The Developement of
A Lattice Structured Database

Hans Bruun

Informatics and Mathematical Modelling,
Technical University of Denmark
2006
$\mathbf{a}, \mathbf{b}, \mathbf{c}$,
a,b,
 $\mathrm{ab}, \mathrm{ac}, \mathrm{bc}, \mathrm{abc} \quad \mathrm{ab}, \mathrm{ac}, \mathrm{bc}, \mathrm{abc} \quad \mathrm{ab}, \mathrm{ac}, \mathrm{bc}, \mathrm{abc}$

a,bc,

b,ac,
ab,bc,abc

$$
\mathbf{c}, \mathbf{a b}
$$

ac,bc,abc

Abstract

In this project we have investigated the possibilities to make a system based on the concept algebra described in [3], [4] and [5]. The concept algebra is used for ontology specification and knowledge representation. It is a distributive lattice extended with attribution operations. One of the main ideas in this work is to use Birkhoff's representation theorem, so we represent distributive lattices using its dual representation: the partial order of join irreducibles. We show how to construct a concept algebra satisfying a given set of equations. The universal/initial algebra is usually too big to be useful even in its dual representation, so it is important to use a smaller one from the set of possible solutions. Here the most important contribution seems to be the idea of inserting terms in the lattice. For this to make sense we introduced the concept of the most disjoint lattice with respect to a given set of inserted terms, that is the smallest lattice where the inserted terms preserve their value compared to the value in the initial algebra/lattice. The database is the dual representation of this most disjoint lattice. We develop algorithms to construct and make queries to the database.

Contents

1 Introduction 1
1.1 Example, a real estate database 1
1.2 The Concept Algebra 2
1.3 Example with equations 3
1.4 Example, human 5
2 The Partial Order of Concept Intersections 6
2.1 Anti-chains and Down-sets 7
2.2 Projection 10
3 The Concept Lattice 11
3.1 Birkhoff's Representation Theorem 12
3.2 Computing Covers in $\mathcal{O}(p)$ from p 14
4 Lattices as Algebras 14
4.1 The Lattice of Anti-chains 16
5 Computing Lattices $\mathcal{O}(p)$ Satisfying a Set of Equations 19
5.1 The Additive Method 19
5.2 The Subtractive Method 20
5.3 The Lattices Satisfying a Set of Equations 21
5.4 The Initial Lattice 22
6 The Most Disjoint Lattice 22
6.1 Term Value Preserving Properties for $E^{\text {Eal }} L_{L}$ 23
6.2 Term Value Preserving Properties for $E v a l_{N}$ 26
6.3 The Most Disjoint Lattice and its Properties 29
6.4 Examples of Most Disjoint Lattices 30
7 An Efficient Implementation of the Most Disjoint Lattice 32
7.1 Term Evaluation using Projection 32
7.2 Evaluation in the Power Set Partial Order 34
7.3 Projection into pmax. 34
7.4 Projection Step of a Concept-intersection 36
7.4.1 Projection Step of a Concept-intersection Set 37
7.5 Projection Sequence 40
7.6 Implementation of $c P r o j$ 41
8 Introducing Attributes 42
8.1 Terms and Equations 42
8.2 Concept Intersections with Attributions 43
8.3 Auxiliary Functions 46
9 The Lattice Algebra with Attribution 47
9.1 Attribute Axioms. 48
9.2 The Value of Terms in the Algebra $\mathcal{C} \mathcal{A}($ cset, aset, $p)$. 49
10 Attribute Consistent Partial Orders 51
10.1 Lemma for Attribute Consistent Partial Orders 53
10.2 Constructing Attribute Consistent Partial Orders 55
11 Concept Algebras 56
11.1 Attribute Axiom: Distribution of Meet 56
11.2 The Downset Intersection Property 57
11.3 The Value of Terms in Concept Algebras. 58
11.4 A Concept Algebra is a Generated Algebra. 61
12 Concept Algebras Satisfying a Set of Equations 61
12.1 The Additive Method 62
12.2 The Subtractive Method 64
12.3 The Set of Concept Algebras Satisfying a Set of Equations 66
12.3.1 The Initial Concept Algebra 67
13 The Concept Algebra of Anti-chains 67
13.1 Evaluation in the Power Set Partial Order 68
14 The Most Disjoint Concept Algebra 69
14.1 The Most Disjoint Concept Algebra and its Properties 73
15 Implementation of the Most Disjoint Concept Algebra 74
15.1 Projection into pmax. 75
15.2 Computing Upper Bounds 77
15.3 The Algorithm for Computing Eval ${ }_{N C A}$ 82
15.4 Projecting a Single concept-intersection. 83
15.5 Implementing $c T M d i s j P O$ 87
16 Querying the Concept Algebra 87
16.1 Constructing Data Base Natural Joins 88
17 Conclusion 90
A The Final Database System 92
A. 1 Concept Intersections with Associated Information 92
A. 2 Terms 93
A. 3 Evaluation of Terms 94
A. 4 Evaluation in the Power Set Partial Order 95
A. 5 Constructing the Database 95
A.5.1 The Algorithm for Computing Eval ${ }_{N C A}$ 96
A. 6 Querying the Database 99
B Proofs 99
B. 1 Proof of Term Value Property 42.1 99
B. 2 Proof of Term Value Property 42.2 100
B. 3 Proof of Term Value Properties 42.3 and 42.4 101
B. 4 Proof of Meet $_{N}$ Correctness 52 101
B. 5 Proof of Attribution Property 173.4 102
B. 6 Proof of Downset Intersection Property 210 103
B. 7 Proof of Term Value Property 175.0 103
B. 8 Proof of Term Value Property 175.1 104
B. 9 Proof of CISproj-property 106 105
B. 10 Proof of CISproj-property 107 106
List of Figures
1 Concept relations described by concept-intersections 6
2 Concept relations described by concept-intersections 6
3 Downset and DownsetC 9
4 Definition of projection 10
5 The partial order p from fig. 1 and the corresponding lattice $\mathcal{O}(p)$ 12
6 The partial order p from fig. 2 and the corresponding lattice $\mathcal{O}(p)$ 13
7 Implementation of meet as an operation on anti-chains 18
8 lemma 67, 68 and 70 24
9 lemma 75 and 79 26
10 Projecting $\operatorname{Eval}_{N}(\mathcal{P}($ cset $)(t))$ into pmax 33
11 Reject-region and accept-region 36
12 Computing CISproj(pmax)(cis) 38
13 A partial order p_{0} with attribution and the corresponding lattice $\mathcal{O}\left(p_{0}\right)$ 50
14 Using attrCI and AttrArgCI 53
15 Illustration of proof for Attribute Consistent Partial Order lemma 54
16 The set of building blocks for bset $=\{x, y, a(x), a(y)\}$. Column 3 and 4 shows the value of $x, a(x)$ and $y, a(y)$ in the building block partial order. 65
17 The set of all AttrArgCI for the top-most concept-intersection 76
18 Illustation of proof for lemma 295 78
19 Illustation of proof for lemma 298 80
20 Inserting $a(a(c)$), equation: $c * \mathrm{a}(\mathrm{c})=\mathrm{a}(\mathrm{c})$ 85
21 Inserting $\mathrm{a}(\mathrm{a}(\mathrm{c})$), equation: $\mathrm{c} * \mathrm{a}(\mathrm{c})=\mathrm{c}$ 86

Preface

In this report we investigate a new approach to database structuring and querying. The theoretical framework for the database is based on the concept algebra described in [3], [4] and [5]. A concrete concept algebra is a distributive lattice, so the databases we are going to describe will have the contained data structured as a distributive lattice. The prototype program implemented on the basis of the theory developed in this report is called LatBase for lattice structured database.

In sections 2-7 we first investigate the simplified case, where attributes are removed so we are left with distributive lattices. From section 8 the full concept algebra with attributes is investigated. All functions, formulas and types/domains are specified in a small subset of the VDMSL specification language (see e.g. [2]). This report is the final result of a working document that changed and growed as the author found solutions to the problems under consideration.

1 Introduction

According to [3] and [4] a concept algebra is a distributive lattice algebra with the binary operators join $(+)$ and meet $(*)$, but as an essential part extended with an arbitrary number of attributes fulfilling rules for distribution of + and ${ }^{*}$ and a rule for strictness. In the sequel we will also call a concept algebra a concept lattice. A user specifies a concrete concept algebra by giving a set of equations between terms in the algebra. As known from universal algebra a set of equations usually specify a set of generated algebras ranging from the most general initial algebra to the smallest so called terminal algebra.

In this report we propose a way to construct a specific concept algebra by giving a set of equations which the algebra has to fulfill, and furthermore by inserting terms in the lattice. A concept lattice - specified by a set of equations and a set of inserted terms - is the smallest generated concept algebra fulfilling the equations such that the inserted terms evaluate to the same value as in the initial algebra. This concept algebra is called the most disjoint concept algebra. The representation of the distributive lattice is based on Birkhoff's representation theorem for finite distributive lattices (see e.g. [1]). Birkhoff's representation theorem has been used in other knowledge representation systems (see e.g. [6]).

Before going into details we first show a few small examples of using LatBase , the developed prototype program based on the proposed algorithms.

1.1 Example, a real estate database

We consider a small database with sales information about real estates. The database is almost like a relational database table with the columns ID, LOC, SIZE, PRICE and COND. In the LATBASE -system we may insert information about each real estate as an algebraic term:

```
insert
    flat *ID(id1)*LOC(loc3)*SIZE(large) *PRICE(medium)*COND(medium),
    flat *ID(id2)*LOC(loc1)*SIZE(small) *PRICE(large) *COND(xlarge),
    villa*ID(id3)*LOC(loc5)*SIZE(xlarge)*PRICE(xlarge)*COND(small),
    villa*ID(id4)*LOC(loc2)*SIZE(large) *PRICE(large) *COND(large),
    flat *ID(id5)*LOC(loc5)*SIZE(xlarge),
```

```
farm *ID(id6)*LOC(loc4)*AREA(medium) *PRICE(medium)
```

All the small letter names above are concept names and capital letter names are attribute names. The concepts small, medium, large, xlarge designate four different sizes and are used as a measure for sizes, prices and conditions of real estates. The concepts loc1-loc5 designate five specific geographical areas and are used to indicate the physical location of a real estate. The concepts id1 - id6 are used as unique names. Finally the concepts flat, villa and farm denote real estates that are flats, villas and farms respectively.

In the example above each inserted term corresponds to a tuple in a relational database. Informally, in a relational database formulation, we may thus consider the first term as a tuple in the flat relation with the ID attribute id1, the LOC attribute equal to loc3, the SIZE attribute equal to large, the PRICE attribute equal to medium and the COND attribute equal to medium. When modeling a classical database relation, flat would be absent and we would have the same set of attributes in all tuples. As seen in the last two terms in the example above the LatBase -system does not force such a homogeneity constraint.

Given the database above we can now make a query to the system by writing a term. First we ask for all real estates having size large:

```
SIZE(large)
```

and the system answers with

```
{[flat, ID(id1), LOC(loc3), SIZE(large), PRICE(medium), COND(medium)]
    [villa, ID(id4), LOC(loc2), SIZE(large), PRICE(large), COND(large)]}
```

The answer from the system is also a term, but written in a special notation. The term is in disjunctive normal form, the conjunction of a set of concepts $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ is written as $\left[c_{1}, c_{2}, \ldots, c_{n}\right]$ and the disjunction of a set of conjunctions is written as $\{[\ldots][\ldots] \ldots[\ldots]\}$. So from the above answer we can see that there are two real estates in the answer, a flat and a villa. Each returned real estate is described by a conjunction of a set of concepts, here mainly attributes.

Next we ask for a real estate which is either a farm or a villa, which is located in either the area loc2 or the area loc4 and which has a price medium or large:

```
(farm + villa) * LOC(loc2 + loc4) * PRICE(medium + large)
```

Now the system answers with:

```
{[villa, ID(id4), LOC(loc2), SIZE(large), PRICE(large), COND(large)]
    [farm, ID(id6), LOC(loc4), PRICE(medium), AREA(medium)]}
```


1.2 The Concept Algebra

In the Concept Algebra terms are formed from a set of concept identifiers, and operators on concepts. The two binary operators + and ${ }^{*}$ are required to obey the axioms for idempotency, commutativity, associativity, absorption, and distributivity. This means that a concrete concept algebra always is a distributive lattice with + being lattice join and ${ }^{*}$ being lattice meet. From lattice theory we know that any distributive lattice is isomorphic to a lattice of sets. Consequently, in the framework of concept algebras we usually consider a concrete concept algebra as a lattice of sets, where the sets represents (the extension of) the concepts. The
binary operators + and ${ }^{*}$ are then set union (\bigcup) and set intersection (\bigcap). The special concept identifier null is the bottom element and corresponds to the empty set in the set model.

Besides the two binary operators we may introduce an arbitrary set of unary operators corresponding to attributes. All introduced attributes a must obey the following axioms

$$
\begin{aligned}
a(x+y) & =a(x)+a(y) \\
a(x * y) & =a(x) * a(y) \\
a(\text { null }) & =\text { null }
\end{aligned}
$$

These axioms ensure that * informally can be understood as a tuple constructor (see [3] and [5]).

Let us reconsider the first inserted term in the previous example

```
insert flat *ID(id1)*LOC(loc3)*SIZE(large) *PRICE(medium)*COND(medium)
```

Here e.g. the attribute LOC is a function which maps the location loc3 to the concept LOC (loc3) which (extensionally) designates the set of all entities located in the loc3-area. We can now interpret the term as the intersection of several sets:

- flat: the set of all real estates that are flats.
- ID (id1): the set of all entities with the unique identifier id1. We should ensure that only one entity (in the database) has this identifier, so the set becomes a singleton set.
- LOC(loc3): the set of all entities located in the area loc3.
- SIZE(large): the set of all entities, which have the size large.
- etc.

The result is a (singleton) set containing the described real estate. But informally it is convenient to think of the result as a tuple.

According to lattice theory (see e.g. [1]) a lattice is also a partial order with the ordering relationship \leq defined by

$$
x \leq y \text { iff } x=x * y
$$

In the concept algebra this partial order relation is usually called the isa-relation.
In the LatBase -system the database is a concrete concept algebra, which is determined by the inserted terms. However, the user of the system also has the possibility to add equations which specify possible relations between concepts in the lattice. These equations are used to further constrain the lattice (or concept algebra) side by side with the general axioms for the concept algebra. The equations may specify both equalities and isa-relations.

1.3 Example with equations

In the previous example we used the LATBASE -system almost as a traditional relational database. In this example we first give the LATBASE -system a set of equations which specify a small ontology for the considered real estate domain (the numbers to the right of the equations are not a part of the input):

```
equations
    home = villa + flat,
    mes >= small + medium + large + xlarge, (2)
    loc >= reg1 + reg2,
    reg1 >= loc1 + loc2 +loc3,
    reg2 >= loc4 + loc5 + loc3,
    home <= SIZE(mes)*PRICE(mes)*LOC(loc),
    GoodCond = COND(large+xlarge),
    Fancy >= LOC(loc3) * COND(small+medium)

In the equations we have introduced some new concepts many of which are generalizations of the concepts used in the first example.
1. home is a generalization of villa and flat, so a home is either a villa or a flat. In the set interpretation the set of homes is the union of the set of villas and the set of flats.
2. mes is a general measure including the previously used concrete measures small, medium, large and xlarge.
3. The concept loc designates the complete geographical area for which we have real estates in the database. According to this equation the area includes the two (overlapping) sub-regions reg1 and reg2,
4. where reg1 contains (amongst others) the areas loc1, loc2 and loc3
5. and reg2 contains the areas loc4, loc5 and loc3.
6. The set of homes (for sale) is a subset/specialization of the entities having a SIZE and PRICE attribute with a value being some measure mes and a LOCation attribute with a value being some location loc. Stated differently, a home (-description in the database) must have at least a SIZE, PRICE and a LOCation attribute with the above mentioned values.
7. Finally is introduced some useful concepts. The GoodCond concept designates the set of all entities having a COND attribute value which is either large or xlarge and
8. the concepts Fancy denotes the set of all entities which are located in the area loc3 and which is in a modest condition.

Assume we in this new database insert the same terms as in the previous example and then ask for all home's having size large:
```

home * SIZE(large)

```

The system responds with the same two real estates as in the first example:
\{[home, villa, GoodCond, SIZE(mes), SIZE(large), PRICE(mes), PRICE(large), LOC(loc), LOC(reg1), LOC(loc2), COND (mes), COND(large), ID(id4)]
```

[home, flat, Fancy,
SIZE(mes), SIZE(large), PRICE(mes), PRICE(medium),
LOC(loc), LOC(reg1), LOC(reg2), LOC(loc3),
COND(mes), COND(medium), ID(id1)]}

```

Notice that the description of each real estate - besides the properties originally inserted now also contains properties which follows from the given ontology. Consider e.g. the second real estate. Besides being a flat as specified in the inserted term, from equation (1) it is also known to be a home and from equation (8) it is known to be Fancy. It is located in location loc3 as specified in the inserted term, but we also know (from equations (4) and (5)) that this location is in the regions reg1 and reg2.

We can of course also use the concepts introduced in the ontology to make queries, e.g. ask for home's located in region reg1 which are in good condition:
```

home * LOC(reg1) * GoodCond:

```

The systems responds with the two home's shown below:
```

{[home, villa, GoodCond,
SIZE(mes), SIZE(large), PRICE(mes), PRICE(large),
LOC(loc), LOC(reg1), LOC(loc2),
COND(mes), COND(large), ID(id4)]
[home, flat, GoodCond,
SIZE(mes), SIZE(small), PRICE(mes), PRICE(large),
LOC(loc), LOC(reg1), LOC(loc1),
COND(mes), COND(xlarge), ID(id2)]}

```

As can be seen, they are both located in locations, which are in region reg1, and they are both in a good condition.

In the previous examples the real estates inserted in the database are atomic, i.e. they are located just above the bottom (null) in the lattice. In the LatBase system the values need not be atomic as illustrated in the next example.

\subsection*{1.4 Example, human}

In this example we have the concepts \(\mathrm{h}, \mathrm{m}, \mathrm{f}, \mathrm{c}\), a (for human, male, female, child, adult). In the following input to the LatBase -system we have two equations for human, one that equals human with the union of child and adult, and one that equals human with the union of male and female:
```

equations h = c + a, h = m + f
insert h, c*a

```

We can now ask for the concept female by writing the term \(f\). If we also want to see all the sub-concepts of female we precede the term with the keyword downset. So if we make the query "downset \(f\) " the system responds with
\[
\{[h, f, c],[h, f, a],[h, f, c, a]\}
\]

Here the concepts \([h, f, c]\) and \([h, f, a]\) corresponds to the concepts girl and woman. The inserted term \(\mathrm{c} *\) a forces child and adult to overlap so we also get the sub-concept \([h, f, c, a]\) representing female teenagers.

\section*{2 The Partial Order of Concept Intersections}

In this and the following sections (sections 2-7) we first investigate the simplified case, where attributes are removed so we are left with distributive lattices. So the goal is to construct a concrete generated distributive lattice satisfying the given set of equations. So the first question we could ask is: what kind of elements should we have in the lattice?

Given a finite set of concepts we can describe the mutual relationship between these concepts by the set of intersections between the concepts. Figure 1 and 2 illustrate the idea.


Venn Diagram for


Hasse Diagram for
the concepts \(\mathrm{a}, \mathrm{b}\) and c the corresponding partial order

Figure 1: Concept relations described by concept-intersections
In figure 1 we have the most general situation where all possible intersections between the given concepts \(a, b\) and \(c\) exist. The given intersections are arranged in a partial order. By conceiving concepts as sets we naturally put an intersection between two sets below the two sets.

Every subset of this partial order describes a more specific relationship between the concepts \(a, b\) and \(c\) as shown in figure 2. Here \(b\) and \(c\) are both subsets of \(a\) so the set of intersections now is \(\{a, a b, a c, a b c\}\). Notice, that if two intersections are identical the most specific intersection is used in the partial order. In figure 2 the intersections \(b b \sim b\) and \(a b\) are identical - as \(b\) is a subset of \(a-\) so \(a b\) is used.


Figure 2: Concept relations described by concept-intersections
Below we define concept-intersections as a non-empty set of named concepts and a partial
order as a set of concept-intersections:
types
```

1.0 $\quad C=$ token \quad The type of concept constants;
2.0 \quad cset $=C$-set
. $1 \quad$ inv cset $\triangle \operatorname{cset} \neq\{ \} ;$
3.0 CI:: Cset ;
4.0 $\quad P O=C I$-set

```

Here \(C I\) ( \(\sim\) concept-intersection) is the type of non-empty sets of concepts representing the intersection between these concepts.
\[
\begin{array}{rl}
5.0 & \mathcal{P}: \text { Cset } \rightarrow P O \\
.1 & \mathcal{P}(c s) \triangleq\left\{m k-C I\left(c s^{\prime}\right) \mid c s^{\prime}: C s e t \cdot c s^{\prime} \subseteq c s\right\}
\end{array}
\]

Given a set \(c s\) of concepts, \(\mathcal{P}(c s): P O\) defines the power-set consisting of all possible subsets of concept-intersections. It is a partial order with the ordering relation \(I S A_{P}\) defined below:
\[
\begin{array}{rl}
6.0 & I S A_{P}: C I \times C I \rightarrow \mathbb{B} \\
.1 & I S A_{P}\left(m k-C I\left(c s_{1}\right), m k-C I\left(c s_{2}\right)\right) \triangleq c s_{2} \subseteq c s_{1}
\end{array}
\]

In the sequel any subset \(p\) of \(\mathcal{P}(c s)\) is considered a partial order with the same (induced) ordering \(I S A_{P}\).

Notation When showing examples we often use a shorthand notation for concept-intersections. If \(a, b\) and \(c\) are one-letter concept names, the concept-intersection \(m k-C I(\{a, b, c\})\) is just written as \(a b c\) (as already shown in the figures 1 and 2 ). When the involved concepts are more complex, \(m k-C I\left(\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}\right)\) is sometimes written as \(\left[c_{1}, c_{2}, \ldots, c_{n}\right]\).

Covers For a given partial order \(p: P O\) the cover relation is defined as
\[
c i_{1} \preceq_{p} c i_{2} \text { iff } \forall c i \in p \cdot I S A_{P}\left(c i_{1}, c i\right) \wedge I S A_{P}\left(c i, c i_{2}\right) \Rightarrow c i=c i_{1} \vee c i=c i_{2}
\]

Later we will need the set of elements immediately below a given element \(c i\), called the lower covers of \(c i\) :
\[
\begin{array}{rl}
7.0 & l C O V E R S_{P}: P O \rightarrow C I \rightarrow C I \text {-set } \\
.1 & l C O V E R S_{P}(p)(c i) \triangleq\left\{c i^{\prime} \mid c i^{\prime} \in p \cdot c i^{\prime} \preceq_{p} c i\right\}
\end{array}
\]

The set of upper covers may be defined in a similar way.

\subsection*{2.1 Anti-chains and Down-sets}

Anti-chains A subset of a partial order is an anti-chain iff every pair of different elements in the subset are non-comparable:
```

8.0

```
```

IsAntiChain : CI -set $\rightarrow \mathbb{B}$

```
IsAntiChain : CI -set \(\rightarrow \mathbb{B}\)
IsAntiChain (ac) \(\triangle\)
IsAntiChain (ac) \(\triangle\)
    \(\forall c i_{1} \in a c, c i_{2} \in a c \cdot c i_{1} \neq c i_{2} \Rightarrow \neg I S A_{P}\left(c i_{1}, c i_{2}\right) \wedge \neg I S A_{P}\left(c i_{2}, c i_{1}\right)\)
```

 \(\forall c i_{1} \in a c, c i_{2} \in a c \cdot c i_{1} \neq c i_{2} \Rightarrow \neg I S A_{P}\left(c i_{1}, c i_{2}\right) \wedge \neg I S A_{P}\left(c i_{2}, c i_{1}\right)\)
    ```

Down-sets A set ciset of elements in a partial order \(p: P O\) is called a down-set iff it is closed under going down in the partial order:
```

9.0 IsDownset: PO}->CI-set ->\mathbb{B
.1 IsDownset (p)(ciset)}\triangleq\forallc\mp@subsup{i}{1}{}\inciset,ci\mp@subsup{i}{2}{}\inp\cdotISA (ci, ci\mp@subsup{i}{1}{})=>ci\mp@subsup{i}{2}{}\incise

```

Notice that according to the definition above, everything in \(p\) which is below some element in ciset must also be in ciset. Thus, ciset need not be a subset of \(p\) to get an affirmative answer.

Given a set ciset of elements in \(p: P O\) the down-set of ciset is all the elements in \(p\) below some element in ciset :
```

10.0 DownSet : PO }->\mathrm{ CI-set }->CI\mathrm{ -set
.1 DownSet (p)(ciset) \triangle{ci|ci\inp\cdot\existsci'\inciset \cdotISAP(ci,ci')}
2 pre ciset }\subseteq

```

The down-set \(\operatorname{DownSet}(p)\left(\left\{c i_{1}, c i_{2}, \ldots, c i_{n}\right\}\right)\) is often written as \(\downarrow\left\{c i_{1}, c i_{2}, \ldots, c i_{n}\right\}\) when \(p\) is assumed. It is easily seen that \(\operatorname{DownSet}(p)(\) ciset \()\) is the smallest down-set containing ciset provided ciset \(\subseteq p\).
Concerning down-sets we have
```

11.0 ISAP(ci, ci\mp@subsup{i}{2}{})\equiv\operatorname{DownSet}(p)({ci⿱㇒木}})\subseteq\operatorname{DownSet}(p)({c\mp@subsup{i}{2}{}}
12.0 DownSet (p)(cis \cup cis2) = DownSet (p)(cis) \cup DownSet (p)(cis 2)
13.0 IsDownset (p)(cis
1 IsDownset (p)(cis)

```

For down-sets in different partial orders we have some useful relations: Let cis \(\subseteq p \subseteq \mathcal{P}(c s e t)\) for some cset, then
```

14.0 DownSet (p)(cis)=\operatorname{DownSet}(\mathcal{P}(cset))(cis)\capp

```
i.e. the down-set is that part of the down-set of cis in \(\mathcal{P}\) (cset) which is in \(p\). We also have
```

15.0 DownSet (p\d)(cis)=\operatorname{DownSet}(p)(cis)\d
.1 p

```

Anti-chains and Down-sets in Collaboration Every downset dset in a partial order \(p\) has a unique anti-chain of which it is a down-set:
```

16.0 \forallp:PO,dset:CI-set.
.1 IsDownset(p)(dset) =>
.2
\exists!ac:CI-set \cdotac\subseteqdset ^IsAntiChain (ac)^dset = DownSet (p)(ac)

```

In the sequel we use this maximal anti-chain as a representation for the downset, and we will just call it the anti-chain of the down-set:
```

17.0 AntiCh (cis:CI-set) ac:CI-set
.1 post ac\subseteqcis^IsAntiChain(ac)\wedge\forallci, \incis }\cdot\existsc\mp@subsup{i}{2}{}\inac\cdotIS\mp@subsup{A}{P}{}(c\mp@subsup{i}{1}{},ci\mp@subsup{i}{2}{}

```

Thus \(\operatorname{AntiCh}(c i s)\) is an anti-chain subset of cis such that all other ci's in cis are below some element in the anti-chain (in the partial order \(p\) ). Combining 16 and 17 gives
```

18.0 }\forallp:PO,dset:CI-set
.1 IsDownset (p)(dset) => DownSet (p)(AntiCh(dset))=dset

```

A set cis of concept-intersections is always a downset in the partial order consisting of the set cis itself:
\[
19.0 \quad \forall \text { cis : CI-set } \cdot \text { IsDownSet(cis)(cis) }
\]

Thus, it is always meaningful to ask for the maximal anti-chain of a set of concept-intersections. For the AntiCh-function we have:
\[
\begin{aligned}
& 20.0 \quad \forall a c: C I \text {-set } \cdot \operatorname{IsAntiChain}(a c) \Rightarrow \operatorname{AntiCh}(a c)=a c \\
& 21.0 \quad \forall d s, d s 1: C I \text {-set } \cdot \operatorname{AntiCh}(d s) \subseteq d s 1 \subseteq d s \Rightarrow \operatorname{AntiCh}(d s 1)=\operatorname{AntiCh}(d s)
\end{aligned}
\]

In words, if a subset \(d s 1\) of a downset \(d s\) includes the anti-chain of \(d s\), then \(d s 1\) has the same anti-chain. Finally we have
22.0 \(\operatorname{DownSet}(p)(\operatorname{AntiCh}(c i s))=\operatorname{DownSet}(p)(c i s)\)


Figure 3: Downset and DownsetC

DownsetC. In lattice theory, when talking about "downset of ciset", it is always assumed that ciset is a subset of the considered partial order (here \(p\) ). In later sections it will be convenient to ask for \(\operatorname{DownSet}(p)(\) ciset \()\) even when ciset is not a subset of \(p\). In order to make it formally correct, we define a new downset function without the precondition ciset \(\subseteq p\) :
23.0 DownSetC: PO \(\rightarrow C I\)-set \(\rightarrow C I\)-set
. 1 DownSetC \((p)(c i s e t) \triangleq\left\{c i \mid c i \in p \cdot \exists c i^{\prime} \in c i s e t \cdot I S A_{P}\left(c i, c i^{\prime}\right)\right\}\)
The difference between Downset and DownsetC is illustated in figure 3. The name DownSetC ( \(\sim\) DownSetCut) emphasizes that some of the elements in ciset may be cut away. From 14 it is easy to see that \(\operatorname{DownSet} C(p)(c i s e t)\) always is a downset (in \(p\) ), even when ciset is not a subset of \(p\). However, if ciset and \(p\) are disjoint the downset may sometimes be empty. All the down-set properties from 11 to 22 are also valid for DownSetC.

Finally consider
\[
24.0 \quad \forall c i s: C I-\text { set } \cdot c i s \subseteq p \Rightarrow \operatorname{AntiCh}(c i s)=\operatorname{AntiCh}(\operatorname{DownSet}(p)(c i s))
\]
which is true for both DownSet and DownSetC, whereas if we do not assume cis \(\subseteq p\) then we must apply DownSetC and we have
\[
25.0 \quad \neg \forall \text { cis : CI-set } \cdot \operatorname{AntiCh}(c i s)=\operatorname{AntiCh}(\operatorname{DownSetC}(p)(c i s))
\]
because now \(\operatorname{AntiCh}(c i s)\) is a subset of \(c i s\), but \(\operatorname{AntiCh}(\operatorname{DownSetC}(p)(c i s))\) is a subset of \(p\).

\subsection*{2.2 Projection}

In subsequent sections we will need the concept of projection. Given a partial order \(p\) and a set of concept-intersections cis, the projection of cis in \(p\) is the anti-chain in \(p\) having the same down-set in \(p\) as \(c i s\) has. The definition of projection is illustrated in fig 4 .
```

26.0 $\operatorname{CISproj}(p: P O)($ cis : CI-set) ac : CI-set
.1 post $a c \subseteq p \wedge$
. 2 IsAntiChain (ac) \wedge
$3 \operatorname{DownSetC}(p)(a c)=\operatorname{DownSetC}(p)(c i s)$

```


Figure 4: Definition of projection
Projecting a set of concept-intersections cis or its anti-chain into a partial order yields the same result:

Let the left and right hand side anti-chains be \(a c 1\) and \(a c 2\) respectively. To see that the equation above is true, we notice that \(a c 1\) and \(a c 2\) are both anti-chains in \(p\) and show that they have the same down-set in \(p\). For \(a c 1\) we have
\[
\begin{aligned}
& \text { DownSet } C(p)(a c 1) \\
& =\operatorname{DownSet} C(p)(\text { AntiCh(cis)) } \\
& =\operatorname{DownSet} C(p)(c i s)
\end{aligned}
\]

For \(a c 2\) we have
\[
\begin{aligned}
& \text { DownSetC}(p)(a c 2) \\
& =\operatorname{DownSetC}(p)(c i s)
\end{aligned}
\]

So \(a c 1\) and \(a c 2\) have the same down-set in \(p\), consequently they are the same anti-chain.

\section*{3 The Concept Lattice}

From a finite partial order \(p: P O\) of concept-intersections we now define the family of all down-sets in \(p\) :
\[
\begin{array}{rl}
28.0 & \mathcal{O}: P O \rightarrow C I \text {-set-set } \\
.1 & \mathcal{O}(p) \triangleq\{\operatorname{DownSet}(p)(a c) \mid a c: C I \text {-set } \cdot a c \subseteq p \wedge I s A n t i C h a i n(a c)\}
\end{array}
\]

According to lattice theory \(\mathcal{O}(p)\) is a lattice of sets with the ordering relation, the joinand the meet-operation corresponding to the subset-relation, set-union and set-intersection respectively:
```

29.0 $\quad I S A_{L}: C I$-set $\times C I$-set $\rightarrow \mathbb{B}$
. $1 \quad I S A_{L}\left(c i s_{1}, c i s_{2}\right) \triangleq c i s_{1} \subseteq c i s_{2}$
$30.0 \quad \operatorname{Join}_{L}: C I$-set $\times C I$-set $\rightarrow C I$-set
$.1 \quad J_{o i n}^{L}\left(c i s_{1}, c i s_{2}\right) \triangleq c i s_{1} \cup c i s_{2}$
31.0 \quad Meet $_{L}: C I$-set $\times C I$-set $\rightarrow C I$-set
. $1 \quad \operatorname{Meet}_{L}\left(c i s_{1}, c i s_{2}\right) \triangleq c i s_{1} \cap c i s_{2}$

```

The bottom-element of the lattice \(\mathcal{O}(p)\) is the empty down-set, and the top-element is \(p\). As \(\mathcal{O}(p)\) is a finite lattice of sets it is also a finite distributive lattice.

Figure 5 shows the lattice \(\mathcal{O}\left(p_{1}\right)\) and figure 6 the lattice \(\mathcal{O}\left(p_{2}\right)\) where \(p_{1}\) and \(p_{2}\) are the two partial orders shown in figure 1 and 2.

The elements in \(\mathcal{O}(p)\) are sets of concept-intersections. In the figures 5 and 6 each set is shown on two lines. The upper bolded line shows the concept-intersections in the antichain of which the element is a down-set. The second line shows the remaining conceptintersections in the down-set. The empty down-set is the bottom-element shown as \(\perp\). In the set-interpretation of concepts one may think of the lattice elements as the union of setintersections. The first line is the union of non-comparable sets and the second line is the


Figure 5: The partial order \(p\) from fig. 1 and the corresponding lattice \(\mathcal{O}(p)\)
union of the subsets in these sets. Given an element cis \(\in \mathcal{O}(p)\) the anti-chain part can be extracted by AntiCh(cis) (17).

In the lattice to the right in figure 5 and 6 some of the lattice elements are framed. As can be seen, these lattice elements have exactly one lower cover. Such elements cannot be constructed as the join of other elements in the lattice and are consequently called joinirreducible elements. We will see in the next section that these join-irreducible elements play a crucial role in the representation of distributive lattices.

\subsection*{3.1 Birkhoff's Representation Theorem}

The relationship between a partial order \(p: P O\) and the lattice \(\mathcal{O}(p)\) is described in general in Birkhoff's representation theorem for finite distributive lattices. We denote the set of join-irreducible elements in a lattice \(L\) by \(\mathcal{J}(L)\). From [1, pages \(171-172]\) we have
"Let \(L\) be a finite distributive lattice. Then the map \(\eta: L \rightarrow \mathcal{O}(\mathcal{J}(L))\) defined by
\[
\eta(a)=\{x \mid x \in \mathcal{J}(L) \cdot x \leq a\}
\]


Figure 6: The partial order \(p\) from fig. 2 and the corresponding lattice \(\mathcal{O}(p)\)
is an isomorphism of \(L\) onto \(\mathcal{O}(\mathcal{J}(L))\).

\section*{Furthermore}

Suppose \(p\) is a finite ordered set. Then the map \(\varepsilon: x \mapsto \downarrow x\) is an order-isomorphism from \(p\) onto \(\mathcal{J}(\mathcal{O}(p))\).

The two statements above reveal a duality between finite distributive lattices and finite ordered sets. Up to isomorphism, we have a one-to-one correspondence
\[
\mathcal{O}(p)=L \longleftrightarrow p=\mathcal{J}(L)
\]

So special properties of the finite distibutive lattice \(L\) are reflected in special properties of its dual set \(p\)."

For the partial orders \(p: P O, p \subseteq \mathcal{P}(c s e t)\) and the corresponding lattices \(\mathcal{O}(p)\) we are considering in this paper some of this can be concretized as follows. The map \(\varepsilon\) corresponds to the function DownSet applied to \(\{c i\}, c i \in p\). Hence
\[
\mathcal{J}(\mathcal{O}(p))=\{\operatorname{DownSet}(p)(\{c i\}) \mid c i \in p\}
\]

So the join-irreducible elements in \(\mathcal{O}(p)\) is characterized by having a single concept-intersection in the anti-chain part. In figure 5 and 6 one can see that the elements having this property are exactly the framed elements, i.e. the join-irreducible elements.

The function \(A n t i C h\) is the function mapping a join-irreducible element in the lattice back to the corresponding concept-intersection in \(p\) :
\[
\begin{aligned}
& \forall p: P O, \text { cis }: C I-\text {-set, } c i \in p . \\
& \quad c i s=\operatorname{DownSet}(p)(\{c i\}) \Leftrightarrow \operatorname{AntiCh}(c i s)=\{c i\}
\end{aligned}
\]

In the sequel we use this relation between a partial order \(p\) and the lattice \(\mathcal{O}(p)\) to find a lattice satisfying a given set of equations.

\subsection*{3.2 Computing Covers in \(\mathcal{O}(p)\) from \(p\)}

Now given a partial order \(p: P O\) we would like to construct or inspect the lattice \(\mathcal{O}(p)\). So assume we already have an element \(e\) in \(\mathcal{O}(p)\) we should be able to inspect elements in \(\mathcal{O}(p)\) immidiatly above or below \(e\), i.e. we need a function to compute the set of lower- and upper covers of \(e\) in \(\mathcal{O}(p)\) from the partial order \(p\). A function to compute the set of lower covers is defined below.
```

32.0 lCOVERS $_{L}: P O \rightarrow C I$-set $\rightarrow C I$-set-set
$\operatorname{lCOVERS}_{L}(p)(c i s) \triangleq$
let $a c=\operatorname{AntiCh}(c i s)$ in
$\{c i s \backslash\{c i\} \mid c i \in a c\}$

```

Let \(c i s \in \mathcal{O}(p)\). To see that \(l \operatorname{COVERS} S_{L}(c i s)\) actually cumputes the set of lower covers of \(c i s\) in \(\mathcal{O}(p)\) let lcis \(\in \operatorname{lCOVERS} S_{L}(c i s)\). Furthermore let \(a c=\operatorname{AntiCh}(\) cis \()\) so \(c i s=\operatorname{DownSet}(p)(a c)\). According to the definition of \(l \operatorname{COVERS} S_{L}(c i s)\) there is a \(c i \in a c\) such that \(l c i s=c i s \backslash\{c i\}\). We now have
\[
\begin{aligned}
& l c i s=\operatorname{DownSet}(p)(a c) \backslash\{c i\} \\
& =\operatorname{DownSet}(p)(a c \backslash\{c i\}) \cup \operatorname{DownSet}^{(p)}\left(l \operatorname{COVERS} S_{P}(c i)\right) \\
& =\operatorname{DownSet}(p)\left(a c \backslash\{c i\} \cup \operatorname{lCOVERS}_{P}(c i)\right)
\end{aligned}
\]
hence lcis \(\in \mathcal{O}(p)\). From lcis \(=c i s \backslash\{c i\}\) we have lcis \(\subset c i s\) so \(I S A_{L}(l c i s, c i s)\). Finally assume cis \({ }^{\prime} \in \mathcal{O}(p)\) and lcis \(\subset c i s^{\prime} \subset\) cis but this is obviously a contradiction so lcis \(\preceq_{L} c i s\).

From the equations above we see that the set of lower covers could just as well be computed by the function defined below:
```

$33.0 \quad l C O V E R S_{L P}: P O \rightarrow C I$-set $\rightarrow C I$-set-set
. $1 \quad \operatorname{lCOVERS}_{L P}(p)(c i s) \triangleq$
. 2 let $a c=\operatorname{AntiCh}(c i s)$ in
. $3 \quad\left\{\operatorname{DownSet}(p)\left((a c \backslash\{c i\}) \cup l \operatorname{COVERS}_{P}(c i)\right) \mid c i \in a c\right\}$

```

The set of upper covers can be computed in a similar way.
```

34.0 uCOVERS S}:PO->CI-set ->CI-set-set
.1 uCOVERS
.2 {cis \cup{ci}|ci\inp\csi\cdotIsDownSet(p)(cis\cup{ci})}

```

One get an upper-cover of cis by adding an arbitrary new single concept-intersection \(c i\) such that the new set is a down-set.

\section*{4 Lattices as Algebras}

In the previous sections we have used the ordered set view of the distributive lattices. In order to be able to talk about distributive lattices satisfying a set of equations we must also use the algebraic view. Here a distributive lattice is an algebra with the two binary operators Join and Meet satisfying the axioms shown below. Join and Meet are represented by the two infix operators + and \(*\) :
\begin{tabular}{ll} 
Idempotency & \(X+X=X, \quad X * X=X\) \\
Commutativity & \(X+Y=Y+X, \quad X * Y=Y * X\) \\
Associativity & \(X+(Y+Z)=(X+Y)+Z, \quad X *(Y * Z)=(X * Y) * Z\) \\
Absorbtion & \(X *(X+Y)=X, \quad X+X * Y=X\) \\
Distributivity & \(X *(Y+Z)=X * Y+X * Z, \quad X+Y * Z=(X+Y) *(X+Z)\) \\
Bounds & \(X+\perp=X, \quad X * \perp=\perp, \quad X+\top=\top, \quad X * \top=X\)
\end{tabular}

So assume cset is a set of concepts and \(p \subseteq \mathcal{P}(\) cset \()\) is a partial order of concept-intersections. The lattice \(\mathcal{O}(p)\) can now be viewed as a (one sorted) algebra
\(35.0 \quad \mathcal{L} \mathcal{A}(\) cset,\(p)=<\mathcal{O}(p) ; \operatorname{Join}_{L}\), Meet \(_{L}, C_{L}(p)(\) cset \(), \operatorname{TOP}_{L}\), BOTTOM \(_{L}>\)
Here \(\mathcal{O}(p)\) is the carrier set and \(J_{\text {oin }}^{L}\) and Meet \(_{L}\) are the two binary operators defined in 30 and 31. Corresponding to the set of named concepts \(c \in c s e t\) we now have a set of constants/values in \(\mathcal{O}(p)\) :
\[
C_{L}(p)(c s e t)=\left\{\operatorname{cValue}_{L}(p)(c) \mid c \in \operatorname{cset}\right\}
\]

The value of a named concept \(c \in \operatorname{cset}\) is \(\operatorname{cValue}_{L}(p)(c)\) where
\[
\begin{array}{rl}
36.0 & \text { vValue }_{L}: P O \rightarrow C \rightarrow C I \text {-set } \\
.1 & c \text { Value }_{L}(p)(c) \triangleq \operatorname{DownSetC}(p)(\{m k-C I(\{c\})\})
\end{array}
\]

In the definition above notice that DownSet \(C\) (rather than DownSet) has been used, because the concept-intersection \(m k-C I(\{c\})\) is not necessarily in \(p\). From the discussion in section 2.1 we know that the value of \(c \operatorname{Value}_{L}(p)(c)\) is a down-set in \(p\) so it is in \(\mathcal{O}(p)\). Finally, the value of the two constants \(\mathrm{TOP}_{L}\) and BOTTOM \(_{L}\) is \(p\) respectively \(\}\).

The \(\operatorname{Join}_{L}\) and Meet \(_{L}\) operators which corresponds to set union and intersection operations are known to satisfy the axioms shown above.

Terms and Equations The syntax for (ground) terms and equations is defined below:
types
```

37.0 Term = Join | Meet | C | TOP | BOTTOM;
38.0 Join:: Term }\times\mathrm{ Term ;
39.0 Meet:: Term }\times\mathrm{ Term;
40.0 Eq:: Term }\times\mathrm{ Term - term-equation

```

For terms to be of the same signature as the considered algebra \(\mathcal{L} \mathcal{A}(c s e t\), \(p\) ), we restrict termconstants \(c: C\) to be in cset. When writing terms in examples we use the two infix operators + and \(*\) to represent Join and Meet respectively.

The Value of Terms in the Algebra \(\mathcal{L \mathcal { A }}(\) cset, \(p)\). Now given the algebra \(\mathcal{L} \mathcal{A}(c s e t, p)\) we define the value of terms in this algebra:
```

41.0 Eval $_{L}: P O \rightarrow$ Term $\rightarrow C I$-set
$\operatorname{Eval}_{L}(p)(t) \triangle$
cases t :
$m k-\operatorname{Join}^{\left(t_{1}, t_{2}\right)} \rightarrow \operatorname{Join}_{L}\left(\operatorname{Eval}_{L}(p)\left(t_{1}\right), \operatorname{Eval}_{L}(p)\left(t_{2}\right)\right)$,
$m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{L}\left(\operatorname{Eval}_{L}(p)\left(t_{1}\right), \operatorname{Eval}_{L}(p)\left(t_{2}\right)\right)$,
(TOP) $\rightarrow p$,
(воттом) $\rightarrow\}$,
$c \rightarrow c$ Value $_{L}(p)(c)$
end

```

The value of a term is a downset in \(\mathcal{O}(p)\). The algebra \(\mathcal{L A}(c s e t, p)\) is a generated algebra, i.e. every value in \(\mathcal{O}(p)\) is the value of some term.

There exists a set of useful relationships between the value of a term and the underlying partial order as shown below:

Term Values: Let \(t\) be a term, \(p, p_{1}\) and \(p_{2}\) partial orders and cis a subset of \(p\) (i.e. cis \(\subseteq p \subseteq \mathcal{P}(c s e t))\) then
```

42.0 $\operatorname{Eval}_{L}(p)(t) \subseteq p$
. $1 \quad \operatorname{Eval}_{L}(p \backslash c i s)(t)=\operatorname{Eval}_{L}(p)(t) \backslash c i s$
$.2 \quad p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{L}\left(p_{1}\right)(t)=\operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap p_{1}$
$.3 \operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t)=\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cup \operatorname{Eval}_{L}\left(p_{2}\right)(t)$
$.4 \quad \operatorname{Eval}_{L}\left(p_{1} \cap p_{2}\right)(t)=\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cap \operatorname{Eval}_{L}\left(p_{2}\right)(t)$
$.5 \quad p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{L}\left(p_{1}\right)(t) \subseteq \operatorname{Eval}_{L}\left(p_{2}\right)(t)$

```

All properties in 42 can easily be proved by structural induction on the term structure. A proof of 42.1 is in section B. 1 and a proof of 42.2 is in section B.2. \({ }^{1}\). The equation 42.5 follows trivially from 42.2 . Similarly the equations 42.3 and 42.4 may be proved from 42.0 and 42.2 as shown in section B.3.

\subsection*{4.1 The Lattice of Anti-chains}

From section 2.1 we know that a down-set cis has a unique anti-chain of which it is a downset, namely \(\operatorname{AntiCh}(c i s)\). So a downset cis may be represented by its unique anti-chain \(\operatorname{AntiCh}(c i s)\). Consequently, given a lattice \(\mathcal{O}(p)\) and the corresponding algebra \(\mathcal{L A}(c s e t, p)\), we can easily define an isomorphic lattice where the elements are the anti-chain-part of the elements in \(\mathcal{O}(p)\). We denote the set of new lattice elements \(\mathcal{N}(p)\).
\[
\begin{array}{rl}
43.0 & \mathcal{N}: P O \rightarrow C I \text {-set-set } \\
.1 & \mathcal{N}(p) \triangleq\{a c \mid a c: C I \text {-set } \cdot a c \subseteq p \wedge \text { IsAntiChain }(a c)\}
\end{array}
\]

Compare the above formula with 28 . The corresponding algebra is
\[
44.0 \quad \mathcal{N} \mathcal{A}(\text { cset }, p)=<\mathcal{N}(p) ; \text { Join }_{N}, \text { Meet }_{N}, C_{N}(p)(\text { cset }), \text { тоР }_{N}, \text { воттом }_{N}>
\]
where

\footnotetext{
\({ }^{1}\) A proof for some of the other properties in the extended case including attribution may be found in 9
}
\[
C_{N}(p)(c s e t)=\left\{c \operatorname{Value}_{N}(p)(c) \mid c \in \operatorname{cset}\right\}
\]

The value of the two constants \(\operatorname{ToP}_{N}\) and воттом \(_{N}\) is \(\operatorname{AntiCh}(p)\) respectively \(\}\). The new functions \(J o i n_{N}\), Meet \({ }_{N}\) and \(c\) Value \(_{N}\) are defined below:
```

$45.0 \quad$ Join $_{N}: P O \rightarrow C I$-set $\times C I$-set $\rightarrow C I$-set
$.1 \quad \operatorname{Join}_{N}(p)\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiCh}\left(\operatorname{DownSet}(p)\left(a c_{1}\right) \cup \operatorname{DownSet}(p)\left(a c_{2}\right)\right)$
46.0 Meet $_{N}: P O \rightarrow C I$-set $\times C I$-set $\rightarrow C I$-set
. $\operatorname{Meet}_{N}(p)\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiCh}\left(\operatorname{DownSet}(p)\left(a c_{1}\right) \cap \operatorname{DownSet}(p)\left(a c_{2}\right)\right)$
$47.0 \quad c$ Value $_{N}: P O \rightarrow C \rightarrow C I$-set
$.1 \quad c$ Value $_{N}(p)(c) \triangleq \operatorname{AntiCh}\left(\operatorname{DownSetC}^{(p)}(\{m k-C I(\{c\})\})\right)$
$48.0 \quad I S A_{N}: P O \rightarrow C I$-set $\times C I$-set $\rightarrow \mathbb{B}$
$.1 \quad \operatorname{ISA} A_{N}(p)\left(a c_{1}, a c_{2}\right) \triangle \operatorname{DownSet}(p)\left(a c_{1}\right) \subseteq \operatorname{DownSet}(p)\left(a c_{2}\right)$

```

The definitions of \(\operatorname{Join}_{N}\), Meet \(_{N}, c\) Value \(_{N}\) and \(I S A_{N}\) above follow directly the definitions of \(J o i n_{L}\), Meet \(_{L}, c\) Value \(_{L}\) and \(I S A_{L}\) by converting between down-sets and anti-chains using DownSet and AntiCh.

Given this new definition of join, meet and concept constants, we can now define the value of terms in \(\mathcal{N} \mathcal{A}(\) cset,\(p)\) :
```

49.0 Eval $_{N}: P O \rightarrow$ Term $\rightarrow C I$-set
$\operatorname{Eval}_{N}(p)(t) \triangleq$
cases t :
$m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{N}(p)\left(\operatorname{Eval}_{N}(p)\left(t_{1}\right), \operatorname{Eval}_{N}(p)\left(t_{2}\right)\right)$,
$m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{N}(p)\left(\operatorname{Eval}_{N}(p)\left(t_{1}\right), \operatorname{Eval}_{N}(p)\left(t_{2}\right)\right)$,
(TOP) $\rightarrow \operatorname{AntiCh(p),~}$
(воттом) $\rightarrow\}$,
$c \rightarrow c$ Value $_{N}(p)(c)$
end

```

In an implementation of lattice algebras it will be an advantage to represent the lattice elements as anti-chains rather than down-sets because the down-sets usually will require considerable more space than the corresponding anti-chains. But if an implementation represents the elements as anti-chains it must also be able to compute the lattice operations efficiently. So rather than computing meet and join by converting between anti-chains and down-sets, we must find a way to compute meet and join directly as operations on anti-chains.

The join operation is easy to implement:
\(50.0 \quad\) Join \(_{N}: P O \rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set
\(.1 \operatorname{Join}_{N}(p)\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiCh}\left(a c_{1} \cup a c_{2}\right)\)

To implement the meet operation as an operation on anti－chains is more difficult．We need the concept of projection as defined in section 2．2．Having the projection function CISproj available we can implement Meet \(_{N}\) as shown below：
```

$51.0 \quad \mathrm{Meet}_{N}: \mathrm{PO} \rightarrow C I$-set $\times C I$-set $\rightarrow C I$-set
$\operatorname{Meet}_{N}(p)\left(a c_{1}, a c_{2}\right) \triangleq$
let $c i s=\left\{m k-C I\left(c s_{1} \cup c s_{2}\right) \mid m k-C I\left(c s_{1}\right) \in a c_{1}, m k-C I\left(c s_{2}\right) \in a c_{2}\right\}$ in
CISproj $(p)(c i s)$

```


Figure 7：Implementation of meet as an operation on anti－chains
The implementation of the meet operation is illustrated in figure 7．The two definitions of Meet \(_{N}\) in 46 and 51 both define an anti－chain in \(p\) ．In section B． 4 it is proved that they have the same downset in \(p\) ，i．e．
```

52.0 DownSet (AntiCh(DownSet (p)(ac}1)\cap\operatorname{DownSet (p)(ac⿱亠乂})))
DownSet
(let cis ={mk-CI(cs \cup vs 2)|mk-CI(cs\mp@subsup{s}{1}{})\ina\mp@subsup{c}{1}{},mk-CI(cs\mp@subsup{s}{2}{})\ina\mp@subsup{c}{2}{}} in
CISproj(p)(cis))

```

Hence the two definitions define the same anti－chain in \(p\) ．
The projection operation makes the meet operation less efficient than the join opera－ tion．The efficiency of the projection operation depends much on the actual implementa－ tion／representation of the partial order \(p\) ．
\[
\begin{array}{rl}
53.0 & c \text { Value }_{N}: P O \rightarrow C \rightarrow C I \text {-set } \\
.1 & c \operatorname{Value}_{N}(p)(c) \triangleq \operatorname{CISproj}(p)(\{m k-C I(\{c\})\})
\end{array}
\]

In the new definition of \(c\) Value \(_{N}\) the value of \(\operatorname{AntiCh}(\operatorname{DownSetC}(p)(\{m k-C I(\{c\})\}))\)（def．47） is now computed more directly as the projection in \(p\) of \((m k-C I(\{c\}))\) ．

Finally，the \(I S A_{N}\) relation also has a more direct（and efficient）implementation．
\[
\begin{array}{rl}
54.0 & I S A_{N}: C I \text {-set } \times C I \text {-set } \rightarrow \mathbb{B} \\
.1 & I S A_{N}\left(a c_{1}, a c_{2}\right) \triangleq \forall c i_{1} \in a c_{1} \cdot \exists c i_{2} \in a c_{2} \cdot I S A_{P}\left(c i_{1}, c i_{2}\right)
\end{array}
\]

\section*{5 Computing Lattices \(\mathcal{O}(p)\) Satisfying a Set of Equations}

We now consider how to compute a partial order \(p \subseteq \mathcal{P}(\) cset \()\) such that the lattice \(\mathcal{O}(p)\) satisfies a given set of (ground) equations eqs : \(E q\)-set (besides the set of basic lattice equations). In the sequel we call a partial order in which a set of equations is satisfied a solution for the set of equations. Let
\[
\begin{aligned}
55.0 & \text { IsEqsSol }: E q \text {-set } \rightarrow P O \rightarrow \mathbb{B} \\
.1 & \text { IsEqsSol }(\text { eqs })(p) \triangleq \forall m k-E q\left(t_{1}, t_{2}\right) \in \text { eqs } \cdot \operatorname{Eval}_{L}(p)\left(t_{1}\right)=\operatorname{Eval}_{L}(p)\left(t_{2}\right)
\end{aligned}
\]

So we are looking for a way to compute the set of solutions:
\[
56.0 \quad\{p \mid p \subseteq \mathcal{P}(\text { cset }) \cdot \operatorname{IsEqsSol}(\text { eqs })(p)\}
\]

If \(n=\operatorname{card}(\) cset \()\) then \(\operatorname{card}(\mathcal{P}(\) cset \())=2^{n}-1\) so there are \(2^{2^{n}-1}\) candidate subsets of \(\mathcal{P}(\) cset \()\). Luckily, we do not have to test all the candidates.

Assume we have an equation \(t_{1}=t_{2}\). The property below concerns the relation between solutions for such an equation.
\[
\begin{aligned}
57.0 & \forall p_{1}, p_{2}: P O, t_{1}, t_{2}: \operatorname{Term} . \\
.1 & p_{2} \subseteq p_{1} \wedge \operatorname{Eval}_{L}\left(p_{1}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{1}\right)\left(t_{2}\right) \Rightarrow \operatorname{Eval}_{L}\left(p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{2}\right)\left(t_{2}\right)
\end{aligned}
\]

In words, if we have a solution \(p_{1}\) to an equation \(t_{1}=t_{2}\) then every subset \(p_{2}\) of that solution is also a solution. Property 57 may easily be proved from 42.1. Property 57 can easily be extended to a set of equations:
\[
\begin{array}{rc}
58.0 & \forall p_{1}, p_{2}: P O, \text { eqs }: E q \text {-set. } \\
.1 & p_{2} \subseteq p_{1} \wedge \operatorname{IsEqSSol}(\text { eqs })\left(p_{1}\right) \Rightarrow \operatorname{IsEqsSol(eqs)(p_{2})}
\end{array}
\]

Consequently, if we compute the maximal partial order satisfying the set of equations, then all subsets of the maximal partial order are also solutions.

The relationships between the term value and the underlying partial order \(p\) shown in 42 provides material for two different ways to compute the set of concept-intersections corresponding to the maximal partial order \(p\). Either one can start with the empty partial order and then \(a d d\) the concept-intersections which let the terms in an equation have equal values, or one can start with the power-set partial order \(\mathcal{P}\) (cset) and then subtract the conceptintersections which make the terms in an equation unequal. Both methods relies on property 42.1.

\subsection*{5.1 The Additive Method}

Let \(t_{1}=t_{2}\) be an equation, and let \(p_{1}\) and \(p_{2}\) be two partial orders in which the equation is satisfied, i.e.
\[
\begin{aligned}
59.0 & \text { Eval }_{L}\left(p_{1}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{1}\right)\left(t_{2}\right) \quad \text { and } \\
.1 & \operatorname{Eval}_{L}\left(p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{2}\right)\left(t_{2}\right)
\end{aligned}
\]

Using first 42.3 and then the equations in 59 we get
\[
\begin{aligned}
& \operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)\left(t_{1}\right) \\
& =\operatorname{Eval}_{L}\left(p_{1}\right)\left(t_{1}\right) \cup \operatorname{Eval}_{L}\left(p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{1}\right)\left(t_{2}\right) \cup \operatorname{Eval}_{L}\left(p_{2}\right)\left(t_{2}\right) \\
& =\operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)\left(t_{2}\right)
\end{aligned}
\]

Hence
\[
60.0 \quad \operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)\left(t_{2}\right)
\]

In words, if an equation is satisfied in two partial orders \(p_{1}\) and \(p_{2}\) it will also be satisfied in the union of these partial orders. This can easily be extended to a set of equations so 60 now becomes
```

61.0 }\forall\mathrm{ eqs:Eq-set, p},\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}:PO
.1 IsEqsSol(eqs) (p

```

The property above shows us that if we have found two small solutions we can get a new bigger solution by making the union of the small solutions. So a strategy for finding a big solution might be to find many small solutions and making the union of these. But what are the smallest solutions? Property 58 shows that the smallest solutions are single conceptintersection partial orders (and the not so useful empty partial order.) Together 61 and 57 shows us that we can compute the maximal partial order in which a set of equations is satisfied by accumulating all the single concept-intersection partial orders in which the equations are satisfied:
\[
\begin{aligned}
62.0 & \text { MaxPO : } C \text {-set } \rightarrow E q \text {-set } \rightarrow P O \\
.1 & \operatorname{MaxPO}(\text { cset })(\text { eqs })) \triangleq\{c i \mid c i \in \mathcal{P}(\text { cset }) \cdot I \text { sEqsSol }(\text { eqs })(\{m k-C I(c i)\})\}
\end{aligned}
\]

So if \(n=\operatorname{card}(c s e t)\) then \(p \max =\operatorname{MaxPO}(c s e t)(\) eqs \()\) is computed by testing the set of equations with all \(2^{n}\)-1 concept-intersections.

\subsection*{5.2 The Subtractive Method}

Let \(t_{1}=t_{2}\) be an equation, let \(p_{c}=\mathcal{P}(\) cset \()\) and let
\[
\operatorname{cis}_{1}=\operatorname{Eval}_{L}\left(p_{c}\right)\left(t_{1}\right) \text { and } \operatorname{cis}_{2}=\operatorname{Eval}_{L}\left(p_{c}\right)\left(t_{2}\right)
\]
then eqrej \(=\left(c i s_{1} \cup c i s_{2}\right) \backslash\left(c i s_{1} \cap c i s_{2}\right)\) is the set of all the concept-intersections not occurring in both cis \(_{1}\) and cis 2 , i.e. the set of concept-intersections causing \(t_{1}\) and \(t_{2}\) to evaluate to different values.

Using 42.1 we get
63.0 \(E v a l_{L}\left(p_{c} \backslash e q r e j\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p_{c}\right)\left(t_{1}\right) \backslash\) eqrej \(=c i s_{1} \cap c i s_{2}\) and
\(.1 \quad \operatorname{Eval}_{L}\left(p_{c} \backslash\right.\) eqrej \()\left(t_{2}\right)=\operatorname{Eval}_{L}\left(p_{c}\right)\left(t_{2}\right) \backslash\) eqrej \(=c i s_{1} \cap c i s_{2}\)
so if \(p^{\prime}=p_{c} \backslash\) eqrej then \(\operatorname{Eval}_{L}\left(p^{\prime}\right)\left(t_{1}\right)=\operatorname{Eval}_{L}\left(p^{\prime}\right)\left(t_{2}\right)\).
From 57 we know that if \(p_{1}\) is a solution to an equation \(t_{1}=t_{2}\) then every subset \(p_{2}\) of that solution is also a solution. Hence, in 63 above, subtracting any superset of eqrej results in a partial order in which the equation is satisfied. So having a set of equations rather than just a single equation we compute the eqrej set for each equation and subtract the union of these from \(\mathcal{P}(c s e t)\) :
```

64.0 \quad EqRej : $C I$-set $\rightarrow E q \rightarrow C I$-set
$\operatorname{EqRej}(p)\left(m k-E q\left(t_{1}, t_{2}\right)\right) \triangleq$
let $c i s_{1}=\operatorname{Eval}_{L}(p)\left(t_{1}\right)$,
cis $_{2}=\operatorname{Eval}_{L}(p)\left(t_{2}\right)$ in
$\left(c i s_{1} \cup c i s_{2}\right) \backslash\left(c i s_{1} \cap c i s_{2}\right)$
MaxPO : C-set $\rightarrow E q$-set $\rightarrow P O$
$\operatorname{MaxPO}($ cset $)($ eqs $) \triangle$
let $p_{c}=\mathcal{P}($ cset $)$ in
let rejected $=\bigcup\left\{\operatorname{EqRej}\left(p_{c}\right)(e q) \mid e q \in e q s\right\}$ in
$p_{c} \backslash$ rejected

```
\(\operatorname{EqRej}(p)\left(m k-E q\left(t_{1}, t_{2}\right)\right)(64)\) computes the set of concept-intersections in \(p\) that causes \(t_{1}\) and \(t_{2}\) to evaluate to different values. \(\operatorname{MaxPO}(\) cset \()(\) eqs \()(65)\) first computes the powerset partial order (containing the \(2^{n}-1\) different concept-intersections, if \(n=\) card (cset)). Next it removes from the powerset partial order the rejected concept-intersections, i.e. the conceptintersections that causes an equation not to be satisfied.

Example As an example of using the subtractive method, consider the equations
\[
\begin{aligned}
& b=b * a \\
& c=c * a
\end{aligned}
\]

We evaluate the terms in \(\mathcal{P}(\{a, b, c\})\) :
\begin{tabular}{l|c|c|c} 
equation & left term & right term & reject \\
\hline\(b=b * a\) & \(\{b, a b, b c, a b c\}\) & \(\{b, a b, b c, a b c\} \cap\{a, a b, a c, a b c\}=\{a b, a b c\}\) & \(\{b, b c\}\) \\
\hline\(c=c * a\) & \(\{c, a c, b c, a b c\}\) & \(\{c, a c, b c, a b c\} \cap\{a, a b, a c, a b c\}=\{a c, a b c\}\) & \(\{c, b c\}\) \\
\hline all eqs & & & \(\{b, c, b c\}\) \\
\hline
\end{tabular}

The biggest subset of \(\mathcal{P}(\{a, b, c\})\) which causes no conflicts in the equations is
\[
p \max =\mathcal{P}(\{a, b, c\}) \backslash\{b, c, b c\}=\{a, a b, a c, a b c\}
\]

The Hasse diagram for this partial order and the corresponding lattice \(\mathcal{O}(p \max )\) is shown in figure 6 .

\subsection*{5.3 The Lattices Satisfying a Set of Equations}

The two functions: MaxPO defined in 62 and MaxPO defined in 65 computes one and the same greatest subset of \(\mathcal{P}(c s e t)\) which is a solution for the given set of equations. This should be rather obvious, but we do not give a formal proof. So the two definitions actually define the same function. In the sequel we just refer to \(\operatorname{MaxPO}\) without worrying about how it is implemented.

Let pmax \(=\operatorname{MaxPO}(\) cset \()(\) eqs \()\). We define the class of lattices
\[
66.0 \quad C_{\text {eqs }}=\{\mathcal{L A}(\text { cset }, p) \mid p: P O \cdot p \subseteq p \max \}
\]

According to 57 all lattices in \(C_{\text {eqs }}\) satisfies the given set of equations. Among the lattices in \(C_{\text {eqs }}\) we consider two with interesting properties. The initial lattice is theoretical interesting and is described below. The most disjoint lattice is a lattice that can be constructed by efficient algorithms. The lattice is described in section 6 . An efficient implementation of the most disjoint lattice is described in section 7.

\subsection*{5.4 The Initial Lattice}

In the class \(C_{\text {eqs }}\) of lattices defined above \(\mathcal{L} \mathcal{A}(\) cset, pmax) is the initial algebra/lattice or most general lattice. This is equivalent to saying that for each \(p \subseteq p \max\) there is a unique homomorphism from \(\mathcal{L A}(\) cset, pmax) to \(\mathcal{L A}(\) cset, \(p)\). For a given \(p \subseteq p \max\), that homomorphism is defined by the function \(h: \mathcal{O}(p \max ) \rightarrow \mathcal{O}(p)\) such that
\[
h(c i s)=c i s \cap p, \text { cis } \in \mathcal{O}(p \max )
\]

Now
\[
\begin{aligned}
& h\left(\operatorname{Join}_{L}(c i s 1, c i s 2)\right)=(c i s 1 \cup c i s 2) \cap p=(c i s 1 \cap p) \cup(c i s 2 \cap p)=\operatorname{Join}_{L}(h(c i s 1), h(c i s 2)) \\
& h\left(\operatorname{Met}_{L}(c i s 1, c i s 2)\right)=(\operatorname{cis} 1 \cap c i s 2) \cap p=(c i s 1 \cap p) \cap(c i s 2 \cap p)=\operatorname{Meet}_{L}(h(c i s 1), h(c i s 2))
\end{aligned}
\]

According to the definition of constants \((41.7,36)\) we have
\[
\begin{aligned}
& h\left(c_{p m a x}()\right)=c \operatorname{Value}_{L}(p \max )(c) \cap p=\operatorname{DownSet}(p \max )(\{m k-C I(\{c\})\}) \cap p \\
& =\{m k-C I(c s) \mid m k-C I(c s) \in \operatorname{pmax} \cdot c \in c s\} \cap p \\
& =\{m k-C I(c s) \mid m k-C I(c s) \in \operatorname{pmax} \cap p \cdot c \in c s\} \\
& =c \operatorname{Value}_{L}(p)(c)=c_{p}()
\end{aligned}
\]

Similar for the constants тоР and воттом. Consequently \(h\) is a homomorphism.

\section*{6 The Most Disjoint Lattice}

The initial lattice has elements corresponding to all possible concept-intersections not excluded by the given set of equations. In practice, when specifying a concept hierarchy, this is not always what is wanted. Often we only want to see lattice points that are "relevant" in some way. For instance, if the lattice is constructed as part of an ontology/taxonomy one might have available a set of terms denoting interesting points in the lattice, points to which some information should be associated. From this point of view we might consider the lattice as a lattice structured database containing concept-intersections corresponding to some in serted terms. These inserted terms will be specified by the user of such a database. In some situations these inserted terms would include the terms from the given set of equations. This database point of view was illustrated in section 1.

So, having constructed the maximal partial order pmax satisfying the given set of equations eqs, we want to find a subset of pmax only containing the concept-intersections which are made "relevant" by a given set of inserted terms. Relevance should not be a function of the terms actual form but rather a function of the terms actual value in pmax. For example, \(a *(b+c), a * b+a * c\) and \(a *(b+c)+a * b * c\) should all result in the same set of relevant concept-intersections.

When concept-intersections are removed from pmax some terms will evaluate to a new value and some terms will keep their value. The more concept-intersections that are removed
the more terms will have their value changed. When concept-intersections are removed the concepts in the lattice have fewer overlaps, i.e. the concepts become more disjoint. The idea with the most disjoint lattice is to remove as many concept-intersections as possible without changing the values of the given set of inserted terms. That is why the lattice is called the most disjoint lattice with respect to the given set of inserted terms.

From the database point of view the class of lattices \(C_{\text {eqs }}(66)\) is the set of all possible database instances. Each lattice represents a different set of inserted terms. If we insert a new term in a lattice we get a new lattice (provided the term denotes new concept-intersections).

As shown in section 4 (and 4.1) we have two evaluation functions \(E v a l_{L}\) and \(E v a l_{N}\), where \(\operatorname{Eval}_{N}(p)(t)\) is the anti-chain part of \(\operatorname{Eval}_{L}(p)(t)\) and thus usually contains fewer conceptintersections than \(\operatorname{Eval}_{L}(p)(t)\). The definition of the most disjoint lattice is based on Eval \({ }_{N}\) so we must study the term-value preserving properties of Eval \({ }_{N}\). However, as a warm-up exercise we first study the similar properties for \(E v a l_{L}\).

\subsection*{6.1 Term Value Preserving Properties for \(E v a l_{L}\)}

Given a set of concepts cset we consider the evaluation of a term \(t\) in an arbitrary subset partial order \(p m \subseteq \mathcal{P}(c s e t)\). The partial orders and sets used in this section are illustrated in figure 8 . The value of the term \(t\) in the partial order \(\mathcal{P}\) (cset) is the downset indicated by the straight lines and the horizontal line indicates the anti-chain of this downset. The value of the term \(t\) in the partial order \(p m\) is the subset \(p t\) of this downset which is in \(p m\); it is hatched with dotted lines.

\section*{Lemma}
```

$67.0 \quad \forall t:$ Term, $p m: P O$.
$.1 \quad$ let $p t=\operatorname{Eval}_{L}(p m)(t)$ in
$.2 \quad \operatorname{Eval}_{L}(p t)(t)=\operatorname{Eval}_{L}(p m)(t)$

```

Evaluating a term \(t\) in a partial order \(p m\) and in the subset partial order \(p t\), which is the value of the term \(t\) in \(p m\), yields the same value.

Proof: Let
\[
d p=p m \backslash p t
\]
hence \(d p\) and \(p t\) are disjoint:
\[
d p \cap p t=\{ \}
\]
and
\[
p t=p m \backslash d p
\]

We now have
\[
\begin{aligned}
& \operatorname{Eval}_{L}(p t)(t)=\operatorname{Eval}_{L}(p m \backslash d p)(t) \\
& =\operatorname{Eval}_{L}(p m)(t) \backslash d p \\
& =\operatorname{Eval}_{L}(p m)(t)
\end{aligned}
\]
because \(\operatorname{Eval}_{L}(p m)(t)=p t\) and \(d p \cap p t=\{ \}\)


Figure 8: lemma 67, 68 and 70

\section*{Lemma}
```

$68.0 \quad \forall t$: Term, $p m$: $C I$-set .
let $p t=\operatorname{Eval}_{L}(p m)(t)$ in
$\forall p: P O \cdot p t \subseteq p \wedge p \subseteq p m \Rightarrow \operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)$

```

Evaluating a term \(t\) in a partial order \(p m\) and in any subset partial order \(p\), which includes the value of the term \(t\) in \(p m\), yields the same value. This is a generalization of 67 .

Proof: Assume the left hand side of the implication above
\(69.0 \quad p t \subseteq p \wedge p \subseteq p m\)
We then have the following equalities
\[
\begin{aligned}
& \operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)=p t \cap p \\
& =p t=\operatorname{Eval}_{L}(p m)(t)(\text { from } 69 \text { and } 68.1)
\end{aligned}
\]

\section*{from 42.2}

\section*{Lemma}
```

$70.0 \quad \forall t$: Term, $p m: C I$-set .
$.1 \quad$ let $p t=\operatorname{Eval}_{L}(p m)(t)$ in
. 2
$\forall p: P O \cdot \neg p t \subseteq p \wedge p \subseteq p m \Rightarrow \operatorname{Eval}_{L}(p)(t) \neq \operatorname{Eval}_{L}(p m)(t)$

```

Evaluating a term \(t\) in a partial order \(p m\) and in any subset partial order \(p\), which does not include the value of the term \(t\) in \(p m\) yields different values.

Proof: Assume the left hand side of the implication above
\[
\neg p t \subseteq p
\]
hence using 70.1 we get
\[
\neg \operatorname{Eval}_{L}(p m)(t) \subseteq p
\]
so
\[
\operatorname{Eval}_{L}(p m)(t) \cap p \neq \operatorname{Eval}_{L}(p m)(t)
\]

Using this inequality we get
\[
\operatorname{Eval}_{L}(p)(t)
\]
\[
=\operatorname{Eval}_{L}(p m)(t) \cap p \neq \operatorname{Eval}_{L}(p m)(t)
\]
from 42.2
The properties in lemma 68 and 70 can now be combined in the following theorem:

\section*{Theorem}
```

$71.0 \quad \forall t: T e r m, p m: C I$-set .
. $1 \quad$ let $p t=\operatorname{Eval}_{L}(p m)(t)$ in
$.2 \quad \forall p: P O \cdot p \subseteq p m \Rightarrow\left(p t \subseteq p \Leftrightarrow \operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)\right)$

```

The proof follows directly from the lemmas 67,68 , and 70 .
The theorem above shows that if we want to have the term \(t\) evaluated to the same value as in the given partial order \(p m\), then we can use exactly all the subsets of \(p m\) containing the value of the term in \(p m\).

Now, what if we want to preserve the value of two terms \(t_{1}\) and \(t_{2}\) ? For \(t_{1}\) we can use all the partial orders between \(\operatorname{Eval}_{L}(p m)\left(t_{1}\right)\) and \(p m\), and for \(t_{2}\) we can use all the partial orders between \(\operatorname{Eval}_{L}(p m)\left(t_{2}\right)\) and \(p m\). Consequently, to keep the value of both \(t_{1}\) and \(t_{2}\) we can use all the partial orders between \(\operatorname{Eval}_{L}(p m)\left(t_{1}\right) \cup E v a l_{L}(p m)\left(t_{2}\right)\) and \(p m\). The next theorem generalizes this to an arbitrary set of terms:

\section*{Theorem}
```

$72.0 \quad \forall$ tset : Term-set, $p m: C I$-set.
. $1 \quad$ let $p t s=\bigcup\left\{\operatorname{Eval}_{L}(p m)(t) \mid t \in t s e t\right\}$ in
$.2 \quad \forall p: P O \cdot p \subseteq p m \Rightarrow\left(p t s \subseteq p \Leftrightarrow\left(\forall t \in t s e t \cdot \operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)\right)\right)$

```

Proof: Assume the left hand side of the implication above
\(73.0 \quad p \subseteq p m\)
Now, to prove the right hand side equivalence, we prove the left to right and right to left implications individually.
Left to Right: So we first assume the left hand side
\(74.0 \quad p t s \subseteq p\)
Next, let \(t\) be an arbitrary term in tset:
\[
t \in t s e t
\]

According to the theorem 71 we then have
\[
\operatorname{Eva}_{L}(p m)(t) \subseteq p \Leftrightarrow \operatorname{Eval}_{L}(p)(t)=\operatorname{Eva}_{L}(p m)(t)
\]

From 74 and the definition of pts the left hand side above is true and consequently also the right hand side:
\[
\operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)
\]

Right to Left: Next, we must prove the right to left implication in the equivalence:
\[
\left(\forall t \in t s e t \cdot \operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)\right) \Rightarrow p t s \subseteq p
\]
so assume
\[
\forall t \in t s e t \cdot \operatorname{Eval}_{L}(p)(t)=\operatorname{Eval}_{L}(p m)(t)
\]

From 73 and theorem 42.0 this may be transformed to
\[
\forall t \in t s e t \cdot \operatorname{Eval}_{L}(p m)(t) \subseteq p
\]

\section*{So}
\[
\bigcup\left\{\operatorname{Eval}_{L}(p m)(t) \mid t \in t s e t\right\} \subseteq p
\]
which is equivalent to
\[
p t s \subseteq p
\]

\subsection*{6.2 Term Value Preserving Properties for Eval \(N_{N}\)}

In this section we show that \(E v a l_{N}\) has properties similar to the properties for \(E v a l_{L}\) proved in section 6.1. The partial orders and sets used in this section is illustrated in figure 9. Because we now use \(E v a l_{N}\) which yields an anti-chain the figure now also shows the anti-chain \(p t n\) of the term value \(p t\). This subset of \(p t\) is indicated by the dashed line in the top-part of the down-set \(p t\). Below the value of \(\operatorname{Eval}_{N}(p)(t)\) is called a normal form value.


Figure 9: lemma 75 and 79

\section*{Lemma}
```

$75.0 \quad \forall t:$ Term, $p m: P O$.
let $p t n=\operatorname{Eval}_{N}(p m)(t)$ in
$\forall p: P O \cdot p t n \subseteq p \wedge p \subseteq p m \Rightarrow \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)=\operatorname{Eval}_{L}(p t n)(t)$

```

Evaluating a term \(t\) (using \(E v a l_{N}\) ) in a partial order \(p m\) and in any subset partial order \(p\), which includes the normal form value \(p t n\) of the term \(t\) in \(p m\), yields the same normal form value.

Proof: Assume the left hand side
```

76.0 ptn}\subseteqp\wedgep\subseteqp

```

Using term-value properties 42 and the right conjunct in 76 gives
\[
\left.\begin{array}{rl}
77.0 & \operatorname{Eval}_{L}(p)(t) \subseteq \operatorname{Eval}_{L}(p m)(t) \\
.1 & \operatorname{Eval}_{L}(p)(t)
\end{array}\right)=\operatorname{Eval}_{L}(p m)(t) \cap p
\]

From 75.1 we now get
\[
p t n=\operatorname{Eval}_{N}(p m)(t)=\operatorname{AntiCh}\left(\operatorname{Eval}_{L}(p m)(t)\right) \subseteq \operatorname{Eval}_{L}(p m)(t)
\]
because an anti-chain of a set \(d s\) is a subset of \(d s\). Combining this subset inclusion with the left conjunct in 76 gives
\[
\begin{align*}
& p \operatorname{tn} \subseteq \operatorname{Eval}_{L}(p m)(t) \cap p \\
& =\operatorname{Eval}_{L}(p)(t) \tag{from 77.1}
\end{align*}
\]

Again, combining this subset inclusion with the one in 77.0 gives
\[
p t n=\operatorname{AntiCh}\left(\operatorname{Eval}_{L}(p m)(t)\right) \subseteq \operatorname{Eval}_{L}(p)(t) \subseteq \operatorname{Eval}_{L}(p m)(t)
\]

If we use the anti-chain property 21 to the above subset inclusion of an antichain we get
\[
\left.\operatorname{AntiCh}\left(\operatorname{Eval}_{L}(p)(t)\right)=\operatorname{AntiCh}_{\left(\operatorname{Eval}_{L}(p m)\right.}(t)\right)
\]
which is equivalent to
\[
78.0 \quad \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)
\]

Next we prove the equality to \(E v a l_{L}(p t n)(t)\). From 42.0 we get
\[
\operatorname{Eval}_{L}(p t n)(t) \subseteq p t n
\]
\(p t n\) is an anti-chain and so are all of its subsets, so \(\operatorname{Eval}_{L}(p \operatorname{tn})(t)\) is an anti-chain. From the anti-chain property 20 we then get
\[
\operatorname{Eval}_{N}(p t n)(t)=\operatorname{AntiCh}\left(\operatorname{Eval}_{L}(p t n)(t)\right)=\operatorname{Eval}_{L}(p t n)(t)
\]

Finally from 78 for \(p=p t n\) and the equality above we get
\[
\operatorname{Eval}_{N}(p m)(t)=\operatorname{Eval}_{N}(p t n)(t)=\operatorname{Eval}_{L}(p t n)(t)
\]
which together with the equality in 78 gives the equalities in 75.2 .

\section*{Lemma}
```

$79.0 \quad \forall t:$ Term, pm: PO.
$.1 \quad$ let $p t n=\operatorname{Eval}_{N}(p m)(t)$ in
$.2 \quad \forall p: P O \cdot \neg p t n \subseteq p \Rightarrow \operatorname{Eval}_{N}(p)(t) \neq \operatorname{Eval}_{N}(p m)(t)$

```

Evaluating a term \(t\) (using \(E v a l_{N}\) ) in a partial order \(p m\) and in any subset partial order \(p\), which does not include the normal form value of the term \(t\) in \(p m\) yields different normal form values.

Proof: Assume the left hand side of the implication:
\[
\neg p t n \subseteq p
\]
so \(p t n\) has a non-empty subset not in \(p\) :
\[
\left\} \subset p t n \backslash p \subseteq p t n=\operatorname{Eval}_{N}(p m)(t)\right.
\]

So \(E v a l_{N}(p m)(t)\) has a nonempty subset, which is not in \(p\). But for \(E v a l_{N}(p)(t)\) we have
\[
\operatorname{Eval}_{N}(p)(t) \subseteq \operatorname{Eval}_{L}(p)(t) \subseteq p
\]

Hence
\[
\operatorname{Eval}_{N}(p m)(t) \neq \operatorname{Eval}_{N}(p)(t)
\]

The properties in lemma 75 and 79 can now be combined in the following theorem:

\section*{Theorem}
```

$80.0 \quad \forall t:$ Term, $p m: P O$.
let $p t n=\operatorname{Eval}_{N}(p m)(t)$ in
$\forall p: P O \cdot p \subseteq p m \Rightarrow\left(p t n \subseteq p \Leftrightarrow \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)\right)$

```

The proof follows directly from the lemmas 75 , and 79 . The theorem above shows that if we want to have the term \(t\) evaluated to the same normal form value as in the given partial order \(p m\), then we can use exactly all the subsets of \(p m\) containing the normal form value of the term in \(p m\).

The next theorem corresponds to theorem 72 for \(E v a l_{L}\). So the first question is what to do if we want to preserve the value of two terms \(t_{1}\) and \(t_{2}\) ? For \(t_{1}\) we can use all the partial orders between \(\operatorname{Eval}_{N}(p m)\left(t_{1}\right)\) and \(p m\), and for \(t_{2}\) we can use all the partial orders between \(\operatorname{Eval}_{N}(p m)\left(t_{2}\right)\) and \(p m\). Consequently, to keep the value of both \(t_{1}\) and \(t_{2}\) we can use all the partial orders between \(\operatorname{Eval}_{N}(p m)\left(t_{1}\right) \cup E v a l_{N}(p m)\left(t_{2}\right)\) and \(p m\). The next theorem generalizes this to an arbitrary set of terms: Given a set of terms and a partial order \(p m\). In which sub partial orders will all the given terms have the same normal form value as in \(p m\) ?

\section*{Theorem}
```

$81.0 \quad \forall$ tset : Term-set, pm: PO.
let $p t s=\bigcup\left\{\operatorname{Eval}_{N}(p m)(t) \mid t \in t s e t\right\}$ in
$\forall p: P O \cdot p \subseteq p m \Rightarrow\left(p t s \subseteq p \Leftrightarrow \forall t \in t s e t \cdot \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)\right)$

```

Proof: Assume the left hand side of the implication above:
\(82.0 \quad p \subseteq p m\)
Now, to prove the right hand side equivalence, we prove the left to right and right to left implications individually.
Left to Right: So we first assume the left hand side
\(83.0 \quad p t s \subseteq p\)
Next, let \(t\) be an arbitrary term in tset:
\[
t \in \text { tset }
\]

According to theorem 80 we then have
\[
\operatorname{Eval}_{N}(p m)(t) \subseteq p \Leftrightarrow \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)
\]

From 83 and the definition of \(p t s\) the left hand side above is true and consequently also the right hand side:
\[
\operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)
\]

Right to Left: Next, we must prove the right to left implication in the equivalence:
\[
\left(\forall t \in t s e t \cdot \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)\right) \Rightarrow p t s \subseteq p
\]
so assume
\[
\forall t \in t s e t \cdot \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m)(t)
\]

From 82 and theorem 80 this may be transformed to
\[
\forall t \in t s e t \cdot \operatorname{Eval}_{N}(p m)(t) \subseteq p
\]

So
\[
\bigcup\left\{\operatorname{Eval}_{N}(p m)(t) \mid t \in t s e t\right\} \subseteq p
\]
which is equivalente to
\[
p t s \subseteq p
\]

\subsection*{6.3 The Most Disjoint Lattice and its Properties}

Given a set of concepts cset and a set of user-specified inserted terms insterms, the function below now finds the partial order for the lattice which we call the most disjoint lattice with respect to the given set of terms.
```

84.0 TMdisjPO: Cset \rightarrow Eq-set \rightarrow Term-set $\rightarrow P O$
$T M d i s j P O($ cset $)($ eqs $)($ insterms $) \triangleq$
let $p \max =\operatorname{MaxPO}($ cset $)($ eqs $)$ in
$\bigcup\left\{\operatorname{Eval}_{N}(\right.$ pmax $)(t) \mid t \in$ insterms $\}$

```

In 84.2 pmax is the maximal partial order satisfying the given set of equations eqs. In line 84.3 the most disjoint lattice is defined to be the set of concept-intersections which is the union of the normal form value of all the inserted terms in pmax.

From theorem 81 and the definition of the most disjoint lattice above we can easily derive the following property for most disjoint lattices:

Term-value Preserving Property of the Most Disjoint Lattice Let cset be a set of concepts, eqs a set of equations about these concepts and insterms a set of user specified inserted terms.
```

85.0 let $p m a x=\operatorname{MaxPO}($ cset $)($ eqs $)$,
$p m d s j=T M d i s j P O(c s e t)($ eqs $)($ insterms $)$ in
$\forall p: P O \cdot p \subseteq p \max \Rightarrow$
$\left(p m d s j \subseteq p \Leftrightarrow \forall t \in \operatorname{insterms} \cdot \operatorname{Eval}_{N}(p)(t)=\operatorname{Eval}_{N}(p m a x)(t)\right)$

```

In the most disjoint lattice \(\mathcal{N} \mathcal{A}(\) cset, \(p m d s j)\) all the inserted terms evaluate to the same normal form value as they do in the initial lattice \(\mathcal{N} \mathcal{A}(\) cset, pmax \()\). Furthermore, the most disjoint lattice is the smallest lattice having this property in the sense that all lattices based on a partial order not containing \(p m d s j\) do not have this property.

If we have a system that - from a set of equations - implements the most disjoint lattice rather then the initial lattice, the question naturally arises if there are lattices which cannot be constructed. Luckily, such a system can construct all the lattices that an initial lattice based system can do, even with the same set of equations:

Power of Most Disjoint Lattice Below pterms is a (huge) set of terms, which evaluates to all possible set of concept-intersections. We have
```

86.0 let pterms be st U{AntiCh(EvalL}(\mathcal{P}(cset))(t))|t\in\operatorname{pterms}}=\mathcal{P}(cset) in
.1 TMdisjPO(cset)(eqs)(pterms)=MaxPO(cset)(eqs)

```

So in the most disjoint lattice system we must supply the system with a set of inserted terms consisting of op to \(2^{n}-1\) product terms (where \(n=\) card (cset)) in order to get all the overlaps in the initial lattice. On the other hand, in an initial lattice based system one must supply the system with up to \(2^{n}-1\) equations of the form \(c_{1} * c_{2} * \ldots * c_{n}=\) воттом to get the most disjoint lattice.

Incremental Construction. From the definition of TMdisjPO (84) we have
```

87.0 TMdisjPO(cset)(eqs)(insterms 1 \cup insterms 2) =
.1 TMdisjPO(cset)(eqs)(insterms1)\cupTMdisjPO(cset)(eqs)(insterms2)

```

Each inserted terms contribution to the set of concept-intersections in the partial order is independent of the already inserted terms, so the partial order for the most disjoint lattice may be constructed incrementally by inserting the terms one after the other.

In section 7 we show how to make an efficient implementation of the most disjoint lattice. Section 6.4 shows 4 examples of the partial order \(p m d s j\) for the most disjoint lattice and the corresponding partial order pmax.

\subsection*{6.4 Examples of Most Disjoint Lattices}

Below we first consider three examples with cset \(=\{a, b, c\}\) so \(\mathcal{P}(c s e t)\) is as shown in the right part of figure 1. We use pmax for \(\operatorname{MaxPO}(c s e t)(e q s)\) and \(p m d s j\) for TMdisjPO (cset)(eqs)(insterms).

Example 1 Let eqs \(=\{b=b * a, c=c * a\}\), see the example page 21. As inserted terms we use insterms \(=\{a, b, c\}\). The corresponding partial orders pmax and pmdsj are shown below:


The partial order \(p m d s j\) is computed as follows:
\begin{tabular}{c|c|c|c}
\(t\) & tval \(^{2} \operatorname{Eval}_{L}(\mathcal{P}(c s e t))(t)\) & \(E v a l_{L}(p \max )(t)\) & \(\operatorname{Eval}_{N}(p \max )(t)\) \\
\hline\(a\) & \(a, a b, a c, a b c\) & \(a, a b, a c, a b c\) & \(a\) \\
\hline\(b\) & \(b, a b, b c, a b c\) & \(a b, a b c\) & \(a b\) \\
\hline\(c\) & \(c, a c, b c, a b c\) & \(a c, a b c\) & \(a c\) \\
\hline \hline & & \(p m d s j=\) & \(a, a b, a c\) \\
\hline
\end{tabular}

Example 2 Let eqs \(=\{a=a+b * c\}\) and insterms \(=\{a, b, c, b * c\}\). When computing \(\operatorname{MaxPO}(c s e t)(\) eqs \()(\) def. 65) we get rejected \(=\{b c\}\). The corresponding partial orders pmax and \(p m d s j\) are shown below:


The partial order \(p m d s j\) is computed as follows:
\begin{tabular}{c|c|c|c}
\(t\) & tval \(=\operatorname{Eval}_{L}(\mathcal{P}(c s e t))(t)\) & \(E v a l_{L}(p \max )(t)\) & \(\operatorname{Eval}_{N}(p \max )(t)\) \\
\hline\(a\) & \(a, a b, a c, a b c\) & \(a, a b, a c, a b c\) & \(a\) \\
\hline\(b\) & \(b, a b, b c, a b c\) & \(b, a b, a b c\) & \(b\) \\
\hline\(c\) & \(c, a c, b c, a b c\) & \(c, a c, a b c\) & \(c\) \\
\hline\(b * c\) & \(b c, a b c\) & \(a b c\) & \(a b c\) \\
\hline \hline & & \(p m d s j=\) & \(a, b, c, a b c\) \\
\hline
\end{tabular}

Example 3 Let eqs \(=\{c=c *(a+b)\}\) and insterms \(=\{a, b, c\}\). When computing
\(\operatorname{MaxPO}(\) cset \()(\) eqs \()(\) def. 65) we get rejected \(=\{c\}\), i.e. \(c\) does not have its own existence (but has "sunk" down into \(a\) and \(b\) ). The corresponding partial orders pmax and pmdsj are shown below:


The partial order \(p m d s j\) is computed as follows:
\begin{tabular}{c|c|c|c}
\(t\) & tval \(=\operatorname{Eval}_{L}(\mathcal{P}(c s e t))(t)\) & tac \(=\) AntiCh \((\) tval \()\) & TermRel \((c s e t)(p m a x)(t)\) \\
\hline\(a\) & \(a, a b, a c, a b c\) & \(a, a b, a c, a b c\) & \(a\) \\
\hline\(b\) & \(b, a b, b c, a b c\) & \(b, a b, b c, a b c\) & \(b\) \\
\hline\(c\) & \(c, a c, b c, a b c\) & \(a c, b c, a b c\) & \(a c, b c\) \\
\hline \hline & & \(p m d s j=\) & \(a, b, a c, b c\)
\end{tabular}

Example 4 In this example we have \(c s e t=\{h, m, f, c, a\}\) (for human, male, female, child, adult), insterms \(=\{m, f, c, a\}\) and the equations \(h=m+f, h=c+a\). A more extensive computation yields the partial orders pmax and pmdsj shown below to the left and right respectively :


Here the concept-intersections \(h m c, h f c, h m a\) and \(h f a\) corresponds to the concepts boy, girl, man and woman. In the most disjoint partial order \(p m d s j\), all concept-intersections containing \(m f\) and \(c a\) vanishes, i.e. the concepts \(m\) and \(f\) become disjoint and similar for \(c\) and \(a\). The remaining concept-intersections are not related so \(\mathcal{O}(p m d s j)\) becomes a powerset lattice with the four concept-intersections as atoms.

\section*{7 An Efficient Implementation of the Most Disjoint Lattice}

In this section we consider how to make an efficient implementation of the most disjoint lattice as defined in 84 section 6.3. The definition is repeated below:
\[
\begin{array}{rc}
88.0 & \text { TMdisjPO }: \text { Cset } \rightarrow \text { Eq-set } \rightarrow \text { Term-set } \rightarrow P O \\
.1 & \text { TMdisjPO }(\text { cset })(\text { eqs })(\text { insterms }) \triangleq \\
.2 & \text { let } p \operatorname{pmax}=\operatorname{MaxPO}(\text { cset })(\text { eqs }) \text { in } \\
.3 & \cup\left\{\text { Eval }_{N}(\text { pmax })(t) \mid t \in \text { insterms }\right\}
\end{array}
\]

The definition first defines the partial order pmax for the initial lattice and then evaluates the inserted terms in pmax. But the size of pmax may grow exponentially with the number of concepts and so also the number of computation steps. However, the resulting partial order computed in 88.3 usually contains a considerable smaller number of concept-intersections. So we must avoid the explicit computation of \(p \max\) and try to find a way to compute
\[
\operatorname{Eval}_{N}(p \max )(t)
\]
for each inserted term \(t\) directly from the equations eqs, without having pmax available.

\subsection*{7.1 Term Evaluation using Projection}

In the method shown in this section the term \(t\) is first evaluated in the power-set partial order using \(E v a l_{N}\) and the resulting anti-chain is then projected down in pmax using a projection function similar to the projection function defined in 26 in section 4.1. We have

\section*{Lemma}
\(89.0 \quad \operatorname{Eval}_{N}(\) pmax \()(t)=\operatorname{CISproj}(p m a x)\left(E v a l_{N}(\mathcal{P}(c s e t))(t)\right)\)

Proof: The equation above is between two anti-chains, \(a c 1\) and \(a c 2\). We show that they are both anti-chains in pmax with the same downset in pmax, so they are the same anti-chain. According to the definition of \(E v a l_{N}\), the left-hand anti-chain \(a c 1\) is the anti-chain in pmax such that
\[
\operatorname{DownSet}(p \max )(a c 1)=\operatorname{Eval}_{L}(p \max )(t)
\]

From the projection properties used to define CISproj (26) we know that the right-hand side anti-chain \(a c 2\) is an anti-chain in pmax. For the downset of \(a c 2\) in \(p m a x\) we have the following sequence of equalities:
\[
\begin{aligned}
& \text { DownSet } C(p \max )(a c 2) \\
& =\operatorname{DownSetC}(\text { pmax })\left(\operatorname{Eval}_{N}(\mathcal{P}(\text { cset }))(t)\right) \\
& =\operatorname{DownSet} C(\mathcal{P}(\text { cset }))\left(\text { Eval }_{N}(\mathcal{P}(\text { cset }))(t)\right) \cap \text { pmax } \\
& \text { according to the definition of } E v a l_{N} \text { in sect. } 4.1 \\
& =\operatorname{Eval}_{L}(\mathcal{P}(\text { cset }))(t) \cap p m a x \\
& =\operatorname{Eval}_{L}(p \max )(t) \\
& \text { from } 26.3 \\
& \text { from } 14 \\
& \text { according to the definition of } E v a l_{N} \text { in sect. } 4.1 \\
& \text { from } 42.2
\end{aligned}
\]

Consequently we have \(\operatorname{DownSet} C(\operatorname{pmax})(a c 1)=\operatorname{DownSet} C(\operatorname{pmax})(a c 2)\).
The method based on equation 89 above is sketched in figure 10. The value of the term \(t\) in the partial order \(\mathcal{P}(\) cset \()\) is the downset indicated by the straight lines and the black bullets at the top of this area indicates the elements in the anti-chain of this down-set, i.e. the elements in \(\operatorname{Eval}_{N}(\mathcal{P}(\) cset \())(t)\). The solid lined circles along the dotted line in pmax indicates the anti-chain which is the resulting projection into \(\operatorname{pmax}\), i.e. the elements in \(E v a l_{N}(\operatorname{pmax})(t)\).


Figure 10: Projecting \(\operatorname{Eval}_{N}(\mathcal{P}(\) cset \()(t))\) into pmax
Following this scheme we must have an efficient way to compute \(\operatorname{Eval}_{N}(\mathcal{P}(\) cset \())(t)\) and next we must implement a special projection function which projects into the partial order pmax given the equations.

\subsection*{7.2 Evaluation in the Power Set Partial Order}

We can easily make a specialized and efficient version of \(E v a l_{N}\) which evaluates in the powerset partial order. Below we define the specialized function Eval \(l_{N P c}\) such that
```

90.0 $\operatorname{Eval}_{N P c}(\operatorname{cset})(t)=\operatorname{Eval}_{N}(\mathcal{P}($ cset $))(t)$
91.0 Eval $_{N P c}:$ Cset \rightarrow Term $\rightarrow C I$-set
$\operatorname{Eval}_{N P c}(c s e t)(t) \triangle$
cases t :
$m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{N P c}\left(\operatorname{Eval}_{N P c}(\operatorname{cset})\left(t_{1}\right), \operatorname{Eval}_{N P c}(c s e t)\left(t_{2}\right)\right)$,
$m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{N P c}\left(\operatorname{Eval}_{N P c}(\operatorname{cset})\left(t_{1}\right), \operatorname{Eval}_{N P c}(\operatorname{cset})\left(t_{2}\right)\right)$,
$(\mathrm{TOP}) \rightarrow\{m k-C I(\{c\}) \mid c \in c s e t\}$,
(BOTTOM) $\rightarrow\}$,
$c \rightarrow\{m k-C I(\{c\})\}$
end
92.0 $\quad J_{\text {oin }}^{N P c}: ~: C I-$ set $\times C I$-set $\rightarrow C I$-set
$.1 \operatorname{Join}_{N P c}\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiCh}\left(a c_{1} \cup a c_{2}\right)$
Meet $_{N P c}: C I$-set $\times C I$-set $\rightarrow C I$-set
$\operatorname{Meet}_{N P c}\left(a c_{1}, a c_{2}\right) \triangleq$
let $c i s=\left\{m k-C I\left(c s_{1} \cup c s_{2}\right) \mid m k-C I\left(c s_{1}\right) \in a c_{1}, m k-C I\left(c s_{2}\right) \in a c_{2}\right\}$ in
AntiCh (cis)

```

\subsection*{7.3 Projection into pmax.}

We now look for a projection function \(c P r o j\) such that
```

94.0 cProj(neqs)(cis)=CISproj (pmax)(cis)

```
where neqs (normalized equations, discussed below) is a representation of the equations that were used to construct pmax. By combining 89, 90 and 94 we can easily compute \(\operatorname{Eval}_{N}(\) pmax \()(t)\) :
\[
\text { 95.0 } \operatorname{Eval}_{N}(\operatorname{pmax})(t)=c \operatorname{Proj}(\text { neqs })\left(\operatorname{Eval}_{N P c}(\operatorname{cset})(t)\right)
\]

The projection function must take the elements in \(\operatorname{Eval}_{N}(\mathcal{P}(c s e t))(t)\) which are not already in pmax (in figure 10 the black bullets outside pmax) and project them down into pmax. An element is outside pmax if and only if it is rejected by an equation. It is important to realize that the number of rejected elements in \(E v a l_{L}(\mathcal{P}(c s e t))(t)\) in general is of the same order of magnitude as the number of all the elements in \(\operatorname{Eval}_{L}(\mathcal{P}(c s e t))(t)\), i.e. of exponential size. Consequently, a projection method, where elements outside pmax are moved to lower covers and then again tested for acceptance/rejection will be very inefficient.

Recall, from section 5.2, how an equation rejects concept-intersections from \(\mathcal{P}\) (cset): Let \(t_{1}=t_{2}\) be an equation, let \(p_{c}=\mathcal{P}(\) cset \()\) and let
\[
\operatorname{cis}_{1}=\operatorname{Eval}_{L}\left(p_{c}\right)\left(t_{1}\right) \text { and } \operatorname{cis}_{2}=\operatorname{Eval}_{L}\left(p_{c}\right)\left(t_{2}\right)
\]
then eqrej \(=\left(c i s_{1} \cup c i s_{2}\right) \backslash\left(c i s_{1} \cap c i s_{2}\right)\) is the set of concept-intersections that is rejected, whereas the set of concept-intersections \(\left(\right.\) cis \(\left._{1} \cap c i s_{2}\right)\) is accepted by this equation, but of course it may be rejeted by another equation. We call the set \(\left(c i s_{1} \cup c i s_{2}\right) \backslash\left(c i s_{1} \cap c i s_{2}\right)\) the equations reject-region and the set \(c i s_{1} \cap c i s_{2}\) the equations accept-region. The term-values \(c i s_{1}\) and \(c i s_{2}\) are both down-sets and so are the union and intersection of these down-sets (13), consequently the equations accept-region is also a down-set. To get an efficient way to determine if a concept-intersection is in an equations reject- or accept-region we first evaluate every equation so we can easily get the accept and reject region. To make the computations effective we represent a downset by its anti-chain. An equation is now represented by a "normalized" equation of type \(N E q\) :
```

types

```
96.0 \(N E q:=C I\)-set \(\times C I\)-set

The first and second component are the anti-chains of the join and meet of the left and right hand term values in \(p_{c}\).
```

97.0 EvalEq : Cset $\rightarrow E q \rightarrow N E q$
$\operatorname{EvalEq}(\operatorname{cset})\left(m k-E q\left(t_{1}, t_{2}\right)\right) \triangleq$
let $a c_{1}=E v a l_{N P c}(\operatorname{cset})\left(t_{1}\right)$,
$a c_{2}=\operatorname{Eval}_{N P c}(\operatorname{cset})\left(t_{2}\right)$ in
$m k-N E q\left(J o i n_{N P c}\left(a c_{1}, a c_{2}\right), \operatorname{Meet}_{N P c}\left(a c_{1}, a c_{2}\right)\right)$

```

We will evaluate all the equations in this way:
```

98.0 EvalEqs:Cset }->\mathrm{ Eq-set }->NEq\mathrm{ -set
.1 EvalEqs (cset)(eqs) \triangle{EvalEq(cset)(eq)|eq\ineqs}

```

Let cset and eqs be the given set of concepts and equations repectively, then we will use the set of normalized equations neqs \(=\operatorname{EvalEqs}(\operatorname{cset})(e q s)\) to (implicitly) represent pmax. The accept-region for a normalized equation \(m k-N E q(u, m)\) is now \(\operatorname{DownSet}\left(p_{c}\right)(m)-\) see fig. 11 - and the reject-region is
\[
\operatorname{DownSet}\left(p_{c}\right)(u) \backslash \operatorname{DownSet}\left(p_{c}\right)(m)
\]

We can now tell if a concept-intersection is in the reject-region of a normalized equation using the function defined below:
\[
\begin{aligned}
99.0 & \operatorname{InEqRej}: N E q \rightarrow C I \rightarrow \mathbb{B} \\
.1 & \operatorname{InEqRej}(m k-N E q(u, m))(c i) \triangleq \\
.2 & \operatorname{ISA}(\{c i\}, u) \wedge \neg \operatorname{ISA} A_{N}(\{c i\}, m)
\end{aligned}
\]

In words, the concept-intersection \(c i\) is in the reject-region if it is in one of the down-sets for the equation term values but not in the accept-region. Notice that InEqRej uses the \(I S A_{N}\) relation between anti-chains (as defined in 48 and 54 ). If the concept-intersection \(c i\) is in the reject-region of an equation then all the elements below \(\left(I S A_{P}\right) c i\), which are not rejected by any equation (i.e. are in \(p \max\) ) must be below some element in \(m\), so we have
100.0 \(\operatorname{InEqRej}(m k-N E q(-, m))(c i) \Rightarrow \operatorname{IS} A_{N}(\operatorname{CISproj}(\operatorname{pmax})(\{c i\}), m)\)


Figure 11: Reject-region and accept-region

\subsection*{7.4 Projection Step of a Concept-intersection}

Given a set of normalized equations neqs, the projection of a set cis of concept-intersections into pmax is done iteratively. In each step we take from cis an element \(c i\) which is rejected by one of the equations neq and make a partial projection of \(c i\) using the equation neq.

So let \(c i\) be a concept-intersection that is in the reject-region for one of the normalized equations \(m k-N E q(u, m)\). Then \(c i\) itself is not in pmax, so \(\operatorname{CISproj}(\operatorname{pmax})(\{c i\})\) must be below \(c i\). Furthermore \(\operatorname{CISproj}(\operatorname{pmax})(\{c i\})\) must also be in the equations accept-region i.e. (according to 100) below \(m\). So - in the lattice \(\mathcal{N}(\mathcal{P}(c s e t))\) - the anti-chain \(\operatorname{CISproj}(p m a x)(\{c i\})\) is below both anti-chains \(c i\) and \(m\) :
\[
I S A_{N}\left(\operatorname{CISproj}(p \max )(\{c i\}), \operatorname{Meet}_{N P c}(\{c i\}, m)\right)
\]

Hence we may use \(a c=\operatorname{Meet}_{N P c}(\{c i\}, m)\) as a first approximation for the projection of \(c i\). Below CIProjStep defines the relation between a concept-intersection \(c i\), that is rejected by one of the equations in the given set neqs of normalized equations, and the partial projection \(a c\) as described above.
```

101.0 CIProjStep: $\mathrm{NEq} \rightarrow \mathrm{CI} \times \mathrm{CI}$-set $\rightarrow \mathbb{B}$
. $1 \quad$ CIProjStep $(n e q)(c i, a c) \triangleq$
. 2 InEqRej(neq)(ci)^
.3 let $m k-N E q(-, m)=n e q$ in
. $4 \quad \operatorname{Meet}_{N P c}(\{c i\}, m)=a c$

```

We have the following lemma for such a single concept-intersection projection step:
Lemma Let neqs be the given set of normalized equations.
```

102.0 }\forallneq\in neqs,ci:CI, ac:CI-set
CIProjStep(neq)(ci,ac) =>
ISAN
ISAN

```

Proof To prove 102 above assume the left hand side of the implication above, i.e the lines 101.2-4 and prove the right hand side. Line 102.2 follows directly from the definition of \(a c\) in 101.4 and the fact that \(c i\) is in the reject region of the equation \(n e q\) whereas \(a c\) is in the accept region of the equation. To prove Line 102.3 we use the assumptions and the InEqRej-property (100) which gives us
\[
I S A_{N}(C I S p r o j(p \max )(\{c i\}), m)
\]

From the definition of CISproj we also have that the elements in \(\operatorname{CISproj}(p \max )(\{c i\})\) must be below \(\left(I S A_{P}\right) ~ c i\) so
\[
I S A_{N}(\operatorname{CISproj}(p \max )(\{c i\}),\{c i\})
\]

Hence \(\operatorname{CISproj}(\operatorname{pmax})(\{c i\})\) is a lower bound for both \(m\) and \(\{c i\}\) and consequently we also have
\[
I S A_{N}\left(\operatorname{CISproj}(\operatorname{pmax})(\{c i\}), \operatorname{Meet}_{N P_{c}}(m,\{c i\})\right)
\]

\subsection*{7.4.1 Projection Step of a Concept-intersection Set}

Now we must return to the problem of projecting a set cis of concept-intersections into pmax, i.e. computing CISproj \((\) pmax \()(\) cis \()\). Let
\[
c i s=\left\{c i_{1}\right\} \cup\left\{c i_{2}\right\} \ldots \cup\left\{c i_{j}\right\} \cup \ldots \cup\left\{c i_{n}\right\}
\]

In each projection step one element \(c i_{j}\) is partially projected using the projection described by the CIProjStep relation explained in the previous section. So let neqs be the given set of normalized equations and let \(a c: C I\)-set be such that \(C I P r o j S t e p(n e q s)\left(c i j_{j}, a c\right)\) then in the next step cis is projected to:
\[
\text { newcis }=\left\{c i_{1}\right\} \cup\left\{c i_{2}\right\} \ldots \cup a c \cup \ldots \cup\left\{c i_{n}\right\}
\]

Even if cis is an anti-chain the new set of concept-intersection's is not necessarily an antichain. As we will see below, we may choose to convert it to an anti-chain or leave it as it is. We define the relation between a set of concept-intersection's - where an arbitrary ci is rejected by a normalized equation - and the new set of concept-intersection's by the relation CISProjStep defined below:
```

103.0 CISProjStep : NEq-set $\rightarrow C I$-set $\times C I$-set $\rightarrow \mathbb{B}$
CISProjStep $($ neqs $)\left(\right.$ cis $_{1}$, cis $\left._{2}\right) \triangleq$
$\exists n e q \in n e q s, c i \in c i s_{1}, a c: C I$-set.
$C I P r o j S t e p(n e q)(c i, a c) \wedge$
let newcis $=\left(c i s_{1} \backslash\{c i\}\right) \cup a c$ in
AntiCh $($ newcis $) \subseteq$ cis $_{2} \subseteq$ newcis

```

As can be seen from the last line in the definition of CISProjStep the new set of conceptintersection's cis can be any set between the newcis and its anti-chain. Consequently, when projecting a set of concept-intersection's to \(\operatorname{CISproj}(\operatorname{pmax})(c i s)\), the intermediate sequence of concept-intersection's between cis and the final resulting anti-chain is not necessarily a sequence of anti-chains. The situation is illustrated in figure 12.


Figure 12: Computing CISproj(pmax)(cis)

We need some new concepts to handle the situation. In section 4.1 definition 54 the \(I S A_{N}\) relation between anti-chains in \(\mathcal{N}(p)\) was defined. We have \(I S A_{N}\left(a c_{1}, a c_{2}\right)\) iff every \(c i_{1} \in a c_{1}\) is below \(\left(I S A_{P}\right)\) some \(c i_{2} \in a c_{2}\). The \(I S A_{N}\) relation can be used on any set of conceptintersections, but in order to avoid confusion we reserve \(I S A_{N}\) to anti-chains and define a new relation for arbitrary sets:
```

104.0 $\quad I S A_{S}: C I$-set $\times C I$-set $\rightarrow \mathbb{B}$
$.1 \quad I S A_{S}\left(c i s_{1}, c i s_{2}\right) \triangleq \forall c i_{1} \in c i s_{1} \cdot \exists c i_{2} \in c i s_{2} \cdot I S A_{P}\left(c i_{1}, c i_{2}\right)$

```

If \(a c_{1}\) and \(a c_{2}\) are anti-chains then \(I S A_{N}\left(a c_{1}, a c_{2}\right)=I S A_{S}\left(a c_{1}, a c_{2}\right)\). When \(I S A_{S}\) is applied to arbitrary concept-intersection-sets it is still transitive and reflexive, but not antisymmetric. E.g. we have \(I S A_{S}(c i s, A n t i C h(c i s))\) and \(I S A_{S}(A n t i C h(c i s), c i s)\).

For the \(I S A_{S}\)-relation we have the following simple properties:
\[
\begin{array}{rl}
105.0 & I S A_{S}\left(c i s, c i s \cup c i s_{1}\right) \\
.1 & I S A_{S}\left(c i s_{1}, c i s_{2}\right) \wedge I S A_{S}\left(c i s_{3}, c i s_{4}\right) \Rightarrow I S A_{S}\left(c i s_{1} \cup c i s_{3}, c i s_{2} \cup c i s_{4}\right)
\end{array}
\]

In the sequel we also need the following property:
```

106.0 ISA S (CISproj(pmax)(cis), cis1)^ISAS}(cis1, cis
.1 }\quad=>\quadCISproj(pmax)(cis1)=CISproj (pmax)(cis

```

In words, if we have a set cis and its projection into pmax, then any set cis 1 between cis and its projection will have the same projection into pmax as cis. A proof is in B.9.

Finally, in order to understand the projection of a set of concept-intersection's we also need the property below for the projection function CISproj (defined in 26):
107.0
\[
C I S p r o j(p)\left(c i s_{1} \cup \operatorname{cis}_{2}\right)=\operatorname{AntiCh}\left(\operatorname{CISproj}(p)\left(\operatorname{cis}_{1}\right) \cup \operatorname{CISproj}(p)\left(\operatorname{cis}_{2}\right)\right)
\]

Informally, the result of \(C I S p r o j(p)(c i s)\) is an anti-chain (see 26.2), but the union of two antichains is usually not an anti-chain, because a part of one anti-chain may have crept below the
other. Hence we need to take the anti-chain of the union. The property above shows us, that when all elements are in pmax we must remember to take the anti-chain of the final \(\operatorname{InP}\). A proof is in B. 10 .
We can now formulate the following lemma about the previously defined relation CISProjStep:
Lemma Let neqs be the given set of normalized equations.
```

$108.0 \quad \forall$ cis $_{1}: C I$-set, cis $_{2}$: $C I$-set.
CISProjStep $($ neqs $)\left(\right.$ cis $\left._{1}, c i s_{2}\right) \Rightarrow$
$I S A_{S}\left(c i s_{2}, c i s_{1}\right) \wedge c i s_{2} \neq c i s_{1} \wedge$
$\operatorname{CISproj}(\operatorname{pmax})\left(c i s_{1}\right)=\operatorname{CISproj}($ pmax $)\left(\right.$ cis $\left._{2}\right)$

```

Proof: Assume the left hand side of the implication above, i.e.
CISProjectStep (neqs) (cis \({ }_{1}\), cis \(_{2}\) )
According to 103 this is equivalent to
```

109.0 \exists neq \in neqs, $c i \in c i s_{1}, a c: C I$-set .
CIProjStep (neq) (ci,ac) ^
let newcis $=\left(c i s_{1} \backslash\{c i\}\right) \cup a c$ in
AntiCh $($ newcis $) \subseteq$ cis $_{2} \subseteq$ newcis

```

Let neq, \(c i, a c\) be the values that exist in 109.0. We then have
```

110.0 CIProjStep (neq)(ci,ac)^
ci\incis
let newcis =(cis \{ci})\cupac in
AntiCh(newcis)\subseteq\mp@subsup{cis}{2}{}\subseteq\mathrm{ newcis}

```

Using 102 to 110.0 above gives
\(111.0 \quad \operatorname{ISA}_{N}(a c,\{c i\}) \wedge a c \neq\{c i\} \wedge\)
. \(1 \quad I S A_{N}(\operatorname{CISproj}(p \max )(\{c i\}), a c) \wedge\)
proof of \(\mathbf{1 0 8 . 2}\) We first prove
\(I S A_{S}\left(\right.\) newcis, cis \(\left._{1}\right)\)
which (according to 104) is equivalent to
\(\forall c i_{2} \in\) newcis \(\cdot \exists c i_{1} \in c i s_{1} \cdot I S A_{P}\left(c i_{2}, c i_{1}\right)\)
First let \(c i_{2}\) be an arbitrary element in newcis i.e.
\[
c i_{2} \in\left(c i s_{1} \backslash\{c i\}\right) \cup a c
\]

We consider the two case \(c i s_{1} \backslash\{c i\}\) and \(a c\).
\[
\begin{aligned}
& c i_{2} \in\left(c i s_{1} \backslash\{c i\}\right): \text { Then } \\
& \quad c i_{2} \in c i s_{1} \wedge I S A_{P}\left(c i_{2}, c i_{2}\right) \text { so } \exists c i_{1} \in c i s_{1} \cdot I S A_{P}\left(c i_{2}, c i_{1}\right)
\end{aligned}
\]
\(c i_{2} \in a c:\) From 111.0, the definition of \(I S A_{N}\) and \(c i_{2} \in a c\) we have
\(I S A_{P}\left(c i_{2}, c i\right)\) where \(c i \in c i s_{1}\) so \(\exists c i_{1} \in c i s_{1} \cdot I S A_{P}\left(c i_{2}, c i_{1}\right)\)
From the two cases above we may conclude 109 so we have \(I S A_{S}\left(\right.\) newcis, \(\left.c i s_{1}\right)\). Finally from 110.3 and 105 we get \(I S A_{S}\left(c i s_{2}, c i s_{1}\right)\).
proof of \(\mathbf{1 0 8 . 3}\) From the definition of CISproj (26) we have \(I S A_{S}(\operatorname{CISproj}(c i s)\), cis) for any cis. So we also have
112.0 \(\quad \operatorname{ISA}_{S}\left(\operatorname{CISproj}(\operatorname{pmax})\left(c i s_{1} \backslash\{c i\}\right), c i s_{1} \backslash\{c i\}\right)\)

From 111.1 we also have
113.0 \(I S A_{S}(\operatorname{CISproj}(\operatorname{pmax})(\{c i\}), a c)\)

If we now combine these two \(I S A_{S}\) relations using 105 we get
```

114.0 ISA S (CISproj (pmax) (cis1\{ci})\cupCISproj (pmax) ({ci}), (cis⿱
\{ci})\cupac)

```

Next, if we use that \(I S A_{S}\left(\operatorname{AntiCh}(\right.\) cis \()\), cis) and the transitivity of \(I S A_{S}\) to 114 we get
115.0 \(\quad \operatorname{ISA}_{S}\left(\operatorname{AntiCh}\left(\operatorname{CISproj}(\operatorname{pmax})\left(c i s_{1} \backslash\{c i\}\right) \cup \operatorname{CISproj}(\operatorname{pmax})(\{c i\})\right),\left(c i s_{1} \backslash\{c i\}\right) \cup a c\right)\)

Finally, using 107 and 110.2 gives us
116.0 \(\quad I S A_{S}\left(C I S p r o j(p \max )\left(c i s_{1}\right)\right.\), newcis \()\)

Now we want the property above not just for cis \(_{2}=\) newcis but for all cis \(_{2}\) ranging between newcis and AntiCh(newcis). From 27 we get
```

117.0 \forall cis . AntiCh(newcis)\subseteqcis\subseteq newcis }
.1 CISproj(pmax)(cis)=CISproj (pmax)(newcis)

```

This together with 110.3 let us conclude that
```

118.0 ISA S (CISproj(pmax)(cis)

```

Finally, from 118 above, 108.2 and 106 we get 108.3.

\subsection*{7.5 Projection Sequence}

We define a projection sequence for a given concept-intersection-set ciso as a finite sequence of concept-intersections
\(119.0 \quad\) cis \(_{0}, c i s_{1}, c i s_{2}, \ldots\), cis \(_{n} \quad\) such that
. 1 CISProjStep \((n e q s)\left(\right.\) cis \(_{j}\), cis \(\left._{j+1}\right)\) for \(0 \leq j \leq n-1 \wedge\)
. 2 IsAntiChain \(\left(\right.\) cis \(\left._{n}\right) \wedge\)
\(.3 \neg \exists\) cis : CI-set • CISProjStep ( cis \(_{n}\), cis)
A projection sequence ends with a concept-intersection-set cis \(_{n}\) which is an anti-chain and which can not be projected further.

\section*{Projection Theorem}
```

120.0 Every cis $_{0}: C I$-set has a projection sequence
. $1 \quad$ cis $s_{0}, c i s_{1}, c i s_{2}, \ldots, c i s_{n}$ and
$.2 \quad c i s_{n}=\operatorname{CISproj}($ pmax $)\left(c i s_{0}\right)$

```
proof of 120.2 We first prove by induction that
```

121.0 ISAS}(ci\mp@subsup{s}{n}{},ci\mp@subsup{s}{0}{})\wedge CISproj (pmax)(ciso)=CISproj (pmax)(cis⿱n

```

The base case
```

122.0 ISAS (ciso, ciso) ^CISproj (pmax) (ciso) = CISproj (pmax) (ciso)

```
is obviously true. For the inductive case we assume
\[
\text { 123.0 } I S A_{S}\left(c i s_{j}, c i s_{0}\right) \wedge \operatorname{CISproj}(\text { pmax })\left(c i s_{0}\right)=\operatorname{CISproj}(\text { pmax })\left(c i s_{j}\right)
\]

From the definition of a projection sequence (119) we have (119.1)
124.0 CISProjStep(neqs)(cisj, cis \(_{j+1}\) )

Now, using the lemma about CISProjStep (108) we get
```

125.0 $\quad I S A_{S}\left(c i s_{j+1}, c i s_{j}\right) \wedge$
. $1 \quad \operatorname{CISproj}($ pmax $)\left(c i s_{j}\right)=\operatorname{CISproj}($ pmax $)\left(c i s_{j+1}\right)$

```

Using this and the transitivity of \(I S A_{S}\) to the assumption in 123 gives
\(126.0 \quad \operatorname{ISA} A_{S}\left(c i s_{j+1}, c i s_{0}\right) \wedge \operatorname{CISproj}(\) pmax \()\left(c i s_{0}\right)=\operatorname{CISproj}(p \max )\left(\right.\) cis \(\left._{j+1}\right)\)
So combining the base case and the inductive case we have proved 121.
To prove 120.2 we know that \(\operatorname{cis}_{n}\) in 120.1 according to the definition of a projection sequence is an anti-chain and cannot be projected further (119.2-3). Using this to the definition of CISproj (26) gives that
127.0 \(\quad \operatorname{CISproj}(\) pmax \()\left(\right.\) cis \(\left._{n}\right)=c i s_{n}\)
which combined with 121 gives 120.2 .
proof of 120.0-1 Every cis \(_{j}\) in the projection sequence can be given a size, namely the sum of size of each \(c i \in c i s_{j}\), where the size of a concept-intersection \(c i\) is the size of its set of basic concepts. That size will grow in each step of the projection sequence and thus we will never during the projection return to a previous situation.

\subsection*{7.6 Implementation of \(c\) Proj}

We are now ready to look for an implementation of the function \(c \operatorname{Proj}\) as defined in 94:
```

128.0 cProj(neqs)(cis)=CISproj(pmax)(cis)

```

From the projection theorem (120) we can see that \(c \operatorname{Proj}(n e q s)(c i s)\) in some way must make a concrete projection sequence for cis and return the final \(c i s_{n}\) as result. Here the most difficult task is to choose in the current concept-intersection set one of the concept-intersection's that is rejected by a normalized equation. The choice will result in different projection sequence constructions (breadth first/depth first). Now we will just specify the task for such a function:
```

129.0 ChooseCiNeq (neqs : NEq-set)(cis:CI-set) answer: CAnswer
post $(\exists$ neq \in neqs, ci \in cis .
InEqRej $(n e q)(c i) \wedge$
let $m k-N E q(-, m)=n e q$ in answer $=m k-\operatorname{Rej}(c i, m))$
$\vee(\neg \exists$ neq \in neqs, $c i \in$ cis $\cdot \operatorname{InEqRej}(n e q)(c i) \wedge$ answer $=\operatorname{Inp})$

```
where
types
130.0 CAnswer \(=\) Rej \(\mid\) InP;
131.0 Rej:: \(C I \times C I\)-set

Having such a function available makes it easy to define the \(c\) Proj-function:
```

$132.0 \quad c$ Proj : $N E q$-set $\rightarrow C I$-set $\rightarrow C I$-set
$c \operatorname{Proj}(n e q s)(c i s) \triangle$
cases ChooseCiNeq(neqs)(cis) :
$m k-\operatorname{Rej}(c i, m) \rightarrow c \operatorname{Proj}(n e q s)\left(c i s \backslash\{c i\} \cup \operatorname{Meet}_{N P c}(m,\{c i\})\right)$,
InP \rightarrow AntiCh(cis)
end

```

Notice that the sequence of argument concept-intersection's for \(c P r o j\) combined with the final anti-chain result makes up a projection sequence.

An Implementation of \(c E v a l N\) and \(c T M d i s j P O\). Given the \(c P r o j\)-function defined above we are now able to implement \(E v a l_{N}(\) pmax \()(t)\) using projection as defined in 95 .
```

133.0 cEvalN : C-set }->NEq\mathrm{ -set }->\mathrm{ Term }->CI\mathrm{ -set
.1 cEvalN (cset)(neqs)(t) \trianglecProj(neqs)(Eval NPc}(cset)(t)

```

Finally, from the definition of TMdisjPO (84) we can define the function that computes the most disjoint lattice with respect to a given set of inserted terms :
```

134.0 cTMdisjPO:Cset }->\mathrm{ Eq-set }->\mathrm{ Term-set }->P
cTMdisjPO (cset)(eqs)(insterms) \triangle
let neqs=EvalEqs(cset)(eqs) in
U{EvalN(cset)(neqs)(t)|t\in insterms}

```

\section*{8 Introducing Attributes}

We now consider the full concept algebra including functional binary relations in the form of attributes (as described in [3] ), so we now assume available a set of attributes aset. Besides the axioms for distributive lattices we now also have the axioms below for each attribute \(\alpha \in\) aset:
\begin{tabular}{lll} 
135.0 & Strictness & \(\alpha(\perp)=\perp\) \\
& Distribution of + & \(\alpha(X+Y)=\alpha(X)+\alpha(Y)\) \\
& Distribution of \(*\) & \(\alpha(X * Y)=\alpha(X) * \alpha(Y)\)
\end{tabular}

Notice the terminology: the concept \(\alpha(X)\) is called the \(\alpha\)-attribution of the concept \(X\). From the rules above it is easy to derive the monotonicity rule below:

Monotonicity
\[
X \leq Y \Rightarrow \alpha(X) \leq \alpha(Y)
\]

\subsection*{8.1 Terms and Equations}

The syntax for general (ground) terms (Term) which may have TOP as a subterm are now:
```

types

```
```

 BasicTerm =C | тор | воттом;
    ```
```

137.0 \quad Term $=$ Join \mid Meet \mid Attr \mid BasicTerm;
138.0 Join:: Term \times Term - Join-term ;
139.0 Meet:: Term \times Term - Meet-term ;
140.0 Attr :: $A \times$ Term - Attribute-term

```

These general terms will only be used when making queries to the lattice database. When constructing the lattice database we will only allow terms not containing the top-term, so equations and inserted terms must be terms without the Top-term. Such restricted terms are defined by the type Termr:
```

141.0 BTerms: Term \rightarrow BasicTerm-set
BTerms (t) \triangle
cases t :
$m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow B \operatorname{Terms}\left(t_{1}\right) \cup B \operatorname{Terms}\left(t_{2}\right)$,
$m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow B \operatorname{Terms}\left(t_{1}\right) \cup B \operatorname{Terms}\left(t_{2}\right)$,
$m k-\operatorname{Attr}(\alpha, t) \rightarrow B \operatorname{Terms}(t)$,
$b t \rightarrow\{b t\}$
end
types
142.0 \quad Termr $=$ Term
inv $\operatorname{tr} \triangleq$ тоР $\notin B T e r m s(t r) ;$
143.0 Eq:: Termr \times Termr —term-equation

```

When writing terms in examples we use as usual the two infix operators + and \(*\) to represent Join and Meet respectively. The attribution \(m k-\operatorname{Attr}(\alpha, t)\) is written as \(\alpha(t)\). When we evaluate the terms in a given algebra we restrict term-constants \(c: C\) to be in a given set of concepts cset and similar attributes \(\alpha: A\) to be in a given set of attributes aset. But before we can evaluate terms we must first consider how attribution concepts influence the concept lattice and with that the lattice algebra in which to evaluate terms.

\subsection*{8.2 Concept Intersections with Attributions}

In order to handle attributes we must redefine the type of concept intersections so the new attribution concepts are included. If \(\alpha\) is an attribute and \(c: C\) a basic concept then we may also need the attribution \(\alpha(c)\) of this concept as a new basic concept. But how do we represent the attribution of concept-intersections, i.e. if \(\left[c_{1}, c_{2}, \ldots, c_{n}\right]\) is a concept-intersection, how do we represent the attribution \(\alpha\left(\left\{\left[c_{1}, c_{2}, \ldots, c_{n}\right]\right\}\right)\) ? The attribution axiom concerning distributivity of \(*\) suggests that \(\left\{\left[\alpha\left(c_{1}\right), \alpha\left(c_{2}\right), \ldots, \alpha\left(c_{n}\right)\right]\right\}\) would be a valid representation. Hence, in the sequel we let the basic concepts used to construct concept-intersections include the given set of named concepts and every possible attribution of these named concepts. Of course, we must later verify that this representation actually makes it possible to construct an algebra satisfying the attribution axioms.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{types} \\
\hline 144.0 & \(C=\) token - The type of named concepts / concept constants; \\
\hline 145.0 & \(A=\) token \(\quad\) - The type of attributes, \(\alpha, \beta, \ldots: A\); \\
\hline 146.0 & \(B=C \mid A t \quad\) - The type of basic concepts, \(a, b, \alpha(a), \alpha(\beta(a)), \ldots: B ;\) \\
\hline 147.0 & At:: \(A \times B\) - The type of attributions, \(\alpha(a), \alpha(\beta(a)), \ldots: A t\); \\
\hline 148.0 & Bset \(=B\)-set \\
\hline . 1 & \(\operatorname{inv}(b s e t) \triangleq b s e t \neq\{ \} ;\) \\
\hline 149.0 & \(C I:\) Bset - The type of concept intersections ; \\
\hline 150.0 & \(P O=C I-\) set \\
\hline
\end{tabular}

A basic concept \((B)\) is a named concept \((C)\) or an attribution \((A t)\). We can now define the ordering relation \(I S A_{P}\) between concept-intersections exactly as in 6 :
\[
\begin{array}{rl}
151.0 & I S A_{P}: C I \times C I \rightarrow \mathbb{B} \\
.1 & I S A_{P}\left(m k-C I\left(b s_{1}\right), m k-C I\left(b s_{2}\right)\right) \triangleq b s_{2} \subseteq b s_{1}
\end{array}
\]

Because there is an infinite number of possible attributions there will also be an infinite number of basic concepts. Consequently, the number of possible concept-intersections will also be infinite. In order to be able to continue using the approach based on Birkhoff's representation theorem, the considered lattice \(\mathcal{O}(p)\) must be finite and consequently also the partial order \(p\) from which the lattice is constructed. Therefore, in the sequel, when we construct a finite partial order \(p\) for a concept algebra satisfying a given set of equations, we do not start from the infinite powerset partial order. Instead we assume that a finite set of basic concepts is provided as part of a lattice specification by specifying both a set of equations and a set of inserted terms:
```

 types
    ```
152.0 LatSpec:: Eq-set \(\times\) Termr-set

The set of named concepts, attributes and the finite set of basic concepts are now extracted from the terms in a lattice specification in the following way:
\[
\begin{aligned}
153.0 & \text { SpecTerms }: \text { LatSpec } \rightarrow \text { Termr-set } \\
.1 & \text { SpecTerms }(m k \text {-LatSpec }(\text { eqs }, \text { terms })) \triangleq \\
.2 & \left\{t \mid m k-E q\left(t_{1}, t_{2}\right) \in \text { eqs } \cdot t \in\left\{t_{1}, t_{2}\right\}\right\} \cup \text { terms }
\end{aligned}
\]
```

154.0 TBset : Term $\rightarrow B$-set
TBset $(t) \triangle$
cases t :
$m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{TBset}\left(t_{1}\right) \cup \operatorname{TBset}\left(t_{2}\right)$,
$m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{TBset}\left(t_{1}\right) \cup \operatorname{TBset}\left(t_{2}\right)$,
$m k-A t t r(\alpha, t) \rightarrow\{m k-A t(a, b) \mid b \in \operatorname{TBset}(t)\} \cup \operatorname{TBset}(t)$,
$(\mathrm{TOP}) \rightarrow\}$,
(BOTTOM) $\rightarrow\}$,
$c \rightarrow\{c\}$
end
extrLatSpec : LatSpec $\rightarrow C$-set $\times A$-set $\times B$-set
extrLatSpec $($ spec $) \triangle$
let allTerms $=\operatorname{SpecTerms}($ spec $)$ in
let bset $=\bigcup\{\operatorname{TBset}(t) \mid t \in$ allTerms $\}$ in
let concepts $=\{c \mid c \in$ bset $\cdot i s-C(c)\}$ in
let attributes $=\{a \mid m k-A t(a,-) \in$ bset $\}$ in
$m k$-(concepts, attributes, bset)

```

Example Given the specification
```

equations
a(a(y)+z)= y * b (a(x))
terms a(x),b(x)

```

Applying extrLatSpec to the specification above yields
```

concepts $=\{x, y, z\}$
attributes $=\{a, b\}$
bset $=\{a(x), b(x), x, y, z, a(y), a(a(y)), a(z), b(a(x))\}$

```

Given a finite set bset : Bset of basic concepts (extracted from a specification), we can construct the powerset partial order \(\mathcal{P}(b s e t)\) with \(I S A_{P}\) as the ordering relation. The powerset is constructed exactly as in 5:
```

$156.0 \quad \mathcal{P}:$ Bset $\rightarrow P O$
. $1 \quad \mathcal{P}(b s) \triangleq\left\{m k-C I\left(b s^{\prime}\right) \mid b s^{\prime}: B s e t \cdot b s^{\prime} \subseteq b s\right\}$

```

In the sequel any subset of \(\mathcal{P}(\) bset \()\) is considered a partial order with the same induced ordering \(I S A_{P}\).

Remark. It is essential to understand the consequence of this finite attribution approach. If an attribution is not in the set of basic concepts it actually means that the attribution collapses to bottom in the lattice. For instance, consider the specification below:
```

equations
a(x)>= x
terms a(a(x))

```
which produces the bset \(=\{x, a(x), a(a(x))\}\). Consequently the terms \(a(a(a(x))), a(a(a(a(x)))), \ldots\) all evaluate to bottom. Now, according to the specification we have \(a(x) \geq x\) and because of the monotonicity rule for attribution we also have \(a(a(x)) \geq a(x), a(a(a(x))) \geq a(a(x))\), etc. As \(a(a(a(x)))\) is bottom and \(a(a(x)), a(x)\) and \(x\) all are below they also become bottom.

As another example consider the situation where \(\{x, y, a(x)\} \subseteq\) bset but \(a(y) \notin\) bset and assume that \(y>x\) according to the equations (may be in some very indirect way). Then according to the monotonicity rule for attribution we also have \(a(y)>a(x)\) and because \(a(y)\) is bottom we also have that \(a(x)\) is bottom. This was probably not the intention when \(a(x)\) was mentioned among the terms.

We may conclude that it may be difficult for a user to specify a correct bset. Later (in section 15) we will show how to construct the so-called most disjoint concept algebra without having the bset explicitly available.

\subsection*{8.3 Auxiliary Functions}

We can easily extract the concepts and attributes used in a set of concept-intersections:
```

157.0 UsedAttrsInB: $B \rightarrow A$-set
UsedAttrsInB $(b) \triangle$
cases b :
$m k-A t(a, b 1) \rightarrow\{a\} \cup U s e d A t t r s I n B(b 1)$,
$-\rightarrow\{ \}$
end
158.0 UsedAttrsInCIS: $C I$-set $\rightarrow A$-set
UsedAttrsInCIS $(c i s) \triangleq \bigcup\{U s e d A t t r s I n B(b) \mid m k-C I(b s e t) \in c i s, b \in b s e t\}$
UsedConcInB : B $\rightarrow C$
UsedConcInB $(b) \triangle$
cases b :
$m k-A t(-, b 1) \rightarrow$ UsedConcInB(b1),
$c \rightarrow c$
end
160.0 UsedConceptsInCIS : CI-set $\rightarrow C$-set
.1 UsedConceptsInCIS $($ cis $) \triangleq\{U s e d C o n c e p t I n B(b) \mid m k-C I(b s e t) \in c i s, b \in b s e t\}$

```

A partial order \(p\) conforms with a set of concepts and attributes if it only uses concepts and attributes from these sets:
161.0 \(C\) onforms: \(C\)-set \(\times A\)-set \(\rightarrow P O \rightarrow \mathbb{B}\)
. \(1 \quad \operatorname{Conforms}(\) cset, aset \()(p) \triangleq\)
\(.2 \quad(\) UsedConceptsInCIS \((p) \subseteq \operatorname{cset}) \wedge(\operatorname{UsedAttrsInCIS}(p) \subseteq a s e t)\)
We will also need the top level attributes in a set of concept-intersections:
```

162.0 AttrsInCI: CI $\rightarrow A$-set
$\operatorname{AttrsInCI}(m k-C I(b s)) \triangleq\{a \mid m k-A t(a,-) \in b s\}$
163.0 AttrsInCIS : $C I$-set $\rightarrow A$-set
AttrsInCIS $(c i s) \triangleq \bigcup\{\operatorname{AttrsInCI}(c i) \mid c i \in c i s\}$

```

\section*{9 The Lattice Algebra with Attribution}

Assume cset is a set of concepts, aset a set of attributes. Furthermore assume bset is a finite set of basic concepts and \(p \subseteq \mathcal{P}(\) bset \()\) is a finite partial order of concept-intersections such that Conforms (cset, aset) \((p)\). The lattice \(\mathcal{O}(p)\) can now be viewed as the (one sorted) algebra
```

164.0 \mathcal{CA}(\mathrm{ cset, aset, p)=}
.1 < \mathcal{O}(p);\mp@subsup{Join}{C}{},\mp@subsup{\mathrm{ Meet }}{C}{},\mp@subsup{A}{C}{}(p)(\mathrm{ aset), C}C

```

The components in the tuple above are as follows: \(\mathcal{O}(p)\) is the carrier set and \(J o i n_{C}\) and Meet \(_{C}\) are defined similar to the two binary operators \(J o i n_{L}\) and Meet \(_{L}\) (defined in 30 and 31):
```

165.0 $\quad J o i n_{C}: C I$-set $\times C I$-set $\rightarrow C I$-set
$.1 \quad \operatorname{Join}_{C}\left(c i s_{1}, c i s_{2}\right) \triangleq c i s_{1} \cup c i s_{2}$
166.0 \quad Meet $_{C}: C I$-set $\times C I$-set $\rightarrow C I$-set
. $1 \quad \operatorname{Meet}_{C}\left(c i s_{1}, c i s_{2}\right) \triangleq \operatorname{cis}_{1} \cap$ cis $_{2}$

```

We also have
```

167.0 ISA C}:CI-set \times CI-set ->\mathbb{B
.1 ISA C (cis},ci\mp@subsup{s}{2}{})\triangleci\mp@subsup{s}{1}{}\subseteqci\mp@subsup{s}{2}{

```

To the set of named concepts cset there is a set of constants/values in \(\mathcal{O}(p)\) :
\[
C_{C}(p)(c s e t)=\left\{c \operatorname{Value}_{C}(p)(c) \mid c \in \text { cset }\right\}
\]
where \(c\) Value \(_{C}\) is similar to the function \(c\) Value \(_{L}\) defined in 36:
\[
\begin{array}{rl}
168.0 & c \text { Value }_{C}: P O \rightarrow C \rightarrow C I \text {-set } \\
.1 & c \text { Value }_{C}(p)(c) \triangle \operatorname{DownSet} C(p)(\{m k-C I(\{c\})\})
\end{array}
\]

The value of the two constants \(\mathrm{TOP}_{C}\) and \(\mathrm{BOTTOM}_{C}\) is defined to \(p\) respectively \{\}. Corresponding to the set of attributes aset we now have a set of unary operators
\[
A_{C}(p)(\text { aset })=\left\{\text { Attribution }_{C A}(p)(\alpha) \mid \alpha \in \text { aset }\right\}
\]

So for each attribute \(\alpha\) we now have a unary operator \(\operatorname{Attribution}_{C A}(p)(\alpha)\) as defined below:
\[
\begin{aligned}
169.0 & \text { Attribution }_{C A}: P O \rightarrow A \rightarrow C I \text {-set } \rightarrow C I \text {-set } \\
.1 & \text { Attribution }_{C A}(p)(\alpha)(c i s) \triangleq \operatorname{DownSet} C(p)(\{\operatorname{attr} C I(\alpha)(c i) \mid c i \in c i s\})
\end{aligned}
\]
```

170.0 attrCI : $A \rightarrow C I \rightarrow C I$
. $1 \quad \operatorname{attr} C I(\alpha)(m k-C I(b s)) \triangleq m k-C I(\{m k-A t(\alpha, b) \mid b \in b s\})$

```

Notice that DownSetC (the cut version of DownSet) is used because attrCI \((\alpha)(c i)\) may produce a concept-intersection \(c i^{\prime}\) which is not in \(p\). This may happen for two reasons: 1) the concept-intersection \(c i^{\prime}\) contains a basic concept which is not in bset so \(c i^{\prime}\) cannot be in \(\mathcal{P}\) (bset) or 2 ) the considered concept-intersection \(c i^{\prime} \in \mathcal{P}\) (bset) but is not in \(p \subseteq \mathcal{P}\) (bset). A concept-intersection not in \(p\) is simply cut away.

Later, when making proofs about Attribution \(_{C A}\) it will be convenient to have the following function and equality available
```

$171.0 \quad$ atCIs $: A \rightarrow C I$-set $\rightarrow C I$-set
$.1 \quad a t C I s(\alpha)(c i s) \triangleq\{\operatorname{attr} C I(\alpha)(c i) \mid c i \in c i s\}$

```

Applying this to the definition of Attribution \(_{C A}\) (169) gives the equality below
```

172.0 Attribution CA (p)(\alpha)(cis) = DownSetC (p)(atCIs (\alpha)(cis))

```

Attribution Properties For Attribution \(_{C A}\) we have a number of useful properties. Let \(p \subseteq \mathcal{P}\) (bset) be an arbitrary subset of \(\mathcal{P}\) (bset) then we have
```

173.0 Attribution $_{C A}(p)(\alpha)($ cis $) \subseteq p$
cis $_{1} \subseteq$ cis $_{2} \Rightarrow$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left._{1}\right) \subseteq$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left._{2}\right)$
Attribution $_{C A}(p \backslash d)(\alpha)($ cis $)=$ Attribution $_{C A}(p)(\alpha)($ cis $) \backslash d$
$p_{1} \subseteq p_{2} \Rightarrow$ Attribution $_{C A}\left(p_{1}\right)(\alpha)($ cis $)=$ Attribution $_{C A}\left(p_{2}\right)(\alpha)($ cis $) \cap p_{1}$
Attribution $_{C A}\left(p_{1}\right)(\alpha)($ cis $) \cup$ Attribution $_{C A}\left(p_{2}\right)(\alpha)($ cis $)=$ Attribution $_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)($ cis $)$

```

The properties in 173.0-173.3 can easily be seen from definitions 169 and 170 and the downset properties 14 and 15. For example, to prove 173.0 notice that Attribution \(_{C A}(p)(\alpha)(\) cis \()\) is a downset \(\operatorname{Downset}(p)(\ldots)\), and \(\operatorname{Downset}(p)(\ldots) \subseteq p\). The properties in 173.2 and 173.3 are very similar \(\left(p \backslash d \sim p_{1}, p \sim p_{2}\right)\). A proof of 173.4 is shown in section B.5.

Concerning the above defined algebra \(\mathcal{C} \mathcal{A}(\) cset, aset, \(p\) ) we know that it is a distributive lattice for the same reasons as for the algebra \(\mathcal{L} \mathcal{A}(c s e t, p)\) defined in 35. But it remains to be shown that the new attribute operations work correctly. First of all we can see directly from the definition of Attribution \(_{C A}\) (169) that \(\alpha(\) cis \()\) is a downset and hence a value in \(\mathcal{O}(p)\). Next we must consider the attribute axioms.

\subsection*{9.1 Attribute Axioms.}

For the algebra \(\mathcal{C A}(\) cset, aset, \(p)\) to be a concept algebra it must fulfill the axioms for attributes as defined in 135. But, as we will see below, if we do not make any further assumptions, then only the attribute axioms concerning strictness and distribution of join is fulfilled.
Strictness:
\[
\begin{aligned}
& \alpha(\perp)=\operatorname{Attribution}_{C A}(p)(\alpha)(\{ \})=\operatorname{DownSet}(p)(\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in\{ \}\}) \\
& =\operatorname{DownSet}(p)(\{ \})=\{ \}=\perp
\end{aligned}
\]

Distribution of Join:
\[
\begin{aligned}
& \alpha\left(\operatorname{Join}_{L}\left(\text { cis }_{1}, c i s_{2}\right)\right) \\
& =\operatorname{Attribution}_{C A}(p)(\alpha)\left(\operatorname{Join}_{L}\left(\text { cis }_{1}, \text { cis }_{2}\right)\right) \\
& =\text { Attribution }_{C A}(p)(\alpha)\left(\text { cis }_{1} \cup \text { cis }_{2}\right) \\
& =\operatorname{DownSet} C(p)\left(\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in c i s_{1} \cup \operatorname{cis}_{2}\right\}\right) \\
& =\operatorname{DownSet} C(p)\left(\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in c i s_{1}\right\} \cup\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in c i s_{2}\right\}\right) \\
& \text { from } 12 \\
& =\operatorname{DownSetC}(p)\left(\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in c i s_{1}\right\}\right) \cup \\
& \text { DownSet } C(p)\left(\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in c i s_{2}\right\}\right) \\
& =\text { Attribution }_{C A}(p)(\alpha)\left(\text { cis }_{1}\right) \cup \text { Attribution }_{C A}(p)(\alpha)\left(\text { cis }_{2}\right) \\
& =\operatorname{Join}_{L}\left(\text { Attribution }_{C A}(p)(\alpha)\left(\text { cis }_{1}\right), \text { Attribution }_{C A}(p)(\alpha)\left(\text { cis }_{2}\right)\right)
\end{aligned}
\]

The proof above uses the downset property (12)
\[
\operatorname{DownSet}(p)\left(c i s_{1} \cup \operatorname{cis}_{2}\right)=\operatorname{DownSet}(p)\left(\operatorname{cis}_{1}\right) \cup \operatorname{DownSet}(p)\left(c i s_{2}\right)
\]

To prove that the axiom for distribution of meet is satisfied would be easy if we had a similar downset property for intersection. But we don't. As an example consider the partial order to the right in figure 1. Let \(\operatorname{cis}_{1}=\{a\}\) and \(\operatorname{cis}_{2}=\{c\}\). Then \(\operatorname{DownSet}(p)\left(\operatorname{cis}_{1} \cap \operatorname{cis}_{2}\right)=\{ \}\), but \(\operatorname{DownSet}(p)\left(c i s_{1}\right) \cap \operatorname{DownSet}(p)\left(c i s_{2}\right)=\{a, a b, a c, a b c\} \cap\{c, a c, b c, a b c\}=\{a c, a b c\}\). Also for overlapping sets like \(c i s_{1}=\{a, b\}\) and \(c i s_{2}=\{b, c\}\) we have the same problem.

One can easily make examples which shows that the algebra \(\mathcal{C A}(\) cset, aset, \(p\) ) does not fulfil the attribution axiom concerning distribution of meet. Hence, \(\mathcal{C A}(\) cset, aset, \(p\) ) is in general not a concept algebra. In sections 10 and 11 it is shown, that \(\mathcal{C} \mathcal{A}(\) cset, aset, \(p\) ) is a concept algebra if \(p\) satisfies certain properties.

\subsection*{9.2 The Value of Terms in the Algebra \(\mathcal{C A}(c s e t\), aset, \(p)\).}

Now, given the algebra \(\mathcal{C} \mathcal{A}(\) cset, aset, \(p)\), we define the value of terms in this algebra, i.e. the value of a term is a set of concept-intersections from \(p\) :
```

174.0 Eval $_{C A}: P O \rightarrow$ Term $\rightarrow C I$-set
$\operatorname{Eval}_{C A}(p)(t) \triangleq$
cases t :
$m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{C}\left(\operatorname{Eval}_{C A}(p)\left(t_{1}\right), \operatorname{Eval}_{C A}(p)\left(t_{2}\right)\right)$,
$m k-M e e t\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{C}\left(\operatorname{Eval}_{C A}(p)\left(t_{1}\right), \operatorname{Eval}_{C A}(p)\left(t_{2}\right)\right)$,
$m k-\operatorname{Attr}(\alpha, t) \rightarrow$ Attribution $_{C A}(p)(\alpha)\left(\operatorname{Eval}_{C A}(p)(t)\right)$,
$\left(\mathrm{TOP}_{C}\right) \rightarrow p$,
$\left(\right.$ BOTTOM $\left._{C}\right) \rightarrow\}$,
$c \rightarrow c$ Value $_{C}(p)(c)$
end

```

Before attribution was introduced there were simple relations between the partial order \(p\) and the result of term evaluation as shown in section 4, def. 42. These properties showed a kind of "linear" relation between the partial order and the resulting term-value. After attribution has been introduced this linearity has disappeared and we are now left with the properties below:

Term Value Properties: Let bset be a set of basic concepts (extracted from a lattice specification). Furthermore, let \(t\) be a term, \(p, p_{1}\) and \(p_{2}\) subsets of \(\mathcal{P}(b s e t)\) and cis \(\in p\) a set of concept-intersections then
\[
\begin{aligned}
175.0 & \operatorname{Eval}_{C A}(p)(t) \subseteq p \\
.1 & p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{C A}\left(p_{1}\right)(t) \subseteq \operatorname{Eval}_{C A}\left(p_{2}\right)(t) \\
.2 & \operatorname{Eval}_{C A}\left(p \backslash \operatorname{cis}^{\prime}\right)(t) \subseteq \operatorname{Eval}_{C A}(p)(t) \backslash \operatorname{cis}
\end{aligned}
\]

The properties above can be shown by structural induction on the term-structure (and proofs for 175.0 and 175.1 may be found in section B. 7 and B. 8 respectively). However, property 175.2 may also easily be proved from 175.0 and 175.1 as shown below:
\[
\begin{aligned}
& \operatorname{Eval}_{C A}(p \backslash c i s)(t) \subseteq p \backslash c i s \quad \text { from } 175.0 \\
& \operatorname{Eval}_{C A}(p \backslash c i s)(t) \subseteq \operatorname{Eval}_{C A}(p)(t) \quad \text { from } 175.1
\end{aligned}
\]

So \(E v a l_{C A}(p \backslash c i s)(t)\) does not contain values from cis and is a subset of \(E v a l_{C A}(p)(t)\). Put together we get 175.2 above.

Notice that the equations \(42.1\left(\operatorname{Eval}_{C A}(p \backslash c i s)(t)=\operatorname{Eval}_{C A}(p)(t) \backslash c i s\right)\) and 42.2 are no longer valid, but 42.1 has been replaced by the inclusion 175.2. The equation 42.1 was the foundation for the two approaches shown in section 5 for finding lattices satisfying a set of equations.


Figure 13: A partial order \(p_{0}\) with attribution and the corresponding lattice \(\mathcal{O}\left(p_{0}\right)\)
Example Let bset \(=\{x, y, a(x)\}\) be a set of basic concepts. Figure 13 shows a partial order \(p_{0} \subseteq \mathcal{P}(\) bset \()\) and the corresponding lattice of downsets. In the lattice, attribution is shown as dashed arrows: there is an arrow from cis \(_{1}\) to cis \(_{2}\) iff cis \(_{2}=\operatorname{Attribution}_{C A}\left(p_{0}\right)(a)\left(c i s_{1}\right)\). As an example of attribution consider the \(a\)-attribution of \(\{[x],[x, y, a(x)]\}\) :
\[
\begin{aligned}
& \text { Attribution }_{C A}\left(p_{0}\right)(a)(\{[x],[x, y, a(x)]\}) \\
& =\operatorname{DownSetC}^{\left(p_{0}\right)(\{[a(x)],[a(x), a(y), a(a(x))]\})=\{[y, a(x)],[x, y, a(x)]\}}
\end{aligned}
\]

Notice that the concept-intersection \([a(x), a(y), a(a(x))]\) is cut away when making the downset. Furthermore notice that \(\operatorname{DownSet} C\left(p_{0}\right)(\{[a(x)]\})\) does not contain \([a(x)]\) itself.

The table below shows the values of the terms \(x, a(x)\) and \(y\) in \(p_{0}\) and several subsets of \(p_{0}\). The fields in the last three columns shows the set of concept-intersections constituting the value of a term. An empty field represents the empty set. A concept-intersection \(m k-C I\left(\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}\right)\) is shown as \(\left[b_{1}, b_{2}, \ldots, b_{n}\right]\).
\begin{tabular}{c|c|c|c|c}
\(p\) & partial order & \(\operatorname{Eval}_{C A}(p)(x)\) & \(\operatorname{Eval}_{C A}(p)(a(x))\) & \(\operatorname{Eval}_{C A}(y)\) \\
\hline\(p_{0}\) & {\([x],[y, a(x)],[x, y, a(x)]\)} & {\([x],[x, y, a(x)]\)} & {\([y, a(x)],[x, y, a(x)]\)} & {\([y, a(x)],[x, y, a(x)]\)} \\
\hline\(p_{1}\) & {\([x],[x, y, a(x)]\)} & {\([x],[x, y, a(x)]\)} & {\([x, y, a(x)]\)} & {\([x, y, a(x)]\)} \\
\hline\(p_{2}\) & {\([x],[y, a(x)]\)} & {\([x]\)} & {\([y, a(x)]\)} & {\([y, a(x)]\)} \\
\hline\(p_{3}\) & {\([y, a(x)],[x, y, a(x)]\)} & {\([x, y, a(x)]\)} & & {\([y, a(x)],[x, y, a(x)]\)} \\
\hline\(p_{4}\) & {\([x]\)} & {\([x]\)} & & \\
\hline\(p_{5}\) & {\([y, a(x)]\)} & & & {\([y, a(x)]\)} \\
\hline
\end{tabular}

Consider the evaluation of the terms \(x, a(x)\) and \(y\) in \(p_{0}\). For \(x\) we get
\[
\begin{aligned}
& \text { Eval }_{C A}\left(p_{0}\right)(x)=c \text { Value }_{C}\left(p_{0}\right)(x) \\
& =\operatorname{DownSet} C\left(p_{0}\right)(\{m k-C I(\{x\})\})=\{[x],[x, y, a(x)]\}
\end{aligned}
\]

For \(a(x)\) we have
\[
\begin{aligned}
& \text { Eval }_{C A}\left(p_{0}\right)(a(x))=\text { Attribution }_{C A}\left(p_{0}\right)(a)\left(\text { Eval }_{C A}\left(p_{0}\right)(x)\right) \\
& =\text { Attribution }_{C A}\left(p_{0}\right)(a)(\{[x],[x, y, a(x)]\})=\{[y, a(x)],[x, y, a(x)]\}
\end{aligned}
\]

We can see that \(y\) and \(a(x)\) evaluate to the same value, so the partial order \(p_{0}\) satisfies the equation \(y=a(x)\). From the table we can see that the two subset partial orders \(p_{1}\) and \(p_{2}\) also satisfies the equation \(y=a(x)\). Notice however that the subset partial order \(p_{3}\) does not satisfy the equation \(y=a(x)\) ! Consequently, in the lattice algebra with attribution we no longer have a property corresponding to 57 for lattice algebras. That is, if we have a partial order which is a solution for a set of equations, we can no longer take for granted that all subset partial orders also are solutions.

Finally, \(\operatorname{Eval}_{C A}\left(p_{4}\right)(a(x))=\{ \}\) and \(\operatorname{Eval}_{C A}\left(p_{5}\right)(a(x))=\{ \}\), but
\[
\operatorname{Eval}_{C A}\left(p_{4} \cup p_{5}\right)(a(x))=\operatorname{Eval}_{l}\left(p_{1}\right)(a(x))=\{[x],[x, y, a(x)]\}
\]

Consequently, in the considered algebra property 42.3 is no longer valid.

\section*{10 Attribute Consistent Partial Orders}

Let bset be a set of basic concepts. Until now we have considered all subsets \(p \subseteq \mathcal{P}\) (bset) as equal candidates from which to construct the lattices \(\mathcal{O}(p)\). However, after attribution has been introduced it turns out that if we restrict the subsets \(p \subseteq \mathcal{P}\) (bset) to what we call attribute consistent partial orders, we get a lot of useful properties: The axiom concerning distribution of meet is fulfilled and it becomes possible to construct concept algebras along the same lines as used in sections 5 and 6 before attribution was introduced.

Informally, for a partial order to be attribute consistent, if it contains the attribution concept \(\alpha(X)\) it must also contain the concept \(X\) of which it is an attribution. We need some auxiliary functions:
176.0 CbattrsCI: \(A \rightarrow C I \rightarrow A t\)-set
\(.1 \quad \operatorname{Cbattrs} C I(\alpha)(m k-C I(b s)) \triangleq\left\{m k-A t(\alpha, b) \mid m k-A t\left(\alpha^{\prime}, b\right) \in b s \cdot \alpha^{\prime}=\alpha\right\}\)
The function CbattrsCI gives the the complete set of basic \(\alpha\)-attributions in the given conceptintersection ci. Consider a concept-intersection
\[
c i=[\ldots \underbrace{\alpha\left(b_{1}\right) \ldots \alpha\left(b_{i}\right)}_{\text {cbas }} \ldots]
\]
where the leftmost and rightmost dots denote basic concepts which are not basic \(\alpha\)-attributions. Then CbattrsCI \((\alpha)(c i)\) is the complete set of basic \(\alpha\)-attributions indicated by cbas in the figure above. The complete set of basic \(\alpha\)-attributions \(\operatorname{CbattrsCI}(\alpha)(c i)\) is non-empty for all the attributes that occur at the top-level in the concept-intersection \(c i\) :
\[
177.0 \quad \forall c i: C I, \alpha: A \cdot \alpha \in \operatorname{AttrsIn} C I(c i) \Leftrightarrow \operatorname{Cbattrs} C I(\alpha)(c i) \neq\{ \}
\]

This equivalence is used to formulate the precondition of the next function:
```

178.0 AttrArgCI: $A \rightarrow C I \rightarrow C I$
. $1 \quad \operatorname{Attr} \operatorname{Arg} C I(\alpha)(c i) \triangleq m k-C I(\{b \mid m k-A t(-, b) \in \operatorname{Cbattrs} C I(\alpha)(c i)\})$
. 2 pre $\alpha \in \operatorname{AttrsInCI(ci)}$

```

Given a concept-intersection \(c i\) which has a non-empty complete set of basic \(\alpha\)-attributions, then - loosely speaking - \(\operatorname{AttrArgCI}(\alpha)(c i)\) yields the concept-intersection the \(\alpha\)-attribution of which gives the \(\alpha\)-attribution part of \(c i\). For instance, if \(c i=[a, b, \alpha(a), \alpha(c), \alpha(d), e, f]\) then \(\operatorname{Attr} \operatorname{Arg} C I(\alpha)(c i)=[a, c, d]\). For a partial order \(p\) to be attribute consistent we will now require that if \(c i \in p\), then we also have \([a, c, d] \in p\) :
```

179.0 IsAttrConsistent: PO}->\mathbb{B
IsAttrConsistent (}p)
.2 }\forallci\inp\cdot\forall\alpha\in\operatorname{AttrsInCI(ci)}\cdot\operatorname{AttrArgCI (\alpha)(ci)}\in

```

We have a set of useful properties concerning the functions introduced above:
```

$180.0 \quad \forall c i: C I, \alpha: A \cdot I S A_{P}(c i, \operatorname{attrCI}(\alpha)(\operatorname{AttrArgCI}(\alpha)(c i)))$
$181.0 \quad \forall c i: C I, \alpha: A \cdot \operatorname{AttrArgCI}(\alpha)(\operatorname{attr} C I(\alpha)(c i))=c i$
182.0 $\quad I S A_{P}\left(c i_{1}, c i_{2}\right) \Rightarrow \operatorname{Cbattrs} C I(\alpha)\left(c i_{2}\right) \subseteq \operatorname{Cbattrs}(\alpha)\left(c i_{1}\right)$
183.0 $\quad I S A_{P}\left(c i_{1}, c i_{2}\right) \Rightarrow I S A_{P}\left(\operatorname{AttrArgCI}(\alpha)\left(c i_{1}\right), \operatorname{AttrArgCI}(\alpha)\left(c i_{2}\right)\right)$
184.0 IsAttrConsistent $\left(p_{1}\right) \wedge \operatorname{IsAttrConsistent}\left(p_{2}\right) \Rightarrow \operatorname{IsAttrConsistent}\left(p_{1} \cup p_{2}\right)$
185.0 IsAttrConsistent $\left(p_{1}\right) \wedge \operatorname{IsAttrConsistent}\left(p_{2}\right) \Rightarrow \operatorname{IsAttrConsistent}\left(p_{1} \cap p_{2}\right)$

```

The properties 180 and 181 are illustrated in figure 14. Property 180 is about getting the \(\alpha\)-attribution argument using \(\operatorname{AttrArgCI}\) and then attributing the concept-intersection using \(a t t r C I\). For example, if we reuse the small example above, we have \(c i=[a, b, \alpha(a), \alpha(c), \alpha(d), e, f]\). Then getting the \(\alpha\)-attribution argument gives \([a, c, d]\), and finally \(\alpha\)-attributing this conceptintersection gives \([\alpha(a), \alpha(c), \alpha(d)]\) which is above \(c i\) in the partial order.


Figure 14: Using attrCI and AttrArgCI

Concerning 182 we know - from the definition of \(I S A_{P}(151)\) - that if \(I S A_{P}\left(m k-C I\left(b s_{1}\right), m k-C I\left(b s_{2}\right)\right)\) then \(b s_{2} \subseteq b s_{1}\). Consequently any subset of \(b s_{2}\) must also be a subset of \(b s_{1}\). Applying CbattrsCI (for any attribute \(\alpha\) ) to a concept-intersection yields a subset of its basic concepts. The proofs of these properties are rather straightforward (and are left to the reader).

\subsection*{10.1 Lemma for Attribute Consistent Partial Orders}

For attribute consistent partial orders we have the following lemma, which is used in subsequent proofs:
```

186.0 \forallcis:CI-set, p:PO.
.1 }\forall\alpha\in\operatorname{AttrsInCIS(p).
.2 IsDownset(p)(cis)^IsAttrConsistent (p) =>
.3 }\forall\mathrm{ aci:CI .aci G AttributionCA (p)(}\alpha)(cis
.4
AttrArgCI (\alpha)(aci) \incis\capp

```

In words: if \(p\) is an arbitrary attribute consistent partial order and cis a downset in \(p\) then all concept-intersections (aci) in the \(\alpha\)-attribution of cis have there \(\alpha\)-attribution argument in the part of cis which is also in \(p\).

In order to make a proof we define an auxiliary function:
```

1 8 7 . 0 ~ a t s : A \times ~ B s e t ~ \rightarrow B s e t
.1 ats (\alpha,bs)}\triangle{mk-At(\alpha,b)|b\inbs

```

We will need a few properties related to the functions atCIs and ats defined above. From the definitions of atCIs (171) and ats (187) it is easy to get
```

188.0 }\forallaci\in\operatorname{atCIs(\alpha)(cis)\cdot\existsmk-CI(bs)\incis\cdotaci=mk-CI(ats(\alpha,bs))

```

Furthermore, the definition of CbattrsCI (176) and ats (187) shows that
189.0 \(\operatorname{CbattrsCI}(\alpha, m k-C I(a t s(\alpha, b s)))=\operatorname{ats}(\alpha, b s)\)

The proof below is illustrated in figure 15 . On the figure the partial order \(p\) is shown as the union of two sets \(p_{1}\) and \(p_{2}\). The set cis is shown to the left with bolded line and the order isomorphic set \(\operatorname{atCIs}(\alpha)(c i s)\) is shown to the right also with a bolded line.


Figure 15: Illustration of proof for Attribute Consistent Partial Order lemma
So to prove 186 assume that cis, \(p\), and \(\alpha\) are arbitrary values such that
```

190.0 cis:CI-set, p:PO, \alpha\inAttrsInCIS(p)

```
and furthermore assume the left hand side of the outermost implication above
```

191.0 IsDownset $(p)($ cis $) \wedge$ IsAttrConsistent (p)

```

Next, corresponding to the innermost implication, we assume aci is an arbitrary conceptintersection such that
```

192.0 aci }\in\mp@subsup{\mathrm{ Attribution CA }}{(p)(\alpha)(cis)}{

```

According to 172 this is equivalent to
```

193.0 aci \in DownSetC(p)(atCIs(\alpha)(cis))

```

From 193 and the definition of DownSetC we get
```

194.0 aci
.1 \exists aci' \inatCIs(\alpha)(cis)\cdotISAP(aci, aci')

```

Next, from 194.1 using 188 and the invariant in 148.1 we get
\(195.0 \exists m k-C I\left(b s^{\prime}\right) \in c i s \cdot b s^{\prime} \neq\{ \} \wedge I S A_{P}\left(a c i, m k-C I\left(a t s\left(\alpha, b s^{\prime}\right)\right)\right)\)

Now, let \(b s^{\prime \prime}\) be the \(b s^{\prime}\) that exists according to 195. We then have
\[
\begin{array}{rl}
196.0 & m k-C I\left(b s^{\prime \prime}\right) \in \operatorname{cis} \wedge b s^{\prime \prime} \neq\{ \}, \\
.1 & I S A_{P}\left(\text { aci, } m k-C I\left(a t s\left(\alpha, b s^{\prime \prime}\right)\right)\right.
\end{array}
\]

If we now use 182 to 196.1 we get
197.0 CbattrsCI \((\alpha)\left(m k-C I\left(a t s\left(\alpha, b s^{\prime \prime}\right)\right)\right) \subseteq \operatorname{CbattrsCI}(\alpha)(a c i)\)

Applying 189 now gives
\(198.0 \quad\) ats \(\left(\alpha, b s^{\prime \prime}\right) \subseteq \operatorname{CbattrsCI}(\alpha)(a c i)\)
From 196.0 and the definition of ats (187)
\(199.0 \quad \operatorname{ats}\left(\alpha, b s^{\prime \prime}\right) \neq\{ \}\)
Consequently, according to 198 we also have
200.0 CbattrsCI \((\alpha)(a c i) \neq\{ \}\)

Now we use the fact that \(a c i \in p\) (194.0) and that the partial order \(p\) is attribute consistent (191). Applying the definition of IsAttrConsistent (179) then gives

\subsection*{201.0 AttrArgCI ( \(\alpha\) ) (aci) \(\in p\)}

Next, if we apply 183 to 196.1 we get
\[
\text { 202.0 } I S A_{P}\left(\operatorname{AttrArgCI}(\alpha)(a c i), \operatorname{AttrArgCI}(\alpha)\left(m k-C I\left(a t s\left(\alpha, b s^{\prime \prime}\right)\right)\right)\right)
\]

According to the definition of \(\operatorname{AttrArgCI}(178)\) and ats (187) the right operand of \(I S A_{P}\) above can be reduced to \(m k-C I\left(b s^{\prime \prime}\right)\), so we get
203.0 \(\quad I S A_{P}\left(\operatorname{AttrArgCI}(\alpha)(a c i), m k-C I\left(b s^{\prime \prime}\right)\right)\)

So now we know that \(\operatorname{AttrArgCI}(\alpha)(a c i)\) is below \(m k-C I\left(b s^{\prime \prime}\right)\), which according to 196.0 is in cis. From 191 we know that cis is a downset in \(p\), so according to 10 we know that everything in \(p\), which is below \(m k-C I\left(b s^{\prime \prime}\right)\) is in cis. But from 201 we know that \(\operatorname{AttrArg} C I(\alpha)(a c i) \in p\) so we have
204.0 AttrArgCI \((\alpha)(a c i) \in\) cis
which combined with 201 gives
205.0 AttrArgCI ( \(\alpha\) ) (aci) \(\in\) cis \(\cap p\)

\subsection*{10.2 Constructing Attribute Consistent Partial Orders}

In subsequent sections we need a function to construct attribute consistent partial orders. Given a set cis of concept-intersections, there are two approaches to make the set attributeconsistent. Either we may extend the set cis to the smallest attribute-consistent partial order containing cis, or we may restrict the set cis to the greates attribute-consistent subset of cis. The existence of the mentioned smallest and greatest sets follows from 185 and 184 respectively.

The function extCIS defined below yields the smallest attribute consistent set of conceptintersections which contains the given set of concept-intersections cis by extending the set cis with the appropriate \(\alpha\)-attribution arguments:
```

$206.0 \quad$ ext $C I S: C I$-set $\rightarrow C I$-set
extCIS (cis) \triangle
let $\operatorname{attr} \operatorname{Arg}=\{\operatorname{AttrArgCI}(\alpha)(c i) \mid c i \in c i s, \alpha \in \operatorname{AttrsInCI}(c i)\}$ in
if attrArg $=\{ \}$ then cis else cis \cup extCIS(attrArg)

```

\section*{Examples}
\begin{tabular}{|l|l|}
\hline cis & extCIS(cis) \\
\hline\(\{[x, a(x), a(y), b(z)]\}\) & \(\{[x, a(x), a(y), b(z)], \underline{[x, y],[z]\}}\) \\
\hline\(\{[x, a(b(y))],[x, y, b(x), b(a(y))]\}\) & \(\{[x, a(b(y))],[x, y, b(x), b(a(y))], \underline{[b(y)],[x, a(y)], \underline{[y]}\}}\) \\
\hline
\end{tabular}

Below is shown a few obvious facts about extension:
```

$207.0 \quad \forall p: P O \cdot I s A t t r C o n s i s t e n t(\operatorname{extCIS}(p))$
$\forall p_{1}, p_{2}: P O \cdot \operatorname{IsAttrConsistent}\left(p_{1}\right) \wedge p_{2} \subseteq p_{1} \Rightarrow \operatorname{extCIS}\left(p_{2}\right) \subseteq p_{1}$,
$\forall p_{1}, p_{2}: P O \cdot p_{2} \subseteq p_{1} \Rightarrow \operatorname{extCIS}\left(p_{2}\right) \subseteq \operatorname{extCIS}\left(p_{1}\right)$

```

The function restr CIS defined below restricts the given set of concept-intersections to the greatest attribute consistent subset by removing those concept-intersections which doesn't have appropriate \(\alpha\)-attribution arguments:
```

208.0 restr $C I S: C I$-set $\rightarrow C I$-set
$.1 \quad$ restrCIS $($ cis $) \triangleq$
. 2 let $x x=\{c i \mid c i \in c i s, \alpha \in \operatorname{AttrsInCI}(c i) \cdot \operatorname{AttrArgCI}(\alpha)(c i) \in c i s\}$ in
.3 if $x x=\{ \}$ then cis else restrCIS $(c i s \backslash x x)$

```

We will also need some facts about restriction:
```

209.0 \forallp:PO I IsAttrConsistent(restrCIS (p))

```

```

 2}\forall\mp@subsup{p}{1}{},\mp@subsup{p}{2}{}:PO\cdot\mp@subsup{p}{2}{}\subseteq\mp@subsup{p}{1}{}=>\operatorname{restrCIS}(\mp@subsup{p}{2}{})\subseteq\operatorname{restrCIS}(\mp@subsup{p}{1}{}
    ```

\section*{11 Concept Algebras}

In this section it is shown that if the partial order \(p\) is attribute consistent, i.e.
IsAttrConsistent \((p)\) (as defined in 10) then \(\mathcal{C} \mathcal{A}(\) cset, aset, \(p\) ) is a concept algebra satisfying the attribute axioms (in 135). It is also shown that the requirement about attribute consistent partial orders makes term values have properties which are close to those for lattice algebras before attribution was introduced (42).

We already know from section 9.1 that the attribute axioms concerning strictness and distribution of join are always fulfilled so we only have to consider distribution of meet.

\subsection*{11.1 Attribute Axiom: Distribution of Meet}

As mentioned in section 9.1, it would be easy to prove the axiom for distribution of meet if we had a downset property for intersection corresponding to the downset property for union:
\[
\operatorname{DownSet}(p)\left(c i s_{1} \cup \operatorname{cis}_{2}\right)=\operatorname{DownSet}(p)\left(c i s_{1}\right) \cup \operatorname{DownSet}(p)\left(c i s_{2}\right)
\]

For intersection we only have
\[
\text { 210.0 } \quad \operatorname{DownSet}(p)\left(\operatorname{cis}_{1} \cap \operatorname{cis}_{2}\right) \subseteq \operatorname{DownSet}(p)\left(\operatorname{cis}_{1}\right) \cap \operatorname{DownSet}(p)\left(\operatorname{cis}_{2}\right)
\]

This is easy to prove, see section B.6. But in order to be able to prove that the "distribution of meet" axiom is fulfilled we need equality between the sets, not subset inclusion as in 210 above. Luckily, it turns out that although we don't have a general downset property for intersection with equality, we have a specialized version, namely 212 , which is described in section 11.2 below. But before investigating this property we use it to prove that the "distribution of meet" axiom is fulfilled:

Distribution of Meet:
```

$211.0 \quad \alpha\left(\right.$ Meet $_{L}\left(\right.$ cis $_{1}$, cis $\left.\left._{2}\right)\right)$
$.1=$ Attribution $_{C A}(p)(\alpha)\left(\right.$ Meet $_{L}\left(\right.$ cis $_{1}$, cis $\left.\left._{2}\right)\right)$
$.2=$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $_{1} \cap$ cis $\left._{2}\right)$
$.3=\operatorname{DownSet} C(p)\left(\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in c i s_{1} \cap c i s_{2}\right\}\right)$
$.4=\operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(c i s_{1} \cap \operatorname{cis}_{2}\right)\right)$
from 171
from 212 below
$5=\operatorname{DownSet} C(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{1}\right)\right) \cap \operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{2}\right)\right)$
$.6=$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left._{1}\right) \cap$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left._{2}\right)$
$.7=\operatorname{Meet}_{L}\left(\right.$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left._{1}\right)$, Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left.\left._{2}\right)\right)$

```

\subsection*{11.2 The Downset Intersection Property}
```

$212.0 \quad \forall$ cis $_{1}$, cis $_{2}: C I$-set, $p: P O, \alpha: A$.
IsDownset $(p)\left(\operatorname{cis}_{1}\right) \wedge \operatorname{IsDownset}(p)\left(\right.$ cis $\left._{2}\right) \wedge \operatorname{IsAttrConsistent}(p) \Rightarrow$
$\operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{1} \cap \operatorname{cis}_{2}\right)\right)=$
$\operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{1}\right)\right) \cap \operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{2}\right)\right)$

```

This property is not at all obvious, but it is this property that actually makes it possible to use the simple representation of attributions as described in section 8.2. The proof of 212 is based on the lemma 186 for attribute consistent partial orders To make the proof we assume the left hand side of the implication in 212 and then prove the equality \(L H S=R H S\) of the right hand side of the implication. The equality is proved by proving \(L H S \subseteq R H S\) and \(R H S \subseteq L H S\).

LHS \(\subseteq\) RHS We first prove \(L H S \subseteq R H S\), i.e. we must prove
213.0 \(\operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(c i s_{1} \cap \operatorname{cis}_{2}\right)\right)\)
\(.1 \subseteq \operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{1}\right)\right) \cap \operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(c i s_{2}\right)\right)\)
From the definition of atCIs (171) this is equivalent to
```

214.0 DownSetC(p)(atCIs(\alpha)(cis})\cap\mathrm{ atCIs(}\alpha)(\mp@subsup{cisis}{1}{})
.1}\subseteq\operatorname{DownSetC(p)(atCIs}(\alpha)(ci\mp@subsup{s}{1}{}))\cap\operatorname{DownSetC}(p)(\operatorname{atCIs}(\alpha)(ci\mp@subsup{s}{2}{})

```
which is fulfilled according to 210.

RHS \(\subseteq\) LHS Next we must prove \(R H S \subseteq L H S\). This is the difficult part of the proof of 212. From the definition of attrCI (170) we have
```

215.0 \forallci:CI,cis:CI-set cit cis => attrCI(\alpha)(ci) \inatCIs(\alpha)(cis)

```

In order to prove \(R H S \subseteq L H S\) we now make assumptions corresponding to the left-hand side of the implication in 212. So assume that \(c i s_{1}, c i s_{2}, p\) and \(\alpha\) are abitrary values such that
```

216.0 cis , cis 2 : CI-set, p:PO, \alpha\inAttrsInCIS(p)
. 1 IsDownset (p)(cis) ^ IsDownset (p)(cis) ^IsAttrConsistent (p)

```

Using these assumptions we must now prove
```

217.0 $\operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(\operatorname{cis}_{1}\right)\right) \cap \operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(c i s_{2}\right)\right)$
$.1 \subseteq \operatorname{DownSetC}(p)\left(\operatorname{atCIs}(\alpha)\left(c i s_{1} \cap c i s_{2}\right)\right)$

```

If the left-hand side is the empty set then the subset inclusion is obvious, so in the sequel we assume that the left-hand side set is not the empty set. We prove the subset inclusion by showing that every element in the left-hand side set is also in the right-hand side set. So let aci: \(C I\) be an arbitrary concept-intersection such that
```

218.0 aci \in DownSetC(p)(atCIs (\alpha)(cis }1))\cap\operatorname{DownSetC(p)(atCIs}(\alpha)(cis\mp@subsup{s}{2}{})

```
which is equivalent to
```

219.0 aci \in DownSetC(p)(atCIs(\alpha)(cis⿱1))
.1 aci\in DownSetC(p)(atCIs(\alpha)(cis⿱2))

```

From the assumption 216 and the lemma 186 for attribute consistent partial orders we get
```

220.0 AttrArgCI(\alpha)(aci) \incis
.1 AttrArgCI (\alpha)(aci)\incis

```

Next, applying 215 gives
```

$221.0 \quad \operatorname{attrCI}(\alpha)(\operatorname{AttrArgCI}(\alpha)(a c i)) \in \operatorname{atCIs}(\alpha)\left(c i s_{1}\right)$
$.1 \operatorname{attrCI}(\alpha)(\operatorname{AttrArgCI}(\alpha)(a c i)) \in \operatorname{atCIs}(\alpha)\left(\right.$ cis $\left._{2}\right)$

```
and consequently also
```

222.0 attrCI (\alpha)(AttrArgCI (\alpha)(aci)) \inatCIs(\alpha)(cis) \capatCIs (\alpha)(cis 2)

```

Finally 180 gives us
223.0 \(\quad \operatorname{ISA} A_{P}(a c i, \operatorname{attrCI}(\alpha)(\operatorname{AttrArgCI}(\alpha, a c i)))\)

So aci is below a point which is in \(\operatorname{atCIs}(\alpha)\left(c i s_{1}\right) \cap a t C I s(\alpha)\left(c i s_{2}\right)\), and from 219 we know that aci \(\in p\), consequently we have
```

224.0 aci \in DownSetC(p)(atCIs(\alpha)(cis}1)\capatCIs(\alpha)(cis))

```

\subsection*{11.3 The Value of Terms in Concept Algebras.}

The value of terms in the algebra \(\mathcal{C A}(\) cset, aset, \(p\) ) was defined in section 9.2 for all partial orders \(p \subseteq \mathcal{P}\) (bset). If we only consider evaluation of terms in concept algebras, i.e. we restrict the partial orders \(p \subseteq \mathcal{P}\) (bset) to those which are attribute consistent, then we have properties which are close to the essential properties in 42 as we will see in the following. We will need the property for attribution in concept algebras described below:

Attribution in Concept Algebras: Let bset be a set of basic concepts, \(p\) and \(p_{1}\) subsets of \(\mathcal{P}\) (bset), cis a subset of \(p\) and finally \(\alpha\) an attribute, we then have
```

225.0 IsAttrConsistent $\left(p_{1}\right) \wedge \operatorname{IsDownset}(p)($ cis $) \wedge p_{1} \subseteq p$
$.1 \quad \Rightarrow$ Attribution $_{C A}(p)(\alpha)\left(\right.$ cis $\left.\cap p_{1}\right) \cap p_{1}=$ Attribution $_{C A}(p)(\alpha)($ cis $) \cap p_{1}$

```

A proof of property 225 is also based on the lemma 186 for attribute consistent partial orders and follows here:
We prove the equality of the two sets by proving that the two sets are subsets of each other. So for the two proofs assume that \(p\) and \(p_{1}\) are partial orders and cis a set of concept-intersections such that
226.0 IsAttrConsistent \((p) \wedge \operatorname{IsAttrConsistent}\left(p_{1}\right) \wedge \operatorname{IsDownset}(p)(\operatorname{cis}) \wedge p_{1} \subseteq p\)

Proof of \(L H S \subseteq R H S:\) From 173.1 we get immediately
227.0 Attribution \(_{C A}(p)(\alpha)\left(\right.\) cis \(\left.\cap p_{1}\right) \subseteq\) Attribution \(_{C A}(p)(\alpha)(\) cis \()\)
and consequently also
228.0 Attribution \(_{C A}(p)(\alpha)\left(\right.\) cis \(\left.\cap p_{1}\right) \cap p_{1} \subseteq \operatorname{Attribution~}_{C A}(p)(\alpha)(c i s) \cap p_{1}\)

Proof of \(R H S \subseteq L H S\) : We must prove
229.0 Attribution \(_{C A}(p)(\alpha)(c i s) \cap p_{1} \subseteq\) Attribution \(_{C A}(p)(\alpha)\left(\right.\) cis \(\left.\cap p_{1}\right) \cap p_{1}\)

If Attribution \(_{C A}(p)(\alpha)(c i s) \cap p_{1}=\{ \}\) then the inclusion is obvious, so in the sequel assume that
230.0 Attribution \(_{C A}(p)(\alpha)(\) cis \() \cap p_{1} \neq\{ \}\)

Then assume that \(a c i\) is an arbitrary concept-intersection such that
\(231.0 \quad\) aci \(\in\) Attribution \(_{C A}(p)(\alpha)(\) cis \() \cap p_{1}\)
So, according to the equation 172 for Attribution \(_{C A}\) we have
```

232.0 aci }\in\operatorname{DownSetC(p)(atCIs(\alpha)(cis))\cap p

```

Hence
```

233.0 aci\in p
.1 aci }\in\operatorname{DownSetC(p)(atCIs(\alpha)(cis))

```

From the fact that \(p_{1} \subseteq p\) and the downset property 15 we also have
\(234.0 \quad\) aci \(\in \operatorname{DownSet} C\left(p_{1}\right)(a t \operatorname{CIs}(\alpha)(c i s))\)
From the assumption 226 and the definition of IsDownSet (9) we have
235.0 IsDownSet \(\left(p_{1}\right)(\) cis \()\)

Next, applying 234 and 235 to the lemma 186 for attribute consistent partial orders gives
236.0 AttrArgCI \((\alpha)(\) aci \() \in c i s \cap p_{1}\)

Next, applying 215 gives
\(237.0 \quad \operatorname{attr} C I(\alpha)(\operatorname{Attr} A r g C I(\alpha)(a c i)) \in \operatorname{atCIs}(\alpha)\left(c i s \cap p_{1}\right)\)
According to 180 we have
238.0 \(I S A_{P}(\) aci, \(\operatorname{attrCI}(\alpha)(A t t r A r g C I(\alpha, a c i)))\)

From 237 and 238 we may now conclude that
```

239.0 aci }\in\operatorname{DownSetC}(p)(atCIs(\alpha)(cis\cap p p))

```
which combined with 233 gives
\(240.0 \quad\) aci \(\in \operatorname{DownSet} C(p)\left(a t C I s(\alpha)\left(c i s \cap p_{1}\right)\right) \cap p_{1}\)
Finally, using the definition of Attribution \(_{C A}\) (169) gives
\(241.0 \quad\) aci \(\in\) Attribution \(_{C A}(p)(\alpha)\left(c i s \cap p_{1}\right) \cap p_{1}\)

Term Value Properties in Concept Algebras: Let bset be a set of basic concepts, \(t\) a term, and let \(p_{1}\) and \(p_{2}\) be subsets of \(\mathcal{P}(b s e t)\), we then have
```

242.0 IsAttrConsistent $\left(p_{1}\right) \Rightarrow$
$p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{C A}\left(p_{1}\right)(t)=\operatorname{Eval}_{C A}\left(p_{2}\right)(t) \cap p_{1}$
243.0 IsAttrConsistent $\left(p_{1}\right) \wedge \operatorname{IsAttrConsistent}\left(p_{2}\right) \Rightarrow$
$\operatorname{Eval}_{C A}\left(p_{1} \cup p_{2}\right)(t)=\operatorname{Eval}_{C A}\left(p_{1}\right)(t) \cup \operatorname{Eval}_{C A}\left(p_{2}\right)(t)$
244.0 IsAttrConsistent $\left(p_{1}\right) \wedge \operatorname{IsAttrConsistent}\left(p_{2}\right) \Rightarrow$
$.1 \quad \operatorname{Eval}_{C A}\left(p_{1} \cap p_{2}\right)(t)=\operatorname{Eval}_{C A}\left(p_{1}\right)(t) \cap \operatorname{Eval}_{C A}\left(p_{2}\right)(t)$

```

Properties 243 and 244 are easily proved from 242 and 175.0 in the same way that 42.3 and 42.4 were proved from 42.0 and 42.2 as shown in section B. 3

A proof of 242 is based on the property 225 for attribution and follows here. So let \(t\) be a term and \(p_{1}\) and \(p_{2}\) subsets of \(\mathcal{P}(b s e t)\) and assume the left-hand side of both implications in 242 above:
245.0 IsAttrConsistent \(\left(p_{1}\right)\)
. \(1 \quad p_{1} \subseteq p_{2}\)
We prove the right-hand side of the implication by structural induction on the term structure:
BOTTOM:
\[
\operatorname{Eval}_{C A}\left(p_{1}\right)(\text { вотТОм })=\{ \}=\operatorname{Eval}_{C A}\left(p_{2}\right)(\text { воттом }) \cap p_{1}
\]

TOP:
\[
\begin{aligned}
& \operatorname{Eval}_{C A}\left(p_{1}\right)(\mathrm{TOP})=p_{1} \\
& =p_{2} \cap p_{1}=\operatorname{Eval}_{C A}\left(p_{2}\right)(\mathrm{TOP}) \cap p_{1}
\end{aligned}
\]

Named concept \(c\) :
\[
\begin{aligned}
& \operatorname{Eval}_{C A}\left(p_{1}\right)(c)=c \operatorname{Value}_{C}\left(p_{1}\right)(c) \\
& =\operatorname{DownSet}^{\left(p_{1}\right)(\{m k-C I(\{c\})\})} \\
& =\operatorname{DownSet}\left(p_{2}\right)(\{m k-C I(\{c\})\}) \cap p_{1} \\
& =c \operatorname{Value}_{C}\left(p_{2}\right)(c) \cap p_{1} \\
& =\operatorname{Eval}_{C A}\left(p_{2}\right)(c) \cap p_{1}
\end{aligned}
\]

Next, in the induction steps, when considering compound terms, assume 242 is true for the sub-terms (the induction hypothesis):
```

mk-Join(t}\mp@subsup{t}{1}{},\mp@subsup{t}{2}{})
Eval}\mp@subsup{C}{CA}{(}(\mp@subsup{p}{1}{})(mk-\operatorname{Join}(\mp@subsup{t}{1}{},\mp@subsup{t}{2}{})
= Join}L(Eval (GA (p) (t\mp@subsup{t}{1}{}),\mp@subsup{Eval}{CA}{}(\mp@subsup{p}{1}{})(\mp@subsup{t}{2}{})
= Eval}\mp@subsup{C}{CA}{}(\mp@subsup{p}{1}{})(\mp@subsup{t}{1}{})\cup\mp@subsup{\operatorname{Eval}}{CA}{}(\mp@subsup{p}{1}{})(\mp@subsup{t}{2}{}
=(Eval lCA (p2)(t (t) \cap p
=(Eval}\mp@subsup{C}{CA}{}(\mp@subsup{p}{2}{})(\mp@subsup{t}{1}{})\cup\mp@subsup{\operatorname{Eval}}{CA}{}(\mp@subsup{p}{2}{})(\mp@subsup{t}{2}{}))\cap\mp@subsup{p}{1}{

```

```

 = Eval CA (p p) (mk-Join(t, t, t2)) \cap p
    ```
\(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right):\) Similar to the proof for Join.
\(m k-\operatorname{Attr}(\alpha, t)\) :
    \(\operatorname{Eval}_{C A}\left(p_{1}\right)(m k-\operatorname{Attr}(\alpha, t))\)
    \(=\) Attribution \(_{C A}\left(p_{1}\right)(\alpha)\left(\operatorname{Eval}_{C A}\left(p_{1}\right)(t)\right)\)
    from 174
    from induction hypothesis
    \(=\) Attribution \(_{C A}\left(p_{1}\right)(\alpha)\left(\operatorname{Eval}_{C A}\left(p_{2}\right)(t) \cap p_{1}\right)\)
    from 173.3
    \(=\operatorname{Attribution}_{C A}\left(p_{2}\right)(\alpha)\left(\operatorname{Eval}_{C A}\left(p_{2}\right)(t) \cap p_{1}\right) \cap p_{1}\)
    \(=\) Attribution \(_{C A}\left(p_{2}\right)(\alpha)\left(\operatorname{Eval}_{C A}\left(p_{2}\right)(t)\right) \cap p_{1}\)
    from 225
    \(=\operatorname{Eval}_{C A}\left(p_{2}\right)(m k-\operatorname{Attr}(\alpha, t)) \cap p_{1}\)

\subsection*{11.4 A Concept Algebra is a Generated Algebra.}

Assume cset is a set of concepts, aset a set of attributes, bset a finite set of basic concepts, and \(p \subseteq \mathcal{P}\) (bset) is a finite partial order of concept-intersections such that Conforms (cset, aset)( \(p\) ). We then have

Lemma The algebra \(\mathcal{C A}(\) cset, aset, \(p)\) is a generated algebra if and only if \(p\) is attributeconsistent.

\section*{12 Concept Algebras Satisfying a Set of Equations}

Assume cset is a set of concepts, aset a set of attributes, and bset a finite set of basic concepts build from cset and aset. We now consider how to compute an attribute consistent partial order \(p \subseteq \mathcal{P}(\) bset \()\) such that the concept algebra \(\mathcal{C A}(\) cset, aset, \(p)\) satisfies a given set of (ground) equations eqs : Eq-set (besides the set of basic Concept Algebra equations). Thanks to the properties 242 and 243 we are able to proceed almost as in section 5 .

In the sequel we call an attribute consistent partial order, in which a set of equations is satisfied, a solution for the set of equations. Let
```

246.0 IsEqsSol $_{C A}: E q$-set $\rightarrow P O \rightarrow \mathbb{B}$
$I_{s E q s S o l}^{C A}(e q s)(p) \triangleq$
IsAttrConsistent $(p) \wedge$
$\forall m k-E q\left(t_{1}, t_{2}\right) \in e q s \cdot \operatorname{Eval}_{C A}(p)\left(t_{1}\right)=\operatorname{Eval}_{C A}(p)\left(t_{2}\right)$

```

So we are looking for a way to compute the set of solutions:
\(247.0 \quad\left\{p \mid p \subseteq \mathcal{P}(c s e t) \cdot\right.\) IsEqsSol \(_{C A}(\) eqs \(\left.)(p)\right\}\)
Assume we have an equation \(t_{1}=t_{2}\). The property below concerns the relation between solutions for such an equation.
```

$248.0 \quad \forall p_{1}, p_{2}: P O, t_{1}, t_{2}:$ Term.
. 1 IsAttrConsistent $\left(p_{1}\right) \wedge$
$.2 \quad p_{1} \subseteq p_{2} \wedge \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{2}\right) \Rightarrow \operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{1}\right)=\operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{2}\right)$

```

In words, if we have a solution \(p_{2}\) to an equation \(t_{1}=t_{2}\) then every attribute consistent subset \(p_{1}\) of that solution is also a solution. Consequently, we only need to compute the maximal partial order satisfying the equation. Property 248 may easily be proved from 242:

Assume the left-hand side of the implication in 248 above, i.e.
```

249.0 IsAttrConsistent (}\mp@subsup{p}{1}{})\mathrm{ ,
.1 }\mp@subsup{p}{1}{}\subseteq\mp@subsup{p}{2}{}
.2 Eval CA (p2)(t+1)= Eval CA (p}\mp@subsup{p}{2}{})(\mp@subsup{t}{2}{}

```

Then we have the following equalities.
\[
\begin{aligned}
& \operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{1}\right) \\
& =\operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{1}\right) \cap p_{1} \\
& =\operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{2}\right) \cap p_{1} \\
& =\operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{2}\right)
\end{aligned}
\]
assumptions 249 and 242
249.2
assumptions 249 and 242

Property 248 can easily be extended to a set of equations:
```

250.0 \forall p , , p2: PO, eqs : Eq-set.
IsAttrConsistent (}\mp@subsup{p}{1}{})
p

```

Just as in section 5 we have two approaches for constructing solutions to a set of equations, namely the additive and the subtractive method.

\subsection*{12.1 The Additive Method}

Let \(t_{1}=t_{2}\) be an equation, and let \(p_{1}\) and \(p_{2}\) be two attribute consistent partial orders in which the equation is satisfied, i.e.
```

251.0 $\quad \operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{1}\right)=\operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{2}\right) \quad$ and
. $1 \quad \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{2}\right)$

```

Using first 243 and then the equations in 251 we get
```

$\operatorname{Eval}_{C A}\left(p_{1} \cup p_{2}\right)\left(t_{1}\right)$
$=\operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{1}\right) \cup \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{1}\right)=\operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{2}\right) \cup \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{2}\right)$
$=E v a l_{C A}\left(p_{1} \cup p_{2}\right)\left(t_{2}\right)$

```

Hence
```

252.0 IsAttrConsistent((}\mp@subsup{1}{1}{\prime})\wedgeIsAttrConsistent (pr) =>
. }
Eval}\mp@subsup{L}{L}{}(\mp@subsup{p}{1}{}\cup\mp@subsup{p}{2}{})(\mp@subsup{t}{1}{})=\mp@subsup{\operatorname{Eval}}{L}{}(\mp@subsup{p}{1}{}\cup\mp@subsup{p}{2}{})(\mp@subsup{t}{2}{}

```

In words, if an equation is satisfied in two attribute consistent partial orders \(p_{1}\) and \(p_{2}\) it will also be satisfied in the union of these partial orders. Notice, that the union of two attribute consistent partial orders is also attribute consistent. This can easily be extended to a set of equations:
```

$253.0 \quad \forall$ eqs: Eq-set, $p_{1}, p_{2}: P O$.
$.1 \quad I s E q s S o l_{C A}($ eqs $)\left(p_{1}\right) \wedge \operatorname{IsEqsSol}_{C A}(e q s)\left(p_{2}\right) \Rightarrow \operatorname{IsEqsSol}_{C A}(e q s)\left(p_{1} \cup p_{2}\right)$

```

The property above shows us that if we have found two small solutions we can get a new bigger solution by making the union of the small solutions. So we can construct a solution by making the union af small solutions. Now the smallest possible solutions are the smallest subsets \(p \subseteq \mathcal{P}(b s e t)\) which are attribute consistent. These subsets are constructed using the function extCIS (def. 206) defined in section 10.2. Given the set of basic concepts, the set of building blocks for a solution is
```

$254.0 \quad$ SolBB : B-set $\rightarrow C I$-set-set
. $1 \quad \operatorname{SolBB}(b s e t) \triangleq \bigcup\{\operatorname{ext} C I S(\{m k-C I(b s)\}) \mid b s: B$-set $\cdot b s \subseteq b s e t\}$

```

So given a set of equations we can now build the maximal solution from all the building blocks which are solutions to the equations:
```

$255.0 \quad \mathrm{MaxPO} O_{C A}: B$-set $\rightarrow E q$-set $\rightarrow P O$
. $\operatorname{MaxPO}_{C A}($ bset $)($ eqs $) \triangleq \bigcup\left\{p \mid p \in \operatorname{SolBB}(\right.$ bset $) \cdot$ IsEqsSol $_{C A}($ eqs $\left.)(p)\right\}$

```

According to the previous exposition we have
```

256.0 let pmax = MaxPO
.1 pmax \subseteq\mathcal{P}(bset)^IsEqsSol CA (eqs)(pmax)

```

Example We use the example in section 9.2 and figure 13. So the set of basic concepts is bset \(=\{x, y, a(x)\}\). In the table below the first column contains all the possible conceptintersections, one in each row. Each row in the second column contains the building block
\(\operatorname{extCI}(c i)\) containing the corresponding \(c i\).
\begin{tabular}{l|l|l|l|l}
\(c i\) & \(p=e x t C I S(\{c i\})\) & \(\operatorname{Eval}_{C A}(p)(y)\) & \(\operatorname{Eval}_{C A}(p)(x)\) & \(\operatorname{Eval}_{C A}(p)(a(x))\) \\
\hline\([x]\) & {\([x]\)} & {\([y]\)} & {\([x]\)} & \\
\hline\([y]\) & {\([y]\)} & \([y]),[x]\) & & {\([x]\)} \\
\hline\([a(x)]\) & {\([a(x)]\)} & {\([a(x)]\)} \\
\hline\([x, y]\) & {\([x, y]\)} & {\([x, y]\)} & {\([x, y]\)} & \\
\hline\([x, a(x)]\) & {\([x, a(x)],[x]\)} & & {\([x],[x, a(x)]\)} & {\([x, a(x)]\)} \\
\hline\([y, a(x)]\) & {\([y, a(x)],[x]\)} & {\([y, a(x)]\)} & {\([x]\)} & {\([y, a(x)]\)} \\
\hline\([x, y, a(x)]\) & {\([x, y, a(x)],[x]\)} & {\([x, y, a(x)]\)} & {\([x, y, a(x)],[x]\)} & {\([x, y, a(x)]\)} \\
\hline
\end{tabular}

We want to find the maximal solution to the equation \(y=a(x)\). So in the next three columns each row contains the values of the terms \(y, x\) and \(a(x)\) in the partial order constituted by the corresponding building block. We can see that the equation is satisfied in the partial orders in the two last rows. Hence
\[
\begin{aligned}
& \operatorname{MaxPO}_{C A}(b s e t)(\{y=a(x)\}) \\
& =\{[y, a(x)],[x]\} \cup\{[x, y, a(x)],[x]\}=\{[x],[y, a(x)],[x, y, a(x)]\}
\end{aligned}
\]

This is the solution shown in figure 13.

Example In this example the set of basic concepts is bset \(=\{x, y, a(x), a(y)\}\) and we have one equation \(x \leq y\). In figure 16 the table has a row for each building block (as defined by \(\operatorname{SolBB}(b s e t))\). Column 3 and 4 shows the value of the terms \(x, a(x)\) and \(y, a(y)\). In the last column a + indicates that the equation \(x \leq y\) is satisfied in the corresponding building block partial order. The reader can easily verify that for these partial orders we also have \(a(x) \leq a(y)\) as required by the monotonicity rule 135.

According to 255 we get the maximal solution \(p \max =M a x P O_{C A}(\) bset \()(\) eqs \()\) by making the union of all the building block partial orders for which \(x \leq y\). This partial order is shown in the figure below.


\subsection*{12.2 The Subtractive Method}

Let \(t_{1}=t_{2}\) be an equation, let \(p_{c}=\mathcal{P}(\) bset \()\) and let
\[
\operatorname{cis}_{1}=\operatorname{Eval}_{C A}\left(p_{c}\right)\left(t_{1}\right) \text { and } \operatorname{cis}_{2}=\operatorname{Eval}_{C A}\left(p_{c}\right)\left(t_{2}\right)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline ci & \(p=\operatorname{extCIS}(\{c i\})\) & \[
\frac{\left\{\operatorname{Eval}_{C A}(p)(x)\right\}}{\left\{\operatorname{Eval}_{C A}(p)(a(x))\right\}}
\] & \[
\frac{\left\{\operatorname{Eval}_{C A}(p)(y)\right\}}{\left\{\operatorname{Eval}_{C A}(p)(a(y))\right\}}
\] & \(x \leq y\) \\
\hline [ \(x\) ] & [x] & \(\frac{\{[\mid x]\}}{\}}\) & & - \\
\hline [ \(y\) ] & [y] & & \(\frac{\{[y]\}}{\text { \{ }}\) & + \\
\hline \([x, y]\) & \([x, y]\) & \(\frac{\{[x, y]\}}{\}}\) & \(\frac{\{[x, y]\}}{\}}\) & + \\
\hline [a(x)] & \([a(x)],[x]\) & \(\frac{\{|x|\}}{\{[a(x)]\}}\) & & - \\
\hline [a(y)] & [a(y)], [y] & & \[
\frac{\{\{y\}\}}{\{\{a(y)]\}}
\] & + \\
\hline [ \(x, a(x)\) ] & \([x, a(x)],[x]\) & \[
\frac{\{[x, a(x)],[x]\}}{\}}
\] & & - \\
\hline [ \(y, a(x)\) ] & \([y, a(x)],[x]\) &  & \(\frac{\{[y, a(x)]\}}{\}}\) & - \\
\hline [ \(x, a(y)\) ] & [ \(x, a(y)],[y]\) & \[
\frac{\{x, a( \})\}}{\}}
\] & \[
\frac{\{1, \mid\}}{\{[x, a(y)]\}}
\] & - \\
\hline [ \(y, a(y)\) ] & [y,a(y)], [y] & & \(\frac{\{[y, a(y)],[y]\}}{\{y, a(y)\}}\) & + \\
\hline \([x, y, a(x)]\) & \([x, y, a(x)],[x]\) & \(\frac{\{[x, y, a(x)][x]\}}{\{[x, y, a(x)\}\}}\) & \(\frac{\{[x, y, a(x)\}}{\}}\) & - \\
\hline \([x, y, a(y)]\) & \([x, y, a(y)],[y]\) & \(\frac{\{[x, y, a(y)\}}{\}}\) & \[
\frac{\{\{x, y, a(y)][y]\}}{\{\{x, y, a(y)\}}
\] & + \\
\hline \([a(x), a(y)]\) & \([a(x), a(y)],[x, y]\) & \(\frac{\{1 x, y]\}}{\{[a(x), a(y)\}}\) & \[
\frac{\{a(x, y)\}}{\{a(x), a(y)\}\}}
\] & + \\
\hline \([x, a(x), a(y)]\) & \([x, a(x), a(y)],[x, y]\) & \[
\frac{\{[x, a(x), a(y)],[x, y]\}}{\{|r a(r) a(x)|\}}
\] & \(\frac{\{x, y]\}}{\{x, a(x), a(y)]\}}\) & - \\
\hline [ \(y, a(x), a(y)\) ] & \([y, a(x), a(y)],[x, y]\) & \[
\left\{\begin{array}{l}
\{x, y)\} \\
\{y, a(x), a(y)\}\}
\end{array}\right.
\] & \[
\frac{\{\{y, a(x), a(y), \mid x, y\}\}}{\{\mid y, a(x), a y)\}}
\] & + \\
\hline \([x, y, a(x), a(y)]\) & \([x, y, a(x), a(y)],[x, y]\) & \[
\frac{\{x x, y, a(x) a(y)][x, y]\}}{\{x, y, a(x), a(y)]\}}
\] & \[
\frac{\frac{\{x, y, a(x), a, y) \mid,(x, y)\}}{\{[x, y, a(x), a(y)]\}}}{}
\] & + \\
\hline
\end{tabular}

Figure 16: The set of building blocks for \(b s e t=\{x, y, a(x), a(y)\}\). Column 3 and 4 shows the value of \(x, a(x)\) and \(y, a(y)\) in the building block partial order.
then
```

eqrej0 = (cis }\cupcis\mp@subsup{s}{2}{})$cis \ \capcis⿱\mp@code{2}
```
is the set of all the concept-intersections not occurring in both \(c i s_{1}$ and $c i s_{2}$, i.e. the set of concept-intersections causing $t_{1}$ and $t_{2}$ to evaluate to different values. So these conceptintersections must be removed from $p_{c}$. However - compared to the subtractive method described in section 5.2 - we must now assure that the remaining set of concept-intersections is attribute-consistent. So let $p^{\prime}$ be an arbitrary attribute-consistent sub-set of $p_{c}$ not containing eqrej0:

$$
p^{\prime} \subseteq p_{c} \backslash \operatorname{eqrej} 0 \wedge I s A t t r C o n s i s t e n t\left(p^{\prime}\right)
$$

We are interested in the part of $p^{\prime}$ which is in $c i s_{1} \cup$ cis $_{2}$. Using the fact that $p^{\prime} \subseteq p_{c} \backslash$ eqrej 0 we now have

```
257.0 p
 .1 \subseteq(pc\eqrej0)\cap(cis \cupcis)
 .2 = ((cis }\cupci\mp@subsup{s}{2}{})\eqrej0
 .3 = (ci\mp@subsup{s}{1}{}\cupci\mp@subsup{s}{2}{})\((ci\mp@subsup{s}{1}{}\cupci\mp@subsup{s}{2}{})\(ci\mp@subsup{s}{1}{}\capci\mp@subsup{s}{2}{}))
 .4 = cis \cap cis⿱
```

So the part of $p^{\prime}$ which is in $c i s_{1} \cup c i s_{2}$ is also in cis $_{1} \cap c i s_{2}$. We can use this to evaluate $t_{1}$
and $t_{2}$ in the partial order $p^{\prime}$ :
258.0 $\operatorname{Eval}_{C A}\left(p^{\prime}\right)\left(t_{1}\right)$

$$
\begin{array}{lll}
.1 & =\operatorname{Eval}_{C A}\left(p_{c}\right)\left(t_{1}\right) \cap p^{\prime} & \text { using 242 gives } \\
.2 & =\text { cis }_{1} \cap p^{\prime} & \\
.3 & \subseteq c i s_{1} \cap c i s_{2} & \text { using } 257 \text { gives } \\
.4 & \subseteq c i s_{2} &
\end{array}
$$

Using this set-inclusion now gives

$$
\begin{array}{ll}
\operatorname{Eval}_{C A}\left(p^{\prime}\right)\left(t_{1}\right) & \text { from above } \\
=\text { cis }_{1} \cap p^{\prime} & \text { using the set-inclusion } 258 \text { above } \\
=c i s_{1} \cap c i s_{2} \cap p^{\prime} &
\end{array}
$$

We can of course do the same with $t_{2}$, so

$$
\operatorname{Eval}_{C A}\left(p^{\prime}\right)\left(t_{1}\right)=\operatorname{Eval}_{C A}\left(p^{\prime}\right)\left(t_{2}\right)=c i s_{1} \cap c i s_{2} \cap p^{\prime}
$$

Consequently, the equation $t_{1}=t_{2}$ is satisfied in any attribute-consistent partial order $p^{\prime}$ not containing the concept-intersections rejected by the equation.

Considering a set of equations $\left\{e q_{1}, e q_{2}, \ldots, e q_{n}\right\}$, each equation $e q_{i}$ gives rise to a set of concept-intersections eqrej0 $0_{i}$ as defined above, which must not be in the resulting partial order. So let $p^{\prime}$ be an attribute-consistent partial order not containing any of these rejected sets:

```
\(p^{\prime} \subseteq p_{c} \backslash\left(e q r e j 0_{1} \cup \operatorname{eqrej}_{2} \cup \ldots \cup\right.\) eqrej \(\left._{n}\right)\)
\(\wedge\) IsAttrConsistent (\(p^{\prime}\))
```

Then, according to the argumentation above, each equation $e q_{i}$ is satisfied in $p^{\prime}$. Finally, to get the maximal solution, we use restrCIS to get the attribute-consistent subset:

```
259.0
EqRej : CI -set \(\rightarrow E q \rightarrow C I\)-set
\(\operatorname{EqRej}(p)\left(m k-E q\left(t_{1}, t_{2}\right)\right) \triangle\)
 let \(c i s_{1}=\operatorname{Eval}_{C A}(p)\left(t_{1}\right)\),
 cis \(_{2}=\operatorname{Eval}_{C A}(p)\left(t_{2}\right)\) in
 \(\left(c i s_{1} \cup c i s_{2}\right) \backslash\left(c i s_{1} \cap c i s_{2}\right)\)
\(260.0 \quad \mathrm{MaxPO}_{C A}: B\)-set \(\rightarrow E q\)-set \(\rightarrow P O\)
\(M a x P O_{C A}(b s e t)(\) eqs \() \triangle\)
 let \(p_{c}=\mathcal{P}(\) bset \()\) in
 let rejected \(=\bigcup\left\{\operatorname{EqRej}\left(p_{c}\right)(e q) \mid e q \in e q s\right\}\) in
 restrCIS (\(p_{c} \backslash\) rejected)
```


### 12.3 The Set of Concept Algebras Satisfying a Set of Equations

Let cset and aset be the set of concepts and attributes and bset a set of basic concepts created from cset and aset. Let pmax $=\operatorname{MaxPO}_{C A}(b s e t)($ eqs $)$. This is the greatest partial order satisfying the set eqs of equations. According to 250 all attribute consistent subsets of this partial order are also solutions to the set of equations. We define the corresponding set of concept algebra solutions
261.0

$$
C_{C A-e q s}=\{\mathcal{C} \mathcal{A}(\text { cset }, \text { aset }, p) \mid p: P O \cdot p \subseteq \text { pmax } \wedge \text { IsAttrConsistent }(p)\}
$$

As in section 5.3 we have in $C_{C A-e q s}$ two solutions of special interest, namely the initial concept algebra $\mathcal{C} \mathcal{A}($ cset, aset, pmax $)$ and the most disjoint concept algebra $\mathcal{C} \mathcal{A}($ cset, aset, pmdsj).

### 12.3.1 The Initial Concept Algebra

In the class $C_{C A \text {-eqs }}$ of Concept Algebras defined above $\mathcal{C} \mathcal{A}$ (cset, aset, pmax) is the initial concept algebra or most general concept algebra. This is equivalent to saying that for each attribute consistent $p \subseteq \operatorname{pmax}$ there is a unique homomorphism from $\mathcal{C} \mathcal{A}($ cset, aset, pmax) to $\mathcal{C} \mathcal{A}($ cset, aset, $p)$. For a given $p \subseteq p \max$, that homomorphism is defined by the function $h$ : $h: \mathcal{O}($ pmax $) \rightarrow \mathcal{O}(p)$ such that

$$
h(c i s)=\text { cis } \cap p, c i s \in \mathcal{O}(p \max )
$$

Now

$$
\begin{aligned}
& h\left(\operatorname{Join}_{C}(c i s 1, c i s 2)\right)=(c i s 1 \cup c i s 2) \cap p=(c i s 1 \cap p) \cup(c i s 2 \cap p)=\operatorname{Join}_{C}(h(c i s 1), h(c i s 2)) \\
& h\left(\operatorname{Meet}_{C}(c i s 1, c i s 2)\right)=(c i s 1 \cap c i s 2) \cap p=(c i s 1 \cap p) \cap(c i s 2 \cap p)=\operatorname{Meet}_{C}(h(c i s 1), h(c i s 2))
\end{aligned}
$$

According to the definition of constants $(174.8,168)$ we have

$$
\begin{aligned}
& h\left(c_{p \max }()\right)=c \operatorname{Value}_{C}(\text { pmax })(c) \cap p=\operatorname{DownSet}(p \max )(\{m k-C I(\{c\})\}) \cap p \\
& =\{m k-C I(c s) \mid m k-C I(c s) \in \operatorname{pmax} \cdot c \in c s\} \cap p \\
& =\{m k-C I(c s) \mid m k-C I(c s) \in \operatorname{pmax} \cap p \cdot c \in c s\} \\
& =c \operatorname{Value}_{C}(p)(c)=c_{p}()
\end{aligned}
$$

Similar for the constants TOP and BOTTOM.
Finally we must consider the attribution operation.

$$
\begin{aligned}
& h\left(\text { Attribution }_{C A}(p \max )(\alpha)(\text { cis })\right)=\text { Attribution }_{C A}(p \max )(\alpha)(c i s) \cap p \\
& =\text { Attribution }_{C A}(p)(\alpha)(\text { cis })
\end{aligned}
$$

Consequently $h$ is a homomorphism.
One should notice, that although $\mathcal{C} \mathcal{A}\left(\right.$ cset, aset, pmax) is initial in the class $C_{C A-e q s}$, $\mathcal{C} \mathcal{A}($ cset, aset, pmax $)$ is certainly not a freely generated algebra. Due to the finite attribution approach we know that for some level of attribution nesting the term $a(a(\ldots a(c) \ldots))$ will evaluate to $\perp$. This equality in $\mathcal{C} \mathcal{A}($ cset, aset, $\operatorname{pmax})$ is not derivable from the set of equations from which pmax was computed.

## 13 The Concept Algebra of Anti-chains

In this section we define the concept algebra of anti-chains corresponding to the lattice of anti-chains defined in 4.1. Given a concept algebra $\mathcal{C} \mathcal{A}($ cset, aset, $p$ ) we can easily define the isomorphic lattice where the elements are the antichain-part of the elements in $\mathcal{O}(p)$. As in section 4.1, we denote the set of new lattice elements $\mathcal{N}(p)$. It is defined as in 43 . The corresponding algebra is
$\mathcal{N C \mathcal { A }}($ cset, aset,$p)=$
. 1

$$
<\mathcal{N}(p) ; \text { Join }_{N}, \text { Meet }_{N}, A_{N}(p)(\text { aset }), C_{N}(p)(\text { cset }), \operatorname{TOP}_{N}, \text { воттом }_{N}>
$$

where $\operatorname{Join}_{N}$, Meet $_{N}, C_{N}(p)(c s e t), \operatorname{TOP}_{N}$, Bотtom $_{N}$ and also $I S A_{N}$ are as defined in section 4.1. Compared to section 4.1 we now also have to redefine the unary operators corresponding to the set of attributes aset :

$$
A_{N}(p)(\text { aset })=\left\{\text { Attribution }_{N}(p)(\alpha) \mid \alpha \in \text { aset }\right\}
$$

where

```
263.0 Attribution \(_{N}: P O \rightarrow A \rightarrow C I\)-set \(\rightarrow C I\)-set
 \(.1 \quad\) Attribution \(_{N}(p)(\alpha)(a c) \triangle \operatorname{AntiCh}\left(\operatorname{Attribution}_{C A}(p)(\alpha)(\operatorname{DownSet}(p)(a c))\right)\)
```

Here Attribution $_{N}$ is defined from Attribution $_{C A}$ (def. 169) by converting between down-sets and anti-chains using DownSet and AntiCh (in the same way as was done in section 4.1). Given the definitions of the operations in $\mathcal{N C \mathcal { A }}($ cset, aset, $p$ ) we can now define the evaluation of terms in the new algebra:

```
264.0 Eval \(_{N C A}: P O \rightarrow\) Term \(\rightarrow C I\)-set
\(\operatorname{Eval}_{N C A}(p)(t) \triangle\)
 cases \(t\) :
 \(m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{N}(p)\left(\operatorname{Eval}_{N C A}(p)\left(t_{1}\right), \operatorname{Eval}_{N C A}(p)\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{N}(p)\left(\operatorname{Eval}_{N C A}(p)\left(t_{1}\right), \operatorname{Eval}_{N C A}(p)\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Attr}(\alpha, t) \rightarrow \operatorname{Attribution}_{N}(p)(\alpha)\left(\operatorname{Eval}_{N C A}(p)(t)\right)\),
 \((\mathrm{TOP}) \rightarrow \operatorname{AntiCh}(p)\),
 (воттом) \(\rightarrow\}\),
 \(c \rightarrow c\) Value \(_{N}(p)(c)\)
 end
```

In section 4.1 it was shown how the operations $J o i n_{N}$, Meet $_{N}, c$ Value $_{N}$ and $I S A_{N}$ could be implemented directly as operations on anti-chains without having to convert between downsets and anti-chains. We can do the same with Attribution $_{N}$. If we use the definition of Attribution $_{C A}$ we get

$$
\begin{aligned}
& \operatorname{Attribution}_{N}(p)(\alpha)(a c) \\
& =\operatorname{AntiCh}^{\operatorname{DownSetC}(p)(\{\operatorname{attrCI}(\alpha)(c i) \mid \operatorname{ci} \in \operatorname{DownSet}(p)(a c)\}))} \\
& =\operatorname{CISproj}(p)(\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in a c\})
\end{aligned}
$$

where $a t t r C I$ is defined in 170. So together with the operations defined in section 4.1 we have an implementation of all the operations in $\mathcal{N C \mathcal { A }}$ (cset, aset, $p$ ) working directly on the anti-chain values.

### 13.1 Evaluation in the Power Set Partial Order

We saw in section 7 that in order to make an efficient implementation of the most disjoint lattice we needed an efficient implementation of the evaluation function, which evaluates in the power-set partial order. So here we do the same again, so we have it ready for section 15 . We define the specialized function $E v a l_{N C A P}$ such that
265.0 $\quad \operatorname{Eval}_{N C A P}($ bset $)(t)=\operatorname{Eval}_{N C A}(\mathcal{P}($ bset $))(t)$

```
266.0 Eval \(_{N C A P}:\) Bset \(\rightarrow\) Term \(\rightarrow C I\)-set
\(\operatorname{Eval}_{N C A P}(b s e t)(t) \triangle\)
 cases \(t\) :
 \(m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{N C A P}\left(\operatorname{Eval}_{N C A P}(b s e t)\left(t_{1}\right), \operatorname{Eval}_{N C A P}(b s e t)\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{N C A P}\left(\right.\) Eval \(_{N C A P}(b s e t)\left(t_{1}\right)\), Eval \(\left._{N C A P}(b s e t)\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Attr}(\alpha, t) \rightarrow\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in \operatorname{Eval}_{N C A P}(\right.\) bset \(\left.)(t)\right\}\),
 \((\mathrm{TOP}) \rightarrow\{m k-C I(\{b\}) \mid b \in b s e t\}\),
 (BOTTOM) \(\rightarrow\}\),
 \(c \rightarrow\{m k-C I(\{c\})\}\)
 end
```

In order to have the full definition of $E v a l_{N C A P}$ available here we repeat the definitions from section 7 :

```
267.0
 \(J o i n_{N C A P}: C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set
 \(\operatorname{Join}_{N C A P}\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiCh}\left(a c_{1} \cup a c_{2}\right)\)
Meet \(_{N C A P}: C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set
\(\operatorname{Meet}_{N C A P}\left(a c_{1}, a c_{2}\right) \triangle\)
 let \(c i s=\left\{m k-C I\left(b s_{1} \cup b s_{2}\right) \mid m k-C I\left(b s_{1}\right) \in a c_{1}, m k-C I\left(b s_{2}\right) \in a c_{2}\right\}\) in
 AntiCh(cis)
```

As can be seen from the definition of $E v a l_{N C A P}$ above it is only the term TOP that actually uses the bset-argument. Later we will find it convenient to have a version of Eval ${ }_{N C A P}$ which do not need the bset argument and consequently only can evaluate restricted terms not containing a TOP-subterm:

```
269.0 Eval \(_{N C A P}^{\prime}: T e r m r \rightarrow C I\)-set
 \(\operatorname{Eval}_{N C A P}^{\prime}(t) \triangle\)
 cases \(t\) :
 \(m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{N C A P}\left(\operatorname{Eval}_{N C A P}^{\prime}\left(t_{1}\right), \operatorname{Eval}_{N C A P}^{\prime}\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{N C A P}\left(\operatorname{Eval}_{N C A P}^{\prime}\left(t_{1}\right), \operatorname{Eval}_{N C A P}^{\prime}\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Attr}(\alpha, t) \rightarrow\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in \operatorname{Eval}_{N C A P}^{\prime}(t)\right\}\),
 (BOTTOM) \(\rightarrow\}\),
 \(c \rightarrow\{m k-C I(\{c\})\}\)
 end
```


## 14 The Most Disjoint Concept Algebra

In order to define the concept of a most disjoint concept algebra - corresponding to the most disjoint lattice defined in section 6 - we must prove lemmas and theorems corresponding to the lemmas and theorems in section 6.2. We will consider the special term value preserving properties in concept algebras, so compared to the proofs in section 6.2 we will assume that the partial order is attribute consistent.

## Lemma

```
\(270.0 \quad \forall t:\) Term, \(p m: P O\).
 . \(1 \quad\) IsAttrConsistent \((p m) \Rightarrow\)
 .2 let \(p t n=\operatorname{Eval}_{N C A}(p m)(t)\) in
 . \(3 \quad \forall p: P O \cdot p t n \subseteq p \wedge p \subseteq p m \wedge \operatorname{IsAttrConsistent}(p)\)
 \(.4 \quad \Rightarrow \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)=\operatorname{Eval}_{C A}(p t n)(t)\)
```

Evaluating a term $t$ (using $E v a l_{N C A}$ ) in an attribute consistent partial order $p m$ and in any attribute consistent subset partial order $p$, which includes the normal form value $p t n$ of the term $t$ in $p m$, yields the same normal form value.

Proof: Assume the left hand side

```
271.0 ptn \subseteqp\wedgep\subseteqpm^IsAttrConsistent(p)
```

From the term-value property 242 and the two rightmost conjuncts in 271 we get

```
272.0 EvalCA}(p)(t)\subseteq\mp@subsup{\operatorname{Eval}}{CA}{}(pm)(t
 .1 Eval}\mp@subsup{\operatorname{EA}}{(p)(t)=Eval}{CA}(pm)(t)\cap
```

From 270.2 we now get

$$
p t n=\operatorname{Eval}_{N C A}(p m)(t)=\operatorname{AntiCh}\left(\operatorname{Eval}_{C A}(p m)(t)\right) \subseteq \operatorname{Eval}_{C A}(p m)(t)
$$

because an anti-chain of a set $d s$ is a subset of $d s$. Combining this subset inclusion with the left conjunct in 271 gives

$$
\begin{aligned}
& p \operatorname{tn} \subseteq \operatorname{Eval}_{C A}(p m)(t) \cap p \\
& =\operatorname{Eval}_{C A}(p)(t)
\end{aligned} \quad \text { from } 272.1
$$

Again, combining this subset inclusion with the one in 272.0 gives

$$
p t n=\operatorname{AntiCh}\left(\operatorname{Eval}_{C A}(p m)(t)\right) \subseteq \operatorname{Eval}_{C A}(p)(t) \subseteq \operatorname{Eval}_{C A}(p m)(t)
$$

If we use the anti-chain property 21 to the above subset inclusion of an antichain we get

$$
\operatorname{AntiCh}\left(\operatorname{Eval}_{C A}(p)(t)\right)=\operatorname{AntiCh}_{\left(\operatorname{Eval}_{C A}(p m)(t)\right)}
$$

which is equivalent to

$$
\text { 273.0 } \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)
$$

Next we prove the equality to $E v a l_{C A}(p t n)(t)$. From 175.1 we get

$$
\operatorname{Eval}_{C A}(p t n)(t) \subseteq p t n
$$

$p t n$ is an anti-chain and so are all of its subsets, so $\operatorname{Eval}_{C A}(p t n)(t)$ is an anti-chain. From the anti-chain property 20 we then get

$$
\operatorname{Eval}_{N C A}(p t n)(t)=\operatorname{AntiCh}\left(\operatorname{Eval}_{C A}(p t n)(t)\right)=\operatorname{Eval}_{C A}(p t n)(t)
$$

Finally from 273 for $p=p t n$ and the equality above we get

$$
\operatorname{Eval}_{N C A}(p m)(t)=\operatorname{Eval}_{N C A}(p t n)(t)=\operatorname{Eval}_{C A}(p t n)(t)
$$

which together with the equality in 273 gives the equalities in 270.4.

## Lemma

```
\(274.0 \quad \forall t:\) Term, pm: PO.
IsAttrConsistent \((p m) \Rightarrow\)
 let \(p t n=\operatorname{Eval}_{N C A}(p m)(t)\) in
 \(\forall p: P O \cdot \neg p t n \subseteq p \Rightarrow \operatorname{Eval}_{N C A}(p)(t) \neq \operatorname{Eval}_{N C A}(p m)(t)\)
```

Evaluating a term $t$ (using $E v a l_{N C A}$ ) in an attribute consistent partial order $p m$ and in any subset partial order $p$, which does not include the normal form value of the term $t$ in $p m$ yields different normal form values.

Proof: Assume the left hand side of the implication:

$$
\neg p t n \subseteq p
$$

so $p t n$ has a non-empty subset not in $p$ :

$$
\left\} \subset p t n \backslash p \subseteq p t n=\operatorname{Eval}_{N C A}(p m)(t)\right.
$$

So $E v a l_{N C A}(p m)(t)$ has a nonempty subset, which is not in $p$. But for $\operatorname{Eval}_{N C A}(p)(t)$ we have

$$
\operatorname{Eval}_{N C A}(p)(t) \subseteq \operatorname{Eval}_{C A}(p)(t) \subseteq p
$$

Hence

$$
\operatorname{Eval}_{N C A}(p m)(t) \neq \operatorname{Eval}_{N C A}(p)(t)
$$

The properties in lemma 270 and 274 can now be combined in the following theorem:

## Theorem

```
275.0 \forallt:Term,pm: PO.
 .1 IsAttrConsistent (pm) =>
 .2 let ptn = Eval NCA (pm)(t) in
 .3 \forallp:PO \cdotp\subseteqpm^IsAttrConsistent (p) =>
 .4 ptn\subseteqp}\Leftrightarrow\mp@subsup{Eval}{NCA}{}(p)(t)=\mp@subsup{\operatorname{Eval}}{NCA}{}(pm)(t
```

The proof follows directly from the lemmas 270 , and 274 . The theorem above shows that if we want to have the term $t$ evaluated to the same normal form value as in the given partial order $p m$, then we can use exactly all the subsets of $p m$, which are attribute consistent and contain the normal form value of the term in $p m$.

Next, we consider a set of terms and a partial order $p m$. In which sub partial orders will all the given terms have the same normal form value as in $p m$ ? So the first question is what to do if we want to preserve the value of two terms $t_{1}$ and $t_{2}$ ? For $t_{1}$ we can use all the attribute consistent partial orders between $\operatorname{Eval}_{N C A}(p m)\left(t_{1}\right)$ and $p m$, and for $t_{2}$ we can use all the attribute consistent partial orders between $\operatorname{Eval}_{N C A}(p m)\left(t_{2}\right)$ and $p m$. Actually, the smallest attribute consistent partial order between $E v a l_{N C A}(p m)\left(t_{1}\right)$ and $p m$ is $\operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)\left(t_{1}\right)\right)$ and similar for the $t_{2}$ case. Consequently, to keep the value of both $t_{1}$ and $t_{2}$ we can use all the attribute consistent partial orders between $\operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)\left(t_{1}\right)\right) \cup \operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)\left(t_{2}\right)\right)$ and $p m$. The next theorem generalizes this to an arbitrary set of terms: Given a set of terms and a partial order $p m$. In which sub partial orders will all the given terms have the same normal form value as in $p m$ ? The next theorem corresponds to theorem 81.

## Theorem

```
\(276.0 \quad \forall\) tset : Term-set, \(p m: P O\).
 . \(1 \quad\) IsAttrConsistent \((p m) \Rightarrow\)
 .2 let \(p t s=\bigcup\left\{\operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)(t)\right) \mid t \in t s e t\right\}\) in
 \(.3 \quad \forall p: P O \cdot p \subseteq p m \wedge \operatorname{IsAttrConsistent}(p) \Rightarrow\)
 . 4
 \(\left(p t s \subseteq p \Leftrightarrow \forall t \in t s e t \cdot \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)\right)\)
```

Proof: Assume the left hand side of the two outermost implications above

```
277.0 IsAttrConsistent (pm)}\wedge \IsAttrConsistent (p)\wedgep\subseteqp
```

Now, to prove the right hand side equivalence, we prove the left to right and right to left implications individually.
Left to Right: So we first assume the left hand side

$$
278.0 \quad p t s \subseteq p
$$

Next, let $t$ be an arbitrary term in tset:

$$
t \in t s e t
$$

According to the theorem 275 and the assumptions in 277 we then have
279.0

$$
\operatorname{Eval}_{N C A}(p m)(t) \subseteq p \Leftrightarrow \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)
$$

Because $\operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)(t)\right)$ is the smallest attribute consistent partial order that contains $E v a l_{N C A}(p m)(t)$ and $p$ is attribute consistent we have

$$
280.0 \quad \operatorname{Eval}_{N C A}(p m)(t) \subseteq p \Leftrightarrow \operatorname{extCIS}^{\left(\operatorname{Eval}_{N C A}(p m)(t)\right) \subseteq p}
$$

so we may rewrite 279 above to

```
\(281.0 \quad \operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)(t)\right) \subseteq p \Leftrightarrow \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)\)
```

From 278 and the definition of $p t s$ the left hand side above is true and consequently also the right hand side:

$$
\operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)
$$

Right to Left: Next, we must prove the right to left implication in the equivalence:

$$
\left(\forall t \in t s e t \cdot \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)\right) \Rightarrow p t s \subseteq p
$$

so assume

$$
\forall t \in t s e t \cdot \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m)(t)
$$

From 277 and theorem 275 this may be transformed to $\forall t \in t s e t \cdot \operatorname{Eval}_{N C A}(p m)(t) \subseteq p$
Again, if we use that $p$ is attribute consistent and that $\operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(p m)(t)\right)$ is the smallest attribute consistent partial order containig $\operatorname{Eval}_{N C A}(p m)(t)$ we get

$$
\forall t \in t s e t \cdot \operatorname{ext} C I S\left(\operatorname{Eval}_{N C A}(p m)(t)\right) \subseteq p
$$

So

$$
\bigcup\left\{\operatorname{Eval}_{N C A}(p m)(t) \mid t \in t s e t\right\} \subseteq p
$$

which is equivalente to

$$
p t s \subseteq p
$$

### 14.1 The Most Disjoint Concept Algebra and its Properties

Given a set of basic concepts, a set of equations eqs and a set of user-specified inserted terms, the function below now finds the partial order for the concept algebra which we call the most disjoint concept algebra with respect to the given set of terms.

$$
\begin{array}{rc}
282.0 & \text { TMdisjPO }_{C A}: \text { Bset } \rightarrow \text { Eq-set } \rightarrow \text { Term-set } \rightarrow P O \\
.1 & \text { TMdisjPO }_{C A}(\text { bset })(\text { eqs })(\text { insterms }) \triangleq \\
.2 & \text { let } p \max =\operatorname{MaxPO} O_{C A}(\text { bset })(\text { eqs }) \text { in } \\
.3 & \cup\left\{\operatorname{extCIS}\left(\operatorname{Eval}_{N C A}(\text { pmax })(t)\right) \mid t \in \text { insterms }\right\}
\end{array}
$$

In 282.2 pmax is the maximal partial order satisfying the given set of equations eqs. In line 282.3 the most disjoint concept algebra is defined to be the set of concept-intersections which is the union of the extended normal form value in pmax of all the inserted terms.

From theorem 276 and the definition of the most disjoint concept algebra above we can easily derive the following property for most disjoint concept algebras:

Term-value Preserving Property of Most Disjoint Concept Algebra Let bset be a set of basic concepts, eqs a set of equations about these concepts and insterms a set of user specified inserted terms.

```
283.0 let pmax \(=\operatorname{MaxPO}_{C A}(\) bset \()(\) eqs \()\),
 \(p m d s j=T M d i s j P O_{C A}(\) bset \()(\) eqs \()(\) insterms \()\) in
\(\forall p: P O \cdot p \subseteq p \max \wedge I\) sAttrConsistent \((p) \Rightarrow\)
 \(\left(p m d s j \subseteq p \Leftrightarrow \forall t \in\right.\) insterms \(\left.\cdot \operatorname{Eval}_{N C A}(p)(t)=\operatorname{Eval}_{N C A}(p m a x)(t)\right)\)
```

In the most disjoint concept algebra $\mathcal{N C} \mathcal{A}(c s e t$, aset, $p m d s j$ ) all the inserted terms evaluate to the same normal form value as they do in the initial concept algebra $\mathcal{N C} \mathcal{A}$ (cset, aset, pmax). Furthermore, the most disjoint concept algebra is the smallest concept algebra having this property in the sense that all concept algebras based on a partial order not containing pmdsj do not have this property.

Example We continue with the example on page 64. With bset $=\{x, y, a(x), a(y)\}$ and the equation $x \leq y$ we found the maximal partial order pmax


In this partial order pmax the terms $x, y, a(x)$ and $a(y)$ evaluates as follows:

$t$	Eval $_{C A}($ pmax $)(t)$
$x$	$[x, y],[x, y, a(x)],[x, y, a(x), a(y)]$
$y$	$[y],[y, a(y)],[y, a(x), a(y)] \cup$ Eval $_{C A}(p m a x)(x)$
$a(x)$	$[a(x), a(y)],[y, a(x), a(y)],[x, y, a(x), a(y)]$
$a(y)$	$[a(y)],[y, a(y)],[x, y, a(y)] \cup \operatorname{Eval}_{C A}($ pmax $)(a(x))$


$t$	$\operatorname{Eval}_{N C A}($ pmax $)(t)$
$x$	$[x, y]$
$y$	$[y]$
$a(x)$	$[a(x), a(y)]$
$a(y)$	$[a(y)]$

Now, let the set of inserted terms be terms $=\{a(x), a(y)\}$. Following the definition of $T M d i s j P O_{C A}$ (def. 282) we can now construct the corresponding most disjoint concept algebra as follows:

insterm	Eval $_{N C A}($ pmax $)($ insterm $)$	${\operatorname{extCIS}\left(\text { Eval }_{N C A}(\text { pmax })(\text { insterm })\right)}^{\mid a(x)}$
$a(y)$	$[a(x), a(y)]$	$[x, y],[a(x), a(y)]$

So the partial order for the most disjoint concept algebra is the union of the extended normal form values in the right column:

$$
p m d s j=\{[x, y],[a(x), a(y)]\} \cup\{[y],[a(y)]\}
$$



## 15 Implementation of the Most Disjoint Concept Algebra

In this section we show how to make an efficient implementation of the most disjoint concept algebra as defined in 282 section 14.1. We will try to proceed almost as in section 7 . But of course there will be some important differences, which turn up in the way an equation accepts and rejects concept-intersections. Furthermore, in section 7 we gave a very open/general specification of the algorithm which allowed several concrete implementations. Here we will not try to specify such a general algorithm, but we prefer (for the moment/in this report) to specify a very concrete algorithm.

Notice that in order to avoid the explicit knowledge of the set bset of basic concepts we will assume that terms in equations and inserted terms are restricted to terms not containing a TOP-subterm.

Our starting point is the definition of $T M d i s j P O_{C A}$ in 282 , which we repeat here:

```
284.0 TMdisjPO \(C A:\) Bset \(\rightarrow E q\)-set \(\rightarrow\) Termr-set \(\rightarrow P O\)
 TMdisjPO CA \((\) bset \()(\) eqs \()(\) insterms \() \triangleq\)
 let \(p \max =\operatorname{MaxPO} O_{C A}(\) bset \()(\) eqs \()\) in
 \(\bigcup\left\{\operatorname{extCIS}\left(E v a l_{N C A}(\right.\right.\) pmax \(\left.)(t)\right) \mid t \in\) insterms \(\}\)
```

As in section 7 the main task is to find a way to compute $E v a l_{N C A}(p \max )(t)$ for each inserted term without having pmax available. Corresponding to 89 in section 7 we have a similar lemma:

## Lemma: Term Evaluation using Projection

285.0

$$
\operatorname{Eval}_{N C A}(p \max )(t)=C \operatorname{ISproj}(\text { pmax })\left(\operatorname{Eval}_{N C A}(\mathcal{P}(\text { bset }))(t)\right)
$$

The proof is similar to the proof for 89 .

### 15.1 Projection into pmax.

The equation 285 above shows that we must look for a projection function $c$ Proj such that

$$
c \operatorname{Proj}(b s e t, n e q s)(c i s)=C I S p r o j(p \max )(c i s)
$$

where bset is the set of basic concepts and neqs is the normalized equations corresponding to the equations used to compute pmax. Having such a function makes it easy to compute $\operatorname{Eval}_{N C A}(\operatorname{pmax})(t)$ by combining the equation above with 285 and 265:

$$
\operatorname{Eval}_{N C A}(\text { pmax })(t)=c \operatorname{Proj}(\text { bset, neqs })\left(\text { Eval }_{N C A P}(\text { bset })(t)\right)
$$

However, because we only allow restricted terms (witout TOP) in the specification of a lattice and we in the approach shown in the sequel never compute pmax, we will never need bset. The equations above may then be simplified to
$286.0 \quad c \operatorname{Proj}(n e q s)(c i s)=\operatorname{CISproj}(p \max )(c i s)$
287.0 $\operatorname{Eval}_{N C A}(p \max )(t)=c \operatorname{Proj}(n e q s)\left(\operatorname{Eval}_{N C A P}^{\prime}(t)\right)$, where $t:$ Termr

The projection function must take the elements in $\operatorname{Eval}_{N C A}(\mathcal{P}(b s e t))(t)$ which are not already in $p \max$ (in figure 10 the black bullets outside $p \max$ ) and project them down into $p \max$. An element is outside pmax if and only if it is rejected by an equation or after rejection has been removed by restriction (according to 260 ). So next we must consider how to decide if a concept-intersection is rejected by an equation. From the description (in sect. 12.2) of the subtractive method to construct pmax we have the following: Let $t 1_{j}=t 2_{j}$ be an equation from the given set of equations, let $p_{c}=\mathcal{P}$ (bset) and let

$$
\operatorname{cis} 1_{j}=\operatorname{Eval}_{C A}\left(p_{c}\right)\left(t 1_{j}\right) \text { and } \operatorname{cis} 2_{j}=\operatorname{Eval}_{C A}\left(p_{c}\right)\left(t 2_{j}\right)
$$

then eqrej $0_{j}=\left(c i s 1_{j} \cup c i s 2_{j}\right) \backslash\left(c i s 1_{j} \cap c i s 2_{j}\right)$ is a set of concept-intersections which must be rejected. Considering all the equations we have (according to 260)

$$
p \max =\operatorname{restr} C I S\left(p_{c} \backslash\left(e q r e j 0_{1} \cup e q r e j 0_{2} \cup \ldots \cup e q r e j 0_{n}\right)\right)
$$

The concept-intersection-set eqrej $0_{j}$ is called the equations reject-region. Because the set with the rejected elements is furthermore restricted to make it attribute consistent, we say that the concept-intersections in eqrej $0_{j}$ are directly rejected by the equation. Our next task is to understand how the elements that are removed by the restriction are related to the directly rejected elements.

We want to investigate if a concept-intersection $c i$ is rejected by an equation eq. It is rejected if $c i$ is directly rejected by the equation, but assume it is not. Furthermore assume $\operatorname{AttrsInCI}(c i) \neq\{ \}$ and let $\alpha \in \operatorname{AttrsInCI}(c i)$. Then the $\alpha$-attribution argument $c i^{\prime}=\operatorname{Attr} \operatorname{Arg} C I(\alpha)(c i)$ exists. If the $\alpha$-attribution argument $c i^{\prime}$ is rejected by the equation by being directly rejected by $e q$, so $c i^{\prime} \notin p \max$, then $c i$ is missing its $\alpha$-attribution argument. So if $c i \in p \max$ then $p \max$ would not be attribute consistent. Consequently we must reject
$c i$ as well. In the same way we may argue that if $c i^{\prime}$ has one of its $\alpha$-attribution arguments rejected, then $c i^{\prime}$ must also be rejected and then also $c i$.

The table in figure 17 shows a concept-intersection $c i$ at the top-line. Every line, except the top-line, contains all possible $\operatorname{Attr} \operatorname{Arg} C I(\alpha)(c i)$ for all concept-intersections $c i$ on the line above it. Consequently, if any concept-intersection $c i^{\prime}$ in this table is being directly rejected by an equation, then that $c i^{\prime}$ is rejected and also the concept-intersection above of which it is an $\alpha$-attribution argument and so on upwards until $c i$ at the top-line. For instance, if in figure $17-c i_{3}$ is directly rejected by an equation, then also $c i_{1}$ and $c i$ are rejected.

$$
\begin{aligned}
& c i=[a, \alpha(b), \alpha(\beta(c)), \alpha(\beta(d)), \gamma(e), \gamma(\beta(f))] \\
& c i_{1}=[b, \beta(c), \beta(d)], c i_{2}=[e, \beta(f)] \\
& c i_{3}=[c, d], c i_{4}=[f]
\end{aligned}
$$

Figure 17: The set of all $\operatorname{Attr} A r g C I$ for the top-most concept-intersection
The function AllAttrArgs defined below finds for a set of concept-intersections cis the set of all possible $\alpha$-attribution arguments as illustrated in the table in figure 17 above:

```
288.0 AllAttrArgs : CI-set \(\rightarrow C I\)-set
AllAttrArgs \((\) cis \() \triangleq\)
 let attrArgs \(=\bigcup\{\{\operatorname{AttrArgCI}(\alpha)(c i) \mid \alpha \in \operatorname{AttrsInCI}(c i)\} \mid c i \in c i s\}\) in
 cis \(\cup\)
 if \(\operatorname{attrArgs}=\{ \}\) then \(\}\) else AllAttrArgs(attrArgs)
```

A concept-intersection $c i$ is rejected by an equation if any of the concept-intersections in AllAttrArgs $(\{c i\})$ are rejected by the equation. In order to treat these matters we introduce the normalized equations exactly as in section 7 :

```
types
```

289.0 $N E q:: \quad C I$-set $\times C I$-set
290.0 EvalEq : Eq $\rightarrow N E q$

```
\(\operatorname{EvalEq}\left(m k-E q\left(t_{1}, t_{2}\right)\right) \triangle\)
 let \(a c_{1}=\operatorname{Eval}_{N C A P}^{\prime}\left(t_{1}\right)\),
 \(a c_{2}=\) Eval \(_{N C A P}^{\prime}\left(t_{2}\right)\) in
 \(m k-N E q\left(J o i n_{N C A P}\left(a c_{1}, a c_{2}\right), \operatorname{Meet}_{N C A P}\left(a c_{1}, a c_{2}\right)\right)\)
```

Notice that we do not need the set bset of basic concepts to evaluate the equation terms, because these terms are restricted terms with no TOP-subterms. We will evaluate all the equations in this way:

```
291.0 EvalEqs : Eq-set \(\rightarrow N E q\)-set
 . \(1 \quad \operatorname{EvalEqs}(e q s) \triangleq\{\operatorname{EvalEq}(e q) \mid e q \in e q s\}\)
```

Let eqs be the given set of equations, then we will use the set of normalized equations neqs $=$ EvalEqs (eqs) to (implicitly) represent pmax.

The function InEqDirectRej defined below tells if a concept-intersection is directly rejected by an equation by being in the equations rejection region:

```
292.0 InEqDirectRej :NEq}->CI->\mathbb{B
InEqDirectRej (mk-NEq(ac},ac2,m))(ci)
 ISAN
```

Now we can define a function $I s E q R e j e c t e d$ corresponding to the $I n E q R e j$-function defined in 99:
293.0 IsEqRejected $: N E q \rightarrow C I \rightarrow \mathbb{B}$

IsEqRejected $(n e q)(c i) \triangleq$
. 2 let $\operatorname{attrArgs}=\operatorname{AllAttrArgs}(\{c i\})$ in
. $3 \quad \exists$ aci $\in$ attrArgs $\cdot$ InEqDirectRej $(n e q)($ aci $)$
In words, the concept-intersection $c i$ is rejected if $c i$ itself or any of its attribution arguments are directly rejected.

### 15.2 Computing Upper Bounds

If a concept-intersection $c i$ is directly rejected by a normalized equation $m k-N E q(u, m)$, then we know that all concept-intersections below $\left(I S A_{P}\right) c i$, which are in pmax must be below some concept-intersection in $m$, so we have:

```
294.0 InEqDirectRej(mk-NEq(-, m))(ci) => ISAN (CISproj(pmax)({ci}),m)
```

But what if a concept-intersection is indirectly rejected? To solve this problem we have the following lemma, which relates the projections of a concept-intersection $c i$ and its attribution arguments:

## Lemma:

```
\(295.0 \forall\) eqs : Eq-set, ci: \(C I, u p l_{\text {arg }}\) : \(C I\)-set, bset : Bset.
 . \(1 \quad \forall \alpha \in\) AttrsInCI (ci) .
 .2 let \(\operatorname{pmax}=\operatorname{MaxPO}_{C A}(\) bset \()(\) eqs \()\),
 \(c i_{\text {arg }}=\operatorname{AttrArgCI}(\alpha)(c i) \mathrm{in}\)
 \(\left(I S A_{S}\left(u p l_{\text {arg }},\left\{c i_{\text {arg }}\right\}\right) \wedge I S A_{S}\left(C I S p r o j(p \max)\left(\left\{c i_{\text {arg }}\right\}\right), u p l_{\text {arg }}\right)\right.\)
 \(\Rightarrow\)
 let \(u p l=\operatorname{Meet}_{N C A P}\left(\{c i\}, a t C I s(\alpha)\left(u p l_{\text {arg }}\right)\right)\) in
 \(I S A_{S}(u p l,\{c i\}) \wedge\)
 \(\left.I S A_{S}(\operatorname{CISproj}(p \max)(\{c i\}), u p l)\right)\)
```

In words, if $c i_{\text {arg }}$ is the $\alpha$-attribution argument of $c i$, and upl arg an upper-bound for $C I S p r o j(\operatorname{pmax})\left(\left\{c i_{\text {arg }}\right\}\right)$, then $\operatorname{Meet}_{N C A P}\left(\{c i\}\right.$, atCIs $\left.(\alpha)\left(u p l_{\text {arg }}\right)\right)$ will be an upper-bound for CISproj $\operatorname{pmax})(\{c i\})$. Of course, this property is a consequence of pmax being attribute consistent. The lemma and its proof is illustrated in figure 18.

In order to prove 295 above we need some auxiliary lemmas:


Figure 18: Illustation of proof for lemma 295

## AuxLemma:

```
296.0 \(I S A_{S}\left(c i s, c i s_{1}\right) \wedge I S A_{S}\left(c i s, c i s_{2}\right) \Rightarrow I S A_{S}\left(c i s, \operatorname{Meet}_{N C A P}\left(\right.\right.\) cis \(\left.\left._{1}, c i s_{2}\right)\right)\)
```

Proof: Assume the left hand side of the implication above:

$$
I S A_{S}\left(c i s, c i s_{1}\right) \wedge I S A_{S}\left(c i s, c i s_{2}\right)
$$

If we use the definition of $I S A_{S}$ (104) we get

$$
\begin{aligned}
& \forall m k-C I(b s) \in c i s \cdot \exists m k-C I\left(b s_{1}\right) \in c i s_{1} \cdot b s_{1} \subseteq b s \wedge \\
& \forall m k-C I(b s) \in c i s \cdot \exists m k-C I\left(b s_{2}\right) \in c i s_{2} \cdot b s_{2} \subseteq b s
\end{aligned}
$$

which can be rewritten to

```
\(297.0 \quad \forall m k-C I(b s) \in c i s\).
 \(\exists m k-C I\left(b s_{1}\right) \in c i s_{1}, m k-C I\left(b s_{2}\right) \in c i s_{2} \cdot b s_{1} \cup b s_{2} \subseteq b s\)
```

Again, using the definition of $I S A_{S}$ (104) gives

```
let \(m c i s=\left\{m k-C I\left(b s_{1} \cup b s_{2}\right) \mid m k-C I\left(b s_{1}\right) \in c i s_{1}, m k-C I\left(b s_{2}\right) \in c i s_{2}\right\}\) in
\(I S A_{S}(c i s, m c i s)\)
```

Next, a little bit informally, as $m k-C I\left(b s_{i}\right) \in c i s_{i}, i=1,2$, that exists in 297 satisfies $b s_{1} \cup b s_{2} \subseteq b s$, then every concept-intersection above it in $c i s_{i}$ will also satisfy this subset inclusion so we may actually conclude that

```
let mcis = AntiCh{mk-CI(bs \cup Us\mp@subsup{s}{2}{})|mk-CI(bs⿱1) {cis
ISAS(cis,mcis)
```

Finally, from the definition of $\operatorname{Meet}_{N C A P}$ (268) we then get

$$
I S A_{S}\left(c i s, \operatorname{Meet}_{N C A P}\left(c i s_{1}, c i s_{2}\right)\right)
$$

## AuxLemma:

```
\(298.0 \forall\) upl \(_{\text {arg }}: C I\)-set, ciprj : \(C I\).
 \(.1 \quad I S A_{S}\left(\{\operatorname{AttrArg} C I(\alpha)(\right.\) ciprj \()\}\), upl \(\left._{\text {arg }}\right) \Rightarrow I S A_{S}\left(\{\operatorname{ciprj}\}, \operatorname{atCIs}(\alpha)\left(\right.\right.\) upl \(\left.\left._{\text {arg }}\right)\right)\)
```

The auxiliary lemma and its proof is illustrated in figure 19.
Proof: Below, according to the universal quantifier above let uplarg, ciprj be arbitrary values such that

$$
u p l_{\text {arg }}: C I \text {-set, ciprj }: C I
$$

From the defiition of $I S A_{S}$ we can rewrite 298 above to

```
\(299.0 \quad \exists\) ciuplarg \(\in u p l_{\text {arg }} \cdot I S A_{P}(\) AttrArgCI \((\alpha)(\) ciprj \()\), ciuplarg \() \Rightarrow\)
 . \(1 \exists\) cia \(\in \operatorname{atCIs}(\alpha)\left(\right.\) upl \(\left._{\text {arg }}\right) \cdot I S A_{P}(\) ciprj, cia \()\)
```

To prove the implication in 299 we assume the left hand side 299.0 and prove the right hand side. So let ciuplarg be the concept-intersection that exists according to 299.0. We then get
$300.0 \quad$ ciuplarg $\in$ upl ${ }_{\text {arg }}$,
. $1 \quad \operatorname{ISA}_{P}($ AttrArgCI $(\alpha)($ ciprj $)$, ciuplarg $)$
Applying 180 to ciprj gives

```
301.0 ISAP (ciprj,attrCI (\alpha)(AttrArgCI (\alpha)(ciprj)))
```



Figure 19: Illustation of proof for lemma 298

From the definition of the function $\operatorname{attr} C I$ (170) we can easily conclude that

$$
I S A_{P}\left(c i_{1}, c i_{2}\right) \Rightarrow I S A_{P}\left(\operatorname{attr} C I(\alpha)\left(c i_{1}\right), \operatorname{attr} C I(\alpha)\left(c i_{2}\right)\right)
$$

Applying this to 300.1 gives

$$
I S A_{P}(\operatorname{attr} C I(\alpha)(\operatorname{AtrArg} C I(\alpha)(\text { ciprj })), \operatorname{attrCI}(\alpha)(\text { ciuplarg }))
$$

Combining this with 301 gives
302.0 $\quad I S A_{P}($ ciprj, attrCI $(\alpha)($ ciuplarg $))$

From 300.0 and the definition of atCIs (171) we get

$$
\operatorname{attr} C I(\alpha)(\text { ciuplarg }) \in\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in u p l a r g\}=\operatorname{atCIs}(\alpha)(\text { uplarg })
$$

Finally, combining this with 302 gives
$\exists$ cia $\in \operatorname{atCIs}(\alpha)\left(u p l_{\text {arg }}\right) \cdot I S A_{P}($ ciprj,$~ c i a) ~$
which is the right hand side 299.0 of 299.

We are now ready for a proof of 295.
Proof of 295: In the sequel, according to the universal quantifier in 295 , let eqs, ci, upl $l_{\text {arg }}, b s e t, \alpha$ be arbitrary values such that
eqs : Eq-set, ci : CI, upl larg $: C I$-set, bset : Bset, $\alpha: A, \alpha \in \operatorname{AttrsInCI(ci)}$
We can easily prove the conjunct in 295.7. Let
$303.0 \quad m k-C I(b c i)=c i$

Then

$$
\begin{array}{rl}
304.0 & u p l=\operatorname{Meet}_{N C A P}\left(\{c i\}, \text { atCIs }(\alpha)\left(u p l_{\text {arg }}\right)\right) \\
.1 & \subseteq\left\{m k-C I(b s 1 \cup b s 2) \mid m k-C I(b s 1)=c i, m k-C I(b s 2) \in a t C I s(\alpha)\left(u p l_{\text {arg }}\right)\right\} \\
.2 & =\left\{m k-C I(b c i \cup b s 2) \mid m k-C I(b s 2) \in a t C I s(\alpha)\left(u p l_{\text {arg }}\right)\right\}
\end{array}
$$

From 304 we get
$305.0 \quad \forall c i u \in u p l \cdot \exists m k-C I\left(b s_{2}\right) \in a t C I s(\alpha)\left(u p l_{\text {arg }}\right) \cdot c i u=m k-C I(b c i \cup b s 2)$
Finally 303, 305 and the definition of $I S A_{S}$ and $I S A_{P}$ give
306.0 $I S A_{S}(u p l,\{c i\})$

So the conjunct in 295.7 does not depend on 295.4 at all.
Next we prove the conjunct in 295.8. According to 296 we just have to prove
307.0 $\quad I S A_{S}(\operatorname{CISproj}($ pmax $)(\{c i\}),\{c i\})$,
. $1 \quad I S A_{S}\left(C I S p r o j(p m a x)(\{c i\})\right.$, at $\left.C I s(\alpha)\left(u p l_{\text {arg }}\right)\right)$
The proof of 307.0 follows immediately from the definition of CISproj (26). So below we finally consider the proof of 307.1. According to 295.2, 295.3 let

$$
\begin{array}{rl}
308.0 & p m a x=\operatorname{MaxP} O_{C A}(b s e t)(e q s) \\
.1 & c i_{\text {arg }}=\operatorname{AttrArgCI}(\alpha)(c i)
\end{array}
$$

Furthermore, assume the left hand side (295.4) of the implication. So we have

```
309.0 \(I S A_{S}\left(u p l_{\text {arg }},\left\{c i_{\text {arg }}\right\}\right)\),
 . \(1 \quad \operatorname{ISA} A_{S}\left(C I S p r o j(p m a x)\left(\left\{c i_{\text {arg }}\right\}\right), u p l_{\text {arg }}\right)\)
```

We prove 307.1 by contradiction. So we now also assume

$$
\neg I S A_{S}\left(\operatorname{CISproj}(\operatorname{pmax})(\{c i\}), \text { atCIs }(\alpha)\left(u p l_{\text {arg }}\right)\right)
$$

If we use the definition of $I S A_{S}$ we get

$$
\exists \operatorname{ciprj} \in C I S p r o j(p \max )(\{c i\}) \cdot \forall c i a \in \operatorname{atCIs}(\alpha)(\text { uplarg }) \cdot \neg I S A_{P}(\text { ciprj }, c i)
$$

So let ciprj be the concept-intersection that exists. We then have

```
310.0 ciprj \inCISproj(pmax)({ci}),
 .1 \forallcia }\in\operatorname{atCIs}(\alpha)(uplarg)\cdot\negISAP(ciprj, cia)
```

From 298 and $a \Rightarrow b \Leftrightarrow \neg b \Rightarrow \neg a$ we get

$$
\begin{aligned}
& \forall \text { cia } \in \operatorname{atCIs}(\alpha)(\text { uplarg }) \cdot \neg I S A_{P}(\text { ciprj }, \text { cia }) \Rightarrow \\
& \forall \text { ciuplarg } \in \text { upl } l_{\text {arg }} \cdot \neg I S A_{P}(\text { AttrArgCI }(\alpha)(\text { ciprj }), \text { ciuplarg })
\end{aligned}
$$

Combining this with 310.1 gives

```
311.0 }\forall\mathrm{ ciuplarg }\in\mathrm{ uplarg }\cdot\negIS\mp@subsup{A}{P}{}(\mathrm{ AttrArgCI (}\alpha)(\mathrm{ ciprj), ciuplarg)
```

From 310.0 and the definition of CISproj we have

$$
I S A_{P}(c i p r j, c i)
$$

If we apply this to the implication in 183 we get

$$
I S A_{P}(\operatorname{AttrArg} C I(\alpha)(c i p r j), \operatorname{AttrArg} C I(\alpha)(c i))
$$

which, by use of 308.1, may be rewritten to
312.0 $I S A_{P}\left(\right.$ AttrArg $\left.C I(\alpha)(c i p r j), c i_{\text {arg }}\right)$

From 309.0 and 309.1 we know that every $c i$ in $p \max$ and below $c i_{\text {arg }}$ must also be below $u p l_{\text {arg }}$. From 312 we know that $\operatorname{Attr} \operatorname{Arg} C I(\alpha)(c i p r j)$ is below $c i_{\text {arg }}$, but from 311 we know that it is not below uplarg and then consequently can not be in pmax. So although ciprj $\in$ pmax we have $\operatorname{AttrArg} C I(\alpha)($ ciprj $) \notin p \max$ and consequently pmax can not be attribut consistent. But this is a contradiction as pmax as defined in 308.0 is known to be attribute consistent.

Using lemma 295 to compute upper bounds. Lemma 295 above may help us compute upper bounds for the projection of indirectly rejected concept-intersections. As an example, assume that $c i_{3}$ in figure 17 is directly rejected by the normalized equation $n e q=m k-N E q(u, m)$. Then, according to 294 above, we have

$$
I S A_{N}\left(C I S p r o j(p \max )\left(\left\{c i_{3}\right\}\right), m\right)
$$

We also have

$$
I S A_{N}\left(\operatorname{CISproj}(\operatorname{pmax})\left(\left\{c i_{3}\right\}\right),\left\{c i_{3}\right\}\right)
$$

Put together we get

$$
\begin{aligned}
& u p l_{3}=\operatorname{Meet}_{N C A P}\left(m,\left\{c i_{3}\right\}\right) \\
& \operatorname{ISA}_{N}\left(\operatorname{CISproj}(\text { pmax })\left(\left\{c i_{3}\right\}\right), u p l_{3}\right)
\end{aligned}
$$

As $c i_{3}=\operatorname{Attr} \operatorname{Arg} C I(\beta)\left(c i_{1}\right)$ we may now conclude from 295 that

$$
\begin{aligned}
& u p l_{1}=\operatorname{Meet}_{N C A P}\left(\left\{c i_{1}\right\}, \operatorname{atCIs}(\beta)\left(u p l_{3}\right)\right), \\
& I S A_{S}\left(\operatorname{CISproj}(\operatorname{pmax})\left(\left\{c i_{1}\right\}\right), u p l_{1}\right) \wedge I S A_{S}\left(u p l_{1},\left\{c i_{1}\right\}\right)
\end{aligned}
$$

In the same way, as $c i_{1}=\operatorname{AttrArgCI}(\alpha)(c i)$, we may also conclude that

$$
\begin{aligned}
& u p l=\operatorname{Meet}_{N C A P}\left(\{c i\}, \operatorname{atCIs}(\alpha)\left(u p l_{1}\right)\right) \\
& I S A_{S}(\operatorname{CISproj}(\operatorname{pmax})(\{c i\}), \text { upl }) \wedge I S A_{S}(u p l,\{c i\})
\end{aligned}
$$

So upl is the upper limit for $C I S p r o j(\operatorname{pmax})(\{c i\})$ we are looking for.
Before we proceed with a detailed algorithm for this new way to compute upper bounds we will start with the main algorithm for term evaluation using projection.

### 15.3 The Algorithm for Computing Eval $_{N C A}$

The top functions are almost identical to the functons defined in section 7. First the function which computes $E v a l_{N C A}$ as described in 287:

```
\(313.0 \quad c E v a l N C A: N E q\)-set \(\rightarrow\) Term \(\rightarrow C I\)-set
 \(.1 \quad c E v a l N C A(n e q s)(t) \triangleq c \operatorname{Proj}(n e q s)\left(\right.\) Eval \(\left._{N C A P}^{\prime}(t)\right)\)
```

The projection of the set of concept-intersections - obtained from the evaluation of the term $t$ - into pmax is done by cProj:

```
\(314.0 \quad c\) Proj : NEq-set \(\rightarrow C I\)-set \(\rightarrow C I\)-set
 \(c \operatorname{Proj}(n e q s)(c i s) \triangleq\)
 let \(m k-(-, p c i s)=c I P r o j(n e q s)(\) true \()(c i s,\{ \})(\{ \})\) in
 pcis
```

The only task for $c$ Proj is to start the iterated projection of cis. We will understand the new parameters later.

The Iterated Projection The repeated execution of the projection step is done by the function cIProj defined below:

```
315.0
cIProj : NEq-set \(\rightarrow \mathbb{B} \rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set \(\rightarrow \mathbb{B} \times C I\)-set
cIProj \((\) neqs \()(\) accUnch \()(u p l\), InP \()(p L e v C i s) ~ \triangle ~\)
 let \(m k\)-(newunch, newupl, newInP \()=c \operatorname{ProjStep}(\) neqs \()(\) upl, InP \()(p L e v C i s)\) in
 if newunch
 then \(m k\)-(accUnch, AntiCh (newInP))
 else \(c I P r o j(n e q s)(f a l s e)(\) newupl, newInP) \((p\) LevCis \()\)
```

In each (tail recursive) call of cIProj the function $c$ ProjStep takes the current partial projection upl $\cup I n p$ and yields the next (partial) projection newupl $\cup$ newInp. The projection stops when the new projection has not changed (indicated by newunch); the projection is then in newInP. The parameter accUnch keeps track of changes. If a projection step changes the partial projection then accUnch becomes false, otherwise accUnch is returned with its initial value true.

The Projection Step. As we saw above, the single projection step in the iterated projection is done by the function cProjStep:

```
\(316.0 \quad c\) ProjStep : NEq-set \(\rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set \(\rightarrow \mathbb{B} \times C I\)-set \(\times C I\)-set
cProjStep \((\) neqs \()(\) upl, InP \()(p L e v C i s) ~ \triangle ~\)
 let cupls \(=\{c E q s U p l(n e q s)(p L e v C i s)(c i) \mid c i \in u p l\}\) in
 let \(\operatorname{InP} 1=\{c i \mid m k-((\) true \(),\{c i\}) \in\) cupls \(\}\),
 \(n o t I n P=\left\{u p l^{\prime} \mid m k-\left((\right.\right.\) false \(\left.\left.), u p l^{\prime}\right) \in c u p l s\right\}\),
 newupl \(=\bigcup\) notIn \(P\) in
 \(m k-(n o t I n P=\{ \}\), newupl, In \(P \cup\) InP1 \()\)
```

The concept-intersections which are not yet known to be in pmax are in upl. In order to make the next step in the projection of upl $\cup I n P$, cProjStep makes a separate projection of each $c i \in u p l$ using $c E q s U p l$ (316.2). In 316.3 InP1 is the subset of upl that turned out not to be rejected, neither directly nor indirectly, and consequently is in pmax, and in 316.5 newupl is the union of the new upper-limits for the remainig concept-intersections.

### 15.4 Projecting a Single concept-intersection.

In this section we now consider the algorithms based on the theory outlined in sections 15.1 and 15.2. First we need an auxiliary function. CisMeet $_{\text {NCAP }}($ ciss $)$ defines the greatest lower bound of a set of anti-chains ciss:

```
CisMeet \(_{\text {NCAP }}: C I\)-set-set \(\rightarrow C I\)-set
\(\operatorname{CisMeet}_{N C A P}(\) ciss \() \triangle\)
 cases ciss :
 \(\{c i s\} \rightarrow c i s\),
 \(\{c i s\} \cup\) ciss \(^{\prime} \rightarrow \operatorname{Meet}_{N C A P}\left(c i s\right.\), CisMeet \(_{N C A P}\left(\right.\) ciss' \(\left.\left.^{\prime}\right)\right)\)
 end
pre ciss \(\neq\{ \}\)
```

The computation of an upper-limit for $C I S p r o j(\operatorname{pmax})(\{c i\})$ as described in 15.1 and 15.2, is done by $c E q s U p l(n e q s)(c i)$, defined below. The computation of upper limits is based on indirect as well as direct rejection:

```
\(318.0 \quad c E q s U p l: N E q\)-set \(\rightarrow C I\)-set \(\rightarrow C I \rightarrow \mathbb{B} \times C I\)-set
 \(c E q s U p l(n e q s)(p L e v C i s)(c i) \triangleq\)
 let \(u l s 1=\{m \mid m k-N E q(u, m) \in\) neqs \(\cdot \operatorname{InEqDirectRej}(m k-N E q(u, m))(c i)\}\),
 \(u l s 2=\{\) iupl \(\mid \alpha \in \operatorname{AttrsInCI}(c i)\), iupl \(: C I\)-set.
 \(m k-(\) false, \(i u p l)=c I U p l(n e q s)(\alpha)(p L e v C i s)(c i)\}\) in
 let \(u l s=u l s 1 \cup u l s 2\) in
 cases uls :
 \(\} \rightarrow m k\)-(true, \(\{c i\}\)),
 \(-\rightarrow m k\)-(false, CisMeet \(\left._{N C A P}(\{\{c i\}\} \cup u l s)\right)\)
 end
```

In line $318.2 u l s 1$ is the set of upper limits coming from the equations that directly rejected ci. Next, in line 318.4 uls 2 is the set of upper limits coming from ci being indirectly rejected. We will explain this in more detail below and so also the parameter pLevCis. If the union uls of these sets is empty (318.7) then $c i$ is not rejected, neither direcly nor indirectly, so it is in $p m a x$ (indicated by the first component, true). If uls is not empty (318.8) then the greatest lower bound of $\{\{c i\}\} \cup u l s$ is the new upper limit (se fig. 18 and 295.6). However, we don't know if all the concept-intersections in this new upper limit are in $\operatorname{pmax}$ (indicated by false).

When $c i$ is indirectly rejected the set of upper limits is computed by the function $c I U p l$ defined below (319). If $c I U p l(n e q s)(\alpha)(p L e v C i s)(c i)$ finds that $c i$ is indirectly rejected then it returns with $m k$-(false, iupl), where $i u p l$ is the found upper limit. If $c i$ is not indirectly rejected it returns with $m k$-(true, $\{c i\}$ ).

```
\(319.0 \quad\) cIUpl \(: N E q\)-set \(\rightarrow A \rightarrow C I\)-set \(\rightarrow C I \rightarrow \mathbb{B} \times C I\)-set
 \(c I U p l(n e q s)(\alpha)(p L e v C i s)(c i) \triangleq\)
 let \(c i_{\text {arg }}=\operatorname{Attr} A r g C I(\alpha)(c i)\) in
 let \(m k-(u n c h, p r o j)=\)
 if \(c i_{\text {arg }} \in p L e v C i s\) then \(m k\)-(false, \(\}\))
 else \(c I P r o j(n e q s)(\) true \()\left(\left\{c i_{\text {arg }}\right\},\{ \}\right)\left(p L e v C i s \cup\left\{c i_{\text {arg }}\right\}\right)\) in
 cases unch :
 false \(\rightarrow m k\)-(false, atCIs \((\alpha)(p r o j))\),
 true \(\rightarrow m k\) - (true, \(\{c i\}\))
 end
```

The function $c I U p l$ (compute indirect upper limit) tests if $c i$ is indirectly rejected, and if it is, computes the upper bound according to lemma 295. As illustrated in figure 18, given $c i$ we must first apply $\operatorname{Attr} \operatorname{Arg} C I(\alpha)$ to get the attribution argument $c i_{\text {arg }}$ (line 319.2). Next (line 319.4-319.5) $c i_{\text {arg }}$ must be projected into pmax. First assume $c i_{\text {arg }} \notin p L e v C i s$ (to be explained below); then $c i_{\text {arg }}$ is projected into pmax using the function $c I P r o j$ for iterated projection (defined in 315).

If the iterated projection returns with $m k$-(false, proj) then proj is the projection of $c i_{\text {arg }}$ ( $c i_{\text {arg }}$ is changed), so proj is the best possible upper-limit for the projection; it corresponds to $u p l_{\text {arg }}$ in figure 18. Finally, according to 295.6 (and again figure 18) we must apply atCIs ( $\alpha$ )
to upl $l_{\text {arg }}$ to deliver the contribution to the upper bound for the indirectly rejected $c i$. This is returned together with false to indicate that $c i$ actually was indirectly rejected.

If the iterated projection returned with the first component equal to true, then $c i$ was not indirectly rejected so $c I U p l$ returns the unchanged $c i$ (indicated by true).

Notice that cIUpl after having constructed ciarg starts a new projection using cIProj so we may have an iterated projection running at several levels simultaneously.

Example Consider the example specification

```
equations
 c * a(c) = a(c)
terms a(a(c))
```

The equation corresponds to the $I S A$-relation $a(c) \leq c$ and gives the normalized equation $m k-N E q(\{[a(c)]\},\{[c, a(c)]\})$.


Figure 20: Inserting $a(a(c)$ ), equation: $c * a(c)=\mathrm{a}(\mathrm{c})$
The computation of $c \operatorname{Proj}($ neqs $)(\{[a(a(c))]\})$ is illustrated in figure 20. The upper bounds in the example contains only one concept-intersection. Nodes on vertical lines represent (tail recursive) calls of cIProj and the resulting call of cProjStep and cEqsUpl. The conceptintersections along a vertical line are partial projections with the final projection at the bottom of the line.

A horizontal left arrowed line represents a call of $c I U p l$ with the argument $c i$ at the right end and $c i_{\text {arg }}$ at the left end. A right arrowed line represent return from $c I U p l$. A single lined right arrow means that $c i$ is not indirectly rejected so $c I U p l$ returns $c i$ unchanged. A double lined right arrow indicates that $c i$ is indirectly rejected and the concept-intersection at the right end of the arrow is the found upper bound.

The direct rejection of a concept-intersection $c i$ is indicated by a dotted line from $c i$ down to the normalized equations $m$-part and further down to the new upper bound.

In the example the concept-intersection $c i$ to be projected is at the top right corner, and the final projection at the right bottom corner. After extension the partial order becomes $\{[c, a(c), a(a(c))],[c, a(c)],[c]\}$.

Example Next consider the example specification

```
equations
 c * a(c) = c
terms a(a(c))
```

The equation corresponds to the $I S A$-relation $c \leq a(c)$. From the monotonicity rule for attribution we also have $a(c) \leq a(a(c)), a(a(c)) \leq a(a(a(c)))$, etc. Due to the finite attribution approach, for some level of attribution nesting the term $a(a(\ldots a(c) \ldots))$ will evaluate to $\perp$ and then according to the derived equations above also all terms of the form $c, a(c), a(a(c)), \ldots$. How will this turn up when inserting the term $a(a(c))$ ?


Figure 21: Inserting $a(a(c))$, equation: $c * a(c)=c$
The normalized equation for $\mathrm{c} * \mathrm{a}(\mathrm{c})=\mathrm{c}$ is $m k-N E q(\{[c]\},\{[c, a(c)]\})$. The computation of $c \operatorname{Proj}($ neqs $)(\{[a(a(c))]\})$ is illustrated in figure 21. The upper bounds in the example contains at most one concept-intersection. We use the same notation as in the previous example.

The upper most horizontal line indicates the same sequence of calls of $c I U p l$ as in the previous example, but in this example the concept-intersection [c] (at level 3) is directly rejected and in the first projection step projected down to $[c, a(c)]$. Here $c E q s U p l$ now looks for direct as well as indirect rejection of $[c, a(c)]$. The call of $c I U p l$ with $[c, a(c)]$ then computes $c i_{\text {arg }}=[c]$ and consequently now (at level 4) looks for a projection of $[c]$, exactly as at the previous level 3. The start of this projection is indicated by dashed/dotted arrows to the left. As can be seen, this search for an indirect upper bound will go on for ever. If, hypothetically, an upper bound was found, then an infinitely nested attribution would be returned, which according to the finite attribution approach should be $\perp$.

As can be seen from figure 21, the algorithm will detect that it is starting to look for a projection of a concept-intersection, which it is already looking for at another level and consequently it returns $\}(\perp)$ as the upper bound.

The situation illustrated in the previous example is handled in cIUpl in lines 319.4-319.5. The parameter pLevCis (previous levels $c i$ 's) holds all $c i_{\text {arg }}$ 's for which $c I U p l$ has started a computation of the projection (319.5) leading to the current call of $c I U p l$. If the current $c i$ is in $p$ LevCis then $\}$ is returned (319.4).

### 15.5 Implementing $c T M \operatorname{disjPO}$.

Finally, from the definition of $T M \operatorname{disj} P O_{C A}$ (282) we can now define the function that computes the most disjoint lattice with respect to a given set of terms :

```
\(320.0 \quad c\) TMdisjPO \(:\) Eq-set \(\rightarrow\) Termr-set \(\rightarrow P O\)
cTMdisjPO \((\) eqs \()(\) terms \() \triangle\)
 let neqs \(=\operatorname{EvalEqs}(\) eqs \()\) in
 \(\operatorname{extCIS}(\bigcup\{(c E v a l N C A(\) neqs \()(t)) \mid t \in \operatorname{terms}\})\)
```


## 16 Querying the Concept Algebra

In this section we consider how to extract information from a concept algebra. The simplest way to extract information is simply to evaluate terms in the algebra. So assume we from a given lattice specification $m k$-LatSpec (eqs, terms) - consisting of the equations and the terms to be inserted - have constructed the corresponding partial order pmdsj for the most disjoint lattice. We can now extract information from the lattice/database by evaluating a term $t$ in the lattice:

$$
\operatorname{Eval}_{N C A}(p m d s j)(t)
$$

The result will be the corresponding anti-chain in the form of a set of concept-intersections. The introduction (section 1) showed several examples of this kind of lattice/database construction and subsequent querying.

Evaluation of a term in a given algebra can only yield values from the carrier of the algebra, but can not construct new values obtained by combining already existing values.

Example In the specification below the equations specifies two relational database tables and the terms part insert rows in the two tables.

```
equations
```

```
 db1<= A(a) * B(b) * C(c),
 db2<= C(c)* D(d),
 c>= r + s + t,
r>= r1+r2+r3,
s>= s1+s2,
t>= t1+t2
terms
 db1*A(a1)*B(b1)*C(r1),
 db1*A(a2)*B(b2)*C(s1),
 db1*A(a3)*B(b1)*C(t),
 db1*A(a4)*B(b3)*C(r2),
 db1*A(a5)*B(b2)*C(s2),
 db2*C(r2)*D(d1),
 db2*C(r1)*D(d2),
 db2*C(r3)*D(d3),
 db2*C(s) *D(d4),
 db2*C(t2)*D(d5)
queries
 db1 * db2,
```

As explained in [3] applying the lattice meet operation to the tables above should yield a result corresponding to the database natural join operation. The result of the query may be a little bit disappointing:

```
Queries:
 db1 * db2: < >
```

i.e. the term $d b 1 * d b 2$ evaluates to $\perp$. The reason is that the expected joined rows do not exist as values in the constructed concept algebra.

### 16.1 Constructing Data Base Natural Joins

We need a special kind of query to be able to construct new values that do not already exist in the database. If we relate our lattice with a relational database, concept-intersections correspond to rows and attributes to columns/attributes. Basic concepts in a concept-intersection that is not an attribute, does not have a counterpart in relational database theory. We will use the operator \& to indicate this new database natural join query. So if we now ask the query:

```
queries
 db1 & db2
```

we would like to see the following answer:

```
db1 & db2:
<[db1, db2, A(a), A(a1), B(b), B(b1), C(c), C(r), C(r1), D(d), D(d2)]
 [db1, db2, A(a), A(a2), B(b), B(b2), C(c), C(s), C(s1), D(d), D(d4)]
 [db1, db2, A(a), A(a3), B(b), B(b1), C(c), C(t), C(t2), D(d), D(d5)]
 [db1, db2, A(a), A(a4), B(b), B(b3), C(c), C(r), C(r2), D(d), D(d1)]
 [db1, db2, A(a), A(a5), B(b), B(b2), C(c), C(s), C(s2), D(d), D(d4)]>
```

i.e. we have combined those rows from $d b 1$ and $d b 2$ for which the common $C$-attribute arguments have a meet different from $\perp$ when evaluated in the actual database. To define such a database join query we first define what corresponds to a database cartesian product:

```
321.0 DBCartPrd : PO \(\rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set
 \(D B C a r t P r d(p)\left(a c_{1}, a c_{2}\right) \triangleq\)
 \(\left\{m k-C I\left(c s_{1} \cup c s_{2}\right) \mid m k-C I\left(c s_{1}\right) \in a c_{1}, m k-C I\left(c s_{2}\right) \in a c_{2}\right\}\)
```

The function $D B C a r t P r o d ~(321) ~ d e f i n e d ~ a b o v e ~ m a k e s ~ a ~ c o m b i n a t i o n ~ o f ~ a l l ~ p o s s i b l e ~ p a i r s ~$ of concept-intersections. Notice, that this is close to the Meet $_{N}$ operation (51), but the $^{2}$ result is not projected into $p$. To get a database join we use the following function:

```
\(322.0 \quad D B J\) oin : \(N E q\)-set \(\rightarrow P O \rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set
\(\operatorname{DBJoin}(p)(n e q s)\left(a c_{1}, a c_{2}\right) \triangle\)
 let \(j c i s=\bigcup\left\{J o i n C I(p)\left(c i_{1}, c i_{2}\right) \mid c i_{1} \in a c_{1}, c i_{2} \in a c_{2}\right\}\) in
 \(c \operatorname{Proj}(n e q s)(j c i s)\)
```

Here the function JoinCI does the joining for each pair of $c i$ 's (or rows). Finally, the joined rows are projected into pmax to make sure that the result satisfies the given equations. The next function does the joining of each ci-pair.

```
323.0 Join \(C I: P O \rightarrow C I \times C I \rightarrow C I\)-set
\(J o i n C I(p)\left(c i_{1}, c i_{2}\right) \triangleq\)
 let \(m k-(\operatorname{attrNs} 1, \operatorname{attrNs} 2)=m k-\left(\operatorname{AttrsInCI}\left(c i_{1}\right), \operatorname{AttrsInCI}\left(c i_{2}\right)\right)\),
 \(m k-\left(m k-C I\left(b s_{1}\right), m k-C I\left(b s_{2}\right)\right)=m k-\left(c i_{1}, c i_{2}\right)\) in
 let \(\operatorname{cattrNs}=\operatorname{attr} N s 1 \cap \operatorname{attrNs} 2\),
 \(b s 12=b s_{1} \cup b s_{2}\) in
 let cattrs \(=\{m k-A t(a, b) \mid m k-A t(a, b) \in b s 12 \cdot a \in \operatorname{cattrNs}\}\) in
 let \(j b s 1=b s 12 \backslash\) cattrs,
 joinedAttrs \(=\{\) EvalAttrArg \((p)(\alpha)(m k-C I(\) cattrs \()) \mid \alpha \in\) cattrNs \(\}\) in
 CisMeet \(_{N C A P}(\{m k-C I(j b s 1)\} \cup\) joinedAttrs \()\)
```

where

```
324.0 EvalAttrArg: \(P O \rightarrow A \times C I \rightarrow C I\)-set
EvalAttrArg \((p)(\alpha)(c i) \triangle\)
 let \(\operatorname{attrarg}=\operatorname{AttrArgCI}(\alpha)(c i)\) in
 let attrval \(=C I S p r o j(p)(\{\) attrarg \(\})\) in
 \(\{\operatorname{attr} C I(\alpha)(c i x) \mid\) cix \(\in\) attrval \(\}\)
```

In $J o i n C I$ the two concept-intersection's $c i_{1}$ and $c i_{2}$ should be joined iff the common attributes have overlapping arguments. The resulting join will be constructed from the set of basic
concepts (bs12) from $c i_{1}$ and $c i_{1}$. cattrsNs is the set of common attribute names and cattrs is the set of basic concepts from $b s 12$ constituting the common attributes. The resulting join will first of all consist of the set of basic concepts $j b s 1$ that consist of the original set $b s 12$ minus those from the common attributes. Concerning the common attributes the arguments should be evaluated in the actual database and the original arguments replaced by these new values; the result is joinedAttrs. Notice that this evaluated argument part is now a $C I$-set. Finally the first part ( $j b s 1$ ) - converted to a $C I$-set - and the $C I$-set's in joinedAttrs must be Meet'ed together.

Example The examples below illustrate the evaluation of the attribute arguments

```
terms
 db1 * A(a)*R(r),
 db2* R(s)* B(b),
 r*s*U
queries
 db1 & db2;
```

We get the answer

```
query: db1 & db2
 <[db1,db2,A(a),R(r),R(s),R(U),B(b)]>
```

Example Here we add an equation to the above example

```
equations
```

    \(r * s * U=X+Y\)
    terms
db1 * $\mathrm{A}(\mathrm{a}) * \mathrm{R}(\mathrm{r} * \mathrm{~s})$,
db2* $\mathrm{R}(\mathrm{s} * \mathrm{t}) * \mathrm{~B}(\mathrm{~b})$,
r*s*t*U
queries
db1 \& db2;

We now get the answer

```
query: db1 & db2
< [db1,db2,A(a),R(r),R(s),R(U),R(Y),B(b)],
 [db1,db2,A(a),R(r),R(s),R(U),R(X),B(b)] >
```


## 17 Conclusion

In this project we have investigated the possibilities to make a system based on the concept algebra described in [3], [4] and [5]. One of the main ideas in this work has been to use Birkhoff's representation theorem, so we have represented distributive lattices using its dual representation: the partial order of join irreducibles. We have given solutions to the questions: how do we construct a concept algebra/distributive lattice satisfying a given set of equations?, and among all the possible solutions which one to choose? Here the most important contribution seems to be the idea of inserting terms in the lattice and the answer to the question: what
does it mean to insert a term in a lattice? To solve this we invented the concept of the most disjoint lattice with respect to a given set of inserted terms, that is the smallest lattice where the inserted terms preserve their value compared to the value in the initial algebra/lattice. And that is how the database turned up. The partial order corresponding to the most disjoint lattice is the database; it grows when new terms are inserted and always contains just the information necessary to give the value of (or explain) the inserted terms.

We attacked the problem in two steps. First we considered the concept algebra without attributes. Here we managed to prove the correctness of the algorithms used to construct the database. Next we considered the full concept algebra. The introduction of attributes increased the complexity of the problem considerably. We proved several fundamental properties that made it possible to construct the algorithm used to construct the database. We did not manage to give a mathematical proof for the final algorithm.

The specification of the database (see appendix A) was used to construct a prototype for the database system (called LatBase ). This system has been used with several examples and seems to yield the expected results. Thus, the main algorithm for construction of the database seems to have been proved "by experiment".

There are several problems to consider in the future. First of all much of the mathematics - especially in the second part - became rather complex and ad hoc and unfinished. This should be reconsidered, but we need some more expert knowledge in advanced lattice theory and universal algebra to do that job. Next, the LatBase system should be implemented as a real database system and this also includes to make efficient versions of the algorithms for constructing and querying the database.

## Acknowledgment

I would like to thank prof. Jørgen Fischer Nilsson for suggesting this project for me several years ago and his continued encouragement to work with the project.

## Appendix

## A The Final Database System

This section contains all the specifications needed to implement the final LatBase database system. So it is essentially a collection of some of the specifications from the previous sections extended with a few new features that will be useful in a practical database system. First of all, in the real database system we want to be able to associate information to the inserted terms. Information that are inserted together with a term will be associated to the resulting concept-intersections. Here we will not decide on the nature of the associated information, but it could for instance just be a unique name.
types
325.0 Info $=$ token - Information associated with inserted term

Secondly we will add two predefined equations in order to make integers and strings available in the inserted values:

```
NUMBER >= 0 + 1 + 2 + 3 + ...
STRING >= '`') + ''a'` + ''b') + ...+ ''aa') + ''ab') + ...
```

Finally we also add (a huge amount of) equations of the form
BOTTOM= literal1 * literal2
in order to specify that all the predefined integer and string literals are disjoint.

## A. 1 Concept Intersections with Associated Information

types
$\begin{array}{lll}326.0 & C N=\text { token } \mid \text { STRING } \mid \text { NAT; } & \text { - The type of named concept constants } \\ 327.0 & C=C N|\mathbb{N}| \text { String; } & \text { - The type of concept constants }\end{array}$
A concept constant (C) is either an arbitrary name including one of the predefined names STRING and NAT or an integer or string literal like 23 and "abc".
types
328.0 $\quad A=$ token $\quad$ The type of attributes, $\alpha, \beta, \ldots: A$
$B=C \mid A t ; \quad$ - The type of basic concepts, $a, b, \alpha(a), \alpha(\beta(a)), \ldots: B$
$330.0 \quad A t:: A \times B ; \quad$ - The type of attributions, $\alpha(a), \alpha(\beta(a)), \ldots: A t$
$331.0 \quad$ Bset $=B$-set
$.1 \quad$ inv $($ bset $) \triangleq$ bset $\neq\{ \} ;$
332.0 CI:: Bset; - The type of concept intersections
333.0 CII:: $C I \times$ Info-set; - concept-intersection with associated set of Infos
334.0
335.0
$P O=C I$-set;
$P O I=C I I$-set $\quad$ - the partial order with Info

In the new partial order we need to redefine some of the basic operations on the partial order:

```
\(336.0 \quad I S A_{P I}: C I I \times C I I \rightarrow \mathbb{B}\)
 \(-\sim 151\)
 \(I S A_{P I}\left(m k-C I I\left(C I\left(c s_{1}\right),-\right), m k-C I I\left(C I\left(c s_{2}\right),-\right) \triangleq c s_{2} \subseteq c s_{1}\right.\)
 IsAntiChainI : CII-set \(\rightarrow \mathbb{B}\)
 \(— \sim 8\)
 IsAntiChainI \((a c) \triangleq\)
 \(\forall c i_{1} \in a c, c i_{2} \in a c \cdot c i_{1} \neq c i_{2} \Rightarrow \neg I S A_{P I}\left(c i_{1}, c i_{2}\right) \wedge \neg I S A_{P I}\left(c i_{2}, c i_{1}\right)\)
338.0
 .1
339.0
 .1
340.0
 .1
 \{molic (p)(ciset)
 \(\left\{m k-C I I(c i, i n f s) \mid m k-C I I(c i, i n f s) \in p \cdot \exists c i^{\prime} \in c i s e t \cdot I S A_{P}\left(c i, c i^{\prime}\right)\right\}\)
341.0 stripInfo : CII-set \(\rightarrow C I\)-set
 \(.1 \quad \operatorname{stripInfo}(c i s) \triangleq\{c i \mid m k-C I I(c i,-) \in c i s\}\)
\(342.0 \quad\) CISprojI (\(p: P O I\))(cis: CI-set) ac : CII-set
 post \(a c \subseteq p \wedge\)
 IsAntiChainI (ac) \(\wedge\)
 \(\operatorname{DownSetIC}(p)(\operatorname{stripInfo}(a c))=\operatorname{DownSetC}(p)(c i s)\)
```


## A. 2 Terms

## types

343.0 BasicTerm $=C \mid$ тор $\mid$ воттом;
344.0 Term $=$ Join $\mid$ Meet $\mid$ Attr $\mid$ BasicTerm;
345.0 Join:: Term $\times$ Term - Join-term ;
346.0 Meet:: Term $\times$ Term — Meet-term ;
347.0 Attr:: $A \times$ Term - Attribute-term

These general terms will only be used when making queries to the lattice database. When inserting terms in the lattice database we will only allow terms not containing the Top-term, and finally in the equations we will only allow terms without the TOP-term and literals. Below we define these two kinds of restricted terms

```
types
```

;
where
351.0

BTerms : Term $\rightarrow$ BasicTerm-set
$B$ Terms $(t) \triangle$
cases $t$ :

$$
m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow B \operatorname{Terms}\left(t_{1}\right) \cup B \operatorname{Terms}\left(t_{2}\right),
$$

$$
m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow B \operatorname{Terms}\left(t_{1}\right) \cup B \operatorname{Terms}\left(t_{2}\right)
$$

$$
m k-\operatorname{Attr}(\alpha, t) \rightarrow B \operatorname{Terms}(t)
$$

$$
b t \rightarrow\{b t\}
$$

end

## A. 3 Evaluation of Terms

352.0

Join $_{N}:$ POI $\rightarrow$ CII-set $\times$ CII-set $\rightarrow C I I-$ set
$\operatorname{JoinI}_{N}(p)\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiChI}\left(a c_{1} \cup a c_{2}\right)$

```
354.0 \(\operatorname{MeetI}_{N}: P O I \rightarrow C I I\)-set \(\times C I I\)-set \(\rightarrow C I I\)-set
 \(— \sim 51\)
 \(\operatorname{MeetI}_{N}(p)\left(a c_{1}, a c_{2}\right) \triangle\)
 let cis \(=\left\{m k-C I\left(c s_{1} \cup c s_{2}\right) \mid\right.\)
 \(\left.m k-C I I\left(m k-C I\left(c s_{1}\right),-\right) \in a c_{1}, m k-C I I\left(m k-C I\left(c s_{2}\right),-\right) \in a c_{2}\right\}\) in
 CISprojI \((p)(c i s)\)
 AttributionI \(I_{N}: P O I \rightarrow A \rightarrow C I I\)-set \(\rightarrow C I I\)-set
 — ~ 263
 Attribution \(_{N}(p)(\alpha)(a c) \triangleq C I S p r o j I(p)(\{a t t r C I(\alpha)(c i) \mid m k-C I I(c i,-) \in a c\})\)
356.0 attr \(C I: A \rightarrow C I \rightarrow C I\)
 \(— \sim 170\)
 \(\operatorname{attr} C I(\alpha)(m k-C I(b s)) \triangleq m k-C I(\{m k-A t(\alpha, b) \mid b \in b s\})\)
\(357.0 \quad c\) EvalI \(_{N}: \mathrm{POI} \rightarrow C \rightarrow C I I\)-set
 \(— \sim 53\)
\(\operatorname{cEvalI}_{N}(p)(c) \triangleq C I S p r o j(p)(\{m k-C I(\{c\})\})\)
```


## A. 4 Evaluation in the Power Set Partial Order

```
358.0 Eval \({ }_{N C A P}^{\prime}:\) termEr \(\rightarrow C I\)-set
 \(— \sim 269\)
 \(\operatorname{Eval}_{N C A P}^{\prime}(t) \triangle\)
 cases \(t\) :
 \(m k-\operatorname{Join}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Join}_{N C A P}\left(\operatorname{Eval}_{N C A P}^{\prime}\left(t_{1}\right), \operatorname{Eval}_{N C A P}^{\prime}\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right) \rightarrow \operatorname{Meet}_{N C A P}\left(\operatorname{Eval}_{N C A P}^{\prime}\left(t_{1}\right), \operatorname{Eval}_{N C A P}^{\prime}\left(t_{2}\right)\right)\),
 \(m k-\operatorname{Attr}(\alpha, t) \rightarrow\left\{\operatorname{attrCI}(\alpha)(c i) \mid c i \in \operatorname{Eval}_{N C A P}^{\prime}(t)\right\}\),
 (BOTTOM) \(\rightarrow\}\),
 \(c \rightarrow\{m k-C I(\{c\})\}\)
 end
\(359.0 \quad J_{\text {oin }}^{N C A P}: C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set \(\quad \sim 267\)
 \(\operatorname{Join}_{N C A P}\left(a c_{1}, a c_{2}\right) \triangleq \operatorname{AntiCh}\left(a c_{1} \cup a c_{2}\right)\)
\(360.0 \quad\) Meet \(_{N C A P}: C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set \(\quad \sim \sim 268\)
 \(1 \operatorname{Meet}_{N C A P}\left(a c_{1}, a c_{2}\right) \triangle\)
 let \(c i s=\left\{m k-C I\left(b s_{1} \cup b s_{2}\right) \mid m k-C I\left(b s_{1}\right) \in a c_{1}, m k-C I\left(b s_{2}\right) \in a c_{2}\right\}\) in
 AntiCh(cis)
```


## A. 5 Constructing the Database

types
$N E q: \quad C I$-set $\times C I$-set ;
$362.0 \quad D B:: \quad N E q$-set $\times P O I$

Create a new empty database with a given set of equations:

```
363.0 crDataBase : Eq-set }->D
 .1 crDataBase (eqs) \trianglemk-DB(EvalEqs(eqs),{})
```

where

```
364.0 EvalEq: \(E q \rightarrow N E q\)
 \(-\sim 290\)
 \(\operatorname{EvalEq}\left(m k-E q\left(t_{1}, t_{2}\right)\right) \triangleq\)
 let \(a c_{1}=\operatorname{Eval}_{N C A P}^{\prime}\left(t_{1}\right)\),
 \(a c_{2}=E v a l_{N C A P}^{\prime}\left(t_{2}\right)\) in
 \(m k-N E q\left(\operatorname{Join}_{N C A P}\left(a c_{1}, a c_{2}\right), \operatorname{Meet}_{N C A P}\left(a c_{1}, a c_{2}\right)\right)\)
365.0 EvalEqs : Eq-set \(\rightarrow N E q\)-set
 \(— \sim 291\)
 \(.1 \quad\) EvalEqs \((e q s) \triangleq\{\operatorname{EvalEq}(e q) \mid e q \in e q s\}\)
```

Insert a term with information in the database:

```
366.0 insertTerm : DB \(\rightarrow\) termIr \(\times\) Info \(\rightarrow D B \quad \quad \sim\) part of 320
insertTerm \((m k-D B(n e q s, p))(\) term, info \() \triangleq\)
 let \(c i s=\operatorname{extCIS}(c \operatorname{EvalNCA}(\) neqs \()(\) term \())\) in
 let newpoi \(=\{m k C I I(c i\), infs \() \mid m k-C I I(c i\), infs \() \in p \cdot c i \notin c i s\} \cup\)
 \(\{m k-C I I(c i\), infs \(\cup\{i n f o\}) \mid m k-C I I(c i, i n f s) \in p \cdot c i \in c i s\} \cup\)
 \(\left\{m k-C I I(c i,\{i n f o\}) \mid c i \in c i s \cdot \neg \exists m k-C I I\left(c i^{\prime},-\right) \in p \cdot c i=c i^{\prime}\right\}\) in
 \(m k-D B(n e q s\), newpoi \()\)
```


## A.5.1 The Algorithm for Computing Eval ${ }_{N C A}$

```
\(367.0 \quad c E v a l N C A: N E q\)-set \(\rightarrow t e r m I r \rightarrow C I\)-set
 \(-\sim 313\)
 \(c E v a l N C A(n e q s)(t) \triangleq c \operatorname{Proj}(n e q s)\left(\operatorname{Eval}_{N C A P}^{\prime}(t)\right)\)
\(368.0 \quad c\) Proj : \(N E q\)-set \(\rightarrow C I\)-set \(\rightarrow C I\)-set
 \(-\sim 314\)
 \(c \operatorname{Proj}(n e q s)(c i s) \triangle\)
 let \(m k-(-, p c i s)=c I P r o j(n e q s)(\) true \()(c i s,\{ \})(\{ \})\) in
 pcis
```


## The Iterated Projection

```
369.0
 cIProj : NEq-set \(\rightarrow \mathbb{B} \rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set \(\rightarrow \mathbb{B} \times C I\)-set \(\quad \sim \sim 315\)
 \(c I P r o j(n e q s)(a c c U n c h)(u p l, I n P)(p L e v C i s) \triangle\)
 let \(m k\)-(newunch, newupl, newInP \()=c P r o j S t e p(n e q s)(u p l, \operatorname{InP})(p L e v C i s)\) in
 if newunch
 then \(m k\)-(accUnch, AntiCh (newInP))
 else \(c I P r o j(n e q s)(f a l s e)(n e w u p l\), newInP \()(p L e v C i s)\)
```


## The Projection Step.

```
\(370.0 \quad c\) ProjStep \(: N E q\)-set \(\rightarrow C I\)-set \(\times C I\)-set \(\rightarrow C I\)-set \(\rightarrow \mathbb{B} \times C I\)-set \(\times C I\)-set
\(c\) ProjStep \((n e q s)(u p l\), InP \()(p L e v C i s) \triangle\)
 let cupls \(=\{c E q s U p l(n e q s)(p L e v C i s)(c i) \mid c i \in u p l\}\) in
 let \(I n P 1=\{c i \mid m k-((\) true \(),\{c i\}) \in c u p l s\}\),
 notIn \(P=\left\{u p l^{\prime} \mid m k-\left((\right.\right.\) false \(\left.), u p l^{\prime}\right) \in\) cupls \(\}\),
 newupl \(=\bigcup\) notIn \(P\) in
 \(m k-(\) notIn \(P=\{ \}\), newupl,\(I n P \cup \operatorname{InP1})\)
```


## Projecting a Single concept-intersection.

```
371.0
 CisMeet \(_{N C A P}: C I\)-set-set \(\rightarrow C I\)-set
 \(\operatorname{CisMeet}_{N C A P}(\) ciss \() \triangle\)
 cases ciss :
 \(\{c i s\} \rightarrow c i s\),
 \(\{\) cis \(\} \cup\) ciss \(^{\prime} \rightarrow \operatorname{Meet}_{N C A P}\left(\right.\) cis, \(\operatorname{CisMeet}_{N C A P}\left(\right.\) ciss \(\left.\left.^{\prime}\right)\right)\)
 end
 pre ciss \(\neq\{ \}\)
 \(c E q s U p l: N E q\)-set \(\rightarrow C I\)-set \(\rightarrow C I \rightarrow \mathbb{B} \times C I\)-set \(\quad \sim \sim 318\)
 \(c E q s U p l(n e q s)(p L e v C i s)(c i) \triangleq\)
 let \(u l s 1=c E q s D i r e c t U p l(n e q s)(c i)\),
 uls \(2=\{\) iupl \(\mid \alpha \in \operatorname{AttrsInCI}(\) ci), iupl \(: C I\)-set.
 \(m k-(\) false, iupl \()=c I U p l(n e q s)(\alpha)(p L e v C i s)(c i)\}\) in
 let \(u l s=u l s 1 \cup u l s 2\) in
 cases uls :
 \(\} \rightarrow m k\)-(true, \(\{c i\}\)),
 - \(\rightarrow m k\)-(false, \(\left.\operatorname{CisMeet}_{N C A P}(\{\{c i\}\} \cup u l s)\right)\)
 end
 \(c E q s D i r e c t U p l: N E q\)-set \(\rightarrow C I \rightarrow C I\)-set-set
 \(c E q s D i r e c t U p l(n e q s)(c i) \triangle\)
 let \(u l s 1=\{m \mid m k-N E q(u, m) \in\) neqs \(\cdot \operatorname{InEqDirectRej}(m k-N E q(u, m))(c i)\}\),
 \(u l s 2=c\) BuildInEqsDirectUpl(ci) in
 \(u l s 1 \cup u l s 2\)
cBuildInEqsDirectUpl : CI \(\rightarrow C I\)-set-set
cBuildInEqsDirectUpl \((m k-C I(b s)) \triangleq\)
 \(\{m k-C I(\{\) NUMBER,\(c\}) \mid c \in b s \cdot i s\)-Integer \((c) \wedge\) NUMBER \(\notin b s\} \cup\)
 \(\{m k-C I(\{\operatorname{STRING}, c\}) \mid c \in b s \cdot i s-S t r i n g(c) \wedge \operatorname{STRING} \notin b s\} \cup\)
 (if \(\exists b_{1}, b_{2} \in b s \cdot b_{1} \neq b_{2} \wedge \forall b \in\left\{b_{1}, b_{2}\right\} \cdot i s\)-Integer \((b) \vee i s\)-String \((c)\)
 then \(\{\}\}\)
 else \(\}\))
```

Lines 2 and 3 above correspond to the equations

```
INTEGER >= 0 + 1 + 2 + 3 + ...
STRING >= '`') + ''a') + ''b') + ...+ ''aa') + ''ab') + ...
```

and line 4 corresponds to equations of the form

```
litteral1 * literal2 = BOTTOM
```

i.e. if an inserted concept-intersection contains two different string or number literals it will have BOTTOM as an upper bound.

```
\(375.0 \quad\) cIUpl : NEq-set \(\rightarrow A \rightarrow C I\)-set \(\rightarrow C I \rightarrow \mathbb{B} \times C I\)-set
 \(-\sim 319\)
 \(c I U p l(n e q s)(\alpha)(p L e v C i s)(c i) \triangleq\)
 let \(c i_{\text {arg }}=\operatorname{AttrArgCI}(\alpha)(c i)\) in
 let \(m k\)-(unch, proj) \(=\)
 if \(c i_{\text {arg }} \in p L e v C i s\) then \(m k\)-(false, \(\}\))
 else \(c \operatorname{IProj}(\) neqs \()(\) true \()\left(\left\{c i_{\text {arg }}\right\},\{ \}\right)\left(p L e v C i s \cup\left\{c i_{\text {arg }}\right\}\right)\) in
 cases unch :
 false \(\rightarrow m k\)-(false, \(\operatorname{atCIs}(\alpha)(p r o j))\),
 true \(\rightarrow m k\)-(true, \(\{c i\}\))
 end
```

Equation Reject The function InEqDirectRej defined below tells if a concept-intersection is directly rejected by an equation by being in the equations rejection region:

$$
\begin{array}{rcl}
376.0 & \text { InEqDirectRej }: N E q \rightarrow C I \rightarrow \mathbb{B} & -\sim 292 \\
.1 & \text { InEqDirectRej }(m k-N E q(u, m))(c i) \triangle \\
.2 & \operatorname{ISA} A_{N}(\{c i\}, u) \wedge \neg \operatorname{ISA} A_{N}(\{c i\}, m) &
\end{array}
$$

## Extracting Attributes

```
377.0 AttrsInCI: CI \(\rightarrow A\)-set
 \(-\sim 162\)
 \(.1 \operatorname{AttrsInCI}(m k-C I(b s)) \triangleq\{a \mid m k-A t(a,-) \in b s\}\)
378.0 AttrArgCI: \(A \rightarrow C I \rightarrow C I \quad-\sim 178\)
 . \(1 \quad \operatorname{AttrArgCI}(\alpha)(c i) \triangleq m k-C I(\{b \mid m k-A t(-, b) \in \operatorname{CbattrsCI}(\alpha)(c i)\})\)
 . 2 pre \(\alpha \in \operatorname{AttrsInCI(ci)~}\)
```


## Constructing Attribute Consistent Partial Orders

```
379.0 extCIS:CI-set }->CI\mathrm{ -set - ~ 379
extCIS (cis) \triangle
 let attrArg ={AttrArgCI(\alpha)(ci)|ci\incis, \alpha\in\operatorname{AttrsInCI(ci)} in}
 if attrArg ={} then cis else cis \cup extCIS(attrArg)
```


## A. 6 Querying the Database

```
380.0 Query \(=\operatorname{Term} Q \mid\) Downset \(Q \mid D B n J o i n Q\)
381.0 TermQ:: Term - term query
382.0 DownsetQ:: Term - downset query
383.0 DBnJoinQ:: Query \(\times\) Query - database natural join query
```

We consider just three query constructs. A basic term query is just term-evaluation in the actual partial order resulting in an antichain with an information set associated to each concept-intersection. The downset query is almost like the term query, but results in a downset in the actual partial order. Finally we have the data base natural join as discussed in section 16.1.

```
384.0 EvalQuery : DB \(\rightarrow\) Query \(\rightarrow\) CII-set
 EvalQuery \((d b)(q) \triangle\)
 let \(m k-D B(n e q s, p)=d b\) in
 cases \(q\) :
 \(m k-\operatorname{Term} Q(t) \rightarrow \operatorname{EvalI}_{N C A}(p)(t)\),
 \(m k-D o w n s e t Q(t) \rightarrow \operatorname{DownSetIC}(p)\left(\operatorname{stripInfo}\left(\operatorname{EvalI}_{N C A}(p)(t)\right)\right)\),
 \(m k-D B n J o i n Q\left(q_{1}, q_{2}\right) \rightarrow\)
 let ciis \(_{1}=\) EvalQuery \((d b)\left(q_{1}\right)\),
 ciis \(_{2}=\) EvalQuery \((d b)\left(q_{2}\right)\) in
 DBJoinI \((p)(n e q s)\left(\right.\) ciis \(_{1}\), ciis \(\left._{2}\right)\)
 end
```

385.0 DBJoinI : POI $\rightarrow$ NEq-set $\rightarrow C I I$-set $\times C I I$-set $\rightarrow C I I$-set $-\sim 322$

```
\(D B J o i n I(p)(n e q s)\left(\right.\) ciis \(_{1}\), ciis \(\left._{2}\right) \triangle\)
 let jciis \(=\bigcup\left\{\operatorname{JoinCII}(p)\left(\right.\right.\) cii \(_{1}\), cii \(\left._{2}\right) \mid\) cii \(_{1} \in\) ciis \(_{1}\), cii \(_{2} \in\) ciis \(\left._{2}\right\}\) in
 cProjI(neqs)(jciis)
```

In JoinCII the two concept-intersection's with information $c i i_{1}$ and $c i i_{2}$ will be joined iff the common attributes have overlapping arguments. When two rows/CII's are joined we must consider what to do with the associated information. A solution would be to associate to the new joined row the union of the information sets from the original rows. Thus JoinCII will correspond to JoinCI in 323 but with some trivial complications. We will however not elaborate further on that topic in this report.

## B Proofs

## B. 1 Proof of Term Value Property 42.1

Below is a proof of the term value property 42.1 repeated here:

$$
\operatorname{Eval}_{L}\left(p \backslash \operatorname{cis}^{\prime}\right)(t)=\operatorname{Eval}_{L}(p)(t) \backslash c i s
$$

The proof uses structural induction on the term structure. First 386 must be proved correct for basic terms i.e. terms without sub-terms:

BOTTOM:

$$
\begin{aligned}
& \operatorname{Eval}_{L}(p \backslash c i s)(\text { BOTTOM })=\{ \}=\{ \} \backslash \text { cis } \\
& =\operatorname{Eval}_{L}(p)(\text { BOTTOM }) \backslash \text { cis }
\end{aligned}
$$

TOP:

$$
\begin{aligned}
& \operatorname{Eval}_{L}(p \backslash c i s)(\mathrm{TOP})=p \backslash c i s \\
& =\operatorname{Eval}_{L}(p)(\mathrm{TOP}) \backslash c i s
\end{aligned}
$$

Named concept $c$ :

$$
\begin{aligned}
& \operatorname{Eval}_{L}(p \backslash \operatorname{cis})(c)=c \operatorname{Value}_{L}(p \backslash \text { cis })(c) \\
& =\operatorname{DownSet}(p \backslash \text { cis })(\{m k-C I(\{c\})\})_{\text {from } 14} \\
& =\operatorname{DownSet}(\mathcal{P}(c s e t))(\{m k-C I(\{c\})\}) \cap(p \backslash \text { cis }) \\
& =(\operatorname{DownSet}(\mathcal{P}(c s e t))(\{m k-C I(\{c\})\}) \cap p) \backslash \text { cis } \\
& =\operatorname{DownSet}(p)(\{m k-C I(\{c\})\}) \backslash c i s \\
& =c \operatorname{Value}_{L}(p)(c) \backslash c i s \\
& =\operatorname{Eval}_{L}(p)(c) \backslash c i s
\end{aligned}
$$

Next, in the induction steps, when considering compound terms, assume 386 is true for the sub-terms (the induction hypothesis):

$$
\begin{array}{lll}
m k-J o i n & \left(t_{1}, t_{2}\right): & \\
& \operatorname{Eval}_{L}(p \backslash c i s)\left(m k-\operatorname{Join}\left(t_{1}, t_{2}\right)\right) & \text { from 41 } \\
& =\operatorname{Join}_{L}\left(\operatorname{Eval}_{L}(p \backslash c i s)\left(t_{1}\right), \operatorname{Eval}_{L}(p \backslash c i s)\left(t_{2}\right)\right) & \text { from 30 } \\
& =\operatorname{Eval}_{L}(p \backslash c i s)\left(t_{1}\right) \cup \operatorname{Eval}_{L}(p \backslash c i s)\left(t_{2}\right) & \\
& =\left(\operatorname{Eval}_{L}(p)\left(t_{1}\right) \backslash{\operatorname{cis}) \cup\left(\operatorname{Eval}_{L}(p)\left(t_{2}\right) \backslash c i s\right)}\right. & \\
& =\left(\operatorname{Eval}_{L}(p)\left(t_{1}\right) \cup \operatorname{Eval}_{L}(p)\left(t_{2}\right)\right) \backslash c i s & \\
& =\operatorname{Join}_{L}\left(\operatorname{Eval}_{L}(p)\left(t_{1}\right), \operatorname{Eval}_{L}(p)\left(t_{2}\right)\right) \backslash c i s & \\
& =\operatorname{Eval}_{L}(p)\left(m k-\operatorname{Join}\left(t_{1}, t_{2}\right)\right) \backslash c i s & \text { from 41 }
\end{array}
$$

$m k$ - $\operatorname{Meet}\left(t_{1}, t_{2}\right)$ : Similar to the proof for Join.

## B. 2 Proof of Term Value Property 42.2

Below is a proof of the term value property 42.2:

$$
387.0 \quad p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{L}\left(p_{1}\right)(t)=\operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap p_{1}
$$

The proof is based on the properties 42.0 and 42.1.

$$
\begin{aligned}
& \operatorname{Eval}_{L}\left(p_{2} \backslash c s\right)(t) \\
& =\operatorname{Eval}_{L}\left(p_{2}\right)(t) \backslash c s
\end{aligned} \quad \text { from } 42.1
$$

$$
\begin{aligned}
& =\left(\operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap p_{2}\right) \backslash c s \\
& =\operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap\left(p_{2} \backslash c s\right)
\end{aligned}
$$

from 42.0

Hence, if $p_{2} \backslash c s$ is replaced by $p_{1}$ we get
$388.0 \quad p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{L}\left(p_{1}\right)(t)=\operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap p_{1}$

## B. 3 Proof of Term Value Properties 42.3 and 42.4

Below is a proof of the term value property 42.3:

$$
389.0 \quad \operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t)=\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cup \operatorname{Eval}_{L}\left(p_{2}\right)(t)
$$

The proof is based on the equality in 42.2. We instantiate that equality to the two equations below:

```
390.0 Eval}\mp@subsup{\operatorname{Eva}}{L}{}(\mp@subsup{p}{1}{})(t)=\mp@subsup{\operatorname{Eval}}{L}{}(\mp@subsup{p}{1}{}\cup\mp@subsup{p}{2}{})(t)\cap\mp@subsup{p}{1}{
 .1 Eval}\mp@subsup{L}{L}{}(\mp@subsup{p}{2}{})(t)=\mp@subsup{\operatorname{Eval}}{L}{}(\mp@subsup{p}{1}{}\cup\mp@subsup{p}{2}{})(t)\cap\mp@subsup{p}{2}{
```

By making the union of the two equations in 390 above we get the first line below

$$
\begin{aligned}
& \operatorname{Eval}_{L}\left(p_{1}\right)(t) \cup \operatorname{Eval}_{L}\left(p_{1}\right)(t)=\operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t) \cap p_{1} \cup \operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t) \cap p_{2} \\
& =\operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t) \cap\left(p_{1} \cup p_{2}\right) \quad \text { from } \operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t) \subseteq p_{1} \cup p_{2}, \\
& =\operatorname{Eval}_{L}\left(p_{1} \cup p_{2}\right)(t) \quad
\end{aligned}
$$

Next, a proof of the term value property 42.4:

$$
391.0 \quad \operatorname{Eval}_{L}\left(p_{1} \cap p_{2}\right)(t)=\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cap \operatorname{Eval}_{L}\left(p_{2}\right)(t)
$$

The proof is again based on the equality in 42.2 . We instantiate that equality to the two equations below:

```
392.0 Eval}\mp@subsup{E}{L}{}(\mp@subsup{p}{1}{}\cap\mp@subsup{p}{2}{})(t)=\mp@subsup{\operatorname{Eval}}{L}{}(\mp@subsup{p}{1}{})(t)\cap(\mp@subsup{p}{1}{}\cap\mp@subsup{p}{2}{}
 .1 }\mp@subsup{\operatorname{Eval}}{L}{}(\mp@subsup{p}{1}{}\cap\mp@subsup{p}{2}{})(t)=\mp@subsup{\operatorname{Eval}}{L}{}(\mp@subsup{p}{2}{})(t)\cap(\mp@subsup{p}{1}{}\cap\mp@subsup{p}{2}{}
```

By making the intersection of the two equations in 392 above we get the equation below

$$
\begin{aligned}
& \operatorname{Eval}_{L}\left(p_{1} \cap p_{2}\right)(t) \cap \operatorname{Eval}_{L}\left(p_{1} \cap p_{2}\right)(t) \\
& =\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cap\left(p_{1} \cap p_{2}\right) \cap \operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap\left(p_{1} \cap p_{2}\right)
\end{aligned}
$$

By reducing and rearranging we get

$$
\operatorname{Eval}_{L}\left(p_{1} \cap p_{2}\right)(t)=\left(\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cap p_{1}\right) \cap\left(\operatorname{Eval}_{L}\left(p_{2}\right)(t) \cap p_{2}\right)
$$

which according to 42.0 is equivalent to

$$
\operatorname{Eval}_{L}\left(p_{1} \cap p_{2}\right)(t)=\operatorname{Eval}_{L}\left(p_{1}\right)(t) \cap \operatorname{Eval}_{L}\left(p_{2}\right)(t)
$$

## B. 4 Proof of Meet $_{N}$ Correctness 52

In this section we prove

```
393.0 DownSet (AntiCh(DownSet }(p)(a\mp@subsup{c}{1}{})\cap\operatorname{DownSet}(p)(a\mp@subsup{c}{2}{})))
 ~ 52
 DownSet
 (let cis ={mk-CI(cs1\cupcs2)|mk-CI(cs⿱1) \inacc
 CISproj(p)(cis))
```

Let the downset defined in 393.0 be $d s 1$. It is seen to be the set of concept-intersections in $p$ which are below $a c_{1}$ and $a c_{2}$ :

$$
d s 1=\left\{c i \mid c i \in p \cdot \exists c i_{1} \in a c_{1}, c i_{2} \in a c_{2} \cdot I S A_{P}\left(c i, c i_{1}\right) \wedge I S A_{P}\left(c i, c i_{2}\right)\right\}
$$

Let the downset defined in $393.1-393.3$ be $d s 2$. To show that $d s 1=d s 2$ we need an auxiliary lemma:

```
394.0 \(I S A_{P}\left(m k-C I(c s), m k-C I\left(c s_{1} \cup c s_{2}\right)\right)\)
from 6
\(.1=c s_{1} \cup c s_{2} \subseteq c s\)
\(.2=c s_{1} \subseteq c s \wedge c s_{2} \subseteq c s\)
\(.3=I S A_{P}\left(m k-C I(c s), m k-C I\left(c s_{1}\right)\right) \wedge I S A_{P}\left(m k-C I(c s), m k-C I\left(c s_{2}\right)\right)\)
```

According to the definition of CISproj (in 26) CISproj $(p)(c i s)$ is the anti-chain in $p$ which has the same downset in $p$ as cis has. Consequently, the downset of this anti-chain is the set of all concept-intersections in $p$ which are below some element in cis:

$$
\begin{aligned}
& d s 2=\{c i \mid c i \in p \\
& \left.\quad \exists c i^{\prime} \in\left\{m k-C I\left(c s_{1} \cup c s_{2}\right) \mid m k-C I\left(c s_{1}\right) \in a c_{1}, m k-C I\left(c s_{2}\right) \in a c_{2}\right\} \cdot I S A_{P}\left(c i, c i^{\prime}\right)\right\} \\
& =\{m k-C I(c s) \mid m k-C I(c s) \in p \\
& \left.\quad \exists m k-C I\left(c s_{1}\right) \in a c_{1}, m k-C I\left(c s_{2}\right) \in a c_{2} \cdot I S A_{P}\left(m k-C I(c s), m k-C I\left(c s_{1} \cup c s_{2}\right)\right)\right\} \\
& =\left\{m k-C I(c s) \mid m k-C I(c s) \in p \cdot \exists m k-C I\left(c s_{1}\right) \in a c_{1}, m k-C I\left(c s_{2}\right) \in a c_{2} \cdot\right. \\
& \left.=d s 1 \quad \operatorname{ISA}\left(m k-C I(c s), m k-C I\left(c s_{1}\right)\right) \wedge I S A_{P}\left(m k-C I(c s), m k-C I\left(c s_{2}\right)\right)\right\} \\
& =d s
\end{aligned}
$$

where the last step was obtained by a little renaming.

## B.5 Proof of Attribution Property 173.4

Below is a proof of the attribution property 173.4:

```
395.0 Attribution \(_{C A}\left(p_{1}\right)(\alpha)(\) cis \() \cup\) Attribution \(_{C A}\left(p_{2}\right)(\alpha)(\) cis \()=\) Attribution \(_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(\) cis \()\)
```

The proof is based on 173.0 and 173.2. First we need an auxiliary result

$$
\begin{aligned}
& \text { Attribution }_{C A}(p \backslash d)(\alpha)(\text { cis }) \\
& \text { - Attribution }(p)(\alpha)(\text { from } 173.2 \\
& =\text { Attribution }_{C A}(p)(\alpha)(c i s) \backslash d \\
& =\left(\text { Attribution }_{C A}(p)(\alpha)(\text { cis }) \cap p\right) \backslash d \\
& =\text { Attribution }_{C A}(p)(\alpha)(c i s) \cap(p \backslash d)
\end{aligned}
$$

Hence, if $p \backslash d$ is replaced by $p_{1}$ we get


The equality 396 above may be instantiated to the two equations below:
397.0 Attribution $_{C A}\left(p_{1}\right)(\alpha)($ cis $)=$ Attribution $_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)($ cis $) \cap p_{1}$
.1 Attribution ${ }_{C A}\left(p_{2}\right)(\alpha)($ cis $)=$ Attribution $_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(c i s) \cap p_{2}$
By making the union of the two equations in 397 above we get the first line below

$$
\begin{aligned}
& \text { Attribution }_{C A}\left(p_{1}\right)(\alpha)(\text { cis }) \cup \text { Attribution }_{C A}\left(p_{1}\right)(\alpha)(\text { cis }) \\
& =\text { Attribution }_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(\text { cis }) \cap p_{1} \cup \text { Attribution }_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(\text { cis }) \cap p_{2} \\
& =\text { Attribution }_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(\text { cis }) \cap\left(p_{1} \cup p_{2}\right)
\end{aligned}
$$

$$
=\text { Attribution }_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(\text { cis }) \quad \text { from } \text { Attribution }_{C A}\left(p_{1} \cup p_{2}\right)(\alpha)(c i s) \subseteq p_{1} \cup p_{2}, \text { (173.0) }
$$

## B. 6 Proof of Downset Intersection Property 210

We prove the general downset intersection property 210 mentioned in section 11.1. It is repeated below:

```
398.0 \forallcis1,cis 2:CI-set.
 .1 DownSetC}(p)(\mp@subsup{cis}{1}{}\cap\mp@subsup{cis}{2}{2})\subseteq\operatorname{DownSetC}(p)(\mp@subsup{cis}{1}{})\cap\operatorname{DownSetC}(p)(\mp@subsup{cis}{2}{}
```

If $\operatorname{DownSet} C(p)\left(\right.$ cis $_{1} \cap$ cis $\left._{2}\right)=\{ \}$ then the inclusion is obvious. So below assume
$\operatorname{DownSet} C(p)\left(\operatorname{cis}_{1} \cap \operatorname{cis}_{2}\right) \neq\{ \}$. We prove every element in the left-hand side set is also in the right-hand side set. So assume $c i: C I$ is an arbitrary concept-intersection such that

$$
c i \in \operatorname{DownSet} C(p)\left(c i s_{1} \cap c_{1} s_{2}\right)
$$

Then, according to the definition of DownSetC (23) we have

$$
\exists c i^{\prime} \in p \cdot c i^{\prime} \in c i s_{1} \cap c i s_{2} \wedge I S A_{P}\left(c i, c i^{\prime}\right)
$$

which can easily be rearranged to

$$
\exists c i^{\prime} \in p \cdot\left(c i^{\prime} \in c i s_{1} \wedge I S A_{P}\left(c i, c i^{\prime}\right)\right) \wedge \exists c i^{\prime} \in p \cdot\left(c i^{\prime} \in c i s_{2} \wedge I S A_{P}\left(c i, c i^{\prime}\right)\right)
$$

According to the definition of DownSetC this is equivalente to

$$
c i \in \operatorname{DownSet} C(p)\left(c i s_{1}\right) \wedge c i \in \operatorname{DownSet} C(p)\left(c i s_{2}\right)
$$

which is trivially equivalent to

$$
c i \in \operatorname{DownSetC}(p)\left(c i s_{1}\right) \cap \operatorname{DownSet} C(p)\left(c i s_{2}\right)
$$

## B. 7 Proof of Term Value Property 175.0

Below is a proof of the term value property 175.0 repeated here:
399.0 $\quad \operatorname{Eval}_{C A}(p)(t) \subseteq p$

The proof uses structural induction on the term structure. First 399 must be proved correct for basic terms i.e. terms without sub-terms:

BOTTOM:

$$
\operatorname{Eval}_{C A}(p)(\text { ВОтТОм })=\{ \} \subseteq p
$$

TOP:

$$
\operatorname{Eval}_{C A}\left(p_{1}\right)(\mathrm{TOP})=p \subseteq p
$$

Named concept $c$ :

$$
\operatorname{Eval}_{C A}(p)(c)=c \operatorname{Value}_{L}(p)(c)
$$

$$
=\operatorname{DownSet}(p)(\{m k-C I(\{c\})\})
$$

from 14

## $\subseteq p$

Next, in the induction steps, when considering compound terms, assume 399 is true for the sub-terms (the induction hypothesis):

```
\(m k-\operatorname{Join}\left(t_{1}, t_{2}\right)\) :
 \(\operatorname{Eval}_{C A}(p)\left(m k-\operatorname{Join}\left(t_{1}, t_{2}\right)\right)\)
 \(=\operatorname{Join}_{L}\left(\operatorname{Eval}_{C A}(p)\left(t_{1}\right), \operatorname{Eval}_{C A}(p)\left(t_{2}\right)\right)\)
 \(=\operatorname{Eval}_{C A}(p)\left(t_{1}\right) \cup \operatorname{Eval}_{C A}(p)\left(t_{2}\right)\)
 \(\subseteq p \cup p=p\)
\(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right):\) Similar to the proof for Join.
\(\operatorname{Attr}(\alpha, t)\) :
\(\operatorname{Eval}_{C A}(p)(\operatorname{Attr}(\alpha, t))\)
\(=\operatorname{Attribution}_{C A}(p)(\alpha)\left(\operatorname{Eval}_{C A}(p)(t)\right)\)
\[
\subseteq p
\]
```


## B. 8 Proof of Term Value Property 175.1

Below is a proof of the term value property 175.1 repeated here:

```
\(400.0 \quad p_{1} \subseteq p_{2} \Rightarrow \operatorname{Eval}_{C A}\left(p_{1}\right)(t) \subseteq \operatorname{Eval}_{C A}\left(p_{2}\right)(t)\)
```

To make the proof, let $p_{1}: P O$ and $p_{2}: P O$ be two arbitrary partial orders, and assume that the lefthand side of the implication above is true, i.e.

```
401.0
```

First 400 must be proved correct for basic terms i.e. terms without sub-terms:
воттом:

$$
\operatorname{Eval}_{C A}\left(p_{1}\right)(\text { воттом })=\{ \}=\operatorname{Eval}_{C A}\left(p_{1}\right)(\text { воттом })
$$

TOP:

$$
\operatorname{Eval}_{C A}\left(p_{1}\right)(\mathrm{TOP})=p_{1} \subseteq p_{2}=\operatorname{Eval}_{C A}(p)(\mathrm{TOP})
$$

Named concept $c$ :

$$
\operatorname{Eval}_{C A}\left(p_{1}\right)(c)=c \operatorname{Value}_{L}\left(p_{1}\right)(c)
$$

$$
\begin{equation*}
=\operatorname{DownSet}\left(p_{1}\right)(\{m k-C I(\{c\})\}) \tag{from 14}
\end{equation*}
$$

$\subseteq \operatorname{DownSet}\left(p_{2}\right)(\{m k-C I(\{c\})\})$
$=\operatorname{Eval}_{C A}\left(p_{2}\right)(c)$
Next, in the induction steps, when considering compound terms, assume 400 is true for the sub-terms (the induction hypothesis):

```
mk-Join(t}\mp@subsup{t}{1}{},\mp@subsup{t}{2}{})
 EvalCA}(\mp@subsup{p}{1}{})(mk-Join(t, t, t2)
 = Join
\[
\begin{aligned}
& =\operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{1}\right) \cup \operatorname{Eval}_{C A}\left(p_{1}\right)\left(t_{2}\right) \\
& \subseteq \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{1}\right) \cup \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{2}\right) \\
& =\operatorname{Join}_{L}\left(\operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{1}\right), \operatorname{Eval}_{C A}\left(p_{2}\right)\left(t_{2}\right)\right) \\
& =\operatorname{Eval}_{C A}\left(p_{2}\right)\left(m k-\operatorname{Join}_{1}\left(t_{1}, t_{2}\right)\right)
\end{aligned}
\]
from 30
from induction hypothesis
\(m k-\operatorname{Meet}\left(t_{1}, t_{2}\right)\) : Similar to the proof for Join.
\[
\begin{aligned}
\operatorname{Attr}(\alpha, & t) \\
& E^{\prime} \\
& =\text { Attribution }_{C A}\left(p_{1}\right)\left(p_{1}\right)(\alpha)\left(\operatorname{Eval}_{C A}\left(p_{1}\right)(t)\right) \\
& \subseteq \text { Attribution }_{C A}\left(p_{1}\right)(\alpha)\left(\text { Eval }_{C A}\left(p_{2}\right)(t)\right) \\
& \subseteq \text { Atribution }_{C A}\left(p_{2}\right)(\alpha)\left(\operatorname{Eval}_{C A}\left(p_{2}\right)(t)\right) \\
& =\operatorname{Eval}_{C A}\left(p_{2}\right)(\operatorname{Attr}(\alpha, t))
\end{aligned}
\]
from 174
from induction hypothesis and 173.1
from 173.2

\section*{B. 9 Proof of CISproj-property 106}

Below is a proof of the property of CISproj in 106 repeated here:
```

402.0 ISA和(CISproj}(\mathrm{ pmax )(cis),cis1)^ISAS}(cis1, cis)
.1 }\quad=>\quadCISproj(pmax)(cis1)=CISproj (pmax)(cis

```
proof: Let \(a c 1=C \operatorname{ISproj}(\operatorname{pmax})(c i s 1)\) and \(a c 2=C I S p r o j(p m a x)(c i s)\). From the definition of CISproj (26) we know that \(a c 1\) and \(a c 2\) are both anti-chains in pmax. To see that \(a c 1=a c 2\) we show that they have the same down-set in pmax. From the definition of CISproj 26.3 we get
```

403.0 DownSetC(pmax )(ac1) = DownSetC (pmax)(cis1),

```
 . 1 DownSet \(C(\) pmax \()(a c 2)=\operatorname{DownSetC}(\) pmax \()(c i s)\)

Assume the left-hand side of the implication
\(I S A_{S}(\operatorname{CISproj}(\operatorname{pmax})(c i s), c i s 1) \wedge I S A_{S}(c i s 1, c i s)\)
which is equivalent to
\(404.0 \quad I S A_{S}(a c 2, c i s 1) \wedge I S A_{S}(c i s 1, c i s)\)
To prove the equality we make two sub-proofs:
\(\underline{\operatorname{DownSet} C(p \max)(c i s 1) \subseteq \operatorname{DownSet} C(\operatorname{pmax})(c i s)}\) : So assume
cip \(\in \operatorname{DownSetC}(\) pmax \()(\) cis1 \()\)
which, according to the definition of \(\operatorname{DownSetC}\) (23) is equivalent to
\(405.0 \quad \exists c i 1 \in c i s 1 \cdot I S A_{P}(c i p, c i 1)\)
Applying the the definition of \(\operatorname{DownSet} C(23)\) to the right conjunct in 404 gives
\(\forall c i 1 \in c i s 1 \cdot \exists c i \in c i s \cdot I S A_{P}(c i 1, c i)\)
Applying this to 405 gives
\(\exists c i 1 \in c i s 1 \cdot \exists c i \in c i s \cdot I S A_{P}(c i 1, c i) \wedge I S A_{P}(c i p, c i 1)\)

Using the trasitivity of \(I S A_{P}\) gives
\(\exists c i \in c i s \cdot I S A_{P}(c i p, c i)\)
which is equivalent to
cip \(\in \operatorname{DownSet} C(p \max)(c i s)\)
\(\underline{\operatorname{DownSet} C(p \max)(c i s) \subseteq \operatorname{DownSet} C(\text { pmax })(c i s 1): ~ W e ~ p r o v e ~ t h e ~ e q u i v a l e n t ~}\)
\(\operatorname{DownSet} C(p \max)(a c 2) \subseteq \operatorname{DownSet} C(p \max)(c i s 1)\)
So assume
cip \(\in \operatorname{DownSet} C(\operatorname{pmax})(a c 2)\)
which, according to the definition of \(\operatorname{DownSet} C\) is equivalent to
\(406.0 \quad \exists c i 2 \in a c 2 \cdot I S A_{P}(c i p, c i 2)\)
Using the definition of \(I S A_{S}\) to the left conjunct in 404 gives:
\[
\forall c i 2 \in a c 2 \cdot \exists c i 1 \in c i s 1 \cdot I S A_{P}(c i 2, c i 1)
\]

Applying this to 406 gives
\[
\exists c i 2 \in a c 2 \cdot \exists c i 1 \in c i s 1 \cdot I S A_{P}(c i 2, c i 1) \wedge I S A_{P}(c i p, c i 2)
\]

Using the trasitivity of \(I S A_{P}\) gives
\(\exists c i 1 \in c i s 1 \cdot I S A_{P}(c i p, c i 1)\)
from which we get
cip \(\in \operatorname{DownSet} C(\) pmax \()(c i s 1)\)

\section*{B. 10 Proof of CISproj-property 107}

Below is a proof of the property of CISproj in 107 repeated here:
407.0 \(\quad \operatorname{CISproj}(p)\left(\operatorname{cis}_{1} \cup \operatorname{cis}_{2}\right)=\operatorname{AntiCh}\left(\operatorname{CISproj}(p)\left(\operatorname{cis}_{1}\right) \cup \operatorname{CISproj}(p)\left(\operatorname{cis}_{2}\right)\right)\)
proof: The equality in 407 is between two antichains in \(p\). Let the left- and right-hand side antichains be \(a c 1\) and \(a c 2\). We show they are identical by showing that they have the same down-set in \(p\). For the left-hand side anti-chain \(a c 1\) we have:
\[
\begin{aligned}
& \text { DownSetC }(p)(a c 1) \\
& =\operatorname{DownSetC}(p)\left(\text { cis }_{1} \cup \text { cis }_{2}\right) \\
& =\operatorname{DownSetC}(p)\left(\text { cis }_{1}\right) \cup \operatorname{DownSetC}(p)\left(\text { cis }_{2}\right)
\end{aligned}
\]

For the right-hand side anti-chain \(a c 2\) we have:
\[
\begin{aligned}
& \text { DownSet } C(p)(\operatorname{ac2} 2 \\
& =\operatorname{DownSetC}(p)\left(\operatorname{AntiCh}\left(\operatorname{CISproj}(p)\left(\operatorname{cis}_{1}\right) \cup \operatorname{CISproj}(p)\left(\operatorname{cis}_{2}\right)\right)\right) \\
& =\operatorname{DownSet} C(p)\left(\operatorname{CISproj}(p)\left(\operatorname{cis}_{1}\right) \cup \operatorname{CISproj}(p)\left(\operatorname{cis}_{2}\right)\right) \\
& =\operatorname{DownSet} C(p)\left(\operatorname{CISproj}(p)\left(\operatorname{cis}_{1}\right)\right) \cup \operatorname{DownSet} C(p)\left(\operatorname{CISproj}(p)\left(\operatorname{cis}_{2}\right)\right) \\
& =\operatorname{DownSetC}(p)\left(\operatorname{cis}_{1}\right) \cup \operatorname{DownSet} C(p)\left(\operatorname{cis}_{2}\right)
\end{aligned}
\]

\section*{References}
[1] B.A.Davey, H.A.Priestley. Introduction to Lattices and Order, Second Edition Cambridge University Press, 2002.
[2] John Dawes. The VDM-SL Reference Guide. London: Pitman, 1991
[3] J. Fischer Nilsson. An Algebraic Logic for Concept Structures. Information Modelling and Knowledge Bases V, H.Jaakkola et all.(Eds.). IOS Press, 1994
[4] J.Fischer Nilsson. A Logico-Algebraic Framework for Ontologies (ONTOLOG), in Procs. from Int. OntoQuery Workshop on Ontology-based interpretation of NP's, Kolding, January \(17-18,2000\)
[5] J. Fischer Nilsson, Hele-Mai Haav. Inducing Queries from Examples as Concept Formation. Information Modeling and Knowledge Bases X, H.Jaakkola et all.(Eds.). IOS Press, 1999
[6] Frank J. Oles. An application of lattice theory to knowledge representation, Theoretical Computer Science 249 (2000) 163-196```

