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Summary

The aim of combining forecasts is to reduce variation from observed values by
compositing two or more forecasts, which predict for the same event at the same
time. Many methods have developed since the problem was presented, varying
from a method of equal weights to more complex methods e.g. state space.
Despite the complexity a linear model of the combination appears to be the
most favorable where the parameters of the forecasts are summing to one. The
parameters, also called weights, are unknown and need to be estimated to get
optimal combined forecast. In this report the problem of combining forecasts is
addressed by (i) estimate weights by local regression and compare with RLS and
minimum variance methods, which are well known procedures when combining,
and (ii) using information from meteorological forecasts to estimate the forecast
weights with local regression.

The methods are applied to the Klim wind farm using three WPPT forecasts
based on different weather forecasting systems. It is shown how the prediction
is improved when the forecasts are combined by using locally fitted linear model
and when it outperforms the RLS estimation which is also considered. Further-
more, the meteorological forecasts from DMI-HIRLAM are inspected and the
air density (ad) and the turbulent kinetic energy at pressure level 38 (tke) are
used as regressors for locally fitting the weights into the linear model.

The results in this report show that using the meteorological information to
estimate the weights does not outperform the RLS method but does give rea-
sonable fit, which can be elevated by further analysis.






Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the degree, Master of Science in Engineering.

The project was carried out in the period from February 1st 2006 to January
2nd 2007.

The subject of the thesis is combined wind power forecasts using informations
from meteorological forecasts.

Lyngby, January 2007

Fannar Orn Thordarson






Acknowledgements

I thank my supervisors Henrik Madsen and Henrik Aalborg Nielsen for their
guidance throughout this project.






Contents

iii



viii

CONTENTS




CONTENTS iX
5.5 _Online combination for wind power forecastd . . . . . ... ... 44
E i = TTEEYY — .
61 Tontroduetiod . . .. ... ... 57
6.2 Tocally fitted weightd . . . . ... ... ... ... .. ... .... 58
(6.3 Selecting the bandwidth for the local fiff . . . . . ... ... ... 58
6.4 comparison with RIS . . . . . . .. .. .. ... ... .. ... 60
F Weial — e METT | 65
E1 Tontroduetiod . . . ... ... 65
Iz.2 Dependency between weights and ME forecastd . . . ... ... 66
[.3__Using MET variables in local regressiod . . . . . .. ....... 70
[2.4 Comparison with foregoing methodd . . . . . .. ... ... ... 76
R Conclusiod 81
R1 Summaryofresnltd . . ... ... .. ... 81
R2 Furtherworkd . . . . . . . .. 82
[A_MET scatterplots and data description 83
B T TIoT RIS esfimationd 89
IC_plots for locally fitted weightd 97
[D_Coplots for MET forecasts to estimate weightd 105




CONTENTS




CHAPTER 1

Introduction

1.1 Background

Where more then one forecast for some event at the same time is available, it
can be attractive procedure to combine the forecasts. By combining the in-
dependent informations included in every individual forecast are gathered and
more accurate forecast can be accomplished. The application of combining wind
power forecasts for certain wind power plant is appealing procedure where sev-
eral meteorological (MET) forecasts are accessible for the power plant. The
MET forecasts are generated to predict for the power production, but different
MET forecasts provide different power forecasts. On the market energy is sold
in advance but production of wind energy is so highly unstable that a good
forecast is needed. With several such forecasts, more accurate forecast can be
acquired by combining.

Many combining methods have been developed since it was first introduced as
objective procedure, ranging from simple average of the constituent forecasts to
far more complex mode like state space. Despite all this methodology for com-
positing, adoption of the linear regression has always been the most attractive
procedure.



2 Introduction

1.2 Aim of thesis

In this presentation the weights are tracked over time for for the linear model
by considering the recursive least squares method compared with the minimum
variance method. The weights are then fitted with local regression.

The objective of this presentation is to attain estimated weights for the com-
bined wind power prediction by conditioning the weights on one or more MET
forecasts. The block diagram in Figure [Tl shows the flow of combining fore-
casts and also how the informations from MET forecasts are applied to estimate
appropriate weights for the combination.

By estimating the weights using MET forecasts, external information are added
to the combination where the weights do not depend on any past data.
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Figure 1.1: Block diagram of the process of combining wind power forecasts. To
the left of the dashed line the flow for combining WPPT forecasts is described,
but the right side shows the black box model for the weights with the MET
forecasts as input.
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1.3 Outline of thesis

The thesis is divided in three main elements where first, chapter 2 and 3 take
care of the methodology used in the analysis; second, the data is introduced in
detail in chapter 4; and third, the analysis in chapters 5 to 7. Finally the thesis
are concluded in chapter 8. More detailed description of the chapters is listed
below:

Chapter [2] describes the methods used to combine forecasts with the linear
model. Also short discussion about uncertainty when forecasts are aggre-
gated and some performance measures are presented.

Chapter B introduces varying coefficient-functions which are generated when
the weights are defined as functions of some meteorological variables.

Chapter H gives a quite detailed description about the data used in the anal-
ysis.

Chapter Bl includes the WPPT forecasts combined with RLS and minimum
variance methods. In the RLS estimation there is an issue of involving
intercept in the linear model which gets some attention in one section
along with a restriction on the forecast weights.

Chapter [@l describes local regression as it is used to fit the weights in the
combination. These weights are compared with the estimates from RLS
w.r.t. the bandwidth.

Chapter [ illustrates how the meteorological forecasts can be used to esti-
mate weights in combined forecast. In the analysis the varying coefficient-
functions are applied to explain the dependencies.

Chapter Bl concludes on the thesis and includes a section about further works.

The analysis in the thesis was mainly carried out in the statistical software
S-PLUS, but also MATLAB was considered.
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CHAPTER 2

Methods of combining
forecasts

2.1 Introduction

The reason for combining forecasts for some event, where two or more individ-
ual forecasts are available for the same event, is to reach the goal of improved
forecast. Before the seminal work of Bates and Granger [I{]] some attempts were
on revealing which forecast is the best, then accept it and discard the others.
This procedure might have some justification but if the objective is to observe
as good forecast as possible, independent informations each individual forecast
contains might be important.

From the late sixties when Bates and Granger publiced there work, the method-
ology of combining forecasts has developed within many applications. In [2]
Clemen publiced a bibliographical review of forecast combining, but since then
the literature has grown substantially. Clemen divides the literature regarding
statistics, management, psychology and many more. The main interest in this
presentation concerns the statistical methods used to reach the objective of min-
imizing the variance error.

Before discussing the methods of combining forecasts the combination model
is introduced in 22 Sections Z3] to EX7 introduce various methods of combining
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forecasts and in EZ8 adaptive estimation is described. Little discussion about un-
certainty in combined forecasts is in and the last section of the chapter EXT0,
list several accuracy criterions often used as performance measurements for the
combined forecasts.

2.2 Combination model

The variable of interest is the one we want to predict and at time ¢ it is denoted
as y;. When applying to wind power prediction, the variable of interest is the
actual wind energy production. Let g; ¢;—, be the i-th individual forecast at
time ¢ with available information at time ¢ — h. The prediction error between
the production and the i-th individual forecast is

€itlt—h = Yt — Yi,t|t—h (2.1)

where ¢ = 1,..., K. The lead h also catagorizes the error terms and has to
be taken into account. A linear combination of the competing forecasts is then
formulated as

K
Ue,tlt—h = Wo,¢(h) + Z w; ¢ (h) i t)t—n (2.2)
i=1

where w; ¢+(h) is the weight given to model ¢ at time ¢. The weights are also
depending on its horizon h but for convenience it is omitted throughout this
presentation. The wp; term represents the constant term in the linear model.
The combination model can be written as

K
Yo = et + e = Wor+ D WirGis + e (2.3)

i=1
which gives the prediction error for the combined foreacast
et = Yt — Yeyt- (2.4)

Due to accuracy the squared errors are minimized w.r.t. the weights to gain
optimal coefficients for the constituent forecasts. The method of least squared
errors is illustrated in section ZZG.1]

The linear formulation can be written as
gcﬁt = w;ryt (25)

where
yt = (gl,ta g2,t7 SRR 7:()K,t)T (26)
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is a vector of K individual forecasts to be combined at time ¢ and
Wi = (W14, Wty Wict) (2.7)

is a vector of linear weights assigned to each individual forecast at time ¢. It
should be noted that when constant is included, it is counted in the vector of
weights and with unity in the vector of individual forecasts. This presentation
is simply a vector notation of (Z2).

The parameters of interest are the weights which indicates the importance of
an individual forecast in the combined forecast. This weighting contribute some
fraction of information from each competing forecast to the combination and
thus the weights are restricted to sum to unity,

K
> wig =1, (2.8)
=1

The issue of adopt this restriction when combining forecasts has been discussed
from the beginning. In section 3] this matter is discussed along with including
constant in the combining.

2.3 Simple average method

This methods is the most simplest one and still today it appears in many situa-
tions to be the most consistent method of combining forecasts. Where K is the
number of individual forecasts to be combined, the weights are all equal to

1
= (2.9)

w; =

where the index 7 is reference to inidividual forecast ¢ in the combined forecast.

In [2] Clemen states the question of why the simple average work so well, but
the method has been a conclusive method to use in quite many studies. In [?]
Gunter identified analytically the conditions for majority of the simple average
over the optimal and regression methods explained below. But in [B] Granger
had concluded that using equal weights in combining are useful when informa-
tion components, to be combined, are common and independent.
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2.4 Outperformance method

Each individual weight is interpreted as the probability that its respective fore-
cast will perform the best in the next occation. Each probability is estimated
as the fraction of occurrences in which its respective forecasting model has per-
formed the best in the past. The forecast combination is developed as 9. = p’ ¥
where p is a vector of probabilities for individual forecasts.

This method was proposed in [I] where it is shown how subjective probabil-
ities can be assigned over a set of forecasting models and updated when the
forecast realizations become known. In [I5] a Bayesian framework is developed
to encode subjective knowledge about the information sources in order to com-
bine point forecasts.

The method of Bayesian approach is not applied in this study.

2.5 Optimal method

The combination method is denoted as optimal when the individual weights
are calculated to minimize the squared residuals of the combination where the
assumption about unbiasedness for each individual forecast is made. The vector
of combining weights, w, is determined by the formula
S~lu
W= —— 2.10
uTS—1u ( )
where u is the n x 1 unit vector and S is the n x n covariance matrix of the
forecast errors. The problem with this approach is that the covariance matrix
S has to be properly estimated.

Applying the optimal method, more efficiency could be gained if the forecast
errors of the individual predictions were treated as independent. This implies
that the elements of S in equation ([ZI0) are restricted to be the diagonal terms
of the covariance matrix. When assuming independence, the weights in the
combination are obtained by
V—1lu
wY = — 2.11

utv-1u ( )
where V = diag(S). The elements of the diagonal aggregate to unity, so the
optimal method offers restriction on the weights.
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In practice the covariance matrix is often time-varying which implies that the
weights in ZTI0) are estimated adaptively. Appropriate initial weights for such
an approach is to use equal weights as illustrated in equation (Z0)) where the
inverse of the weights are the diagonal terms of the initial covariance matrix S.
The adaptive approach for combining will be explained in section

2.6 Regression method

The classical regression model is used to describe a static relation between a
dependent variable, which in case of combining are the observations, and one
or more predictor variables, the individual forecasts. In [6] Granger and Ra-
manathan combined forecasts as an unrestricted least squares regression with
an intercept and showed that their method outperformed the optimal method
if the individual forecasts were biased. Their conclusion encouraged many re-
searchers to focus on the area of combining with regression, where the issues
of constant and the sum-to-unity restriction were applied in the combined fore-
casts. This is of concern in section B3

In the most general form is the regression model of the combination written

Ye = g9(Fe, t; W) + & (2.12)

where ¢(§,t; w) is a known mathematical function of the independent indi-
vidual forecasts § = (f1,...,9n)7, but the weights w = (w1,...,wy) are
unknown. ¢, is a random variable with E[g;] = 0 and V]g;] = 02. It is also
assumed that covley, ey;] = 0%;; and €, and §; are independent. For the re-

gression model in [ZI2) for y§ given §; the following holds:

Elyel§e] = 9(Ft.t;w) (2.13)
Vye,l§:) = o (2.14)
cov[Ye tiy Ye,tj1¥t] = 0255 (2.15)

In this presentation the attention is on a model where the independent variables
are the individual forecasts used in a combined forecast and are therefore fixed.

The general linear model is a special case of the regression model where the
estimated response is a linear function on its parameters:

Yer =i Wi+ e (2.16)

The properties of this structure is the same as mentioned above for the regression
model where the parameters of the model are unknown. These parameters need
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to be properly estimated. Several methods are available, but two methods are
more exploited for estimations in the general linear model, the least squares
estimation and the maximum likelihood estimation.

2.6.1 Least Squares (LS) estimates

To obtain weights for the most adequate model some loss function L is mini-
mized. For the combined forecast to be competetive with the individual fore-
casts its loss function has to have lower magnitude than the individual loss
functions. The solution to the combination problem is a vector of weights,
w; = (w1, ..wx )T, such that it minimizes the loss function L(e.) in a way that

L(es) < min{E (e;)} (217

The loss function for the combination can be assumed to be the least squares
function, L(e.) = El[(e.)?]. Then the LS method is used to estimate the weights
in the combination.

The LS method estimates the weights such that the total squared error is min-
imized,
W = argmin S(w) (2.18)
w

where the function to minimized is the quadratic loss function noted as

Sw)=Y ei=eTe=(y—3" W) (y—3"w). (2.19)

The minimization problem in ZIJ) is solved with differentiation on the loss
function w.r.t. the weighting vector. By equalling the derivative to zero the ob-
jective estimator for the quadratic loss is observed. The vector w is an estimator
of the weights in w that minimizes the sum of squared residuals,

W= (379) 15Ty, (2.20)

The equation in (B7) is the solution to the ordinary least squares problem
where no consideration is taken to residuals which may have larger variance or
residuals which may be correlated. When it occur the problem is referred to as
the weighted least squares problem where, in general, the estimator is

W=ty T yTE Ty (2.21)

where $T2 1% has full rank.
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The static LS method is very useful when working with not too large data
sets, but when more informations are added to the data when observations be-
come available, the model parameters need to be updated recursively. On-line
methods are presented in section

2.6.2 Maximum Likelihood (ML) estimates

It is assumed that the statistical model for the observations Y7,...,Y,, is given
by a family of joint densities, {fy (y1,...,Yn;w)}wew. For convenience, the
observation set is defined as 'y = (y1,-..,Yn)-

Definition 2.1 (Likelihood Function) For the given observations y, the like-
lihood function for the estimates w is the function

L(w;y) = c(yr, - Yn) fy (W, s ynsw)  weW (2.22)

where ¢(y1,..yn) is a constant, given the observations. The likelihood function
is therefore the joint probability density for the actual observations considered
as a function of w.

In the definition of the likelihood function the parameters w are unknown, but
these parameters are wanted to be such that the likelihood function is maxi-
mized. The maximum likelihood estimator (MLE), denoted be 1, is the value
of w that maximizes L(w;y).

Definition 2.2 (ML-estimates) Given the observation y the ML estimate is
a function w(y) such that

L(;y) = sup L(w;y) (2.23)
weW
The function w(Y) over the sample space of observations Y is called a ML
estimator.

The maximum of [(w;y) = log (L(w;y)) occurs at the same place as the max-
imum of L(w;y) and in practice it is more convenient to work with the log-
likelihood function. With respect to the definition of MLE, when the supremum
is attained at an interior point, the estimates can be obtained by solving

%l(w;y). (2.24)

The maximum likelihood estimator is considered in the general linear model,
y =9Tw + €. The ML estimates are now based on the assumption that the
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residuals € are normally distributed, and thus y as well. If y is considered to be
a random vector of n observations where y € N(§Tw,0?X) with ¥ assumed to
be known, the maximum likelihood estimator for w is

w=(yTEty) " lyTety. (2.25)

This is the same as for the weighted least squares estimator. Thus it can be
concluded that under the assumption of normality, the maximum likelihood
estimator is equivalent to the least square estimator.

2.7 State Space

State space models are very useful for describing non-stationary or time-varying
systems. For stochastic systems, the state vector at a given time contains all
information available for the future evaluation of the system.

The major advantage of combining forecasts with the state space approach over
the optimal and regression methods, is that no estimation of forgetting factor
is needed. The state space model for combining can be interpreted as

Wy = Wi_1+ €1.¢, (226)
Yo = Wi¥i+eay, (2.27)

where [ZZ0)) is system equation and Z7) the observation equation. wy is a
n-dimensional stochastic state vector, y; is a observation at time t and y; is
a vector of individual forecasts at time ¢. In general, {e;;} and {es.} are
stochastic vectors where

Elei] = Elexs] =0 (2.28)
Ve =%, for s=t,

Clene.s= { Vied=0 for s#t (2.29)

Cleit, €24 =0 V s, t. (2.30)

The Kalman filter yields the optimal reconstruction and prediction of the state
space w; given the observations of y; in the state space model. The optimal
linear reconstruction wy; and corresponding variance of the state space system
is

Wy = W1 + Ky (yt - }A’VAVt|t71) ) (2.31)
0 =30 - KeE K =S - Ky, (2.32)
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with the Kalman gain

-1
K, =38 9 (Ei’ﬁ,l) : (2.33)
The formula denotes how information from past observations are combined with
a new observation y; to improve the estimates of the weights, w. It is quite
clear from above that in order to calculate the reconstruction and corresponding
variance, calculation of one-step prediction of w; and its corresponding variance
is needed. The prediction W, 1}, of the system is obtained with

Wip1)e = Wt (2.34)
e = Sy + X, (2.35)
U = 9 ZE L+ e, (2.36)

where the initial conditions are

Wijo = E[wi] = po (2.37)
o =V [wi] = Vo. (2.38)

This method is not applied in the following studies.

2.8 Adaptive combination of forecasts

In many applications it is necessary to implement a procedure who work on-
line. That means when new informations become available they are added to
the data set and the estimation is updated. This recursion allows the parame-
ters to change with the time which implies time-varying estimation.

Two methods of adaptation are described, the exponentially weighted moving
average and recursive least squares method. The former method is applied to
adaptively estimate the minimum variance method (optimal method), while the
latter updates the regression model when new observations become available.

2.8.1 Exponentially Weighted Moving Average (EWMA)

The new observation arriving the data set every time it becomes available, will
evantually loose its importance if the entire data set is used every time the pa-
rameters are estimated. Therefore the process need to have a sliding window
where the estimation only uses part of past observations. It would be reason-
able to give more weight to the most recent observation and less weight to the
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observations in the past.

Within the moving average, some A-value is estimated which gives the impor-
tance of the new data against the past data. This value is interpret as the
fraction of the present average, given the new observation, to estimate the av-
erage in next time step. A moving average of a process can be interpreted as

pe = Mg—1 + (L= N)ye (2.39)
where p; is the moving average at time ¢ and y; is the observed value at time ¢.
When the value of X is constant, it is called the forgetting factor and is A € [0, 1].
Using the moving average in ([Z39), an initial estimate for uo is needed. The
average of some recent data can be used, but the influence of the initial guess
will decay rapidly since

e = Np—o 4+ (1= Nye—1) + (1= Ny
= M Ape—2 + (1= X) [Aye—1 + v

=Mpo+(1-N) [Z )\Niyi] . (2.40)

i=1

Alternatively the first observation can be used as the initial value.

It can be seen from (ZZ0) that when informations get older, the correspond-
ing forgetting factor decreases drastically. The moving average in ([Z39) is thus
called exponential smoothing since the weights on past data decay exponentially.

The use of foregetting factor can be applied to the optimal method to gen-
erate an adaptive estimation for the weights. With appropriately defined A, the
adaptive estimator of S; can be given with

St = (1 — )\)etetT + )\St—l- (241)

The values of a vector V, in [T are estimated with V, = diag(S;). The
initial matrix Sy can not be considered to be zero, it is evaluated from some
past data or some part of the data set. An appropriate value for A is between
0.95 and 0.99.

2.8.2 Recursive Least Squares (RLS)

In many applications it is is necessary to implement a regression model as ([ZI2])
where the model parameters are updated recursively as the available observa-
tions are added to the data set. Wind power systems usually work on-line in



2.8 Adaptive combination of forecasts 15

an environment with minimum user interference for long periods of time. With
that in mind some time evolution in the dynamic properties of the predictor
should be allowed, which indicates that the weights of the combination should
be time-varying.

The recursive approach for the parameter estimations is derived at time ¢ with
given information to time ¢ — 1 where R; and g; can be written recursively as

R; = Ry +9:9F (2.42)
g8 = 8i—1+ Yty (2.43)

where the §; is the vector of individual forecasts defined in ([Z8) at time ¢ given
data at ¢t — 1. With these updates the new parameter estimates, w¢, can be
found by inserting the updated formulas into (). Since the LS method is now
applied for the combination where the coefficients are the weighted estimator
W, we assume that w; = 6; and thus

W = R;'g (2.44)
= R;'[ge 1+ 91V (2.45)
= R, '[RiaWi1 + 9y (2.46)
= R;' [ReWwe 1 — 3297 Wit + $1ui (2.47)
= Wi+ R [y — 9 W] (2.48)

The updates in equations [ZZ2) and ZZ]) for R: and W; respectively, are
referred as the RLS method for dynamical models. In order to avoid the inversion
of R; in each step, another notation is used

P;=R;’ (2.49)
By using the matriz inversion rule
[A+BCD] ' =A 'B[DA'B+C'] 'DA™! (2.50)
where R;_1 = A, §: = B =D and C = I, the updating for P; becomes

P 19:9{ Pi1

P,=P;_1— ~ —-
! ! 14+ 37Pi 13y

(2.51)
In the RLS procedure above can only be considered when the weights are being
constants in time. From previous discussion the coefficients are wanted to be
time-varying. This is feasible if the RLS estimation minimizes the weighted least
squares estimator, Wy = arg min S;(w), where S¢(w) denotes the quadratic loss

function
t

Se(w) =3 Bt s) (ys — §7w)° (2.52)

s=1
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where {((t,s)} is assumed to be a sequence of weighting constants, expressed
as

B(t,s) = At)B(t—1,s) 1<s<t—-1 (2.53)
Bt,t) = 1. (2.54)
The quantity §(t, s) is the weight given to the s-th residual in the quadratic loss
function at time ¢t. From [ZR3) it is quite clear that the deviation between every

two analog (’s gives some value on A relative to the time index. This implies
that

Bt.s)= I &) (2.55)

j=s+1

where 0 < A(j) < 1. This procedure reduces the importance of old data, the
smaller value of A(j) leads to lower influence of past data.

The solution to the weighted least squares problem is found with Z4]) where

t

R, = Y Bt s)g.y! (2.56)
s=1
t

gt = Zﬂ(tas)ysys- (257)
s=1

The RLS procedure with forgetting can now be found to be

Wi = W1+ P [y — 9 W] (2.58)
1 P,19:37P,_
P, = —— {Pt_l— RS (2.59)
At) At) + 9 Piade

In order to obtain the recursive estimation, it is important to provide an appro-
priated sequence of A(j)’s for the performance of this adaptive process.

If A(j) = X (constant), then A is called forgetting factor. The loss function

in Z52) is then weighted exponentially as 3(t, s) = A’ which gives the effec-
tive number of observations as

Ne=) N = L (2.60)

Most applications use constant forgetting factor which ranges within 0.95 and
0.999.
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2.8.3 Predicting for large horizons

To be able to use the RLS-algorithm for a larger predictions than 1-step ahead,
the pseudo prediction error is used and is defined as

~pseudo

Ten” = Y = Gipe (2.61)
The k-step ahead prediction is calculated by

?Qt+h\t = QtT_Hlét (2-62)

In the following analysis the prediction is always at the same time and only one
power prediction is available for every hour in the data. This implies that the
updating in the recursive estimation takes place within each horizon, one step
back means the last predicted value for a horizon. Therefore is the notation h,
indication of the prediction horizon, omitted throughout the thesis.

2.9 Uncertainty in combined forecasts

Through the history of combining forecasts, the focus has mainly been on ac-
curacy of the combination by assessing some criterion of different forecasting
methods. Today a good point estimate is no longer sufficient where uncertainty
and risk analysis are required, f.ex in business planning models. Of all the lit-
erature available about combined forecasts it is surprising how small fraction of
it deals with this issue.

In [ Menezes and Bunn try to formulate the uncertainty of combined forecast
by specifying the forecast error distribution. They conclude that with respect
to both shape of the forecast error distribution and corresponding stochastic be-
haviour, the forecast error variances should not be the only performance measure
on combining. In [I6] Taylor and Bunn estimated the predictive distribution
using quantile regression. They concluded that in theory the quantile regression
is inefficient due to correlation, but they encouraged researchers to investigate
uncertainty in combined forecasts by using quantile regression.

2.10 Measurement of performance

There are various methods used as a measure of performance to choose an
adequate model. Most of the measurements aim at minimizing the residuals
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between a fit and corresponding observations. An often used model residual
measure is the mean square error (MSE)

N
1 2
MSE = ; e2. (2.63)

through the history of combining forecasts, this measure has been very popular.
By taking the square root of MSE, the root mean square error (RMSE) is
optained. In this study it will be used as a performance measurement.

(2.64)

The MSE, and RMSE as well, alone does not give any clear picture of a per-
formance for any single model, it is more appropriate when comparing two or
more models fitting some actual data. As a measure for the single model it is
more suited to use the coefficient of determination (R?). 1t is defined as

SS YK (i — 9:)?
RP=1-22F 1 —;1(% yf)2 (2.65)
SSt DV ()
where SSE is the sum of squared errors and SSt is the total sum of squares
of the response variable y. The coefficient of determination shows how well the
model represents the data and is scaled from zero to one, one indicating 100% fit.

The R? is not totally accepted since it is not related to the number of pa-
rameters in the model and need therefore a little adjustment. The adjusted R?
is a variation of the R? statistic compensates for the number of parameters in
a regression model. The adjustment is denoted as

2 _ 2 —p
R“djiRn—l (2.66)

and it penalizes for adding terms to a model where n is number of observations
and p is the number of parameters in the model.



CHAPTER 3

Varying-coefficient functions

3.1 Introduction

This class of models is a further generalization to models which are linear in
some of the regressors, but the coefficients of the model are replaced by smooth,
but otherwise unknown, functions of some other variables. The models are also
called varying-coefficient models and are illustrated in detail in [9]. When all
coefficients depend on the same variable, the model is denoted as conditional
parametric model.

3.2 Locally weighted regression

Let y;, for i = 1,...,n, be the i-th measurement of the response and x; be a vec-
tor of measurements of K explanatory variables at the same i-th moment. The
model for local regression has the same basic structure as that for parametric
regression in (ZT0):

yi = g(xi) + €, (3.1)
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where g is smooth function and the ¢; are random errors, i.i.d. and Gaussian. For
the function assumed to be smooth allows points in certain neighborhood of = to
estimate the response. This neighborhood is some fraction of the data closest to
= where each point is weighted according to distance; increase in distance from
x gives decrease in weight. The smoothing function is estimated by fitting a
polynomial of the dependent variables to the response, g(z) = P(z, ). For each
fitting point, parameters of the polynomial (6) need to be estimated, therefore
locally-weighted least squares is considered:

argmmeZ yi — P(x3,%))%. (3.2)

The local least squares estimate of g(x) is §(x) = P(x,x). These local estimates
are also called local polynomial estimates, but if the polynomial is of degree zero
it is denoted as local constant estimates.

The locally weighted regression requires a weight function and a specified neigh-
borhood size. To allocate the weights, w;(x, to the observations nowhere increas-
ing weight function, W, is used. There are several weight functions which can
be used and are few listed in Table ?7. In the case of spherical kernel the weight

Name Weight function
pox 9={ o bl
Triangle { (1), {(1):1 )
Tri-cube | Wu :{ (()T Fl):cx)a)
Gauss | W (u) = exp(—u?/2)
Table 3.1:

on observation ¢ is determined by the Euclidean distance between x; and x, i.e.

[Ixi — x|
(x) =W | ——— ). 3.3
it = 1w (P (33)
The scalar h(x) is called the bandwidth and is greater than zero.

The bandwidth is an indicator for the neighborhood size. If it is constant for all
value of x it is denoted as a fized bandwidth. If h(x) is chosen such that certain
fraction () of the observations,z;, is within the bandwidth it is denoted as a
nearest neighbor bandwidth. If x has dimension of more then one, scaling of the
individual elements of x; is considered before applying the method.
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3.3 Conditional parametric models

There is a class of models which are linear to some regressors, but the coeffi-
cients are assumed to be changing smoothly as an unknown function of other
variables. These kind of models are called varying-coefficient models [0], but
when all coeffiecients depend on the same variable the model is referred to as
conditional parametric model.

When using a conditional parametric model to formulate the response y;, the
explanatory variables are split in two groups. One group of variables x; enter
globally through coefficients depending on the other group of variables u;, i.e.

Yi = XiTO(uz') + e, (3.4)

where 0(-) is a vector of coefficient functions to be estimated and e; is the error
term. The dimension of x; can be quite large, but for practical purposes the
dimension of u; must be low.

The functions 6(-) in B are estimated at a number of destinct points, fit-
ting points, by approximating the functions using polynomials and fitting the
resulting linear model locally to each of these points. Let u denote a particular
fitting point, let 6;(-) be the j-th element of 6(-) and let pg(;)(u) be a column
vector of terms in the corresponding d-th order polynomial evaluated at u. If
for instance u = [u1 w27, then po(u) =[1 w1 w2 uf wjus u3]. Also let
X; = [1, - Zp,s|. Then

ziT = [561,1'1)5(1)(‘12') T xjyipdT(j)(ui o xpﬂ'pg(p) (u; (3.5)

and
b = (D1 P Pun) (3.6)
where ¢, ; is a column vector of local coefficients at u corresponding to x; ;pa(;) (u;).
The linear model
yi =2 o+ e (3.7)

is then fitted locally to u using weighted least squares. The loss function which
is minimized is

N
(ﬁ(u) = arg minz wy (u;) (yz - ziTqbu)2 , (3.8)

u

i=1

for which a unique closed form solution exists provided the matrix with rows
z! corresponding to non-zero weights has full rank. The weights are the same

as illustrated in section above. The elements of 8(u) are estimated by

0;(u) = pj;)(n)d;(u) (3.9)



22 Varying-coefficient functions

where j =1,...,p and gZA)j(u) is the weighted least squares estimates of ¢, ;.

When z; = 1 for all j this method is identical to the locally weighted regression
described above.

3.4 Adaptive estimation

If the estimates are defined locally to a fitting point u, the adaptive estimates
corresponding to this point can be expressed as

t
b, = arg min A5 w, (uy) (ys — 27 2 3.10
¢y = arg P ; (us) (vs — 25 @) (3.10)

where w,, (u;) is a weight on observation s depending on the fitting point u and
us.

The adaptive estimates in (BI0) can be found recursively as

bi(u) = P11 (u) + w, (W)Ry 1z |ye — 27 Pr—1(u) (3.11)

and
Ryt =Ry 1+ wu(ut)ztzz' (3'12)

Note that qgt_l(u) is a predictor of y; locally with respect to u and for this
reason it is used in ([BIT). To predict y: a predictor like ¢p;—1(u) is appropriate.

The method of adaptation for local estimation is not applied in this presen-
tation. For more details on time-varying coefficient functions see [I2] or [§].

3.5 The LFLM library in S-PLUS

In S-PLUS the loess function can be used for estimation in some simple condi-
tional parametric models. In one of the papers in [I4] H.A. Nielsen describes a
software implementation he developed which deals with conditional parametric
models. This software package runs under S-PLUS and has the advantage of
having no restriction on the global linear model, which is formulated along with
the local model. In loess the originating model need to be straight line or a
linear hyperplane.
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The name of this S-PLUS library is LFLM (Locally weighted Fitting of Linear
Models) and can be downloaded from author’s homepageﬂ. LFLM can though
be a bit complex when simple local fit is needed, thus both functions were used
in analysis of this thesis.

Thttp://www2.imm.dtu.dk/ han/software.html
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CHAPTER 4

Data

4.1 Introduction

The data used in the analysis are power predictions from WPPT (Wind Power
Predictions Tool) for the production at Klim wind farm, which is located at
the northwest coast of Jutland. Running meteorological (MET) forecasts from
various MET forecast systems into WPPT, results in different wind power pre-
dictions for the wind farm. These predictions are combined for more accurate
forecast.

WPPT is a system for forecasting the wind power up to 48 hours ahead depend-
ing on the horizon of the MET forecasts, It is able to forecast for wind power
production in relatively large regions and for individual wind farms. WPPT
uses the wind speed and wind direction from the MET forecasts as inputs. To
read more about WPPT see [13].

The data is twofold. Section describes the forecasts from WPPT, whilst
section illustrates the meteorological forecasts which are used to analyse the
weights in the combined forecast.
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4.2 WPPT forecasts

The data set consist of measurements of power production from Klim wind
power plant and the predicted power from WPPT, based on three different
weather forecasting systems. The installed power at Klim is 21000kW where 35
600kW V44 rotors are generated and the predictions from WPPT range from
0 to 21000kW. Thus, this is the range available for the (absolute) prediction
errors as well.

The aim is to model a combined forecast, denoted as comb.fc, with the forecasts
from WPPT as the explanatory variables, which are represented as

DWD: Predicted power based on the meteorological forecasts from Deutcher
Wetterdienst.

HIRLAM: Predicted power based on the meteorological forecasts from DMI-
HIRLAM.

MM5: Predicted power based on the meteorological forecasts from MMSJ.

The forecasted power is given every hour for all weather systems and is based
on forecasts at time point 00Z. From midnight the power predictions are given
with a 24 hour horizon. There are 7272 data points in the data set which span
the period from February 2nd 2003 to December 2nd 2003.

The three different forecasts are based on different meteorological data and
since all predicting for the same event, they are very correlated. This correla-
tion can be identified from Figure EEJl which shows the pairwise scatterplot of
the predicted power from the three different WPPT forecasts. The correlation
for all three forecasting systems is approximately 0.85.

The 24 prediction horizons are also a variable in the analysis and are denoted
with horizon. The data set is divided w.r.t. horizons and behaviour within
each horizon investigated. The issue of missing data can influence the horizon
variable if the difference in number of observed values in each horizon is large.
Figure show how the individual forecasts are divided to the horizons. From
the figure it is observed that MMS5 (right) has most of missing data, while DWD
(left) has most valid data. The valid data in HIRLAM (middel) is little less
then for DWD, but there are more missing values for the same horizons. Non
of the forecasts have big difference in horizons such that it would influence the
investigation.

Figure shows the time series for all three competing forecasts. As men-
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Figure 4.1: Pairwise scatterplot of the competing forecasts.

tioned before they all predict for the same event and therefore they all look
similar. But there are departures in the processes, specially when MMS5 is com-
pared with the other two. When high production is expected MM5 appears to
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Figure 4.2: Histograms of number of valid forecasts within the individual fore-
casts; DWD (left), HIRLAM (middle) and MMS5 (right)
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forecast lower power production. The time series also shows how frequently the
MMS5 forecast indicates missing values, f.ex. end of Mars, middle of June and

twice in late November.
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Figure 4.3: Timeseries plots of the individual forecasts

4.3 Meteorological data

The data set consist of meteorological data from DMI’s meteorological fore-
casting system DMI-HIRLAM. The meteorological forecasts are only available
in specific grid points over Denmark and to approximate the forecasts located
at Klim, a bilinear interpolation between the four points around Klim is per-
formed. The location of Klim and the grid points around is showed in Figure EE4l

The aim is to generate a conditional parametric model of the weights in the
combined forecast. The weights are wanted to be conditioning on some ex-
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Latitude

Longitude

Figure 4.4: The grid points where meteorological forecasts are available. Klim
wind power plant is marked with red.

planatory variables which are found in a set of the meteorological forecasts.
In the data set most of the meteorological forecasts are available every hour.
Those who are only accessible from the archive data files, arrive every 3rd hour.
Hourly predicted variables are the following:

ws10m: Forecasted wind speed at 10 meters above ground level (m/s).
wd10m: Forecasted wind direction at 10 meters above ground level (degrees).
rad: Forecasted radiation (W/m?)

fv: Forecasted friction velocity (m/s).

ad: Forecasted air density (g/m?).



30 Data

and from the archive, every 3rd hour the variables in the data set are:

wsL--: Forecasted wind speed in model level --, the levels in the data set are 31,
38, 39 and 40 (m/s).

wdL--: Forecasted wind direction in model level --, the levels in the data set are
31, 38, 39 and 40 (degrees).

tkeL--: Forecasted turbulent kinetic energy in model level -, the levels in the
data set are 31, 38, 39 and 40 (Wm?/s?).

The model levels are different pressure levels of the atmosphere. The numbers
position the levels, with increasing number there is a decrease in height above
ground. All MET forecasts have 1 hour resolution except the archive data which
has 3 hour resolution. By linear interpolation 1 hour prediction is generated for
the archive forecasts.

In the analysis of the MET forecasts not all variables are used due to sim-
ilarities, only those depicted in the pairwise scatterplot in Figure are of
interest. Correlation is strong between the wind speed variables, only wsL31
show some difference from the dependency. Therefore two wind speed variables
are considered, at 10m a.g.l. and at pressure level 31. The same is for the wind
direction, and same levels are considered. The variables for tubulent kinetic
energy are all alike and thus only on is applied, at level 38. In Appendix [Al the
similarity within these variables is illustrated with pairwise scatterplots. Also
in Appendix [Al the complete list of the WPPT forecasts and the MET forecasts
is displayed.

The MET forecasts from DMI-HIRLAM are given with 48 hours horizon but in
this presentation only the 24 hours horizon is applied, forecasted at 00Z and 24
hours ahead.

Figure illustrate histograms for some of the MET forecasts. Both wind
speed variables, (ws10m and wsL31), along with friction velocity (fv) appears
to be normally distributed but skewed towards the origin. The pairwise scat-
terplot in Figure shows ws10m and fv being very correlated. The friction
velocity can be thought of as a wind speed and therefore either ws10m or fv
is chosen as an explanatory variable. The wind speed is chosen and friction
velocity therefore omitted in the analysis. The air density (ad) appears to be
normally distributed but the radiation (rad) looks like being in two stages, less
and more than 100. The turbulent kinetic energy (tkeL38) is more densed at
lower values and then reduces rapidly, exponential distribution.
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Figure 4.5: Histogram of some of the explanatory variables.

When analyzing the MET data it might be convenient to consider some of
the variables as factors. The directional variables can be catagorized in four
main directions, north, south, east and west. Zero degrees is straight north and
than the degrees increase clockwise. This will divide the 360 degrees circle as
0 < N <45,45 < E <135, 135 < § < 225, 225 < V < 315 and then close
the circle with 315 < N < 360. The letters indicate corresponding direction.
Figure EEH] illustrates how the data is characterized.

Figure B shows the frequency of the four factors defined for wind direction.
Since the wind power plant is located near the west coast by the Northsea, the
most frequent wind direction is west both for directional variables at sea level
(wd10m) and up in the atmosphere (wdL31). The only difference between
the two variables is the wind blowing on the boundary between E and N, wind
coming from north in higher hemispheres tends to rotate few degrees so it blows
from east closer to the ground.
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Figure 4.6: Illustrates how the degrees in wind direction is divided to four
components (N,E,S;W)
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Figure 4.7: Histogram of the direction variables as factors.
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Figure 4.8: Pairwise scatterplot of the meteorological data.
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CHAPTER 5

Combining WPPT forecasts

5.1 Introduction

The chapter focus on combining the WPPT forecasts, listed in section with
the methods introduced in chapter I Wind power prediction is a tool which
works on-line in an environment with minimum user interference for long pe-
riod of time. Time evolution in the dynamic properties of the predictor should
be allowed which indicates that the estimated weights of the combined forecast
should be time-varying.

The recursive methods applied in this chapter are RLS method and the adap-
tation of the optimal method. The performance of the simple average method
is also applied for comparison.

In section the individual forecasts are inspected. A small discussion about
when constant can be added to the regression model of combining and some
argument for assuming the weights summing to one is stored in In B4 the
static model for combining is considered as a reference and in section the
on-line combination is analyzed after the forgetting factor has been chosen.
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5.2 Individual forecasts

By combining forecasts a prediction is wanted which perform better or at least
equal to the individual forecasts. But do the individual forecasts imply any in-
formation about which two is optimal to combine? In this section the individual
forecasts are investigated to see if the conclusion drawn from the combination
can be linked to the behavior of the individual predictions.

The most adequate forecast is the forecast closest to the observed values, thus
the forecast errors are distance measures of the accuracy of a forecast. RMSE,
defined in section EZI0L interprets this distance for the whole data set and in
Figure 21l the RMSE for the forecasts are depict for all horizons. As expected,

E— DWD
E— HIRLAM
E— MMS

3000
|

RMSE
2600 2800
|

2400

2200
|
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|

1800
|

T T T T
5 10 a5 20

Horizon, hours since 00Z

Figure 5.1: RMS for the individual forecast errors

RMS of the errors are low in the first horizons, but increases when further away
from the prediction time 00Z. From prediction horizon 7 the HIRLAM forecast
is the best performing forecast. DWD forecast is almost as good as HIRLAM
but varies more and for horizons 7 to 20 it is less accurate then HIRLAM. MM5
forecast is the least rigorous prediction of all three. As Figure 1] indicates,
MMS5 is really bad presentative for forecasting in horizon 11 to 15. It would be
interesting to see which two competing forecasts is best to combine, especially
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between horizons 11 to 20 since the difference in RMSE within forecasts appear
to be the greatest in these horizons.

From Figure Bl it might be assumed that combining the two best perform-
ing forecasts result in the most adequate combination. This is not necessarily
the case since RMSE is an overall measure for the accuracy in each horizon
and does not concern the direction of each error term from the observations.
The correlation is, however, a good representative to compare inner structure
of two processes. Therefore it would be interesting to see if the correlation of
the prediction errors can give any knowledge about the best combination. The
correlation between every pair of forecasts, for all horizons, is shown in Fig-
ure The figure indicates that all sets of forecasts correlates quite similar,
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Figure 5.2: Correlation between individual forecasts

around 0.6. It is though worth to notice that the HIRLAM forecast correlated
with the other two, variates less then the correlation between DWD and MM5.
The correlation from horizon 6 to 15 is rather lower between DWD and MM5
than other correlations. Overall non of the combinations have high correlation
within forecast errors.
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5.3 Restriction and constant

In chapter B a restriction on the weights is introduced when regression model
is used to aggregate forecasts. The restriction can be applied to the model in
many ways, e.g. with equality restricted least squares method as in [7] where
the weights are also restricted to be non-negative. The problem then become an
optimality problem where Kuhn-Tucker constraints are applied. The modelling
for the restriction in this presentation is more straight forward method simply
by adding the constraint into the combination model in ([Z2)); with K individual
forecasts and the restriction X, w = 1 the model becomes

K-1

y=wo+wif + - +wWrg_19x_1+ (1— Zwi> Ik +e (5.1)
i=1

=wo + w1 (1 —Jx)+ w1 (Jx-1—Jx) + Ik +e (5.2)

and by subtracing with the K-th forecast

y—trk =wo+w (1 —9kx)+ -+ wrx—1 (Grx-1—9K)+e (5.3)
K-1
J=wo+ Y wigite. (5.4)
i=1

From the model evalution above neither the prediction error e nor the constant
wy, if included, are affected by the modification. Thus not only the weights are
properly estimated, but also the restricted model in (&) give forecast errors for
the linear combination model and corresponding intercept. What this restric-
tion does not concern is the lower limit for the weights, which is considered to
be zero. If the ingredient forecasts are “good” forecasts this is not of concern,
but the constant is included to detect any abnormal behavior of the combination.

In [TT] there is a discussion on difference between unrestricted regression method
and adding the restriction to the combination. It is noticed that when the re-
gression method is restricted and is without an intercept, it can be viewed as
the optimal method. This is likely to give worse accuracy for the combining
than for the unrestricted regression. But there are few issues related to the
unconditioned regression based method; stationarity of the forecasted variable,
autocorrelation and multicollinearity might be of concern when individual fore-
casts are correlated which is often the case when combining.

In [6] Granger et al. concluded that a reasonable approach to combining is
to include a constant in the regression and restrict the weights on the forecasts
to add up to one. They argued that if the individual forecasts are biased, re-
stricted regression including constant should outperform the optimal method.
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The constant debiases the individual forecasts in the combination. de Menezes
et. al. 1] claimed this not totally correct since the constant will only debias
for location bias, but not scale bias. To see the bias in the individual forecasts
the mean square errors of the predictions is viewed as

MSE[§] = E[§-yv)’
= E[(H-EW+ E[H - v)°]
= E[@H-EW)?] + (Bl —v)°
= VI[j] + b (5.5)

where § is the individual forecast and y is the observations. From (&) it can
be seen that the bias is the difference between the forecast error variance and
the forecast MSE.

Checking for bias is one way of investigating if constant is needed in regres-
sion, another way is to include the constant and see if it is signifcant in the
parameter estimation.

In this presentation the consideration of a constant term in the model is con-
trolled by the mean forecast error of the individual forecasts. Figure dis-
plays the mean error for the competing predictions for all 24 prediction horizons.
Any deviation for the mean forecast errors from zero indicates that constant is
needed, but for an adequate forecast the prediction error is close to nil. What
Figure illustrates is that for any individual forecasts to predict for the wind
power at Klim, an intercept is involved to explain the departure of the mean
prediction error. This is valid for almost all prediction horizons for all possible
combinations. For horizon 7 through 16 the DWD and MMS5 forecasts appears
to have similar magnitudes but in opposite directions. Combining these two
might reduce the importance of intercept in the combination. Combining DWD
and HIRLAM could present more stability of the intersept through the predic-
tion horizons since the forecasts oscillate in opposite phases.

The predictions from WPPT are for the power curve, so the diurnal variation
has not been filtered from the forecasts. The inclusion of intercept can thus be
interpreted as the diurnal variation for the forecasts.

In the following studies both constant and restriction in regression method is
used. Counting for the restriction is equal to use the optimal procedure in com-
bining but including the intercept takes out the bias of the individual forecasts.
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Figure 5.3: Mean forecast error for the individual forecasts for each prediction
horizon

5.4 Offline combination for wind power forecasts

In this section an off-line estimation of the parameters (weights) in the regres-
sion model in (T2 is considered. The coeflicients for the model are estimated
for the whole period from February to December. The normal procedure when
estimating off-line is to divide the data set in two subsets where one part is
used to estimate the parameters in a regression model and the second part to
validate the model.

Considering the regression model in (2] to estimate the weights allows the
parameters to be estimated over the entire data set. The validation takes place
by applying the estimated parameters from (B2l to the regression model in
&IZ). For each horizon a restricted regression model is considered to estimate
the weights by using the least squares method where the quadratic loss function,
defined in section EZ6.TL is denoted as

S(w)=eTe=(j—gw)"(j—jJw) (5.6)



5.4 Offline combination for wind power forecasts 41

with ¢ and gj from (4. The estimated weights are then observed as

w =3T3y, (5.7)

but since estimation from (&) only evaluate weights for the first K —1 forecasts,
the Kth weight is considered by the restriction. The weights are then observed
as

s =[] %)

and are used in the linear regression model to predict for the power production.

Estimated weights for the combined forecasts are displayed in Figure B4l evolv-
ing with prediction horizon. Each panel shows the quantitive weights in a com-
bination. The panels appears to be reflecting the accuracy for the individual
forecasts dipicted in Figure Bl when two forecasts are combined. Compositing
the two best performing forecasts, DWD and HIRLAM, give weights fluctating
around the equal weight at 0.5. By investgating panels two and three, combi-
nations including the MMS5 forecast, the pattern from Figure Bl is quite clear.
For the horizons where the MM5 prediction is performing poorly, corresponding
weights in the combinations is decreased down to 0.2. The same appears in the
bottom panel where weights are displayed when conpounding all three forecasts.
Again the bad performance of the MM5 forecast give significantly lower weight
than the other ingredient forecasts. A weight of individual forecast in combi-
nation is reflected by the performance of the individual forecast compared to
other constituent forecasts in the combination.

Figure display the magnitude of a intercept, estimated for the combina-
tions at each prediction horizon. It is noticed that most of the horizons have
negative constant. It is only the HIRLAM/MMS5 forecast which give great am-
plitudes on the positive side for horizons 13 to 16. Negative intercept means
that the corresponding aggregation is over-estimated. Figure indicates that
the intercept can not be omitted.

5.4.1 Performance for constant weights

When the linear model for combining is considered the parameters are quantified
as Figures B4l and BA show for weights and an intercept respectively. In the case
of combining DWD and HIRLAM the weights have similar behaviour around 0.5
which is the mean weight. The constant term for the combination distinguish
it from being comparable to the simple average method due to significance for
all prediction horizons. Despite being the two best performing individual fore-
casts, the DWD/HIRLAM combination appears to have the lowest coefficient
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Figure 5.4: Size of the weights in a combined forecast. Each panel shows how
the weights change with prediction horizons in a combination. The legends in
the panels indicate what individual forecasts are combined.

of determination as indicated in Table Bl For horizons listed in the table,
is DWD/HIRLAM the least fitted model for two forecast synthesis, except for
forecasting 18 hours ahead. The table also features the HIRLAM/MMS5 forecast
to be the best performing aggregation for the first horizons, and DWD/MM5
outperforming the others from the 6th horizon. Adding the third forecast into
the combining increases the coefficient of determination for all horizons, which
indicates that a more precise model is gained by including extra forecasts.

Figure B shows RMSE for all off-line combinations in all 24 prediction horizons.
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Figure 5.5: Estimated intercept in each horizon for the combined forecasts. The
estimations can not be neglected.

It confirms the best performance of the HIRLAM/MMS5 forecasts in the early
horizons til DWD/HIRLAM become the best performing prediction. However,
what Figure shows is that after horizon 15, DWD/HIRLAM outperforms
the other two.

For the entire prediction horizon, the combination of all three competing fore-

Combination Prediction horizon

1 2 3 6 12 18 24
D/H 0.770 0.796 0.791 0.781 0.817 0.724 0.681
D/M 0.807 0.827 0.829 0.821 0.847 0.758 0.702
H/M 0.818 0.848 0.834 0.818 0.838 0.689 0.701
D/H/M 0.822 0.850 0.844 0.833 0.862 0.758 0.727

Table 5.1: An in-sample coefficient of determination (R?) for the whole data set.
The estimated weights from the restricted model are used in the linear model
to determine R?
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Figure 5.6: In-sample RMSE for combined forecasts over the prediction horizons
in an offline estimation.

casts outperform the compositing of two. This is not surprising since informa-
tions from all three are gathered to improve the accuracy. It is though noticed
from Figure 28 that for the first few horizons and the few last, the perfor-
mance of DWD/HIRLAM /MMS5 is only a little better than the best performing
synthesis of two forecasts.

5.5 Online combination for wind power forecasts

When combinining wind power forecasts where new data is added to the data
frequently, it is appropriate to estimate the weights adaptively. Estimating the
parameters with an off-line approach is not an adequate procedure and need to
be extended to allow time-variation.

The methods described in section are applied to estimate the weights re-
cursively, but addition is needed for the RLS method in [ZER) and (Z29) since
the weights are restricted to sum to unity. The model which is estimated re-
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cursively is the restricted linear model ([B4]) where the Kth weight at time ¢ is
calculated by Eililwi7t = 1. The restricted RLS algorithm is

= = P =T =
Wi = W1 + Py, {yt -y Wtfl} (5.9)
1 P 15,5, P
Py =1 [Py - ——p (5.10)
A+3, Py,

where § is a vector of forecast differences as defined in (), W is a vector of
the first K-1 forecast weights (and intercept if included) and A is the forgetting
factor. The combined forecast at time ¢ is then estimated by

A ~Tx N
Yet = Wi ¥ + YKt (5.11)

Choosing a forgetting factor for the adaptation is important since it represents
influence of past data. It is desided to keep it constant for all prediction horizons
but further inspection in needed.

5.5.1 Selecting the forgetting factor

The choice of appropriate forgetting factor is a key feature of adaptation since
it has a substantial effect on the efficiency of the predictions. Two of the combi-
nation methods, regression and the optimal method, generate forgetting factor
in adaptive estimation.

When combining the forecasts from WPPT two issues are of concern. First
is the issue of choosing a forgetting factor due to the horizons. Each horizon
has time-varying weights based on )\, evaluated within the horizon. Second is
the choice of forgetting factor for different combinations.

The procedure for selecting the forgetting factor is to use the first part of the
data set for the choise. Then use the observed A for the whole data set. The
appearance of missing values in the data is a factor in the selection. Therefore it
is more sufficient to use the longest period without missing data for evaluation.
In the data set there are forecasts and observations which are missing. The
length of periods with non-missing values differ with respect to what individual
forecasts are combined. The MM5 has the most missing data and when used in
combining, the period of non-missing values in the composite forecast is shorter
than other possible combinations of competing predictions.

Combined DWD and HIRLAM forecast has non-missing values from June 16th
and 133 or 151 days ahead depending on the prediction horizon. Including MM5
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forecast in combination reduces the non-missing interval substantially. It start a
week later, 23rd of June, and only stays for 56 days for all horizons. Evaluating
A for more the 56 days might be influenced by the missing values.

The part of the data set used to estimate A is initiated on the 23rd of June
and spans the following 150 days. This part is also used to find forgetting for
the combination of DWD and HIRLAM though the data set is valid from the
16th of June. The plots in Figure B show two different methods of combining
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Figure 5.7: Minimum RMSE used to estimated the number of effective days.
For every prediction horizon (dashed lines) the minimum RMSE is located with
a red mark. Two possible combining predictions are depicted.

where the dashed lines are RMSE for every horizon in the combination method.
Each mark (red), along with a horizon number in the graphs, indicates the lo-
cation of the minimum RMSE for the horizons. The figures show the minimum
RMSE are placed around 50 days from the initial day for most of the horizons.
It can therefore be assumed that instead of use a forgetting factor for each hori-
zon, one forgetting is generated to represent all horizon.

In Figure ERl(a) the average RMSE for each day is displayed for all possible
combinations, for the 150 days used to estimate A. Two methods are displayed
and show parallel behavior, but that is due to the intercept in the formulation
of the RLS method. What Figure BE8(a) illustrates is that all combinations ap-
pear to have a minimum RMSE close to 50 days. This should not be surprising
since most of the minimum values for the horizons are close to 50 days as Figure
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Figure 5.8: Minimum RMSE used to estimated the number of effective days.
Average RMSE each day plotted for different methods and combinations. In
(a) the estimation period is 150 days with 10 days resolution, but in (b) the
eatimation period is narrowed around 50 days with resolution of 1 day.

B displays. These estimations have resolution of 10 days and to find precise
forgetting factor for the combined forecasts, the interval between 40 days and
60 days is inspected further. Figure BE8(b) shows this interval of evaluation
and illustrates that only the DWD/MMS5 forecast has the minimum RMSE at
day 51, other combinations have 50. Figure B8(b) shows also that the differ-
ence between RMSE for 50 days and 51 days in the DWD/MM5 aggregation is
small. Thus, it can be concluded from Figure E8(b) that the minimum distance
between the prediction and the oberved values appears when past 50 daily ob-
servations are used to estimate the weights. These 50 days give a forgetting
factor of A = 0.98. This forgetting is the objective for all methods and possible
combinations.

5.5.2 Tracking time-varying weights

When the weights are estimated for all time points in the data set, traces of the
weightsa are formed over the whole data set. The traces are used to observe the
behaviour of the weights over time and check for stability in the parameters.
This can then be compared to the estimated weights for the static model.
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The time-varying weights for the combined forecasts are plotted in Appendix [B]
but the plots span only 245 days for each horizon (the whole data set spans 303
days per horizon). This is because the first two months of the data are used to
adjust the forgetting factor.

For the DWD weights (Figures [B1 and [B4) the behavior is quite simi-
lar. In the first horizons the weights are either unstable or close to zero in the
beginning. With time the effects of the DWD forecast increases and stablizes
around 0.5. For some horizons in DWD/HIRLAM is the weight a little higher.
With prediction horizons 9 to 16 the influence of DWD is quite stable over time
(middle panels) but for horizons over 16 the weights start of with great effects
but decrease with time.

The HIRLAM weights (Figures and [BJ)) show opposite evolution with
DWD. In the DWD/HIRLAM combination this is obvious since the sum of
the weights is equal to one so the traces for the two forecast weights are mir-
rored around the average weights (0.5). When HIRLAM is combined with MM5
the weights are very stable for the first 8 and last 8 horizons. It is only for the
intermediate horizons where the effects of HIRLAM starts of at low weights
but over time it progresses. Very similar bahaviour appears for HIRLAM when
combined with both DWD and MMS5, as it was combined only with DWD. The
effects of HIRLAM is more important in the beginning of the first 8 horizons but
then decreases with time. The improvement for the last horizons is clear, but
prediction horizons 9 to 16 show quite resembling behaviour as the HIRLAM
does in the DWD/HIRLAM combination.

When all three forecasts are combined the MM5 weight eventually attain the
same magnitude for nearly all horizons, approximately 0.3.

It is noticed from the all the figures that the tracking for the first 4 horizons
are very unstable. The time-steps are varying rapidly and it appears that the
weights are more sensitive at lower horizons. Despite that, the weights in all
combinations accomplish some stability over the last 20 days.

Figure shows the first, intermediate and last three time-varying weights
for each forecast weight from Appendix The DWD weights are displayed
with various starting weights, but with time the coefficients become quite stable
where all horizons have similar weights. It is only when DWD is combined with
HIRLAM that the weights differ, DWD forecast have more effects on lower hori-
zons. All possible combinations with HIRLAM show the same structure where
HIRLAM has small influence within corresponding combined forecast for lower
horizons, but the influence increases when the prediction horizon enlarge.
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Figure 5.9: First, intermediate and last time-varying weights for 4 combined
forecasts. The second weight for a combination of two forecasts is a mirror of
the first one through 0.5.
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The intercept for the combined forecasts are depicted in Figure EEI0l Each
panel shows the time evolution for 24 intercepts in RLS estimation of a com-
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Figure 5.10: Time-varying intercepts in RLS estimation.

bination. All panels show that initially the intercepts are distributed over the
origin, but in the end almost all intercepts are below zero or close to zero. There
are similarities to the constants in the off-line estimation, illustrated in Figure
B that is the negative values on the constants. It can not be concluded that
the intercept is a constant in time when aggregating forecasts, the intercepts are
variating throughout the whole data set. It is only in the last days that some
stability is reached but the quantity of the intercepts is very high.

In Figure BTl the time-varying weights for RLS method and OPT method are
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compared for combining of two predictions. Each row in this 3 x 3 figure matrix
is for each combination and the columns are three levels of prediction horizons:
short, intermediate and large with horizons 1-3, 12-14 and 22-24 respectively.
The figures show that there is a difference in these two methods in all combina-
tions for all horizon levels. The theory says that without the constant term in
the model these methods sould give the same results. Indication of constant is
needed as Figures BT0 and BE-TT illustrate.

5.5.3 Performance of adaptive estimation

With three individual forecasts there are 3 optional combinations of composit-
ing two forecasts. Figure shows the results from combining two forecast
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Figure 5.12: RMSE for combination of two forecasts with RLS method, com-
pared to performance of the individual forecasts.

with RLS method, compared with the performance of the individual forecasts.
It illustrates that great reduction in distance from actual observations is ac-
complished by combining. All combinations are more accurate than any of the
competing predictions. The figure also shows that the two best performing indi-
vidual forecasts give the least performing aggregation. It is only for prediction
horizon 15 and 18 to 21 that the DWD/HIRLAM is the most beneficial synthe-
sis. The DWD/MMS5 forecast is the best combination for the first half of the
prediction horizons and in the latter half, combinations including HIRLAM are
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more precise.

The recursive estimation was also performed with the optimal procedure. By
including the intercept in the regression the issue of bias in the individual fore-
casts is partly omitted in the combination. If the intercept appears to be close
to zero it could be neglected and the optimal method would perform as well as
the adaptive regression. What Figure illustrate is a significant difference
in the accuracy for the two adaptive methods in favor of regression for all pre-
diction horizons. The inclusion of constant term in the combination model can
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Figure 5.13: Performance comparison between RLS and OPT method when two
forecasts are combined.

not be ignored in any of the three possible synthesis.

In Figure T4 the combined forecast with three individual forecasts is displayed
for both RLS and optimal method along with combination of two forecasts with
RLS procedure. Additional information from the third forecast reduces RMSE
even further. The gain is the greatest in prediction horizons 12 to 16 which are
the horizons where most deviation in accuracy of individual forecasts appears.
The same difference as before is visible between the optimal method and least
squares method when the third prediction is augmented to the composition.

By comparing Figures and T4l the importance of estimating the weights
adaptively is visualized. Great improvement in accuracy is achieved along with
the ability of detecting abnormal behaviour in the time-varying weights.
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Figure 5.14: Two methods of combining three wind power forecasts compared
with RLS method for two prediction combined.

Table shows a coefficient of determination for selected horizons for three
different methods. It illustrated the superiority of the recursive least squares
method over the optimal and simple average method (SA). For all horizons
depicted in the table, RLS method outperforms other methods. It also con-
firms the results from Table Bl about the individual forecasts. The least
performing combination includes the forecasts with lowest RMSE individually
(DWD/HIRLAM).

The correlation between every two competing forecast errors appears to give
some idea about the combination. If two power forecasts are highly correlated
the distance from the actual power production to these forecasts is the same
both in magnitude and direction. To be able to improve accuracy a forecast
which appear on the opposite side of the observed production is needed to ap-
proach the observations. Forecast errors on either side of the power production
would reduce the correlation. The correlation between the forecast errors in
Figure show the DWD/MMS5 having the smallest correlation over the inter-
mediate horizons. The combination of these two concluded in the best combined
forecasts with two constituent forecasts.
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Prediction horizon [hours}
1 2 3 6 12 18 24

D/H 0.803 0.815 0.810 0.815 0.838 0.812 0.694
D/M 0.861 0.840 0.854 0.869 0.855 0.817 0.726
H/M 0.850 0.860 0.856 0.862 0.855 0.829 0.746
D/H/M | 0.873 0873 0.871 0.880 0.882 0.850 0.768
D/H 0.795 0.807 0.800 0.807 0.828 0.805 0.687
D/M 0.855 0.833 0.843 0.863 0.850 0.810 0.718
H/M 0.845 0.854 0.844 0.850 0.847 0.822 0.740
D/H/M | 0.867 0.868 0.861 0.874 0.877 0.843 0.761
D/H 0.780 0.782 0.780 0.793 0.819 0.793 0.662
D/M 0.827 0.809 0.829 0.853 0.843 0.797 0.698
H/M 0.837 0.841 0.835 0.845 0.833 0.810 0.727
D/H/M | 0.842 0.836 0.842 0.863 0.862 0.829 0.729

Combination

RLS

OoPT

SA

Table 5.2: Coefficient of determination (R?) for combining forecasts with 3
alternative methods. The results are shown for selected prediction horizons
between 1 hour and 24 hours.
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CHAPTER 6

Fitting weights with local
regression

6.1 Introduction

Locally weighted regression (section B2) is a procedure for fitting a regression
surface to data through smoothing. A dependent variable is smoothed as a
function of the independent variables in a moving fashion similar to the mov-
ing average defined in Section For each fitting point on the surface some
fraction of the data set is used to estimate the fit where the fraction have to be
chosen as large as possible to minimize the variability in the smoothing without
twisting the pattern in the data. This fraction is exploited to the local regression
by the bandwidth selected.

The linear model for combining forecasts is a model which can be fitted with
local regression. The weights from the regression can be extanded to get im-
provement in the combination by fitting the parameters by not only considering
the past data, but the future as well.

In this chapter the local regression model is shortly introduced in section
To be able to estimate the weights by local regression the bandwidth have to
be properly estimated. This is illustrated in Section Finally the local fit is
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compared with the RLS method from previous chapter where few bandwidths
are inspected.

6.2 Locally fitted weights

When the weights are fitted locally the fitting points are the time steps from
the recursive estimation in the previous chapter. For each fitting point in the
data the local regression model is

Ye,r — Y3, r = U}()(T) + wy (T) (yl,‘r - y3,-r) + w2(T) (yl,‘r - y3,-r) (61)

where 7 is an index for the fitting point. By substituting y.; — y3+ for .. the
model is written as

gc,'r = w()(T) + wy (T)gl,'r + wa (T)g2,7'~ (62)
or with a matrix notation it is
Jr =y w(T). (6.3)

The local model is the local constant model and po(7) = 1 implies that z, ¥,
and the linear model which is fitted locally in @) is simply

QT = ¢T,1S’1,T + e, (64)

where weighted least squares is use to estimate the parameters in the local
model.

6.3 Selecting the bandwidth for the local fit

In the RLS estimation in chapter B the forgetting factor was chosen to represent
the past days for the present estimation. The bandwidth is very similar factor,
its quantity implies how many data points are used in estimation. Fitting the
weights locally is not an adaptive procedure and uses /2, with a denoting the
bandwidth, in each direction in estimation. Referring to the bandwidth in the
following paragraphs implies the half of the bandwidth.

The selection of bandwidth in smoothing has a tradeoff between variance and
bias. For low values of bandwidth the span for the estimation is short and
the actual observed value is approached. This will decrease the bias in the
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estimation but narrowing close to the actual value will increase the variance.
Extanding the bandwidth would reduce the variance as the bandwidth increases
until it spans the whole data set. The smoothed value is then the mean of the
observations which are fitted locally.

This implies that when the bandwidth is small, the residuals are close to zero
and the MSE as well. Expanding the bandwidth increases the error terms until
it approaches the mean observed value. This is illustrated in Figure B for
the DWD/MMS5 forecast. Each prediction horizon has 303 observations which

MSE
3+10% 4410 5*10%6 6*10'6
| | | |

2+10"6
|

10"6

T T T T
o 2 4 6

log(Bandwidth)

Figure 6.1: Mean squared error as a function of the bandwidth. For bandwidth
zero the local estimate is the observed values. With more points used to estimate
some fit, departure from the observations is apperant.

implies that the mean value is reached when the bandwidth is 303 days. The
dotted horizontal line shows that level in the figure.

The same increase is illustrated in Figure B2 for each horizon RMSE increases
with increacing bandwidth. The red lines in the panels are the mean values and
is the upper limit for the bandwidth. These values are the ones estimated for
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Figure 6.2: For increasing bandwidth, RMSE for the local fitting increases. The
red line indicates the mean value of the observed values in the data set, which
is the upper limit for the local fit.

the off-line estimation in section B4l

The panels in Figure also show how rapidly the RMSE increases for lower
bandwidths. Around o = 40 (days) the rise almost vanish and the addition of
single day to the bandwidth, gives little extension to the performance of the fit.

6.4 comparison with RLS

The RLS method estimates the parameters in the linear model by considering
the past data. The future values should also influence an estimation but that is
an unknown quantity, which explains the abdrupt changes in the time-varying
weights. By estimating the weights with locally weighted regression over the
entire data set the data in each direction of the fitting point are used and a
smoothed trace for the weights through the data set is detected.

The forgetting factor in RLS estimation was approximated 50 days and by es-
timating the weights over equal number of days, the bandwidth is initiated at
25 days in each direction from the fitting point. In Figure the local fit with
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bandwidth of 25 days in either direction, is compared with RLS method. Quite
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Figure 6.3: RMSE for a/2 = 25 compared to RLS.

definite improvement in performance is identified for all possible combinations,
specially for large prediction horizons. In the smaller horizons the local fit and
the RLS method perform very similarly, but for the three hours horizon the in-
crease in RMSE from the locally fitted regression exceeds the RLS performance.

Figure four horizons from the DWD/MM5 combination are displayed to
illustrate how the local fit proceeds compared to the time-varying weights from
RLS method. By using data close to a fitting point instead of only considering
the previous information, a phase error in the recurively estimated weights is
filtered out and more accurate estimation is observed. The phase error can be
seen by comparing the weight estimation from RLS and the locally fitted weights.

Appendix[Qshows this comparison where the bandwidth is selected as /2 = 30.
For all weight the phase error is apperant where changes in the parameters are
detected upto 25 days ahead. It is also noticed from the Figures in [(] that
with bandwidth 30 in each direction from the fitting point, the sensitivity of the
changes is quite high. Small increase in RLS estimations correspond to gross
increase in local fit. Expanding the bandwidth reduces the changes in every
step of the local fit, but by inflating the bandwidth accuracy of the estimation
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is sacrificed.

Figure is an example on how the fitted weights adjust with increase in
bandwidth. The increase in the bandwidth reduces the amplitude of the local
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Figure 6.4: Few examples to illustrate how
with the weights from RLS.
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the bandwidth changes compared

fit until, eventually, it forms a straight line through the mean estimated weight.
The comparison between the RLS estimates and the local fit with bandwidth
40 x 2 appears to be quite alike where the phase error apparts the estimations.
For this estimation the local fit spans about 1/4 of the data set for each fitting

point.

By using local regression with bandwidth of 40 on either side of the fitting
point, the recursive estimation is not outperformed as Figure BEHindicates. The
performance appears to be similar The performance appears to be similar for the
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Figure 6.5: RMSE for a/2 = 40 compared to RLS.

methods within all combinations. The local regression is wanted to give better
performance than RLS estimation which indicates that the bandwidth has to
be reduced. For /2 = 30 the local fit is improved such that it outperforms the
recursive method in almost all prediction horizons, only the three hours horizon

is unique. This is depicted in Figure

Table shows the coefficient of determination for the local fit with bandwidth
60 days and 80 days, compared with the RLS fit from Table Performance
of local fit with bandwidth of 80 days is worse than RLS performance, but by
reducing the bandwidth about 20 days the locally fitted performance improves
RLS or is equivalent. The only exception is prediction horizon 3, where the
bandwidth need to be reduced further or down to 50 days.
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Figure 6.6: RMSE for a/2 = 30 compared to RLS.

Combination Prediction horizon [hours]
1 2 3 6 12 18 24
D/H 0.805 0.824 0.801 0.820 0.847 0.813 0.704
/2 = 30 D/M 0.885 0.877 0.863 0.886 0.890 0.852 0.780
H/M 0.854 0.862 0.853 0.865 0.863 0.830 0.761
D/H/M | 0.885 0.877 0.863 0.886 0.890 0.852 0.780
D/H 0.800 0.819 0.798 0.816 0.840 0.809 0.687
0/2 = 40 D/M 0.876 0.870 0.859 0.880 0.881 0.847 0.765
H/M 0.850 0.856 0.848 0.862 0.856 0.827 0.751
D/H/M | 0.876 0.870 0.859 0.880 0.881 0.847 0.765
D/H 0.803 0.815 0.810 0.815 0.838 0.812 0.694
RLS D/M 0.861 0.840 0.854 0.869 0.855 0.817 0.726
H/M 0.850 0.860 0.856 0.862 0.855 0.830 0.746
D/H/M | 0.873 0.873 0.871 0.880 0.882 0.850 0.768

Table 6.1: Comparison between two locally fitted procedures and RLS perfor-
mances.



CHAPTER 7

Weight estimation using MET
forecasts

7.1 Introduction

The objective in this presentation is to estimate weights in combined forecasts
with informations from the MET forecasts. In previous chapters these weights
have been estimated by various methods including local regression. In this chap-
ter the local regrssion will be evolved where the weights depend on one or more
of the MET forecasts. The locally fitted weights are then included in the com-
bination model, illustrated in (Z2)), which will give a conditional parametric
model of the combined forecast.

Through the analysis there the focus is on combining two forecasts with the
restriction. This has the simple approach of the forecast weights being linear
dependent and the pattern which appears for one weight, is the same for the
other.
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7.2 Dependency between weights and MET fore-
casts

7.2.1 Linear model

Getting approriate weights is strongly depending on the bandwidth selection for
the local fit. It is also noticed that this dependency is related to the prediction
horizon. To find weights which fits the MET forecasts, the relation between
the bandwidth a and some performance measure, in this case the coefficient of
determination, is investigated.

This investigation is performed by fitting a linear model of the MET forecasts
to some estimated weights from the local regression with various bandwidth.
The intention is to evaluate the bandwidth which gives the best fit. The linear
model is the general linear model explained in equation (ZI6) with different
notation, or

w=p03"X+e (7.1)

where w is a vector of weights from the local regression, X is a matrix with all
explanatory variables, the MET forecasts in this presentation, and 3 are the
coefficients to be estimated. The term e is a vector of residuals with mean zero
and o2 = 1.

Figure [Tl shows how the performance changes with different value in the band-
width, a. The reason for only one weight from each combination is displayed is
because the weights are linearly related by the restriction Zle w; = 1. Four
different bandwidths are plotted in each panel and show that with increase in
bandwidth to some extend, the performance is improved for the linear model in
[I@). Of the four bandwidths o = 100 gives the best fit for the model. With
bandwidth larger than 100 days the performance reduces until it reaches some
limit when the bandwidth spans the entire data set. Even with 100 days pre-
senting the maximum R?, bandwidth of 50 days is selected for further analysis
with the MET forecasts. From the panels in Figure [[1lit is observed that the
gain of double the bandwidth is not significant and therefore is & = 50 chosen
for the locally fitted weights to generate the dependency to the MET forecasts.

7.2.2 Partitioning MET variables

Through the analysis with the MET variales the main focus is on using the
DWD/HIRLAM combination as basic synthesis. Other two combinations are
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(c) HIRLAM/MMS5

Figure 7.1: Coeflicient of determination for various bandwidth in all horizons.
Increase in bandwidth gives increase in R? to 100.

analyzed as well but not graphically displayed.

By Inspecting the scatterplots in Figure it is difficult to see trends be-
tween the DWD weight and the MET forecasts. The red line in the plots is
locally weighted regression between corresponding MET variable and the DWD
weights. The weights seems to have some correlation with air density (ad) and
turbulent kinetic energy (tke).

The disadvantage of using scatterplots to inspect dependent variables condi-
tioned on explanatory variables, is it only shows coherency with one variable.
Relation of response variable with two explanatory variables can be demon-
strated by coplots which is well illustrated in [3] in relation with conditionally
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Figure 7.2: Scatterplot of the DWD weight in DWD/HIRLAM in relation with
the MET forecasts.

parametric fits. One explanatory variable is partitioned in 2-4 categories and
the response variable is smoothed w.r.t. the other explanatory variable within
the partitioning. The coplots for the DWD weights are diplayed in appendix [D]
but Figure show some of the coplots where air density (ad) and/or turbu-
lent kinetic energy at level 38 (tke) are one or both of the explanatory variable.
There seems to be some connection between these two MET forecasts and the
DWD weights. The ad and tke forecasts are now applied as predictors for the
parameters in the conditional parametric model

Yo = wo(ad, tke) + w (ad, tke)g)l + wo (ad, tke):ljg (72)

with the constraint of forecast coefficients summing to one.

The scatterplot of ad and tke makes a basis for the weight estimation in ([Z2)
but by observing the ad/tke-plane in Figure [ it shows the MET data not
covering the whole plane. The tke forecast is more densed at low values and
then diffuses when it increases, while the ad forecast is closer to be normally
distributed. The distributions are shown in Figure in the data description.
The data disperse with increase in tke and increasing distance from mean value
of the air density. This implies that for high values of tke and either high or low
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Figure 7.3: Coplots with at least air density or turbulent kinetic energy as one
of the explanatory variables

values of ad, no or few observed values exist. The convex hulfll is thus defined as
the points inside the red lines in Figure [[4] that is the area where the weights
have some valid estimation on the basic plane.

Figure shows the time series for the two MET forecasts which are of in-
terest. The upper panel shows the air density from February to beginning of
December. Air density is known to follow the behaviour of air temperature and
from the plot it is quite patent. The air density is high through the cold months
of the year but decreases during the summer period. However, the turbulent ki-
netic energy is not correlated with other wether phenomenas of the atmosphere.
It varies through the entire period, less though in both tails which indidates
reduced variation over the winter period. tke is a variable used to study turbu-

1Convex hull or for a set of points X in a real vector space V is the minimal convex set
containing X. Information from wikipedia.org
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Figure 7.4: Scatterplot of ad and tke variables. These variables make the basis
for the surface of the weight estimation. The red lines define the convex hull.

lence and its evolution in boundary layers of air in the atmosphere. When the
layers become stable the tke is suppressed. The time series plot implies that
layers of air in the atmosphere are more stable over the winter months.

7.3 Using MET variables in local regression

Weights for all three possible combinations of two individual forecasts are exam-
ined on the ad/tke-plane. Only one weight from each combination is displayed
since the weights are restricted to sum to one. As has been illustrated in sec-
tion with the restriction on the parameters, the model used to estimate the
weights can be rewritten as

:IQC — ])2 = wo(ad, tke) —+ wq (ad, tke) (2191 — ])2) (73)

when combining two individual forecasts and denoted with the weights as a
function of the two MET forecasts.

Locally-weighted linear model is considered for wj, but for the constant term
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Figure 7.5: Time series plots for the air density and the turbulent kinetic energy
at level 38

wo a local constant is approximated. The local models are

wo(ad, tke) = Wy (74)
w1 (ad, tke) = wip + w11 - ad + wyo - tke. (7.5)

By substituting ([Z2l) and ([Z3) into ([C3)) a modified linear model for combination
is denoted:
e — §2 = wo + wio (J1 — §2)
+ w1 -ad (jljl — QQ) (76)
+ w2 - tke (91 — J2) -

where the explanatory variables are now products of prior variables and the
MET forecasts. The modified model in [Z8 now includes new explanatory vari-
ables, which are the products, and instead of estimating two parameters four
are evaluated in the modified formulation. Combining wind power forecasts
as in ([CH) indicates that the weights are linearly depending on the two MET
forecasts. But the weights are unknown functions of the MET data and by
smoothing the weights over the ad/tke-plane, the contourplots in Figure [LH
are obtained. The local fit in the analysis uses the nearest neighbor spanning
2/3 of the data set.
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Figure 7.6: Contour plots for weights and the intercepts
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The weights on DWD when combined with HIRLAM and MM5 appear to have
similar surface, for low values of tke the DWD weights become more effec-
tive with increase in ad but for higher values on the turbulent kinetic energy
the weights are reducing with progressing air density. The behaviour of the
HIRLAM weight when combined with MMS$5 is more challenging to interpret.
There is some fluctuation for the low values of tke, but with increasing turbu-
lent kinetic energy the surface gets more smooth.

The surfaces for the intercepts are quite similar where low tke implies high
negative value for the intercept, but with increase in tke the intercepts increase
as well. The intercepts depending on ad show some kind of bell-shaped struc-
ture where the high and low values on air density imply low value on intercept,
but around mean ad the intercept is at its maximum.

7.3.1 Extension to conditional parametric model

For the DWD weight in DWD/HIRLAM combination it can be concluded that
there is linear relationship between weight and air density where both intercept
and slope are functions of the turbulent kinetic energy:

wi (ad, tke) = vy (tke) 4 v11 (tke) - ad, (7.7)

where v1p and w11 are the intercept and the slope respectively. This can be
detected from the contourplot in Figure [[H(a) or by the surface plot in Fig-
ure [C7 where the approximated linearity can be visualized. The contourplot in
shows that for increase in tke, the intercept increases but the slope decreases
and become negative for tke’s higher than 8000.

Observing the intercept wg(ad, tke) shows a wavelike behaviour for low val-
ues of tke around the mean value of ad. This might be challenging to interpret
in a model presenting the intercept. The influence of the variance of the in-
tercept can be estimated by comparing the terms of the conditional parametric
model (CPM) in ([[Z3)), e.g. the intercept and the product of the forecast weight
and the forecast. Table [l shows the covariance matrix of these terms and

Variance wp(ad, tke) wi(ad, tke)j
wo(ad, tke) 17369.5 24039
w1 (ad, tke)j 24039 1129552

Table 7.1: Covariance matrix for terms in [Z3).

it indicates that the product between the weight and the predictor is about 8
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(b) Surface plot of wy(ad, tke)

Figure 7.7: Surface plots for the DWD weight and the intercept

times greater than the variance of the intercept. The variations for low tke on
the surface of the intercept are therefore omitted.

By omitting the deep valley on the surface of the intercept, the relationship
between the weight and the air density appears to be bell-shaped functions
which fades out with increase in tke. Such a function can be difficult to for-
mulate and implementing into the model would give complicated interpretation.

The naive assumption is that ad does not affect the intercept but the inter-
cept is a function of tke:

wop(ad, tke) = vy (tke). (7.8)
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This assumption might be a bit crude but will make it alot easier to implement
the estimated functions from ([Z7) and ([ZF)) to a conditional parametric model:

Yo — Yo = ’Uo(tke) + [UIO (tke) + vn(tke) . ad] (?jl — QQ)
= ’Uo(tke) + v10 (tke)(gjl — :(}2) =+ v11 (tke)(gjl — gjg)ad
= vg(tke) + vig(tke)z1 + v11(tke)zs (7.9)

where z; = g1 — J2 and 22 = (1 — §2)ad. The model in [Z) is now a modified
CPM where the parameters are now only depending on one unknown variable
instead of two, namely the turbulent kinetic energy.

Figure shows how the weights in [LJ) change with tke. The same val-
ley appears in for the intercept and the same test is performed as before to
estimate sufficiency of the variance of the intercept. Table [[Z shows the covari-

20
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Figure 7.8:

ance matrix of the terms in (L) and reveals that the variance of the intercept
is only 1/3000 of the other variances and therefore can the valley at tke around
3000 be neglected.
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Variance Intercept V1021 V1122

Intercept 2.37259¢e4 9.76257e4 —7.741621e4
V1021 9.76257e4 7.445344e7 —7.818895¢e7
V1122 —7.741621e4 —7.818895e7 8.304898¢7

Table 7.2: Covariance matrix for the terms in ([Z3)

The opposite behaviour of the parameters vig and wvy1 is not surprising since
they form the weight in the original model From Figure it can be
assumed that the parameters, vig and wvi1, are linear functions of tke which
changes slope when tke is approximately 9000.

7.4 Comparison with foregoing methods

The performance for the conditional parametric model is compared with the
RLS method and the static model from sectionfdl The performances for the
surface estimations above are generated by in-sample RMSE and coefficient of
determination, which was also performed for the off-line estimation.

In Figure [CY the forecasts generated by using MET variables are compared
to the off-line performance. For the first 12 prediction horizons the methods
are performing quite alike except DWD/MMS5. That specific forecasts is very
different than the competing performance for the first 8 horizons, but thereof it
has lower RMSE. For larger horizons forecasts using MET variables are outper-
forming the static model, estimated over the data set.

With MET based forecasts outperforming the off-line performance for large
horizons it is interesting to compare it with the RLS performance. This is
depicted in Figure [Tl What this comparison reveals is that over the inter-
mediate prediction horizons the MET dependent forecasts are very close to the
RLS performance. For small horizons all the combined forecasts are significantly
different. This difference is highest for the smallest horizons but then decreases
until the intermediate horizons. For the largest horizons both DWD/HIRLAM
and DWD/MMS5 forecasts are performing similarly, but the difference between
the MET dependent HIRLAM/MMS5 forecast and corresponding RLS forecast

increases.

In Table R? for MET dependent forecasts are compared to the coefficient
of determination for the off-line method and RLS method. From the table it
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Figure 7.9: Compare MET dependent forecasts with off-line performance.

can be concluded that the fit for MET based forecasts are not as good as for
the other forecast methods. But the local regression, using MET forecasts as
predictors for the weights, is an static procedure which used only fraction of the
data set to estimate a fitting point. The performance for the method can be
improved by estimating the weights with adaptive estimation.

The performance of the conditional parametric model in ([Z9) is depicted in
Figure [[T1] with an orange. It appears to be approaching the off-line perfor-
mance but with a little improvement. Adaptive estimation would even improve
it eminently.
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Figure 7.10: Compare MET dependent forecasts with RLS performance.

Prediction horizon
1 2 3 6 12 18 24

D/H | 0.673 0.706 0.692 0.613 0.602 0.645 0.586
CPM D/M | 0.714 0.761 0.772 0.687 0.634 0.672 0.635
H/M | 0.730 0.784 0.756 0.695 0.634 0.660 0.616

D/H | 0.770 0.796 0.791 0.781 0.817 0.724 0.681

Off-line D/M | 0.807 0.827 0.829 0.821 0.847 0.758 0.702
H/M | 0.818 0.848 0.834 0.818 0.838 0.689 0.701

D/H | 0.803 0.815 0.810 0.815 0.838 0.812 0.694

RLS D/M | 0.861 0.840 0.854 0.869 0.855 0.817 0.726
H/M | 0.850 0.860 0.856 0.862 0.855 0.829 0.746

Combination

Table 7.3: Comparing the MET dependent forecasts to the foregoing methods
in the presentation.
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Figure 7.11: Performance of the modified model in ([ZJ) compared to other
DWD/HIRLAM performances.
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CHAPTER 8

Conclusion

The chapter contains a short summary of the results found in the thesis, will be
given followed by section about further works related to the thesis.

8.1 Summary of results

Various methods for combining forecasts have been introduced where several
were used to combine wind power forecasts adaptively. Of the methods gener-
ated, the linear regression model including both constant and restriction out-
performed the other methods.

Locally weighted regression improved the recursive least squares method when
the bandwidth spaned less than 60 days and the phase error in the weights from
the recusive method is detected. The local fit gave the correct estimates for
the weights since it concerns all points close to a fitting point, but not only the
past data. Using the locally fitted weights to detect informations from the me-
teorological forecasts, air density and turbulent kinetic energy were extracted.
The weights in the linear regression model were conditioning on the two mete-
orological forecasts. The performance for the weights depending on the MET
forecasts gave quite similar results as the linear model estimated for the entire
data set in the short predicton horizons. When the horizon was enlarged the
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performance improved and was found to be comparable to RLS method.

The surface for the DWD weights appeared to be a linear function of air den-
sity where intercept and slope were depending on the turbulent kinetic energy.
This was implemented in the linear model which resulted in a sligthly improved
performance compared to the off-line procedure.

8.2 Further works

Following this thesis there are few things which can be elevated.

First is the adaptation of the varying coefficient-function developed in chap-
ter [ The behaviour of the combined forecasts where MET variables are used
to generate weights is a bit better than forecasts with parameters estimated for
the whole data set. By estimating the weights adaptively extensive improve-
ment is expected.

Combining more than two forecasts by using meteorological variables is also
something that cab be considered. In chapter B it is concluded that combining
all three wind power forecasts give the most accurate combination. The third
forecast is not deemed in the thesis but is an interesting topic for further anal-
ysis to improve combined forecasts using meteorological variables.

The meteorological forecasts used in the thesis are only the ones from DMI-
HIRLAM. Three power forecasts are used in the analysis which all have differ-
ent meteorological data. Applying more MET forecasts to the analysis gives the
researcher a lot more information to work with since the inputs for the weight
estimation are the MET forecasts.

The data set used spans only ten months. Since the application in the the-
sis is related to meteorology where the season is one year, it would be alluring
to observe how the MET forecasts affect the individual forecasts in a combina-
tion over several seasons.



APPENDIX A

MET scatterplots and data
description

The appendix includes list of the variables available in this study. Some of the
variables are highly correlated and are therefore omitted in the analysis. This
appendix also includes the scatterplots for the strongly correlated variables.
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WPPT forecasts

DWD: Predicted power based on the meteorological forecasts from Deutcher
Wetterdienst.

HIRLAM: Predicted power based on the meteorological forecasts from DMI-
HIRLAM.

MM5: Predicted power based on the meteorological forecasts from MMSJ.

MET forecasts

ws10m: Forecasted wind speed at 10 meters above ground level (m/s).
wd10m: Forecasted wind direction at 10 meters above ground level (degrees).
rad: Forecasted radiation (W/m?)

fv: Forecasted friction velocity (m/s).

ad: Forecasted air density (g/m?).

wsL--: Forecasted wind speed in model level --, the levels in the data set are 31,
38, 39 and 40 (m/s).

wdL--: Forecasted wind direction in model level --, the levels in the data set are
31, 38, 39 and 40 (degrees).

tkeL--: Forecasted turbulent kinetic energy in model level -, the levels in the
data set are 31, 38, 39 and 40 (Wm?/s?).
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Figure A.1: Pairwise scatterplot of the wind speed variables in the MET data.
The correlation is very strong between these variables so only one is used as an
explanatory variable in analysis. The wsL31 variable is not as correlated as the
other variables and is therefore also included in the data analysis.
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Figure A.2: Pairwise scatterplot of the wind direction variables in the MET
data. The correlation is very strong between these variables so only one is used
as an explanatory variable in analysis. The wdL31 variable is not as correlated
as the other variables and is therefore also included in the data analysis.
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Figure A.3: Pairwise scatterplot of the turbulent kinetic energy variables in the
MET data. The correlation is very strong between these variables so only one
is used as an explanatory variable in analysis
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APPENDIX B

Time-varying weights from
RLS estimation

The appendix includes the the time-varying weights for all combinations from
the analysis illustrated in chapter Bl
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Time-varying weights from RLS estimation
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Figure B.1: Weights on DWD forecast when combined with HIRLAM forecast.
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Figure B.3: Weights on HIRLAM forecast when combined with MM5 forecast.
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Figure B.4: Weights on DWD forecast in DWD/HIRLAM/MM5 combination.
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Figure B.6: Weights on MM5 forecast in DWD/HIRLAM/MMS5 combination.
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Time-varying weights from RLS estimation




APPENDIX C

plots for locally fitted weights

The appendix includes the local fits for all combinations for bandwidth equal
to 60 days. The figures also include the time-varying weights from RLS method
for comparison.
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plots for locally fitted weights
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Figure C.1: Local fit (dashed lines) for DWD weights in DWD/HIRLAM, com-
pared with RLS estimations (solid lines) for corresponding combination.
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Figure C.2: Local fit (dashed lines) for DWD weights in DWD/MMS5, compared
with RLS estimations (solid lines) for corresponding combination.
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plots for locally fitted weights
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Figure C.3: Local fit (dashed lines) for HIRLAM weights in HIRLAM/MMS5,
compared with RLS estimations (solid lines) for corresponding combination.
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Figure C.4: Local fit (dashed lines) for DWD weights in DWD/HIRLAM/MMS5,
compared with RLS estimations (solid lines) for corresponding combination.
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plots for locally fitted weights
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APPENDIX D

Coplots for MET forecasts to
estimate weights

The appendix includes the coplots where the MET forecasts are used to interpret
the weights from the local fit. Only plots for DWD weight in DWD/HIRLAM
are considered.



106 Coplots for MET forecasts to estimate weights

1.0
0

hel el
E E
o ]
s T T T T T T T S T T T T
0 2 4 6 8 10 12 14 0 100 200 300
ws10m wd10m
o )
- ]
@
2 1
el !
H - H
Q
=) S 1
0 5 10 15 20 25 0 100 200 300
wsL31 wdlL31
N S ]
N =}
@ |
0 S
-
< o
z o
0
o
o o
S T T T s 1o T T T T
1200 1250 1300 1350 0 5000 10000 15000 20000
ad tkel.38
—— Horizon 1-6
o 1 - Horizon 7-12
- ~ — - Horizon 13-18
Horizon 19-24
]
E
Q
=)
0 100 200 300
rad

Figure D.1: Coplots with horizon variable partitioned.
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Figure D.3: Coplots with wd10m variable partitioned.
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Figure D.4: Coplots with wsL31 variable partitioned.
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Figure D.5: Coplots with wdL31 variable partitioned.
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