are simply the 3 ·mnp ordinates of the displacements of the nodes,

p =
[
dx
1,1,1 dy

1,1,1 dz
1,1,1 dx

2,1,1 dy
2,1,1 dz

2,1,1 . . . dx
m,n,p dy

m,n,p dz
m,n,p

]
, (21)

for a m× n× p grid. This and equation 1 yields

∂W
∂dx

i,j,l

=
∂W

∂dy
i,j,l

=
∂W

∂dz
i,j,l

, (22)

meaning that the derivatives corresponding to the x, y, z components of one displacement vector are equal. Each
pixel x contributes to eight partial derivatives only, corresponding to the eight surrounding grid nodes, cf. �gure
2 for a 2D example. Thus, for N pixels, an N × 8 �oating point value representation of ∂W

∂p is possible using a
simple lookup method. However, since the kernel function k() only operates on the distance from a contributing
pixel x to a node, an even sparser representation of only Nreg × 8 is possible. Nreg is the number of pixels
surrounded by 8 neighboring grid nodes. For increasing grid sizes the space requirement goes down.

Another property of ∂W
∂p is seen from,

k(i + 1− x) = 1− k(x− i), (23)

which holds for y and z as well. For a neighborhood of grid nodes, the derivative at x = (x, y, z) wrt. the
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Figure 3. Plot of non-zero elements in Hessian matrices, for grid sizes of 3× 3× 3, 5× 5× 5 and 9× 9× 9 .

parameters of the warp has the form,

∂W
∂pi,j,l

= k(x− i)k(y − j)k(z − l)

∂W
∂pi+1,j,l

= (1− k(x− i))k(y − j)k(z − l)

...
∂W

∂pi+1,j+1,l+1
= (1− k(x− i))(1− k(y − j))(1− k(z − l)) (24)

(25)

Thus, to evaluate the derivative contribution for a single pixel x, only three kernel function evaluations, k(x− i),
k(y−j) and k(z−l) are needed. The derivatives can then be found using simple multiplications and subtractions.

Finally the Jacobian is calculated as in equation 13, which means multiplying the warp derivatives with the
image gradients. However, the Jacobian with the sparse representation mentioned above has a size of N × 24
�oating point values which requires a large amount of memory. Subsequently a compromise has to be made,
and in this work the image gradients and the warp derivatives are stored separately, yielding space requirement
for N × 3 plus Nreg × 8 numbers. This means the multiplication of the gradients and the derivatives must be
performed each time the Jacobian is needed, yet precalculation of the Hessian is still possible.

The Hessian is calculated as in equation 14. The sparseness of the Jacobian is transferred into the Hessian.
Figure 3 depicts the sparseness of the Hessian for three grid sizes. Solving equation 11 requires the inversion of
the Hessian matrix. This usually destroys the sparseness and is very computationally demanding. Furthermore,
the Hessian can be very ill-conditioned, but making use of iterative methods9 for solving sparse linear equations,
the inversion of the Hessian can be avoided.

2.5.2. The Image Registration Algorithm
To estimate the transformation of the input image I into the target image T minimization of equation 10 with
respect to p is required. This is done by �rst applying a coarse grid, eg. 3×3×3, and iteratively solving equation 11
until convergence. Subsequently a �ner grid, eg. 5×5×5, is applied, and so forth. This enables the estimation of
small local transformations while still being di�eomorphic.4 A multilevel approach, using downsampled versions
of the images, is adopted to avoid local minima. Consequently, for each grid size, optimization is done in a coarse-
to-�ne manner as well, starting the optimization on a �ner downsampling level with the parameters estimated
on a coarser level. See �gure 4. At each iteration equation 12 must be used to update the parameters. In this
work the parameters of W(x;∆p) is estimated with the �rst order approximation10 −∆p. Thus the parameter
update from equation 12 has the form,

p ← p−∆p. (26)
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(a) Coarser level. (b) Finer level.

Figure 4. Plot of the warp�eld estimated on a coarse image level and the corresponding �eld in a �ner level.

(a) Resulting 3× 3 grid. (b) New 5× 5 grid (c) Transformed 5× 5 grid

Figure 5. Composition of grids of di�erent sizes.

When the optimization for one grid size converges, a �ner grid is applied, ie. a 3 × 3 × 3 is replaced with a
5× 5× 5. Composition of warps of di�erence grid sizes is done in a simple manner. Figure 5 depicts the scheme.
The grid nodes of the higher level warp are transformed with the lower level warp. Thus, the parameters from
the lower level are transported into the higher level warp.

3. RESULTS
3.1. 3D Non-Rigid Registration
5 CT-volumes of the hind part of porcine carcasses are cross-registered to compare the inverse compositional algo-
rithm with the Lucas-Kanade algorithm. The volumes are approximately 512x512x170 voxels of size [0.67,0.67,2]
mm. After rigid registration the two algorithms for non-rigid registration are applied and the speed and accuracy
are compared. Due to time considerations the 20 registrations are done with images downsampled to 1

16 , 1
8 and

1
4 of the original image size for grids of size [3,5,7,9] per dimension. Figure 6 shows three slice planes of a volume
and their corresponding error images after a typical registration. The main errors are along the border of the
volume due to the large di�erence in value between background and volume.

Rows 1 and 2 in table 1 show the mean value and standard deviation of the number of iterations used before
convergence, the �nal registration error and the time consumption for the two algorithms. Row 3 shows the mean
improvement when using the IC algorithm and row 4 shows a paired T-test of signi�cant di�erences in the mean
values. There are highly signi�cant improvements (denoted by 1) in both speed and number of iterations. The
mean �nal registration error of the two methods are not signi�cantly di�erent. In this simple test it therefore
shows that the inverse compositional algorithm is as accurate as the Lucas-Kanade algorithm, as expected, but
is twice as fast for registration of CT-volumes. The results are obtained using a Dell Latitude 810D, with a
2.0Ghz CPU and 2 gb of ram. The implementation of the Lucas-Kanade algorithm utilizes the same sparseness
properties as the implementation of the inverse compositional algorithm. Thus, the algorithms perform similar
memory wise. The speed increase of the inverse compositional algorithm is due to the precomputation of the
Hessian and the target image gradient. In the paper4 by Cootes et al. the optimization is done by a simple
gradient descent scheme. The gradient is computed by displacement of each of the grid nodes in turn. Early
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Figure 6. (a)-(c): CT-volume of a porcine carcass. (d)-(f): Error images.

Table 1. Comparison between the Lucas-Kanade algorithm and the inverse compositional algorithm based on 20 regis-
trations.

Iterations Final Error Speed [sec.]
Lucas-Kanade (mean±std.) 160± 29 (7.6± 4.1) · 1011 436± 128
Inverse Compositional (mean±std.) 140± 15 (7.5± 4.0) · 1011 222± 45
Mean improvement with IC (%) 13 2 49
Paired T-test for di�erence in mean,
1=mean values are sign. di�. 1 (p < 0.006) 0 1 (p < 10−3)
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experiments have shown this approach to be very slow, so no comparison is made. However, no space is required
for precomputation, and as such it performs well memory wise.

3.2. Adding Constraints
If some prior knowledge is at hand before registration or if there is a need for guiding the registration, adding
constraints in the optimization scheme should be considered. As an example 58 landmark constraints are applied
in a 2D a�ne warp of image I in �gure 7(a) to image T in �gure 7(b). The warp W(x,p) of a pixel x is de�ned
by 6 parameters in vector p

W(x,p) =
(

1 + p1 p3 p5

p2 1 + p4 p6

) 


x
y
1


 . (27)

The �rst order term in the linearization of the additive update is

∂p′

∂∆p
= −




1 + p1 p3 0 0 0 0
p2 1 + p4 0 0 0 0
0 0 1 + p1 p3 0 0
0 0 p2 1 + p4 0 0
0 0 0 0 1 + p1 p3

0 0 0 0 p2 1 + p4




. (28)

The error function of the prior part is de�ned as

Ci = (LmT,i −W(LmI,i;p)), (29)

where LmT,i is the ith landmark in the target image T and LmI,i is the ith landmark in the input image I. The
Jacobian of Ci then is

∂Ci

∂p
= −

(
LmI,i,x 0 LmI,i,y 0 1 0

0 LmI,i,x 0 LmI,i,y 0 1

)
, (30)

where LmI,i,x and LmI,i,y are the x- and y-coordinates, respectively, of the ith landmark in I.
Figure 7(c) shows the L2-norm of the intensity and prior error as αRel is increased. αRel=0 corresponds to no

constraints and αRel=1 corresponds to the intensity and the constraints being weighted equally. The constraints
improve the registration as long as the intensity error is decreasing, i.e. for α-values approximately between
0.8 and 1.6. The prior error will o� course decrease with increasing α-value. How much weight to put on the
constraints depends on the application but for this example weighting intensity and prior more or less equal
gives the best result. Figures 7(d)-7(f) show the di�erence between the input image I and the target image T
warped into the coordinate frame of I, for αRel=0,1 and 2. The improvement in registration without constraints
compared to the registration with the intensity and constraints weighted equally is obvious, especially in the
area around the jaw.

Applying similar constraints as described in section 2.4 to the nonrigid case or in 3D is straightforward, all
you need to do is to de�ne Ci and compute the Jacobian and ∂p′/∂∆p.

4. CONCLUSION
This paper has presented an algorithm for registration of 3D images. Registration is done using grid-based
warps in a coarse-to-�ne manner, enabling the registration of even �ne structures in the images while still being
di�eomorphic. Using the inverse compositional framework for optimization, the algorithm performs very fast.
Exploitation of the sparseness of the grid-based warps and the properties of the interpolating kernel, enables the
precomputation of the Hessian and the target image gradient. The algorithm has a two-fold increase in speed
compared to a Lucas-Kanade based algorithm.
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(a) Input image I. (b) Target image T.
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(c) Intensity and prior errors vs. αRel.

(d) I(x)− T (W(x;p)−1), αRel=0. (e) I(x)− T (W(x;p)−1), αRel=1. (f) I(x)− T (W(x;p)−1), αRel=2.

Figure 7. 2D a�ne registration of 2 images with increasing weight on landmark constraints.
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