
The Developement of

A Lattice Structured Database

Hans Bruun
Informatics and Mathematical Modelling,

Technical University of Denmark

2006

a b c

ab

{{{{{{{{
ac

CCCCCCCCC

{{{{{{{{{
bc

CCCCCCCC

abc

CCCCCCCC

{{{{{{{{

a,b,c,
ab,ac,bc,abc

a,b,
ab,ac,bc,abc

rrrrrrrrrr
a,c,

ab,ac,bc,abc
b,c,

ab,ac,bc,abc

LLLLLLLLLL

a,bc,
ab,ac,abc

rrrrrrrrrrr
b,ac,

ab,bc,abc

LLLLLLLLLL

rrrrrrrrrr
c,ab,

ac,bc,abc

LLLLLLLLLLL

a,
ab,ac,abc

ab,ac,bc,
abc

LLLLLLLLLLL

rrrrrrrrrrr
b,

ab,bc,abc

LLLLLLLLLL
c,

ac,bc,abc

KKKKKKKKKK

ab,ac,
abc

qqqqqqqqqqqq
ab,bc,

abc

qqqqqqqqqqq
ac,bc,
abc

MMMMMMMMMMMM

sssssssssss

ab,
abc

qqqqqqqqqqqqqq ac,
abc

MMMMMMMMMMMMMM

qqqqqqqqqqqqqq bc,
abc

MMMMMMMMMMMMMM

abc

OOOOOOOOOOOOOOO

ooooooooooooooo

⊥

Abstract

In this project we have investigated the possibilities to make a system based on the
concept algebra described in [3], [4] and [5]. The concept algebra is used for ontology
specification and knowledge representation. It is a distributive lattice extended with at-
tribution operations. One of the main ideas in this work is to use Birkhoff’s representation
theorem, so we represent distributive lattices using its dual representation: the partial or-
der of join irreducibles. We show how to construct a concept algebra satisfying a given
set of equations. The universal/initial algebra is usually too big to be useful even in its
dual representation, so it is important to use a smaller one from the set of possible solu-
tions. Here the most important contribution seems to be the idea of inserting terms in
the lattice. For this to make sense we introduced the concept of the most disjoint lattice
with respect to a given set of inserted terms, that is the smallest lattice where the in-
serted terms preserve their value compared to the value in the initial algebra/lattice. The
database is the dual representation of this most disjoint lattice. We develop algorithms
to construct and make queries to the database.

A Lattice Structured Database i

Contents

1 Introduction 1
1.1 Example, a real estate database . 1
1.2 The Concept Algebra . 2
1.3 Example with equations . 3
1.4 Example, human . 5

2 The Partial Order of Concept Intersections 6
2.1 Anti-chains and Down-sets . 7
2.2 Projection . 10

3 The Concept Lattice 11
3.1 Birkhoff’s Representation Theorem . 12
3.2 Computing Covers in O(p) from p . 14

4 Lattices as Algebras 14
4.1 The Lattice of Anti-chains . 16

5 Computing Lattices O(p) Satisfying a Set of Equations 19
5.1 The Additive Method . 19
5.2 The Subtractive Method . 20
5.3 The Lattices Satisfying a Set of Equations . 21
5.4 The Initial Lattice . 22

6 The Most Disjoint Lattice 22
6.1 Term Value Preserving Properties for EvalL 23
6.2 Term Value Preserving Properties for EvalN 26
6.3 The Most Disjoint Lattice and its Properties 29
6.4 Examples of Most Disjoint Lattices . 30

7 An Efficient Implementation of the Most Disjoint Lattice 32
7.1 Term Evaluation using Projection . 32
7.2 Evaluation in the Power Set Partial Order . 34
7.3 Projection into pmax . 34
7.4 Projection Step of a Concept-intersection . 36

7.4.1 Projection Step of a Concept-intersection Set 37
7.5 Projection Sequence . 40
7.6 Implementation of cProj . 41

8 Introducing Attributes 42
8.1 Terms and Equations . 42
8.2 Concept Intersections with Attributions . 43
8.3 Auxiliary Functions . 46

9 The Lattice Algebra with Attribution 47
9.1 Attribute Axioms. 48
9.2 The Value of Terms in the Algebra CA(cset , aset , p). 49

CONTENTS ii

10 Attribute Consistent Partial Orders 51
10.1 Lemma for Attribute Consistent Partial Orders 53
10.2 Constructing Attribute Consistent Partial Orders 55

11 Concept Algebras 56
11.1 Attribute Axiom: Distribution of Meet . 56
11.2 The Downset Intersection Property . 57
11.3 The Value of Terms in Concept Algebras. 58
11.4 A Concept Algebra is a Generated Algebra. 61

12 Concept Algebras Satisfying a Set of Equations 61
12.1 The Additive Method . 62
12.2 The Subtractive Method . 64
12.3 The Set of Concept Algebras Satisfying a Set of Equations 66

12.3.1 The Initial Concept Algebra . 67

13 The Concept Algebra of Anti-chains 67
13.1 Evaluation in the Power Set Partial Order . 68

14 The Most Disjoint Concept Algebra 69
14.1 The Most Disjoint Concept Algebra and its Properties 73

15 Implementation of the Most Disjoint Concept Algebra 74
15.1 Projection into pmax . 75
15.2 Computing Upper Bounds . 77
15.3 The Algorithm for Computing EvalNCA . 82
15.4 Projecting a Single concept-intersection. 83
15.5 Implementing cTMdisjPO . 87

16 Querying the Concept Algebra 87
16.1 Constructing Data Base Natural Joins . 88

17 Conclusion 90

A The Final Database System 92
A.1 Concept Intersections with Associated Information 92
A.2 Terms . 93
A.3 Evaluation of Terms . 94
A.4 Evaluation in the Power Set Partial Order . 95
A.5 Constructing the Database . 95

A.5.1 The Algorithm for Computing EvalNCA 96
A.6 Querying the Database . 99

B Proofs 99
B.1 Proof of Term Value Property 42.1 . 99
B.2 Proof of Term Value Property 42.2 . 100
B.3 Proof of Term Value Properties 42.3 and 42.4 101
B.4 Proof of MeetN Correctness 52 . 101

LIST OF FIGURES iii

B.5 Proof of Attribution Property 173.4 . 102
B.6 Proof of Downset Intersection Property 210 103
B.7 Proof of Term Value Property 175.0 . 103
B.8 Proof of Term Value Property 175.1 . 104
B.9 Proof of CISproj -property 106 . 105
B.10 Proof of CISproj -property 107 . 106

List of Figures

1 Concept relations described by concept-intersections 6
2 Concept relations described by concept-intersections 6
3 Downset and DownsetC . 9
4 Definition of projection . 10
5 The partial order p from fig. 1 and the corresponding lattice O(p) 12
6 The partial order p from fig. 2 and the corresponding lattice O(p) 13
7 Implementation of meet as an operation on anti-chains 18
8 lemma 67, 68 and 70 . 24
9 lemma 75 and 79 . 26
10 Projecting EvalN (P(cset)(t)) into pmax . 33
11 Reject-region and accept-region . 36
12 Computing CISproj (pmax)(cis) . 38
13 A partial order p0 with attribution and the corresponding lattice O(p0) . . . 50
14 Using attrCI and AttrArgCI . 53
15 Illustration of proof for Attribute Consistent Partial Order lemma 54
16 The set of building blocks for bset = {x , y , a(x), a(y)}. Column 3 and 4 shows

the value of x ,a(x) and y ,a(y) in the building block partial order. 65
17 The set of all AttrArgCI for the top-most concept-intersection 76
18 Illustation of proof for lemma 295 . 78
19 Illustation of proof for lemma 298 . 80
20 Inserting a(a(c)), equation: c * a(c) = a(c) 85
21 Inserting a(a(c)), equation: c * a(c) = c . 86

1 INTRODUCTION 1

Preface

In this report we investigate a new approach to database structuring and querying. The
theoretical framework for the database is based on the concept algebra described in [3], [4]
and [5]. A concrete concept algebra is a distributive lattice, so the databases we are going
to describe will have the contained data structured as a distributive lattice. The prototype
program implemented on the basis of the theory developed in this report is called LatBase
for lattice structured database.

In sections 2 - 7 we first investigate the simplified case, where attributes are removed so
we are left with distributive lattices. From section 8 the full concept algebra with attributes
is investigated. All functions, formulas and types/domains are specified in a small subset of
the VDMSL specification language (see e.g. [2]). This report is the final result of a working
document that changed and growed as the author found solutions to the problems under
consideration.

1 Introduction

According to [3] and [4] a concept algebra is a distributive lattice algebra with the binary
operators join (+) and meet (*), but as an essential part extended with an arbitrary number
of attributes fulfilling rules for distribution of + and * and a rule for strictness. In the sequel
we will also call a concept algebra a concept lattice. A user specifies a concrete concept
algebra by giving a set of equations between terms in the algebra. As known from universal
algebra a set of equations usually specify a set of generated algebras ranging from the most
general initial algebra to the smallest so called terminal algebra.

In this report we propose a way to construct a specific concept algebra by giving a set of
equations which the algebra has to fulfill, and furthermore by inserting terms in the lattice.
A concept lattice – specified by a set of equations and a set of inserted terms – is the smallest
generated concept algebra fulfilling the equations such that the inserted terms evaluate to the
same value as in the initial algebra. This concept algebra is called the most disjoint concept
algebra. The representation of the distributive lattice is based on Birkhoff’s representation
theorem for finite distributive lattices (see e.g. [1]). Birkhoff’s representation theorem has
been used in other knowledge representation systems (see e.g. [6]).

Before going into details we first show a few small examples of using LatBase , the
developed prototype program based on the proposed algorithms.

1.1 Example, a real estate database

We consider a small database with sales information about real estates. The database is
almost like a relational database table with the columns ID, LOC, SIZE, PRICE and COND. In
the LatBase -system we may insert information about each real estate as an algebraic term:

insert
flat *ID(id1)*LOC(loc3)*SIZE(large) *PRICE(medium)*COND(medium),
flat *ID(id2)*LOC(loc1)*SIZE(small) *PRICE(large) *COND(xlarge),
villa*ID(id3)*LOC(loc5)*SIZE(xlarge)*PRICE(xlarge)*COND(small),
villa*ID(id4)*LOC(loc2)*SIZE(large) *PRICE(large) *COND(large),
flat *ID(id5)*LOC(loc5)*SIZE(xlarge),

1 INTRODUCTION 2

farm *ID(id6)*LOC(loc4)*AREA(medium) *PRICE(medium)

All the small letter names above are concept names and capital letter names are attribute
names. The concepts small, medium, large, xlarge designate four different sizes and are
used as a measure for sizes, prices and conditions of real estates. The concepts loc1 – loc5
designate five specific geographical areas and are used to indicate the physical location of a
real estate. The concepts id1 – id6 are used as unique names. Finally the concepts flat,
villa and farm denote real estates that are flats, villas and farms respectively.

In the example above each inserted term corresponds to a tuple in a relational database.
Informally, in a relational database formulation, we may thus consider the first term as a
tuple in the flat relation with the ID attribute id1, the LOC attribute equal to loc3, the
SIZE attribute equal to large, the PRICE attribute equal to medium and the COND attribute
equal to medium. When modeling a classical database relation, flat would be absent and
we would have the same set of attributes in all tuples. As seen in the last two terms in the
example above the LatBase -system does not force such a homogeneity constraint.

Given the database above we can now make a query to the system by writing a term.
First we ask for all real estates having size large:

SIZE(large)

and the system answers with

{[flat, ID(id1), LOC(loc3), SIZE(large), PRICE(medium), COND(medium)]
[villa, ID(id4), LOC(loc2), SIZE(large), PRICE(large), COND(large)]}

The answer from the system is also a term, but written in a special notation. The term is
in disjunctive normal form, the conjunction of a set of concepts {c1, c2, . . . , cn} is written as
[c1, c2, . . . , cn] and the disjunction of a set of conjunctions is written as {[. . .][. . .] . . . [. . .]}. So
from the above answer we can see that there are two real estates in the answer, a flat and a
villa. Each returned real estate is described by a conjunction of a set of concepts, here mainly
attributes.

Next we ask for a real estate which is either a farm or a villa, which is located in either
the area loc2 or the area loc4 and which has a price medium or large:

(farm + villa) * LOC(loc2 + loc4) * PRICE(medium + large)

Now the system answers with:

{[villa, ID(id4), LOC(loc2), SIZE(large), PRICE(large), COND(large)]
[farm, ID(id6), LOC(loc4), PRICE(medium), AREA(medium)]}

1.2 The Concept Algebra

In the Concept Algebra terms are formed from a set of concept identifiers, and operators on
concepts. The two binary operators + and * are required to obey the axioms for idempotency,
commutativity, associativity, absorption, and distributivity. This means that a concrete con-
cept algebra always is a distributive lattice with + being lattice join and * being lattice meet.
From lattice theory we know that any distributive lattice is isomorphic to a lattice of sets.
Consequently, in the framework of concept algebras we usually consider a concrete concept
algebra as a lattice of sets, where the sets represents (the extension of) the concepts. The

1 INTRODUCTION 3

binary operators + and * are then set union (
⋃

) and set intersection (
⋂

). The special concept
identifier null is the bottom element and corresponds to the empty set in the set model.

Besides the two binary operators we may introduce an arbitrary set of unary operators
corresponding to attributes. All introduced attributes a must obey the following axioms

a(x + y) = a(x) + a(y)
a(x ∗ y) = a(x) ∗ a(y)
a(null) = null

These axioms ensure that * informally can be understood as a tuple constructor (see [3] and
[5]).

Let us reconsider the first inserted term in the previous example

insert flat *ID(id1)*LOC(loc3)*SIZE(large) *PRICE(medium)*COND(medium)

Here e.g. the attribute LOC is a function which maps the location loc3 to the concept
LOC(loc3) which (extensionally) designates the set of all entities located in the loc3-area.
We can now interpret the term as the intersection of several sets:

• flat: the set of all real estates that are flats.

• ID(id1): the set of all entities with the unique identifier id1. We should ensure that
only one entity (in the database) has this identifier, so the set becomes a singleton set.

• LOC(loc3): the set of all entities located in the area loc3.

• SIZE(large): the set of all entities, which have the size large.

• etc.
...

The result is a (singleton) set containing the described real estate. But informally it is
convenient to think of the result as a tuple.

According to lattice theory (see e.g. [1]) a lattice is also a partial order with the ordering
relationship ≤ defined by

x ≤ y iff x = x ∗ y

In the concept algebra this partial order relation is usually called the isa-relation.
In the LatBase -system the database is a concrete concept algebra, which is determined

by the inserted terms. However, the user of the system also has the possibility to add equations
which specify possible relations between concepts in the lattice. These equations are used to
further constrain the lattice (or concept algebra) side by side with the general axioms for the
concept algebra. The equations may specify both equalities and isa-relations.

1.3 Example with equations

In the previous example we used the LatBase -system almost as a traditional relational
database. In this example we first give the LatBase -system a set of equations which specify
a small ontology for the considered real estate domain (the numbers to the right of the
equations are not a part of the input):

1 INTRODUCTION 4

equations
home = villa + flat, (1)
mes >= small + medium + large + xlarge, (2)
loc >= reg1 + reg2, (3)
reg1 >= loc1 + loc2 +loc3, (4)
reg2 >= loc4 + loc5 + loc3, (5)
home <= SIZE(mes)*PRICE(mes)*LOC(loc), (6)
GoodCond = COND(large+xlarge), (7)
Fancy >= LOC(loc3) * COND(small+medium) (8)

In the equations we have introduced some new concepts many of which are generalizations of
the concepts used in the first example.

1. home is a generalization of villa and flat, so a home is either a villa or a flat. In
the set interpretation the set of homes is the union of the set of villas and the set of
flats.

2. mes is a general measure including the previously used concrete measures small, medium,
large and xlarge.

3. The concept loc designates the complete geographical area for which we have real es-
tates in the database. According to this equation the area includes the two (overlapping)
sub-regions reg1 and reg2,

4. where reg1 contains (amongst others) the areas loc1, loc2 and loc3

5. and reg2 contains the areas loc4, loc5 and loc3.

6. The set of homes (for sale) is a subset/specialization of the entities having a SIZE and
PRICE attribute with a value being some measure mes and a LOCation attribute with a
value being some location loc. Stated differently, a home (-description in the database)
must have at least a SIZE, PRICE and a LOCation attribute with the above mentioned
values.

7. Finally is introduced some useful concepts. The GoodCond concept designates the set
of all entities having a COND attribute value which is either large or xlarge and

8. the concepts Fancy denotes the set of all entities which are located in the area loc3
and which is in a modest condition.

Assume we in this new database insert the same terms as in the previous example and
then ask for all home’s having size large:

home * SIZE(large)

The system responds with the same two real estates as in the first example:

{[home, villa, GoodCond,
SIZE(mes), SIZE(large), PRICE(mes), PRICE(large),
LOC(loc), LOC(reg1), LOC(loc2),
COND(mes), COND(large), ID(id4)]

1 INTRODUCTION 5

[home, flat, Fancy,
SIZE(mes), SIZE(large), PRICE(mes), PRICE(medium),
LOC(loc), LOC(reg1), LOC(reg2), LOC(loc3),
COND(mes), COND(medium), ID(id1)]}

Notice that the description of each real estate— besides the properties originally inserted —
now also contains properties which follows from the given ontology. Consider e.g. the second
real estate. Besides being a flat as specified in the inserted term, from equation (1) it is also
known to be a home and from equation (8) it is known to be Fancy. It is located in location
loc3 as specified in the inserted term, but we also know (from equations (4) and (5)) that
this location is in the regions reg1 and reg2.

We can of course also use the concepts introduced in the ontology to make queries, e.g.
ask for home’s located in region reg1 which are in good condition:

home * LOC(reg1) * GoodCond:

The systems responds with the two home’s shown below:

{[home, villa, GoodCond,
SIZE(mes), SIZE(large), PRICE(mes), PRICE(large),
LOC(loc), LOC(reg1), LOC(loc2),
COND(mes), COND(large), ID(id4)]

[home, flat, GoodCond,
SIZE(mes), SIZE(small), PRICE(mes), PRICE(large),
LOC(loc), LOC(reg1), LOC(loc1),
COND(mes), COND(xlarge), ID(id2)]}

As can be seen, they are both located in locations, which are in region reg1, and they are
both in a good condition. 2

In the previous examples the real estates inserted in the database are atomic, i.e. they are
located just above the bottom (null) in the lattice. In the LatBase system the values need
not be atomic as illustrated in the next example.

1.4 Example, human

In this example we have the concepts h,m,f, c, a (for human, male, female, child, adult).
In the following input to the LatBase -system we have two equations for human, one that
equals human with the union of child and adult, and one that equals human with the union
of male and female:

equations h = c + a, h = m + f
insert h, c*a

We can now ask for the concept female by writing the term f. If we also want to see all the
sub-concepts of female we precede the term with the keyword downset. So if we make the
query “downset f” the system responds with

{[h, f, c],[h, f, a],[h, f, c, a]}

Here the concepts [h, f , c] and [h, f , a] corresponds to the concepts girl and woman. The
inserted term c*a forces child and adult to overlap so we also get the sub-concept [h, f , c, a]
representing female teenagers. 2

2 THE PARTIAL ORDER OF CONCEPT INTERSECTIONS 6

2 The Partial Order of Concept Intersections

In this and the following sections (sections 2 - 7) we first investigate the simplified case, where
attributes are removed so we are left with distributive lattices. So the goal is to construct
a concrete generated distributive lattice satisfying the given set of equations. So the first
question we could ask is: what kind of elements should we have in the lattice?

Given a finite set of concepts we can describe the mutual relationship between these
concepts by the set of intersections between the concepts. Figure 1 and 2 illustrate the idea.

a bab

abc

c

ac bc

Venn Diagram for
the concepts a, b and c

a b c

ab

{{{{{{{{
ac

CCCCCCCCC

{{{{{{{{{
bc

CCCCCCCC

abc

CCCCCCCC

{{{{{{{{

Hasse Diagram for
the corresponding partial order

Figure 1: Concept relations described by concept-intersections

In figure 1 we have the most general situation where all possible intersections between the
given concepts a, b and c exist. The given intersections are arranged in a partial order. By
conceiving concepts as sets we naturally put an intersection between two sets below the two
sets.

Every subset of this partial order describes a more specific relationship between the con-
cepts a, b and c as shown in figure 2. Here b and c are both subsets of a so the set of
intersections now is {a, ab, ac, abc}. Notice, that if two intersections are identical the most
specific intersection is used in the partial order. In figure 2 the intersections bb ∼ b and ab
are identical – as b is a subset of a – so ab is used.

a

ab

ac

abc

Venn Diagram for
the concepts a, b and c

a

ab ac

DDDDDDDDD

abc

CCCCCCCC

Hasse Diagram for
the corresponding partial order

Figure 2: Concept relations described by concept-intersections

Below we define concept-intersections as a non-empty set of named concepts and a partial

2 THE PARTIAL ORDER OF CONCEPT INTERSECTIONS 7

order as a set of concept-intersections:

types

1.0 C = token –– The type of concept constants;

2.0 Cset = C -set

.1 inv cset 4 cset 6= {};
3.0 CI : : Cset ;

4.0 PO = CI -set

Here CI (∼ concept-intersection) is the type of non-empty sets of concepts representing the
intersection between these concepts.

5.0 P : Cset → PO

.1 P (cs) 4 {mk -CI (cs ′) | cs ′ : Cset · cs ′ ⊆ cs}
Given a set cs of concepts, P(cs) : PO defines the power-set consisting of all possible subsets
of concept-intersections. It is a partial order with the ordering relation ISAP defined below:

6.0 ISAP : CI × CI → B
.1 ISAP (mk -CI (cs1),mk -CI (cs2)) 4 cs2 ⊆ cs1

In the sequel any subset p of P(cs) is considered a partial order with the same (induced)
ordering ISAP .

Notation When showing examples we often use a shorthand notation for concept-intersections.
If a, b and c are one-letter concept names, the concept-intersection mk -CI ({a, b, c}) is just
written as abc (as already shown in the figures 1 and 2). When the involved concepts are
more complex, mk -CI ({c1, c2, . . . , cn}) is sometimes written as [c1, c2, . . . , cn].

Covers For a given partial order p : PO the cover relation is defined as

ci1¹pci2 iff ∀ ci ∈ p · ISAP (ci1, ci) ∧ ISAP (ci , ci2) ⇒ ci = ci1 ∨ ci = ci2

Later we will need the set of elements immediately below a given element ci , called the lower
covers of ci :

7.0 lCOVERSP : PO → CI → CI -set

.1 lCOVERSP (p)(ci) 4 {ci ′ | ci ′ ∈ p · ci ′¹pci}
The set of upper covers may be defined in a similar way.

2.1 Anti-chains and Down-sets

Anti-chains A subset of a partial order is an anti-chain iff every pair of different elements
in the subset are non-comparable:

2 THE PARTIAL ORDER OF CONCEPT INTERSECTIONS 8

8.0 IsAntiChain : CI -set → B
.1 IsAntiChain (ac) 4
.2 ∀ ci1 ∈ ac, ci2 ∈ ac · ci1 6= ci2 ⇒ ¬ ISAP (ci1, ci2) ∧ ¬ ISAP (ci2, ci1)

Down-sets A set ciset of elements in a partial order p : PO is called a down-set iff it is
closed under going down in the partial order:

9.0 IsDownset : PO → CI -set → B
.1 IsDownset (p)(ciset) 4 ∀ ci1 ∈ ciset , ci2 ∈ p · ISAP (ci2, ci1) ⇒ ci2 ∈ ciset

Notice that according to the definition above, everything in p which is below some element
in ciset must also be in ciset . Thus, ciset need not be a subset of p to get an affirmative
answer.

Given a set ciset of elements in p :PO the down-set of ciset is all the elements in p below
some element in ciset :

10.0 DownSet : PO → CI -set → CI -set

.1 DownSet (p)(ciset) 4 {ci | ci ∈ p · ∃ ci ′ ∈ ciset · ISAP (ci , ci ′)}

.2 pre ciset ⊆ p

The down-set DownSet(p)({ci1, ci2, . . . , cin}) is often written as ↓{ci1, ci2, . . . , cin} when p
is assumed. It is easily seen that DownSet(p)(ciset) is the smallest down-set containing ciset
provided ciset ⊆ p.
Concerning down-sets we have

11.0 ISAP (ci1, ci2) ≡ DownSet(p)({ci1}) ⊆ DownSet(p)({ci2})

12.0 DownSet(p)(cis1 ∪ cis2) = DownSet(p)(cis1) ∪DownSet(p)(cis2)

13.0 IsDownset(p)(cis1) ∧ IsDownset(p)(cis2) ⇒ IsDownset(p)(cis1 ∪ cis2)
.1 IsDownset(p)(cis1) ∧ IsDownset(p)(cis2) ⇒ IsDownset(p)(cis1 ∩ cis2)

For down-sets in different partial orders we have some useful relations: Let cis ⊆ p ⊆ P(cset)
for some cset , then

14.0 DownSet(p)(cis) = DownSet(P(cset))(cis) ∩ p

i.e. the down-set is that part of the down-set of cis in P(cset) which is in p. We also have

15.0 DownSet(p \ d)(cis) = DownSet(p)(cis) \ d
.1 p1 ⊆ p2 ⇒ DownSet(p1)(cis) = DownSet(p2)(cis) ∩ p1

Anti-chains and Down-sets in Collaboration Every downset dset in a partial order p
has a unique anti-chain of which it is a down-set:

16.0 ∀ p : PO , dset : CI -set ·
.1 IsDownset(p)(dset) ⇒
.2 ∃! ac : CI -set · ac ⊆ dset ∧ IsAntiChain(ac) ∧ dset = DownSet(p)(ac)

2 THE PARTIAL ORDER OF CONCEPT INTERSECTIONS 9

In the sequel we use this maximal anti-chain as a representation for the downset, and we will
just call it the anti-chain of the down-set:

17.0 AntiCh (cis : CI -set) ac : CI -set

.1 post ac ⊆ cis ∧ IsAntiChain(ac) ∧ ∀ ci1 ∈ cis · ∃ ci2 ∈ ac · ISAP (ci1, ci2)

Thus AntiCh(cis) is an anti-chain subset of cis such that all other ci ’s in cis are below some
element in the anti-chain (in the partial order p). Combining 16 and 17 gives

18.0 ∀ p : PO , dset : CI -set ·
.1 IsDownset(p)(dset) ⇒ DownSet(p)(AntiCh(dset)) = dset

A set cis of concept-intersections is always a downset in the partial order consisting of the
set cis itself:

19.0 ∀ cis : CI -set · IsDownSet(cis)(cis)

Thus, it is always meaningful to ask for the maximal anti-chain of a set of concept-intersections.
For the AntiCh-function we have:

20.0 ∀ ac : CI -set · IsAntiChain(ac) ⇒ AntiCh(ac) = ac

21.0 ∀ ds, ds1 : CI -set ·AntiCh(ds) ⊆ ds1 ⊆ ds ⇒ AntiCh(ds1) = AntiCh(ds)

In words, if a subset ds1 of a downset ds includes the anti-chain of ds, then ds1 has the same
anti-chain. Finally we have

22.0 DownSet(p)(AntiCh(cis)) = DownSet(p)(cis)

Downset(p)(cis)

cis
p P(cset)cis

p

DownsetC(p)(cis)

Figure 3: Downset and DownsetC

DownsetC. In lattice theory, when talking about “downset of ciset”, it is always assumed
that ciset is a subset of the considered partial order (here p). In later sections it will be
convenient to ask for DownSet(p)(ciset) even when ciset is not a subset of p. In order to
make it formally correct, we define a new downset function without the precondition ciset ⊆ p:

2 THE PARTIAL ORDER OF CONCEPT INTERSECTIONS 10

23.0 DownSetC : PO → CI -set → CI -set

.1 DownSetC (p)(ciset) 4 {ci | ci ∈ p · ∃ ci ′ ∈ ciset · ISAP (ci , ci ′)}
The difference between Downset and DownsetC is illustated in figure 3. The name DownSetC
(∼ DownSetCut) emphasizes that some of the elements in ciset may be cut away. From 14 it
is easy to see that DownSetC (p)(ciset) always is a downset (in p), even when ciset is not a
subset of p. However, if ciset and p are disjoint the downset may sometimes be empty. All
the down-set properties from 11 to 22 are also valid for DownSetC .

Finally consider

24.0 ∀ cis : CI -set · cis ⊆ p ⇒ AntiCh(cis) = AntiCh(DownSet(p)(cis))

which is true for both DownSet and DownSetC , whereas if we do not assume cis ⊆ p then
we must apply DownSetC and we have

25.0 ¬∀ cis : CI -set ·AntiCh(cis) = AntiCh(DownSetC (p)(cis))

because now AntiCh(cis) is a subset of cis, but AntiCh(DownSetC (p)(cis)) is a subset of p.

2.2 Projection

In subsequent sections we will need the concept of projection. Given a partial order p and
a set of concept-intersections cis, the projection of cis in p is the anti-chain in p having the
same down-set in p as cis has. The definition of projection is illustrated in fig 4.

26.0 CISproj (p : PO)(cis : CI -set) ac : CI -set

.1 post ac ⊆ p ∧

.2 IsAntiChain(ac) ∧

.3 DownSetC (p)(ac) = DownSetC (p)(cis)

p

cis

Figure 4: Definition of projection

Projecting a set of concept-intersections cis or its anti-chain into a partial order yields
the same result:

27.0 CISproj (p)(AntiCh(cis)) = CISproj (p)(cis)

3 THE CONCEPT LATTICE 11

Let the left and right hand side anti-chains be ac1 and ac2 respectively. To see that the
equation above is true, we notice that ac1 and ac2 are both anti-chains in p and show that
they have the same down-set in p. For ac1 we have

DownSetC (p)(ac1)
from 26.3

= DownSetC (p)(AntiCh(cis))
from 22

= DownSetC (p)(cis)

For ac2 we have
DownSetC (p)(ac2)

from 26.3
= DownSetC (p)(cis)

So ac1 and ac2 have the same down-set in p, consequently they are the same anti-chain.

3 The Concept Lattice

From a finite partial order p : PO of concept-intersections we now define the family of all
down-sets in p:

28.0 O : PO → CI -set-set

.1 O (p) 4 {DownSet(p)(ac) | ac : CI -set · ac ⊆ p ∧ IsAntiChain(ac)}
According to lattice theory O(p) is a lattice of sets with the ordering relation, the join-
and the meet-operation corresponding to the subset-relation, set-union and set-intersection
respectively:

29.0 ISAL : CI -set× CI -set → B
.1 ISAL (cis1, cis2) 4 cis1 ⊆ cis2

30.0 JoinL : CI -set× CI -set → CI -set

.1 JoinL (cis1, cis2) 4 cis1 ∪ cis2

31.0 MeetL : CI -set× CI -set → CI -set

.1 MeetL (cis1, cis2) 4 cis1 ∩ cis2

The bottom-element of the lattice O(p) is the empty down-set, and the top-element is p. As
O(p) is a finite lattice of sets it is also a finite distributive lattice.

Figure 5 shows the lattice O(p1) and figure 6 the lattice O(p2) where p1 and p2 are the
two partial orders shown in figure 1 and 2.

The elements in O(p) are sets of concept-intersections. In the figures 5 and 6 each set
is shown on two lines. The upper bolded line shows the concept-intersections in the anti-
chain of which the element is a down-set. The second line shows the remaining concept-
intersections in the down-set. The empty down-set is the bottom-element shown as ⊥. In
the set-interpretation of concepts one may think of the lattice elements as the union of set-
intersections. The first line is the union of non-comparable sets and the second line is the

3 THE CONCEPT LATTICE 12

a b c

ab

{{{{{{{{
ac

CCCCCCCCC

{{{{{{{{{
bc

CCCCCCCC

abc

CCCCCCCC

{{{{{{{{

a,b,c,
ab,ac,bc,abc

a,b,
ab,ac,bc,abc

rrrrrrrrrr
a,c,

ab,ac,bc,abc
b,c,

ab,ac,bc,abc

LLLLLLLLLL

a,bc,
ab,ac,abc

rrrrrrrrrrr
b,ac,

ab,bc,abc

LLLLLLLLLL

rrrrrrrrrr
c,ab,

ac,bc,abc

LLLLLLLLLLL

º¹ ¸·
³´ µ¶

a,
ab,ac,abc

ab,ac,bc,
abc

LLLLLLLLLLL

rrrrrrrrrrr º¹ ¸·

³´ µ¶
b,

ab,bc,abc

LLLLLLLLLL º¹ ¸·
³´ µ¶

c,
ac,bc,abc

KKKKKKKKKK

ab,ac,
abc

qqqqqqqqqqqq
ab,bc,

abc

qqqqqqqqqqq
ac,bc,
abc

MMMMMMMMMMMM

sssssssssss

º¹ ¸·
³´ µ¶
ab,
abc

qqqqqqqqqqqqqq º¹ ¸·
³´ µ¶
ac,
abc

MMMMMMMMMMMMMM

qqqqqqqqqqqqqq º¹ ¸·
³´ µ¶
bc,
abc

MMMMMMMMMMMMMM

º¹ ¸·³´ µ¶abc

OOOOOOOOOOOOOOO

ooooooooooooooo

⊥

Figure 5: The partial order p from fig. 1 and the corresponding lattice O(p)

union of the subsets in these sets. Given an element cis ∈ O(p) the anti-chain part can be
extracted by AntiCh(cis) (17).

In the lattice to the right in figure 5 and 6 some of the lattice elements are framed. As
can be seen, these lattice elements have exactly one lower cover. Such elements cannot be
constructed as the join of other elements in the lattice and are consequently called join-
irreducible elements. We will see in the next section that these join-irreducible elements play
a crucial role in the representation of distributive lattices.

3.1 Birkhoff’s Representation Theorem

The relationship between a partial order p : PO and the lattice O(p) is described in general
in Birkhoff’s representation theorem for finite distributive lattices. We denote the set of
join-irreducible elements in a lattice L by J (L). From [1, pages 171 – 172] we have

“Let L be a finite distributive lattice. Then the map η : L → O(J (L)) defined by

η(a) = {x | x ∈ J (L) · x ≤ a}

3 THE CONCEPT LATTICE 13

a

ab ac

DDDDDDDDD

abc

CCCCCCCC

º¹ ¸·
³´ µ¶

a,
ab,ac,abc

ab,ac
abc

º¹ ¸·
³´ µ¶
ab,
abc

yyyyyyyyy º¹ ¸·
³´ µ¶
ac,
abc

EEEEEEEEE

º¹ ¸·³´ µ¶abc

HHHHHHHHHH

vvvvvvvvvv

⊥

Figure 6: The partial order p from fig. 2 and the corresponding lattice O(p)

is an isomorphism of L onto O(J (L)).

Furthermore

Suppose p is a finite ordered set. Then the map ε : x 7→↓ x is an order-isomorphism
from p onto J (O(p)).

The two statements above reveal a duality between finite distributive lattices and finite or-
dered sets. Up to isomorphism, we have a one-to-one correspondence

O(p) = L
//
p = J (L)oo

So special properties of the finite distibutive lattice L are reflected in special properties of its
dual set p.” 2

For the partial orders p : PO , p ⊆ P(cset) and the corresponding lattices O(p) we are
considering in this paper some of this can be concretized as follows. The map ε corresponds
to the function DownSet applied to {ci}, ci ∈ p. Hence

J (O(p)) = {DownSet(p)({ci}) | ci ∈ p}
So the join-irreducible elements inO(p) is characterized by having a single concept-intersection
in the anti-chain part. In figure 5 and 6 one can see that the elements having this property
are exactly the framed elements, i.e. the join-irreducible elements.

The function AntiCh is the function mapping a join-irreducible element in the lattice back
to the corresponding concept-intersection in p:

∀ p : PO , cis : CI -set, ci ∈ p ·
cis = DownSet(p)({ci}) ⇔ AntiCh(cis) = {ci}

In the sequel we use this relation between a partial order p and the lattice O(p) to find a
lattice satisfying a given set of equations.

4 LATTICES AS ALGEBRAS 14

3.2 Computing Covers in O(p) from p

Now given a partial order p : PO we would like to construct or inspect the lattice O(p). So
assume we already have an element e in O(p) we should be able to inspect elements in O(p)
immidiatly above or below e, i.e. we need a function to compute the set of lower- and upper
covers of e in O(p) from the partial order p. A function to compute the set of lower covers is
defined below.

32.0 lCOVERSL : PO → CI -set → CI -set-set

.1 lCOVERSL (p)(cis) 4

.2 let ac = AntiCh(cis) in

.3 {cis \ {ci} | ci ∈ ac}
Let cis ∈ O(p). To see that lCOVERSL(cis) actually cumputes the set of lower covers of cis in
O(p) let lcis ∈ lCOVERSL(cis). Furthermore let ac = AntiCh(cis) so cis = DownSet(p)(ac).
According to the definition of lCOVERSL(cis) there is a ci ∈ ac such that lcis = cis \ {ci}.
We now have

lcis = DownSet(p)(ac) \ {ci}
= DownSet(p)(ac \ {ci}) ∪DownSet(p)(lCOVERSP (ci))
= DownSet(p)(ac \ {ci} ∪ lCOVERSP (ci))

hence lcis ∈ O(p). From lcis = cis \ {ci} we have lcis ⊂ cis so ISAL(lcis, cis). Finally assume
cis ′ ∈ O(p) and lcis ⊂ cis ′ ⊂ cis but this is obviously a contradiction so lcis¹Lcis.

From the equations above we see that the set of lower covers could just as well be computed
by the function defined below:

33.0 lCOVERSLP : PO → CI -set → CI -set-set

.1 lCOVERSLP (p)(cis) 4

.2 let ac = AntiCh(cis) in

.3 {DownSet(p)((ac \ {ci}) ∪ lCOVERSP (ci)) | ci ∈ ac}
The set of upper covers can be computed in a similar way.

34.0 uCOVERSL : PO → CI -set → CI -set-set

.1 uCOVERSL (p)(cis) 4

.2 {cis ∪ {ci} | ci ∈ p \ csi · IsDownSet(p)(cis ∪ {ci})}
One get an upper-cover of cis by adding an arbitrary new single concept-intersection ci such
that the new set is a down-set.

4 Lattices as Algebras

In the previous sections we have used the ordered set view of the distributive lattices. In
order to be able to talk about distributive lattices satisfying a set of equations we must also
use the algebraic view. Here a distributive lattice is an algebra with the two binary operators
Join and Meet satisfying the axioms shown below. Join and Meet are represented by the two
infix operators + and ∗ :

4 LATTICES AS ALGEBRAS 15

Idempotency X + X = X , X ∗X = X
Commutativity X + Y = Y + X , X ∗Y = Y ∗X
Associativity X + (Y + Z) = (X + Y) + Z , X ∗ (Y ∗ Z) = (X ∗Y) ∗ Z
Absorbtion X ∗ (X + Y) = X , X + X ∗Y = X
Distributivity X ∗ (Y + Z) = X ∗Y + X ∗ Z , X + Y ∗ Z = (X + Y) ∗ (X + Z)
Bounds X+ ⊥= X , X ∗ ⊥=⊥, X +> = >, X ∗ > = X

So assume cset is a set of concepts and p ⊆ P(cset) is a partial order of concept-intersections.
The lattice O(p) can now be viewed as a (one sorted) algebra

35.0 LA(cset , p) =< O(p); JoinL,MeetL,CL(p)(cset),topL,bottomL >

HereO(p) is the carrier set and JoinL and MeetL are the two binary operators defined in 30 and
31. Corresponding to the set of named concepts c ∈ cset we now have a set of constants/values
in O(p):

CL(p)(cset) = {cValueL(p)(c) | c ∈ cset}
The value of a named concept c ∈ cset is cValueL(p)(c) where

36.0 cValueL : PO → C → CI -set

.1 cValueL (p)(c) 4 DownSetC (p)({mk -CI ({c})})
In the definition above notice that DownSetC (rather than DownSet) has been used, because
the concept-intersection mk -CI ({c}) is not necessarily in p. From the discussion in section
2.1 we know that the value of cValueL(p)(c) is a down-set in p so it is in O(p). Finally, the
value of the two constants topL and bottomL is p respectively {}.

The JoinL and MeetL operators which corresponds to set union and intersection operations
are known to satisfy the axioms shown above.

Terms and Equations The syntax for (ground) terms and equations is defined below:

types

37.0 Term = Join | Meet | C | top | bottom;

38.0 Join : : Term × Term ;

39.0 Meet : : Term × Term ;

40.0 Eq : : Term × Term –– term-equation

For terms to be of the same signature as the considered algebra LA(cset , p), we restrict term-
constants c : C to be in cset . When writing terms in examples we use the two infix operators
+ and ∗ to represent Join and Meet respectively.

The Value of Terms in the Algebra LA(cset , p). Now given the algebra LA(cset , p) we
define the value of terms in this algebra:

4 LATTICES AS ALGEBRAS 16

41.0 EvalL : PO → Term → CI -set

.1 EvalL (p)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinL(EvalL(p)(t1),EvalL(p)(t2)),

.4 mk -Meet(t1, t2) → MeetL(EvalL(p)(t1),EvalL(p)(t2)),

.5 (top) → p,

.6 (bottom) → {},

.7 c → cValueL(p)(c)

.8 end

The value of a term is a downset in O(p). The algebra LA(cset , p) is a generated algebra,
i.e. every value in O(p) is the value of some term.

There exists a set of useful relationships between the value of a term and the underlying
partial order as shown below:

Term Values: Let t be a term, p, p1 and p2 partial orders and cis a subset of p (i.e.
cis ⊆ p ⊆ P(cset)) then

42.0 EvalL(p)(t) ⊆ p
.1 EvalL(p \ cis)(t) = EvalL(p)(t) \ cis
.2 p1 ⊆ p2 ⇒ EvalL(p1)(t) = EvalL(p2)(t) ∩ p1

.3 EvalL(p1 ∪ p2)(t) = EvalL(p1)(t) ∪ EvalL(p2)(t)

.4 EvalL(p1 ∩ p2)(t) = EvalL(p1)(t) ∩ EvalL(p2)(t)

.5 p1 ⊆ p2 ⇒ EvalL(p1)(t) ⊆ EvalL(p2)(t)

All properties in 42 can easily be proved by structural induction on the term structure. A
proof of 42.1 is in section B.1 and a proof of 42.2 is in section B.2. 1. The equation 42.5 follows
trivially from 42.2. Similarly the equations 42.3 and 42.4 may be proved from 42.0 and 42.2 as
shown in section B.3.

4.1 The Lattice of Anti-chains

From section 2.1 we know that a down-set cis has a unique anti-chain of which it is a down-
set, namely AntiCh(cis). So a downset cis may be represented by its unique anti-chain
AntiCh(cis). Consequently, given a lattice O(p) and the corresponding algebra LA(cset , p),
we can easily define an isomorphic lattice where the elements are the anti-chain-part of the
elements in O(p). We denote the set of new lattice elements N (p).

43.0 N : PO → CI -set-set

.1 N (p) 4 {ac | ac : CI -set · ac ⊆ p ∧ IsAntiChain(ac)}
Compare the above formula with 28. The corresponding algebra is

44.0 NA(cset , p) =< N (p); JoinN ,MeetN ,CN (p)(cset),topN ,bottomN >

where
1A proof for some of the other properties in the extended case including attribution may be found in 9

4 LATTICES AS ALGEBRAS 17

CN (p)(cset) = {cValueN (p)(c) | c ∈ cset}
The value of the two constants topN and bottomN is AntiCh(p) respectively {}. The new
functions JoinN , MeetN and cValueN are defined below:

45.0 JoinN : PO → CI -set× CI -set → CI -set

.1 JoinN (p)(ac1, ac2) 4 AntiCh(DownSet(p)(ac1) ∪DownSet(p)(ac2))

46.0 MeetN : PO → CI -set× CI -set → CI -set

.1 MeetN (p)(ac1, ac2) 4 AntiCh(DownSet(p)(ac1) ∩DownSet(p)(ac2))

47.0 cValueN : PO → C → CI -set

.1 cValueN (p)(c) 4 AntiCh(DownSetC (p)({mk -CI ({c})}))

48.0 ISAN : PO → CI -set× CI -set → B
.1 ISAN (p)(ac1, ac2) 4 DownSet(p)(ac1) ⊆ DownSet(p)(ac2)

The definitions of JoinN , MeetN , cValueN and ISAN above follow directly the definitions
of JoinL, MeetL, cValueL and ISAL by converting between down-sets and anti-chains using
DownSet and AntiCh.

Given this new definition of join, meet and concept constants, we can now define the value
of terms in NA(cset , p):

49.0 EvalN : PO → Term → CI -set

.1 EvalN (p)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinN (p)(EvalN (p)(t1),EvalN (p)(t2)),

.4 mk -Meet(t1, t2) → MeetN (p)(EvalN (p)(t1),EvalN (p)(t2)),

.5 (top) → AntiCh(p),

.6 (bottom) → {},

.7 c → cValueN (p)(c)

.8 end

In an implementation of lattice algebras it will be an advantage to represent the lattice
elements as anti-chains rather than down-sets because the down-sets usually will require con-
siderable more space than the corresponding anti-chains. But if an implementation represents
the elements as anti-chains it must also be able to compute the lattice operations efficiently.
So rather than computing meet and join by converting between anti-chains and down-sets,
we must find a way to compute meet and join directly as operations on anti-chains.

The join operation is easy to implement:

50.0 JoinN : PO → CI -set× CI -set → CI -set

.1 JoinN (p)(ac1, ac2) 4 AntiCh(ac1 ∪ ac2)

4 LATTICES AS ALGEBRAS 18

To implement the meet operation as an operation on anti-chains is more difficult. We
need the concept of projection as defined in section 2.2. Having the projection function
CISproj available we can implement MeetN as shown below:

51.0 MeetN : PO → CI -set× CI -set → CI -set

.1 MeetN (p)(ac1, ac2) 4

.2 let cis = {mk -CI (cs1 ∪ cs2) | mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2} in

.3 CISproj (p)(cis)

p

ac2ac1

Figure 7: Implementation of meet as an operation on anti-chains

The implementation of the meet operation is illustrated in figure 7. The two definitions of
MeetN in 46 and 51 both define an anti-chain in p. In section B.4 it is proved that they have
the same downset in p, i.e.

52.0 DownSet(AntiCh(DownSet(p)(ac1) ∩DownSet(p)(ac2))) =
.1 DownSet
.2 (let cis = {mk -CI (cs1 ∪ cs2) | mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2} in

.3 CISproj (p)(cis))

Hence the two definitions define the same anti-chain in p.
The projection operation makes the meet operation less efficient than the join opera-

tion. The efficiency of the projection operation depends much on the actual implementa-
tion/representation of the partial order p.

53.0 cValueN : PO → C → CI -set

.1 cValueN (p)(c) 4 CISproj (p)({mk -CI ({c})})
In the new definition of cValueN the value of AntiCh(DownSetC (p)({mk -CI ({c})})) (def. 47)
is now computed more directly as the projection in p of (mk -CI ({c})).

Finally, the ISAN relation also has a more direct (and efficient) implementation.

54.0 ISAN : CI -set× CI -set → B
.1 ISAN (ac1, ac2) 4 ∀ ci1 ∈ ac1 · ∃ ci2 ∈ ac2 · ISAP (ci1, ci2)

5 COMPUTING LATTICES O(P) SATISFYING A SET OF EQUATIONS 19

5 Computing Lattices O(p) Satisfying a Set of Equations

We now consider how to compute a partial order p ⊆ P(cset) such that the lattice O(p) sat-
isfies a given set of (ground) equations eqs : Eq-set (besides the set of basic lattice equations).
In the sequel we call a partial order in which a set of equations is satisfied a solution for the
set of equations. Let

55.0 IsEqsSol : Eq-set → PO → B
.1 IsEqsSol (eqs)(p) 4 ∀mk -Eq(t1, t2) ∈ eqs · EvalL(p)(t1) = EvalL(p)(t2)

So we are looking for a way to compute the set of solutions:

56.0 {p | p ⊆ P(cset) · IsEqsSol(eqs)(p)}
If n = card (cset) then card (P(cset)) = 2n -1 so there are 22n -1 candidate subsets of P(cset).
Luckily, we do not have to test all the candidates.

Assume we have an equation t1 = t2. The property below concerns the relation between
solutions for such an equation.

57.0 ∀ p1, p2 : PO , t1, t2 : Term ·
.1 p2 ⊆ p1 ∧ EvalL(p1)(t1) = EvalL(p1)(t2) ⇒ EvalL(p2)(t1) = EvalL(p2)(t2)

In words, if we have a solution p1 to an equation t1 = t2 then every subset p2 of that solution
is also a solution. Property 57 may easily be proved from 42.1. Property 57 can easily be
extended to a set of equations:

58.0 ∀ p1, p2 : PO , eqs : Eq-set ·
.1 p2 ⊆ p1 ∧ IsEqsSol(eqs)(p1) ⇒ IsEqsSol(eqs)(p2)

Consequently, if we compute the maximal partial order satisfying the set of equations, then
all subsets of the maximal partial order are also solutions.

The relationships between the term value and the underlying partial order p shown in
42 provides material for two different ways to compute the set of concept-intersections corre-
sponding to the maximal partial order p. Either one can start with the empty partial order
and then add the concept-intersections which let the terms in an equation have equal values,
or one can start with the power-set partial order P(cset) and then subtract the concept-
intersections which make the terms in an equation unequal. Both methods relies on property
42.1.

5.1 The Additive Method

Let t1 = t2 be an equation, and let p1 and p2 be two partial orders in which the equation is
satisfied, i.e.

59.0 EvalL(p1)(t1) = EvalL(p1)(t2) and
.1 EvalL(p2)(t1) = EvalL(p2)(t2)

Using first 42.3 and then the equations in 59 we get
EvalL(p1 ∪ p2)(t1)
= EvalL(p1)(t1) ∪ EvalL(p2)(t1) = EvalL(p1)(t2) ∪ EvalL(p2)(t2)
= EvalL(p1 ∪ p2)(t2)

5 COMPUTING LATTICES O(P) SATISFYING A SET OF EQUATIONS 20

Hence

60.0 EvalL(p1 ∪ p2)(t1) = EvalL(p1 ∪ p2)(t2)

In words, if an equation is satisfied in two partial orders p1 and p2 it will also be satisfied in
the union of these partial orders. This can easily be extended to a set of equations so 60 now
becomes

61.0 ∀ eqs : Eq-set, p1, p2 : PO ·
.1 IsEqsSol(eqs)(p1) ∧ IsEqsSol(eqs)(p2) ⇒ IsEqsSol(eqs)(p1 ∪ p2)

The property above shows us that if we have found two small solutions we can get a new
bigger solution by making the union of the small solutions. So a strategy for finding a big
solution might be to find many small solutions and making the union of these. But what
are the smallest solutions? Property 58 shows that the smallest solutions are single concept-
intersection partial orders (and the not so useful empty partial order.) Together 61 and 57

shows us that we can compute the maximal partial order in which a set of equations is satisfied
by accumulating all the single concept-intersection partial orders in which the equations are
satisfied:

62.0 MaxPO : C -set → Eq-set → PO

.1 MaxPO (cset)(eqs)) 4 {ci | ci ∈ P(cset) · IsEqsSol(eqs)({mk -CI (ci)})}
So if n = card (cset) then pmax = MaxPO(cset)(eqs) is computed by testing the set of equa-
tions with all 2n -1 concept-intersections.

5.2 The Subtractive Method

Let t1 = t2 be an equation, let pc = P(cset) and let

cis1 = EvalL(pc)(t1) and cis2 = EvalL(pc)(t2)

then eqrej = (cis1 ∪ cis2) \ (cis1 ∩ cis2) is the set of all the concept-intersections not occurring
in both cis1 and cis2, i.e. the set of concept-intersections causing t1 and t2 to evaluate to
different values.

Using 42.1 we get

63.0 EvalL(pc \ eqrej)(t1) = EvalL(pc)(t1) \ eqrej = cis1 ∩ cis2 and
.1 EvalL(pc \ eqrej)(t2) = EvalL(pc)(t2) \ eqrej = cis1 ∩ cis2

so if p ′ = pc \ eqrej then EvalL(p′)(t1) = EvalL(p′)(t2).
From 57 we know that if p1 is a solution to an equation t1 = t2 then every subset p2 of

that solution is also a solution. Hence, in 63 above, subtracting any superset of eqrej results
in a partial order in which the equation is satisfied. So having a set of equations rather than
just a single equation we compute the eqrej set for each equation and subtract the union of
these from P(cset):

5 COMPUTING LATTICES O(P) SATISFYING A SET OF EQUATIONS 21

64.0 EqRej : CI -set → Eq → CI -set

.1 EqRej (p)(mk -Eq(t1, t2)) 4

.2 let cis1 = EvalL(p)(t1),

.3 cis2 = EvalL(p)(t2) in

.4 (cis1 ∪ cis2) \ (cis1 ∩ cis2)

65.0 MaxPO : C -set → Eq-set → PO

.1 MaxPO (cset)(eqs) 4

.2 let pc = P(cset) in

.3 let rejected =
⋃ {EqRej (pc)(eq) | eq ∈ eqs} in

.4 pc \ rejected

EqRej (p)(mk -Eq(t1, t2)) (64) computes the set of concept-intersections in p that causes t1
and t2 to evaluate to different values. MaxPO(cset)(eqs) (65) first computes the powerset
partial order (containing the 2n -1 different concept-intersections, if n=card (cset)). Next it
removes from the powerset partial order the rejected concept-intersections, i.e. the concept-
intersections that causes an equation not to be satisfied.

Example As an example of using the subtractive method, consider the equations

b = b ∗ a
c = c ∗ a

We evaluate the terms in P({a, b, c}):

equation left term right term reject
b = b ∗ a {b, ab, bc, abc} {b, ab, bc, abc} ∩ {a, ab, ac, abc} = {ab, abc} {b, bc}
c = c ∗ a {c, ac, bc, abc} {c, ac, bc, abc} ∩ {a, ab, ac, abc} = {ac, abc} {c, bc}
all eqs {b, c, bc}

The biggest subset of P({a, b, c}) which causes no conflicts in the equations is

pmax = P({a, b, c}) \ {b, c, bc} = {a, ab, ac, abc}

The Hasse diagram for this partial order and the corresponding lattice O(pmax) is shown in
figure 6.

5.3 The Lattices Satisfying a Set of Equations

The two functions: MaxPO defined in 62 and MaxPO defined in 65 computes one and the
same greatest subset of P(cset) which is a solution for the given set of equations. This should
be rather obvious, but we do not give a formal proof. So the two definitions actually define
the same function. In the sequel we just refer to MaxPO without worrying about how it is
implemented.

Let pmax = MaxPO(cset)(eqs). We define the class of lattices

66.0 Ceqs = {LA(cset , p) | p : PO · p ⊆ pmax}

6 THE MOST DISJOINT LATTICE 22

According to 57 all lattices in Ceqs satisfies the given set of equations. Among the lattices in
Ceqs we consider two with interesting properties. The initial lattice is theoretical interesting
and is described below. The most disjoint lattice is a lattice that can be constructed by
efficient algorithms. The lattice is described in section 6. An efficient implementation of the
most disjoint lattice is described in section 7.

5.4 The Initial Lattice

In the class Ceqs of lattices defined above LA(cset , pmax) is the initial algebra/lattice or most
general lattice. This is equivalent to saying that for each p ⊆ pmax there is a unique homo-
morphism from LA(cset , pmax) to LA(cset , p). For a given p ⊆ pmax , that homomorphism
is defined by the function h :O(pmax) → O(p) such that

h(cis) = cis ∩ p, cis ∈ O(pmax)

Now

h(JoinL(cis1, cis2)) = (cis1∪cis2)∩p = (cis1∩p)∪(cis2∩p) = JoinL(h(cis1), h(cis2))
h(MeetL(cis1, cis2)) = (cis1∩cis2)∩p = (cis1∩p)∩(cis2∩p) = MeetL(h(cis1), h(cis2))

According to the definition of constants (41.7, 36) we have

h(cpmax ()) = cValueL(pmax)(c) ∩ p = DownSet(pmax)({mk -CI ({c})}) ∩ p
= {mk -CI (cs) | mk -CI (cs) ∈ pmax · c ∈ cs} ∩ p
= {mk -CI (cs) | mk -CI (cs) ∈ pmax ∩ p · c ∈ cs}
= cValueL(p)(c) = cp()

Similar for the constants top and bottom. Consequently h is a homomorphism.

6 The Most Disjoint Lattice

The initial lattice has elements corresponding to all possible concept-intersections not ex-
cluded by the given set of equations. In practice, when specifying a concept hierarchy, this
is not always what is wanted. Often we only want to see lattice points that are ”relevant”
in some way. For instance, if the lattice is constructed as part of an ontology/taxonomy one
might have available a set of terms denoting interesting points in the lattice, points to which
some information should be associated. From this point of view we might consider the lattice
as a lattice structured database containing concept-intersections corresponding to some in-
serted terms. These inserted terms will be specified by the user of such a database. In some
situations these inserted terms would include the terms from the given set of equations. This
database point of view was illustrated in section 1.

So, having constructed the maximal partial order pmax satisfying the given set of equa-
tions eqs, we want to find a subset of pmax only containing the concept-intersections which
are made “relevant” by a given set of inserted terms. Relevance should not be a function of
the terms actual form but rather a function of the terms actual value in pmax . For example,
a ∗ (b + c), a ∗ b + a ∗ c and a ∗ (b + c) + a ∗ b ∗ c should all result in the same set of relevant
concept-intersections.

When concept-intersections are removed from pmax some terms will evaluate to a new
value and some terms will keep their value. The more concept-intersections that are removed

6 THE MOST DISJOINT LATTICE 23

the more terms will have their value changed. When concept-intersections are removed the
concepts in the lattice have fewer overlaps, i.e. the concepts become more disjoint. The idea
with the most disjoint lattice is to remove as many concept-intersections as possible without
changing the values of the given set of inserted terms. That is why the lattice is called the
most disjoint lattice with respect to the given set of inserted terms.

From the database point of view the class of lattices Ceqs (66) is the set of all possible
database instances. Each lattice represents a different set of inserted terms. If we insert a new
term in a lattice we get a new lattice (provided the term denotes new concept-intersections).

As shown in section 4 (and 4.1) we have two evaluation functions EvalL and EvalN , where
EvalN (p)(t) is the anti-chain part of EvalL(p)(t) and thus usually contains fewer concept-
intersections than EvalL(p)(t). The definition of the most disjoint lattice is based on EvalN
so we must study the term-value preserving properties of EvalN . However, as a warm-up
exercise we first study the similar properties for EvalL.

6.1 Term Value Preserving Properties for EvalL

Given a set of concepts cset we consider the evaluation of a term t in an arbitrary subset
partial order pm ⊆ P(cset). The partial orders and sets used in this section are illustrated
in figure 8. The value of the term t in the partial order P(cset) is the downset indicated by
the straight lines and the horizontal line indicates the anti-chain of this downset. The value
of the term t in the partial order pm is the subset pt of this downset which is in pm; it is
hatched with dotted lines.

Lemma

67.0 ∀ t : Term, pm : PO ·
.1 let pt = EvalL(pm)(t) in

.2 EvalL(pt)(t) = EvalL(pm)(t)

Evaluating a term t in a partial order pm and in the subset partial order pt , which is the
value of the term t in pm, yields the same value.

Proof: Let
dp = pm \ pt

hence dp and pt are disjoint:
dp ∩ pt = {}

and
pt = pm \ dp

We now have
EvalL(pt)(t) = EvalL(pm \ dp)(t)

from 42.1
= EvalL(pm)(t) \ dp
= EvalL(pm)(t)

because EvalL(pm)(t) = pt and dp ∩ pt = {}

6 THE MOST DISJOINT LATTICE 24

pt p
dp

pm dp

p

pm

pt

Figure 8: lemma 67, 68 and 70

Lemma

68.0 ∀ t : Term, pm : CI -set ·
.1 let pt = EvalL(pm)(t) in

.2 ∀ p : PO · pt ⊆ p ∧ p ⊆ pm ⇒ EvalL(p)(t) = EvalL(pm)(t)

Evaluating a term t in a partial order pm and in any subset partial order p, which includes
the value of the term t in pm, yields the same value. This is a generalization of 67.

Proof: Assume the left hand side of the implication above

69.0 pt ⊆ p ∧ p ⊆ pm

We then have the following equalities
EvalL(p)(t) = EvalL(pm)(t) = pt ∩ p

from 42.2
= pt = EvalL(pm)(t) (from 69 and 68.1)

Lemma

70.0 ∀ t : Term, pm : CI -set ·
.1 let pt = EvalL(pm)(t) in

.2 ∀ p : PO · ¬ pt ⊆ p ∧ p ⊆ pm ⇒ EvalL(p)(t) 6= EvalL(pm)(t)

Evaluating a term t in a partial order pm and in any subset partial order p, which does not
include the value of the term t in pm yields different values.

Proof: Assume the left hand side of the implication above
¬ pt ⊆ p

hence using 70.1 we get
¬EvalL(pm)(t) ⊆ p

so
EvalL(pm)(t) ∩ p 6= EvalL(pm)(t)

Using this inequality we get
EvalL(p)(t)

6 THE MOST DISJOINT LATTICE 25

from 42.2
= EvalL(pm)(t) ∩ p 6= EvalL(pm)(t)

The properties in lemma 68 and 70 can now be combined in the following theorem:

Theorem

71.0 ∀ t : Term, pm : CI -set ·
.1 let pt = EvalL(pm)(t) in

.2 ∀ p : PO · p ⊆ pm ⇒ (pt ⊆ p ⇔ EvalL(p)(t) = EvalL(pm)(t))

The proof follows directly from the lemmas 67, 68, and 70.
The theorem above shows that if we want to have the term t evaluated to the same value

as in the given partial order pm, then we can use exactly all the subsets of pm containing the
value of the term in pm.

Now, what if we want to preserve the value of two terms t1 and t2? For t1 we can use all
the partial orders between EvalL(pm)(t1) and pm, and for t2 we can use all the partial orders
between EvalL(pm)(t2) and pm. Consequently, to keep the value of both t1 and t2 we can
use all the partial orders between EvalL(pm)(t1) ∪ EvalL(pm)(t2) and pm. The next theorem
generalizes this to an arbitrary set of terms:

Theorem

72.0 ∀ tset : Term-set, pm : CI -set ·
.1 let pts =

⋃ {EvalL(pm)(t) | t ∈ tset} in

.2 ∀ p : PO · p ⊆ pm ⇒ (pts ⊆ p ⇔ (∀ t ∈ tset · EvalL(p)(t) = EvalL(pm)(t)))

Proof: Assume the left hand side of the implication above

73.0 p ⊆ pm

Now, to prove the right hand side equivalence, we prove the left to right and right to left
implications individually.
Left to Right: So we first assume the left hand side

74.0 pts ⊆ p

Next, let t be an arbitrary term in tset :
t ∈ tset

According to the theorem 71 we then have
EvalL(pm)(t) ⊆ p ⇔ EvalL(p)(t) = EvalL(pm)(t)

From 74 and the definition of pts the left hand side above is true and consequently also the
right hand side:

EvalL(p)(t) = EvalL(pm)(t)

Right to Left: Next, we must prove the right to left implication in the equivalence:
(∀ t ∈ tset · EvalL(p)(t) = EvalL(pm)(t)) ⇒ pts ⊆ p

so assume
∀ t ∈ tset · EvalL(p)(t) = EvalL(pm)(t)

From 73 and theorem 42.0 this may be transformed to
∀ t ∈ tset · EvalL(pm)(t) ⊆ p

6 THE MOST DISJOINT LATTICE 26

So ⋃ {EvalL(pm)(t) | t ∈ tset} ⊆ p

which is equivalent to
pts ⊆ p

6.2 Term Value Preserving Properties for EvalN

In this section we show that EvalN has properties similar to the properties for EvalL proved in
section 6.1. The partial orders and sets used in this section is illustrated in figure 9. Because
we now use EvalN which yields an anti-chain the figure now also shows the anti-chain ptn of
the term value pt . This subset of pt is indicated by the dashed line in the top-part of the
down-set pt . Below the value of EvalN (p)(t) is called a normal form value.

pm

pt

p

dp

ptn
ptn

pt

p

dp

pm

Figure 9: lemma 75 and 79

Lemma

75.0 ∀ t : Term, pm : PO ·
.1 let ptn = EvalN (pm)(t) in

.2 ∀ p : PO · ptn ⊆ p∧p ⊆ pm ⇒ EvalN (p)(t) = EvalN (pm)(t) = EvalL(ptn)(t)

Evaluating a term t (using EvalN) in a partial order pm and in any subset partial order p,
which includes the normal form value ptn of the term t in pm, yields the same normal form
value.

Proof: Assume the left hand side

76.0 ptn ⊆ p ∧ p ⊆ pm

Using term-value properties 42 and the right conjunct in 76 gives

77.0 EvalL(p)(t) ⊆ EvalL(pm)(t)
.1 EvalL(p)(t) = EvalL(pm)(t) ∩ p

From 75.1 we now get
ptn = EvalN (pm)(t) = AntiCh(EvalL(pm)(t)) ⊆ EvalL(pm)(t)

6 THE MOST DISJOINT LATTICE 27

because an anti-chain of a set ds is a subset of ds. Combining this subset inclusion with the
left conjunct in 76 gives

ptn ⊆ EvalL(pm)(t) ∩ p
from 77.1

= EvalL(p)(t)

Again, combining this subset inclusion with the one in 77.0 gives
ptn = AntiCh(EvalL(pm)(t)) ⊆ EvalL(p)(t) ⊆ EvalL(pm)(t)

If we use the anti-chain property 21 to the above subset inclusion of an antichain we get
AntiCh(EvalL(p)(t)) = AntiCh(EvalL(pm)(t))

which is equivalent to

78.0 EvalN (p)(t) = EvalN (pm)(t)

Next we prove the equality to EvalL(ptn)(t). From 42.0 we get
EvalL(ptn)(t) ⊆ ptn

ptn is an anti-chain and so are all of its subsets, so EvalL(ptn)(t) is an anti-chain. From the
anti-chain property 20 we then get

EvalN (ptn)(t) = AntiCh(EvalL(ptn)(t)) = EvalL(ptn)(t)

Finally from 78 for p = ptn and the equality above we get
EvalN (pm)(t) = EvalN (ptn)(t) = EvalL(ptn)(t)

which together with the equality in 78 gives the equalities in 75.2.

Lemma

79.0 ∀ t : Term, pm : PO ·
.1 let ptn = EvalN (pm)(t) in

.2 ∀ p : PO · ¬ ptn ⊆ p ⇒ EvalN (p)(t) 6= EvalN (pm)(t)

Evaluating a term t (using EvalN) in a partial order pm and in any subset partial order p,
which does not include the normal form value of the term t in pm yields different normal
form values.

Proof: Assume the left hand side of the implication:
¬ ptn ⊆ p

so ptn has a non-empty subset not in p:
{} ⊂ ptn \ p ⊆ ptn = EvalN (pm)(t)

So EvalN (pm)(t) has a nonempty subset, which is not in p. But for EvalN (p)(t) we have

EvalN (p)(t) ⊆ EvalL(p)(t) ⊆ p

Hence
EvalN (pm)(t) 6= EvalN (p)(t)

The properties in lemma 75 and 79 can now be combined in the following theorem:

6 THE MOST DISJOINT LATTICE 28

Theorem

80.0 ∀ t : Term, pm : PO ·
.1 let ptn = EvalN (pm)(t) in

.2 ∀ p : PO · p ⊆ pm ⇒ (ptn ⊆ p ⇔ EvalN (p)(t) = EvalN (pm)(t))

The proof follows directly from the lemmas 75, and 79. The theorem above shows that if we
want to have the term t evaluated to the same normal form value as in the given partial order
pm, then we can use exactly all the subsets of pm containing the normal form value of the
term in pm.

The next theorem corresponds to theorem 72 for EvalL. So the first question is what
to do if we want to preserve the value of two terms t1 and t2? For t1 we can use all the
partial orders between EvalN (pm)(t1) and pm, and for t2 we can use all the partial orders
between EvalN (pm)(t2) and pm. Consequently, to keep the value of both t1 and t2 we can
use all the partial orders between EvalN (pm)(t1) ∪ EvalN (pm)(t2) and pm. The next theorem
generalizes this to an arbitrary set of terms: Given a set of terms and a partial order pm. In
which sub partial orders will all the given terms have the same normal form value as in pm?

Theorem

81.0 ∀ tset : Term-set, pm : PO ·
.1 let pts =

⋃ {EvalN (pm)(t) | t ∈ tset} in

.2 ∀ p : PO · p ⊆ pm ⇒ (pts ⊆ p ⇔ ∀ t ∈ tset · EvalN (p)(t) = EvalN (pm)(t))

Proof: Assume the left hand side of the implication above:

82.0 p ⊆ pm

Now, to prove the right hand side equivalence, we prove the left to right and right to left
implications individually.
Left to Right: So we first assume the left hand side

83.0 pts ⊆ p

Next, let t be an arbitrary term in tset :
t ∈ tset

According to theorem 80 we then have
EvalN (pm)(t) ⊆ p ⇔ EvalN (p)(t) = EvalN (pm)(t)

From 83 and the definition of pts the left hand side above is true and consequently also the
right hand side:

EvalN (p)(t) = EvalN (pm)(t)

Right to Left: Next, we must prove the right to left implication in the equivalence:
(∀ t ∈ tset · EvalN (p)(t) = EvalN (pm)(t)) ⇒ pts ⊆ p

so assume
∀ t ∈ tset · EvalN (p)(t) = EvalN (pm)(t)

From 82 and theorem 80 this may be transformed to
∀ t ∈ tset · EvalN (pm)(t) ⊆ p

6 THE MOST DISJOINT LATTICE 29

So ⋃ {EvalN (pm)(t) | t ∈ tset} ⊆ p

which is equivalente to
pts ⊆ p

6.3 The Most Disjoint Lattice and its Properties

Given a set of concepts cset and a set of user-specified inserted terms insterms, the function
below now finds the partial order for the lattice which we call the most disjoint lattice with
respect to the given set of terms.

84.0 TMdisjPO : Cset → Eq-set → Term-set → PO

.1 TMdisjPO (cset)(eqs)(insterms) 4

.2 let pmax = MaxPO(cset)(eqs) in

.3
⋃ {EvalN (pmax)(t) | t ∈ insterms}

In 84.2 pmax is the maximal partial order satisfying the given set of equations eqs. In line 84.3
the most disjoint lattice is defined to be the set of concept-intersections which is the union of
the normal form value of all the inserted terms in pmax .

From theorem 81 and the definition of the most disjoint lattice above we can easily derive
the following property for most disjoint lattices:

Term-value Preserving Property of the Most Disjoint Lattice Let cset be a set of
concepts, eqs a set of equations about these concepts and insterms a set of user specified
inserted terms.

85.0 let pmax = MaxPO(cset)(eqs),
.1 pmdsj = TMdisjPO(cset)(eqs)(insterms) in

.2 ∀ p : PO · p ⊆ pmax ⇒

.3 (pmdsj ⊆ p ⇔ ∀ t ∈ insterms · EvalN (p)(t) = EvalN (pmax)(t))

In the most disjoint lattice NA(cset , pmdsj) all the inserted terms evaluate to the same
normal form value as they do in the initial lattice NA(cset , pmax). Furthermore, the most
disjoint lattice is the smallest lattice having this property in the sense that all lattices based
on a partial order not containing pmdsj do not have this property.

If we have a system that— from a set of equations — implements the most disjoint lattice
rather then the initial lattice, the question naturally arises if there are lattices which cannot
be constructed. Luckily, such a system can construct all the lattices that an initial lattice
based system can do, even with the same set of equations:

Power of Most Disjoint Lattice Below pterms is a (huge) set of terms, which evaluates
to all possible set of concept-intersections. We have

86.0 let pterms be st
⋃ {AntiCh(EvalL(P(cset))(t)) | t ∈ pterms} = P(cset) in

.1 TMdisjPO(cset)(eqs)(pterms) = MaxPO(cset)(eqs)

6 THE MOST DISJOINT LATTICE 30

So in the most disjoint lattice system we must supply the system with a set of inserted terms
consisting of op to 2n -1 product terms (where n = card (cset)) in order to get all the overlaps
in the initial lattice. On the other hand, in an initial lattice based system one must supply
the system with up to 2n -1 equations of the form c1 ∗ c2 ∗ . . . ∗ cn = bottom to get the most
disjoint lattice.

Incremental Construction. From the definition of TMdisjPO (84) we have

87.0 TMdisjPO(cset)(eqs)(insterms1 ∪ insterms2) =
.1 TMdisjPO(cset)(eqs)(insterms1) ∪ TMdisjPO(cset)(eqs)(insterms2)

Each inserted terms contribution to the set of concept-intersections in the partial order is
independent of the already inserted terms, so the partial order for the most disjoint lattice
may be constructed incrementally by inserting the terms one after the other.

In section 7 we show how to make an efficient implementation of the most disjoint lattice.
Section 6.4 shows 4 examples of the partial order pmdsj for the most disjoint lattice and the
corresponding partial order pmax .

6.4 Examples of Most Disjoint Lattices

Below we first consider three examples with cset = {a, b, c} so P(cset) is as shown in the
right part of figure 1. We use pmax for MaxPO(cset)(eqs) and pmdsj for
TMdisjPO(cset)(eqs)(insterms).

Example 1 Let eqs = {b = b ∗ a, c = c ∗ a}, see the example page 21. As inserted terms
we use insterms = {a, b, c}. The corresponding partial orders pmax and pmdsj are shown
below:

pmax = a

ab ac

DDDDDDDDD

abc

CCCCCCCC

pmdsj = a

ab ac

CCCCCCCC

The partial order pmdsj is computed as follows:

t tval = EvalL(P(cset))(t) EvalL(pmax)(t) EvalN (pmax)(t)
a a, ab, ac, abc a, ab, ac, abc a
b b, ab, bc, abc ab, abc ab
c c, ac, bc, abc ac, abc ac

pmdsj = a, ab, ac

2

6 THE MOST DISJOINT LATTICE 31

Example 2 Let eqs = {a = a + b ∗ c} and insterms = {a, b, c, b ∗ c}. When computing
MaxPO(cset)(eqs) (def. 65) we get rejected = {bc}. The corresponding partial orders pmax
and pmdsj are shown below:

pmax = a b c

ab

{{{{{{{{
ac

CCCCCCCCC

}}}}}}}}

abc

CCCCCCCC

±±±±±±±±±±±±±±±

pmdsj = a b c

abc

2222222222222

¯¯¯¯¯¯¯¯¯¯¯¯¯

The partial order pmdsj is computed as follows:

t tval = EvalL(P(cset))(t) EvalL(pmax)(t) EvalN (pmax)(t)
a a, ab, ac, abc a, ab, ac, abc a
b b, ab, bc, abc b, ab, abc b
c c, ac, bc, abc c, ac, abc c

b ∗ c bc, abc abc abc
pmdsj = a, b, c, abc

2

Example 3 Let eqs = {c = c ∗ (a + b)} and insterms = {a, b, c}. When computing
MaxPO(cset)(eqs) (def. 65) we get rejected = {c}, i.e. c does not have its own existence (but
has “sunk” down into a and b). The corresponding partial orders pmax and pmdsj are shown
below:

pmax = a b

ab

{{{{{{{{
ac

CCCCCCCCC
bc

CCCCCCCC

abc

CCCCCCCC

{{{{{{{{

pmdsj = a b

ac bc

The partial order pmdsj is computed as follows:

t tval = EvalL(P(cset))(t) tac = AntiCh(tval) TermRel(cset)(pmax)(t)
a a, ab, ac, abc a, ab, ac, abc a
b b, ab, bc, abc b, ab, bc, abc b
c c, ac, bc, abc ac, bc, abc ac, bc

pmdsj = a, b, ac, bc

2

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 32

Example 4 In this example we have cset = {h,m, f , c, a} (for human, male, female, child,
adult), insterms = {m, f , c, a} and the equations h = m + f , h = c + a. A more extensive
computation yields the partial orders pmax and pmdsj shown below to the left and right
respectively :

hmc hfc hma hfa

hmca

jjjjjjjjjjjjjjjjjj
hmfc

IIIIIIIII

hmfa

wwwwwwww
hfca

SSSSSSSSSSSSSSSSSSS

hmfca

IIIIIIIII

uuuuuuuuu

kkkkkkkkkkkkkkkkk

hmc hfc hma hfa

Here the concept-intersections hmc, hfc, hma and hfa corresponds to the concepts boy, girl,
man and woman. In the most disjoint partial order pmdsj , all concept-intersections containing
mf and ca vanishes, i.e. the concepts m and f become disjoint and similar for c and a. The
remaining concept-intersections are not related so O(pmdsj) becomes a powerset lattice with
the four concept-intersections as atoms. 2

7 An Efficient Implementation of the Most Disjoint Lattice

In this section we consider how to make an efficient implementation of the most disjoint lattice
as defined in 84 section 6.3. The definition is repeated below:

88.0 TMdisjPO : Cset → Eq-set → Term-set → PO

.1 TMdisjPO (cset)(eqs)(insterms) 4

.2 let pmax = MaxPO(cset)(eqs) in

.3
⋃ {EvalN (pmax)(t) | t ∈ insterms}

The definition first defines the partial order pmax for the initial lattice and then evaluates the
inserted terms in pmax . But the size of pmax may grow exponentially with the number of
concepts and so also the number of computation steps. However, the resulting partial order
computed in 88.3 usually contains a considerable smaller number of concept-intersections. So
we must avoid the explicit computation of pmax and try to find a way to compute

EvalN (pmax)(t)

for each inserted term t directly from the equations eqs, without having pmax available.

7.1 Term Evaluation using Projection

In the method shown in this section the term t is first evaluated in the power-set partial order
using EvalN and the resulting anti-chain is then projected down in pmax using a projection
function similar to the projection function defined in 26 in section 4.1. We have

Lemma

89.0 EvalN (pmax)(t) = CISproj (pmax)(EvalN (P(cset))(t))

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 33

Proof : The equation above is between two anti-chains, ac1 and ac2. We show that they are
both anti-chains in pmax with the same downset in pmax , so they are the same anti-chain.
According to the definition of EvalN , the left-hand anti-chain ac1 is the anti-chain in pmax
such that

DownSet(pmax)(ac1) = EvalL(pmax)(t)

From the projection properties used to define CISproj (26) we know that the right-hand
side anti-chain ac2 is an anti-chain in pmax . For the downset of ac2 in pmax we have the
following sequence of equalities:

DownSetC (pmax)(ac2)
from 26.3

= DownSetC (pmax)(EvalN (P(cset))(t))
from 14

= DownSetC (P(cset))(EvalN (P(cset))(t)) ∩ pmax
according to the definition of EvalN in sect. 4.1

= EvalL(P(cset))(t) ∩ pmax
from 42.2

= EvalL(pmax)(t)

Consequently we have DownSetC (pmax)(ac1) = DownSetC (pmax)(ac2). 2

The method based on equation 89 above is sketched in figure 10. The value of the term t in
the partial order P(cset) is the downset indicated by the straight lines and the black bullets at
the top of this area indicates the elements in the anti-chain of this down-set, i.e. the elements
in EvalN (P(cset))(t). The solid lined circles along the dotted line in pmax indicates the
anti-chain which is the resulting projection into pmax , i.e. the elements in EvalN (pmax)(t).

pmax

Figure 10: Projecting EvalN (P(cset)(t)) into pmax

Following this scheme we must have an efficient way to compute EvalN (P(cset))(t) and
next we must implement a special projection function which projects into the partial order
pmax given the equations.

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 34

7.2 Evaluation in the Power Set Partial Order

We can easily make a specialized and efficient version of EvalN which evaluates in the power-
set partial order. Below we define the specialized function EvalNPc such that

90.0 EvalNPc(cset)(t) = EvalN (P(cset))(t)

91.0 EvalNPc : Cset → Term → CI -set

.1 EvalNPc (cset)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinNPc(EvalNPc(cset)(t1),EvalNPc(cset)(t2)),

.4 mk -Meet(t1, t2) → MeetNPc(EvalNPc(cset)(t1),EvalNPc(cset)(t2)),

.5 (top) → {mk -CI ({c}) | c ∈ cset},

.6 (bottom) → {},

.7 c → {mk -CI ({c})}

.8 end

92.0 JoinNPc : CI -set× CI -set → CI -set

.1 JoinNPc (ac1, ac2) 4 AntiCh(ac1 ∪ ac2)

93.0 MeetNPc : CI -set× CI -set → CI -set

.1 MeetNPc (ac1, ac2) 4

.2 let cis = {mk -CI (cs1 ∪ cs2) | mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2} in

.3 AntiCh(cis)

7.3 Projection into pmax .

We now look for a projection function cProj such that

94.0 cProj (neqs)(cis) = CISproj (pmax)(cis)

where neqs (normalized equations, discussed below) is a representation of the equations
that were used to construct pmax . By combining 89, 90 and 94 we can easily compute
EvalN (pmax)(t):

95.0 EvalN (pmax)(t) = cProj (neqs)(EvalNPc(cset)(t))

The projection function must take the elements in EvalN (P(cset))(t) which are not already
in pmax (in figure 10 the black bullets outside pmax) and project them down into pmax . An
element is outside pmax if and only if it is rejected by an equation. It is important to realize
that the number of rejected elements in EvalL(P(cset))(t) in general is of the same order of
magnitude as the number of all the elements in EvalL(P(cset))(t), i.e. of exponential size.
Consequently, a projection method, where elements outside pmax are moved to lower covers
and then again tested for acceptance/rejection will be very inefficient.

Recall, from section 5.2, how an equation rejects concept-intersections from P(cset): Let
t1 = t2 be an equation, let pc = P(cset) and let

cis1 = EvalL(pc)(t1) and cis2 = EvalL(pc)(t2)

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 35

then eqrej = (cis1 ∪ cis2) \ (cis1 ∩ cis2) is the set of concept-intersections that is rejected,
whereas the set of concept-intersections (cis1 ∩ cis2) is accepted by this equation, but of course
it may be rejeted by another equation. We call the set (cis1 ∪ cis2) \ (cis1 ∩ cis2) the equations
reject-region and the set cis1 ∩ cis2 the equations accept-region. The term-values cis1 and cis2
are both down-sets and so are the union and intersection of these down-sets (13), consequently
the equations accept-region is also a down-set. To get an efficient way to determine if a
concept-intersection is in an equations reject- or accept-region we first evaluate every equation
so we can easily get the accept and reject region. To make the computations effective we
represent a downset by its anti-chain. An equation is now represented by a “normalized”
equation of type NEq :

types

96.0 NEq : : CI -set× CI -set

The first and second component are the anti-chains of the join and meet of the left and right
hand term values in pc .

97.0 EvalEq : Cset → Eq → NEq

.1 EvalEq (cset)(mk -Eq(t1, t2)) 4

.2 let ac1 = EvalNPc(cset)(t1),

.3 ac2 = EvalNPc(cset)(t2) in

.4 mk -NEq(JoinNPc(ac1, ac2),MeetNPc(ac1, ac2))

We will evaluate all the equations in this way:

98.0 EvalEqs : Cset → Eq-set → NEq-set

.1 EvalEqs (cset)(eqs) 4 {EvalEq(cset)(eq) | eq ∈ eqs}
Let cset and eqs be the given set of concepts and equations repectively, then we will use the
set of normalized equations neqs = EvalEqs(cset)(eqs) to (implicitly) represent pmax . The
accept-region for a normalized equation mk -NEq(u,m) is now DownSet(pc)(m) – see fig. 11
– and the reject-region is

DownSet(pc)(u) \DownSet(pc)(m)

We can now tell if a concept-intersection is in the reject-region of a normalized equation using
the function defined below:

99.0 InEqRej : NEq → CI → B
.1 InEqRej (mk -NEq(u,m))(ci) 4
.2 ISAN ({ci}, u) ∧ ¬ ISAN ({ci},m)

In words, the concept-intersection ci is in the reject-region if it is in one of the down-sets for
the equation term values but not in the accept-region. Notice that InEqRej uses the ISAN

relation between anti-chains (as defined in 48 and 54). If the concept-intersection ci is in the
reject-region of an equation then all the elements below (ISAP) ci , which are not rejected by
any equation (i.e. are in pmax) must be below some element in m, so we have

100.0 InEqRej (mk -NEq(-,m))(ci) ⇒ ISAN (CISproj (pmax)({ci}),m)

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 36

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

m

u

u

The reject-region (hatched) and
the accept-region corresponding
to the normalized equation
mk -NEq(u,m)

Figure 11: Reject-region and accept-region

7.4 Projection Step of a Concept-intersection

Given a set of normalized equations neqs, the projection of a set cis of concept-intersections
into pmax is done iteratively. In each step we take from cis an element ci which is rejected
by one of the equations neq and make a partial projection of ci using the equation neq .

So let ci be a concept-intersection that is in the reject-region for one of the normalized
equations mk -NEq(u,m). Then ci itself is not in pmax , so CISproj (pmax)({ci}) must be be-
low ci . Furthermore CISproj (pmax)({ci}) must also be in the equations accept-region i.e. (ac-
cording to 100) below m. So — in the latticeN (P(cset)) — the anti-chain CISproj (pmax)({ci})
is below both anti-chains ci and m:

ISAN (CISproj (pmax)({ci}),MeetNPc({ci},m))

Hence we may use ac = MeetNPc({ci},m) as a first approximation for the projection of ci .
Below CIProjStep defines the relation between a concept-intersection ci , that is rejected by
one of the equations in the given set neqs of normalized equations, and the partial projection
ac as described above.

101.0 CIProjStep : NEq → CI × CI -set → B
.1 CIProjStep (neq)(ci , ac) 4
.2 InEqRej (neq)(ci) ∧
.3 let mk -NEq(-,m) = neq in

.4 MeetNPc({ci},m) = ac

We have the following lemma for such a single concept-intersection projection step:

Lemma Let neqs be the given set of normalized equations.

102.0 ∀neq ∈ neqs, ci : CI , ac : CI -set ·
.1 CIProjStep(neq)(ci , ac) ⇒
.2 ISAN (ac, {ci}) ∧ ac 6= {ci} ∧
.3 ISAN (CISproj (pmax)({ci}), ac)

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 37

Proof To prove 102 above assume the left hand side of the implication above, i.e the lines
101.2-4 and prove the right hand side. Line 102.2 follows directly from the definition of ac in
101.4 and the fact that ci is in the reject region of the equation neq whereas ac is in the accept
region of the equation. To prove Line 102.3 we use the assumptions and the InEqRej -property
(100) which gives us

ISAN (CISproj (pmax)({ci}),m)

From the definition of CISproj we also have that the elements in CISproj (pmax)({ci}) must
be below (ISAP) ci so

ISAN (CISproj (pmax)({ci}), {ci})
Hence CISproj (pmax)({ci}) is a lower bound for both m and {ci} and consequently we also
have

ISAN (CISproj (pmax)({ci}),MeetNPc(m, {ci}))
2

7.4.1 Projection Step of a Concept-intersection Set

Now we must return to the problem of projecting a set cis of concept-intersections into pmax ,
i.e. computing CISproj (pmax)(cis). Let

cis = {ci1} ∪ {ci2} . . . ∪ {cij } ∪ . . . ∪ {cin}

In each projection step one element cij is partially projected using the projection described
by the CIProjStep relation explained in the previous section. So let neqs be the given set of
normalized equations and let ac : CI -set be such that CIProjStep(neqs)(cij , ac) then in the
next step cis is projected to:

newcis = {ci1} ∪ {ci2} . . . ∪ ac ∪ . . . ∪ {cin}

Even if cis is an anti-chain the new set of concept-intersection’s is not necessarily an anti-
chain. As we will see below, we may choose to convert it to an anti-chain or leave it as it
is. We define the relation between a set of concept-intersection’s — where an arbitrary ci is
rejected by a normalized equation — and the new set of concept-intersection’s by the relation
CISProjStep defined below:

103.0 CISProjStep : NEq-set → CI -set× CI -set → B
.1 CISProjStep (neqs)(cis1, cis2) 4
.2 ∃neq ∈ neqs, ci ∈ cis1, ac : CI -set ·
.3 CIProjStep(neq)(ci , ac) ∧
.4 let newcis = (cis1 \ {ci}) ∪ ac in

.5 AntiCh(newcis) ⊆ cis2 ⊆ newcis

As can be seen from the last line in the definition of CISProjStep the new set of concept-
intersection’s cis2 can be any set between the newcis and its anti-chain. Consequently, when
projecting a set of concept-intersection’s to CISproj (pmax)(cis), the intermediate sequence
of concept-intersection’s between cis and the final resulting anti-chain is not necessarily a
sequence of anti-chains. The situation is illustrated in figure 12.

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 38

cis1

cis

pmax

CISproj(pmax)(cis)

cis2

Figure 12: Computing CISproj (pmax)(cis)

We need some new concepts to handle the situation. In section 4.1 definition 54 the ISAN

relation between anti-chains in N (p) was defined. We have ISAN (ac1, ac2) iff every ci1 ∈ ac1

is below (ISAP) some ci2 ∈ ac2. The ISAN relation can be used on any set of concept-
intersections, but in order to avoid confusion we reserve ISAN to anti-chains and define a new
relation for arbitrary sets:

104.0 ISAS : CI -set× CI -set → B
.1 ISAS (cis1, cis2) 4 ∀ ci1 ∈ cis1 · ∃ ci2 ∈ cis2 · ISAP (ci1, ci2)

If ac1 and ac2 are anti-chains then ISAN (ac1, ac2) = ISAS (ac1, ac2). When ISAS is applied to
arbitrary concept-intersection-sets it is still transitive and reflexive, but not antisymmetric.
E.g. we have ISAS (cis,AntiCh(cis)) and ISAS (AntiCh(cis), cis).

For the ISAS -relation we have the following simple properties:

105.0 ISAS (cis, cis ∪ cis1),
.1 ISAS (cis1, cis2) ∧ ISAS (cis3, cis4) ⇒ ISAS (cis1 ∪ cis3, cis2 ∪ cis4)

In the sequel we also need the following property:

106.0 ISAS (CISproj (pmax)(cis), cis1) ∧ ISAS (cis1, cis)
.1 ⇒ CISproj (pmax)(cis1) = CISproj (pmax)(cis)

In words, if we have a set cis and its projection into pmax , then any set cis1 between cis and
its projection will have the same projection into pmax as cis. A proof is in B.9.

Finally, in order to understand the projection of a set of concept-intersection’s we also
need the property below for the projection function CISproj (defined in 26):

107.0 CISproj (p)(cis1 ∪ cis2) = AntiCh(CISproj (p)(cis1) ∪ CISproj (p)(cis2))

Informally, the result of CISproj (p)(cis) is an anti-chain (see 26.2), but the union of two anti-
chains is usually not an anti-chain, because a part of one anti-chain may have crept below the

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 39

other. Hence we need to take the anti-chain of the union. The property above shows us, that
when all elements are in pmax we must remember to take the anti-chain of the final InP . A
proof is in B.10.
We can now formulate the following lemma about the previously defined relation CISProjStep:

Lemma Let neqs be the given set of normalized equations.

108.0 ∀ cis1 : CI -set, cis2 : CI -set ·
.1 CISProjStep(neqs)(cis1, cis2) ⇒
.2 ISAS (cis2, cis1) ∧ cis2 6= cis1 ∧
.3 CISproj (pmax)(cis1) = CISproj (pmax)(cis2)

Proof: Assume the left hand side of the implication above, i.e.
CISProjectStep(neqs)(cis1, cis2)

According to 103 this is equivalent to

109.0 ∃neq ∈ neqs, ci ∈ cis1, ac : CI -set ·
.1 CIProjStep(neq)(ci , ac) ∧
.2 let newcis = (cis1 \ {ci}) ∪ ac in

.3 AntiCh(newcis) ⊆ cis2 ⊆ newcis

Let neq , ci , ac be the values that exist in 109.0. We then have

110.0 CIProjStep(neq)(ci , ac) ∧
.1 ci ∈ cis1 ∧
.2 let newcis = (cis1 \ {ci}) ∪ ac in

.3 AntiCh(newcis) ⊆ cis2 ⊆ newcis

Using 102 to 110.0 above gives

111.0 ISAN (ac, {ci}) ∧ ac 6= {ci} ∧
.1 ISAN (CISproj (pmax)({ci}), ac) ∧

proof of 108.2 We first prove
ISAS (newcis, cis1)

which (according to 104) is equivalent to

∀ ci2 ∈ newcis · ∃ ci1 ∈ cis1 · ISAP (ci2, ci1)

First let ci2 be an arbitrary element in newcis i.e.

ci2 ∈ (cis1 \ {ci}) ∪ ac

We consider the two case cis1 \ {ci} and ac.

ci2 ∈ (cis1 \ {ci}): Then

ci2 ∈ cis1 ∧ ISAP (ci2, ci2) so ∃ ci1 ∈ cis1 · ISAP (ci2, ci1)

ci2 ∈ ac: From 111.0, the definition of ISAN and ci2 ∈ ac we have

ISAP (ci2, ci) where ci ∈ cis1 so ∃ ci1 ∈ cis1 · ISAP (ci2, ci1)

From the two cases above we may conclude 109 so we have ISAS (newcis, cis1). Finally from
110.3 and 105 we get ISAS (cis2, cis1).

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 40

proof of 108.3 From the definition of CISproj (26) we have ISAS (CISproj (cis), cis) for any
cis. So we also have

112.0 ISAS (CISproj (pmax)(cis1 \ {ci}), cis1 \ {ci})
From 111.1 we also have

113.0 ISAS (CISproj (pmax)({ci}), ac)

If we now combine these two ISAS relations using 105 we get

114.0 ISAS (CISproj (pmax)(cis1 \ {ci}) ∪ CISproj (pmax)({ci}), (cis1 \ {ci}) ∪ ac)

Next, if we use that ISAS (AntiCh(cis), cis) and the transitivity of ISAS to 114 we get

115.0 ISAS (AntiCh(CISproj (pmax)(cis1\{ci})∪CISproj (pmax)({ci})), (cis1\{ci})∪ac)

Finally, using 107 and 110.2 gives us

116.0 ISAS (CISproj (pmax)(cis1),newcis)

Now we want the property above not just for cis2 = newcis but for all cis2 ranging between
newcis and AntiCh(newcis). From 27 we get

117.0 ∀ cis ·AntiCh(newcis) ⊆ cis ⊆ newcis ⇒
.1 CISproj (pmax)(cis) = CISproj (pmax)(newcis)

This together with 110.3 let us conclude that

118.0 ISAS (CISproj (pmax)(cis1), cis2)

Finally, from 118 above, 108.2 and 106 we get 108.3.

7.5 Projection Sequence

We define a projection sequence for a given concept-intersection-set cis0 as a finite sequence
of concept-intersections

119.0 cis0, cis1, cis2, . . . , cisn such that

.1 CISProjStep(neqs)(cisj , cisj+1) for 0 ≤ j ≤ n-1 ∧

.2 IsAntiChain(cisn) ∧

.3 ¬∃ cis : CI -set · CISProjStep(cisn , cis)

A projection sequence ends with a concept-intersection-set cisn which is an anti-chain and
which can not be projected further.

Projection Theorem

120.0 Every cis0 : CI -set has a projection sequence
.1 cis0, cis1, cis2, . . . , cisn and
.2 cisn = CISproj (pmax)(cis0)

proof of 120.2 We first prove by induction that

121.0 ISAS (cisn , cis0) ∧ CISproj (pmax)(cis0) = CISproj (pmax)(cisn)

The base case

122.0 ISAS (cis0, cis0) ∧ CISproj (pmax)(cis0) = CISproj (pmax)(cis0)

7 AN EFFICIENT IMPLEMENTATION OF THE MOST DISJOINT LATTICE 41

is obviously true. For the inductive case we assume

123.0 ISAS (cisj , cis0) ∧ CISproj (pmax)(cis0) = CISproj (pmax)(cisj)

From the definition of a projection sequence (119) we have (119.1)

124.0 CISProjStep(neqs)(cisj , cisj+1)

Now, using the lemma about CISProjStep (108) we get

125.0 ISAS (cisj+1, cisj) ∧
.1 CISproj (pmax)(cisj) = CISproj (pmax)(cisj+1)

Using this and the transitivity of ISAS to the assumption in 123 gives

126.0 ISAS (cisj+1, cis0) ∧ CISproj (pmax)(cis0) = CISproj (pmax)(cisj+1)

So combining the base case and the inductive case we have proved 121.
To prove 120.2 we know that cisn in 120.1 according to the definition of a projection

sequence is an anti-chain and cannot be projected further (119.2-3). Using this to the definition
of CISproj (26) gives that

127.0 CISproj (pmax)(cisn) = cisn
which combined with 121 gives 120.2.

proof of 120.0-1 Every cisj in the projection sequence can be given a size, namely the sum
of size of each ci ∈ cisj , where the size of a concept-intersection ci is the size of its set of basic
concepts. That size will grow in each step of the projection sequence and thus we will never
during the projection return to a previous situation.

7.6 Implementation of cProj

We are now ready to look for an implementation of the function cProj as defined in 94:

128.0 cProj (neqs)(cis) = CISproj (pmax)(cis)

From the projection theorem (120) we can see that cProj (neqs)(cis) in some way must make a
concrete projection sequence for cis and return the final cisn as result. Here the most difficult
task is to choose in the current concept-intersection set one of the concept-intersection’s that
is rejected by a normalized equation. The choice will result in different projection sequence
constructions (breadth first/depth first). Now we will just specify the task for such a function:

129.0 ChooseCiNeq (neqs : NEq-set)(cis : CI -set) answer : CAnswer
.1 post (∃neq ∈ neqs, ci ∈ cis ·
.2 InEqRej (neq)(ci) ∧
.3 let mk -NEq(-,m) = neq in answer = mk -Rej (ci ,m))
.4 ∨ (¬∃neq ∈ neqs, ci ∈ cis · InEqRej (neq)(ci) ∧ answer = Inp)

where

types

130.0 CAnswer = Rej | InP;
131.0 Rej : : CI × CI -set

8 INTRODUCING ATTRIBUTES 42

Having such a function available makes it easy to define the cProj -function:

132.0 cProj : NEq-set → CI -set → CI -set

.1 cProj (neqs)(cis) 4

.2 cases ChooseCiNeq(neqs)(cis) :

.3 mk -Rej (ci ,m) → cProj (neqs)(cis \ {ci} ∪MeetNPc(m, {ci})),

.4 InP → AntiCh(cis)

.5 end

Notice that the sequence of argument concept-intersection’s for cProj combined with the final
anti-chain result makes up a projection sequence.

An Implementation of cEvalN and cTMdisjPO. Given the cProj -function defined above
we are now able to implement EvalN (pmax)(t) using projection as defined in 95.

133.0 cEvalN : C -set → NEq-set → Term → CI -set

.1 cEvalN (cset)(neqs)(t) 4 cProj (neqs)(EvalNPc(cset)(t))

Finally, from the definition of TMdisjPO (84) we can define the function that computes the
most disjoint lattice with respect to a given set of inserted terms :

134.0 cTMdisjPO : Cset → Eq-set → Term-set → PO

.1 cTMdisjPO (cset)(eqs)(insterms) 4

.2 let neqs = EvalEqs(cset)(eqs) in

.3
⋃ {cEvalN (cset)(neqs)(t) | t ∈ insterms}

8 Introducing Attributes

We now consider the full concept algebra including functional binary relations in the form of
attributes (as described in [3]), so we now assume available a set of attributes aset . Besides
the axioms for distributive lattices we now also have the axioms below for each attribute
α ∈ aset :

135.0 Strictness α(⊥) =⊥
Distribution of + α(X + Y) = α(X) + α(Y)
Distribution of ∗ α(X ∗Y) = α(X) ∗ α(Y)

Notice the terminology: the concept α(X) is called the α-attribution of the concept X . From
the rules above it is easy to derive the monotonicity rule below:

Monotonicity X ≤ Y ⇒ α(X) ≤ α(Y)

8.1 Terms and Equations

The syntax for general (ground) terms (Term) which may have top as a subterm are now:

types

136.0 BasicTerm = C | top | bottom;

8 INTRODUCING ATTRIBUTES 43

137.0 Term = Join | Meet | Attr | BasicTerm;

138.0 Join : : Term × Term –– Join-term ;

139.0 Meet : : Term × Term –– Meet-term ;

140.0 Attr : : A× Term –– Attribute-term

These general terms will only be used when making queries to the lattice database. When
constructing the lattice database we will only allow terms not containing the top-term, so
equations and inserted terms must be terms without the top-term. Such restricted terms are
defined by the type Termr :

141.0 BTerms : Term → BasicTerm-set

.1 BTerms (t) 4

.2 cases t :

.3 mk -Join(t1, t2) → BTerms(t1) ∪ BTerms(t2),

.4 mk -Meet(t1, t2) → BTerms(t1) ∪ BTerms(t2),

.5 mk -Attr(α, t) → BTerms(t),

.6 bt → {bt}

.7 end

types

142.0 Termr = Term

.1 inv tr 4 top 6∈ BTerms(tr);

143.0 Eq : : Termr × Termr –– term-equation

When writing terms in examples we use as usual the two infix operators + and ∗ to represent
Join and Meet respectively. The attribution mk -Attr(α, t) is written as α(t). When we
evaluate the terms in a given algebra we restrict term-constants c : C to be in a given set of
concepts cset and similar attributes α : A to be in a given set of attributes aset . But before
we can evaluate terms we must first consider how attribution concepts influence the concept
lattice and with that the lattice algebra in which to evaluate terms.

8.2 Concept Intersections with Attributions

In order to handle attributes we must redefine the type of concept intersections so the new
attribution concepts are included. If α is an attribute and c : C a basic concept then we may
also need the attribution α(c) of this concept as a new basic concept. But how do we rep-
resent the attribution of concept-intersections, i.e. if [c1, c2, . . . , cn] is a concept-intersection,
how do we represent the attribution α({[c1, c2, . . . , cn]})? The attribution axiom concerning
distributivity of ∗ suggests that {[α(c1), α(c2), . . . , α(cn)]} would be a valid representation.
Hence, in the sequel we let the basic concepts used to construct concept-intersections include
the given set of named concepts and every possible attribution of these named concepts. Of
course, we must later verify that this representation actually makes it possible to construct
an algebra satisfying the attribution axioms.

8 INTRODUCING ATTRIBUTES 44

types

144.0 C = token –– The type of named concepts / concept constants;

145.0 A = token –– The type of attributes, α, β, . . . : A;

146.0 B = C | At –– The type of basic concepts, a, b, α(a), α(β(a)), . . . : B ;

147.0 At : : A× B –– The type of attributions, α(a), α(β(a)), . . . : At ;

148.0 Bset = B -set

.1 inv (bset) 4 bset 6= {};
149.0 CI : : Bset –– The type of concept intersections ;

150.0 PO = CI -set

A basic concept (B) is a named concept (C) or an attribution (At). We can now define the
ordering relation ISAP between concept-intersections exactly as in 6:

151.0 ISAP : CI × CI → B
.1 ISAP (mk -CI (bs1),mk -CI (bs2)) 4 bs2 ⊆ bs1

Because there is an infinite number of possible attributions there will also be an infinite
number of basic concepts. Consequently, the number of possible concept-intersections will
also be infinite. In order to be able to continue using the approach based on Birkhoff’s
representation theorem, the considered lattice O(p) must be finite and consequently also the
partial order p from which the lattice is constructed. Therefore, in the sequel, when we
construct a finite partial order p for a concept algebra satisfying a given set of equations,
we do not start from the infinite powerset partial order. Instead we assume that a finite
set of basic concepts is provided as part of a lattice specification by specifying both a set of
equations and a set of inserted terms:

types

152.0 LatSpec : : Eq-set× Termr -set

The set of named concepts, attributes and the finite set of basic concepts are now extracted
from the terms in a lattice specification in the following way:

153.0 SpecTerms : LatSpec → Termr -set

.1 SpecTerms (mk -LatSpec(eqs, terms)) 4

.2 {t | mk -Eq(t1, t2) ∈ eqs · t ∈ {t1, t2}} ∪ terms

8 INTRODUCING ATTRIBUTES 45

154.0 TBset : Term → B -set

.1 TBset (t) 4

.2 cases t :

.3 mk -Join(t1, t2) → TBset(t1) ∪ TBset(t2),

.4 mk -Meet(t1, t2) → TBset(t1) ∪ TBset(t2),

.5 mk -Attr(α, t) → {mk -At(a, b) | b ∈ TBset(t)} ∪ TBset(t),

.6 (top) → {},

.7 (bottom) → {},

.8 c → {c}

.9 end

155.0 extrLatSpec : LatSpec → C -set×A-set× B -set

.1 extrLatSpec (spec) 4

.2 let allTerms = SpecTerms(spec) in

.3 let bset =
⋃ {TBset(t) | t ∈ allTerms} in

.4 let concepts = {c | c ∈ bset · is-C (c)} in

.5 let attributes = {a | mk -At(a, -) ∈ bset} in

.6 mk -(concepts, attributes, bset)

Example Given the specification

equations
a(a(y)+z)= y * b(a(x))

terms a(x),b(x)

Applying extrLatSpec to the specification above yields
concepts = {x , y , z}
attributes = {a, b}
bset = {a(x), b(x), x , y , z , a(y), a(a(y)), a(z), b(a(x))}

2

Given a finite set bset : Bset of basic concepts (extracted from a specification), we can con-
struct the powerset partial order P(bset) with ISAP as the ordering relation. The powerset
is constructed exactly as in 5:

156.0 P : Bset → PO

.1 P (bs) 4 {mk -CI (bs ′) | bs ′ : Bset · bs ′ ⊆ bs}
In the sequel any subset of P(bset) is considered a partial order with the same induced
ordering ISAP .

Remark. It is essential to understand the consequence of this finite attribution approach.
If an attribution is not in the set of basic concepts it actually means that the attribution
collapses to bottom in the lattice. For instance, consider the specification below:

equations
a(x)>= x

terms a(a(x))

8 INTRODUCING ATTRIBUTES 46

which produces the bset = {x , a(x), a(a(x))}. Consequently the terms a(a(a(x))), a(a(a(a(x)))), . . .
all evaluate to bottom. Now, according to the specification we have a(x) ≥ x and because of
the monotonicity rule for attribution we also have a(a(x)) ≥ a(x), a(a(a(x))) ≥ a(a(x)), etc.
As a(a(a(x))) is bottom and a(a(x)), a(x) and x all are below they also become bottom.

As another example consider the situation where {x , y , a(x)} ⊆ bset but a(y) 6∈ bset and
assume that y > x according to the equations (may be in some very indirect way). Then
according to the monotonicity rule for attribution we also have a(y) > a(x) and because a(y)
is bottom we also have that a(x) is bottom. This was probably not the intention when a(x)
was mentioned among the terms.

We may conclude that it may be difficult for a user to specify a correct bset . Later (in
section 15) we will show how to construct the so-called most disjoint concept algebra without
having the bset explicitly available.

8.3 Auxiliary Functions

We can easily extract the concepts and attributes used in a set of concept-intersections:

157.0 UsedAttrsInB : B → A-set

.1 UsedAttrsInB (b) 4

.2 cases b :

.3 mk -At(a, b1) → {a} ∪UsedAttrsInB(b1),

.4 - → {}

.5 end

158.0 UsedAttrsInCIS : CI -set → A-set

.1 UsedAttrsInCIS (cis) 4
⋃ {UsedAttrsInB(b) | mk -CI (bset) ∈ cis, b ∈ bset}

159.0 UsedConcInB : B → C

.1 UsedConcInB (b) 4

.2 cases b :

.3 mk -At(-, b1) → UsedConcInB(b1),

.4 c → c

.5 end

160.0 UsedConceptsInCIS : CI -set → C -set

.1 UsedConceptsInCIS (cis) 4 {UsedConceptInB(b) | mk -CI (bset) ∈ cis, b ∈ bset}
A partial order p conforms with a set of concepts and attributes if it only uses concepts and
attributes from these sets:

161.0 Conforms : C -set×A-set → PO → B
.1 Conforms (cset , aset)(p) 4
.2 (UsedConceptsInCIS(p) ⊆ cset) ∧ (UsedAttrsInCIS (p) ⊆ aset)

We will also need the top level attributes in a set of concept-intersections:

9 THE LATTICE ALGEBRA WITH ATTRIBUTION 47

162.0 AttrsInCI : CI → A-set

.1 AttrsInCI (mk -CI (bs)) 4 {a | mk -At(a, -) ∈ bs}

163.0 AttrsInCIS : CI -set → A-set

.1 AttrsInCIS (cis) 4
⋃ {AttrsInCI (ci) | ci ∈ cis}

9 The Lattice Algebra with Attribution

Assume cset is a set of concepts, aset a set of attributes. Furthermore assume bset is a finite
set of basic concepts and p ⊆ P(bset) is a finite partial order of concept-intersections such
that Conforms(cset , aset)(p). The lattice O(p) can now be viewed as the (one sorted) algebra

164.0 CA(cset , aset , p) =
.1 < O(p); JoinC ,MeetC ,AC (p)(aset),CC (p)(cset),topC ,bottomC >

The components in the tuple above are as follows: O(p) is the carrier set and JoinC and
MeetC are defined similar to the two binary operators JoinL and MeetL (defined in 30 and
31):

165.0 JoinC : CI -set× CI -set → CI -set

.1 JoinC (cis1, cis2) 4 cis1 ∪ cis2

166.0 MeetC : CI -set× CI -set → CI -set

.1 MeetC (cis1, cis2) 4 cis1 ∩ cis2

We also have

167.0 ISAC : CI -set× CI -set → B
.1 ISAC (cis1, cis2) 4 cis1 ⊆ cis2

To the set of named concepts cset there is a set of constants/values in O(p):

CC (p)(cset) = {cValueC (p)(c) | c ∈ cset}
where cValueC is similar to the function cValueL defined in 36:

168.0 cValueC : PO → C → CI -set

.1 cValueC (p)(c) 4 DownSetC (p)({mk -CI ({c})})
The value of the two constants topC and bottomC is defined to p respectively {}. Corre-
sponding to the set of attributes aset we now have a set of unary operators

AC (p)(aset) = {AttributionCA(p)(α) | α ∈ aset}
So for each attribute α we now have a unary operator AttributionCA(p)(α) as defined below:

169.0 AttributionCA : PO → A → CI -set → CI -set

.1 AttributionCA (p)(α)(cis) 4 DownSetC (p)({attrCI (α)(ci) | ci ∈ cis})

9 THE LATTICE ALGEBRA WITH ATTRIBUTION 48

170.0 attrCI : A → CI → CI

.1 attrCI (α)(mk -CI (bs)) 4 mk -CI ({mk -At(α, b) | b ∈ bs})
Notice that DownSetC (the cut version of DownSet) is used because attrCI (α)(ci) may
produce a concept-intersection ci ′ which is not in p. This may happen for two reasons: 1)
the concept-intersection ci ′ contains a basic concept which is not in bset so ci ′ cannot be in
P(bset) or 2) the considered concept-intersection ci ′ ∈ P(bset) but is not in p ⊆ P(bset). A
concept-intersection not in p is simply cut away.

Later, when making proofs about AttributionCA it will be convenient to have the following
function and equality available

171.0 atCIs : A → CI -set → CI -set

.1 atCIs (α)(cis) 4 {attrCI (α)(ci) | ci ∈ cis}
Applying this to the definition of AttributionCA (169) gives the equality below

172.0 AttributionCA(p)(α)(cis) = DownSetC (p)(atCIs(α)(cis))

Attribution Properties For AttributionCA we have a number of useful properties. Let
p ⊆ P(bset) be an arbitrary subset of P(bset) then we have

173.0 AttributionCA(p)(α)(cis) ⊆ p
.1 cis1 ⊆ cis2 ⇒ AttributionCA(p)(α)(cis1) ⊆ AttributionCA(p)(α)(cis2)
.2 AttributionCA(p \ d)(α)(cis) = AttributionCA(p)(α)(cis) \ d
.3 p1 ⊆ p2 ⇒ AttributionCA(p1)(α)(cis) = AttributionCA(p2)(α)(cis) ∩ p1

.4 AttributionCA(p1)(α)(cis)∪AttributionCA(p2)(α)(cis) = AttributionCA(p1∪p2)(α)(cis)

The properties in 173.0– 173.3 can easily be seen from definitions 169 and 170 and the downset
properties 14 and 15. For example, to prove 173.0 notice that AttributionCA(p)(α)(cis) is a
downset Downset(p)(. . .), and Downset(p)(. . .) ⊆ p. The properties in 173.2 and 173.3 are
very similar (p \ d ∼ p1, p ∼ p2). A proof of 173.4 is shown in section B.5.

Concerning the above defined algebra CA(cset , aset , p) we know that it is a distributive
lattice for the same reasons as for the algebra LA(cset , p) defined in 35. But it remains to
be shown that the new attribute operations work correctly. First of all we can see directly
from the definition of AttributionCA (169) that α(cis) is a downset and hence a value in O(p).
Next we must consider the attribute axioms.

9.1 Attribute Axioms.

For the algebra CA(cset , aset , p) to be a concept algebra it must fulfill the axioms for at-
tributes as defined in 135. But, as we will see below, if we do not make any further assump-
tions, then only the attribute axioms concerning strictness and distribution of join is fulfilled.

Strictness:
α(⊥) = AttributionCA(p)(α)({}) = DownSet(p)({attrCI (α)(ci) | ci ∈ {}})
= DownSet(p)({}) = {} =⊥

9 THE LATTICE ALGEBRA WITH ATTRIBUTION 49

Distribution of Join:
α(JoinL(cis1, cis2))
= AttributionCA(p)(α)(JoinL(cis1, cis2))
= AttributionCA(p)(α)(cis1 ∪ cis2)
= DownSetC (p)({attrCI (α)(ci) | ci ∈ cis1 ∪ cis2})
= DownSetC (p)({attrCI (α)(ci) | ci ∈ cis1} ∪ {attrCI (α)(ci) | ci ∈ cis2})

from 12
= DownSetC (p)({attrCI (α)(ci) | ci ∈ cis1})∪

DownSetC (p)({attrCI (α)(ci) | ci ∈ cis2})
= AttributionCA(p)(α)(cis1) ∪AttributionCA(p)(α)(cis2)
= JoinL(AttributionCA(p)(α)(cis1),AttributionCA(p)(α)(cis2))

The proof above uses the downset property (12)
DownSet(p)(cis1 ∪ cis2) = DownSet(p)(cis1) ∪DownSet(p)(cis2)

To prove that the axiom for distribution of meet is satisfied would be easy if we had a similar
downset property for intersection. But we don’t. As an example consider the partial order to
the right in figure 1. Let cis1 = {a} and cis2 = {c}. Then DownSet(p)(cis1 ∩ cis2) = {}, but
DownSet(p)(cis1) ∩DownSet(p)(cis2) = {a, ab, ac, abc} ∩ {c, ac, bc, abc} = {ac, abc}. Also for
overlapping sets like cis1 = {a, b} and cis2 = {b, c} we have the same problem.

One can easily make examples which shows that the algebra CA(cset , aset , p) does not
fulfil the attribution axiom concerning distribution of meet. Hence, CA(cset , aset , p) is in
general not a concept algebra. In sections 10 and 11 it is shown, that CA(cset , aset , p) is a
concept algebra if p satisfies certain properties.

9.2 The Value of Terms in the Algebra CA(cset , aset , p).

Now, given the algebra CA(cset , aset , p), we define the value of terms in this algebra, i.e. the
value of a term is a set of concept-intersections from p:

174.0 EvalCA : PO → Term → CI -set

.1 EvalCA (p)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinC (EvalCA(p)(t1),EvalCA(p)(t2)),

.4 mk -Meet(t1, t2) → MeetC (EvalCA(p)(t1),EvalCA(p)(t2)),

.5 mk -Attr(α, t) → AttributionCA(p)(α)(EvalCA(p)(t)),

.6 (topC) → p,

.7 (bottomC) → {},

.8 c → cValueC (p)(c)

.9 end

Before attribution was introduced there were simple relations between the partial order p and
the result of term evaluation as shown in section 4, def. 42. These properties showed a kind
of “linear” relation between the partial order and the resulting term-value. After attribution
has been introduced this linearity has disappeared and we are now left with the properties
below:

9 THE LATTICE ALGEBRA WITH ATTRIBUTION 50

Term Value Properties: Let bset be a set of basic concepts (extracted from a lattice
specification). Furthermore, let t be a term, p, p1 and p2 subsets of P(bset) and cis ∈ p a set
of concept-intersections then

175.0 EvalCA(p)(t) ⊆ p
.1 p1 ⊆ p2 ⇒ EvalCA(p1)(t) ⊆ EvalCA(p2)(t)
.2 EvalCA(p \ cis)(t) ⊆ EvalCA(p)(t) \ cis

The properties above can be shown by structural induction on the term-structure (and proofs
for 175.0 and 175.1 may be found in section B.7 and B.8 respectively). However, property 175.2
may also easily be proved from 175.0 and 175.1 as shown below:

EvalCA(p \ cis)(t) ⊆ p \ cis from 175.0
EvalCA(p \ cis)(t) ⊆ EvalCA(p)(t) from 175.1

So EvalCA(p \ cis)(t) does not contain values from cis and is a subset of EvalCA(p)(t). Put
together we get 175.2 above.

Notice that the equations 42.1 (EvalCA(p \ cis)(t) = EvalCA(p)(t) \ cis) and 42.2 are no
longer valid, but 42.1 has been replaced by the inclusion 175.2. The equation 42.1 was the
foundation for the two approaches shown in section 5 for finding lattices satisfying a set of
equations .

[x] [y , a(x)]

[x , y , a(x)]

JJJJJJJJJJ

qqqqqqqqqq

Legend: A

vvvvvvvvvv

a-attributionpp

³

v
hcB

[x][y,a(x)]
[x,y,a(x)] a

··

Z R H
9

/
(

[x]
[x,y,a(x)]

vvvvvvvvv
a //__________ [y,a(x)]

[x,y,a(x)]

HHHHHHHHH

a

ss

½

¸

±
¥

x
o

i

[x,y,a(x)]

JJJJJJJJJ

ttttttttt

a

££

3
Â

®
⊥a 88

gÂ
W

Figure 13: A partial order p0 with attribution and the corresponding lattice O(p0)

Example Let bset = {x , y , a(x)} be a set of basic concepts. Figure 13 shows a partial order
p0 ⊆ P(bset) and the corresponding lattice of downsets. In the lattice, attribution is shown
as dashed arrows: there is an arrow from cis1 to cis2 iff cis2 = AttributionCA(p0)(a)(cis1). As
an example of attribution consider the a-attribution of {[x], [x , y , a(x)]}:

AttributionCA(p0)(a)({[x], [x , y , a(x)]})
= DownSetC (p0)({[a(x)], [a(x), a(y), a(a(x))]}) = {[y , a(x)], [x , y , a(x)]}

Notice that the concept-intersection [a(x), a(y), a(a(x))] is cut away when making the downset.
Furthermore notice that DownSetC (p0)({[a(x)]}) does not contain [a(x)] itself.

10 ATTRIBUTE CONSISTENT PARTIAL ORDERS 51

The table below shows the values of the terms x , a(x) and y in p0 and several subsets
of p0. The fields in the last three columns shows the set of concept-intersections constitut-
ing the value of a term. An empty field represents the empty set. A concept-intersection
mk -CI ({b1, b2, . . . , bn}) is shown as [b1, b2, . . . , bn].

p partial order EvalCA(p)(x) EvalCA(p)(a(x)) EvalCA(y)
p0 [x], [y , a(x)], [x , y , a(x)] [x], [x , y , a(x)] [y , a(x)], [x , y , a(x)] [y , a(x)], [x , y , a(x)]
p1 [x], [x , y , a(x)] [x], [x , y , a(x)] [x , y , a(x)] [x , y , a(x)]
p2 [x], [y , a(x)] [x] [y , a(x)] [y , a(x)]
p3 [y , a(x)], [x , y , a(x)] [x , y , a(x)] [y , a(x)], [x , y , a(x)]
p4 [x] [x]
p5 [y , a(x)] [y , a(x)]

Consider the evaluation of the terms x , a(x) and y in p0. For x we get

EvalCA(p0)(x) = cValueC (p0)(x)
= DownSetC (p0)({mk -CI ({x})}) = {[x], [x , y , a(x)]}

For a(x) we have

EvalCA(p0)(a(x)) = AttributionCA(p0)(a)(EvalCA(p0)(x))
= AttributionCA(p0)(a)({[x], [x , y , a(x)]}) = {[y , a(x)], [x , y , a(x)]}

We can see that y and a(x) evaluate to the same value, so the partial order p0 satisfies the
equation y = a(x). From the table we can see that the two subset partial orders p1 and p2

also satisfies the equation y = a(x). Notice however that the subset partial order p3 does not
satisfy the equation y = a(x)! Consequently, in the lattice algebra with attribution we no
longer have a property corresponding to 57 for lattice algebras. That is, if we have a partial
order which is a solution for a set of equations, we can no longer take for granted that all
subset partial orders also are solutions.

Finally, EvalCA(p4)(a(x)) = {} and EvalCA(p5)(a(x)) = {}, but

EvalCA(p4 ∪ p5)(a(x)) = Evall (p1)(a(x)) = {[x], [x , y , a(x)]}
Consequently, in the considered algebra property 42.3 is no longer valid. 2

10 Attribute Consistent Partial Orders

Let bset be a set of basic concepts. Until now we have considered all subsets p ⊆ P(bset)
as equal candidates from which to construct the lattices O(p). However, after attribution
has been introduced it turns out that if we restrict the subsets p ⊆ P(bset) to what we call
attribute consistent partial orders, we get a lot of useful properties: The axiom concerning
distribution of meet is fulfilled and it becomes possible to construct concept algebras along
the same lines as used in sections 5 and 6 before attribution was introduced.

Informally, for a partial order to be attribute consistent, if it contains the attribution
concept α(X) it must also contain the concept X of which it is an attribution. We need some
auxiliary functions:

10 ATTRIBUTE CONSISTENT PARTIAL ORDERS 52

176.0 CbattrsCI : A → CI → At -set

.1 CbattrsCI (α)(mk -CI (bs)) 4 {mk -At(α, b) | mk -At(α′, b) ∈ bs · α′ = α}
The function CbattrsCI gives the the complete set of basic α-attributions in the given concept-
intersection ci . Consider a concept-intersection

ci = [. . . α(b1) . . . α(bi)︸ ︷︷ ︸
cbas

. . .]

where the leftmost and rightmost dots denote basic concepts which are not basic α-attributions.
Then CbattrsCI (α)(ci) is the complete set of basic α-attributions indicated by cbas in the
figure above. The complete set of basic α-attributions CbattrsCI (α)(ci) is non-empty for all
the attributes that occur at the top-level in the concept-intersection ci :

177.0 ∀ ci : CI , α : A · α ∈ AttrsInCI (ci) ⇔ CbattrsCI (α)(ci) 6= {}
This equivalence is used to formulate the precondition of the next function:

178.0 AttrArgCI : A → CI → CI

.1 AttrArgCI (α)(ci) 4 mk -CI ({b | mk -At(-, b) ∈ CbattrsCI (α)(ci)})

.2 pre α ∈ AttrsInCI (ci)

Given a concept-intersection ci which has a non-empty complete set of basic α-attributions,
then — loosely speaking — AttrArgCI (α)(ci) yields the concept-intersection the α-attribution
of which gives the α-attribution part of ci . For instance, if ci = [a, b, α(a), α(c), α(d), e, f]
then AttrArgCI (α)(ci) = [a, c, d]. For a partial order p to be attribute consistent we will now
require that if ci ∈ p, then we also have [a, c, d] ∈ p:

179.0 IsAttrConsistent : PO → B
.1 IsAttrConsistent (p) 4
.2 ∀ ci ∈ p · ∀α ∈ AttrsInCI (ci) ·AttrArgCI (α)(ci) ∈ p

We have a set of useful properties concerning the functions introduced above:

180.0 ∀ ci : CI , α : A · ISAP (ci , attrCI (α)(AttrArgCI (α)(ci)))

181.0 ∀ ci : CI , α : A ·AttrArgCI (α)(attrCI (α)(ci)) = ci

182.0 ISAP (ci1, ci2) ⇒ CbattrsCI (α)(ci2) ⊆ Cbattrs(α)(ci1)

183.0 ISAP (ci1, ci2) ⇒ ISAP (AttrArgCI (α)(ci1),AttrArgCI (α)(ci2))

184.0 IsAttrConsistent(p1) ∧ IsAttrConsistent(p2) ⇒ IsAttrConsistent(p1 ∪ p2)

185.0 IsAttrConsistent(p1) ∧ IsAttrConsistent(p2) ⇒ IsAttrConsistent(p1 ∩ p2)

The properties 180 and 181 are illustrated in figure 14. Property 180 is about getting the
α-attribution argument using AttrArgCI and then attributing the concept-intersection using
attrCI . For example, if we reuse the small example above, we have ci = [a, b, α(a), α(c), α(d), e, f].
Then getting the α-attribution argument gives [a, c, d], and finally α-attributing this concept-
intersection gives [α(a), α(c), α(d)] which is above ci in the partial order.

10 ATTRIBUTE CONSISTENT PARTIAL ORDERS 53

[a, c ,d] [α(a), α(c), α(d)]

[a, b, α(a), α(c), α(d), e, f]

AttrArgCI(α)

attrCI(α)

AttrArgCI(α)

ISAP

Figure 14: Using attrCI and AttrArgCI

Concerning 182 we know — from the definition of ISAP (151) — that if
ISAP (mk -CI (bs1),mk -CI (bs2)) then bs2 ⊆ bs1. Consequently any subset of bs2 must also be
a subset of bs1. Applying CbattrsCI (for any attribute α) to a concept-intersection yields a
subset of its basic concepts. The proofs of these properties are rather straightforward (and
are left to the reader).

10.1 Lemma for Attribute Consistent Partial Orders

For attribute consistent partial orders we have the following lemma, which is used in subse-
quent proofs:

186.0 ∀ cis : CI -set, p : PO ·
.1 ∀α ∈ AttrsInCIS (p) ·
.2 IsDownset(p)(cis) ∧ IsAttrConsistent(p) ⇒
.3 ∀ aci : CI · aci ∈ AttributionCA(p)(α)(cis)
.4 ⇒ AttrArgCI (α)(aci) ∈ cis ∩ p

In words: if p is an arbitrary attribute consistent partial order and cis a downset in p then
all concept-intersections (aci) in the α-attribution of cis have there α-attribution argument
in the part of cis which is also in p.

In order to make a proof we define an auxiliary function:

187.0 ats : A× Bset → Bset

.1 ats (α, bs) 4 {mk -At(α, b) | b ∈ bs}
We will need a few properties related to the functions atCIs and ats defined above. From the
definitions of atCIs (171) and ats (187) it is easy to get

188.0 ∀ aci ∈ atCIs(α)(cis) · ∃mk -CI (bs) ∈ cis · aci = mk -CI (ats(α, bs))

10 ATTRIBUTE CONSISTENT PARTIAL ORDERS 54

Furthermore, the definition of CbattrsCI (176) and ats (187) shows that

189.0 CbattrsCI (α,mk -CI (ats(α, bs))) = ats(α, bs)

The proof below is illustrated in figure 15. On the figure the partial order p is shown as the
union of two sets p1 and p2. The set cis is shown to the left with bolded line and the order
isomorphic set atCIs(α)(cis) is shown to the right also with a bolded line.

p1

cis [b c]

[b c d]

atCIs

aci=
 [… α(b) α(c) α(d) …]

aci’ =
 [α(b) α(c)]

p2
ats(α)

AttrArgCI(α)

Figure 15: Illustration of proof for Attribute Consistent Partial Order lemma

So to prove 186 assume that cis, p, and α are arbitrary values such that

190.0 cis : CI -set, p : PO , α ∈ AttrsInCIS (p)

and furthermore assume the left hand side of the outermost implication above

191.0 IsDownset(p)(cis) ∧ IsAttrConsistent(p)

Next, corresponding to the innermost implication, we assume aci is an arbitrary concept-
intersection such that

192.0 aci ∈ AttributionCA(p)(α)(cis)

According to 172 this is equivalent to

193.0 aci ∈ DownSetC (p)(atCIs(α)(cis))

From 193 and the definition of DownSetC we get

194.0 aci ∈ p,
.1 ∃ aci ′ ∈ atCIs(α)(cis) · ISAP (aci , aci ′)

Next, from 194.1 using 188 and the invariant in 148.1 we get

195.0 ∃mk -CI (bs ′) ∈ cis · bs ′ 6= {} ∧ ISAP (aci ,mk -CI (ats(α, bs ′)))

10 ATTRIBUTE CONSISTENT PARTIAL ORDERS 55

Now, let bs ′′ be the bs ′ that exists according to 195. We then have

196.0 mk -CI (bs ′′) ∈ cis ∧ bs ′′ 6= {},
.1 ISAP (aci ,mk -CI (ats(α, bs ′′))

If we now use 182 to 196.1 we get

197.0 CbattrsCI (α)(mk -CI (ats(α, bs ′′))) ⊆ CbattrsCI (α)(aci)

Applying 189 now gives

198.0 ats(α, bs ′′) ⊆ CbattrsCI (α)(aci)

From 196.0 and the definition of ats (187)

199.0 ats(α, bs ′′) 6= {}
Consequently, according to 198 we also have

200.0 CbattrsCI (α)(aci) 6= {}
Now we use the fact that aci ∈ p (194.0) and that the partial order p is attribute consistent
(191). Applying the definition of IsAttrConsistent (179) then gives

201.0 AttrArgCI (α)(aci) ∈ p

Next, if we apply 183 to 196.1 we get

202.0 ISAP (AttrArgCI (α)(aci),AttrArgCI (α)(mk -CI (ats(α, bs ′′))))

According to the definition of AttrArgCI (178) and ats (187) the right operand of ISAP above
can be reduced to mk -CI (bs ′′), so we get

203.0 ISAP (AttrArgCI (α)(aci),mk -CI (bs ′′))

So now we know that AttrArgCI (α)(aci) is below mk -CI (bs ′′), which according to 196.0 is
in cis. From 191 we know that cis is a downset in p, so according to 10 we know that everything
in p, which is below mk -CI (bs ′′) is in cis. But from 201 we know that AttrArgCI (α)(aci) ∈ p
so we have

204.0 AttrArgCI (α)(aci) ∈ cis

which combined with 201 gives

205.0 AttrArgCI (α)(aci) ∈ cis ∩ p

10.2 Constructing Attribute Consistent Partial Orders

In subsequent sections we need a function to construct attribute consistent partial orders.
Given a set cis of concept-intersections, there are two approaches to make the set attribute-
consistent. Either we may extend the set cis to the smallest attribute-consistent partial order
containing cis, or we may restrict the set cis to the greates attribute-consistent subset of cis.
The existence of the mentioned smallest and greatest sets follows from 185 and 184 respectively.

The function extCIS defined below yields the smallest attribute consistent set of concept-
intersections which contains the given set of concept-intersections cis by extending the set cis
with the appropriate α-attribution arguments:

11 CONCEPT ALGEBRAS 56

206.0 extCIS : CI -set → CI -set

.1 extCIS (cis) 4

.2 let attrArg = {AttrArgCI (α)(ci) | ci ∈ cis, α ∈ AttrsInCI (ci)} in

.3 if attrArg = {} then cis else cis ∪ extCIS (attrArg)

Examples

cis extCIS (cis)
{[x , a(x), a(y), b(z)]} {[x , a(x), a(y), b(z)], [x , y], [z]}
{[x , a(b(y))], [x , y , b(x), b(a(y))]} {[x , a(b(y))], [x , y , b(x), b(a(y))], [b(y)], [x , a(y)], [y]}

2

Below is shown a few obvious facts about extension:

207.0 ∀ p : PO · IsAttrConsistent(extCIS (p))
.1 ∀ p1, p2 : PO · IsAttrConsistent(p1) ∧ p2 ⊆ p1 ⇒ extCIS (p2) ⊆ p1,
.2 ∀ p1, p2 : PO · p2 ⊆ p1 ⇒ extCIS (p2) ⊆ extCIS (p1)

The function restrCIS defined below restricts the given set of concept-intersections to the
greatest attribute consistent subset by removing those concept-intersections which doesn’t
have appropriate α-attribution arguments:

208.0 restrCIS : CI -set → CI -set

.1 restrCIS (cis) 4

.2 let xx = {ci | ci ∈ cis, α ∈ AttrsInCI (ci) ·AttrArgCI (α)(ci) ∈ cis} in

.3 if xx = {} then cis else restrCIS (cis \ xx)

We will also need some facts about restriction:

209.0 ∀ p : PO · IsAttrConsistent(restrCIS (p))
.1 ∀ p1, p2 : PO · IsAttrConsistent(p2) ∧ p2 ⊆ p1 ⇒ p2 ⊆ restrCIS (p1),
.2 ∀ p1, p2 : PO · p2 ⊆ p1 ⇒ restrCIS (p2) ⊆ restrCIS (p1)

11 Concept Algebras

In this section it is shown that if the partial order p is attribute consistent, i.e.
IsAttrConsistent(p) (as defined in 10) then CA(cset , aset , p) is a concept algebra satisfying
the attribute axioms (in 135). It is also shown that the requirement about attribute consistent
partial orders makes term values have properties which are close to those for lattice algebras
before attribution was introduced (42).

We already know from section 9.1 that the attribute axioms concerning strictness and
distribution of join are always fulfilled so we only have to consider distribution of meet.

11.1 Attribute Axiom: Distribution of Meet

As mentioned in section 9.1, it would be easy to prove the axiom for distribution of meet if
we had a downset property for intersection corresponding to the downset property for union:

DownSet(p)(cis1 ∪ cis2) = DownSet(p)(cis1) ∪DownSet(p)(cis2)

11 CONCEPT ALGEBRAS 57

For intersection we only have

210.0 DownSet(p)(cis1 ∩ cis2) ⊆ DownSet(p)(cis1) ∩DownSet(p)(cis2)

This is easy to prove, see section B.6. But in order to be able to prove that the “distribution of
meet” axiom is fulfilled we need equality between the sets, not subset inclusion as in 210 above.
Luckily, it turns out that although we don’t have a general downset property for intersection
with equality, we have a specialized version, namely 212, which is described in section 11.2
below. But before investigating this property we use it to prove that the “distribution of
meet” axiom is fulfilled:

Distribution of Meet:

211.0 α(MeetL(cis1, cis2))
.1 = AttributionCA(p)(α)(MeetL(cis1, cis2))
.2 = AttributionCA(p)(α)(cis1 ∩ cis2)
.3 = DownSetC (p)({attrCI (α)(ci) | ci ∈ cis1 ∩ cis2})
.4

from 171
= DownSetC (p)(atCIs(α)(cis1 ∩ cis2))

.5
from 212 below

= DownSetC (p)(atCIs(α)(cis1)) ∩DownSetC (p)(atCIs(α)(cis2))
.6 = AttributionCA(p)(α)(cis1) ∩AttributionCA(p)(α)(cis2)
.7 = MeetL(AttributionCA(p)(α)(cis1),AttributionCA(p)(α)(cis2))

11.2 The Downset Intersection Property

212.0 ∀ cis1, cis2 : CI -set, p : PO , α : A ·
.1 IsDownset(p)(cis1) ∧ IsDownset(p)(cis2) ∧ IsAttrConsistent(p) ⇒
.2 DownSetC (p)(atCIs(α)(cis1 ∩ cis2)) =
.3 DownSetC (p)(atCIs(α)(cis1)) ∩DownSetC (p)(atCIs(α)(cis2))

This property is not at all obvious, but it is this property that actually makes it possible
to use the simple representation of attributions as described in section 8.2. The proof of
212 is based on the lemma 186 for attribute consistent partial orders To make the proof we
assume the left hand side of the implication in 212 and then prove the equality LHS = RHS
of the right hand side of the implication. The equality is proved by proving LHS ⊆ RHS and
RHS ⊆ LHS .

LHS ⊆ RHS We first prove LHS ⊆ RHS , i.e. we must prove

213.0 DownSetC (p)(atCIs(α)(cis1 ∩ cis2))
.1 ⊆ DownSetC (p)(atCIs(α)(cis1)) ∩DownSetC (p)(atCIs(α)(cis2))

From the definition of atCIs (171) this is equivalent to

214.0 DownSetC (p)(atCIs(α)(cis1) ∩ atCIs(α)(cis1))
.1 ⊆ DownSetC (p)(atCIs(α)(cis1)) ∩DownSetC (p)(atCIs(α)(cis2))

which is fulfilled according to 210.

11 CONCEPT ALGEBRAS 58

RHS ⊆ LHS Next we must prove RHS ⊆ LHS . This is the difficult part of the proof of
212. From the definition of attrCI (170) we have

215.0 ∀ ci : CI , cis : CI -set · ci ∈ cis ⇒ attrCI (α)(ci) ∈ atCIs(α)(cis)

In order to prove RHS ⊆ LHS we now make assumptions corresponding to the left-hand side
of the implication in 212. So assume that cis1, cis2, p and α are abitrary values such that

216.0 cis1, cis2 : CI -set, p : PO , α ∈ AttrsInCIS (p)
.1 IsDownset(p)(cis1) ∧ IsDownset(p)(cis2) ∧ IsAttrConsistent(p)

Using these assumptions we must now prove

217.0 DownSetC (p)(atCIs(α)(cis1)) ∩DownSetC (p)(atCIs(α)(cis2))
.1 ⊆ DownSetC (p)(atCIs(α)(cis1 ∩ cis2))

If the left-hand side is the empty set then the subset inclusion is obvious, so in the sequel
we assume that the left-hand side set is not the empty set. We prove the subset inclusion by
showing that every element in the left-hand side set is also in the right-hand side set. So let
aci : CI be an arbitrary concept-intersection such that

218.0 aci ∈ DownSetC (p)(atCIs(α)(cis1)) ∩DownSetC (p)(atCIs(α)(cis2))

which is equivalent to

219.0 aci ∈ DownSetC (p)(atCIs(α)(cis1))
.1 aci ∈ DownSetC (p)(atCIs(α)(cis2))

From the assumption 216 and the lemma 186 for attribute consistent partial orders we get

220.0 AttrArgCI (α)(aci) ∈ cis1
.1 AttrArgCI (α)(aci) ∈ cis2

Next, applying 215 gives

221.0 attrCI (α)(AttrArgCI (α)(aci)) ∈ atCIs(α)(cis1)
.1 attrCI (α)(AttrArgCI (α)(aci)) ∈ atCIs(α)(cis2)

and consequently also

222.0 attrCI (α)(AttrArgCI (α)(aci)) ∈ atCIs(α)(cis1) ∩ atCIs(α)(cis2)

Finally 180 gives us

223.0 ISAP (aci , attrCI (α)(AttrArgCI (α, aci)))

So aci is below a point which is in atCIs(α)(cis1) ∩ atCIs(α)(cis2), and from 219 we know
that aci ∈ p, consequently we have

224.0 aci ∈ DownSetC (p)(atCIs(α)(cis1) ∩ atCIs(α)(cis2))

11.3 The Value of Terms in Concept Algebras.

The value of terms in the algebra CA(cset , aset , p) was defined in section 9.2 for all partial
orders p ⊆ P(bset). If we only consider evaluation of terms in concept algebras, i.e. we restrict
the partial orders p ⊆ P(bset) to those which are attribute consistent, then we have properties
which are close to the essential properties in 42 as we will see in the following. We will need
the property for attribution in concept algebras described below:

11 CONCEPT ALGEBRAS 59

Attribution in Concept Algebras: Let bset be a set of basic concepts, p and p1 subsets
of P(bset), cis a subset of p and finally α an attribute, we then have

225.0 IsAttrConsistent(p1) ∧ IsDownset(p)(cis) ∧ p1 ⊆ p
.1 ⇒ AttributionCA(p)(α)(cis ∩ p1) ∩ p1 = AttributionCA(p)(α)(cis) ∩ p1

A proof of property 225 is also based on the lemma 186 for attribute consistent partial orders
and follows here:
We prove the equality of the two sets by proving that the two sets are subsets of each other. So
for the two proofs assume that p and p1 are partial orders and cis a set of concept-intersections
such that

226.0 IsAttrConsistent(p) ∧ IsAttrConsistent(p1) ∧ IsDownset(p)(cis) ∧ p1 ⊆ p

Proof of LHS ⊆ RHS : From 173.1 we get immediately

227.0 AttributionCA(p)(α)(cis ∩ p1) ⊆ AttributionCA(p)(α)(cis)

and consequently also

228.0 AttributionCA(p)(α)(cis ∩ p1) ∩ p1 ⊆ AttributionCA(p)(α)(cis) ∩ p1

Proof of RHS ⊆ LHS : We must prove

229.0 AttributionCA(p)(α)(cis) ∩ p1 ⊆ AttributionCA(p)(α)(cis ∩ p1) ∩ p1

If AttributionCA(p)(α)(cis) ∩ p1 = {} then the inclusion is obvious, so in the sequel assume
that

230.0 AttributionCA(p)(α)(cis) ∩ p1 6= {}
Then assume that aci is an arbitrary concept-intersection such that

231.0 aci ∈ AttributionCA(p)(α)(cis) ∩ p1

So, according to the equation 172 for AttributionCA we have

232.0 aci ∈ DownSetC (p)(atCIs(α)(cis)) ∩ p1

Hence

233.0 aci ∈ p1

.1 aci ∈ DownSetC (p)(atCIs(α)(cis))

From the fact that p1 ⊆ p and the downset property 15 we also have

234.0 aci ∈ DownSetC (p1)(atCIs(α)(cis))

From the assumption 226 and the definition of IsDownSet (9) we have

235.0 IsDownSet(p1)(cis)

Next, applying 234 and 235 to the lemma 186 for attribute consistent partial orders gives

236.0 AttrArgCI (α)(aci) ∈ cis ∩ p1

Next, applying 215 gives

237.0 attrCI (α)(AttrArgCI (α)(aci)) ∈ atCIs(α)(cis ∩ p1)

According to 180 we have

238.0 ISAP (aci , attrCI (α)(AttrArgCI (α, aci)))

11 CONCEPT ALGEBRAS 60

From 237 and 238 we may now conclude that

239.0 aci ∈ DownSetC (p)(atCIs(α)(cis ∩ p1))

which combined with 233 gives

240.0 aci ∈ DownSetC (p)(atCIs(α)(cis ∩ p1)) ∩ p1

Finally, using the definition of AttributionCA (169) gives

241.0 aci ∈ AttributionCA(p)(α)(cis ∩ p1) ∩ p1

Term Value Properties in Concept Algebras: Let bset be a set of basic concepts, t a
term, and let p1 and p2 be subsets of P(bset), we then have

242.0 IsAttrConsistent(p1) ⇒
.1 p1 ⊆ p2 ⇒ EvalCA(p1)(t) = EvalCA(p2)(t) ∩ p1

243.0 IsAttrConsistent(p1) ∧ IsAttrConsistent(p2) ⇒
.1 EvalCA(p1 ∪ p2)(t) = EvalCA(p1)(t) ∪ EvalCA(p2)(t)

244.0 IsAttrConsistent(p1) ∧ IsAttrConsistent(p2) ⇒
.1 EvalCA(p1 ∩ p2)(t) = EvalCA(p1)(t) ∩ EvalCA(p2)(t)

Properties 243 and 244 are easily proved from 242 and 175.0 in the same way that 42.3 and 42.4
were proved from 42.0 and 42.2 as shown in section B.3

A proof of 242 is based on the property 225 for attribution and follows here. So let t be a
term and p1 and p2 subsets of P(bset) and assume the left-hand side of both implications in
242 above:

245.0 IsAttrConsistent(p1)
.1 p1 ⊆ p2

We prove the right-hand side of the implication by structural induction on the term structure:

bottom:
EvalCA(p1)(bottom) = {} = EvalCA(p2)(bottom) ∩ p1

top:
EvalCA(p1)(top) = p1

from 245.1
= p2 ∩ p1 = EvalCA(p2)(top) ∩ p1

Named concept c:
EvalCA(p1)(c) = cValueC (p1)(c)
= DownSet(p1)({mk -CI ({c})})

from 15
= DownSet(p2)({mk -CI ({c})}) ∩ p1

= cValueC (p2)(c) ∩ p1

= EvalCA(p2)(c) ∩ p1

12 CONCEPT ALGEBRAS SATISFYING A SET OF EQUATIONS 61

Next, in the induction steps, when considering compound terms, assume 242 is true for the
sub-terms (the induction hypothesis):

mk -Join(t1, t2):
EvalCA(p1)(mk -Join(t1, t2))

from 174
= JoinL(EvalCA(p1)(t1),EvalCA(p1)(t2))

from 30
= EvalCA(p1)(t1) ∪ EvalCA(p1)(t2)

from induction hypothesis
= (EvalCA(p2)(t1) ∩ p1) ∪ (EvalCA(p2)(t2) ∩ p1)
= (EvalCA(p2)(t1) ∪ EvalCA(p2)(t2)) ∩ p1

= JoinL(EvalCA(p2)(t1),EvalCA(p2)(t2)) ∩ p1

from 174
= EvalCA(p2)(mk -Join(t1, t2)) ∩ p1

mk -Meet(t1, t2): Similar to the proof for Join.

mk -Attr(α, t):
EvalCA(p1)(mk -Attr(α, t))

from 174
= AttributionCA(p1)(α)(EvalCA(p1)(t))

from induction hypothesis
= AttributionCA(p1)(α)(EvalCA(p2)(t) ∩ p1)

from 173.3
= AttributionCA(p2)(α)(EvalCA(p2)(t) ∩ p1) ∩ p1

from 225
= AttributionCA(p2)(α)(EvalCA(p2)(t)) ∩ p1

from 174
= EvalCA(p2)(mk -Attr(α, t)) ∩ p1

11.4 A Concept Algebra is a Generated Algebra.

Assume cset is a set of concepts, aset a set of attributes, bset a finite set of basic concepts, and
p ⊆ P(bset) is a finite partial order of concept-intersections such that Conforms(cset , aset)(p).
We then have

Lemma The algebra CA(cset , aset , p) is a generated algebra if and only if p is attribute-
consistent.

12 Concept Algebras Satisfying a Set of Equations

Assume cset is a set of concepts, aset a set of attributes, and bset a finite set of basic concepts
build from cset and aset . We now consider how to compute an attribute consistent partial
order p ⊆ P(bset) such that the concept algebra CA(cset , aset , p) satisfies a given set of
(ground) equations eqs : Eq-set (besides the set of basic Concept Algebra equations). Thanks
to the properties 242 and 243 we are able to proceed almost as in section 5.

In the sequel we call an attribute consistent partial order, in which a set of equations is
satisfied, a solution for the set of equations. Let

12 CONCEPT ALGEBRAS SATISFYING A SET OF EQUATIONS 62

246.0 IsEqsSolCA : Eq-set → PO → B
.1 IsEqsSolCA (eqs)(p) 4
.2 IsAttrConsistent(p) ∧
.3 ∀mk -Eq(t1, t2) ∈ eqs · EvalCA(p)(t1) = EvalCA(p)(t2)

So we are looking for a way to compute the set of solutions:

247.0 {p | p ⊆ P(cset) · IsEqsSolCA(eqs)(p)}
Assume we have an equation t1 = t2. The property below concerns the relation between
solutions for such an equation.

248.0 ∀ p1, p2 : PO , t1, t2 : Term ·
.1 IsAttrConsistent(p1) ∧
.2 p1 ⊆ p2∧EvalCA(p2)(t1) = EvalCA(p2)(t2) ⇒ EvalCA(p1)(t1) = EvalCA(p1)(t2)

In words, if we have a solution p2 to an equation t1 = t2 then every attribute consistent subset
p1 of that solution is also a solution. Consequently, we only need to compute the maximal
partial order satisfying the equation. Property 248 may easily be proved from 242:

Assume the left-hand side of the implication in 248 above, i.e.

249.0 IsAttrConsistent(p1),
.1 p1 ⊆ p2,
.2 EvalCA(p2)(t1) = EvalCA(p2)(t2)

Then we have the following equalities.
EvalCA(p1)(t1)

assumptions 249 and 242
= EvalCA(p2)(t1) ∩ p1

249.2
= EvalCA(p2)(t2) ∩ p1

assumptions 249 and 242
= EvalCA(p1)(t2)

Property 248 can easily be extended to a set of equations:

250.0 ∀ p1, p2 : PO , eqs : Eq-set ·
.1 IsAttrConsistent(p1) ∧
.2 p1 ⊆ p2 ∧ IsEqsSolCA(eqs)(p2) ⇒ IsEqsSolCA(eqs)(p1)

Just as in section 5 we have two approaches for constructing solutions to a set of equations,
namely the additive and the subtractive method.

12.1 The Additive Method

Let t1 = t2 be an equation, and let p1 and p2 be two attribute consistent partial orders in
which the equation is satisfied, i.e.

251.0 EvalCA(p1)(t1) = EvalCA(p1)(t2) and
.1 EvalCA(p2)(t1) = EvalCA(p2)(t2)

12 CONCEPT ALGEBRAS SATISFYING A SET OF EQUATIONS 63

Using first 243 and then the equations in 251 we get
EvalCA(p1 ∪ p2)(t1)
= EvalCA(p1)(t1) ∪ EvalCA(p2)(t1) = EvalCA(p1)(t2) ∪ EvalCA(p2)(t2)
= EvalCA(p1 ∪ p2)(t2)

Hence

252.0 IsAttrConsistent(p1) ∧ IsAttrConsistent(p2) ⇒
.1 EvalL(p1 ∪ p2)(t1) = EvalL(p1 ∪ p2)(t2)

In words, if an equation is satisfied in two attribute consistent partial orders p1 and p2 it will
also be satisfied in the union of these partial orders. Notice, that the union of two attribute
consistent partial orders is also attribute consistent. This can easily be extended to a set of
equations:

253.0 ∀ eqs : Eq-set, p1, p2 : PO ·
.1 IsEqsSolCA(eqs)(p1) ∧ IsEqsSolCA(eqs)(p2) ⇒ IsEqsSolCA(eqs)(p1 ∪ p2)

The property above shows us that if we have found two small solutions we can get a new
bigger solution by making the union of the small solutions. So we can construct a solution
by making the union af small solutions. Now the smallest possible solutions are the smallest
subsets p ⊆ P(bset) which are attribute consistent. These subsets are constructed using the
function extCIS (def. 206) defined in section 10.2. Given the set of basic concepts, the set of
building blocks for a solution is

254.0 SolBB : B -set → CI -set-set

.1 SolBB (bset) 4
⋃ {extCIS ({mk -CI (bs)}) | bs : B -set · bs ⊆ bset}

So given a set of equations we can now build the maximal solution from all the building blocks
which are solutions to the equations:

255.0 MaxPOCA : B -set → Eq-set → PO

.1 MaxPOCA (bset)(eqs) 4
⋃ {p | p ∈ SolBB(bset) · IsEqsSolCA(eqs)(p)}

According to the previous exposition we have

256.0 let pmax = MaxPOCA(bset)(eqs) in

.1 pmax ⊆ P(bset) ∧ IsEqsSolCA(eqs)(pmax)

Example We use the example in section 9.2 and figure 13. So the set of basic concepts
is bset = {x , y , a(x)}. In the table below the first column contains all the possible concept-
intersections, one in each row. Each row in the second column contains the building block

12 CONCEPT ALGEBRAS SATISFYING A SET OF EQUATIONS 64

extCI (ci) containing the corresponding ci .

ci p = extCIS ({ci}) EvalCA(p)(y) EvalCA(p)(x) EvalCA(p)(a(x))
[x] [x] [x]
[y] [y] [y]
[a(x)] [a(x)], [x] [x] [a(x)]
[x , y] [x , y] [x , y] [x , y]
[x , a(x)] [x , a(x)], [x] [x], [x , a(x)] [x , a(x)]
[y , a(x)] [y , a(x)], [x] [y , a(x)] [x] [y , a(x)]
[x , y , a(x)] [x , y , a(x)], [x] [x , y , a(x)] [x , y , a(x)], [x] [x , y , a(x)]

We want to find the maximal solution to the equation y = a(x) . So in the next three columns
each row contains the values of the terms y , x and a(x) in the partial order constituted by the
corresponding building block. We can see that the equation is satisfied in the partial orders
in the two last rows. Hence

MaxPOCA(bset)({y = a(x)})
= {[y , a(x)], [x]} ∪ {[x , y , a(x)], [x]} = {[x], [y , a(x)], [x , y , a(x)]}

This is the solution shown in figure 13. 2

Example In this example the set of basic concepts is bset = {x , y , a(x), a(y)} and we have
one equation x ≤ y . In figure 16 the table has a row for each building block (as defined by
SolBB(bset)). Column 3 and 4 shows the value of the terms x , a(x) and y , a(y). In the
last column a + indicates that the equation x ≤ y is satisfied in the corresponding building
block partial order. The reader can easily verify that for these partial orders we also have
a(x) ≤ a(y) as required by the monotonicity rule 135.

According to 255 we get the maximal solution pmax = MaxPOCA(bset)(eqs) by making
the union of all the building block partial orders for which x ≤ y . This partial order is shown
in the figure below.

[y] [a(y)]

[x , y] [y , a(y)]

QQQQQQQQQQQQQQQ

llllllllllllll
[a(x), a(y)]

[x , y , a(y)]

mmmmmmmmmmmm
[y , a(x), a(y)]

RRRRRRRRRRRRR

[x , y , a(x), a(y)]

QQQQQQQQQQQQ

lllllllllllll

2

12.2 The Subtractive Method

Let t1 = t2 be an equation, let pc = P(bset) and let
cis1 = EvalCA(pc)(t1) and cis2 = EvalCA(pc)(t2)

12 CONCEPT ALGEBRAS SATISFYING A SET OF EQUATIONS 65

ci p = extCIS ({ci}) {EvalCA(p)(x)}
{EvalCA(p)(a(x))}

{EvalCA(p)(y)}
{EvalCA(p)(a(y))} x ≤ y

[x] [x] {[x]}
{} -

[y] [y] {[y]}
{} +

[x , y] [x , y] {[x ,y]}
{}

{[x ,y]}
{} +

[a(x)] [a(x)], [x] {[x]}
{[a(x)]} -

[a(y)] [a(y)], [y] {[y]}
{[a(y)]} +

[x , a(x)] [x , a(x)], [x] {[x ,a(x)],[x]}
{} -

[y , a(x)] [y , a(x)], [x] {[x]}
{[y,a(x)]}

{[y,a(x)]}
{} -

[x , a(y)] [x , a(y)], [y] {[x ,a(y)]}
{}

{[y]}
{[x ,a(y)]} -

[y , a(y)] [y , a(y)], [y] {[y,a(y)],[y]}
{[y,a(y)]} +

[x , y , a(x)] [x , y , a(x)], [x] {[x ,y,a(x)],[x]}
{[x ,y,a(x)]}

{[x ,y,a(x)]}
{} -

[x , y , a(y)] [x , y , a(y)], [y] {[x ,y,a(y)]}
{}

{[x ,y,a(y)],[y]}
{[x ,y,a(y)]} +

[a(x), a(y)] [a(x), a(y)], [x , y] {[x ,y]}
{[a(x),a(y)]}

{[x ,y]}
{[a(x),a(y)]} +

[x , a(x), a(y)] [x , a(x), a(y)], [x , y] {[x ,a(x),a(y)],[x ,y]}
{[x ,a(x),a(y)]}

{[x ,y]}
{[x ,a(x),a(y)]} -

[y , a(x), a(y)] [y , a(x), a(y)], [x , y] {[x ,y]}
{[y,a(x),a(y)]}

{[y,a(x),a(y)],[x ,y]}
{[y,a(x),a(y)]} +

[x , y , a(x), a(y)] [x , y , a(x), a(y)], [x , y] {[x ,y,a(x),a(y)],[x ,y]}
{[x ,y,a(x),a(y)]}

{[x ,y,a(x),a(y)],[x ,y]}
{[x ,y,a(x),a(y)]} +

Figure 16: The set of building blocks for bset = {x , y , a(x), a(y)}. Column 3 and 4 shows the
value of x ,a(x) and y ,a(y) in the building block partial order.

then
eqrej0 = (cis1 ∪ cis2) \ (cis1 ∩ cis2)

is the set of all the concept-intersections not occurring in both cis1 and cis2, i.e. the set
of concept-intersections causing t1 and t2 to evaluate to different values. So these concept-
intersections must be removed from pc . However — compared to the subtractive method de-
scribed in section 5.2 — we must now assure that the remaining set of concept-intersections is
attribute-consistent. So let p′ be an arbitrary attribute-consistent sub-set of pc not containing
eqrej0:

p′ ⊆ pc \ eqrej0 ∧ IsAttrConsistent(p′)

We are interested in the part of p′ which is in cis1 ∪ cis2. Using the fact that p′ ⊆ pc \ eqrej0
we now have

257.0 p′ ∩ (cis1 ∪ cis2)
.1 ⊆ (pc \ eqrej0) ∩ (cis1 ∪ cis2)
.2 = ((cis1 ∪ cis2) \ eqrej0)
.3 = (cis1 ∪ cis2) \ ((cis1 ∪ cis2) \ (cis1 ∩ cis2))
.4 = cis1 ∩ cis2

So the part of p ′ which is in cis1 ∪ cis2 is also in cis1 ∩ cis2. We can use this to evaluate t1

12 CONCEPT ALGEBRAS SATISFYING A SET OF EQUATIONS 66

and t2 in the partial order p′:

258.0 EvalCA(p′)(t1)

.1
using 242 gives

= EvalCA(pc)(t1) ∩ p ′

.2 = cis1 ∩ p′

.3
using 257 gives

⊆ cis1 ∩ cis2
.4 ⊆ cis2

Using this set-inclusion now gives
EvalCA(p′)(t1)

from above
= cis1 ∩ p′

using the set-inclusion 258 above
= cis1 ∩ cis2 ∩ p′

We can of course do the same with t2, so
EvalCA(p′)(t1) = EvalCA(p′)(t2) = cis1 ∩ cis2 ∩ p′

Consequently, the equation t1 = t2 is satisfied in any attribute-consistent partial order p′ not
containing the concept-intersections rejected by the equation.

Considering a set of equations {eq1, eq2, . . . , eqn}, each equation eqi gives rise to a set
of concept-intersections eqrej0i as defined above, which must not be in the resulting partial
order. So let p′ be an attribute-consistent partial order not containing any of these rejected
sets:

p′ ⊆ pc \ (eqrej01 ∪ eqrej02 ∪ . . . ∪ eqrejn)
∧ IsAttrConsistent(p′)

Then, according to the argumentation above, each equation eqi is satisfied in p ′. Finally, to
get the maximal solution, we use restrCIS to get the attribute-consistent subset:

259.0 EqRej : CI -set → Eq → CI -set

.1 EqRej (p)(mk -Eq(t1, t2)) 4

.2 let cis1 = EvalCA(p)(t1),

.3 cis2 = EvalCA(p)(t2) in

.4 (cis1 ∪ cis2) \ (cis1 ∩ cis2)

260.0 MaxPOCA : B -set → Eq-set → PO

.1 MaxPOCA (bset)(eqs) 4

.2 let pc = P(bset) in

.3 let rejected =
⋃ {EqRej (pc)(eq) | eq ∈ eqs} in

.4 restrCIS (pc \ rejected)

12.3 The Set of Concept Algebras Satisfying a Set of Equations

Let cset and aset be the set of concepts and attributes and bset a set of basic concepts
created from cset and aset . Let pmax = MaxPOCA(bset)(eqs). This is the greatest partial
order satisfying the set eqs of equations. According to 250 all attribute consistent subsets of
this partial order are also solutions to the set of equations. We define the corresponding set
of concept algebra solutions

13 THE CONCEPT ALGEBRA OF ANTI-CHAINS 67

261.0 CCA-eqs = {CA(cset , aset , p) | p : PO · p ⊆ pmax ∧ IsAttrConsistent(p)}
As in section 5.3 we have in CCA-eqs two solutions of special interest, namely the initial concept
algebra CA(cset , aset , pmax) and the most disjoint concept algebra CA(cset , aset , pmdsj).

12.3.1 The Initial Concept Algebra

In the class CCA-eqs of Concept Algebras defined above CA(cset , aset , pmax) is the initial
concept algebra or most general concept algebra. This is equivalent to saying that for each
attribute consistent p ⊆ pmax there is a unique homomorphism from CA(cset , aset , pmax) to
CA(cset , aset , p). For a given p ⊆ pmax , that homomorphism is defined by the function h:
h :O(pmax) → O(p) such that

h(cis) = cis ∩ p, cis ∈ O(pmax)

Now

h(JoinC (cis1, cis2)) = (cis1∪cis2)∩p = (cis1∩p)∪(cis2∩p) = JoinC (h(cis1), h(cis2))
h(MeetC (cis1, cis2)) = (cis1∩cis2)∩p = (cis1∩p)∩(cis2∩p) = MeetC (h(cis1), h(cis2))

According to the definition of constants (174.8, 168) we have

h(cpmax ()) = cValueC (pmax)(c) ∩ p = DownSet(pmax)({mk -CI ({c})}) ∩ p
= {mk -CI (cs) | mk -CI (cs) ∈ pmax · c ∈ cs} ∩ p
= {mk -CI (cs) | mk -CI (cs) ∈ pmax ∩ p · c ∈ cs}
= cValueC (p)(c) = cp()

Similar for the constants top and bottom.
Finally we must consider the attribution operation.

h(AttributionCA(pmax)(α)(cis)) = AttributionCA(pmax)(α)(cis) ∩ p
from 173.3

= AttributionCA(p)(α)(cis)

Consequently h is a homomorphism.
One should notice, that although CA(cset , aset , pmax) is initial in the class CCA-eqs ,

CA(cset , aset , pmax) is certainly not a freely generated algebra. Due to the finite attribution
approach we know that for some level of attribution nesting the term a(a(. . . a(c) . . .)) will
evaluate to ⊥. This equality in CA(cset , aset , pmax) is not derivable from the set of equations
from which pmax was computed.

13 The Concept Algebra of Anti-chains

In this section we define the concept algebra of anti-chains corresponding to the lattice of
anti-chains defined in 4.1. Given a concept algebra CA(cset , aset , p) we can easily define the
isomorphic lattice where the elements are the antichain-part of the elements in O(p). As
in section 4.1, we denote the set of new lattice elements N (p). It is defined as in 43. The
corresponding algebra is

262.0 NCA(cset , aset , p) =
.1 < N (p); JoinN ,MeetN ,AN (p)(aset),CN (p)(cset),topN ,bottomN >

13 THE CONCEPT ALGEBRA OF ANTI-CHAINS 68

where JoinN , MeetN , CN (p)(cset), topN , bottomN and also ISAN are as defined in section
4.1. Compared to section 4.1 we now also have to redefine the unary operators corresponding
to the set of attributes aset :

AN (p)(aset) = {AttributionN (p)(α) | α ∈ aset}
where

263.0 AttributionN : PO → A → CI -set → CI -set

.1 AttributionN (p)(α)(ac) 4 AntiCh(AttributionCA(p)(α)(DownSet(p)(ac)))

Here AttributionN is defined from AttributionCA (def. 169) by converting between down-sets
and anti-chains using DownSet and AntiCh (in the same way as was done in section 4.1).
Given the definitions of the operations in NCA(cset , aset , p) we can now define the evaluation
of terms in the new algebra:

264.0 EvalNCA : PO → Term → CI -set

.1 EvalNCA (p)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinN (p)(EvalNCA(p)(t1),EvalNCA(p)(t2)),

.4 mk -Meet(t1, t2) → MeetN (p)(EvalNCA(p)(t1),EvalNCA(p)(t2)),

.5 mk -Attr(α, t) → AttributionN (p)(α)(EvalNCA(p)(t)),

.6 (top) → AntiCh(p),

.7 (bottom) → {},

.8 c → cValueN (p)(c)

.9 end

In section 4.1 it was shown how the operations JoinN , MeetN , cValueN and ISAN could be
implemented directly as operations on anti-chains without having to convert between down-
sets and anti-chains. We can do the same with AttributionN . If we use the definition of
AttributionCA we get

AttributionN (p)(α)(ac)
= AntiCh(DownSetC (p)({attrCI (α)(ci) | ci ∈ DownSet(p)(ac)}))
= CISproj (p)({attrCI (α)(ci) | ci ∈ ac})

where attrCI is defined in 170. So together with the operations defined in section 4.1 we
have an implementation of all the operations in NCA(cset , aset , p) working directly on the
anti-chain values.

13.1 Evaluation in the Power Set Partial Order

We saw in section 7 that in order to make an efficient implementation of the most disjoint
lattice we needed an efficient implementation of the evaluation function, which evaluates in
the power-set partial order. So here we do the same again, so we have it ready for section 15.
We define the specialized function EvalNCAP such that

265.0 EvalNCAP (bset)(t) = EvalNCA(P(bset))(t)

14 THE MOST DISJOINT CONCEPT ALGEBRA 69

266.0 EvalNCAP : Bset → Term → CI -set

.1 EvalNCAP (bset)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinNCAP (EvalNCAP (bset)(t1),EvalNCAP (bset)(t2)),

.4 mk -Meet(t1, t2) → MeetNCAP (EvalNCAP (bset)(t1),EvalNCAP (bset)(t2)),

.5 mk -Attr(α, t) → {attrCI (α)(ci) | ci ∈ EvalNCAP (bset)(t)},

.6 (top) → {mk -CI ({b}) | b ∈ bset},

.7 (bottom) → {},

.8 c → {mk -CI ({c})}

.9 end

In order to have the full definition of EvalNCAP available here we repeat the definitions
from section 7:

267.0 JoinNCAP : CI -set× CI -set → CI -set

.1 JoinNCAP (ac1, ac2) 4 AntiCh(ac1 ∪ ac2)

268.0 MeetNCAP : CI -set× CI -set → CI -set

.1 MeetNCAP (ac1, ac2) 4

.2 let cis = {mk -CI (bs1 ∪ bs2) | mk -CI (bs1) ∈ ac1,mk -CI (bs2) ∈ ac2} in

.3 AntiCh(cis)

As can be seen from the definition of EvalNCAP above it is only the term top that actually
uses the bset-argument. Later we will find it convenient to have a version of EvalNCAP

which do not need the bset argument and consequently only can evaluate restricted terms not
containing a top-subterm:

269.0 Eval ′NCAP : Termr → CI -set

.1 Eval ′NCAP (t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinNCAP (Eval ′NCAP (t1),Eval ′NCAP (t2)),

.4 mk -Meet(t1, t2) → MeetNCAP (Eval ′NCAP (t1),Eval ′NCAP (t2)),

.5 mk -Attr(α, t) → {attrCI (α)(ci) | ci ∈ Eval ′NCAP (t)},

.6 (bottom) → {},

.7 c → {mk -CI ({c})}

.8 end

14 The Most Disjoint Concept Algebra

In order to define the concept of a most disjoint concept algebra — corresponding to the most
disjoint lattice defined in section 6 — we must prove lemmas and theorems corresponding to
the lemmas and theorems in section 6.2. We will consider the special term value preserving
properties in concept algebras, so compared to the proofs in section 6.2 we will assume that
the partial order is attribute consistent.

14 THE MOST DISJOINT CONCEPT ALGEBRA 70

Lemma

270.0 ∀ t : Term, pm : PO ·
.1 IsAttrConsistent(pm) ⇒
.2 let ptn = EvalNCA(pm)(t) in

.3 ∀ p : PO · ptn ⊆ p ∧ p ⊆ pm ∧ IsAttrConsistent(p)

.4 ⇒ EvalNCA(p)(t) = EvalNCA(pm)(t) = EvalCA(ptn)(t)

Evaluating a term t (using EvalNCA) in an attribute consistent partial order pm and in any
attribute consistent subset partial order p, which includes the normal form value ptn of the
term t in pm, yields the same normal form value.

Proof: Assume the left hand side

271.0 ptn ⊆ p ∧ p ⊆ pm ∧ IsAttrConsistent(p)

From the term-value property 242 and the two rightmost conjuncts in 271 we get

272.0 EvalCA(p)(t) ⊆ EvalCA(pm)(t)
.1 EvalCA(p)(t) = EvalCA(pm)(t) ∩ p

From 270.2 we now get
ptn = EvalNCA(pm)(t) = AntiCh(EvalCA(pm)(t)) ⊆ EvalCA(pm)(t)

because an anti-chain of a set ds is a subset of ds. Combining this subset inclusion with the
left conjunct in 271 gives

ptn ⊆ EvalCA(pm)(t) ∩ p
from 272.1

= EvalCA(p)(t)

Again, combining this subset inclusion with the one in 272.0 gives
ptn = AntiCh(EvalCA(pm)(t)) ⊆ EvalCA(p)(t) ⊆ EvalCA(pm)(t)

If we use the anti-chain property 21 to the above subset inclusion of an antichain we get
AntiCh(EvalCA(p)(t)) = AntiCh(EvalCA(pm)(t))

which is equivalent to

273.0 EvalNCA(p)(t) = EvalNCA(pm)(t)

Next we prove the equality to EvalCA(ptn)(t). From 175.1 we get
EvalCA(ptn)(t) ⊆ ptn

ptn is an anti-chain and so are all of its subsets, so EvalCA(ptn)(t) is an anti-chain. From the
anti-chain property 20 we then get

EvalNCA(ptn)(t) = AntiCh(EvalCA(ptn)(t)) = EvalCA(ptn)(t)

Finally from 273 for p = ptn and the equality above we get
EvalNCA(pm)(t) = EvalNCA(ptn)(t) = EvalCA(ptn)(t)

which together with the equality in 273 gives the equalities in 270.4.

14 THE MOST DISJOINT CONCEPT ALGEBRA 71

Lemma

274.0 ∀ t : Term, pm : PO ·
.1 IsAttrConsistent(pm) ⇒
.2 let ptn = EvalNCA(pm)(t) in

.3 ∀ p : PO · ¬ ptn ⊆ p ⇒ EvalNCA(p)(t) 6= EvalNCA(pm)(t)

Evaluating a term t (using EvalNCA) in an attribute consistent partial order pm and in any
subset partial order p, which does not include the normal form value of the term t in pm
yields different normal form values.

Proof: Assume the left hand side of the implication:
¬ ptn ⊆ p

so ptn has a non-empty subset not in p:
{} ⊂ ptn \ p ⊆ ptn = EvalNCA(pm)(t)

So EvalNCA(pm)(t) has a nonempty subset, which is not in p. But for EvalNCA(p)(t) we have

EvalNCA(p)(t) ⊆ EvalCA(p)(t) ⊆ p

Hence
EvalNCA(pm)(t) 6= EvalNCA(p)(t)

The properties in lemma 270 and 274 can now be combined in the following theorem:

Theorem

275.0 ∀ t : Term, pm : PO ·
.1 IsAttrConsistent(pm) ⇒
.2 let ptn = EvalNCA(pm)(t) in

.3 ∀ p : PO · p ⊆ pm ∧ IsAttrConsistent(p) ⇒

.4 ptn ⊆ p ⇔ EvalNCA(p)(t) = EvalNCA(pm)(t)

The proof follows directly from the lemmas 270, and 274. The theorem above shows that if
we want to have the term t evaluated to the same normal form value as in the given partial
order pm, then we can use exactly all the subsets of pm, which are attribute consistent and
contain the normal form value of the term in pm.

Next, we consider a set of terms and a partial order pm. In which sub partial or-
ders will all the given terms have the same normal form value as in pm? So the first
question is what to do if we want to preserve the value of two terms t1 and t2? For t1
we can use all the attribute consistent partial orders between EvalNCA(pm)(t1) and pm,
and for t2 we can use all the attribute consistent partial orders between EvalNCA(pm)(t2)
and pm. Actually, the smallest attribute consistent partial order between EvalNCA(pm)(t1)
and pm is extCIS (EvalNCA(pm)(t1)) and similar for the t2 case. Consequently, to keep
the value of both t1 and t2 we can use all the attribute consistent partial orders between
extCIS (EvalNCA(pm)(t1)) ∪ extCIS (EvalNCA(pm)(t2)) and pm. The next theorem general-
izes this to an arbitrary set of terms: Given a set of terms and a partial order pm. In which
sub partial orders will all the given terms have the same normal form value as in pm? The
next theorem corresponds to theorem 81.

14 THE MOST DISJOINT CONCEPT ALGEBRA 72

Theorem

276.0 ∀ tset : Term-set, pm : PO ·
.1 IsAttrConsistent(pm) ⇒
.2 let pts =

⋃ {extCIS (EvalNCA(pm)(t)) | t ∈ tset} in

.3 ∀ p : PO · p ⊆ pm ∧ IsAttrConsistent(p) ⇒

.4 (pts ⊆ p ⇔ ∀ t ∈ tset · EvalNCA(p)(t) = EvalNCA(pm)(t))

Proof: Assume the left hand side of the two outermost implications above

277.0 IsAttrConsistent(pm) ∧ IsAttrConsistent(p) ∧ p ⊆ pm

Now, to prove the right hand side equivalence, we prove the left to right and right to left
implications individually.
Left to Right: So we first assume the left hand side

278.0 pts ⊆ p

Next, let t be an arbitrary term in tset :
t ∈ tset

According to the theorem 275 and the assumptions in 277 we then have

279.0 EvalNCA(pm)(t) ⊆ p ⇔ EvalNCA(p)(t) = EvalNCA(pm)(t)

Because extCIS (EvalNCA(pm)(t)) is the smallest attribute consistent partial order that con-
tains EvalNCA(pm)(t) and p is attribute consistent we have

280.0 EvalNCA(pm)(t) ⊆ p ⇔ extCIS (EvalNCA(pm)(t)) ⊆ p

so we may rewrite 279 above to

281.0 extCIS (EvalNCA(pm)(t)) ⊆ p ⇔ EvalNCA(p)(t) = EvalNCA(pm)(t)

From 278 and the definition of pts the left hand side above is true and consequently also the
right hand side:

EvalNCA(p)(t) = EvalNCA(pm)(t)

Right to Left: Next, we must prove the right to left implication in the equivalence:
(∀ t ∈ tset · EvalNCA(p)(t) = EvalNCA(pm)(t)) ⇒ pts ⊆ p

so assume
∀ t ∈ tset · EvalNCA(p)(t) = EvalNCA(pm)(t)

From 277 and theorem 275 this may be transformed to
∀ t ∈ tset · EvalNCA(pm)(t) ⊆ p

Again, if we use that p is attribute consistent and that extCIS (EvalNCA(pm)(t)) is the smallest
attribute consistent partial order containig EvalNCA(pm)(t) we get

∀ t ∈ tset · extCIS (EvalNCA(pm)(t)) ⊆ p

So ⋃ {EvalNCA(pm)(t) | t ∈ tset} ⊆ p

which is equivalente to
pts ⊆ p

14 THE MOST DISJOINT CONCEPT ALGEBRA 73

14.1 The Most Disjoint Concept Algebra and its Properties

Given a set of basic concepts, a set of equations eqs and a set of user-specified inserted terms,
the function below now finds the partial order for the concept algebra which we call the most
disjoint concept algebra with respect to the given set of terms.

282.0 TMdisjPOCA : Bset → Eq-set → Term-set → PO

.1 TMdisjPOCA (bset)(eqs)(insterms) 4

.2 let pmax = MaxPOCA(bset)(eqs) in

.3
⋃ {extCIS (EvalNCA(pmax)(t)) | t ∈ insterms}

In 282.2 pmax is the maximal partial order satisfying the given set of equations eqs. In line
282.3 the most disjoint concept algebra is defined to be the set of concept-intersections which
is the union of the extended normal form value in pmax of all the inserted terms.

From theorem 276 and the definition of the most disjoint concept algebra above we can
easily derive the following property for most disjoint concept algebras:

Term-value Preserving Property of Most Disjoint Concept Algebra Let bset be a
set of basic concepts, eqs a set of equations about these concepts and insterms a set of user
specified inserted terms.

283.0 let pmax = MaxPOCA(bset)(eqs),
.1 pmdsj = TMdisjPOCA(bset)(eqs)(insterms) in

.2 ∀ p : PO · p ⊆ pmax ∧ IsAttrConsistent(p) ⇒

.3 (pmdsj ⊆ p ⇔ ∀ t ∈ insterms · EvalNCA(p)(t) = EvalNCA(pmax)(t))

In the most disjoint concept algebra NCA(cset , aset , pmdsj) all the inserted terms evaluate to
the same normal form value as they do in the initial concept algebra NCA(cset , aset , pmax).
Furthermore, the most disjoint concept algebra is the smallest concept algebra having this
property in the sense that all concept algebras based on a partial order not containing pmdsj
do not have this property.

Example We continue with the example on page 64. With bset = {x , y , a(x), a(y)} and
the equation x ≤ y we found the maximal partial order pmax

[y] [a(y)]

[x , y] [y , a(y)]

QQQQQQQQQQQQQQQ

llllllllllllll
[a(x), a(y)]

[x , y , a(y)]

mmmmmmmmmmmm
[y , a(x), a(y)]

RRRRRRRRRRRRR

[x , y , a(x), a(y)]

QQQQQQQQQQQQ

lllllllllllll

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 74

In this partial order pmax the terms x , y , a(x) and a(y) evaluates as follows:

t EvalCA(pmax)(t)
x [x , y], [x , y , a(x)], [x , y , a(x), a(y)]
y [y], [y , a(y)], [y , a(x), a(y)] ∪ EvalCA(pmax)(x)

a(x) [a(x), a(y)], [y , a(x), a(y)], [x , y , a(x), a(y)]
a(y) [a(y)], [y , a(y)], [x , y , a(y)] ∪ EvalCA(pmax)(a(x))

t EvalNCA(pmax)(t)
x [x , y]
y [y]

a(x) [a(x), a(y)]
a(y) [a(y)]

Now, let the set of inserted terms be terms = {a(x), a(y)}. Following the definition of
TMdisjPOCA (def. 282) we can now construct the corresponding most disjoint concept al-
gebra as follows:

insterm EvalNCA(pmax)(insterm) extCIS (EvalNCA(pmax)(insterm))
a(x) [a(x), a(y)] [x , y], [a(x), a(y)]
a(y) [a(y)] [y], [a(y)]

So the partial order for the most disjoint concept algebra is the union of the extended normal
form values in the right column:

pmdsj = {[x , y], [a(x), a(y)]} ∪ {[y], [a(y)]} [y] [a(y)]

[x , y] [a(x), a(y)]

15 Implementation of the Most Disjoint Concept Algebra

In this section we show how to make an efficient implementation of the most disjoint concept
algebra as defined in 282 section 14.1. We will try to proceed almost as in section 7. But of
course there will be some important differences, which turn up in the way an equation accepts
and rejects concept-intersections. Furthermore, in section 7 we gave a very open/general
specification of the algorithm which allowed several concrete implementations. Here we will
not try to specify such a general algorithm, but we prefer (for the moment/in this report) to
specify a very concrete algorithm.

Notice that in order to avoid the explicit knowledge of the set bset of basic concepts we
will assume that terms in equations and inserted terms are restricted to terms not containing
a top-subterm.

Our starting point is the definition of TMdisjPOCA in 282, which we repeat here:

284.0 TMdisjPOCA : Bset → Eq-set → Termr -set → PO

.1 TMdisjPOCA (bset)(eqs)(insterms) 4

.2 let pmax = MaxPOCA(bset)(eqs) in

.3
⋃ {extCIS (EvalNCA(pmax)(t)) | t ∈ insterms}

As in section 7 the main task is to find a way to compute EvalNCA(pmax)(t) for each inserted
term without having pmax available. Corresponding to 89 in section 7 we have a similar
lemma:

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 75

Lemma: Term Evaluation using Projection

285.0 EvalNCA(pmax)(t) = CISproj (pmax)(EvalNCA(P(bset))(t))

The proof is similar to the proof for 89.

15.1 Projection into pmax .

The equation 285 above shows that we must look for a projection function cProj such that

cProj (bset ,neqs)(cis) = CISproj (pmax)(cis)

where bset is the set of basic concepts and neqs is the normalized equations corresponding
to the equations used to compute pmax . Having such a function makes it easy to compute
EvalNCA(pmax)(t) by combining the equation above with 285 and 265:

EvalNCA(pmax)(t) = cProj (bset ,neqs)(EvalNCAP (bset)(t))

However, because we only allow restricted terms (witout top) in the specification of a lattice
and we in the approach shown in the sequel never compute pmax , we will never need bset .
The equations above may then be simplified to

286.0 cProj (neqs)(cis) = CISproj (pmax)(cis)

287.0 EvalNCA(pmax)(t) = cProj (neqs)(Eval ′NCAP (t)) , where t : Termr

The projection function must take the elements in EvalNCA(P(bset))(t) which are not
already in pmax (in figure 10 the black bullets outside pmax) and project them down into
pmax . An element is outside pmax if and only if it is rejected by an equation or after rejection
has been removed by restriction (according to 260). So next we must consider how to decide if
a concept-intersection is rejected by an equation. From the description (in sect. 12.2) of the
subtractive method to construct pmax we have the following: Let t1j = t2j be an equation
from the given set of equations, let pc = P(bset) and let

cis1j = EvalCA(pc)(t1j) and cis2j = EvalCA(pc)(t2j)

then eqrej0j = (cis1j ∪ cis2j) \ (cis1j ∩ cis2j) is a set of concept-intersections which must be
rejected. Considering all the equations we have (according to 260)

pmax = restrCIS (pc \ (eqrej01 ∪ eqrej02 ∪ . . . ∪ eqrej0n))

The concept-intersection-set eqrej0j is called the equations reject-region. Because the set with
the rejected elements is furthermore restricted to make it attribute consistent, we say that
the concept-intersections in eqrej0j are directly rejected by the equation. Our next task is to
understand how the elements that are removed by the restriction are related to the directly
rejected elements.

We want to investigate if a concept-intersection ci is rejected by an equation eq . It
is rejected if ci is directly rejected by the equation, but assume it is not. Furthermore
assume AttrsInCI (ci) 6= {} and let α ∈ AttrsInCI (ci). Then the α-attribution argument
ci ′ = AttrArgCI (α)(ci) exists. If the α-attribution argument ci ′ is rejected by the equation
by being directly rejected by eq , so ci ′ 6∈ pmax , then ci is missing its α-attribution argument.
So if ci ∈ pmax then pmax would not be attribute consistent. Consequently we must reject

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 76

ci as well. In the same way we may argue that if ci ′ has one of its α-attribution arguments
rejected, then ci ′ must also be rejected and then also ci .

The table in figure 17 shows a concept-intersection ci at the top-line. Every line, except
the top-line, contains all possible AttrArgCI (α)(ci) for all concept-intersections ci on the line
above it. Consequently, if any concept-intersection ci ′ in this table is being directly rejected
by an equation, then that ci ′ is rejected and also the concept-intersection above of which it
is an α-attribution argument and so on upwards until ci at the top-line. For instance, if —
in figure 17 — ci3 is directly rejected by an equation, then also ci1 and ci are rejected.

ci = [a, α(b), α(β(c)), α(β(d)), γ(e), γ(β(f))]

ci1 = [b, β(c), β(d)], ci2 = [e, β(f)]

ci3 = [c, d], ci4 = [f]

Figure 17: The set of all AttrArgCI for the top-most concept-intersection

The function AllAttrArgs defined below finds for a set of concept-intersections cis the set of
all possible α-attribution arguments as illustrated in the table in figure 17 above:

288.0 AllAttrArgs : CI -set → CI -set

.1 AllAttrArgs (cis) 4

.2 let attrArgs =
⋃ {{AttrArgCI (α)(ci) | α ∈ AttrsInCI (ci)} | ci ∈ cis} in

.3 cis ∪

.4 if attrArgs = {} then {} else AllAttrArgs(attrArgs)

A concept-intersection ci is rejected by an equation if any of the concept-intersections in
AllAttrArgs({ci}) are rejected by the equation. In order to treat these matters we introduce
the normalized equations exactly as in section 7:

types

289.0 NEq : : CI -set× CI -set

290.0 EvalEq : Eq → NEq

.1 EvalEq (mk -Eq(t1, t2)) 4

.2 let ac1 = Eval ′NCAP (t1),

.3 ac2 = Eval ′NCAP (t2) in

.4 mk -NEq(JoinNCAP (ac1, ac2),MeetNCAP (ac1, ac2))

Notice that we do not need the set bset of basic concepts to evaluate the equation terms,
because these terms are restricted terms with no top-subterms. We will evaluate all the
equations in this way:

291.0 EvalEqs : Eq-set → NEq-set

.1 EvalEqs (eqs) 4 {EvalEq(eq) | eq ∈ eqs}
Let eqs be the given set of equations, then we will use the set of normalized equations
neqs = EvalEqs(eqs) to (implicitly) represent pmax .

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 77

The function InEqDirectRej defined below tells if a concept-intersection is directly rejected
by an equation by being in the equations rejection region:

292.0 InEqDirectRej : NEq → CI → B
.1 InEqDirectRej (mk -NEq(ac1, ac2,m))(ci) 4
.2 ISAN ({ci}, u) ∧ ¬ ISAN ({ci},m)

Now we can define a function IsEqRejected corresponding to the InEqRej -function defined in
99:

293.0 IsEqRejected : NEq → CI → B
.1 IsEqRejected (neq)(ci) 4
.2 let attrArgs = AllAttrArgs({ci}) in

.3 ∃ aci ∈ attrArgs · InEqDirectRej (neq)(aci)

In words, the concept-intersection ci is rejected if ci itself or any of its attribution arguments
are directly rejected.

15.2 Computing Upper Bounds

If a concept-intersection ci is directly rejected by a normalized equation mk -NEq(u,m), then
we know that all concept-intersections below (ISAP) ci , which are in pmax must be below
some concept-intersection in m, so we have:

294.0 InEqDirectRej (mk -NEq(-,m))(ci) ⇒ ISAN (CISproj (pmax)({ci}),m)

But what if a concept-intersection is indirectly rejected? To solve this problem we have the
following lemma, which relates the projections of a concept-intersection ci and its attribution
arguments:

Lemma:

295.0 ∀ eqs : Eq-set, ci : CI , uplarg : CI -set, bset : Bset ·
.1 ∀α ∈ AttrsInCI (ci) ·
.2 let pmax = MaxPOCA(bset)(eqs),
.3 ciarg = AttrArgCI (α)(ci) in

.4 (ISAS (uplarg , {ciarg}) ∧ ISAS (CISproj (pmax)({ciarg}), uplarg)

.5 ⇒

.6 let upl = MeetNCAP ({ci}, atCIs(α)(uplarg)) in

.7 ISAS (upl , {ci}) ∧

.8 ISAS (CISproj (pmax)({ci}), upl))

In words, if ciarg is the α-attribution argument of ci , and uplarg an upper-bound for
CISproj (pmax)({ciarg}), then MeetNCAP ({ci}, atCIs(α)(uplarg)) will be an upper-bound for
CISproj (pmax)({ci}). Of course, this property is a consequence of pmax being attribute
consistent. The lemma and its proof is illustrated in figure 18.

In order to prove 295 above we need some auxiliary lemmas:

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 78

{ ,[a, b, c], }

[a, b, c, d, e]

{ , [α(a), α(b), α(c)], }

[x, y, z, α(a), α(b), α(c) , α(d), α(e)]

atCIs(α)

pmax

CISproj(pmax)({ciarg})

uplarg

attrCI(α)

{[a, b]} {[x, y, α(a), α(b)]}

AttrArgCI(α) ciarg ci

{ , [x, y, α(a), α(b), α(c)], }

CISproj(pmax)({ci})

upl

{ ,[a, b, c], }

[a, b, c, d, e]

{ , [α(a), α(b), α(c)], }

[x, y, z, α(a), α(b), α(c) , α(d), α(e)]

atCIs(α)

pmax

CISproj(pmax)({ciarg})

uplarg

attrCI(α)

{[a, b]} {[x, y, α(a), α(b)]}

AttrArgCI(α) ciarg ci

{ , [x, y, α(a), α(b), α(c)], }

CISproj(pmax)({ci})

upl

Figure 18: Illustation of proof for lemma 295

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 79

AuxLemma:

296.0 ISAS (cis, cis1) ∧ ISAS (cis, cis2) ⇒ ISAS (cis,MeetNCAP (cis1, cis2))

Proof : Assume the left hand side of the implication above:
ISAS (cis, cis1) ∧ ISAS (cis, cis2)

If we use the definition of ISAS (104) we get
∀mk -CI (bs) ∈ cis · ∃mk -CI (bs1) ∈ cis1 · bs1 ⊆ bs ∧
∀mk -CI (bs) ∈ cis · ∃mk -CI (bs2) ∈ cis2 · bs2 ⊆ bs

which can be rewritten to

297.0 ∀mk -CI (bs) ∈ cis ·
.1 ∃mk -CI (bs1) ∈ cis1,mk -CI (bs2) ∈ cis2 · bs1 ∪ bs2 ⊆ bs

Again, using the definition of ISAS (104) gives
let mcis = {mk -CI (bs1 ∪ bs2) | mk -CI (bs1) ∈ cis1,mk -CI (bs2) ∈ cis2} in

ISAS (cis,mcis)

Next, a little bit informally, as mk -CI (bsi) ∈ cisi , i = 1, 2, that exists in 297 satisfies
bs1 ∪ bs2 ⊆ bs, then every concept-intersection above it in cisi will also satisfy this subset
inclusion so we may actually conclude that

let mcis = AntiCh{mk -CI (bs1 ∪ bs2) | mk -CI (bs1) ∈ cis1,mk -CI (bs2) ∈ cis2} in

ISAS (cis,mcis)

Finally, from the definition of MeetNCAP (268) we then get
ISAS (cis,MeetNCAP (cis1, cis2))

2

AuxLemma:

298.0 ∀ uplarg : CI -set, ciprj : CI ·
.1 ISAS ({AttrArgCI (α)(ciprj)}, uplarg) ⇒ ISAS ({ciprj}, atCIs(α)(uplarg))

The auxiliary lemma and its proof is illustrated in figure 19.

Proof : Below, according to the universal quantifier above let uplarg , ciprj be arbitrary
values such that

uplarg : CI -set, ciprj : CI

From the defiition of ISAS we can rewrite 298 above to

299.0 ∃ ciuplarg ∈ uplarg · ISAP (AttrArgCI (α)(ciprj), ciuplarg) ⇒
.1 ∃ cia ∈ atCIs(α)(uplarg) · ISAP (ciprj , cia)

To prove the implication in 299 we assume the left hand side 299.0 and prove the right hand
side. So let ciuplarg be the concept-intersection that exists according to 299.0. We then get

300.0 ciuplarg ∈ uplarg ,
.1 ISAP (AttrArgCI (α)(ciprj), ciuplarg)

Applying 180 to ciprj gives

301.0 ISAP (ciprj , attrCI (α)(AttrArgCI (α)(ciprj)))

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 80

{ , [a, b, c], }

[a, b, c, d, e]

{ , [α(a), α(b), α(c)], }

[α(a), α(b), α(c) , α(d), α(e)]

[x, y, α(a), α(b), α(c) , α(d), α(e)]

attrCI(α)

attrCI(α)

AttrArgCI(α)

AttrArgCI(α)

ciprj

uplarg

ciuplarg

Figure 19: Illustation of proof for lemma 298

From the definition of the function attrCI (170) we can easily conclude that
ISAP (ci1, ci2) ⇒ ISAP (attrCI (α)(ci1), attrCI (α)(ci2))

Applying this to 300.1 gives
ISAP (attrCI (α)(AtrArgCI (α)(ciprj)), attrCI (α)(ciuplarg))

Combining this with 301 gives

302.0 ISAP (ciprj , attrCI (α)(ciuplarg))

From 300.0 and the definition of atCIs (171) we get
attrCI (α)(ciuplarg) ∈ {attrCI (α)(ci) | ci ∈ uplarg} = atCIs(α)(uplarg)

Finally, combining this with 302 gives
∃ cia ∈ atCIs(α)(uplarg) · ISAP (ciprj , cia)

which is the right hand side 299.0 of 299.
2

We are now ready for a proof of 295.

Proof of 295: In the sequel, according to the universal quantifier in 295, let eqs, ci , uplarg , bset , α
be arbitrary values such that

eqs : Eq-set, ci : CI , uplarg : CI -set, bset : Bset , α : A, α ∈ AttrsInCI (ci)

We can easily prove the conjunct in 295.7. Let

303.0 mk -CI (bci) = ci

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 81

Then

304.0 upl = MeetNCAP ({ci}, atCIs(α)(uplarg))

.1
from 268 we get

⊆ {mk -CI (bs1 ∪ bs2) | mk -CI (bs1) = ci ,mk -CI (bs2) ∈ atCIs(α)(uplarg)}
.2 = {mk -CI (bci ∪ bs2) | mk -CI (bs2) ∈ atCIs(α)(uplarg)}

From 304 we get

305.0 ∀ ciu ∈ upl · ∃mk -CI (bs2) ∈ atCIs(α)(uplarg) · ciu = mk -CI (bci ∪ bs2)

Finally 303, 305 and the definition of ISAS and ISAP give

306.0 ISAS (upl , {ci})
So the conjunct in 295.7 does not depend on 295.4 at all.

Next we prove the conjunct in 295.8. According to 296 we just have to prove

307.0 ISAS (CISproj (pmax)({ci}), {ci}),
.1 ISAS (CISproj (pmax)({ci}), atCIs(α)(uplarg))

The proof of 307.0 follows immediately from the definition of CISproj (26). So below we finally
consider the proof of 307.1. According to 295.2, 295.3 let

308.0 pmax = MaxPOCA(bset)(eqs),
.1 ciarg = AttrArgCI (α)(ci)

Furthermore, assume the left hand side (295.4) of the implication. So we have

309.0 ISAS (uplarg , {ciarg}),
.1 ISAS (CISproj (pmax)({ciarg}), uplarg)

We prove 307.1 by contradiction. So we now also assume
¬ ISAS (CISproj (pmax)({ci}), atCIs(α)(uplarg))

If we use the definition of ISAS we get
∃ ciprj ∈ CISproj (pmax)({ci}) · ∀ cia ∈ atCIs(α)(uplarg) · ¬ ISAP (ciprj , ci)

So let ciprj be the concept-intersection that exists. We then have

310.0 ciprj ∈ CISproj (pmax)({ci}),
.1 ∀ cia ∈ atCIs(α)(uplarg) · ¬ ISAP (ciprj , cia)

From 298 and a ⇒ b ⇔ ¬ b ⇒ ¬ a we get
∀ cia ∈ atCIs(α)(uplarg) · ¬ ISAP (ciprj , cia) ⇒
∀ ciuplarg ∈ uplarg · ¬ ISAP (AttrArgCI (α)(ciprj), ciuplarg)

Combining this with 310.1 gives

311.0 ∀ ciuplarg ∈ uplarg · ¬ ISAP (AttrArgCI (α)(ciprj), ciuplarg)

From 310.0 and the definition of CISproj we have
ISAP (ciprj , ci)

If we apply this to the implication in 183 we get
ISAP (AttrArgCI (α)(ciprj),AttrArgCI (α)(ci))

which, by use of 308.1, may be rewritten to

312.0 ISAP (AttrArgCI (α)(ciprj), ciarg)

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 82

From 309.0 and 309.1 we know that every ci in pmax and below ciarg must also be below
uplarg . From 312 we know that AttrArgCI (α)(ciprj) is below ciarg , but from 311 we know that
it is not below uplarg and then consequently can not be in pmax . So although ciprj ∈ pmax
we have AttrArgCI (α)(ciprj) 6∈ pmax and consequently pmax can not be attribut consistent.
But this is a contradiction as pmax as defined in 308.0 is known to be attribute consistent. 2

Using lemma 295 to compute upper bounds. Lemma 295 above may help us compute
upper bounds for the projection of indirectly rejected concept-intersections. As an example,
assume that ci3 in figure 17 is directly rejected by the normalized equation neq = mk -NEq(u,m).
Then, according to 294 above, we have

ISAN (CISproj (pmax)({ci3}),m)

We also have
ISAN (CISproj (pmax)({ci3}), {ci3})

Put together we get
upl3 = MeetNCAP (m, {ci3})
ISAN (CISproj (pmax)({ci3}), upl3)

As ci3 = AttrArgCI (β)(ci1) we may now conclude from 295 that
upl1 = MeetNCAP ({ci1}, atCIs(β)(upl3)),
ISAS (CISproj (pmax)({ci1}), upl1) ∧ ISAS (upl1, {ci1})

In the same way, as ci1 = AttrArgCI (α)(ci), we may also conclude that
upl = MeetNCAP ({ci}, atCIs(α)(upl1)),
ISAS (CISproj (pmax)({ci}), upl) ∧ ISAS (upl , {ci})

So upl is the upper limit for CISproj (pmax)({ci}) we are looking for.
Before we proceed with a detailed algorithm for this new way to compute upper bounds

we will start with the main algorithm for term evaluation using projection.

15.3 The Algorithm for Computing EvalNCA

The top functions are almost identical to the functons defined in section 7. First the function
which computes EvalNCA as described in 287:

313.0 cEvalNCA : NEq-set → Term → CI -set

.1 cEvalNCA (neqs)(t) 4 cProj (neqs)(Eval ′NCAP (t))

The projection of the set of concept-intersections — obtained from the evaluation of the term
t — into pmax is done by cProj :

314.0 cProj : NEq-set → CI -set → CI -set

.1 cProj (neqs)(cis) 4

.2 let mk -(-, pcis) = cIProj (neqs)(true)(cis, {})({}) in

.3 pcis

The only task for cProj is to start the iterated projection of cis. We will understand the new
parameters later.

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 83

The Iterated Projection The repeated execution of the projection step is done by the
function cIProj defined below:

315.0 cIProj : NEq-set → B→ CI -set× CI -set → CI -set → B× CI -set

.1 cIProj (neqs)(accUnch)(upl , InP)(pLevCis) 4

.2 let mk -(newunch,newupl ,newInP) = cProjStep(neqs)(upl , InP)(pLevCis) in

.3 if newunch

.4 then mk -(accUnch,AntiCh(newInP))

.5 else cIProj (neqs)(false)(newupl ,newInP)(pLevCis)

In each (tail recursive) call of cIProj the function cProjStep takes the current partial projec-
tion upl ∪ Inp and yields the next (partial) projection newupl ∪ newInp. The projection stops
when the new projection has not changed (indicated by newunch); the projection is then in
newInP . The parameter accUnch keeps track of changes. If a projection step changes the
partial projection then accUnch becomes false, otherwise accUnch is returned with its initial
value true.

The Projection Step. As we saw above, the single projection step in the iterated projec-
tion is done by the function cProjStep:

316.0 cProjStep : NEq-set → CI -set× CI -set → CI -set → B× CI -set× CI -set

.1 cProjStep (neqs)(upl , InP)(pLevCis) 4

.2 let cupls = {cEqsUpl(neqs)(pLevCis)(ci) | ci ∈ upl} in

.3 let InP1 = {ci | mk -((true), {ci}) ∈ cupls},

.4 notInP = {upl ′ | mk -((false), upl ′) ∈ cupls},

.5 newupl =
⋃

notInP in

.6 mk -(notInP = {},newupl , InP ∪ InP1)

The concept-intersections which are not yet known to be in pmax are in upl . In order to
make the next step in the projection of upl ∪ InP , cProjStep makes a separate projection of
each ci ∈ upl using cEqsUpl (316.2). In 316.3 InP1 is the subset of upl that turned out not to
be rejected, neither directly nor indirectly, and consequently is in pmax , and in 316.5 newupl
is the union of the new upper-limits for the remainig concept-intersections.

15.4 Projecting a Single concept-intersection.

In this section we now consider the algorithms based on the theory outlined in sections 15.1
and 15.2. First we need an auxiliary function. CisMeetNCAP (ciss) defines the greatest lower
bound of a set of anti-chains ciss:

317.0 CisMeetNCAP : CI -set-set → CI -set

.1 CisMeetNCAP (ciss) 4

.2 cases ciss :

.3 {cis} → cis,

.4 {cis} ∪ ciss ′ → MeetNCAP (cis,CisMeetNCAP (ciss ′))

.5 end

.6 pre ciss 6= {}

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 84

The computation of an upper-limit for CISproj (pmax)({ci}) as described in 15.1 and 15.2,
is done by cEqsUpl(neqs)(ci), defined below. The computation of upper limits is based on
indirect as well as direct rejection:

318.0 cEqsUpl : NEq-set → CI -set → CI → B× CI -set

.1 cEqsUpl (neqs)(pLevCis)(ci) 4

.2 let uls1 = {m | mk -NEq(u,m) ∈ neqs · InEqDirectRej (mk -NEq(u,m))(ci)},

.3 uls2 = {iupl | α ∈ AttrsInCI (ci), iupl : CI -set ·

.4 mk -(false, iupl) = cIUpl(neqs)(α)(pLevCis)(ci)} in

.5 let uls = uls1 ∪ uls2 in

.6 cases uls :

.7 {} → mk -(true, {ci}),

.8 - → mk -(false,CisMeetNCAP ({{ci}} ∪ uls))

.9 end

In line 318.2 uls1 is the set of upper limits coming from the equations that directly rejected
ci . Next, in line 318.4 uls2 is the set of upper limits coming from ci being indirectly rejected.
We will explain this in more detail below and so also the parameter pLevCis. If the union uls
of these sets is empty (318.7) then ci is not rejected, neither direcly nor indirectly, so it is in
pmax (indicated by the first component, true). If uls is not empty (318.8) then the greatest
lower bound of {{ci}} ∪ uls is the new upper limit (se fig. 18 and 295.6). However, we don’t
know if all the concept-intersections in this new upper limit are in pmax (indicated by false).

When ci is indirectly rejected the set of upper limits is computed by the function cIUpl
defined below (319). If cIUpl(neqs)(α)(pLevCis)(ci) finds that ci is indirectly rejected then
it returns with mk -(false, iupl), where iupl is the found upper limit. If ci is not indirectly
rejected it returns with mk -(true, {ci}).
319.0 cIUpl : NEq-set → A → CI -set → CI → B× CI -set

.1 cIUpl (neqs)(α)(pLevCis)(ci) 4

.2 let ciarg = AttrArgCI (α)(ci) in

.3 let mk -(unch, proj) =

.4 if ciarg ∈ pLevCis then mk -(false, {})

.5 else cIProj (neqs)(true)({ciarg}, {})(pLevCis ∪ {ciarg}) in

.6 cases unch :

.7 false → mk -(false, atCIs(α)(proj)),

.8 true → mk -(true, {ci})

.9 end

The function cIUpl (compute indirect upper limit) tests if ci is indirectly rejected, and if it
is, computes the upper bound according to lemma 295. As illustrated in figure 18, given ci we
must first apply AttrArgCI (α) to get the attribution argument ciarg (line 319.2). Next (line
319.4–319.5) ciarg must be projected into pmax . First assume ciarg 6∈ pLevCis (to be explained
below); then ciarg is projected into pmax using the function cIProj for iterated projection
(defined in 315).

If the iterated projection returns with mk -(false, proj) then proj is the projection of ciarg
(ciarg is changed), so proj is the best possible upper-limit for the projection; it corresponds to
uplarg in figure 18. Finally, according to 295.6 (and again figure 18) we must apply atCIs(α)

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 85

to uplarg to deliver the contribution to the upper bound for the indirectly rejected ci . This is
returned together with false to indicate that ci actually was indirectly rejected.

If the iterated projection returned with the first component equal to true, then ci was not
indirectly rejected so cIUpl returns the unchanged ci (indicated by true).

Notice that cIUpl after having constructed ciarg starts a new projection using cIProj so
we may have an iterated projection running at several levels simultaneously.

Example Consider the example specification

equations
c * a(c) = a(c)

terms a(a(c))

The equation corresponds to the ISA-relation a(c) ≤ c and gives the normalized equation
mk -NEq({[a(c)]}, {[c, a(c)]}).

[c] 11 [a(c)]qq

²²

ww

[a(a(c))]oo

²²

m = [c, a(c)]

''
[c] 11 [c, a(c)]qq +3 [a(c), a(a(c))]

))RRRRRRRRRRRRR

[c] 11 [c, a(c)]qq 00 [a(c), a(a(c))]qq

²²

uu
m = [c, a(c)]

))
[c, a(c), a(a(c))]

Figure 20: Inserting a(a(c)), equation: c * a(c) = a(c)

The computation of cProj (neqs)({[a(a(c))]}) is illustrated in figure 20. The upper bounds
in the example contains only one concept-intersection. Nodes on vertical lines represent (tail
recursive) calls of cIProj and the resulting call of cProjStep and cEqsUpl . The concept-
intersections along a vertical line are partial projections with the final projection at the
bottom of the line.

A horizontal left arrowed line represents a call of cIUpl with the argument ci at the right
end and ciarg at the left end. A right arrowed line represent return from cIUpl . A single lined
right arrow means that ci is not indirectly rejected so cIUpl returns ci unchanged. A double
lined right arrow indicates that ci is indirectly rejected and the concept-intersection at the
right end of the arrow is the found upper bound.

15 IMPLEMENTATION OF THE MOST DISJOINT CONCEPT ALGEBRA 86

The direct rejection of a concept-intersection ci is indicated by a dotted line from ci down
to the normalized equations m-part and further down to the new upper bound.

In the example the concept-intersection ci to be projected is at the top right corner, and
the final projection at the right bottom corner. After extension the partial order becomes
{[c, a(c), a(a(c))], [c, a(c)], [c]}.

2

Example Next consider the example specification

equations
c * a(c) = c

terms a(a(c))

The equation corresponds to the ISA-relation c ≤ a(c). From the monotonicity rule for
attribution we also have a(c) ≤ a(a(c)), a(a(c)) ≤ a(a(a(c))), etc. Due to the finite attri-
bution approach, for some level of attribution nesting the term a(a(. . . a(c) . . .)) will eval-
uate to ⊥ and then according to the derived equations above also all terms of the form
c, a(c), a(a(c)), How will this turn up when inserting the term a(a(c)) ?

[c]

²²

yy

[a(c)]oo

²²

[a(a(c))]oo

²²

[c, a(c)]

%%
[c]

yy

²²Â
Â
Â
Â
Â
Â
Â

!)KKKKKKKKKKKK

KKKKKKKKKKKK [c, a(c)]oo

²²

[c, a(c)]

%%

{}

%%JJJJJJJJJJJJJ

[c, a(c)] {} +3 {}

!!B
BB

BB
BB

BB

{} +3 {}

##FFFFFFFFFF

{}

Figure 21: Inserting a(a(c)), equation: c * a(c) = c

The normalized equation for c*a(c)=c is mk -NEq({[c]}, {[c, a(c)]}). The computation of
cProj (neqs)({[a(a(c))]}) is illustrated in figure 21. The upper bounds in the example contains
at most one concept-intersection. We use the same notation as in the previous example.

16 QUERYING THE CONCEPT ALGEBRA 87

The upper most horizontal line indicates the same sequence of calls of cIUpl as in the
previous example, but in this example the concept-intersection [c] (at level 3) is directly
rejected and in the first projection step projected down to [c, a(c)]. Here cEqsUpl now
looks for direct as well as indirect rejection of [c, a(c)]. The call of cIUpl with [c, a(c)] then
computes ciarg = [c] and consequently now (at level 4) looks for a projection of [c], exactly
as at the previous level 3. The start of this projection is indicated by dashed/dotted arrows
to the left. As can be seen, this search for an indirect upper bound will go on for ever. If,
hypothetically, an upper bound was found, then an infinitely nested attribution would be
returned, which according to the finite attribution approach should be ⊥.

As can be seen from figure 21, the algorithm will detect that it is starting to look for
a projection of a concept-intersection, which it is already looking for at another level and
consequently it returns {} (⊥) as the upper bound. 2

The situation illustrated in the previous example is handled in cIUpl in lines 319.4-319.5.
The parameter pLevCis (previous levels ci ’s) holds all ciarg ’s for which cIUpl has started a
computation of the projection (319.5) leading to the current call of cIUpl . If the current ci is
in pLevCis then {} is returned (319.4).

15.5 Implementing cTMdisjPO .

Finally, from the definition of TMdisjPOCA (282) we can now define the function that computes
the most disjoint lattice with respect to a given set of terms :

320.0 cTMdisjPO : Eq-set → Termr -set → PO

.1 cTMdisjPO (eqs)(terms) 4

.2 let neqs = EvalEqs(eqs) in

.3 extCIS (
⋃ {(cEvalNCA(neqs)(t)) | t ∈ terms})

16 Querying the Concept Algebra

In this section we consider how to extract information from a concept algebra. The simplest
way to extract information is simply to evaluate terms in the algebra. So assume we from a
given lattice specification mk -LatSpec(eqs, terms) – consisting of the equations and the terms
to be inserted – have constructed the corresponding partial order pmdsj for the most disjoint
lattice. We can now extract information from the lattice/database by evaluating a term t in
the lattice:

EvalNCA(pmdsj)(t)

The result will be the corresponding anti-chain in the form of a set of concept-intersections.
The introduction (section 1) showed several examples of this kind of lattice/database con-
struction and subsequent querying.

Evaluation of a term in a given algebra can only yield values from the carrier of the
algebra, but can not construct new values obtained by combining already existing values.

Example In the specification below the equations specifies two relational database tables
and the terms part insert rows in the two tables.

equations

16 QUERYING THE CONCEPT ALGEBRA 88

db1<= A(a) * B(b) * C(c),
db2<= C(c)* D(d),

c>= r + s + t,
r>= r1+r2+r3,
s>= s1+s2,
t>= t1+t2

terms
db1*A(a1)*B(b1)*C(r1),
db1*A(a2)*B(b2)*C(s1),
db1*A(a3)*B(b1)*C(t),
db1*A(a4)*B(b3)*C(r2),
db1*A(a5)*B(b2)*C(s2),

db2*C(r2)*D(d1),
db2*C(r1)*D(d2),
db2*C(r3)*D(d3),
db2*C(s) *D(d4),
db2*C(t2)*D(d5)

queries
db1 * db2,

As explained in [3] applying the lattice meet operation to the tables above should yield a
result corresponding to the database natural join operation. The result of the query may be
a little bit disappointing:

Queries:
db1 * db2: < >

i.e. the term db1 ∗ db2 evaluates to ⊥. The reason is that the expected joined rows do not
exist as values in the constructed concept algebra. 2

16.1 Constructing Data Base Natural Joins

We need a special kind of query to be able to construct new values that do not already exist in
the database. If we relate our lattice with a relational database, concept-intersections corre-
spond to rows and attributes to columns/attributes. Basic concepts in a concept-intersection
that is not an attribute, does not have a counterpart in relational database theory. We will
use the operator & to indicate this new database natural join query. So if we now ask the
query:

queries
db1 & db2

we would like to see the following answer:

16 QUERYING THE CONCEPT ALGEBRA 89

db1 & db2:
<[db1, db2, A(a), A(a1), B(b), B(b1), C(c), C(r), C(r1), D(d), D(d2)]
[db1, db2, A(a), A(a2), B(b), B(b2), C(c), C(s), C(s1), D(d), D(d4)]
[db1, db2, A(a), A(a3), B(b), B(b1), C(c), C(t), C(t2), D(d), D(d5)]
[db1, db2, A(a), A(a4), B(b), B(b3), C(c), C(r), C(r2), D(d), D(d1)]
[db1, db2, A(a), A(a5), B(b), B(b2), C(c), C(s), C(s2), D(d), D(d4)]>

i.e. we have combined those rows from db1 and db2 for which the common C -attribute argu-
ments have a meet different from ⊥ when evaluated in the actual database. To define such a
database join query we first define what corresponds to a database cartesian product:

321.0 DBCartPrd : PO → CI -set× CI -set → CI -set

.1 DBCartPrd (p)(ac1, ac2) 4

.2 {mk -CI (cs1 ∪ cs2) | mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2}
The function DBCartProd (321) defined above makes a combination of all possible pairs
of concept-intersections. Notice, that this is close to the MeetN operation (51), but the
result is not projected into p. To get a database join we use the following function:

322.0 DBJoin : NEq-set → PO → CI -set× CI -set → CI -set

.1 DBJoin (p)(neqs)(ac1, ac2) 4

.2 let jcis =
⋃ {JoinCI (p)(ci1, ci2) | ci1 ∈ ac1, ci2 ∈ ac2} in

.3 cProj (neqs)(jcis)

Here the function JoinCI does the joining for each pair of ci ’s (or rows). Finally, the joined
rows are projected into pmax to make sure that the result satisfies the given equations.
The next function does the joining of each ci -pair.

323.0 JoinCI : PO → CI × CI → CI -set

.1 JoinCI (p)(ci1, ci2) 4

.2 let mk -(attrNs1, attrNs2) = mk -(AttrsInCI (ci1),AttrsInCI (ci2)),

.3 mk -(mk -CI (bs1),mk -CI (bs2)) = mk -(ci1, ci2) in

.4 let cattrNs = attrNs1 ∩ attrNs2,

.5 bs12 = bs1 ∪ bs2 in

.6 let cattrs = {mk -At(a, b) | mk -At(a, b) ∈ bs12 · a ∈ cattrNs} in

.7 let jbs1 = bs12 \ cattrs,

.8 joinedAttrs = {EvalAttrArg(p)(α)(mk -CI (cattrs)) | α ∈ cattrNs} in

.9 CisMeetNCAP ({mk -CI (jbs1)} ∪ joinedAttrs)

where

324.0 EvalAttrArg : PO → A× CI → CI -set

.1 EvalAttrArg (p)(α)(ci) 4

.2 let attrarg = AttrArgCI (α)(ci) in

.3 let attrval = CISproj (p)({attrarg}) in

.4 {attrCI (α)(cix) | cix ∈ attrval}
In JoinCI the two concept-intersection’s ci1 and ci2 should be joined iff the common attributes
have overlapping arguments. The resulting join will be constructed from the set of basic

17 CONCLUSION 90

concepts (bs12) from ci1 and ci1. cattrsNs is the set of common attribute names and cattrs
is the set of basic concepts from bs12 constituting the common attributes. The resulting join
will first of all consist of the set of basic concepts jbs1 that consist of the original set bs12
minus those from the common attributes. Concerning the common attributes the arguments
should be evaluated in the actual database and the original arguments replaced by these new
values; the result is joinedAttrs. Notice that this evaluated argument part is now a CI -set.
Finally the first part (jbs1) – converted to a CI -set – and the CI -set’s in joinedAttrs must be
Meet ’ed together.

Example The examples below illustrate the evaluation of the attribute arguments

terms
db1 * A(a)*R(r),
db2* R(s)* B(b),
r*s*U

queries
db1 & db2;

We get the answer

query: db1 & db2
<[db1,db2,A(a),R(r),R(s),R(U),B(b)]>

Example Here we add an equation to the above example

equations
r*s*U= X + Y

terms
db1 * A(a)*R(r*s),
db2* R(s*t)* B(b),
r*s*t*U

queries
db1 & db2;

We now get the answer

query: db1 & db2
< [db1,db2,A(a),R(r),R(s),R(U),R(Y),B(b)],
[db1,db2,A(a),R(r),R(s),R(U),R(X),B(b)] >

17 Conclusion

In this project we have investigated the possibilities to make a system based on the concept
algebra described in [3], [4] and [5]. One of the main ideas in this work has been to use
Birkhoff’s representation theorem, so we have represented distributive lattices using its dual
representation: the partial order of join irreducibles. We have given solutions to the questions:
how do we construct a concept algebra/distributive lattice satisfying a given set of equations?,
and among all the possible solutions which one to choose? Here the most important contribu-
tion seems to be the idea of inserting terms in the lattice and the answer to the question: what

17 CONCLUSION 91

does it mean to insert a term in a lattice? To solve this we invented the concept of the most
disjoint lattice with respect to a given set of inserted terms, that is the smallest lattice where
the inserted terms preserve their value compared to the value in the initial algebra/lattice.
And that is how the database turned up. The partial order corresponding to the most disjoint
lattice is the database; it grows when new terms are inserted and always contains just the
information necessary to give the value of (or explain) the inserted terms.

We attacked the problem in two steps. First we considered the concept algebra without
attributes. Here we managed to prove the correctness of the algorithms used to construct
the database. Next we considered the full concept algebra. The introduction of attributes
increased the complexity of the problem considerably. We proved several fundamental prop-
erties that made it possible to construct the algorithm used to construct the database. We
did not manage to give a mathematical proof for the final algorithm.

The specification of the database (see appendix A) was used to construct a prototype for
the database system (called LatBase). This system has been used with several examples
and seems to yield the expected results. Thus, the main algorithm for construction of the
database seems to have been proved “by experiment”.

There are several problems to consider in the future. First of all much of the mathematics
– especially in the second part – became rather complex and ad hoc and unfinished. This
should be reconsidered, but we need some more expert knowledge in advanced lattice theory
and universal algebra to do that job. Next, the LatBase system should be implemented as
a real database system and this also includes to make efficient versions of the algorithms for
constructing and querying the database.

Acknowledgment

I would like to thank prof. Jørgen Fischer Nilsson for suggesting this project for me several
years ago and his continued encouragement to work with the project.

A THE FINAL DATABASE SYSTEM 92

Appendix

A The Final Database System

This section contains all the specifications needed to implement the final LatBase database
system. So it is essentially a collection of some of the specifications from the previous sections
extended with a few new features that will be useful in a practical database system. First of
all, in the real database system we want to be able to associate information to the inserted
terms. Information that are inserted together with a term will be associated to the resulting
concept-intersections. Here we will not decide on the nature of the associated information,
but it could for instance just be a unique name.

types

325.0 Info = token –– Information associated with inserted term

Secondly we will add two predefined equations in order to make integers and strings available
in the inserted values:

NUMBER >= 0 + 1 + 2 + 3 + ...
STRING >= ‘‘’’ + ‘‘a’’ + ‘‘b’’ + ...+ ‘‘aa’’ + ‘‘ab’’ + ...

Finally we also add (a huge amount of) equations of the form

BOTTOM= literal1 * literal2

in order to specify that all the predefined integer and string literals are disjoint.

A.1 Concept Intersections with Associated Information

types

326.0 CN = token | STRING | NAT; –– The type of named concept constants

327.0 C = CN | N | String; –– The type of concept constants

A concept constant (C) is either an arbitrary name including one of the predefined names
STRING and NAT or an integer or string literal like 23 and "abc".

types

328.0 A = token –– The type of attributes, α, β, . . . : A

329.0 B = C | At ; –– The type of basic concepts, a, b, α(a), α(β(a)), . . . : B

330.0 At : : A× B ; –– The type of attributions, α(a), α(β(a)), . . . : At

331.0 Bset = B -set

.1 inv (bset) 4 bset 6= {};
332.0 CI : : Bset ; –– The type of concept intersections

333.0 CII : : CI × Info-set; –– concept-intersection with associated set of Infos

A THE FINAL DATABASE SYSTEM 93

334.0 PO = CI -set;

335.0 POI = CII -set –– the partial order with Info

In the new partial order we need to redefine some of the basic operations on the partial
order:

336.0 ISAPI : CII × CII → B –– ∼ 151

.1 ISAPI (mk -CII (CI (cs1), -),mk -CII (CI (cs2), -) 4 cs2 ⊆ cs1

337.0 IsAntiChainI : CII -set → B –– ∼ 8

.1 IsAntiChainI (ac) 4

.2 ∀ ci1 ∈ ac, ci2 ∈ ac · ci1 6= ci2 ⇒ ¬ ISAPI (ci1, ci2) ∧ ¬ ISAPI (ci2, ci1)

338.0 AntiCh (cis : CI -set) ac : CI -set –– ∼ 17

.1 post ac ⊆ cis ∧ IsAntiChain(ac) ∧ ∀ ci1 ∈ cis · ∃ ci2 ∈ ac · ISAP (ci1, ci2)

339.0 AntiChI (cis : CII -set) ac : CII -set

.1 post ac ⊆ cis ∧ IsAntiChainI (ac) ∧ ∀ ci1 ∈ cis · ∃ ci2 ∈ ac · ISAPI (ci1, ci2)

340.0 DownSetIC : POI → CI -set → CII -set –– ∼ 23

.1 DownSetIC (p)(ciset) 4

.2 {mk -CII (ci , infs) | mk -CII (ci , infs) ∈ p · ∃ ci ′ ∈ ciset · ISAP (ci , ci ′)}

341.0 stripInfo : CII -set → CI -set

.1 stripInfo (cis) 4 {ci | mk -CII (ci , -) ∈ cis}

342.0 CISprojI (p : POI)(cis : CI -set) ac : CII -set –– ∼ 26

.1 post ac ⊆ p ∧

.2 IsAntiChainI (ac) ∧

.3 DownSetIC (p)(stripInfo(ac)) = DownSetC (p)(cis)

A.2 Terms

types

343.0 BasicTerm = C | top | bottom;

344.0 Term = Join | Meet | Attr | BasicTerm;

345.0 Join : : Term × Term –– Join-term ;

346.0 Meet : : Term × Term –– Meet-term ;

347.0 Attr : : A× Term –– Attribute-term

A THE FINAL DATABASE SYSTEM 94

These general terms will only be used when making queries to the lattice database. When
inserting terms in the lattice database we will only allow terms not containing the top-term,
and finally in the equations we will only allow terms without the top-term and literals. Below
we define these two kinds of restricted terms

types

348.0 termIr = Term

.1 inv tir 4 top 6∈ BTerms(tir)
;

349.0 termEr = Term

.1 inv ter 4 top 6∈ BTerms(ter) ∧ ¬∃ e ∈ BTerms(ter) · is-N(e) ∨ is-String(e);

350.0 Eq : : termEr × termEr –– term-equation

where

351.0 BTerms : Term → BasicTerm-set –– ∼ 141

.1 BTerms (t) 4

.2 cases t :

.3 mk -Join(t1, t2) → BTerms(t1) ∪ BTerms(t2),

.4 mk -Meet(t1, t2) → BTerms(t1) ∪ BTerms(t2),

.5 mk -Attr(α, t) → BTerms(t),

.6 bt → {bt}

.7 end

A.3 Evaluation of Terms

352.0 EvalINCA : POI → Term → CII -set –– ∼ 264 –– ∼ 264

.1 EvalINCA (p)(t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinIN (p)(EvalINCA(p)(t1),EvalINCA(p)(t2)),

.4 mk -Meet(t1, t2) → MeetIN (p)(EvalINCA(p)(t1),EvalINCA(p)(t2)),

.5 mk -Attr(α, t) → AttributionIN (p)(α)(EvalINCA(p)(t)),

.6 (top) → AntiChI (p),

.7 (bottom) → {},

.8 c → cEvalIN (p)(c)

.9 end

353.0 JoinIN : POI → CII -set× CII -set → CII -set –– ∼ 50

.1 JoinIN (p)(ac1, ac2) 4 AntiChI (ac1 ∪ ac2)

A THE FINAL DATABASE SYSTEM 95

354.0 MeetIN : POI → CII -set× CII -set → CII -set –– ∼ 51

.1 MeetIN (p)(ac1, ac2) 4

.2 let cis = {mk -CI (cs1 ∪ cs2) |

.3 mk -CII (mk -CI (cs1), -) ∈ ac1,mk -CII (mk -CI (cs2), -) ∈ ac2} in

.4 CISprojI (p)(cis)

355.0 AttributionIN : POI → A → CII -set → CII -set –– ∼ 263

.1 AttributionIN (p)(α)(ac) 4 CISprojI (p)({attrCI (α)(ci) | mk -CII (ci , -) ∈ ac})

356.0 attrCI : A → CI → CI –– ∼ 170

.1 attrCI (α)(mk -CI (bs)) 4 mk -CI ({mk -At(α, b) | b ∈ bs})

357.0 cEvalIN : POI → C → CII -set –– ∼ 53

.1 cEvalIN (p)(c) 4 CISproj (p)({mk -CI ({c})})

A.4 Evaluation in the Power Set Partial Order

358.0 Eval ′NCAP : termEr → CI -set –– ∼ 269

.1 Eval ′NCAP (t) 4

.2 cases t :

.3 mk -Join(t1, t2) → JoinNCAP (Eval ′NCAP (t1),Eval ′NCAP (t2)),

.4 mk -Meet(t1, t2) → MeetNCAP (Eval ′NCAP (t1),Eval ′NCAP (t2)),

.5 mk -Attr(α, t) → {attrCI (α)(ci) | ci ∈ Eval ′NCAP (t)},

.6 (bottom) → {},

.7 c → {mk -CI ({c})}

.8 end

359.0 JoinNCAP : CI -set× CI -set → CI -set –– ∼ 267

.1 JoinNCAP (ac1, ac2) 4 AntiCh(ac1 ∪ ac2)

360.0 MeetNCAP : CI -set× CI -set → CI -set –– ∼ 268

.1 MeetNCAP (ac1, ac2) 4

.2 let cis = {mk -CI (bs1 ∪ bs2) | mk -CI (bs1) ∈ ac1,mk -CI (bs2) ∈ ac2} in

.3 AntiCh(cis)

A.5 Constructing the Database

types

361.0 NEq : : CI -set× CI -set ;

362.0 DB : : NEq-set× POI

A THE FINAL DATABASE SYSTEM 96

Create a new empty database with a given set of equations:

363.0 crDataBase : Eq-set → DB –– ∼ part of 320

.1 crDataBase (eqs) 4 mk -DB(EvalEqs(eqs), {})
where

364.0 EvalEq : Eq → NEq –– ∼ 290

.1 EvalEq (mk -Eq(t1, t2)) 4

.2 let ac1 = Eval ′NCAP (t1),

.3 ac2 = Eval ′NCAP (t2) in

.4 mk -NEq(JoinNCAP (ac1, ac2),MeetNCAP (ac1, ac2))

365.0 EvalEqs : Eq-set → NEq-set –– ∼ 291

.1 EvalEqs (eqs) 4 {EvalEq(eq) | eq ∈ eqs}
Insert a term with information in the database:

366.0 insertTerm : DB → termIr × Info → DB –– ∼ part of 320

.1 insertTerm (mk -DB(neqs, p))(term, info) 4

.2 let cis = extCIS (cEvalNCA(neqs)(term)) in

.3 let newpoi = {mkCII (ci , infs) | mk -CII (ci , infs) ∈ p · ci 6∈ cis} ∪

.4 {mk -CII (ci , infs ∪ {info}) | mk -CII (ci , infs) ∈ p · ci ∈ cis} ∪

.5 {mk -CII (ci , {info}) | ci ∈ cis · ¬ ∃mk -CII (ci ′, -) ∈ p · ci = ci ′} in

.6 mk -DB(neqs,newpoi)

A.5.1 The Algorithm for Computing EvalNCA

367.0 cEvalNCA : NEq-set → termIr → CI -set –– ∼ 313

.1 cEvalNCA (neqs)(t) 4 cProj (neqs)(Eval ′NCAP (t))

368.0 cProj : NEq-set → CI -set → CI -set –– ∼ 314

.1 cProj (neqs)(cis) 4

.2 let mk -(-, pcis) = cIProj (neqs)(true)(cis, {})({}) in

.3 pcis

The Iterated Projection

369.0 cIProj : NEq-set → B→ CI -set× CI -set → CI -set → B× CI -set –– ∼ 315

.1 cIProj (neqs)(accUnch)(upl , InP)(pLevCis) 4

.2 let mk -(newunch,newupl ,newInP) = cProjStep(neqs)(upl , InP)(pLevCis) in

.3 if newunch

.4 then mk -(accUnch,AntiCh(newInP))

.5 else cIProj (neqs)(false)(newupl ,newInP)(pLevCis)

A THE FINAL DATABASE SYSTEM 97

The Projection Step.

370.0 cProjStep : NEq-set → CI -set× CI -set → CI -set → B× CI -set× CI -set –– ∼ 316

.1 cProjStep (neqs)(upl , InP)(pLevCis) 4

.2 let cupls = {cEqsUpl(neqs)(pLevCis)(ci) | ci ∈ upl} in

.3 let InP1 = {ci | mk -((true), {ci}) ∈ cupls},

.4 notInP = {upl ′ | mk -((false), upl ′) ∈ cupls},

.5 newupl =
⋃

notInP in

.6 mk -(notInP = {},newupl , InP ∪ InP1)

Projecting a Single concept-intersection.

371.0 CisMeetNCAP : CI -set-set → CI -set –– ∼ 317

.1 CisMeetNCAP (ciss) 4

.2 cases ciss :

.3 {cis} → cis,

.4 {cis} ∪ ciss ′ → MeetNCAP (cis,CisMeetNCAP (ciss ′))

.5 end

.6 pre ciss 6= {}

372.0 cEqsUpl : NEq-set → CI -set → CI → B× CI -set –– ∼ 318

.1 cEqsUpl (neqs)(pLevCis)(ci) 4

.2 let uls1 = cEqsDirectUpl(neqs)(ci),

.3 uls2 = {iupl | α ∈ AttrsInCI (ci), iupl : CI -set ·

.4 mk -(false, iupl) = cIUpl(neqs)(α)(pLevCis)(ci)} in

.5 let uls = uls1 ∪ uls2 in

.6 cases uls :

.7 {} → mk -(true, {ci}),

.8 - → mk -(false,CisMeetNCAP ({{ci}} ∪ uls))

.9 end

373.0 cEqsDirectUpl : NEq-set → CI → CI -set-set

.1 cEqsDirectUpl (neqs)(ci) 4

.2 let uls1 = {m | mk -NEq(u,m) ∈ neqs · InEqDirectRej (mk -NEq(u,m))(ci)},

.3 uls2 = cBuildInEqsDirectUpl(ci) in

.4 uls1 ∪ uls2

374.0 cBuildInEqsDirectUpl : CI → CI -set-set

.1 cBuildInEqsDirectUpl (mk -CI (bs)) 4

.2 {mk -CI ({NUMBER, c}) | c ∈ bs · is-Integer(c) ∧ NUMBER 6∈ bs} ∪

.3 {mk -CI ({STRING, c}) | c ∈ bs · is-String(c) ∧ STRING 6∈ bs} ∪

.4 (if ∃ b1, b2 ∈ bs · b1 6= b2 ∧ ∀ b ∈ {b1, b2} · is-Integer(b) ∨ is-String(c)

.5 then {{}}

.6 else {})

A THE FINAL DATABASE SYSTEM 98

Lines 2 and3 above correspond to the equations

INTEGER >= 0 + 1 + 2 + 3 + ...
STRING >= ‘‘’’ + ‘‘a’’ + ‘‘b’’ + ...+ ‘‘aa’’ + ‘‘ab’’ + ...

and line 4 corresponds to equations of the form

litteral1 * literal2 = BOTTOM

i.e. if an inserted concept-intersection contains two different string or number literals it will
have BOTTOM as an upper bound.

375.0 cIUpl : NEq-set → A → CI -set → CI → B× CI -set –– ∼ 319

.1 cIUpl (neqs)(α)(pLevCis)(ci) 4

.2 let ciarg = AttrArgCI (α)(ci) in

.3 let mk -(unch, proj) =

.4 if ciarg ∈ pLevCis then mk -(false, {})

.5 else cIProj (neqs)(true)({ciarg}, {})(pLevCis ∪ {ciarg}) in

.6 cases unch :

.7 false → mk -(false, atCIs(α)(proj)),

.8 true → mk -(true, {ci})

.9 end

Equation Reject The function InEqDirectRej defined below tells if a concept-intersection
is directly rejected by an equation by being in the equations rejection region:

376.0 InEqDirectRej : NEq → CI → B –– ∼ 292

.1 InEqDirectRej (mk -NEq(u,m))(ci) 4

.2 ISAN ({ci}, u) ∧ ¬ ISAN ({ci},m)

Extracting Attributes

377.0 AttrsInCI : CI → A-set –– ∼ 162

.1 AttrsInCI (mk -CI (bs)) 4 {a | mk -At(a, -) ∈ bs}

378.0 AttrArgCI : A → CI → CI –– ∼ 178

.1 AttrArgCI (α)(ci) 4 mk -CI ({b | mk -At(-, b) ∈ CbattrsCI (α)(ci)})

.2 pre α ∈ AttrsInCI (ci)

Constructing Attribute Consistent Partial Orders

379.0 extCIS : CI -set → CI -set –– ∼ 379

.1 extCIS (cis) 4

.2 let attrArg = {AttrArgCI (α)(ci) | ci ∈ cis, α ∈ AttrsInCI (ci)} in

.3 if attrArg = {} then cis else cis ∪ extCIS (attrArg)

B PROOFS 99

A.6 Querying the Database

380.0 Query = TermQ | DownsetQ | DBnJoinQ

381.0 TermQ : : Term –– term query

382.0 DownsetQ : : Term –– downset query

383.0 DBnJoinQ : : Query ×Query –– database natural join query

We consider just three query constructs. A basic term query is just term-evaluation in
the actual partial order resulting in an antichain with an information set associated to
each concept-intersection. The downset query is almost like the term query, but results
in a downset in the actual partial order. Finally we have the data base natural join as
discussed in section 16.1.

384.0 EvalQuery : DB → Query → CII -set

.1 EvalQuery (db)(q) 4

.2 let mk -DB(neqs, p) = db in

.3 cases q :

.4 mk -TermQ(t) → EvalINCA(p)(t),

.5 mk -DownsetQ(t) → DownSetIC (p)(stripInfo(EvalINCA(p)(t))),

.6 mk -DBnJoinQ(q1, q2) →

.7 let ciis1 = EvalQuery(db)(q1),

.8 ciis2 = EvalQuery(db)(q2) in

.9 DBJoinI (p)(neqs)(ciis1, ciis2)

.10 end

385.0 DBJoinI : POI → NEq-set → CII -set× CII -set → CII -set –– ∼ 322

.1 DBJoinI (p)(neqs)(ciis1, ciis2) 4

.2 let jciis =
⋃ {JoinCII (p)(cii1, cii2) | cii1 ∈ ciis1, cii2 ∈ ciis2} in

.3 cProjI (neqs)(jciis)

In JoinCII the two concept-intersection’s with information cii1 and cii2 will be joined iff the
common attributes have overlapping arguments. When two rows/CII’s are joined we must
consider what to do with the associated information. A solution would be to associate to
the new joined row the union of the information sets from the original rows. Thus JoinCII
will correspond to JoinCI in 323 but with some trivial complications. We will however not
elaborate further on that topic in this report.

B Proofs

B.1 Proof of Term Value Property 42.1

Below is a proof of the term value property 42.1 repeated here:

386.0 EvalL(p \ cis)(t) = EvalL(p)(t) \ cis

B PROOFS 100

The proof uses structural induction on the term structure. First 386 must be proved correct
for basic terms i.e. terms without sub-terms:

bottom:
EvalL(p \ cis)(bottom) = {} = {} \ cis
= EvalL(p)(bottom) \ cis

top:
EvalL(p \ cis)(top) = p \ cis
= EvalL(p)(top) \ cis

Named concept c:
EvalL(p \ cis)(c) = cValueL(p \ cis)(c)
= DownSet(p \ cis)({mk -CI ({c})})

from 14
= DownSet(P(cset))({mk -CI ({c})}) ∩ (p \ cis)
= (DownSet(P(cset))({mk -CI ({c})}) ∩ p) \ cis

from 14
= DownSet(p)({mk -CI ({c})}) \ cis
= cValueL(p)(c) \ cis
= EvalL(p)(c) \ cis

Next, in the induction steps, when considering compound terms, assume 386 is true for the
sub-terms (the induction hypothesis):

mk -Join(t1, t2):
EvalL(p \ cis)(mk -Join(t1, t2))

from 41
= JoinL(EvalL(p \ cis)(t1),EvalL(p \ cis)(t2))

from 30
= EvalL(p \ cis)(t1) ∪ EvalL(p \ cis)(t2)

from induction hypothesis
= (EvalL(p)(t1) \ cis) ∪ (EvalL(p)(t2) \ cis)
= (EvalL(p)(t1) ∪ EvalL(p)(t2)) \ cis
= JoinL(EvalL(p)(t1),EvalL(p)(t2)) \ cis

from 41
= EvalL(p)(mk -Join(t1, t2)) \ cis

mk -Meet(t1, t2): Similar to the proof for Join.

B.2 Proof of Term Value Property 42.2

Below is a proof of the term value property 42.2:

387.0 p1 ⊆ p2 ⇒ EvalL(p1)(t) = EvalL(p2)(t) ∩ p1

The proof is based on the properties 42.0 and 42.1.
EvalL(p2 \ cs)(t)

from 42.1
= EvalL(p2)(t) \ cs

B PROOFS 101

from 42.0
= (EvalL(p2)(t) ∩ p2) \ cs
= EvalL(p2)(t) ∩ (p2 \ cs)

Hence, if p2 \ cs is replaced by p1 we get

388.0 p1 ⊆ p2 ⇒ EvalL(p1)(t) = EvalL(p2)(t) ∩ p1

B.3 Proof of Term Value Properties 42.3 and 42.4

Below is a proof of the term value property 42.3:

389.0 EvalL(p1 ∪ p2)(t) = EvalL(p1)(t) ∪ EvalL(p2)(t)

The proof is based on the equality in 42.2. We instantiate that equality to the two equations
below:

390.0 EvalL(p1)(t) = EvalL(p1 ∪ p2)(t) ∩ p1

.1 EvalL(p2)(t) = EvalL(p1 ∪ p2)(t) ∩ p2

By making the union of the two equations in 390 above we get the first line below
EvalL(p1)(t) ∪ EvalL(p1)(t) = EvalL(p1 ∪ p2)(t) ∩ p1 ∪ EvalL(p1 ∪ p2)(t) ∩ p2

= EvalL(p1 ∪ p2)(t) ∩ (p1 ∪ p2)
from EvalL(p1 ∪ p2)(t) ⊆ p1 ∪ p2, (42.0)

= EvalL(p1 ∪ p2)(t)

Next, a proof of the term value property 42.4:

391.0 EvalL(p1 ∩ p2)(t) = EvalL(p1)(t) ∩ EvalL(p2)(t)

The proof is again based on the equality in 42.2. We instantiate that equality to the two
equations below:

392.0 EvalL(p1 ∩ p2)(t) = EvalL(p1)(t) ∩ (p1 ∩ p2)
.1 EvalL(p1 ∩ p2)(t) = EvalL(p2)(t) ∩ (p1 ∩ p2)

By making the intersection of the two equations in 392 above we get the equation below
EvalL(p1 ∩ p2)(t) ∩ EvalL(p1 ∩ p2)(t)
= EvalL(p1)(t) ∩ (p1 ∩ p2) ∩ EvalL(p2)(t) ∩ (p1 ∩ p2)

By reducing and rearranging we get
EvalL(p1 ∩ p2)(t) = (EvalL(p1)(t) ∩ p1) ∩ (EvalL(p2)(t) ∩ p2)

which according to 42.0 is equivalent to
EvalL(p1 ∩ p2)(t) = EvalL(p1)(t) ∩ EvalL(p2)(t)

B.4 Proof of MeetN Correctness 52

In this section we prove

393.0 DownSet(AntiCh(DownSet(p)(ac1) ∩DownSet(p)(ac2))) = –– ∼ 52

.1 DownSet

.2 (let cis = {mk -CI (cs1 ∪ cs2) | mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2} in

.3 CISproj (p)(cis))

B PROOFS 102

Let the downset defined in 393.0 be ds1. It is seen to be the set of concept-intersections in p
which are below ac1 and ac2:

ds1 = {ci | ci ∈ p · ∃ ci1 ∈ ac1, ci2 ∈ ac2 · ISAP (ci , ci1) ∧ ISAP (ci , ci2)}
Let the downset defined in 393.1–393.3 be ds2. To show that ds1 = ds2 we need an auxiliary
lemma:

394.0 ISAP (mk -CI (cs),mk -CI (cs1 ∪ cs2))

.1
from 6

= cs1 ∪ cs2 ⊆ cs
.2 = cs1 ⊆ cs ∧ cs2 ⊆ cs
.3 = ISAP (mk -CI (cs),mk -CI (cs1)) ∧ ISAP (mk -CI (cs),mk -CI (cs2))

According to the definition of CISproj (in 26) CISproj (p)(cis) is the anti-chain in p which
has the same downset in p as cis has. Consequently, the downset of this anti-chain is the set
of all concept-intersections in p which are below some element in cis:

ds2 = {ci | ci ∈ p ·
∃ ci ′ ∈ {mk -CI (cs1 ∪ cs2) | mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2} · ISAP (ci , ci ′)}

= {mk -CI (cs) | mk -CI (cs) ∈ p ·
∃mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2 · ISAP (mk -CI (cs),mk -CI (cs1∪cs2))}

from 394
= {mk -CI (cs) | mk -CI (cs) ∈ p · ∃mk -CI (cs1) ∈ ac1,mk -CI (cs2) ∈ ac2 ·

ISAP (mk -CI (cs),mk -CI (cs1)) ∧ ISAP (mk -CI (cs),mk -CI (cs2))}
= ds1

where the last step was obtained by a little renaming.

B.5 Proof of Attribution Property 173.4

Below is a proof of the attribution property 173.4:

395.0 AttributionCA(p1)(α)(cis)∪AttributionCA(p2)(α)(cis) = AttributionCA(p1∪p2)(α)(cis)

The proof is based on 173.0 and 173.2. First we need an auxiliary result
AttributionCA(p \ d)(α)(cis)

from 173.2
= AttributionCA(p)(α)(cis) \ d

from 173.0
= (AttributionCA(p)(α)(cis) ∩ p) \ d
= AttributionCA(p)(α)(cis) ∩ (p \ d)

Hence, if p \ d is replaced by p1 we get

396.0 p1 ⊆ p ⇒ AttributionCA(p1)(α)(cis) = AttributionCA(p)(α)(cis) ∩ p1

The equality 396 above may be instantiated to the two equations below:

397.0 AttributionCA(p1)(α)(cis) = AttributionCA(p1 ∪ p2)(α)(cis) ∩ p1

.1 AttributionCA(p2)(α)(cis) = AttributionCA(p1 ∪ p2)(α)(cis) ∩ p2

By making the union of the two equations in 397 above we get the first line below
AttributionCA(p1)(α)(cis) ∪AttributionCA(p1)(α)(cis)
= AttributionCA(p1 ∪ p2)(α)(cis) ∩ p1 ∪AttributionCA(p1 ∪ p2)(α)(cis) ∩ p2

= AttributionCA(p1 ∪ p2)(α)(cis) ∩ (p1 ∪ p2)

B PROOFS 103

from AttributionCA(p1 ∪ p2)(α)(cis) ⊆ p1 ∪ p2, (173.0)
= AttributionCA(p1 ∪ p2)(α)(cis)

B.6 Proof of Downset Intersection Property 210

We prove the general downset intersection property 210 mentioned in section 11.1. It is
repeated below:

398.0 ∀ cis1, cis2 : CI -set ·
.1 DownSetC (p)(cis1 ∩ cis2) ⊆ DownSetC (p)(cis1) ∩DownSetC (p)(cis2)

If DownSetC (p)(cis1 ∩ cis2) = {} then the inclusion is obvious. So below assume
DownSetC (p)(cis1 ∩ cis2) 6= {}. We prove every element in the left-hand side set is also in
the right-hand side set. So assume ci : CI is an arbitrary concept-intersection such that

ci ∈ DownSetC (p)(cis1 ∩ cis2)

Then, according to the definition of DownSetC (23) we have
∃ ci ′ ∈ p · ci ′ ∈ cis1 ∩ cis2 ∧ ISAP (ci , ci ′)

which can easily be rearranged to
∃ ci ′ ∈ p · (ci ′ ∈ cis1 ∧ ISAP (ci , ci ′)) ∧ ∃ ci ′ ∈ p · (ci ′ ∈ cis2 ∧ ISAP (ci , ci ′))

According to the definition of DownSetC this is equivalente to
ci ∈ DownSetC (p)(cis1) ∧ ci ∈ DownSetC (p)(cis2)

which is trivially equivalent to
ci ∈ DownSetC (p)(cis1) ∩DownSetC (p)(cis2)

B.7 Proof of Term Value Property 175.0

Below is a proof of the term value property 175.0 repeated here:

399.0 EvalCA(p)(t) ⊆ p

The proof uses structural induction on the term structure. First 399 must be proved correct
for basic terms i.e. terms without sub-terms:

bottom:
EvalCA(p)(bottom) = {} ⊆ p

top:
EvalCA(p1)(top) = p ⊆ p

Named concept c:
EvalCA(p)(c) = cValueL(p)(c)
= DownSet(p)({mk -CI ({c})})

from 14
⊆ p

Next, in the induction steps, when considering compound terms, assume 399 is true for the
sub-terms (the induction hypothesis):

B PROOFS 104

mk -Join(t1, t2):
EvalCA(p)(mk -Join(t1, t2))

from 174
= JoinL(EvalCA(p)(t1),EvalCA(p)(t2))

from 30
= EvalCA(p)(t1) ∪ EvalCA(p)(t2)

from induction hypothesis
⊆ p ∪ p = p

mk -Meet(t1, t2): Similar to the proof for Join.

Attr(α, t):
EvalCA(p)(Attr(α, t))

from 174
= AttributionCA(p)(α)(EvalCA(p)(t))

173.0
⊆ p

B.8 Proof of Term Value Property 175.1

Below is a proof of the term value property 175.1 repeated here:

400.0 p1 ⊆ p2 ⇒ EvalCA(p1)(t) ⊆ EvalCA(p2)(t)

To make the proof, let p1 : PO and p2 : PO be two arbitrary partial orders, and assume
that the lefthand side of the implication above is true, i.e.

401.0 p1 ⊆ p2

First 400 must be proved correct for basic terms i.e. terms without sub-terms:

bottom:
EvalCA(p1)(bottom) = {} = EvalCA(p1)(bottom)

top:
EvalCA(p1)(top) = p1 ⊆ p2 = EvalCA(p)(top)

Named concept c:
EvalCA(p1)(c) = cValueL(p1)(c)
= DownSet(p1)({mk -CI ({c})})

from 14
⊆ DownSet(p2)({mk -CI ({c})})
= EvalCA(p2)(c)

Next, in the induction steps, when considering compound terms, assume 400 is true for the
sub-terms (the induction hypothesis):

mk -Join(t1, t2):
EvalCA(p1)(mk -Join(t1, t2))

from 174
= JoinL(EvalCA(p1)(t1),EvalCA(p1)(t2))

B PROOFS 105

from 30
= EvalCA(p1)(t1) ∪ EvalCA(p1)(t2)

from induction hypothesis
⊆ EvalCA(p2)(t1) ∪ EvalCA(p2)(t2)
= JoinL(EvalCA(p2)(t1),EvalCA(p2)(t2))
= EvalCA(p2)(mk -Join(t1, t2))

mk -Meet(t1, t2): Similar to the proof for Join.

Attr(α, t):
EvalCA(p1)(Attr(α, t))

from 174
= AttributionCA(p1)(α)(EvalCA(p1)(t))

from induction hypothesis and 173.1
⊆ AttributionCA(p1)(α)(EvalCA(p2)(t))

from 173.2
⊆ AttributionCA(p2)(α)(EvalCA(p2)(t))
= EvalCA(p2)(Attr(α, t))

B.9 Proof of CISproj -property 106

Below is a proof of the property of CISproj in 106 repeated here:

402.0 ISAS (CISproj (pmax)(cis), cis1) ∧ ISAS (cis1, cis)
.1 ⇒ CISproj (pmax)(cis1) = CISproj (pmax)(cis)

proof : Let ac1 = CISproj (pmax)(cis1) and ac2 = CISproj (pmax)(cis). From the definition
of CISproj (26) we know that ac1 and ac2 are both anti-chains in pmax . To see that ac1 = ac2
we show that they have the same down-set in pmax . From the definition of CISproj 26.3 we
get

403.0 DownSetC (pmax)(ac1) = DownSetC (pmax)(cis1),
.1 DownSetC (pmax)(ac2) = DownSetC (pmax)(cis)

Assume the left-hand side of the implication
ISAS (CISproj (pmax)(cis), cis1) ∧ ISAS (cis1, cis)

which is equivalent to

404.0 ISAS (ac2, cis1) ∧ ISAS (cis1, cis)

To prove the equality we make two sub-proofs:

DownSetC (pmax)(cis1) ⊆ DownSetC (pmax)(cis): So assume

cip ∈ DownSetC (pmax)(cis1)

which, according to the definition of DownSetC (23) is equivalent to

405.0 ∃ ci1 ∈ cis1 · ISAP (cip, ci1)

Applying the the definition of DownSetC (23) to the right conjunct in 404 gives
∀ ci1 ∈ cis1 · ∃ ci ∈ cis · ISAP (ci1, ci)

Applying this to 405 gives
∃ ci1 ∈ cis1 · ∃ ci ∈ cis · ISAP (ci1, ci) ∧ ISAP (cip, ci1)

B PROOFS 106

Using the trasitivity of ISAP gives
∃ ci ∈ cis · ISAP (cip, ci)

which is equivalent to
cip ∈ DownSetC (pmax)(cis)

DownSetC (pmax)(cis) ⊆ DownSetC (pmax)(cis1): We prove the equivalent

DownSetC (pmax)(ac2) ⊆ DownSetC (pmax)(cis1)

So assume
cip ∈ DownSetC (pmax)(ac2)

which, according to the definition of DownSetC is equivalent to

406.0 ∃ ci2 ∈ ac2 · ISAP (cip, ci2)

Using the definition of ISAS to the left conjunct in 404 gives:
∀ ci2 ∈ ac2 · ∃ ci1 ∈ cis1 · ISAP (ci2, ci1)

Applying this to 406 gives
∃ ci2 ∈ ac2 · ∃ ci1 ∈ cis1 · ISAP (ci2, ci1) ∧ ISAP (cip, ci2)

Using the trasitivity of ISAP gives
∃ ci1 ∈ cis1 · ISAP (cip, ci1)

from which we get
cip ∈ DownSetC (pmax)(cis1)

2

B.10 Proof of CISproj -property 107

Below is a proof of the property of CISproj in 107 repeated here:

407.0 CISproj (p)(cis1 ∪ cis2) = AntiCh(CISproj (p)(cis1) ∪ CISproj (p)(cis2))

proof : The equality in 407 is between two antichains in p. Let the left- and right-hand side
antichains be ac1 and ac2. We show they are identical by showing that they have the same
down-set in p. For the left-hand side anti-chain ac1 we have:

DownSetC (p)(ac1)
from 26.3

= DownSetC (p)(cis1 ∪ cis2)
from 12

= DownSetC (p)(cis1) ∪DownSetC (p)(cis2)

For the right-hand side anti-chain ac2 we have:
DownSetC (p)(ac2)
= DownSetC (p)(AntiCh(CISproj (p)(cis1) ∪ CISproj (p)(cis2)))

from 22
= DownSetC (p)(CISproj (p)(cis1) ∪ CISproj (p)(cis2))

from 12
= DownSetC (p)(CISproj (p)(cis1)) ∪DownSetC (p)(CISproj (p)(cis2))

from 26.3
= DownSetC (p)(cis1) ∪DownSetC (p)(cis2)

REFERENCES 107

References

[1] B.A.Davey, H.A.Priestley. Introduction to Lattices and Order, Second Edition Cambridge
University Press, 2002.

[2] John Dawes. The VDM-SL Reference Guide. London: Pitman, 1991

[3] J. Fischer Nilsson. An Algebraic Logic for Concept Structures. Information Modelling
and Knowledge Bases V, H.Jaakkola et all.(Eds.). IOS Press, 1994

[4] J.Fischer Nilsson. A Logico-Algebraic Framework for Ontologies (ONTOLOG), in Procs.
from Int. OntoQuery Workshop on Ontology-based interpretation of NP’s, Kolding, Jan-
uary 17-18, 2000

[5] J. Fischer Nilsson, Hele-Mai Haav. Inducing Queries from Examples as Concept Forma-
tion. Information Modeling and Knowledge Bases X, H.Jaakkola et all.(Eds.). IOS Press,
1999

[6] Frank J. Oles. An application of lattice theory to knowledge representation, Theoretical
Computer Science 249 (2000) 163-196

