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Abstract In this paper we present a multi-objective genetic algorithm to solve the problem
of mapping a set of task graphs onto a heterogeneous multiprocessor platform.
The objective is to meet all real-time deadlines subject to minimizing system cost
and power consumption, while staying within bounds on local memory sizes and
interface buffer sizes. Our approach allows for mapping onto a fixed platform
or onto a flexible platform where architectural changes are explored during the
mapping.

We demonstrate our approach through an exploration of a smart phone, where
five task graphs with a total of 530 tasks after hyper period extension are mapped
onto a multiprocessor platform. The results show four non-inferior solutions
which tradeoffs the various objectives.

1. Introduction
Modern embedded systems are implemented as heterogeneous multiproces-

sor systems often realized as a single chip solution, System-on-Chip (SoC).
Given the high development cost and often short time-to-market demands,
these systems are developed as domain specific platforms which can be re-
configured to fit a particular application or set of applications. They are typ-
ically designed under rigorous resource constrains, such as speed, size and
power consumption. Determining the right platform and efficiently mapping
a set of applications onto it, requires hardware/software partitioning, hard-
ware/software interface, processor selection and communication planing.

In this paper, we address the following problem:

Given a set of applications with individual periods and deadlines, and a heteroge-
nous multiprocessor architecture on which to execute the applications, determine
amappingof all tasks on processors and all communications on communication
links, such that all deadlines are met subject to power consumption, memory
size, buffer sizes of network adapters and overall component cost.

By mapping we mean the allocation of tasks in space and time, i.e. the deter-
mination of which tasks to execute on a given processor as well as the detailed
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time schedule of each task, and likewise for the communications on commu-
nication links.

We address two different variations of the problem;

1 Fixedplatforms, i.e. no changes of type or number of processors nor any
interconnection topology. Hence, the focus is on mapping the applica-
tions onto the platform. This variation corresponds to the case where
we want tore-usean existing platform, which is often the case when
moving from one generation to the next of a product family.

2 Flexible platforms, i.e. the types and/or number of processors may be
changed and the interconnection topology may be changed by adding or
removing buses and bus bridges. This variation corresponds to the case
where we may change the platform to better fit the requirements of the
application.

To demonstrate the capabilities of our approach, we will explore the design
of a smart phone, i.e., a heterogeneous multiprocessor platform running five
applications with a total of 114 tasks: MP3, JPEG Encoder, JPEG Decoder,
GSM Encoder and GSM Decoder. We will demonstrate how our approach can
lead to improved solutions for both variations of the optimization problem and
in particular for the co-exploration of the architecture selection and application
mapping.

The rest of the paper is organized as follows; Section 2 discusses related
work. Section 3 presents the application and architecture models. In Section 4
and 5 we present details of our exploration framework. Section 6 present the
design space exploration case study of a smart phone. Finally, we present the
conclusions in Section 7.

2. Related Work
Static scheduling algorithms for mapping task graphs onto multiprocessor

platforms have been studied extensively. A good survey of various heuristic
scheduling methods can be found in [5].

Recently, Genetic Algorithms (GA) have been applied to multiprocessor
co-synthesis problems due to their property to escape local optima [3, 6–8].
In [6], the goal of the GA-based scheduler is to minimize completion time of
all tasks. Although some processor characteristics are taken into account, the
approach only addresses homogeneous platforms. In [7] the objectives are to
minimize the number of processors required and the total tardiness of tasks
for real-time task scheduling. In MOCAG [3] the objectives are extended to
also include power consumption beside system price (cost) and task comple-
tion time. The approach showed very good results in particular for large sys-
tems. The approach described in [2] minimizes schedule length (i.e. the sum
of computation, communication and processor wait times) in mixed-machine
distributed heterogeneous computing platforms executing up to 200 tasks. The
approach uses a fast heuristic with the GA optimization, thereby reducing the
exploration time as compared to traditional GA. The approach presented in [8]
emphasize energy minimization through the use of dynamic voltage scaling
provided by the processors. It is applied to heterogeneous multiprocessor SoC
platforms.
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Our approach is similar to [2] and [8], but we use a more detailed com-
munication exploration, and in addition to cost, completion time and energy,
we explore memory and buffer constrains - with true multi-objective optimiza-
tion.

3. Models
In this section we present the application model and the architecture model

on which to execute the application. Both are inputs to our exploration envi-
ronment.

3.1 Application Model
We consider a real-time application to be modelled as a task graph (ex-

pressed as a directed acyclic graph)GT = VT , ET ), whereVT = {τi : 1
≤ i ≤ n} is the set of schedulable tasks, andET = {ej : 1≤ j ≤ k} is the set
of directed edges representing the data dependencies between the tasks inVT ,
i.e., if τi ≺ τj then(τi, τj) ∈ ET . The weight of an edge indicates the size of
the message to be transferred between two tasks. Figure 1a shows a example
of an application task graph. Each taskτi ∈ VT is characterized by a five tuple
〈di, Ti, ci, ei,mi〉, i.e. the exact functionality of the task is abstracted away.
The relative deadline,di, and the period,Ti, are given by external require-
ments of the application and, hence, are independent of runtime input values,
intermediate results or configurations of processing elements. However, the
execution time,ci, the consumed energy,ei, and the memory usage,mi, are
all determined by the actual mapping of the task onto a particular processor.
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Figure 1. Models, a) Application task graph, b) Architecture graph with 4PEs, 2 busses and
a bus bridge.

The deadline of a real-time application,DT , is represented by the deadline
of the task(s) inVT with no successors, i.e. no outgoing edges. The task graphs
for the different applications are unfolded to cover the hyper period of the
complete application. If the different task graphs have different deadlines the
period of the hyper period is the least common multiple of all task graphs
periods. Figure 2 shows a case of two applications unfolded to fit the hyper
period. Application 1 has two copies and Application 2 has three copies.

An instance of a task graph cannot start before the preceding instance has
completed its execution. The table in figure 2 shows the earliest start time for
each task graph instance.
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Figure 2. Hyperperiod of two task graphs, and Table with earliest start time and deadline for
all task graph instances.

3.2 Architecture Model
We consider a heterogeneous multiprocessor architecture to be modelled as

an architecture graphGA = (VA, EA). The vertices represent three differ-
ent types of components,VA = VPE ∪ VL ∪ VB, whereVPE = {PEq : 1
≤ q ≤ m} is the set of processing elements (PEs),VL = {lv : 1≤ v ≤ l} is
the set of buses which makes up the interconnection network,andVB = {bk :
1≤ k ≤ r} is the set of bus bridges. Processing elements can be any of ded-
icated hardware accelerators (PEASIC), reconfigurable devices (PEFPGA),
or general purpose processors (PEGPP ). EachPE is characterized by a tu-
ple 〈fi,mi〉, wherefi is the operating frequency of the processor andmi is
the maximum size of the local memory of the processor. Figure 1b shows a
example of an architecture graph.

The mapping of the individual tasks, determines if a task will be imple-
mented as hardware logic, ASIC and/or FPGA, or as software running on a
GPP. Consequently, by choosing a different processor, the execution charac-
teristics of the task may be changed, which in turn will affect the scheduling
of the succeeding tasks; and eventually the completion time of the application.

The interconnections are formed by a (possible hierarchical) network of
buses connected through bridges. The communication between two tasks
mapped to the samePE is done via accessing shared memory, i.e. we as-
sume that each processing element has local memory, and its access time is
negligible. The communication delay between two tasks mapped to differ-
entPE’s is the property of the size of the message, the sizes of the interface
buffers, and the bandwidth of the bus.

Processing elements are connected to buses through network adapters. A
network adapter may include buffers, allowing for communication to take
place concurrently with computation.

4. Design Space Exploration
To solve the presented multi-objective optimization problem, we have used

the PISA framework [1] to create a multi-objective Genetic Algorithm (GA).
We take as input the set of application task graphs and an architecture graph
as described in Section 3. The GA is responsible for design instantiations,
i.e. the selection ofVA, and the assignment of the set of tasksVT onto the set
of processing elementsVPE ∈ VA. The selection process can be skipped if
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the user is only interested in a mapping onto afixedplatform, otherwise the
platform will be regarded as flexible.

A GA is an iterative and stochastic process that operates on a set of indi-
viduals (the population). Each individual represents a potential solution to the
problem being solved, and is obtained by decoding the genome of the indi-
vidual. Initially, the population is randomly generated (in our case based on
the input graphs). Each individual in the population is assigned a fitness value
which is a measure of its goodness with respect to the problem being con-
sidered. This value is the quantitative information used by the algorithm to
guide the search for a feasible solution. The basic genetic algorithm consists
of repeated execution of three major stages: selection, reproduction, and re-
placement. Each iteration is called a generation. During the selection stage,
individuals with a high fitness value has a higher probability of being selected
to create of spring through crossover. A new population is then created by per-
forming crossover followed by mutation. Finally, individuals of the original
population is substituted by the newly created individuals in such a way that
the most fit individuals are kept deleting the worst ones. A thorough descrip-
tion of genetic algorithms may be found in [4]. There are two important issues
which have to be addressed when formulating a problem to be solved by a GA;
the representation, i.e. the encoding/decoding mechanism of the genom of an
individual, and the evaluation of the fitness of an individual. These issues will
be explained in the following sections.
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Figure 3. a) Example of a mapping, and b) the corresponding GA representation.

4.1 Design Representation
In order for the GA to optimize the designs, each design must be represented

as an individual. Figure 3 shows a mapping of an application graph onto an
architecture, and the corresponding representation. Each individual consists
of two parts: A part specifying the architecture and a part specifying the task
assignment. In Figure 3b the architecture representation part contains an ar-
ray of the deployed processing elements, in this example fourPEs of three
different types (GPP, ASIC andFPGA). The connection between thePEs
is given by the2D matrix. Each row corresponds to a bus and each element
in the row indicates if the correspondingPE is connected to the bus (’1’) or
not (’0’). The bridges which are connecting the busses, are defined as a bridge
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matrix, where each row represents a bridge and the elements indicates which
busses the bridge connects. The task assignment is given as an array, where
each index identifies a task and the corresponding element identifies the index
of thePE to which the task is assigned.

The chosen representation is problem specific and uses internal references.
The tasks donot identify whichPE to use, but rather the index of thePE in
the PE array. Hence, if the type of aPE is changed for an entry, all tasks
referring to this index, will have their executingPE changed.

4.2 Genetic Operators
Initially, a set of individuals are instantiated with unique architecture and

application mapping in order to form a population. During each generation we
can apply one or more of the following five types of genetic operators,

ChangePE: Randomly select an existingPE and change it’s type, and
randomly select a bus and change its type.

AddPE: Add a newPE to a randomly selected bus, and assignd |VT |
|VP E |e

tasks randomly selected from the otherPEs.

RemovePE: Remove aPE from a randomly selected bus, and dis-
tribute its tasks among the remainingPEs.

Crossover: Crossover onPE types and tasks mapped toPE. This op-
erator copies the mapping andPE-type from one individual to aPE in
another individual.

Randomly Re-assign Task: Move [1;4] randomly selected tasks from a
PE to another randomly chosenPE.

Heuristically Re-assign Task: Identify the task graphs which have tasks
missing their deadlines, and select a task from these and move it to a
PE with no deadline violation.

The first four of the genetic operators enables the GA to find any solution in
the problem space. The fifth mutation operator adds a more focused search re-
garding deadlines and workload balancing. Neither of these operators change
the cardinality ofVL, however the GA has full flexibility to reorganize the ex-
isting interconnect topology. After applying these operators to individuals, the
outcome needs to be evaluated. This is done by a scheduling algorithm which
is responsible for determining the start- and the end-times of the computation
and communication activities. The scheduling algorithm will be presented in
the next section.

5. Scheduling
The scheduling task is NP-hard, and it has to be performed for each indi-

vidual constructed by the GA algorithm. Hence, a fast scheduling method is
central for good performance. For a survey of different scheduling algorithms
see [5]. We have chosen to use a static list scheduling algorithm which requires
a priority for each task. We use a mix of the so called t-levels and b-levels: The
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t-level of a task is the earliest start time of that task whereas the b-level is the
latest start time if time limits are to be satisfied. We use a linear combination
of the two measures to produce a task priority-list.

During scheduling tasks are selected from the start of the priority-list but
with two important sub conditions

1 For a task to be selected for scheduling, all of its preceding tasks have
to have been scheduled already.

2 Tasks with smallest ’earliest start time’ is scheduled before other tasks.

5.1 Scheduling algorithm
In Figure 4 we outline the pseudo code for the list scheduling algorithm.

The list scheduling algorithm initially calculates the t- and b-levels to initial-
ize thePriority List (1). Then the listNum Unschedueld Predecessors
is initialized (2). Then the current task to scheduleτy is set to the task with the
highest priority which also satisfies sub-condition 1) and 2) (3). In the main
loop, first the earliest possible starting time for the task is found (5). Thenτy is
scheduled to start at this time (6). Afterwards theNum Unschedueld Pre-
decessors is updated (7). Then the task with the highest priority satisfying
sub-condition 1) and 2) is selected as the next taskτy to schedule (8). Fi-
nally theEarliest Communication Time(ECT) for all predecessors toτy are
found, in order to find earliest ready communication resources for mapping
and scheduling (9).

1: CalculatePriority List.
2: Initialize Num Unschedueld Predecessors[..]
3: Setτy to the first task inPriority List satisfying sub condition 1) and 2)
4: repeat
5: Find earliest starting time forτy

6: scheduledτy

7: UpdateNum Unschedueld Predecessors[..]
8: Set next ready task inPriority List to τy

9: CalculateECT to τy

10: until All tasks scheduled

Figure 4. Scheduling Algorithm

Example: Consider a given inter-task communication:(τx, τy) ∈ VT (Fig-
ure 5a), such thatτx ≺ τy, and (PE1, PE3) ∈ VPE , whereτx → PE1 and
τy → PE3. Further we assume that the network adapter inPE3 has no buffers,
while PE1 has both input and output buffers. For the schedulable resources
and their interconnectivity, we associatelv ∈ VL a vector of items in the topol-
ogy set i.e. direct bus (one item) or bridged bus (3 or more items) connecting
PE1 with PE3. In this case,lv consists of 3 items: local buses ofPE1 and
PE3, l1 andl2, and the bridge,b1, betweenl1 andl2. Further, we assume the
bandwidth ofl2 > l1. Let the message size to be transferred bem. Figure 5b
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shows a snapshot of the scheduling profile during the communication of inter-
est. For clarity, we assume the transfers over the bridge to be instantaneous
and hence ignored in the figure. The shaded portions, imply that the shared
resource is busy.
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Figure 5. a) Mapping of two tasks, and b) calculation of Earliest Communication Time.

In the following, we are showing how ECT is calculated for the example in
Figure 5a. First we calculate the completion time, (ctx), of τx on PE1. For
PE1, the space in the output buffer,PE1,buf , is found to be available, thus the
message is moved toPE1,buf , freeingPE1 to start executing another taskτz.
Knowing the precedence constraints and the ordering in thePriority List,
we calculate the earliest possible start time,rty, for τy on PE3. ECT is set
to the furthest time when either the communication is possible (τx completes
on PE1) or required (τy ready to start onPE3), i.e. ECT = rty. Then we
find the topology set,lv, connectingPE1 with PE3, which is {l1, l2}. We
evaluate the availability of each of the busses oflv. Although l1 is available,
the earliest time at which communication can be scheduled is whenl2 is also
available. This dictates the ECT. Overall the communication speed is dictated
by the slower bus, keeping the output buffer,PE1,buf occupied. The actual
start time ofτy is after the messagem has been received.¤

5.2 Memory issues
During scheduling both interface buffers and local memory are taken into

account.
Interface buffers of a processor can be used in two ways 1) to store data

coming from the bus to the processor and 2) to store data going from the pro-
cessor to the bus. It is assumed that buffers can not block. This means that
even if a communication task can not be stored in the buffer (e.g. buffer is
full), the buffer can still send data to the bus.

When tasks are mapped to processors, the static and dynamic memory con-
sumption of the tasks are taken into account. This assures that the number
of tasks mapped to aPE will always fit within the available size of the local
memory. The local memory size for eachPE is specified as a constraint in
the input. However, during scheduling data waiting to be sent to the bus may
have to be saved in the local memory of the processors, for instance in the
case where the corresponding buffer is full. This can cause a violation of the
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memory constraint on a given processor. This memory violation is one of the
objectives optimized in the multi-objective GA algorithm.

6. Case study
In this section we explore a smart phone [8] running 5 applications (JPEG

encoder and decoder, MP3, and GSM encoder and decoder) with a total of
114 tasks. After expanding the task graphs into a hyper period, we have a
total of 530 tasks to schedule. The GA was run for 100 generations which
corresponds to approximately 10 min of run time. In each generation 100
individuals was evaluated. Hence, 10.000 solutions were explored, resulting
in four interesting architectures (see figure 6) on the approximated pareto front.
Table 1 lists the cost, energy consumption and memory violation for each of
the four architectures.

id price Energy consumption Memory violation

id : 166 1396 2.20746e+07 336
id : 171 1048 2.89746e+07 0
id : 184 1396 2.45602e+07 0
id : 187 1596 2.19572e+07 153

Table 1. Characteristics of four solutions on the approximated pareto front. Memory violation
is measured in 32-bit words.

The two architectures id 166 and id 184 are identical, but with a different
mapping of tasks to processors. This gives id 166 a smaller energy consump-
tion with the cost of a memory violation. The cheapest architecture is id 171,
this is however the solution with the largest energy consumption. With regard
to energy consumption id 187 is the cheapest but at the same time the most
expensive architecture.

As there is no guarantee for optimal solutions the selection of architectures
will only be an approximation to the pareto front. However, the experiment
shows how the algorithm is a powerful tool to explore the design space for
embedded system architectures with both one and multiple busses.

7. Conclusions
The design of a heterogenous multiprocessor system, is accomplished either

by design reuse or incremental modification of existing designs. In this paper,
we have presented a multi-objective optimization algorithm which allows to
optimize the application mapping on to an existing architecture, or optimize
the application mapping and architecture during development. Our algorithm
couples GA with list scheduler. The GA allows to instantiate multiple designs
which are then evaluated using the scheduler. The outcome is an approximated
pareto front of latency, cost, energy consumption and buffer and memory uti-
lization. The case study has shown, that maximum gains are achieved when
optimizing both architecture and application simultaneously.
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