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Abstract

In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral images and a novel multi-spectral
image segmentation algorithm are proposed. The system collects up to 20 different spectral bands within a range that vary from
395 nm to 970 nm. The system is designed to acquire geometrically and chromatically corrected images in homogeneous and diffuse
illumination, so images can be compared over time. The proposed segmentation algorithm combines the information provided by
all the spectral bands to segment the different regions of interest. Three experiments are conducted to show the ability of the
system to acquire highly precise, reproducible and standardized multi-spectral images and to show its applicabilities in different
situations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

According to Wyszecky [1], color is defined as the aspect
of visual perception by which an observer may distinguish
differences between two structure-free fields of view of the
same size and shape. Since the beginning of image analysis,
several color models have been developed with the goal of
enhancing the contrast of the different structures embed-
ded. These color spaces have made the segmentation of
the interesting structures easier in several problems. For
instance, two of these color spaces, the CIE-XYZ and the
CIE-L*a*b* [1] have been successfully applied to the seg-
mentation of dermatological lesions [2,3]. These two color
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spaces are frequently used in Dermatology because of the
uniformity of the CIE-L*a*b* color space. This uniformity
that helps to understand how different two colors will look
to a human observer is directly connected with dermatolo-
gist’s visual lesion evaluation. These two color spaces are,
respectively, a linear and a non-linear transformation of
the RGB color space.

Other color spaces have also been developed aiming at
enhancing the interesting structures in other image analysis
areas. For example, the YCbCr color space has been widely
applied in facial and skin detection [4,5], the HSV color
space in food assessment and fungi detection [6,7], and
the CIE-L*u*v* color space in diabetes and retinopathy
detection [8,9]. However, the appearance of new multi-
spectral equipments that capture more than just the tri-
chromatic bands, the need of finding new transformations
that include the information provided by the new bands
has emerged.
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A tool that has been considered to overcome this
problem is principal component analysis (PCA) [10]. This
multivariate statistical technique consists of an eigenvalue
analysis of the covariance matrix for a multidimensional
stochastic variable. Given a random n-dimensional vari-
able, the ith principal component is the linear combination,
with normed coefficients, of the original variables which is
uncorrelated with the i � 1 first principal components and
it has the largest variance. This ith principal component
corresponds to the eigenvector associated with the ith larg-
est eigenvalue of the covariance matrix. In many cases, the
first few PCs explain most of the variance in data and can
therefore often enhance the desired structures.

However, although this technique has successfully been
applied in some data reduction and classification problems
[11,12], it is not able to provide a suitable solution in other
classification problems. An example of this is illustrated
applying PCA to the dataset displayed in Fig. 1(a). This
synthetic dataset was generated according to a mixture of
two Gaussian populations with 20,000 and 10,000 data
points, means [0,0] and [0,10], and covariance matrices
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Fig. 1. A two-dimensional dataset, its two principal comp
respectively. The two principal components obtained are
shown in Fig. 1(b) and (c). Note, that none of the two prin-
cipal components are able to separate the Gaussian popu-
lations. Moreover, it is shown in Fig. 1(d) that it is possible
to find a bimodal one-dimensional projection that sepa-
rates both populations. Therefore, there exits a need to find
an optimal projection from a classification point of view
that enhances the different structures in the image.

This need is added to the already existing challenge of
collecting precise and reproducible images so images col-
lected at different times can precisely be compared. Differ-
ent research projects in color calibration [13] and
illumination control [14] have been developed with the goal
of achieving these two goals. The consequence of these
studies is the appearance of new equipments which aims
at obtaining precise images within the last years. For
instance, in dermatology, Magliogiannis [15] developed a
system that aimed at reducing the shadows produced by
the human body curvature. However, as it was shown by
Gutenev et al. [16], there are at least two current problems
in the acquisition of the images: specular reflection and
misalignments. Lack of precision in the image acquisition
has been prevented using suitable methods to objectively
evaluate the images.
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onents (PC) and a bimodal projection of the dataset.
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Fig. 2. The camera system.
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Fig. 3. Positioning of the diodes in the camera set-up and calibration
sheets.

D.D. Gomez et al. / Computer Vision and Image Understanding 106 (2007) 183–193 185
In this work, two solutions are proposed to deal with the
two situations: an imaging system to collect precise and
reproducible images and an algorithm to find suitable
projections which easily segment interesting areas in the
images. In Section 2, an integrated imaging system to
obtain accurate and reproducible multi-spectral images is
proposed. The well defined and diffuse illumination of the
optically closed scene aims to avoid shadows and specular
reflections. Furthermore, the system has been developed to
guarantee the reproducibility of the collected images. This
allows for comparative studies of time series of images. In
order to segment the interesting structure of the images, a
novel segmentation algorithm, the Histogram Pursuit, is
presented in Section 3. This algorithm combines the infor-
mation provided by all the different spectral bands to
enhance the main structures of the image. The performance
of both the equipment and the Histogram Pursuit algo-
rithm to achieve the above commented goal is tested and
shown in Section 4. The obtained results and extensions
of the developed work are discussed in Section 5.
2. Collecting multi-spectral images

The acquisition of the multi-spectral images was con-
ducted in collaboration with Videometer.1 The proposed
equipment, Videometer Lab, is composed of a camera,
light emitting diodes and an integrating sphere. The equip-
ment has been designed to produce completely diffuse light
that avoid shadows and specular reflections. The system
acquires the multi-spectral images by fast strobe illumina-
tion from light emitting diodes (LEDs) at up to 20 different
wavelengths.

Fig. 2(a) shows the equipment. Fig. 2(b) displays a
sketch of the set-up. It displays the position of the camera,
the diodes inside of the sphere, and the place where the
object is located. Fig. 3(a) displays the position of the
diodes inside the equipment. The camera resolution is
1380 · 1035 pixels. In order to increase the accuracy and
reproducibility of the images a radiometric and a geometric
calibration are conducted [17]. The radiometric calibration
1 www.videometer.com.
aims at eliminating problems with uneven intensities and
vignetting, and to standardize the measurement scale. With
this goal in mind two sheets of the natural color system
(NCS) from the Scandinavian Color Institute were selected
as calibration targets (NCS 1500 and NCS 8000). The
equipment collects an image of each sheet. Then a non-lin-
ear calibration function is estimated and applied to each
image pixel during the further image acquisition. The geo-
metric calibration is conducted to make sure that aberra-
tions, such as distortion, decentering and thin prism
aberrations, do not affect the accuracy of the images. An
image of a white sheet with black spots is grabbed with
the camera for each wavelength. This calibration target is
shown in Fig. 3(b), together with the radiometric sheets.
The collected multi-spectral images are threshold and the
center of gravity of each spot is calculated. A third order
polynomial is applied to warp the centers of gravity to a
given target. This is done for each band in the multi-spec-
tral image in order to assure co-site registration.

3. The Histogram Pursuit (HP) algorithm

The core of the proposed segmentation algorithm is
found in Friedman’s Projection Pursuit algorithm [18].
Projection Pursuit (PP) is a statistical technique developed
to find interesting structures in the data. Interesting struc-
tures are found via linear projections in which the distribu-
tion of the projected data differs as much as possible from
the Gaussian distribution. Friedman justifies the non-inter-
est of the normal distribution based on a series of proper-
ties as all the projections of a multivariate normal
distribution are normal or that, for a fixed variance, the
normal distribution has the least information (Fisher, neg-
ative entropy). The deviation from a Gaussian is measured
through an index that measures the non-normality of the
projected data.

In 1D, Friedman looks for a projection of the sphered
data Z, X = aTZ, such that the index

IðaÞ ¼ 1
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;

is maximized. Pj is the Legendre polynomium of order j

and U(X) is the standard normal density function.
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Once an interesting projection has been found, the infor-
mation obtained by this projection is removed and the
algorithm looks for the next informative view. This process
consists of transforming the data so that the density of the
transformed data Zk+1 is as close as possible to the old data
Zk under the constraint that its marginal density is normal.
This produces the closest distribution in the sense of the
relative entropy distance measureZ

logðZk=Zkþ1ÞZk dZ:

As it can be observed in Fig. 4(b), Friedman’s algorithm
finds a projection that separates the two populations
embedded in the synthetic dataset analyzed previously with
PCA. This indicates that, from a classification point of
view, maximizing the non-gaussianity of the projected data
is a more appropriate criterion than to maximize the vari-
ance. However, maximizing the non-gaussianity of the pro-
jected data is too general. This may in datasets with more
than two classes, or datasets that have some non-gaussian
variables, e.g., uniform variables, result in the projection
found by PP to be not optimal and thereby require more
than just one projection. This would cause the computa-
tional inconvenience of having to analyze each projection
found in order to discover the combination that enhances
the desired structure. This fact is illustrated in Fig. 4.
Fig. 4(e) shows the histogram of the data projected on
the first projection obtained by PP of the dataset illustrated
in Fig. 4(d). This dataset is composed of three Gaussian
populations with 5000 data points each, means [10–1],
[1015] and [2215], and covariance matrices:
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Fig. 4. Top row: (a) A two-dimensional dataset composed of two Gaussia
combination found by PP. (c) Histogram of the projected data obtained using th
composed of three Gaussian populations. (e) Histogram of the projected data o
data obtained using the combination found by HP.
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Note, that the first projection found by PP discriminates
one of the populations with respect to the others. If the
desired structure is not discriminated, then a second projec-
tion must be obtained in order to discriminate the wanted
structure. However, there exists a one-dimensional projec-
tion that separates all of the three populations.

In order to find this combination, the proposed algo-
rithm modifies Friedman’s index in order to incorporate
information about the number of structures included in
the image. If the image to be analyzed is assumed to have
n classes, the index associated to a specific projection is
defined as the n � 1 largest area between two consecutive
modes in the histogram of the projected data. The region
where the HP algorithm calculates its index is illustrated
in Fig. 5. The region is labeled Area. If Mmin represents
the minimum histogram value calculated in the two maxi-
mums that define the area (x and y), nbins is the number
of bins between these two maximums, and H(i) is the value
of the ith bin, then the index is calculated by:

IðkÞ ¼
Xi¼y

i¼x

minðHðiÞ;MminÞ
 !

�Mmin � nbins:
Notice that this index is scale invariant. If the found
combination is

Pnbands

i aiBi, then the combination
bð
Pnbands

i aiBiÞ, b 2 R, has the same index. In order to force
the algorithm to provide only projections with n modes, the
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Fig. 5. Region where HP calculates the index.

Table 1
Pseudo-code for HP index

Let H be an obtained histogram, and n the number of classes in the
image

1-Smooth H to remove insignificant maxima
2-Detect all the local maxima of the smoothed histogram. Set n_max to

the desired number of maximums in H
3-If n_max is equal to n then

3.a-FOR i equal 1 to n�1 find the area between maximum i and
maximum i+1

3.b-Index equal to the n�1 largest area
Else

Index = 0
Return Index
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algorithm gives an index of zero to all projections with a
number of modes different to n. A pseudo-code to calculate
the index is given in Table 1.

The optimization in this work is conducted using genetic
optimization [19].
4. Experimental results

In this section, three experiments are conducted to test
the accuracy and applicability of the proposed equipment
and segmentation techniques. The first experiment aims
to show the accuracy and reproducibility of the obtained
images. The last two experiments show the results obtained
by the segmentation technique in two different databases: a
dermatological and a mycology database.
Fig. 6. Variation in the measurements of the NCS respect to the time that
the equipment was turned on in the amber band, 592 nm.
4.1. Experiment 1: Testing the performance of the

VideometerLab to collect reproducible and accurate images

The first experiment aims at demonstrating the accuracy
of the system and the reproducibility of the acquired images.
Reproducibility means that if the same image is collected at
different times, the results should be comparable. This fact
is really important when the objective is to detect and eval-
uate changes in bitemporal images. It guarantees that the
differences in two images taken some time apart do not
depend on the conditions under which they have been tak-
en. For instance, this quality is of prime importance in
applications such as evaluation of dermatological lesions
where it is important to ensure that differences in the
obtained measures depend only of changes in the lesion.

In order to assess the reproducibility of the images, the
equipment was kept turned on during 7 h. The set-up was
calibrated every hour and images of four Natural Color
System sheets (1500 N, 2500 N, 5000 N and 8500 N) from
Scandinavian Color Institute were collected. The NCS
sheets are all painted and have very small variation. The
mean of each spectral band of the collected images was cal-
culated. If the system performs accurately, the mean should
not vary significant with respect to time. Marks were
placed in the NCS sheets to calculate the mean in approx-
imately the same area.

Fig. 6 shows the evolution of the measures with respect
to time of the four NCS sheets in the amber band (592 nm).
Results obtained in the other bands are similar to that
obtained in this band. From the figure, it is noticed that
the variation is minimal. After the first hour, where the
equipment reached thermal equilibrium, the differences
are inappreciable. Moreover, for fixed NCS sheet, the var-
iance of the obtained measurements for each band is
minimal.

In Table 2, the variance of the measurements obtained
for each band of the different NCS sheets is displayed. This
small variance guarantees that measures obtained in the
image depend only on the structure being analyzed and it
shows the robustness of the equipment.
4.2. Experiment 2: Segmenting 9 multi-spectral band

psoriasis images

The goal of the second experiment is to assess the use of
multi-spectral images when analyzing dermatological



Table 2
Variance of the seven means obtained for each NCS sheet in each spectral
band

Band/NCS number 1500 N 2500 N 5000 N 8500 N

Blue 472 0.0007 0.0105 0.0236 0.0348
Green 515 0.0002 0.0012 0.0028 0.0074
Amber 592 0.0013 0.0371 0.1295 0.1563
Red 630 0.0012 0.0078 0.0199 0.0222
Near IR 875 0.0010 0.0062 0.0434 0.0366
Ultra blue 428 0.0058 0.0057 0.0141 0.0320
Cyan 503 0.0003 0.0011 0.0023 0.0086
Orange 612 0.0004 0.0066 0.0234 0.0319
Near IR 940 0.0001 0.0076 0.0501 0.0726
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lesions. Nowadays, the medical tracking of dermatological
diseases is imprecise. The main reason is the lack of suit-
able objective methods to evaluate the lesions. Presently,
the severity of the disease is scored by doctors just through
their visual examination. Doctors visually assess the lesion
and make scorings and journal notes of the current condi-
tion. These notes and perhaps some photographs are usu-
ally the only memory of what the lesion looked like at
the corresponding visit. Image analysts have tried to pro-
vide different solutions to these problems during the last
decades [20–24]. However, difficulties in correctly acquiring
the images [16], the limited information provided by the tri-
chromatic images and the presence of artifacts such as hair
[25] cause that precise and objective scores of the severity of
the lesions cannot be obtained. In order to evaluate the
benefits of using multi-spectral images, a collection of eight
multi-spectral psoriasis images were collected in collabora-
Fig. 7. The nine multi-spectral bands of one of the images. Top left: ultra-blue
Middle center: amber, 592. Middle right: orange, 612. Bottom left: red, 630.
interpretation of the references to color in this figure legend, the reader is refe
tion with the dermatological department of Gentofte Hos-
pital in Denmark. These multi-spectral images were
composed of nine spectral bands ranging from 472 nm to
940 nm.

The nine bands of one of the collected images together
with their associated wavelengths are displayed in Fig. 7.
It is seen that one of the bands mainly shows the hair
and the veins (630 nm). This situation was also observed
in the other psoriasis images which presented these two
structures (Fig. 8(a) and (b)). This fact indicates that the
multi-spectral images provided a more informative repre-
sentation of the lesion than the traditional RGB images.
This extra information can be used to obtain a more precise
evaluation of the lesion where hair and veins are removed.

In order to statistically assess the information provided
by the extra bands, the images were segmented using the
HP algorithm. The HP algorithm found a projection where
the lesion exhibited a considerable contrast with respect to
the other structures involved in the image (Fig. 8(c)). The
data in these projections are distributed approximately
according to a mixture of two Gaussians. The parameters
of this model can be estimated [26] and the lesion extracted
via discriminant analysis. Results of the segmentation are
shown in Fig. 8(d). It is observed that the nine multi-spec-
tral bands provide enough information to precisely sepa-
rate the lesion from the other parts of the images. The
segmented images were used to assess the information pro-
vided by the extra bands in terms of Mahalanobis distances
between classes. Given two classes X and Y with observa-
tions X 1; . . . ;X n1

belonging to X and observations
, 428. Top center: blue, 472. Top right: cyan, 503. Middle left: green, 515.
Bottom center: near infrared 875. Bottom right: near infrared 940. (For
rred to the web version of this paper.)



Fig. 8. (a) Four psoriasis images. (b) Spectral band 630 nm. (c) Projection image found by the HP algorithm. (d) Lesion segmentation.
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Y 1; . . . ; Y n2
belonging to Y, Mahalanobis distance between

X and Y is defined by

ðl1 � l2Þ
TR�1ðl1 � l2Þ;

where l1 and l2 are the mean of classes X and Y respective-
ly, and

P
is defined by

R ¼ 1

n1 þ n2 � 2
ð
X

i

ðX i � �X ÞðX i � �X ÞT

þ
X

i

ðY i � �Y ÞðY i � �Y ÞTÞ:

The Mahalanobis distances, for each of the eight images,
between the lesion and the class composed of the other
structures in the image (healthy skin, hair,. . .) using the
nine bands and using only a RGB approximation are
shown in Table 3. It can be observed that the distance
Table 3
Mahalanobis distances between the lesion and the other structures
involved in the image

Image Mahalanobis distance using the
RGB bands

Mahalanobis distance using
the nine bands

1 10.0793 12.8460
2 2.9048 10.3904
3 7.3857 12.2284
4 14.8222 17.4322
5 1.8920 23.4698
6 23.4068 38.4291
7 7.1864 9.9264
8 18.0009 31.8217
increases considerably when the nine bands are used. How-
ever, a more meaningful measure based on these measures
is to statistically test the null hypothesis that the six extra
bands does not contribute to a better discrimination. Spe-
cifically, if the extra six variables do not contribute to a bet-
ter discrimination, then

Z ¼ n1 þ n2 � p � 1

q
n1n2ðDp � DqÞ

ðn1 þ n2Þðn1 þ n2 � 2Þ þ n1n2Dq
;

follows a F(q,n1 + n2 � p � 1) distribution, where n1 and n2

are the number of observations on each class, p is the total
number of variables, q is the number of variables that are
to be tested if they do or do not contribute to a better dis-
crimination and Dp and Dq are the Mahalanobis distances
between classes using all the variables except the last q. Re-
sults showed that statistically the null hypothesis was
rejected with a significance level of 1%. This means that
the last six variables strongly contribute to a better
discrimination.
4.3. Experiment 3: Segmenting 18 multi-spectral band fungi

images

Classification of fungi is of importance for several rea-
sons; for a further phylogenetic study or to reveal new spe-
cies or isolates to use in, e.g., food or medical industries.

Traditionally, the classification has been performed by
means of chemical and visual studies of the fungi. In the
last decade digital image analysis has also been utilized
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for the classification, but till now it has been based on RGB
images as in [27].

The species can be differentiated by macroscopic fea-
tures, microscopic features and behaviors like, e.g., ther-
mophilicity (whether or not they can grow at high
temperatures). The macroscopic features are the ones cap-
tured by the image acquisition.

The Penicillium genus was chosen due to the large
knowledge of and well identified isolates. Penicillium is a
filamentous fungi also known as mold. Most of the species
are found in the soil and in the air. They are known to pro-
duce mycotoxins. The mycotoxins can cause infections
when in contact with humans, though, depending of the
type of mycotoxin. The fungi can also be used to produce
antibiotics, antitoxins and other drugs.

Multi-spectral images with 18 wavelengths are exam-
ined. Three species are examined: P. polonicum, P. vene-

tum, and P. melanoconodium. It is assumed that the
many spectra additionally can reveal some chemical infor-
mation about the fungi compared to the ordinary RGB
images. Within each species four different isolates were
chosen, all obtained from the IBT Culture Collection held
at BioCentrum-DTU. They were chosen with geographi-
cal origin in different countries to get a greater variance
within each specie. Each isolate was grown on three differ-
ent media: OAT (Oatmeal Agar), YES (Yeast Extract
Sucrose Agar), and CYA (Czapek Yeast Extract Agar),
with three replicas on each medium to obtain the variance
within each isolate. The isolates are grown on three media
to get access to more information. This is the usual prac-
Fig. 9. Segmentation of a P. melanoconidium, a P. polonicum, and a P. venetum

respectively. First column illustrates RGB representations of the multi-spectral
The third column illustrates the final segmentation.
tice when isolates are to be identified. In total there are
108 samples.

The first step is to segment the background, the petri
dish and the fungi into three classes. The next step is to
examine each of the three classes and then respectively
examine each of the subclasses obtained for further classes
until a subclass no longer can be split in two or more. The
interest is to segment the fungi from the background as well
as the petri dish, and if possible extract information of dif-
ferences within the fungi. This is done in order to extract
features to be used in a further classification of the species.
The first step is straight forward in all cases where as the
following examinations differ depending on the appearance
of the individuals.
4.3.1. Results of the segmentation

Fig. 9 shows examples of segmentations within the
images of the three species grown on the YES medium.
The fungi are well separated from both petri dish and back-
ground, and furthermore, the lighter edge of the fungi can
be separated from the darker center of the fungi. The latter
can be useful since the different species differ in appearance
at this point. The images are foremost split into 3 classes:
The background, the medium, and the fungi. As this is
not sufficient the medium and the fungi classes are further
examined for subclasses. Subdividing further, the lighter
edge is separated from the medium class and small seg-
ments of the medium is separated from the fungi class.

Fig. 10 illustrates two examples on the OAT medium
where the lighter edge of the fungi are segmented from the
isolates all on the YES medium with IBT numbers: 3445, 22439 and 21549,
images. Second column illustrates the first segmentation in to three classes.



Fig. 10. Segmentation of a P. polonicum, and two P. melanoconidium isolates on the OAT and YES media with IBT numbers: 22439, 3445 and 10031,
respectively. First column illustrates RGB representations of the multi-spectral images. Second column illustrates the first segmentation in to three classes.
The third column illustrates the final segmentation.

D.D. Gomez et al. / Computer Vision and Image Understanding 106 (2007) 183–193 191
medium classes. Another example of a P. melanoconidium on
YES medium is shown. In this case the lighter areas of the
fungi are classified as fungi first time, but partitioning fur-
ther gives a subdivision of the fungi area.

In Fig. 11 the division of the segmented medium was
performed using three classes. For the P. venetum isolate
Fig. 11. Segmentation of a P. polonicum and two P. venetum isolates all on
respectively. First column illustrates RGB representations of the multi-spectral
The third column illustrates the final segmentation.
in the middle row the segmented fungi was divided further
as it contained some of the medium. The edge of the fungi
was not identified when first dividing the segmented medi-
um, but at the following segmentation. The divisions of the
media may be useful for examinations of the chemicals the
fungi produce during the growth.
the CYA and OAT media with IBT number: 15982, 23039 and 16215,
images. Second column illustrates the first segmentation in to three classes.



Fig. 12. Segmentation of a P. melanoconidium and two P. venetum isolates all on the CYA and YES media with the IBT numbers: 21534, 23039 and 21534,
respectively. First column illustrates RGB representations of the multi spectral images. Second column illustrates the first segmentation in to three classes.
The third column illustrates the final segmentation where each of the three classes first found are examined for further divisions.
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Fig. 12 illustrates isolates where the fungi can be divided
into more subgroups than two; the edge and the center of
the fungi. Two P. melanoconidium isolates and one P. vene-

tum isolate are shown on the CYA and YES media.
Segmentations of multi-spectral images of the three Pen-

icillium species on the three different media have been con-
ducted. Examples from each group have been illustrated.
There are three examples where the appearance of the fungi
have some variance within the 9 groups and these are also
illustrated. The results shown illustrate that the fungi are
well separated from the media for different isolates. Fur-
thermore, the method can be used to find subclasses within
the fungi.

5. Conclusions

In this work, a system to collect precise and reproduc-
ible multi-spectral dermatological images has been pro-
posed. The system can collect up to 20 different spectral
bands. These bands are composed by the RGB tri-chro-
matic spectral bands plus 17 extra bands that can be cho-
sen in the range going from ultra-blue to near infrared
(from 395 nm to 970 nm). The reproducibility of the
equipment has been tested. A novel algorithm that com-
bines the information of all the spectral bands in order
to segment the interesting areas have also been provided.
Results indicate that the equipment and the segmentation
algorithm are suitable tools to measure changes in the
evolution of dermatological disease. Furthermore, it has
been observed that the six extra bands provide more
information than the classical RGB images. This informa-
tion can be used to remove noise such as hair or occlu-
sions and to obtain more precise measures to
characterize the lesion. Furthermore, the applicability of
the equipment and the segmentation algorithm was tested
on a second data base of fungi images. It was shown that
fungi as well as some structures in the fungi can be seg-
mented to obtain features for further classification.
Results point out the proposed imaging system as a suit-
able tool for obtaining measures that characterize the
objects under study.
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