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Summary

Due to the turbulent nature of wind, the structural components of a wind turbine
are exposed to highly varying loads. Therefore, fatigue damage is a major
consideration when designing wind turbines.

The control scheme applied to the wind turbine affects a subset of the loads.
In this report, the basics of wind turbine control are outlined, and a summary
of traditional fatigue damage estimation is given, including a treatment of SN
curves and rainflow counting procedures.

Spectrally based techniques providing approximate results for the fatigue dam-
age estimate are presented. These methods describe the fatigue damage as a
function of the spectral moments of the load history. This motivates the devel-
opment of an efficient algorithm for computation of spectral moments of linear,
stochastic processes.

These methods are combined to provide efficient evaluation of a turbine per-
formance measure taking into account fatigue damage. An application of this
cost function is demonstrated through numerical optimisation of a wind turbine
controller, based directly on fatigue damage design objectives.
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Resumé

P̊a grund af vindens turbulente natur udsættes en vindmølles strukturelle kom-
ponenter for stærkt varierende belastninger. Derfor er udmattelseslaster en
væsentlig designparameter for moderne vindmøller.

Vindmøllens regulator har indflydelse p̊a en delmængde af disse belastninger. I
denne rapport gennemg̊as grundlæggende vindmølle-regulering, og traditionelle
metoder til analyse af udmattelseslaster behandles—heriblandt SN-kurver og
rainflow counting metoder.

Spektralt baserede metoder til approksimativ bestemmelse af estimatet for ud-
mattelsesrate præsenteres. Disse metoder benytter sig af de spektrale momenter
for den p̊avirkende belastning, hvilket motiverer udviklingen af en effektiv algo-
ritme til beregning af spektrale momenter for lineære, stokastiske processer.

Disse metoder kombineres til at opn̊a effektiv beregning af en tabsfunktion, hvor
den forventede udmattelseslast indg̊ar. Anvendelse heraf demonstreres gennem
numerisk optimering af en vindmølleregulator, hvor minimering af udmattelses-
lasten indg̊ar direkte som designmål.
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Chapter 1

Introduction

This chapter gives a brief introduction to wind energy and wind turbine design.

1.1 Wind energy

In Denmark, 20% of the electrical power comes from wind energy. Worldwide,
the number is approximately 0.6%. Further increase of this proportion requires
wind power production to be as economical attractive as conventional power
production. Some claim that, if environmental costs are included, wind energy
is cheaper than conventional power production. It is hard, though, to convince
power companies that they should invest in the apparently more expensive wind
power plant because of environmental benefits. Therefore, a further decrease in
wind energy costs is crucial to further growth.

1.2 Wind turbine design

Wind turbine design is ultimately governed by economic considerations. That
is, turbines must be constructed in such a way as to optimise the profit for the
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manufacturer. As stable, large profits can only be obtained through long-term
customer satisfaction, reliability is a major concern.

These considerations constitue the basic trade-off in wind turbine design: pro-
duction costs must be low to increase the contribution margin for the manufac-
turer. This naturally advocates for low-weight, low-cost turbine components.
On the other hand, the demand for reliability advocates for heavy, robust struc-
tures designed using high partial factors.

To find the optimal trade-off, the overall turbine performance should ideally be
expressed by a single number; a cost J that would be the sum of a large number
of performance measures, i.e:

J =
∑

i

wiJi,

where wi denotes the weighting of the performance measure Ji. The determi-
nation of the weights wi would depend upon not only technical matters, but
also on economic considerations regarding wind turbine maintenance costs, risk
analysis, etc.

The set of cost contributions Ji would include things like power efficiency, power
quality, and the large class of mechanical load measures, including extreme loads
and fatigue loads as well as thermal loads.

A subset of these performance measures are affected by the wind turbine control
scheme. As an example, drive train vibrations will depend highly on the con-
troller, whereas the loads inflicted by waves on an off-shore turbine are unlikely
to be significantly affected by the control scheme.

Wind turbine controller design calls for a number of compromises between con-
flicting objectives—for example the well-known pitch activity vs. speed control
trade-off. As controller complexity grows with the advent of e.g. split-pitch
controllers, the available trade-offs might become less obvious.

This calls for a framework providing a means for numerical optimisation of the
controller. Such a framework would consist of a cost function formulation along
with algorithms capable of solving the optimisation problem of minimising the
cost, with the controller parameters (or structure) being the decision variables:

U∗ = argmin
U

J(U),

where U∗ denotes the optimal controller.

A complete parameterization of the wind turbine control scheme leads to a high-
dimensional optimisation problem, which, in turn, implies a very large number of
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cost funtion evaluations. Therefore, efficient cost function evaluation is crucial.

The cost function evaluation would ideally consist of a complete analysis of all
operation scenarios using aeroelastic simulation tools such as FLEX or HAWC.
Basing a numerical optimisaton scheme on such a cost function evaluation is
considered unrealistic with present-day computational resources. Therefore,
techniques for faster cost function evaluation (or estimation) are needed.

This thesis concentrates on efficient evaluation (or estimation) of the cost func-
tion contributions that arise from fatigue damage. The ultimate goal is to
provide management-level tuning knobs that allow system designers to tune the
controller directly in terms of expected component lifetimes.

For further readings on general wind turbine design, the reader is referred to
[BSJB01]. For a thorough treatment of probabilistic wind turbine design and
fatigue, [Vel06] is recommended.

1.3 Thesis structure

In chapter 2, a model describing the dynamics of the wind turbine is presented,
including a linearisation scheme and a discussion of neglected dynamics.

Chapter 3 outlines the basics of wind turbine control. Basic issues in wind
turbine control are demonstrated through the design of a hybrid control scheme.
Further, a flexible LQI design is used for demonstrating some of the trade-offs
inherent to wind turbine controller tuning.

An introduction to fatigue damage estimation is given in chapter 4. This in-
cludes a treatment of SN curves and Palmgren-Miner’s damage rule. In addition,
the concept of rainflow counting is introduced along with the so-called four-point
algorithm used for extracting the equivalent cycles from a stress history.

The lack of closed-form expressions for the fatigue damage has motivated works
on approximations that expresses the fatigue damage as a function of the spec-
tral moments of the damage-inflicting stress history. In chapter 5, the works of
Rychlik and Benasciutti are summarised, leading to a compact fatigue damage
estimate based on four spectral moments.

In chapter 6, the properties of spectral moments in linear systems are investi-
gated, resulting in an algorithm that efficiently computes the spectral moments
of linear, stochastic processes.
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Chapter 7 demonstrates how the algorithms are combined to allow for efficient
cost function evaluation in a numerical optimisation of a wind turbine controller
taking into account fatigue loads.

Finally, the conclusions of the work along with suggestions for further works are
found in chapter 8.

1.4 Notation

A subset of the notation used in the thesis is summarised in table 1.1.

Symbol Usage

R The set of real numbers.
C The set of complex numbers.
<(x) Real part of x.
=(x) Imaginary part of x.
λxm The mth spectral moment of the process x(t).
k Wöhler coefficient.
K Material constant defining SN curve.
cv,x Variability coefficient for the variable x.
sθ Stress level in the drive train.
sz Stress level in the tower.
λ Tip speed-ratio. Eigenvalue.
dθ Damage rate for drive train.
dz Damage rate for tower.
dβ Damage rate for the pitch bearings.
Cθ Proportionality constant: sθ = Cθθ.
Cz Proportionality constant: sz = Czz.

Cβ Proportionality constant: dβ = Cβ

√
λβ2 .

Λx Benasciutti damage rate approximation applied to x.

Table 1.1: Notation.



Chapter 2

Wind turbine modelling

To analyse the dynamics of the wind turbine and provide a basis for wind turbine
controller design, a mathematical model of the turbine is needed. This chapter
describes such modelling, including a linearisation scheme for the inherently
non-linear turbine model. Finally, it gives a discussion of neglected dynamics.

2.1 Wind turbine components

The majority of commercially operated wind turbines are three-axis horisontal-
axis wind turbines. As depicted in figure 2.1 such turbine consists of a nacelle
mounted on a tower. The nacelle contains the key components of the wind
turbine, including the gearbox, the electrical generator, and the main shaft
providing the mechanical interface to the hub carrying the blades.

The blades are attached to the hub using bearings in order to allow the blades
to be rotated around their own axis. The blade angle is referred to as the pitch
angle.

Further, a yawing system allows the nacelle and the rotor unit to be turned
against the wind. A schematic of a commercial wind turbine is shown in figure
2.2.
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Tower
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Blade

Hub

-

-v
-Ft

6

- z

y

Figure 2.1: A horisontal-axis wind turbine (HAWT).

The interactions between the different components are depicted in figure 2.3.
When the wind interacts with the blade aerodynamics, it will excert a torque
Ta on the rotor, which is transferred to the generator via the drive train. The
drive train consists of a low-speed shaft connecting the hub to the gearbox, and
a high-speed shaft connecting the gearbox to the generator.

Further, the wind will excert a thrust force Ft on the tower, causing a deflection
z of the tower structure.

Note that the wind speed vr seen by the rotor plane is the incoming wind speed
v superimposed by the nacelle velocity ż resulting from the tower being deflected
by the wind:

vr = v − ż.

2.2 Wind modelling

Wind is chaotic in nature. A complete spectrum of the wind speed spans several
decades, including seasonal variations on a yearly scale, diurnal variations, and
the fastest variations—denoted turbulence—described in minutes and seconds.
As the slowest dynamics of a wind turbine should be measured in seconds, the
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Figure 2.2: A schematic view of the inside of a Vestas V80-1.8MW nacelle. The
high-speed shaft referred to in section 2.4 is the shaft betweeen the gear-box
and the generator.
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Figure 2.3: Interactions in the wind turbine model. Blade pitch angle reference
βref and power reference Pref are controllable inputs. Notice how nacelle velocity
ż affects the wind speed vr seen by the rotor.
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diurnal as well as the yearly variations can be considered as slow changes in
the mean value for the wind experienced by the wind turbine. Thus, we will
describe the wind speed v as a mean wind speed v̄ pertubed by a turbulent
contribution, ṽ:

v = v̄ + ṽ.

This notion leaves the task of modelling the stochastic, turbulent part. The
following approach was suggested in [Knu83, Ma97].

Detailed studies of turbulence spectra result in irrational spectral descriptions.
As a linear, stochastic model of the turbulence is desired, the irrational spec-
trum of the turbulence is approximated by a rational spectrum. A possible
approximation of the turbulence spectrum Sṽ(ω) is given by

Sṽ(ω) =
k2

(1 + τ2
1ω

2)(1 + τ2
2ω

2)
, (2.1)

which corresponds to the turbulence being modelled as a unity intensity white
noise process filtered by the stable filter

H(s) =
k

(1 + τ1s)(1 + τ2s)
. (2.2)

We will describe the turbulence process with the equivalent state-space descrip-
tion (

˙̃v
¨̃v

)
=

(
0 1

− 1
τ1τ2

− τ1+τ2
τ1τ2

)(
ṽ
˙̃v

)
+

(
0
ε

)
,

where ε is a white noise process with intensity
(

k
τ1τ2

)2

.

The parameters k, τ1, and τ2 result from fitting (2.1) to the irrational spectrum
of the detailed turbulence model, and are functions of the mean wind speed as
depicted in figure 2.4. The turbulence variance σ2

ṽ is found by integrating (2.1):

σ2
ṽ =

1

2π

∫ ∞

−∞
Sṽ (ω) dω =

1

2

k2

τ1 + τ2

and increases with the mean wind speed as shown in figure 2.5.

2.3 Aerodynamics

When wind passes the wind turbine rotor plane, part of the kinetic energy in
the wind is transferred to the rotor. The power Pa obtained by the rotor is
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Figure 2.4: Parameters in the turbulence model as functions of the mean wind
speed. Notice the increasing gain k and the decreasing time constants τ1 and
τ2, cf. figure 2.5.
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given by

Pa =
1

2
ρπR2v3

rCP (λ, β) , (2.3)

where ρ is the air density, R is the rotor radius, and CP is the power efficiency
coefficient. The quantity CP has a theoretical upper limit—known as the Betz
limit—of 16/27 = 0.59. That is, at most 59% of the energy in the wind can be
extracted by the turbine. Further, notice the cubic relationship between wind
speed vr and the power.

In addition to delivering power to the wind turbine, the wind will excert a thrust
on the rotor plane—that is, a force on the rotor in the fore-aft direction. The
thrust force FT is given by

FT =
1

2
ρπR2v2

rCT (λ, β) . (2.4)

As indicated, the coefficients CP and CT are both functions of the tip speed-ratio
λ and the blade pitch angle β, with tip speed-ratio defined as1

λ ≡ ωrR

vr
. (2.5)

In figures 2.6 and 2.7 the CP and CT coefficients are plotted as functions of the
tip speed-ratio λ and the pitch angle β. We will denote the global maximum on
the CP curve as C∗P = CP (λ∗, β∗).

Finally, as the rotor power Pa and rotor torque Ta are related to rotor angular
rotational speed ωr as Pa = Taωr, we have for the aerodynamic torque:

Ta =
1

ωr

1

2
ρπR2v3

rCP (λ, β) . (2.6)

2.4 Drive train

The drive train will be modelled as proposed in [CO04], where the structural
model depicted in figure 2.8 is suggested. The model consists of the following
components:

• The combined rotational moment of inertia Ir of the rotor and low-speed
shaft.

1Note that the inverse definition of tip speed-ratio is also found in the literature. Here, the
definition used in [BSJB01] is adopted.
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Figure 2.6: The power coefficient CP (left) and the thrust coefficient CT (right)
as functions of the tip speed-ratio λ and pitch angle β.

β

λ
5101520

0

5

10

15

20

25

β

λ
5101520

0

5

10

15

20

25

Figure 2.7: The power coefficient CP (left) and the thrust coefficient CT (right)
as functions of the tip speed-ratio λ and pitch angle β.
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• A viscious damper with viscosity constant Br representing the bearings in
the low-speed part of the drive train (before the gear box).

• A massless, visciously damped rotational spring with spring constant Kd

and visciousity Bd. The spring deformation θ, measured in radians, rep-
resents the deformation of the low-speed shaft.

• A gearbox with ratio Ng.

• A viscious damper with viscosity constant Bg representing the bearings in
the high-speed part of the drive train (after the gear box).

• The combined rotational moment of inertia Ig of the gearbox, high-speed
shaft, and the generator.

��

ωr Ta

Y

�

ωg Tg

Low-speed

shaft
Gear
box

High-speed

shaft

Ir
Br

Bd,Kd

θ

Ng

Bg
Ig

Figure 2.8: Mechanical equivalent for the drive train.

The combined differential equations describing this system are:

Irω̇r = Ta −Kdθ −Bd
(
ωr −

ωg
Ng

)
−Brωr (2.7a)

Igω̇g = −Tg +
Kd

Ng
θ +

Bd
Ng

(
ωr −

ωg
Ng

)
−Bgωg (2.7b)

θ̇ = ωr −
ωg
Ng

. (2.7c)

Here, the aerodynamic torque Ta and the generator torque Tg are the inputs to
the system, and the resulting rotational speeds of the rotor and the generator,
denoted ωr and ωg , are outputs, as depicted in figure 2.3.

As (2.7) constitutes a system of coupled, linear differential equations, they read-
ily lend themselves to a linear state-space representation as follows:



ω̇r
ω̇g
θ̇


 =




−Br−Bd
Ir

Bd
NgIr

−KdIr
Bd
NgIg

−Bd
N2
g Ig
− Bg

Ig
Kd
NgIg

1 − 1
Ng

0






ωr
ωg
θ


+



Ta
−Tg

0


 .
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With the constants

Ir = 8.70 · 106 Nms2 Br = 8.50 · 103 Nms Bd = 2.40 · 105 Nms

Kd = 1.73 · 108 Nm Ng = 85 Bg = 6.85 Nms

Ig = 1.50 · 102 Nms2

the eigenvalues for the drive train system matrix are

− 0.054988

− 0.12035± j13.398.

That is, the drive train has a poorly damped mode at app. 2.1 Hz, and a time
constant of approximately 20 seconds. The time constant of 20 seconds is due
to the large inertia of the rotor. These characteristics are confirmed by the drive
train step response shown in figure 2.9.

0 50 100
0

0.5

1

1.5

2
Rotor speed

[r
ad

/s
]

Time [s]
0 1 2 3 4 5

0

0.5

1

x 10
−3 Torsion

[r
ad

]

Time [s]

Figure 2.9: The drive train response to a 106 Nm step on the aerodynamic
torque Ta. The 20 s time constant and the resonance frequency of app. 2.1 Hz
are easily identified.

2.5 Tower

The tubular steel tower will be deflected in the fore-aft direction due to the
thrust force on the rotor. A simple model approximates the deflection with a
linear displacement of the nacelle, with the dynamics described by

mtz̈ = −Ktz −Dtż + Ft. (2.8)

or (
ż
z̈

)
=

(
0 1
−Kt
mt

−Dt
mt

)(
z
ż

)
+

(
0
Ft
mt

)
,
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where z, ż, and z̈ denotes position, velocity, and acceleration of the nacelle,
respectively. With

mt = 250 · 103 kg Kt = 8.88 · 105 Nm Dt = 296 · 102 Ns/m

the eigenvalues for the tower model becomes

−0.059218± j1.884.

Thus, the tower exhibits oscillatory motion at a frequency of app. 0.3 Hz, as
shown in the 105 N step response shown in figure 2.10.2

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Nacelle displacement

[m
]

Time [s]

Figure 2.10: The tower has a resonance frequency of app. 0.3 Hz. Here, the
response to a 105 Nm step on the aerodynamic thrust Ft is shown.

2.6 Generator

We will consider the generator as a device that attempts to deliver the electrical
power Pe specified by the power reference signal Pref. The power is controlled
by adjusting the rotor current, which in turn, governs the amount of torque
excerted by the generator to the high-speed shaft. Further, we will assume a
loss-less generator, meaning that the electrical power equals the product between
the generator speed and the generator torque:

Pe = ωgTg. (2.9)

Practical generators cannot change the torque instantaneously. We will model
this latency by a first-order relationship between the requested generator torque

2The figure shows the free response of the tower without the rotor. This notion is important
as the rotor will damp the tower motion significantly.
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and the actual generator torque:

Ṫg =
1

τg
(Tg,ref − Tg) ,

with the time constant τg = 50 ms. As the desired torque is given by Tg,ref =
Pref

ωg
, we get

Ṫg =
1

τg

(
Pref

ωg
− Tg

)
. (2.10)

Thus, (2.9) and (2.10) leaves the generator as a nonlinear first order MIMO
system with the generator speed ωg and the power reference Pref being the
inputs, and with the generator torque Tg and the produced power Pe being the
outputs, as depicted in figure 2.3.

A few comments should be added to the chosen generator model. First, gener-
ator models proposed by other authors often include a time delay. When con-
sidering discrete-time models suitable for contemporary, discrete-time controller
design, the inclusion of time delays in the model does not pose any problems,
as time delays are readily implemented as delay states in a linear discrete-time
model. This thesis concentrates on fatigue damage including stochastic wave
analysis. The mathematical results needed for this analysis are all based on
continuous-time descriptions. As pure time delays cannot be described by finite-
dimensional, continous-time models, we choose not to include a time delay in
the model.

In addition, one might claim that a more direct control of the generator could
be obtained by defining the desired torque level as a controllable input to the
system. Such an approach is partly protected by patent rights, cf. [MCC+].
Therefore, a substantial number of commercial wind turbine control schemes
rely on the indirect scheme outlined above.

2.7 Pitch actuator

The system providing blade pitch angle control consists of electrical motors,
gears, and eletronic control circuits. Thus, developing a detailed model of the
pitch system is exhaustive, and we will stick to the model proposed in [CO04].
That is—a first order system with a time delay. We will, though, for the same
reasons as stated for the generator model, leave out the pure time delay and use
the following first order relation between the pitch angle reference βref and the
actual blade pitch angle β:

β̇ =
1

τβ
(βref − β) , (2.11)
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with the time constant τβ = 120 ms.

2.8 Neglected dynamics

The wind turbine model described in the previous sections constitutes a rather
simple wind turbine model, as dynamics crucial to practical wind turbine de-
sign have been left unmodelled. One major simplification lies in the fact that
the rotor has been modelled as nothing but a stiff inertia. As a consequence,
blade dynamics important for the pitch bearing loads have been left out. As
will be shown later, the neglect of blade dynamics necessitates a rather sim-
plistic approach to pitch bearing fatigue. Further, neither gyroscopic effects or
gravitational effects have been modelled.

Another limitation is the neglect of absolute azimuth angle. That is, the abso-
lute, angular position of the rotor. In practical wind turbines, imperfections in
rotor symmetry will cause periodic fluctuations in the mechanical loads, with a
frequency equal to the rotor speed. Such effects are denoted 1P effects as they
occur one time in each period in the azimuth angle.

Similarly, 3P effects arise as a result of the effective wind field experienced by
the rotor not being homogenious. The effect of such inhomogenities will be
periodic with a period one third of the rotor period, as there are three blades on
the turbine. Well-known effects as wind shear and tower shadow are 3P effects.

Finally, note that this work does not include any model validation. As the
model is very similar to the one described in [CO04], we will refer to the model
validation described herein.
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2.9 Model summary

Defining the state vector x, the input vector u, the output vector y, and the
disturbance vector w as follows:

x ≡




ωr
ωg
θ
z
ż
Tg
β
ṽ
˙̃v




u ≡
(
βref

Pref

)
y ≡

(
ωg
Pe

)
w ≡




0
0
0
0
0
0
0
0
ε




(2.12)

allows us to summarise the model as follows3:

ẋ = f (x, u, w; v̄) (2.13a)

y = g (x) , (2.13b)

with the vector-valued function f given by:

f (x, u, w; v̄) =




1
Ir

(
Ta −Kdθ −Bd

(
ωr − ωg

Ng

)
−Brωr

)

1
Ig

(
−Tg + Kd

Ng
θ + Bd

Ng

(
ωr − ωg

Ng

)
−Bgωg

)

ωr − ωg
Ng

ż
1
mt

(−Ktz −Dtż + Ft)
1
τg

(
Pref

ωg
− Tg

)

1
τβ

(βref − β)
˙̃v

− 1
τ1τ2

ṽ − τ1+τ2
τ1τ2

˙̃v + ε




(2.13c)

where

Ta =
Pa
ωr

=
1

ωr

1

2
ρπR2v3

rCP (λ, β) (2.13d)

Ft =
1

2
ρπR2v2

rCT (λ, β) (2.13e)

vr = v̄ + ṽ − ż (2.13f)

λ =
ωrR

vr
. (2.13g)

3Note that x, u, and w are variables while the mean wind speed v̄ is considered a parameter.
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The output function g is given by

g (x) =

(
ωg
ωgTg

)
. (2.13h)

2.10 Model linearisation

The results presented in the following chapters rely heavily on linear system
models. Therefore, we will present a linearisation scheme for the model pre-
sented in section 2.9.

Let the state, input, output, and disturbance vectors be desribed as pertubed
equilibrium point vectors as follows:

x = x̄+ x̃ , u = ū+ ũ , y = ȳ + ỹ , w = w̄ + w̃,

where the bar indicates the linearisation point, and the tilde indicates the devi-
ation from the linearisation point. This gives, for the derivative:

ẋ = ˙̄x+ ˙̃x = f(x̄+ x̃, ū+ ũ, w̄ + w̃; v̄).

A 1st order Taylor expansion of the function f(x, u, w; v̄) around (x̄, ū, w̄) yields

˙̄x+ ˙̃x ≈ f(x̄, ū, w̄; v̄) +
∂f(x̄, ū, w̄; v̄)

∂x
x̃+

∂f(x̄, ū, w̄; v̄)

∂u
ũ+

∂f(x̄, ū, w̄; v̄)

∂w
w̃.

Subtracting ˙̄x = f(x̄, ū, w̄; v̄) from both sides gives the linear description

˙̃x = Ax̃ +Bũ+Bww̃,

where the matrices A, B, and Bw are given as the Jacobians

A =
∂f(x̄, ū, w̄; v̄)

∂x
, B =

∂f(x̄, ū, w̄; v̄)

∂u
, Bw =

∂f(x̄, ū, w̄; v̄)

∂w
.

Following the same lines as for the state deviation vector x̃, the output deviation
vector ỹ in a linearised model can be described by

ỹ = Cx̃,

where

C =
∂g(x̄)

∂x
.
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In equilibrium, f (x, u, w; v̄) = 0. From (2.13c), we can deduce the following,
rather intuitive properties of an equilibrium point:

ω̄g = Ngω̄r ż = 0 P̄ref = T̄gω̄g = P̄e

β̄ = β̄ref ε = 0 P̄a =
1

2
ρπR2v̄3CP

(
ω̄gR

Ngv̄

)

ṽ = 0 ˙̃v = 0 P̄e = P̄a −Brω̄2
r −Bgω̄2

g

v̄r = v̄.

Obtaining the Jacobians is trivial but lengthy. As a result, we will only state
the resulting matrices. For the system matrix A we have:

A =




T (ωr)
a −Bd−Br

Ir
1
Ir
Bd
Ng

−KdIr 0
T (ż)
a

Ir
0

T (β)
a

Ir

T (ṽ)
a

Ir
0

1
Ig
Bd
Ng

−Bd
IgN2

g
− Bg

Ig
1
Ig
Kd
Ng

0 0 − 1
Ig

0 0 0

1 − 1
Ng

0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0
F

(ωr)
t

mt
0 0 −Kt

mt

F
(ż)
t −Dt
mt

F
(β)
t

mt

F
(ṽ)
t

mt
0 0

0 − 1
τg
Pref

ω̄2
g

0 0 0 − 1
τg

0 0 0

0 0 0 0 0 0 − 1
τβ

0 0

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 − 1

τ1τ2
− τ1+τ2

τ1τ2




where

T (ωr)
a =

∂Ta
∂ωr

=
1

ω̄r

1

2
ρπR3v̄2 ∂CP

(
λ̄, β̄

)

∂λ
− 1

ω̄2
r

1

2
ρπR2v̄3CP

(
λ̄, β̄

)

T (ż)
a =

∂Ta
∂ż

=
1

2
ρπR3v̄

∂CP
(
λ̄, β̄

)

∂λ
− 1

ω̄r

3

2
ρπR2v̄2CP

(
λ̄, β̄

)

T (β)
a =

∂Ta
∂β

=
1

ω̄r

1

2
ρπR2v̄3 ∂CP

(
λ̄, β̄

)

∂β

T (ṽ)
a =

∂Ta
∂ṽ

=
1

ω̄r

3

2
ρπR2v̄2CP

(
λ̄, β̄

)
− 1

2
ρπR3v̄

∂CP
(
λ̄, β̄

)

∂λ

F
(ωr)
t =

∂Ft
∂ωr

=
1

2
ρπR3v̄

∂CT
(
λ̄, β̄

)

λ

F
(ż)
t =

∂Ft
∂ż

=
1

2
ρπR3ω̄r

∂CT
(
λ̄, β̄

)

∂λ
− ρπR2v̄CT

(
λ̄, β̄

)

F
(β)
t =

∂Ft
∂β

=
1

2
ρπR2v̄2 ∂CT

(
λ̄, β̄

)

∂β

F
(ṽ)
t =

∂Ft
∂ṽ

= ρπR2v̄CT
(
λ̄, β̄

)
− 1

2
ρπR3ω̄r

∂CT
(
λ̄, β̄

)

∂λ
.
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The partial derivatives ∂CP
∂λ , ∂CP

∂β , ∂CT
∂λ , and ∂CT

∂β are computed numerically
from the CP and CT lookup tables.

For the input matrix B, the disturbance input matrix Bw, and the output matrix
C we have:

B =




0 0
0 0
0 0
0 0
0 0
0 1

τgω̄g
1
τβ

0

0 0
0 0




, Bw = I , C =

(
0 1 0 0 0 0 0 0 0
0 T̄g 0 0 0 ω̄g 0 0 0

)
.

Thus, the linearised model is described by the following state-space model4:

˙̃x = Ax̃+Bũ+ w (2.14a)

ỹ = Cx̃ (2.14b)

with w being a white noise process with the intensity matrix R1:

R1 =




0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

0 · · · 0
(

k
τ1+τ2

)2



. (2.15)

4In the linearisation point, ε = 0. Thus, w̃ = w and we omit the tilde.



22 Wind turbine modelling



Chapter 3

Wind turbine control

In this chapter the basics of wind turbine control are outlined.

First, the wind turbine is defined as a control object. This includes a discus-
sion on optimal equilibrium points of the model, resulting in the definition of
operation modes.

Next, the design and implementation of a simple hybrid wind turbine controller
is described. The hybrid controller is a four-mode controller that includes three
different PI-controllers along with a nonlinear control scheme referred to as a
P, ω-controller.

Finally, an LQ control setup with integral action is described, and a controller
tuning example is given, demonstrating some fundamental tradeoffs inherent to
wind turbine controller design.

3.1 Existing works

Several authors have described PI control schemes for wind turbine control, in-
cluding gain scheduled setups. Also more general MIMO control strategies such
as LQG controllers have been proposed. Most works concentrate on reducing
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the loads on the turbine using techniques such as split-pitch control and active
drive train damping.

Even though the resulting controllers do lower the fatigue damage inflicted on
the turbine, none of the design paradigms brought into play aim directly at min-
imizing fatigue damage. Techniques such as LQG design rely upon a quadratic
performance measure, which can be related to the variance of the load. Even
though a decrease in variance usually would decrease the fatigue damage, this
is not the case in general, and as such, these methods cannot be categorized as
directly aiming at fatigue damage reduction.

As a result, most works concludes that considerable effort lies in finding the
right tuning of the controllers, as the trade-offs providing a desirable solution
in terms of fatigue loads are not obvious.

Wind turbine operation is subject to a number of constraints on the inputs and
outputs. An elegant handling of these constraints was proposed in [CO04], where
these constraints were combined with a quadratic cost to form a gain-scheduled
model predictive control setup.

3.2 The wind turbine as a control object

The model described in chapter 2 leaves a dynamic system with three inputs:
wind speed v, pitch angle reference signal βref, and power reference Pref.

Pitch angle reference and power reference are considered controllable inputs and
the wind speed is an uncontrollable disturbance. We will define the generator
speed ωg and the produced power Pe as the primary output y of interest. The
information available to the controller, ym, will be a function of the system
states x as well as the current control signal u. Thus, the general control setup
can be depicted as in figure 3.1.

3.2.1 Optimal equilibrium points

As the very purpose of a wind turbine is the one of generating power, one would
expect the wind turbine to be operated at constant tip speed-ratio λ = λ∗ and
constant blade pitch angle β = β∗ at all times in order to obtain maximum
power efficiency, CP = C∗P .
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ẋ = f (x, u, v)

y = g (x, u)

Wind turbine

Controller

u =

(
βref

Pref

)

v -
-

�

- y =

(
ωg
Pe

)

ym = h (x, u)

Figure 3.1: The general wind turbine control setup.

There are, however, practical limitations that prevent such operation. Generator
speed ωg has to be kept within a certain operating range, and produced power
Pe should not exceed nominal power, P0. Thus, the problem of defining the
optimal equilibrium point 〈ω̄∗g , β̄∗〉 of operation for a given mean wind speed v̄
can be formulated as follows:

〈ω̄∗g , β̄∗〉 = argmax
〈ω̄∗g ,β̄∗〉

P̄e (3.1a)

subject to

c1 : ω̄g > ωg,min (3.1b)

c2 : ω̄g < ωg,max (3.1c)

c3 : P̄e ≤ P0 (3.1d)

where

P̄e =
1

2
ρπR2v̄3CP

(
ω̄gR

Ngv̄
, β̄

)
− ω̄2

g

(
Br
N2
g

+Bg

)
. (3.1e)

As the objective P̄e is a function of the wind speed v̄, the optimal operating
point is also a function of the wind speed.

Solving the optimization problem (3.1) results in four different types of solutions,
determined by the set of active constraints at the solution. We will designate
the four types as operation modes as summarised in table 3.1.

In figure 3.2 the optimal operating point characteristics (generator speed, pitch
angle, and electrical power) are plotted a functions of the mean wind speed.
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Figure 3.2: Optimal equilibrium points (blue) and suboptimal equilibrium
points (green)—the latter allowing a SISO approach.
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Mode Active constraints Properties

I c1 ωg = ωg,min , β 6= β∗

II ωg ∝ vr , β = β∗

III c2 ωg = ωg,max , β 6= β∗

IV c2, c3 ωg = ωg,max , β 6= β∗ , Pe = P0

Table 3.1: Characteristics of the four operating modes. See figure 3.2.

3.3 A PI approach

In order to investigate some of the fundamental implications of wind turbine
control, we will consider a hybrid control scheme using mode-dependent PI
control strategies.

The controller design will be loosely based on the design suggested in [HHL+05],
which is based on the following two concepts:

• The turbine is treated as a SISO system with the control input being either
the power reference or the pitch reference, depending on operation mode.

• The turbine is modelled as a first-order system, allowing for a pole place-
ment design for the second-order system resulting from applying the first-
order PI-controller.

3.3.1 The SISO approximation

Figure 3.2 shows that the pitch angle β is held almost constant at β∗ in mode I,II,
and III. Furthermore, as the power is held constant in mode IV, it is tempting
to treat the wind turbine—which inherently is a 2×2 MIMO system—as a SISO
system with the control strategy determined by operating mode as depicted in
figure 3.3.

Mode I Generator speed is held constant at ωg = ωg,min by a PI-controller
acting on the power reference. Pitch held constant at β = β∗.

Mode II Power reference adjusted according to the nonlinear relationship be-
tween generator speed and power during C∗P -operation (stationary condi-
tion):

Pref = Pe = Pa−Brω2
r −Bgω2

g =
1

2
ρπR5C∗P

1

(λ∗Ng)
3ω

3
g −
(
Br
N2
g

+Bg

)
ω2
g .
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Mode III Generator speed is held constant at ωg = ωg,max by a PI-controller
acting on the power reference. Pitch held constant at β = β∗. Basically
the same as mode I, but with different setpoint.

Mode IV Generator speed is held constant at ωg = ωg,max by a PI-controller
acting on the pitch angle reference.

If the current wind speed is known by the controller, the switching conditions
for toggling between operation modes would readily follow from figure 3.2.

We will assume, though, that the wind speed is not known by the controller.
This means that the mechanism swithing between the control modes will use
the operating point characteristic ωg , Pe, and β for mode selection as depicted
in figure 3.4. Note how the power levels PL and PH marked in figure 3.2 are
used as transition conditions.

Mode I

PI

WT

SP: ωg,min

βref = β∗

Pref ωg

-

�

- - Pe

Mode II

-6

WT

Pref = f(ωg)

βref = β∗

Pref ωg

-

�

- - Pe

Mode III

PI

WT

SP: ωg,max

βref = β∗

Pref ωg

-

�

- - Pe

Mode IV

PI

WT

SP: ωg,max

Pref = P0

βref ωg

-

�

- - Pe

Figure 3.3: The four different control schemes in the hybrid controller. SP
denotes controller setpoint.
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I II III IV- - -

���

Pe > PL ωg > ωg,max Pe > P0

ωg < ωg,min Pe < PH β < β∗ ∧ ωg < ωg,max

Figure 3.4: Mode transitions in the hybrid controller. The circles represent
the modes and the arrow captions denote the condition for the mode transition
indicated by the arrow.

3.3.2 Controller design

In order to make the desired pole placement design, we need to obtain a first-
order wind turbine model.

A standard method for approximating (2.14) with a first order model is to
transform the model into a balanced realisation with the observability and con-
trollability matrices being identical diagonal matrices with the Hankel singular
values occuring in descending order in the diagonal. This transformation allows
for a direct measure of the influence each (transformed) state has on the input-
ouput relationship. Neglecting all states but the first in the transformed model
leaves a first order system.

Applying off-the-shelf Matlab routines for the model reduction described above
yields unsatisfactory results, though. Due to the model (2.14) being unstable in
a certain region of operation (first part of the mode IV region), the reduced sys-
tem will have system parameters that are discontinuous when plotted as a func-
tion of the mean wind speed. This is mainly due to the fact that the standard
model reduction routines will leave unstable parts of the original model unal-
tered, thus introducing a discontinuity when the original system model changes
from being unstable to being stable.

As the gain schedule developed in section 3.3.2.1 will rely on a the model pa-
rameters being smooth functions of the wind speed, we will, instead, develop
a first-order model based on the same first-principles as was used in chapter
2, with the crude assumption of a rigid drive train and a rigid tower as well as
ideal pitch actuators and generator. The details of this diminished modelling are
found in appendix A, where also the accompaning pole placement PI-controller
design is outlined.

In the design, the s-plane poles are placed at −0.5± j0.5, resembling the design
suggested in [HHL+05].
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3.3.2.1 Gain scheduling

As the linearised wind turbine model varies with the operating point, the con-
troller gains should be adjusted according to the present operating point. In
figure 3.5, the optimal gains are plotted as functions of the wind speed. The plot
shows that controller gains are practically constant for the mode I and mode
III controllers, while the gains of the mode IV controller varies significantly.
Therefore, a gain scheduling scheme is applied to this controller.
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Figure 3.5: Optimal PI controller gains kp and ki as functions of wind speed.
Gains are practically constant in modes I and III.

As the wind speed is considered unknown, we will use the pitch angle as an
indicator of the current wind speed. This approach is justified by the integral
action in the PI controller, as this ensures asymptotic convergence towards the
desired operating point for a given wind speed. This implies that, in stationarity,
the mode IV relationship between wind speed and pitch angle depicted in figure
3.2 will be reached, effectively leaving the the pitch angle as a wind speed
estimator.

In figure 3.6, the controller gains are plotted as a function of the pitch angle.
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We choose to approximate the gains with the functional relationships

kx(β) =
px

β + qx
.

A least squares-fit results in the models

ki(β) =
0.17595

β + 0.75768
(3.2a)

and

kp(β) =
6.824

β + 0.6016
. (3.2b)

0 5 10 15 20

0.02

0.04

0.06

0.08

k
i

Pitch angle [o]

 

 

Optimal
Model

0 5 10 15 20
0

1

2

3

4

k
p

Pitch angle [o]

 

 

Optimal
Model

Figure 3.6: Optimal controller gains ki and kp for mode IV PI controller as a
function of pitch angle β. Gains are approximated by the models (3.2a) and
(3.2b).

A Matlab-implementation of the discrete-time hybrid controller function is
seen in appendix A.4. Note that bumpless transfer between modes is assured
by adjusting the integrator state when the mode changes in such a way that the
control variable will not change abruptly.

3.3.3 Controller verification

Initial simulations of the controller immediately reveals that the controller de-
signed as described in the previous sections fails to stabilize the system. Analy-
sis of the closed-loop system reveals unstable eigenfrequencies close to the drive
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train resonance frequency at ∼ 2.1 Hz. Therefore, the hybrid controller is ex-
tended to include a bandstop-filtering of the generator speed signal before it is
fed to the controller, as depicted in figure 3.7. This solution is also found in
other turbine control schemes to mitigate the effects of drive train vibrations.

Controller -
6

6

� �
Control signal ωg

Figure 3.7: The hybrid controller setup is stabilised by bandstop-filtering the
generator speed signal before the controllers.

Having stabilised the closed-loop system by the bandstop-filter, we are ready
to investigate the performance of the hybrid controller. Figure 3.8 shows the
closed-loop system behaviour when operated in the mode II/III/IV transition
region. We note the following properties:

• The produced power is limited at nominal power (2 MW) during mode IV
operation.

• Pitch angle is held constant at β = β∗ = −0.6◦ in modes II and III.

• Pitch angle rate of change is kept within ±10◦/s.

• Bumpless transfer between operation modes is observed.

More simulation results are found in appendix A.3, illustrating the following
scenarios:

Quasi-stationary operation In order to investigate the steady-state proper-
ties of the closed-loop system, the system is excerted to a slowly varying
wind speed, resulting in what could be denoted “quasi-stationary” opera-
tion. The linear growth of the wind speed allows for comparison with the
optimal equilibrium points shown in figure 3.2.

Deterministic mode transition simulation Demonstrates stability and bump-
less transfer around mode transitions.

Deterministic mode IV step-responses Demonstrates that, due to the gain
scheduling, the dynamic properties of the closed-loop system are unaf-
fected by the changing system dynamics.
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Figure 3.8: Non-linear simulation of the hybrid controller.
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3.4 An LQI appoach

Attention is now turned towards the class of state feedback controllers. This
class of controllers allows for arbitrary pole placement, and is inherently suited
for MIMO systems. A particular useful design technique is the LQ-design that—
besides from providing stable closed-loop systems—allows for an intuitively ap-
pealing tuning procedure. Adding integral states to the setup ensures correct
reference following despite the model uncertainties inherently present in a lin-
earised model of a physical system.

3.4.1 The LQI setup

Consider the linearised state-space model described in terms of the deviation
variables x̃, ũ, and ỹ:

˙̃x = Ax̃ +Bũ+ w

ỹ = Cx̃,

where w is a white noise process with intensity matrix R1. Introducing the
integral state vector xi:

xi ≡
(
ωig P ie

)T

with

ẋi = ỹ = Cx̃,

we define the state vector x̃a for the augmented system:

x̃a ≡
(
x̃
xi

)
. (3.3)

Combining these equations leads to the augmented system description

˙̃xa =

(
˙̃x
ẋi

)
=

(
A 0
C 0

)(
x̃
xi

)
+

(
B
0

)
ũ+

(
w
0

)

ỹ =
(
C 0

)( x̃
xi

)

or

˙̃xa = Aax̃a +Baũ+ wa (3.4a)

ỹ = Cax̃a. (3.4b)
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where wa is a white noise process with intensity matrix R1,a:

R1,a =

(
R1 0
0 0

)

Now, consider the cost J :

J = E

{∫
εTQεdt

}
, (3.5)

where the error vector ε is defined as follows1:

ε =
(
ω̃g P̃e θ̃ z̃ β̃ ω̃ig P̃ ie β̃ref P̃ref

)T
. (3.6)

This cost can be interpreted as a weighted sum of the variances of the elements
in ε. The cost can—assuming a diagonal Q matrix—be rewritten as

J =

∫ (
ỹT x̃T x̃Ti ũT

)



Qỹ 0 0 0
0 Qx̃ 0 0
0 0 Qi 0
0 0 0 Qũ







ỹ
x̃
x̃i
ũ


 dt (3.7)

where

Qỹ ≡
(
Qω̃g 0

0 QP̃e

)
, Qi ≡

(
Qω̃ig 0

0 QP̃ ie

)
, Qũ ≡

(
Qβ̃ref

0

0 QP̃ref

)

and

Qx̃ ≡




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 Qθ̃ 0 0 0 0 0 0
0 0 0 Qz̃ 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Qβ̃ 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




.

Now, (3.3) and (3.4b) gives

J =

∫ (
x̃Ta ũT

)(CTa QỹCa +Qã 0
0 Qũ

)(
x̃a
ũ

)
dt

where

Qã ≡
(
Qx̃ 0
0 Qi

)
.

1Note that the entries ω̃ig and P̃ ie are the time integrals of the deviation variables ω̃g and

P̃e
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Finally, we can write

J =

∫



x̃Ta
(
CTa QỹCa +Qã

)
︸ ︷︷ ︸

Q1

x̃a + ũT Qũ︸︷︷︸
Q2

ũ




dt. (3.8)

It can be shown that the control signal ũ that minimizes (3.8) subject to (3.4a)
is given by the control law ũ = −Lx̃a.

A necessary condition for this to be true, though, is that the pair 〈Aa, Ba〉 is
stabilisable. This means that all uncontrollable states in the system must be
stable. Investigation of the system (3.4) reveals—not surprisingly—that the
wind model states ṽ and ˙̃v are not controllable. They are stable, though, so the
system retains stabilisability2.

Given Q1 and Q2, the Matlab function lqr computes the gain matrix L,
leaving Q1 and Q2 as the design parameters or tuning knobs in the LQI setup.

3.4.2 LQI controller design

The application of LQI design provides a consistent design procedure that en-
sures stability for the linearised closed-loop system model. It should be stressed,
however, that the inherent nonlinearities of the wind turbine model and the op-
erating point dependent operation modes treated in section 3.3 still apply. That
is, a mechanism for controller gain adjustment should be implemented, and mea-
sures should be taken to ensure bump-less transfer between operation modes.
The implementation of such a scheme is a bit more complicated in the LQI-case
than for the PI hybrid controller, but would be based on the same principles.

In this treatment an LQI design for only one single mode IV operation point is
considered.

3.4.3 Controller tuning—baseline controller

As mentioned above, the weights in the LQ design represent a weighting of
the variances. A common starting point for the weights when doing LQ design
is to use weights equal to the inverse of the square of the variable’s nominal
value. That correponds to a weighting, where the variabilities of the variables
are weighted equally.

2The filter (2.2) is stable.
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Thus, we have:

Qỹ =

(
1
ω̄2
g

0

0 1
P̄ 2
e

)
, Qi =

(
1
ω̄2
g

0

0 1
P̄ 2
e

)
, Qũ ≡

(
1
β̄2

ref

0

0 1
P̄ 2

ref

)

and

Qx̃ ≡




0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1

θ̄2 0 0 0 0 0 0
0 0 0 1

z̄2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

β̄2 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0




Note that the weights of the integral states, found in Qi, are defined in terms
of the variables the integrate, and not by the inverse of their nominal values
(which are zero!).

We will denote the LQI state feedback controller designed from this textbook
starting point as the baseline state feedback controller, with the gain matrix
L = L0.

Figure 3.9 shows a simulation of the baseline controller applied to the wind
turbine model linearised around the mean wind speed v̄ = 16 m/s.

3.4.3.1 Controller tuning—tower damping

Now, imagine that the tower deflection represented by the nacelle position in
figure 3.9 is judged to inflict too much damage on the tower structure. In that
case, a different tuning of the controller might reduce the tower deflection.

As the nacelle position z exists as a term in the LQI cost function, we increase
the weight Qz̃ in the Qx̃ matrix by a factor one hundred and recompute the
controller gain matrix L. The result is depicted by the green lines in figure 3.9.

The plots show that the tower motion has been reduced slightly, as was the
purpose of the redesign. The figure also shows, however, that the tower damping
has a cost in terms of substantially increased low-speed shaft deformations as
well as a notably higher pitch angle velocity. As will become apparent later, the
pitch angle velocity is governing the fatigue damage rate of the pitch bearings.
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Figure 3.9: Linear simulation of the LQI controller. Blue: the baseline con-
troller as defined in section 3.4.3. Green: design weights adjusted to lower
tower deflection.
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A substantial increase in the variability of the produced power is also a result
of the tower damping controller design.

3.5 Conclusion

Based on a simple wind turbine model a SISO control strategy with PI-controllers
has been applied. This strategy led to an unstable system, with unstable poles at
the drive train resonance frequency. The band-stop filter solution applied to the
stability issue is commonly used in wind turbine controllers [HHL+05, BSJB01],
and as such, there is nothing suspicious about applying the solution presented
above. It should be stressed, though, that the inclusion of the band-stop filter
is not the result of any standard control strategy being applied to a standard
control problem. It is a qualified ad-hoc solution to a specific problem.

The more general LQI state-feedback controller provided a means of designing
a stabilising controller. This allowed for a tuning procedure where the tower
deflection was reduced by directly adjustment of the weight related to this state
variable.

It should be stressed that the LQ design procedure provides a controller that is
optimal in the sense described by the designer through the cost function. That
is, the designer still must adjust the weights by hand to obtain a controller that
is optimal in the global sense as outlined in chapter 1.
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Chapter 4

Fatigue

Fatigue loads is an important issue when designing structures exposed to long-
term vibrations and fluctuating loads, as is the case for wind turbines. This
chapter outlines the basics of fatigue damage analysis.

4.1 Introduction

When designing mechanical and structural components, two load contributions
are of special importance—extreme loads and fatigue loads. Extreme loads
can be thought of as loads that will cause the structure to fail due to the
stress exceeding the yield strength for the material. Thus, the design goal is
to avoid—by a proper low probability—that the material is exposed to such
excessive loads.

Fatigue loads can be thought of as the loss of strength that a material experi-
ence when subjected to a cyclic stress history. The process often starts at the
surface of a material where small imperfections such as scratches cause stress
concentrations. As the crack size grows, stress concentrations grow accordingly,
causing the cracks to grow further. This process eventually leads to rupture of
the material.
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It is important to note that fatigue occurs even when the applied loads are
far below the material’s elastic limit. This implies that not only the extreme
load values are important; the small-amplitude time history of the load affects
component reliability due to fatigue damage.

4.2 The SN-curve and Palmgren-Miner’s dam-

age rule

In order to describe a material’s ability to withstand cyclic stress histories, an
SN curve is often used. An SN curve can be constructed by applying a constant-
amplitude cyclic stress to a test specimen and count the number of load cycles
until rupture occurs. Repeating the test for a number of stress ranges allows
the stress range to be plotted against the number of cycles that the material
can withstand.

An often-used model for the SN curve is

skN = K, (4.1)

where s is the stress range (twice the amplitude in a sinusoidal stress history)
and N is the lifetime in cycles. The quantities K and k are material properties,
with k being denoted the Wöhler-coefficient.

An SN-curve for a material with k = 4 and K = 1032 is depicted in figure 4.1.
The SN-curve shows that the (fictious) material can withstand 104 stress cycles
of range 107 Pa, or 108 cycles with range 106 Pa. The curve also shows the effect
of the Wöhler-coefficient k, as the slope in the double-logarithmic plot equals
−1/k. In the example, k = 4, which means that an increase in stress range by
a factor of 10 decreases the lifetime in cycles by a factor of 104.

An interesting feature of the SN curve based characterisation of a material’s
fatigue properties is the lack of time/frequency dependence. That is, it makes
no difference if the stress cycles are applied rapidly or slowly—only the number
of cycles and their ranges are important [SBD05].

Now, we will define the damage Di imposed by a stress cycle with range si as

Di ≡
1

Ni
=

1

K
ski . (4.2)

Further, we introduce a linear damage accumulation rule known as Palmgren-
Miner’s damage rule, which states that the total damage D imposed by a given
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Figure 4.1: An example SN-curve. Note the double-logarithmic scale.

stress history is found as the sum of the damages imposed by the individual M
cycles in the total stress history:

D =

M∑

i=1

1

K
ski . (4.3)

Consider the example material described above being subjected to a stress his-
tory of M = 104 cycles, each with range si = 107 Pa. The total damage is thus
found as

D =

M∑

i=1

1

K
ski =

104∑

i=1

1

1032

(
107
)4

= 1.

This result constitutes an example of a convenient property of the damage def-
inition (4.2): Fatigue failure occurs when the total damage exceeds unity.

One should be aware that the fatigue model presented here neglects the effect
of the mean stress level, which in some works is accounted for by adding a mean
stress correction factor to the SN curve. All works cited in this work neglects
the mean stress level in their treatments of the subject.

Finally, it should be noted that due to the inherent inhomogenities in materials,
fatigue is a stochastic phenomenon, which, in turn, leaves the constant K as
being a stochastic variable, with 1/K often taken to be lognormally distributed
[Gro00]. The effect of this is that the material characterisation should be ex-
panded to include the variance of the parameter K. In this treatment, however,
the effect of the material property K being a stochastic quantity will not be
considered.
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4.3 Rainflow counting

The previous section described a fatigue damage estimate as the combined dam-
age from a number of stress cycles. The interpretation of a cycle is apparent
when it comes to constant-amplitude, cyclic stress histories like a sine wave,
for instance. In real-life applications, though, stress histories exhibit complex
waveforms with the meaning of a cycle not being obvious.

A solution to this problem is to convert a given, arbitrary waveform into a
number of equivalent stress ranges. That is, a number of stress ranges that will
cause the same amount of fatigue damage as the original waveform.

Numerous algorithms for carrying out this conversion has been proposed, but,
in general, the so-called rainflow-counting method is considered as being the
superior one [Ryc93]. Several descriptions of the rainflow-counting method exist,
spanning from the pagoda-roof explanation originating from Endo’s original
1969 work, to the definition given in [Ryc87], which is equivalent to the following
definition:

Rainflow cycle For each local maximum Mj in the stress history, identify the
continuous regions to the left, and to the right of Mj where all stress values
are below Mj . Next, find the minimum stress value for each of the two
regions, denoted m−j and m+

j and define mrfc
j = max

{
m−j ,m

+
j

}
. Now,

the equivalent rainflow cycle srfc
j associated with Mj is given by

srfc
j = Mj −mrfc

j . (4.4)

The principle is depicted in figure 4.2, not so loosely inspired by [Gro00]. Notice
that only the stress history maxima and minima are used in the rainflow cycle
definition. A direct implementation of (4.4) could be outlined as follows:

1. Convert the stress history into an extremum sequence of alternating max-
ima and minima.

2. For each local maximum Mj , search the extremum sequence to identify
the left and right regions in which to search for m−j and m+

j .

3. For each local maximum Mj , search for m−j and m+
j and let

mrfc
j = max

{
m−j ,m

+
j

}
. (4.5)

4. For each local maximum Mj , compute srfc
j = Mj −mrfc

j .



4.3 Rainflow counting 45
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m+
j

Figure 4.2: Definition of the equivalent rainflow cycle.

4.3.1 The four-point algorithm

The direct implementation of the rainflow counting algorithm described in the
previous section clearly involves a lot of search activity. Another, and more
efficient approach, results from a closer inspection of the equivalent rainflow
cycles as defined by (4.4). First, we will define the term inner range:

Inner range Consider the quadruple 〈x1, x2, x3, x4〉. The pair 〈x2, x3〉 is said
to form an inner range if the interval [x2;x3] is contained in the interval
[x1;x4], i.e: [x2;x3] ⊆ [x1;x4].

Consider the stress time series of figure 4.2, with all rainflow cycle pairs
〈
Mi,m

rfc
i

〉

identified as depicted in figure 4.3. The rainflow count pairing can be thought of
as an extraction of inner ranges. Specifically, consider the pairing

〈
Mj−1,m

rfc
j−1

〉
.

This range pair can be thought of as an inner range in the outer range pair〈
Mj ,m

rfc
j

〉
, which, in turn, is an inner range of the range 〈Mj−2,mj+2〉1. Sim-

ilarly, the range pairs
〈
Mj+1,m

rfc
j+1

〉
and

〈
Mj+2,m

rfc
j+2

〉
are inner range pairs

of the range 〈Mj+3,mj+2〉. Finally, one should notice that removing an inner
range pair from the time series does not change the status of the outer range
embracing the inner range pair removed. As an example, removing the range
pair

〈
Mj−1,m

rfc
j−1

〉
would leave the range pair

〈
Mj ,m

rfc
j

〉
still being an inner

range in 〈Mj−2,mj+2〉.

The notion of inner ranges can be used for constructing an algorithm known as
the four-point algorithm for rainflow cycle extraction. After converting the stress

1Notice that the minimum mj+2 does not have a superscripted “rfc” because it does not
constitute a rainflow range pair with any of the maxima in the depicted stress history.
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mrfc
j+2
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Figure 4.3: Rainflow count pairs in the stress history. The pairings can be
interpreted as inner range pairs.

history to a series of extrema consisting of alternating maxima and minima, the
algorithm proceeds as a two-stage process:

1. Extract all inner ranges, each representing af rainflow cycle range. This
will leave a residual sequence with no inner ranges.

2. Handle residual. A new sequence is created by concatenating the residual
with itself. Next, all inner ranges in the resulting sequence are extracted.

A description including detailed indexing and loop structures can be found in
[Mad99]. Furthermore, an implementation of the four-point algorithm is found
in appendix B.4.

We will illustrate the four-point algorithm with two examples—one example
showing how a complex stress history is dissected into equivalent cycles, and
one example demonstrating that the algorithm gives the correct result for the
sinusoidal stress history on which the SN curve is based.

4.3.2 Example—complex stress history

Consider the stress history of figure 4.3 converted to a sequence of minima and
maxima. This results in the sequence depicted in the upper left part of figure
4.4, denoted “1”.

In the figure, the first quadruple of extremes is marked. The algorithm checks
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Step Action srfc

1 First extremum quadruple considered—no inner range.
2 Quadruple +1 —no inner range.
3 Quadruple +1 —inner range with magnitude 1 removed. 1
4 Quadruple -1 —inner range with magnitude 4 removed. 4
5 Quadruple -1 —no inner range.
6 Quadruple +1 —no inner range.
7 Quadruple +1 —inner range with magnitude 2 removed. 2
8 Quadruple -1 —no inner range.
9 Quadruple +1 —inner range with magnitude 1 removed. 1
10 Residual sequence with no inner ranges

11 Residual concatenated with itself.
12 First extremum quadruple considered—no inner range.
13 Quadruple +1 —no inner range.
14 Quadruple +1 —inner range with magnitude 1 removed. 1
15 Quadruple -1 —inner range with magnitude 7 removed. 7
16 Residual sequence with no inner ranges

Table 4.1: Steps in the complex stress history example. Upper part: inner range
extraction (see figure 4.4). Lower part: residual handling (see figure 4.5)

if the two middle extremes forms an inner range. This is not the case, and the
algorithm moves the quadruple one step forward (step 2), and looks for an inner
range. This is not the case for the second quadruple either, so the quadruple is
moved one step forward, giving the situation depicted in step 3.

Here, an inner range of unity width—marked with red crosses—is found, and
the pair is removed from the sequence, yielding the sequence shown in step 4.
Note that the quadruple starting point is now moved one step backwards. This
is done to ensure that the new inner range that emerged upon removal of the
present inner range pair, is detected by the algorithm. In step 4, the marked
inner range of width 4 is removed.

The inner range extraction now proceeds as shown in the rest of figure 4.4 until
only a residual sequence containing no inner ranges is left, cf. step 10. The
procedure is summarised in the upper part of table 4.1.

The next stage of the four-point algorithm is handling of the residual, depicted
in figure 4.5. First, the residual sequence is concatenated with itself, yielding
the sequence shown in step 11. Careful inspection of the junction of the two
sequences reveals that the required pattern of the slope changing sign at each
entry in the sequence is broken. Therefore, the intermediate point in the junction
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Figure 4.4: The four point algorithm, stage 1—extraction of inner ranges.
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is removed, giving the sequence shown in step 12.

Next, an inner range removal procedure is carried out on the remaining sequence
until a new residual arise (step 16), which concludes the four-point algorithm.
The handling of the residual is summarised in the lower part of table 4.1.
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x
x

x

x

x

x
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x

x
x

x

x

x

x

x

Figure 4.5: The four point algorithm, stage 2—handling the residual.

Combining the results of table 4.1 yields the total, equivalent set S of rainflow
cycle ranges for the stress history used in the example:

S = {1, 4, 2, 1, 1, 7}.

That is, a stress history consisting of three ranges with magnitude 1, one range
with magnitude 2, one range with magnitude 4, and one range with magnitude
7 should cause the same amount of fatigue damage as the original stress history.
The total damage would follow from Palmgren-Miner’s damage rule as follows:

D =
1

K

(
1k + 4k + 2k + 1k + 1k + 7k

)
.

It should be mentioned that the handling of the residual can be done in several
ways. The technique used here is denoted the Cloormann/Seeger method, which
is also the default method used in the WAFO toolbox.[Gro00]
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4.3.3 Example—sinusoidal stress history

To verify the connection between inner range pairs and equivalent cycles, con-
sider a material with the SN curve depicted in figure 4.1 (k = 4, K = 1032)
being exposed to the sinusoidal stress history depicted in figure 4.6(a), consist-
ing of 104 full, sinusoidal cycles. With the crosses depicting the first inner range
encountered in the sequence, the figure illustrates that 104 − 1 = 9999 inner
ranges if magnitude 107 Pa can be extracted, leaving the residual seen in figure
4.6(b). Further, figure 4.6(c) illustrates that the concatenated residual sequence
yields 1 inner cycle, giving a total of 9999+1 = 104 equivalent cycles, each with
magnitude 107. Applying Palmgren-Miner’s damage rule gives

D =

M∑

i=1

1

K

(
srfc
i

)k
=

104∑

i=1

1

1032

(
107
)4

= 1.

That is, unity damage as expected from the definition of the SN curve.

6

-

x

x

x

x

#1 #2 #10000

s [Pa]

6

?

107

(a)

6

-

s [Pa]

6

?

107

(b)

6

-

x

x

x

x

s [Pa]

6

?

107

(c)

Figure 4.6: (a) 104 − 1 = 9999 inner ranges of width 107 can be extracted from
the stress history. (b) The residual. (c) Inner range removal in the concatenated
residual yields one inner range of width 107, giving a total equivalent range count
of exactly 104.



4.4 Expected damage rate 51

4.4 Expected damage rate

In practical applications, the set of equivalent rainflow ranges S is often binned
to form a histogram of stress ranges. Letting HSi denote the number of stress
ranges that fall into the i’th bin in an M -bin histogram, the Palmgren-Miner
sum giving the total fatigue damage can be written as

D ≈ 1

K

M∑

i=1

skiH
S
i , (4.6)

where the approximation sign indicates that the result is based on binned values
of the rainflow ranges (binning into a finite number of levels introduce a quan-
tization error). Note, that in (4.6), si denotes the center value of the histogram
bins.

Now, assume that the number of cycles Nc in the stress history and the number
of bins in the histogram approaches infinity. In this case, the histogram will
approach the probability density function ps(s) for the rainflow ranges multiplied
by the number of cycles, and the summation can be replaced by an integration2:

lim
Nc→∞

D =
1

K

∫ ∞

0

skNcps(s)ds =
Nc
K

∫ ∞

0

skps(s)ds.

Not surprisingly, this result states that the damage will approach infinity when
the number of cycles approaches infinity. Therefore, we will define the expected
damage pr. cycle, dc, as follows:

E [dc] = lim
Nc→∞

D

Nc
=

1

K

∫ ∞

0

skps(s)ds. (4.7)

Similarly, we will define the expected damage pr. time unit, d:

E [d] = dcνc =
νc
K

∫ ∞

0

skps(s)ds, (4.8)

where νc denotes the number of cycles per unit time. Note that the damage rates
are proportional to the k’th moment of the stress range density function. The
quantity d is interesting in the sense that it equals the inverse of the expected
lifetime:

E [L] =
1

E [d]
. (4.9)

Finally, we will state a useful corollary relating the damage rates of two propor-
tional stress histories. Assume the stress histories s1(t) and s2(t):

s2(t) = as1(t),

2The integration limits of 0 and ∞ follows from the stress ranges—and thus the domain of
their probability density functions—always being positive.
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then the damage rates d1 and d2 are related as

d2 = akd1. (4.10)

The proof follows readily from (4.2) or, alternatively, from considering the den-
sity functions of s1(t) and s2(t) and evaluate (4.8).



Chapter 5

Estimating fatigue damage
from spectral properties

Chapter 4 described a rather complicated, algorithmic relation between a given
load history and the resulting fatigue damage. As of the time of writing, no
theoretical results exist that provide a closed-form result for the fatigue damage.
As a result, attention is drawn towards approximations giving a fatigue damage
estimate in terms of the spectral properties of the stress history applied.

To provide a spectral description of a scalar, stochastic process x(t), we will
define the spectral density SX(ω) as the Fourier transform of the autocovariance
function RX (τ), giving the Fourier transform pair

SX(ω) =

∫ ∞

−∞
RX(τ)e−jωτdτ

RX(τ) =
1

2π

∫ ∞

−∞
SX(ω)ejωτdω.

An important relation arise when considering the variance σ2
X (assuming a zero-

mean x(t)):

σ2
X = RX(0) =

1

2π

∫ ∞

−∞
SX(ω)dω.
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Now, we will define the mth spectral moment λm as follows:

λm ≡
1

π

∫ ∞

0

ωmSX(ω)dω. (5.1)

Three important properties follow from this definition:

λ0 = σ2
X (5.2a)

λ2 = σ2
Ẋ

(5.2b)

λ4 = σ2
Ẍ
. (5.2c)

That is, the variance is given by the 0th spectral moment, which readily follows
from (5.1). Further, the variance of the first derivative of x(t) is given by the
second spectral moment, and finally, the variance of the second derivative of
x(t) is given by the fourth spectral moment. The derivations of the latter two
properties are straightforward and can be seen in e.g. [New84].

The 1st spectral moment, λ1, does not lend itself to a nice, intuitive interpreta-
tion as do the 0th, 2nd, and 4th spectral moments. One can show that the first
spectral moment can be interpreted as the covariance between a signal and the
Hilbert transform of it’s first derivative, but this is of little practical use.

5.1 Damage in a narrow-band process

The size of the equivalent cycles extracted by the rainflow counting algorithm
depend, as demonstrated in chapter 4, on the waveform of the stress history in
a rather complicated manner. Rychlik has shown, though, that the expected
damage rate for a stationary, Gaussian stress history with a given variance is
bounded from above by the damage rate for a narrow-band process with the
same variance:

E [d] ≤ E [df] , (5.3)

where df denotes the damage rate for the narrow-band process1.

Now, we will investigate the damage rate of a narrow-band process. The results
presented here follow from [Ryc93, BT05].

A narrow-band approximation of a Gaussian process is defined as a narrow-
banded, Gaussian process with the same variance σ2 as the original process.

1The symbol f indicates the peaky spectrum for a narrow-band process.
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The peak amplitudes of such a process are Rayleigh distributed, thus having a
probability density function pa(a) given by:

pa(a) =
a

σ2
e−

a2

2σ2 =
a

λ0
e−

a2

2λ0 , a ≥ 0.

Now, consider the example narrow-band process depicted in figure 5.1. When
performing a rainflow counting procedure in such a process, all peaks will pair
to a through with similar amplitude, producing inner ranges with magnitudes
twice the amplitudes of the narrow-band process. As a result, the rainflow-
counting procedure will result in an equivalent range density ps(s) related to
pa(a) as:

ps(s) =
1

2
pa

(s
2

)
=

1

2

s/2

λ0
e−

(s/2)2

2λ0 =
s

4λ0
e−

s2

8λ0 , s ≥ 0. (5.4)

That is, when the range s is considered instead of the amplitude, the probability
density function is stretched (the s

2 thing) and it’s magnitude is halfed to ensure
that the density integrates to unity.

-

x

x

x

x

Figure 5.1: A narrow-band process. When extracting equivalent cycles, the
distribution for the inner ranges will, except for a scaling factor of 2, equal the
distribution of the peak amplitudes.

For a Gaussian process, the number of peaks per unit time, denoted νp, is given
by:

νp =
1

2π

√
λ4

λ2
. (5.5)

As the rainflow counting procedure will create one equivalent cycle for each
peak, the number of cycles per unit time equals the number of peaks per unit
time:

νc = νp

Now, inserting (5.4) and (5.5) into (4.8) yields the expected damage rate df for
a narrowband process:

df =
1

2π

√
λ4

λ2

1

K

∫ ∞

0

sk
s

4λ0
e
− s2

8λ0 ds (5.6)
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In (5.6), the integral is recognised as the k’th moment of a Rayleigh density
function with parameter

√
4λ0. In general, the k’th moment µk of a Rayleigh

density with parameter x is given by:

µk = xk2k/2Γ

(
1 +

k

2

)
, (5.7)

where Γ(·) denotes the Gamma function. Inserting this result in (5.6) finally
yields:

df =
1

2π

√
λ4

λ2

1

K

√
4λ0

k
2k/2Γ

(
1 +

k

2

)

=
1

2π

√
λ4

λ2

1

K

(
2
√

2λ0

)k
Γ

(
1 +

k

2

)
.

(5.8)

Finally, it should be emphasized that this result is only valid for narrow-banded,
Gaussian stress histories. As an example, it can easily be shown that attempting
to compute the damage rate of a sinusoidal stress history (which is narrow-
banded, but not Gaussian) using (5.8) will result in an estimate that is off by a
factor of Γ

(
1 + k

2

)
.

5.2 Benasciutti’s approximation

As mentioned earlier, the narrowband solution presented in the previous section
provides a conservative estimate for the damage rate for a process that is not a
narrow-band process, cf. (5.3).

In [BT05], Benasciutti proposes an estimate of the expected fatigue damage
rate given as the narrow-band approximation modified by a correction factor to
account for the process not necessarily being narrow-band:

E [d] ≈ 1

2π

√
λ4

λ2

1

K

(
2
√

2λ0

)k
Γ

(
1 +

k

2

)

︸ ︷︷ ︸
df

(
b+ (1− b)αk+1

2

)
︸ ︷︷ ︸

Correction

(5.9a)

where

b =
(α1 − α2)

[
1.112 (1 + α1α2 − (α1 + α2)) e2.11α2 + (α1 − α2)

]

(α2 − 1)2 (5.9b)

and

α1 =
λ1√
λ0λ2

, α2 =
λ2√
λ0λ4

. (5.9c)
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Again, as the Benasciutti approximation makes use of the narrowband approx-
imation, it should be emphasized that the approximation is valid for Gaussian
stress histories only.

For notational convenience we will use the symbol Λx to denote the Benasciutti
damage rate estimate for the process x(t).2

To summarise, equation (5.9) provides a means of estimating the fatigue damage
rate using only the material constants K and k, and the spectral moments λ0,
λ1, λ2, and λ4 for the stress history. That is, no time series for the stress history
is needed.

As will be shown in chapter 6, the spectral moments for the stress histories in
a linear system model can be computed very efficiently, thus providing a means
of predicting fatigue damage in linear models.

2The greek letter Λ here indicates an altered, or corrected, version of the narrowband
symbol f
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Chapter 6

Damage estimation in the
wind turbine model

The results presented in chapter 5 show that fatigue damage can be estimated
from four spectral moments of the stress history. Thus, if we can compute the
spectral moments of the stress histories in the wind turbine components, we can
estimate their expected lifetimes.

First, in section 6.1, an important result will be presented, providing efficient
computation of the spectral moments in linear models.

The wind turbine model considered in this project comprises three fatigue induc-
ing mechanisms: the pitch system, the low-speed shaft, and the flexible tower
structure. Computing the stress histories for these components is the subject of
sections 6.2 and 6.3.

6.1 Computing spectral moments in linear mod-

els

Consider a stochastic process x(t) resulting from of a white noise process ε(t)
with intensity σ2

ε being filtered through a rational, stable transfer function H(s).
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The spectral density SX(ω) of the process x(t) can be described in terms of the
transfer function as follows:

SX(ω) = H(jω)H(−jω)σ2
ε . (6.1)

As H(s) is a rational function in s with real coefficients, it can be written on
the pole-zero-gain form

H(s) = k

∏
ZR (s− zi)

∏
ZC

(
s2 − 2< (zi) s+ |zi|2

)

∏
PR (s− pi)

∏
PC

(
s2 − 2< (pi) s+ |pi|2

) ,

where ZR denotes the set of real zeros in H(s), and ZC denotes the set of complex
conjugated zero pairs. Similarly, PR denotes the set of real poles in H(s), and
PC denotes the set of complex conjugated pole pairs.

Now, consider H(jω) and H(−jω):

H(jω) = k

∏
ZR (jω − zi)

∏
ZC

(
−ω2 − j2< (zi)ω + |zi|2

)

∏
PR (jω − pi)

∏
PC

(
−ω2 − j2< (pi)ω + |pi|2

)

H(−jω) = k

∏
ZR (−jω − zi)

∏
ZC

(
−ω2 + j2< (zi)ω + |zi|2

)

∏
PR (−jω − pi)

∏
PC

(
−ω2 + j2< (pi)ω + |pi|2

) .

As the following identities holds true:

(jω − z) (−jω − z) = ω2 + z2

and
(
−ω2 − j2< (z)ω + |z|2

)(
−ω2 + j2< (z)ω + |z|2

)
= ω4+2

(
< (z)

2 −= (z)
2
)
ω2+|z|4 ,

equation (6.1) can be written as

SX(ω) = k2

∏
ZR
(
ω2 + z2

i

)∏
ZC

(
ω4 + 2

(
< (zi)

2 −= (zi)
2
)
ω2 + |zi|4

)

∏
PR (ω2 + p2

i )
∏
PC

(
ω4 + 2

(
< (pi)

2 −= (pi)
2
)
ω2 + |pi|4

) ≡ k2P (ω)

Q(ω)
σ2
ε .

(6.2)
It is easily verified that the set of poles P in H(s) are related to the poles P̂ in
SX(ω) as follows:

P̂ = jP ∪ jP∗.
This mapping is depicted in 6.1 and has two important properties:
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• A real pole in H(s) maps to a pair of purely imaginary, complex conjugated
poles in SX(ω).

• A complex conjugated pole pair in H(s) maps to a quadruple of poles
in SX(ω) distributed symmetrically around both the real axis and the
imaginary axis.

Notice that this mapping corresponds to rotating the poles of H(s) 90◦ around
the origin in the complex plane and mirror them in the real axis. Further, notice
that SX(ω) will have no real poles. Also, notice that P (ω) and Q(ω) will have
even-ordered terms only.

-

6

x

x

x

-

6

x

x x

-
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x x

x

x x

=

<

=
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P jP P̂ = jP ∪ jP∗

Figure 6.1: The set of poles P of the transfer function H(s) maps into the set of
poles P̂ in the rational function SX(ω) defining the spectral density. Real poles
map into pairs located on the imaginary axis and complex conjugated pole pairs
map into quadruples of poles symmetrical in both the real and the imaginary
axis.

Now, we turn our attention towards the evaluation of the integral defining the
spectral moments, cf. equation (5.1). First, we present an important result from
calculus [SM92]:

∫
B(x)

A(x)
dx =

∑

AR

B(a)

A′(a)
log |x− a|

+
∑

AC

{
<
(
B(a)

A′(a)

)
log
∣∣∣(x−<(a))2 + (=(a))2

∣∣∣

−2=
(
B(a)

A′(a)

)
arctan

(
x−<(a)

=(a)

)}
, (6.3)

where AR denotes the set of real roots a in A(x) and AC denotes the set of
complex conjugated root pairs 〈a, a∗〉 in A(x). A′(x) denotes the derivative of
A(x) with respect to x.
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Now, consider the m’th spectral moment λm:

λm =
1

π

∫ ∞

0

ωmS(ω)dω =
k2σ2

ε

π

∫ ∞

0

ωmP (ω)

Q(ω)
dω =

k2σ2
ε

π

∫ ∞

0

P̄ (ω)

Q(ω)
dω. (6.4)

In order to evaluate this integral using (6.3), we note some useful properties.
First, recalling that Q(ω) has complex conjugated roots only, the first sum of
(6.3) will not contribute to the integral (6.4). Thus:

∫
P̄ (ω)

Q(ω)
dω =

∑

p∈jP

{
<
(
P̄ (p)

Q′(p)

)
log
∣∣∣(ω − <(p))

2
+ (=(p))

2
∣∣∣

−2=
(
P̄ (p)

Q′(p)

)
arctan

(
ω −<(p)

=(p)

)}
, (6.5)

where, as indicated, the sum runs over all pairs of poles in SX(ω). Next, consider
(6.5) evaluated in the limit ω →∞:

lim
ω→∞

∑

p∈jP

{
<
(
P̄ (p)

Q′(p)

)
log
∣∣∣(ω −<(p))

2
+ (=(p))

2
∣∣∣

−2=
(
P̄ (p)

Q′(p)

)
arctan

(
ω −<(p)

=(p)

)}

= 2 log |ω|
∑

p∈jP
<
(
P̄ (p)

Q′(p)

)
− 2

∑

p∈jP
=
(
P̄ (p)

Q′(p)

)
π

2
.

We will, without proof, claim that

∑

p∈jP
<
(
P̄ (p)

Q′(p)

)
= 0, (6.6)

which yields, for the upper integration limit:
∫
P̄ (ω)

Q(ω)
dω

∣∣∣∣
ω=∞

= −π
∑

p∈jP
=
(
P̄ (p)

Q′(p)

)
.

For the lower integration limit ω = 0 we readily have:
∫
P̄ (ω)

Q(ω)
dω

∣∣∣∣
ω=0

=
∑

p∈jP

{
<
(
P̄ (p)

Q′(p)

)
log |p|2 + 2=

(
P̄ (p)

Q′(p)

)
arctan

(<(p)

=(p)

)}
,

which gives, for the definite integral:

∫ ∞

0

P̄ (ω)

Q(ω)
dω = −π

∑

p∈jP
=
(
P̄ (p)

Q′(p)

)

−
∑

p∈jP

{
<
(
P̄ (p)

Q′(p)

)
log |p|2 + 2=

(
P̄ (p)

Q′(p)

)
arctan

(<(p)

=(p)

)}
. (6.7)
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This result allows us to state the following algorithm for computing the mth
spectral moment of the process x(t):

Given the poles p, zeros z, and the gain k of the generating transfer function
H(s) as well as the variance σ2

ε of the driving noise,

1. Form polynomium P (ω). Exploiting symmetry, this can be done efficiently
by first sorting the zeros into real zeros and complex conjugated zero
pairs. P (ω) is now formed by successively multiplying polynomiums of the

form ω2− z2
i (real zeros) and ω4 + 2

(
<(zi)

2 −=(zi)
2
)
ω2 + |zi|4 (complex

conjugated zero pairs), cf. (6.2). In Matlab, this is done by convolving
coefficient vectors.

2. Similarly, form polynomium Q(ω) from the poles, exploiting symmetry in
the same way as for P (ω).

3. ComputeQ′(ω). For this purpose, Matlab provides the function polyder.

4. Form P̄ (ω) = ωmP (ω). In Matlab, this is done by appending m zeros
to the coefficient vector for P (ω).

5. Compute the poles a over which the summation in (6.7) should run: ai =
jpi.

6. Compute

λm =
k2σ2

ε

π

∫ ∞

0

P̄ (ω)

Q(ω)
dω,

using (6.7) for evaluation of the integral.

A Matlab implementation of the spectral moment computation is shown in
appendix B.2. Note that, for a given spectral density, the Q(ω) polynomium
used for computing λm is independent of m. Therefore, the contribution Q′(p)
can be evaluated before entering the loop where the integrals defining the desired
spectral moments are evaluated.

Further, note that the algorithm checks if the integral exist. The relative order
of P̄ (ω)/Q(ω) must be at least two for the integral to converge. This implies
that the m’th spectral moment is only defined for systems with a relative order
higher than or equal to

⌈
m
2 + 1

⌉
, where dxe denotes the smallest integer larger

than or equal to x.
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6.2 Tower and drive train fatigue

We will assume that the components under consideration (the main shaft and
the tower) are not exposed to stresses that exceed the limit under which a linear
relationship exists between stress and strain (deformation). That is:

sz = Czz

sθ = Cθθ
(6.8a)

where the constants Cz and Cθ are functions of the specific geometries involved.
This assumption results in the following relations:

λszm = C2
zλ

z
m

λsθm = C2
θλ

θ
m

(6.8b)

and

Λsz = CkzΛz

Λsθ = CkθΛθ.
(6.8c)

Relations (6.8b) result from the definition of spectral moments. Relations (6.8c)
results from (6.8b) and (5.9), and allows the following approach to the fatigue
damage estimation in the drive train and in the tower:

1. For the linear, stochastic wind turbine model (2.14), compute the transfer
functions from the driving noise ε to the deformation state variables θ and
z.

2. Use the spectral moment algorithm to compute the spectral moments (λz

or λθ).

3. Compute Benasciutti’s approximation using the computed spectral mo-
ments and the material properties k and K.

4. Multiply by Ckz (tower) or Ckθ (shaft) to obtain the damage rate estimate.

Where nothing else stated, we will use k = 4 and K = 6.25 · 1037 for the tower
and the drive train.

6.3 Blade bearing fatigue

When the blades are pitched, the balls inside the blade bearings roll along the
bearing rings. Thus, every single point in the bearings rings will experience a
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quasi-cyclic stress history due to the balls rolling past them. The magnitude of
the stress will be proportional to the blade root moment MB . The frequency
of the quasi-cyclic stress history will be proportional to the absolute value of
the pitch angle rate of change, |β̇|. These considerations imply that the fatigue
damage Dβ on the pitch bearings during a time interval T can be expressed in
the form

Dβ ∝
∫ t+T

t

Mk
B(t)|β̇(t)|dt, (6.9)

where k is the Wöhler exponential for the bearing material. For ball bearings
the Wöhler exponential is typically k = 3. [BSJB01]

Now, in practice the variability of the blade root moment MB is relatively low.
That is, the standard deviation is small compared to the mean value. Therefore,
we will make the rough approximation that the blade root moment is constant
for a constant mean wind. Thus, (6.9) becomes:

Dβ ∝
∫ t+T

t

|β̇(t)|dt.

Defining the average pitch bearing damage rate as

dβ ≡ lim
T→∞

Dβ

T

we get (assuming ergodicity):

dβ ∝ lim
T→∞

1

T

∫ t+T

t

|β̇(t)|dt = E
[
|β̇(t)|

]

Further, we will assume that the pitch angle rate of change is normally dis-
tributed with zero mean and variance σ2

β̇
, thus having the probability density

function

pβ̇(β̇) =
1

σβ̇
√

2π
exp

(
− β̇2

2σ2
β̇

)
, −∞ < β̇ <∞.

In turn, the probability density function p|β̇|(β̇) for the absolute value of the
pitch rate is given by

p|β̇|(β̇) =
2

σβ̇
√

2π
exp

(
− β̇2

2σ2
β̇

)
, 0 < β̇ <∞.

Finally, the expectation value E
[
|β̇(t)|

]
is given by the first moment of p|β̇|(β̇):

E
[
|β̇(t)|

]
=

∫ ∞

0

β̇
2

σβ̇
√

2π
exp

(
− β̇2

2σ2
β̇

)
dβ̇ =

√
2

π

√
σ2
β̇
.
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Recalling that the variance of the first derivative equals the 2nd spectral mo-
ment, we finally write:

dβ ∝ E
[
|β̇(t)|

]
∝
√
λβ2

That is, the pitch bearing fatigue damage rate is expected to be proportional
to the square root of the 2nd spectral moment for the pitch angle β. We will
denote the proportionality constant Cβ :

E [dβ ] = Cβ

√
λβ2 . (6.10)



Chapter 7

Controller design as a
fatigue-estimate based

optimisation problem

The results in the preceding chapters provide a means for efficient estimation
of damage rates for load histories being linear in the state variables in a linear
system. This, in turn, allows for efficient evaluation of a performance cost
function involving fatigue damage. In this chapter we will demonstrate how
this allows for numerical optimisation of a state-feedback controller for the wind
turbine.

The treatment is restricted to a controller for a turbine model linearised around
a mean wind v̄ = 16 m/s. That is, a mode IV controller like the one treated in
section 3.4.

7.1 Defining the optimisation problem

We will define the controller design objective as follows:
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Determine the controller U∗ that maximizes the shortest component life time
under the constraint that the variabilities of generator speed and produced power
do not exceed the limits Γωg and ΓPe .

This can be formulated as a minimax optimisation problem as follows:

U∗ = argmin
U

{
max
i
di(U)

}
(7.1a)

subject to

c1 : cv,ωg(U)− Γωg < 0 (7.1b)

c2 : cv,Pref
(U)− ΓPe < 0, (7.1c)

where di denotes the damage rate for the ith component. In the present case,
three different damage rates are computed, namely the low-speed shaft damage
rate dθ, the tower damage rate dz , and the pitch bearing damage rate dβ . Thus,
the damage rate vector d is defined as

d ≡



dθ
dz
dβ


 . (7.2)

The optimisation problem (7.1) is a very general formulation as the domain
of the decision variable U spans all possible controllers—linear or nonlinear—
with structure as well as parameters being decision variables. This implies an
infinite-dimensional optimisation problem and is of no practical use.

Therefore, we will narrow down the domain of the decision variable to span the
range of linear state-feedback controllers having the control law

ũ = −Lx̃a. (7.3)

where the state vector x̃a includes the integral states, as defined in section 3.4.
Thus, the dimension of the optimisation problem is determined by the number
of entries in the gain matrix. In the present case, L ∈ R2×11, which implies a
decision vector of dimension 22.

7.2 Solving the optimisation problem

The Matlab optimization toolbox provides the function fminimax for solving
nonlinear, constrained minimax problems. We will use this routine, even though
it actually only finds local minima in the cost function. (The problem (7.1) is
a global optimisation problem). For further elaboration on this subject, see
section 7.7.2.
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7.3 Evaluating the cost function

The vector-valued cost function returning the damage rate vector d is evaluated
as follows:

Given the gain matrix L,

1. Form closed-loop description of the form ẋ = Aclx+ w.

2. Compute transfer functions from the driving noise process w to state vari-
ables θ, z, and β. The transfer functions should be expressed on pole-zero-
gain form. In Matlab , we suggest that the poles are found as p=eig(Acl)
and that the gains and the zeros are found using [k,z]=tzero(...).

3. Compute spectral moments for θ, z, and β using the algorithm stated in
section 6.1.

4. Apply (5.9) and (6.8c) to estimate damage rates dθ and dz for shaft and
tower and apply (6.10) to compute damage rate dβ for the pitch bearings.

5. Form output vector d =
(
dθ dz dβ

)T
.

7.4 Evaluating the constraint functions

The constraint functions are based on the expected variabilities of the output
signals ωg and Pe, and are computed as follows:

Given the gain matrix L,

1. Compute state vector variance matrix Px by solving the Lyapunov equa-
tion

AclPx + PxA
T
cl +R1 = 0.

In Matlab this is done using Px=lyap(Acl,R1).

2. Compute output variance matrix Py = CaPxC
T
a and extract σ2

ωg and σ2
Pe

from the diagonal.

3. Compute variabilities:

cv,ωg =
σωg
ω̄g

, cv,Pe =
σPe
P̄e

.
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4. Form constraint function values:

c1 = cv,ωg − Γωg , c2 = cv,Pe − ΓPe .

7.4.1 An extra constraint

The integral states in the setup has the function of ensuring correct reference
following despite model nonlinearities and uncertainties. This performance mea-
sure is not a part of the cost (7.1a). Solving (7.1) without further action results
in the gains from the integral states being very small, leaving the closed-loop
system with almost pure integrators. In a real-life, nonlinear setup this would
effectively cancel the intended effect of the integral states.

To overcome this problem, an extra constraint is added, imposing an upper limit
on the time constants in the closed-loop system, formulated as a maximum value
for the largest real part of the closed-loop eigenvalues λcl:

c3 : max
i

{
<
(
λcl
i

)}
+ Γλ < 0.

In the implementation, Γλ = 0.01, corresponding to an upper limit for the time
constants of 100 seconds.

7.5 Normalised damage rates

As the absolute values of the proportionality factors Cz, Cθ, and Cβ are not
known (cf. sections 6.2 and 6.3), we will demonstrate the controller optimisation
procedure using what could be denoted normalised damage rates.

The idea is as follows:

1. Form a closed-loop system description using the baseline LQI-controller
described in section 3.4.

2. Assume proportionality constants Cz = Cθ = Cβ = 1, and compute ex-
pected damage rates for the three components. (Details are given in sec-
tion 7.3).

3. Now, compute new values for Cz, Cθ, and Cβ such that the three damage
rates would equal 0.01 1

365×24×60×60 . This is equivalent to applying the
assumption that, using the baseline LQI-controller, the three components
would have a lifetime of 100 years.
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7.6 Design examples

We will demonstrate the controller optimisation by three examples:

Design example #1 Find the controller that minimizes the largest damage
rate subject to the variabilities of the generator speed and the produced
power not exceeding 0.01.

Design example #2 Assume that the requirement for constant power is re-
laxed such that the variability of the power is allowed to reach 0.05, and
find the optimal controller.

Design example #3 Assume that the tower base diameter D is increased by
10%. As the stress st at the tower base is related to the tower deflection
z approximately as st ∝ z

D4 , the increase in diameter would decrease Cz
by a factor of 1.14 = 1.46. Find the optimal controller using the new Cz
value.

The results of these design examples are summarised in table 7.1. The estimated
values in the second column are the life times in years resulting from evaluating
the cost function at the solution, and the expected variabilities resulting from
evaluation of the constraint functions at the solution. That is, the life times
equal the Benasciutti estimates and the variabilities are analytic results, as
described in sections 7.3 and 7.4.

The simulation values in the third column result from simulating 10,000 seconds
of operation of the closed-loop system using the gain resulting from the minimax
optimisation.

The simulated damage rates for the tower and for the drive train are computed
from the simulation output as described in chapter 4. That is, using the four-
point algorithm and Palmgren-Miner’s damage rule. The stress histories sz and
sθ are obtained by multiplying the z and θ trajectories with Cz and Cθ, respec-
tively, cf. (6.8a). The simulated damage rate for the pitch bearings is found by
computing the sample standard deviation of β̇ and multiply by Cβ , cf. (6.10).

The simulated variabilities are computed directly from the sample standard
deviations and mean values of the ωg and Pe trajectories.

Finally, the last column states the percentage by which the expected values
differ from the simulation result. This has special interest when it comes to the
estimated life times as these result from the Benasciutti approximation.
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For illustrative purposes, the first 50 seconds of each simulation are depicted in
figure 7.1.

A few comments should be added to each of the design results.

Design example #1 The resulting variabilities for the generator speed and
the produced power for the baseline controller indicates that there is room
for improvement as these variabilities are only approximately one fourth
of their upper limits 0.01. As the optimisation result shows, this overhead
is turned into doubled lifetimes for all three components. Inspection of
the simulation output in figure 7.1 shows that the higher lifetimes result
from reduced pitch activity (smaller pitch rate), tower damping, and a
lowering of the drive train deformations. The price paid is, as expected,
larger fluctuations in generator speed and produced power. Finally, we
notice that the Benasciutti estimate for the drive train lifetime is off by
19% compared to the simulation result.

Design example #2 This example is identical to the previous example ex-
cept that we now allow the variability of the produced power to reach
0.05 instead of 0.01. The optimisation results shows, though, that even
though lifetimes are increased a bit compared to the previous example, the
extra overhead is not completely exchanged into increased lifetime. The
variability of the produced power is 0.0136. That is, the power variability
constraint is not active at the solution. This indicates that there is an up-
per limit for the damage rate reduction that can be achieved by relaxing
the power quality demand.

Design example #3 This design constitutes a rare example of solidarity in
control engineering. The increased tower base diameter would, if no
changes in the controller were made, increase the tower lifetime by a fac-
tor of approximately 1.46k = 4.6. By applying the controller optimisa-
tion, though, this lifetime prolongation is shared among the components
to reach an overall lifetime prolongation of approximately 25% compared
to design example #1. The trajectories in figure 7.1 illustrates that the
nacelle position has larger fluctuations, freeing the pitch system and the
torque control from their tower damping duties.

An interesting feature of the resulting drive train deformation is, that the
amplitude of the deformation is not significantly lowered. The fatigue
damage reduction is achieved through a reduction of the high-frequency
contents in the signal. That is, the number of damage inflicting stress
cycles per time unit is lowered, hereby reducing the damage rate.
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Baseline controller
Estimate Simulated Estimate off by

Lθ 100.00 100.33 0 %
Lz 100.00 106.28 6 %
Lβ 100.00 99.91 0 %
cv,ωg 0.0025 0.0024 -1 %
cv,Pe 0.0023 0.0023 -1 %

Design example # 1
Estimate Simulated Estimate off by

Lθ 211.26 260.47 19 %
Lz 211.30 219.99 4 %
Lβ 211.30 210.96 0 %
cv,ωg 0.0100 0.0098 -2 %
cv,Pe 0.0097 0.0097 0 %

Design example # 2
Estimate Simulated Estimate off by

Lθ 226.78 248.40 9 %
Lz 226.82 242.81 7 %
Lβ 226.82 226.47 0 %
cv,ωg 0.0100 0.0098 -2 %
cv,Pe 0.0136 0.0133 -2 %

Design example # 3
Estimate Simulated Estimate off by

Lθ 264.84 232.98 -14 %
Lz 264.86 280.26 5 %
Lβ 264.86 263.37 -1 %
cv,ωg 0.0100 0.0097 -4 %
cv,Pe 0.0100 0.0097 -3 %

Table 7.1: Design results.
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7.7 A few remarks on the optimisation problem

7.7.1 Ensuring reliable results for unstable iterants

With the gain matrix L being the decision variable, there is a risk that the op-
timisation routine applied to the problem would compute the cost function and
the constraint functions for iterants resulting in an unstable closed-loop system.
The variance of an unstable system should, ideally, be computed as infinite. Us-
ing the techniques for variance computation described in the preceeding sections
will, unfortunately, result in negative variances when used on unstable system
models.

In the present work, this has not shown to be a problem, as the steps taken by
the optimisation algorithm are small enough to avoid jumping directly into the
unstable area. A robust implementation would have to include countermeasures
against this phenomenon.

7.7.2 Convexity

The optimisation problem (7.1) defines the solution as the global minimum of
the cost function. The optimisation routine fminimax returns a local minimum.
In effect, a global minimum at the solution found by fminimax is assured only
if the objective function is convex.

Determining whether the cost function is convex in the controller gain matrix
is not trivial. We will, for the time being, assume that the starting point given
by the baseline controller is close enough to the global minimum to allow for
practically useful results to be obtained.

It should be noted that techniques for global optimisation do exist. However, a
treatment is considered out of scope for this work.
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Chapter 8

Conclusions

8.1 Results

The work described in chapters 2 and 3 illustrates the need for non-trivial con-
trol schemes for wind turbines. The problem of maximising produced power,
subject to constraints on the generator speed, led to the concept of operation
modes, which, in turn, necessitated a hybrid scheme with different controllers
for each mode of operation. Further, the inherent non-linearities stemming
from the aerodynamic model necessitated a gain-scheduled scheme for mode
IV-operation.

Also, in chapter 3 some of the trade-offs when tuning wind turbine controllers
were demonstrated, as an LQI control scheme was tuned to meet a demand for
damping of the tower oscillations. The price paid for this damping was shown
to be increased pitch activity as well as increased variability of the generator
speed and the produced power.

Following the treatment of time-domain fatigue analysis and spectrally based
fatigue estimation in chapters 4 and 5, a major result was presented in chapter
6.

At first glance, the definition of spectral moments indicates that computation of
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spectral moments would have to include a numerical integration of the spectral
density function. Investigation of the symmetry governing the rational spectra of
linear systems revealed, though, that general results concerning the integration
of rational functions could be applied in a very convenient manner for the definite
integral defining the spectral moments. In turn, an algorithm was developed
that efficiently computes the spectral moments of linear, stochastic processes.

The major benefit of this technique is, that fatigue damage can be estimated
without any time-domain simulation, and without running the sequential four-
point algorithm on extensive simulation results. Thus, the computational work
is reduced dramatically.

The combination of the spectral moment algorithm and the Benasciutti approx-
imation provides the means for efficient evaluation of a cost function described
in terms of fatigue damage rates for a linear closed-loop system. In chapter 7,
controller optimisation was formulated as a constrained minimax problem with
the damage rates for the tower, drive train, and pitch bearings making up the
vector-valued cost function. The problem was constrained by upper limits for
the variability of the generator speed and the produced power. Further, the
problem was restricted to the class of state-feedback controllers, leaving the
controller gain matrix as the decision variable.

Three controller design problems were worked out, from which we note the
following results:

• The optimisation problem was, with the starting point being a stable
textbook controller design, a well-posed problem.

• The optimisation algorithm succeeded in finding the proper trade-offs such
that the damage rates of the three components in play were levelled to yield
to highest possible minimum lifetime.

• Increased strength in one component was traded for longer lifetimes in the
other components to provide equal lifetimes for all components.

8.2 Suggestions for further work

The framework established in this work has some obvious shortcomings that
motivate further development.

• The wind turbine model should be extended to include the rotor dynamics.
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In particular, a model for the blade root moment would eliminate the need
for the crude approximation of constant blade root moment used in the
pitch bearings fatigue estimation.

• In the modelling described in chapter 2, pure time delays were omitted
from the actuator models. Since time delays in general tend to cause prob-
lems regarding stability, including these time delays in the model by e.g.
Padé-approximations, might impose severe limitations on the achievable
control performance.

• A shortcut has been made in this project regarding state information. The
state feedback controller setup used in the optimisation demonstration
assumed perfect state information. In a practical setup, a state estimator
would have to be included in the setup as well as sensor models. The
latter might impose severe constraints, depending on the availability and
performance of sensors on the actual wind turbine.

• The validity of the presented methods should be confirmed by compari-
son to detailed, aeroelastic simulations followed by state-of-the-art fatigue
estimation methods.

In addition, the work leaves a couple of more theoretical issues unsolved.

First, a theoretical proof of (6.6) is needed. Next, further theoretical work on
the exploitation of symmetry properties of rational spectra when performing
the integration described in section 6.1 might lead to an even more compact
evaluation of some of the spectral moments.

Also, investigations of the accuracy of Benasciutti’s approximation would be
desirable, as one of the simulation results in section 7.6 revealed a Benasciutti
estimate that was off by 19% compared to the simulated damage rate.

Finally, a major drawback in the analysis presented in this work is the restric-
tion to continuous time descriptions. The development of a fatigue estimation
framework formulated in discrete-time would greatly increase the applicability
to real-world wind turbine controller design. Here, one of the major challenges
lies in the interpretation of spectral moments when dealing with discrete-time
spectra, and their application to a spectrally based fatigue estimate.
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8.3 Perspectives

Rapid evaluation of damage rates in a linear system has been demonstrated
through numerical optimisation of a wind turbine controller. It should be
stressed, though, that the method presented is valid for any linear model driven
by a Gaussian process. In effect, the use of the framework outlined in this work is
not restricted to controller design. Performing optimisation of pure mechanical
structures described by linear models is a possible application of the methods as
well. This might prove useful in an initial design phase where a large number of
structural models could be evaluated in terms of fatigue damage in short time.

Finally, it is worth revisiting the design examples given in section 7.6. A very im-
portant notion is, that the design objectives are related directly to management-
level questions like “What are the costs of replacing the pitch bearings on site
X?”, “What are the power quality demands in country Y”, or “Can the gener-
ator withstand a larger r.p.m. variability?”.

In effect, we will conclude the thesis by stating that the main result of this work
is the advent of these management-level tuning knobs, allowing controller tuning
directly in terms of lifetimes. That is, a wind turbine design tool directly related
to the economic trade-offs outlined in the introduction.



Appendix A

Hybrid controller design and
implementation

A.1 The first order wind turbine model

With the drive train considered rigid, the equations of motion for the rotating
parts can be stated as follows:

ω̇r (Ir +NgIg) = Ta − ωrBr −Ng (NgωrBg + Tg) (A.1)

Assuming an ideally controlled generator:

Tg =
Pref

ωg
=

Pref

Ngωr
,

and using the relationship Pa = Taωr for the rotor, (A.1) becomes:

ω̇rIt =
Pa
ωr
− ωr

(
Br +N2

gBg
)
− Pref

ωr
, (A.2)

where It denotes the “lumped” intertia:

It = Ir +N2
g Ig

Further assuming a rigid tower and ideal pitch actuators:

ż = z̈ = 0 , β = βref,
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equation (A.2) completely describes the dynamics in a 1st order diminished
wind turbine model. A linearised description (see section 2.10) in the deviation
variables ω̃r, ũ, and ỹ around an equilibrium point 〈ω̄r, ū, ȳ〉 is found as:1

˙̃ωr = A◦ω̃r +B◦ũ (A.3a)

ỹ = C◦ω̃r +D◦ũ (A.3b)

where

A◦ =
∂ω̇r
∂ωr

=
1

It

{
− 1

ω̄2
r

1

2
ρπR2v̄3CP

(
λ̄, β̄ref

)

+
1

ω̄r

1

2
ρπR3v̄2 ∂CP

(
λ̄, β̄ref

)

∂λ
+
Pref

ω̄2
r

−
(
Br +N2

gBg
)
}

and

B◦ =
(
∂ω̇r
∂βref

∂ω̇r
∂Pref

)
=

(
1
ω̄r

1
2ρπR

2v̄3 ∂CP (λ̄,β̄)
∂β

1
ω̄2
r

)

C◦ =

(
∂ωg
∂ωr
∂Pe
∂ωr

)
=

(
Ng
0

)

D◦ =

(
∂ωg
∂βref

∂ωg
∂Pref

∂Pe
∂βref

∂Pe
∂Pref

)
=

(
0 0
0 1

)
.

Note that the system state vector is reduced to the scalar ωr. Further, note that
the diminished model contains a direct term from Pref to Pe (D◦ 6= 0) because
of the assumption of an ideal generator.

A.2 PI controller design

This section outlines the PI controller design used for the hybrid controller in
chapter 3.

First, recall that the SISO control configurations in figure 3.3 all define the
generator speed ωg as the input signal to the controller. That is, in the SISO
setup, there is no direct term from the control input (βref or Pref) to the output
ωg (D = 0). In effect, the discrete-time first-order models for the wind turbine

1The superscripted circle ◦ denotes a diminished system, similar to the ◦ denoting dimin-
shed chords in musical notation.
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in the SISO setups all have the form

xi+1 = fxi + gui

yi = cxi.

Assuming a PI controller:

x̂i+1 = x̂i + yi

ui = kix̂i + kpyi,

the closed loop description becomes

(
x
x̂

)

i+1

=

(
f + gkpc gki

c 1

)(
x
x̂

)

i

. (A.4)

The eigenvalues λ of the 2× 2 system matrix are

λ =
1

2
(f + gkpc+ 1)±

√
4gkic+ (f + gkpc− 1)

2
. (A.5)

Now, assuming complex conjugated eigenvalues:

<(λ) =
1

2
(f + gkpc+ 1) (A.6)

=(λ) = −1

2

√
4gkic+ (f + gkpc− 1)

2
(A.7)

which gives, for the controller parameters kp and ki:

kp =
2<(λ)− f + 1

gc
(A.8)

ki =
=(λ)2 − 1

4 (f + gkpc− 1)
2

gc
(A.9)

Thus, the controller parameters are given as functions of the real and imaginary
parts of the desired z-plane pole locations.
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A.3 Selected simulation results
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Figure A.1: Hybrid controller — quasi-stationary operation. Compare left part
of figure with figure 3.2
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A.4 The hybrid controller function

function output = hybridcontroller(input)
% Discrete time hybrid controller
%
% Written August 2006 by Keld Hammerum

global wt;
global hybrid;

mode=input (1);
Pe=input (2);
omegag=input (3);

setpoint =[wt.omegagmin omegag wt.omegag0 wt.omegag0 ];

% Update error signal and accumulator
err=omegag -setpoint (mode);
hybrid.acc=hybrid.acc+err;

% Determine new mode

tol=0.01;

switch mode

case 1
if hybrid.Pr >wt.Plow , mode=2; end

case 2
if omegag<wt.omegagmin

mode=1;
hybrid.acc=(hybrid.Pr-hybrid .kp(mode)*err)/hybrid .ki(mode);

end
if omegag>wt.omegag0

mode=3;
hybrid.acc=(hybrid.Pr-hybrid .kp(mode)*err)/hybrid .ki(mode);

end
case 3

if hybrid.Pr <wt.Phigh , mode=2; end
if hybrid.Pr >wt.P0*(1+tol)

mode=4;
[kki,kkp]=getgains (wt.aero.beta_star);
hybrid.ki(4)=kki;
hybrid.kp(4)=kkp;
hybrid.acc=(hybrid.betar -hybrid.kp(4)*err)/hybrid .ki(4);

end
case 4

if (hybrid.betar <wt.aero.beta_star)&&(omegag <wt.omegag0 )
mode=3;
hybrid.acc=(hybrid.Pr-hybrid .kp(mode)*err)/hybrid .ki(mode);

end
end

% Compute new output signals

switch mode

case 1
hybrid.Pr=hybrid.ki(mode)*hybrid .acc+hybrid.kp(mode)*err;
hybrid.betar=wt.aero.beta_star;

case 2
hybrid.Pr=Pomega(omegag);
hybrid.betar=wt.aero.beta_star;

case 3
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hybrid.Pr=hybrid .ki(mode)*hybrid.acc+hybrid.kp(mode)*err;
hybrid.betar=wt.aero.beta_star;

case 4
hybrid.Pr=wt.P0;
hybrid.betar=hybrid.ki(4)*hybrid.acc+hybrid.kp(4)*err;
hybrid.betar=max(hybrid.betar ,min(wt.aero.beta));
% Update gains
[kki ,kkp]= getgains (hybrid.betar);
hybrid.ki(4)=kki;
hybrid.kp(4)=kkp;
% Adjust accumulator
hybrid.acc=( hybrid.betar -hybrid.kp(4)*err)/hybrid.ki(4);

end

% Form output vector
output (1)=mode;
output (2)=hybrid.Pr;
output (3)=hybrid.betar;

end



90 Hybrid controller design and implementation



Appendix B

Selected source code listings

B.1 Damage computation - damage.m

function D = damage(x,k,K)
% Computes equivalent cycles s in x using rainflow count
% algorithm.
% Next , uses an analytical expression for the S-N curve
% to compute the inverse of the number of cycles that
% the material can withstand the stress amplitudes given in s
%
% % Written September 2006 by Keld Hammerum

s=rfc(x);
invN=(1/K)*s.^k;
D=sum(invN);
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B.2 Computing spectral moments - spectralmoments.m

function lambdas =spectralmoments(z,p,k,var ,which)
% Computes the spectral moments for the spectrum
% specified by H(jw)H(-jw)*var
%
% Input arguments
%
% z Vector of zeros in H(s)
% p Vector of poles in H(s)
% k Gain of H(s)
% var Variance (intensity) of driving noise
% which Specifies which moments to compute
%
% Ouputs
%
% lambdas Vector of length(which) containing the spectral moments
%
% Written October 2006 by Keld Hammerum

z=z(:);p=p(:);

% Create index vectors for real and complex zeros
zc=find(imag(z));zr=1:length(z);zr(zc)=0;zr=zr(find(zr));
% Create index vectors for real and complex poles
pc=find(imag(p));pr=1:length(p);pr(pc)=0;pr=pr(find(pr));

% Create polynomiums P and Q
P=1;Q=1;
% Add real zeros
for ii=1:length(zr)

zz=z(zr(ii));
P=conv(P,[1 0 abs(zz)^2]);

end
% Add complex zero pairs
for ii=1:2: length(zc)

zz=z(zc(ii));
P=conv(P,[1 0 2*(real(zz)^2-imag(zz)^2) 0 abs(zz)^4]);

end
% Add real poles
for ii=1:length(pr)

pp=p(pr(ii));
Q=conv(Q,[1 0 abs(pp)^2]);

end
% Add complex pole pairs
for ii=1:2: length(pc)

pp=p(pc(ii));
Q=conv(Q,[1 0 2*(real(pp)^2-imag(pp)^2) 0 abs(pp)^4]);

end

Qprime=polyder (Q);

% Compute integral
a=-j*p; % One half of the complex poles of Q(x)

nlambda =length(which);lambda=zeros(1,nlambda );

% Qprime is not changed therefore compute R2 once and for all
R2=polyval (Qprime,a);

for jj=1:nlambda
% Create Pbar polynomium
Pbar=[P zeros(1,which(jj))];
% Check for the existence of the integral
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if length(Pbar)>=length (Q)-1
lambdas (jj)=NaN;

else
R1=polyval (Pbar ,a);
R=R1./R2;
S=-pi*imag(R) -(real(R).*log(abs(a).^2)+2*imag(R).*atan2(real(a),imag(

a)));
lambdas (jj)=var*k^2*sum(S)/pi;

end
end

B.3 Benasciutti’s approximation - benasciuti.m

function d=benasciutti(lambda ,k,K)
% Computes Benasciutti ’s approximation to
% damage rate d. For the material with SN-curve
%
% s^k N = K
%
% Input parameters
%
% lambda Vector of spectral moments :
% [ m0 , m1 , m2 , m4 ]
%
% Written October 2006 by Keld Hammerum

m4=lambda (4); m2=lambda (3); m1=lambda (2); m0=lambda (1);

dnb=(1/(2* pi))*sqrt(m2/m0)*(1/K)*(2*sqrt(2*m0))^k*gamma (1+k/2);
a1=m1/sqrt(m0*m2);
a2=m2/sqrt(m0*m4);
b=(a1-a2)*(1.112*(1+a1*a2 -(a1+a2))*exp(2.11* a2)+(a1-a2))/(a2 -1)^2;
d=dnb*(b+(1-b)*a2^(k-1));
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B.4 The four-point algorithm - rfc.m

function S = rfc(x)
% Computes the equivalent cycles for the time series in x
%
% % Written September 2006 by Keld Hammerum

x=x(:) ’;
% Convert to extremum sequence
extrema =toextremes(x);
% Extract all inner cycles
[S,res]= extractinnerranges(extrema );
% Handle residual . Cloormann/Seeger method as in WAFO. First
% ensure that [res res] only consists of extremum points
extrema =toextremes([res res]);
% Next , extract inner ranges
[Sres ,resres ]= extractinnerranges(extrema );
% Add the inner ranges from the residual to the stress range vector
S=[S Sres];
end

function [S,res]= extractinnerranges(extrema )
i=1;S=[];
while i<length(extrema )-2

% Pick out four extremes
E=extrema (i:i+3);
% Check for inner range
if (E(2)>E(1) && E(3) >=E(1) && E(4) >=E(2))||(E(2)<E(1) && E(3) <=E(1) && E

(4) <=E(2));
% Add inner range to stress range vector S
S=[S abs(E(2)-E(3))];
% Remove inner range from extrema
extrema =[ extrema (1:i) extrema (i+3:end)];
% Move back to check if we have created another inner range
i=max(1,i-2);

else
% Not an inner range - move forward
i=i+1;

end
end
res=extrema ;
end

function y=toextremes(x)
diffs=diff(x);
x=[x(find(diffs ~=0)) x(end)]; % Remove consecutive identical values
y=x(find(diff(sign(diff(x))))+1);
% Add ends
y=[x(1) y x(end)];
end
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