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AbstratIn this thesis a problem, presented by ALCAN Ieland, is put forth. The problem, alledthe bus route problem, examines the pikup of employees on route to an aluminium plant.Therefore a depot is de�ned and also a set of pikup loations. A bus must navigate through thepoints hoosing only the most important loations. The problem is presented mathematiallyand a meta-heuristi, simulated annealing, is used to solve the problem. The are a number oftests put forth. A good ooling shedule is alulated. A matrix determining the probability ofa neighborhood is onstruted. The best method of node insertion into the solution is found.The algorithm alulated strutured solutions provided with non-randomly generated datasets. The simulated annealing algorithm was then vompared to a GAMS program, returningvalues between the upperbound and the objetive value alulated with GAMS. Comparisonbetween tabu searh algorithm for TOP and the simulated annealing algorithm showed thatthe former is faster for small data sets and nearly always returns better objetive values.Finally a onstraint foring a bus to travel for a eratain amount of time before stoppingagain was implemented.
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Chapter 1Introdution1.1 Status Desription and MotivationThis exam projet is done by Einar Leif Nielsen for ALCAN in Straumsvík, Ieland. Mainsupervisor on this projet was Jesper Larsen, at IMM DTU. Co supervisors were Min Wen,PhD student at IMM DTU, and Páll Jenson, professor at the University of Ieland. In themiddle of the projet Jesper Larsen had to leave for New Zealand, for a few months, in themeantime Professor Jens Clausen took over Jespers duties on the projet.This projet deals with the pikup of employees for the ALCAN aluminium plant at StraumsvíkIeland. ALCAN is the seond largest aluminium manufaturer in the world. Its name is de-rived from the words ALuminium and CANanda. It has over 470 failities in 55 ountries1.The aluminium fatory in Ieland is the 11th [5℄, largest, in the orporation. It is loated inStraumsvík, whih is a just out side of Hafnarfjördur, a suburb of Reykjavík. Aluminium oxideis imported from Australia and manufatured into aluminium. The metal is then transportedoverseas for further work. ALCAN Ieland employees a around 470 persons [5℄ and was the�rst aluminium plant onstruted in Ieland. There are now three and more are planned.ALCAN's bus system, whih piks up employees, was �rst taken into use 30 years ago. Thatsystem has sine grown and new pikup points have been added without alulating theirloation. Now the system is very ompliated and has grown very expensive. A newly im-plemented tax on diesel fuel, by the Ielandi government, has linreased the ost even more.Therefore ALCAN deided to see if a more eonomial method for piking up employees exists.The goal of this projet is to �nd more eonomial bus routes and to see if the number ofbuses, and thereby routes, an be dereased. ALCAN hopes to derease the ost of the systemby at least 10-15%. This an be ahieved by inspeting the loation of pikup points to see ifall urrent pikup points are neessary. Also new pikup points an be introdued that wouldbe better loated than those urrently in use. New areas2 will not be added to the urrentsystem. ALCAN also hopes that this will derease travel time for the employees as some em-ployees spend nearly an hour on the bus.1http://en.wikipedia.org/wiki/Alan2Neighborhoods and suburbs. 11



12 CHAPTER 1. INTRODUCTIONALCAN prefers a general solution as it reeives a large work fore during the summer monthsthat relieve other employees during summer vaations. This does not mean that speial solu-tions should be exluded. They will be looked into and their importane estimated. ALCANhas requested that various types of solutions are to be inspeted.The urrent number of employees at ALCAN is 467 divided on three shifts. A day shift, 08-16;an afternoon shift, 16-00; and a night shift, 00-08. There are also three types of employees.Those who work the day shift, those who work the day shift and the afternoon shift and thosewho work on all three shifts. Also there are those who work weekends and those who do not.As is the ase with most workplaes, that use a shift system, at no time is all the workforepresent at the plant. So the largest work fore is present during the day shift on the weekdayswhile the smallest workfore is present during night time on the weekends.For the day shift pikup ALCAN uses 68 pikup points and approximately another 15 areadded for the night and afternoon pikup (during these times some of the other pikup pointsare exluded). New pik up point will be added to the system, these points an be loal busstops or other strategially hosen points, while others will be removed. The urrent routes areof di�erent lengths the longest taking approximately 52 minutes, driven in the morning duringweekends and holidays; and the shortest approximately 29 minutes, driven in the morning onweekdays.Currently Hópbílar supply the buses used in piking up employees for the aluminium plant inStraumsvík. Hópbílar is a privat bus ompany and one of the biggest in its �eld in Ieland.They have served ALCAN well and both ompanies want to ontinue that ooperation.Other transportation possibilities mentioned in this report are: the loal bus system, run bya ompany alled Strætó; and the loal taxi servies, whih are many.1.2 Outline of the ThesisThere are �ve hapters in this thesis exluding the �rst, this one. Eah of these �ve hapetersexamin a di�erent part of the problem that has been introdued.The seond hapter annalysis the problem presented, de�nes it and presents a mathematialmodel. There is also a review of relevant problems. The �nal setion in the �rst hapter ex-amins methods that have been implemented on similar problems and their results.The third hapter looks at the theory of the algorithm used for solving the problem. Alsoimplementation of this algorithm is explaind.The fourth hapter looks at various tests, or ompuational experiments. In this hapter thebest parameters are alulated and implemented. Various data sets were generated and otherdata sets obtained.The �fth and �nal hapter summarises the onlusions reahed in this projet. The �fth hap-ter also posses questions regarding further work, suh as: Is there any further development ofthe problem, or method, possible? Are results useful and other questions?



1.2. OUTLINE OF THE THESIS 13There is also a large appendix in this report ontaining various results from experiments,analysis and the algortihm used.
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Chapter 2Bus Route ProblemIn this setion a number of di�erent solutions for solving this problem, are explored. ALCAN'sbus route problem will from now on simlpy be re�ered to as the bus route problem.2.1 Analysis of the Realisti PossibilitiesFor this problem there are many possible solutions, these types of solutions have been ate-gorized in two types.1. First type of solutions only rely on one transportation possibility. That is only oneompany will transport employees to and from the aluminium plant.2. The seond type of solutions are ombinations of two transportation possibilities.It was onsidered and rejeted to use ombinations of more than two transportation possi-bilites. The reason for this is that solutions of the seond type overed all hours of the day,365 days a year. Therefore a new more omplex ombinations would o�er no improvementover the solutions of type 2. Also ombinations of more than two transportation possibilitiesare likely to be too expensive.In total there are 8 solutions of the �rst type and 25 ombined solutions. Solutions of typeone are de�ned in table 2.2.2.1.1 SWOT AnalysisStrength, weakness, opportunity and threats analysis, or SWOT analysis, was used to deter-mine whih solution would be best suited in solving the bus route problem. This is a methodoften used to de�ne the pros and ons. In this method:strength represents helpful internal fatorsweakness represents harmful internal fatorsopertunities represents helpful external fatorsthreats represents harmful external fators15



16 CHAPTER 2. BUS ROUTE PROBLEMWhen using SWOT analysis one has to de�ne internal and external fators. In the ase of thebus route problem internal fators were de�ned as: The author of the projet, ALCAN andthe projet supervisors.External fators were de�ned as: The employees of ALCAN, transportation ompanies andthe general publi of the greater Reykjavík area.After internal and external fator have been de�ned a table is onstruted. An example of aSWOT analysis table an be seen in Table 2.1.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general solu-tion that takes into aountemployee turnover. Worksall year round, 24 hours aday. This solution is not toosimple to be onsidered aexam projet.
Not ALCAN's desired solu-tion. In this solution newnodes without a prede�ned lo-ation annot be used. Hardto estimate the general popu-lation of an area.External Dereases travel time. Dereases pro�t for Hópbílar.Dereases the urrent amountof servie provided by AL-CAN.Table 2.1: This table show how solution of type 1 was analysed. SWOT analysis of all solutionsan be viewed in appendix B.

2.1.2 Combined SolutionsAll possible ombined solutions are shown in table 2.3. Although due to the number of pos-sible ombinations more information ould not be inluded in the table. Therefore a shortexplination, of Table 2.3, is in order for example look at ombination 1(Combo 1). This is aombination of solutions of type 4 and type 1, both are de�ned in table 2.2. This ombinationproposes the use of Strætó, the loal bus system, when possible and Hóbílar, a private busompany, when Strætó is losed. This is useful as the loal bus system is losed during nighttime and during holidays suh as Christmas.A di�erent ombination type, is ombination 15(Combo 15). This ombination uses solutionsof type 2 and 5. Note though that the ombination uses an extreme solution of type 2. Anextreme solution tries to limit the number of routes and travel time of a single route as muhas possible. So the solution would provide a few pikup points were Hópbílar would stop.Employees however would have to get to these pikup points by themselves.In appendix B all ombination solutions are de�ned and analyzed with the SWOT method.



2.1. ANALYSIS OF THE REALISTIC POSSIBILITIES 17
Table 2.2: Possible solutions for the problemName Desription TransportationType 1 Use urrent pikup points along with new ones(prede�ned, suh as loal bus stops). Estimatethe importane of eah pikup point by thenumber of people living lose to it, the amountof parking and onnetion to loal transit sys-tem. Buses from Hópbílar are used to pik upemployees.

Hópbílar
Type 2 Same as type 1 exept importane of pikuppoints is deided by the number of employeesthat live lose to them. Buses HópbílarType 3 Same as type 2 exept a software, suh asShorTre from AGR hf., is used to determinethe bus routes. A new route an be alulatedas often as ALCAN desires. Buses HópbílarType 4 Uses the loal bus system, buses, to pikup em-ployees and return them. StrætóType 5 Car pooling. Eah ar will be given a drivingdiary and reeive a payment for gas used atthe end of the month. It would be neessaryto write a program that would put �ve peopletogether as a part of a ar pooling team. Employees
Type 6 Driving grant. Eah employee would reeive aninrease in pay to ompensate for the lak ofbuses. The employees would then drive them-selves to work. EmployeesType 7 Car pooling with taxis. A taxi would pikupemployees and return them. Eah taxi wouldbe �lled with passengers. A program would tellthe taxi servie where and when to pik up anemployee. Taxi servie
Type 8 Same as type 1 exept the pikup points wouldbe alulated so that there loation was goodand not from predetermined points. Buses Hópbílar



18 CHAPTER 2. BUS ROUTE PROBLEM

Table 2.3: Possible solutions for the problemName Desription TransportationCombo 1 Type 4 and type 1. Hópbílar and StrætóCombo 2 Type 2 and type 4. Hópbílar and StrætóCombo 3 Type 3 and type 4. Hópbílar and StrætóCombo 4 Type 5 and type 4. Employees and StrætóCombo 5 Type 6 and type 4. Employees and StrætóCombo 6 Type 7 and type 4. Taxi servie and StrætóCombo 7 Type 8 and type 4. Hópbílar and StrætóCombo 8 Type 5 and type 6. Hópbílar and StrætóCombo 9 Type 7 and type 6. Hópbílar and StrætóCombo 10 Extreme solution using type 1 and then use type 4. Hópbílar and StrætóCombo 11 Extreme solution using type 2 and then use type 4. Hópbílar and StrætóCombo 12 Extreme solution using type 3 and then use type 4. Hópbílar and StrætóCombo 13 Extreme solution using type 8 and then use type 4. Hópbílar and StrætóCombo 14 Extreme solution using type 1 and then use type 5. Hópbílar and employeesCombo 15 Extreme solution using type 2 and then use type 5. Hópbílar and employeesCombo 16 Extreme solution using type 3 and then use type 5. Employees and HópbílarCombo 17 Extreme solution using type 8 and then use type 5. Employees and HópbílarCombo 18 Extreme solution using type 1 and then use type 6. Employees and HópbílarCombo 19 Extreme solution using type 2 and then use type 6. Employees and HópbílarCombo 20 Extreme solution using type 3 and then use type 6. Employees and HópbílarCombo 21 Extreme solution using type 8 and then use type 6. Employees and HópbílarCombo 22 Extreme solution using type 1 and then use type 7. Taxi servie and HópbílarCombo 23 Extreme solution using type 2 and then use type 7. Taxi servie and HópbílarCombo 24 Extreme solution using type 3 and then use type 7. Taxi servie and HópbílarCombo 25 Extreme solution using type 8 and then use type 7. Taxi servie and Hópbílar



2.2. PROBLEM DEFINITION AND DESCRIPTION 192.1.3 Chosen SolutionFrom the SWOT analysis it was determined that solution of type 2 was best suited. The reasonfor this hoie is that this solution is relatively simple to program and therefore a good plaeto start the projet. Also this would provide a solution for ALCAN. Although not as generalas they may have preferred but ga ood speial solution. The de�nition of solution type 2 anbe seen in table 2.2. Small hanges have been made to this solution to better suite the needsof ALCAN. Solution of type 2 was de�ned as:Use urrent pikup points along with new ones (prede�ned, suh as loal bus stops).Estimate the importane of pikup points by the number of employees that livelose to them, the amount of parking and onnetion to loal transit system.Buses from Hópbílar are used to pik up employees.2.2 Problem De�nition and DesriptionThe problem as presented by ALCAN gives a geographial set, a set of employees, a set ofbuses and a set of loations(pikup points). The aluminium plant also has a prede�ned loa-tion and all buses must �nish their route there.Let us �rst look at the geographial set. Within this set are the possible loations of pikuppoints, as ALCAN has de�ned some areas outside of there routes and they do not intend toinrease this area. Therefore new pikup points must be loated within the geographial set.The travel between all points in a set is alled the travelling salesman problem or TSP. In thisproblem one must navigate trhough a number of points and then return to the point of origin,via the shortest travel distane.The set of employees inludes all employees at ALCAN. Although some employees live outsideof the geographial set and are therefore not relevant to the problem. This set is not very ruialto the problem but an be useful in determining the importane of a single pikup point. Trav-eling through a set of points eah assigned a pro�t is similar to the prie olleting travelingsalesman problem, PCTSP. In that problem one must navigate trhough a set of points leavingfrom a soure point and return having olleted a minimum number of pro�t on the way, viathe shortest route. Note though that one does not have to visit all points, in the set, in PCTSP.The set of buses is important as the number of buses urrently in use, in the system, annotbe exeeded. The set of buses will from now be re�ered to as the set of routes. If a single busis in use, that bus will be alled an ative route or a route in use. The apaity of a bus isnot important as the number of people working at ALCAN ar not that many. Therfore theapasity of a single bus is unimportant. A problem dealing with more than one route is alleda vehile routing problem or VRP. In VRP one must navigate more than one route leavingfrom a depot, visiting all points in the set, and the returning again to the soure, via theshortes possible routes.Loations are ruial to this projet. The hoie of where a bus should stop or not is importantin determining the ost of the system. The only fator onerning this set is that the loationsbe within the geographial set. How to hoose a loation will depend on how pro�table a



20 CHAPTER 2. BUS ROUTE PROBLEMloation is. To determin this pro�t the number of employees living within a ertain radius,available parking, onnetion to loal transit and other fators an be inspeted. To simplifyfor now we will assume that the importane of a node is determined by the number of people,within the set of employees, that are living inside a ertain radius from the loation. Theseloations will now be referred to as nodes. Nodes in use an also be alled an ative nodes. Theare many possibiltiees to add nodes to the existing set of loations as long as those nodesare within the geographial set. As time is more of an issue than distane the travel timebetween individual nodes will be inspeted, not the distane. This problem, as it has beende�ned, is very similar to the team orienteering problem, TOP. There a team of moutaineersmust navigate, eah on his own, though a number of nodes, therby olleting pro�t. The goalof TOP is to ollet as muh pro�t as possible and it is not neessary to visit all nodes in theset. Also in TOP one must return to the point of origin.Another problem, regarding the nodes, onerns the distane, or travel time, between twonodes. If two nodes are situated very lose to one another the may have overlapping pro�t.This means that some of the people living within a ertain radius from node one also livewithin said radius from node two. Therefore a onstraint foring the bus to travel a ertaintime before stopping again an be implemented. Another solution regarding this problemwould involve not hoosing two nodes too lose to one another.It is the wish of ALCAN to derease the ost of the bus sytem. This an be ahived in twoways. First by dereasing the number of routes in use or seondly by dereasing the numberof ative nodes. These are therefore de�ned as the two main fator in ALCAN's problem, theproblem will from now on be re�ered to as the bus route problem. ALCAN's whishes are tolimit the number of nodes and/or routes while piking up as many employees as possible. Thismeans that not all nodes have to be visited, only those who are deemed important enough.Also as the buses themselves are not owed by ALCAN, but by an outside ontrator, the busestherefore do not have to start at the plant. This means a if a route is used it will originatefrom the �rst node it visits and then make its way to the aluminium plant. The open vehilerouting proble, OVRP, is simlar to this. In OVRP one must navigate a number of routes, allleaving from the same depot, though a set of nodes. All nodes must be visited but the routesdo not have to return to the depot. The aluminium plant will from here on be referred to asa depot.By ombining ertain elements of the methods desribed one an formulated a mathematialmodel of the bus route problem. Alternative methods than those previously desribed an beused to solve the problem. For example one ould assign all employees to ertain bus stopsand then one would add those bus stops to a bus route. If the route is too long one wouldthen derease the number of bus stops and reassign the employees to fewer pikup points. Thiswould be done as often as neessary. After employees have been assigned to the bus stops theproblem beomes a OVRP.This method will most likely have a shorter alulation period than the bus route problem. Itwould take into aount the apaity of eah vehile and there is no hane that a bus will stopat two points with overlapping pro�t. On the other hand the bus route problem is more likelyto hoose the best possible routes, it is a more general solution and might possibly hoose tostop at points with small pro�t. In onlusion these are both good methods but the bus route



2.3. A MATHEMATICAL MODEL FOR BRP 21problem seems to �t more to the wishes of ALCAN and therefore is a better andidate forsolving the problem presented.To determine the loation of nodes a population funtion for the area an be onstruted. Thisfuntion would map out the most populated areas and the points with the highest population,hot spots, would de�ne nodes and there pro�t. The reason this will not be done is thatonstruting a population funtion of a ity is outside the sope of this projet, even thoughit would give a very general solution. Therefore the method of prede�ned pikup points isdeemed better in omparison.2.3 A Mathematial Model for BRPThe problem de�ned is the bus route problem, BRP, and it has been ompared to variousmethods suh as PCTSP, TOP and OVRP. It has been shown that the bus route problem hasalot in ommon with these other problems but is not the same as any of them.In this model there are a few sets whih need to be de�ned. L is the set of n loations,nodes, where pikup of employees is possible. Not all of these loations have to be visited.
V = L ∪ {0, n + 1} is the set of all nodes, {0} represents fatory out and {n + 1} representsfatory in. Travel time from node 0 to any other node is none, 0. This is beause the bus routeproblem is an open problem, like the OVRP, and it is not neessary for the busses to startthere route at the depot, plant. A is the set of ars between nodes and K is the set of busses,
K = {1, 2, ..., N}.To onstrut a model of the bus route problem, three variables have to be de�ned.
Name Desription

xk
i,j The ar between i and j, equal to 1 if the ar is driven, by bus k, else it is equal to0.
yi A binary number equal to 1 if node i is visited else it is 0
sk
i This is the stopping time for bus k at node i.The time, sk

i , is de�ned as the time when bus k stops at node i and is therefore dependanton previous sk
j if the bus stopped at node j ∈ L. Also there are a few onstants that need tobe de�ned before the model is presented. Constants are all represent with the Greek sympolsexept for the upper.



22 CHAPTER 2. BUS ROUTE PROBLEMName Desription
τi,j The travel time between nodes i and j.
φi The pro�t for stopping at node i.
δi Indiates penalty for stopping at any given node, i.e. the time it takes to stop at anygive pik up point. In most ases there is no penalty for stopping at the soure andsink.
α This is a bonus fator for pro�ts, a bonus reeived when a pik up point is hosen.
β This is a bonus fator for not using a bus.
M An upper time limit is put on eah route, so that travel time for a single employeeis not greater than this number.
N Maximum number of buses. It is not desired to use more buses than are urrently inuse.Note that τ0i = 0, when i ∈ V , beause it is not neessary for a bus to drive from node 0,but it helps to start there when onstruting the routes. Pro�t an be determined by lookingat: population of area, number of employees living lose to the node, parking, bus stops orommere in the area. Some or all of these fators will be used when determining the pro�t ofa node. The solution will try to maximize the pro�t olleted, while minimizing the numberof buses used. Time will be a onstraint rather than part of the objetive funtion, this is alsodone in TOP.A pro�t, of β is gained by not using a bus. Therefore when a bus is not used it travels straightform soure to sink, xk

0,n+1 = 1.The bus route problem might be appliable in other ases. In these other appliations someof these onstants might be unneessary, or others might need to be added. This will dependentirely on the problem the model is applied to. Also ost may vary depending on time ofday, or if there is a holiday. This is beause a ost of using a bus an have many fators. Thegreatest of these is probably the start up ost for a single bus. Costs an be onsidered asmany things for example maintenane, driver salary and bus ompany pro�t. Also in someases ompanies may harge for eah kilometer or eah liter of gasoline used.2.3.1 Objetive FuntionThe objetive funtion for the bus route problem is now put forth.
max Y = α

∑

i φiyi + β
∑

k xk
0,n+1There are two fators in the objetive funtion. The �rst half of the equation shows the pro�tsgained stopping at a ertain node and that is then multiplied with a bonus fator. The seondis a positive ontribution for every bus not used, xk

0,n+1 = 1 and all other xk
ij = 0, that is thenmultiplied with a bonus fator. The bonus fator represents for example the ost of a singlebus, β, or the importane of a single pro�t point, α.2.3.2 ConstraintsHere are the onstraints onstruted for the bus route problem.
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∑

k∈K

∑

j∈V \{i}

xk
ij = yi ∀i ∈ V (2.3.1)

∑

k∈K

∑

i∈V \{j}

xk
ij = yj ∀j ∈ V (2.3.2)These two onstraints (2.3.1) and (2.3.2) say that if yi = 1, for i ∈ L, then the node is enteredand exited.

xk
0,j(s

k
0 + τ0,j) ≤ sk

j ∀k ∈ K and j ∈ V (2.3.3)
xk

ij(s
k
i + δj + τij) ≤ sk

j ∀k ∈ K,i ∈ L and j ∈ V (2.3.4)These onstraints (2.3.3) and (2.3.4) ensures that if a bus travels between i and j, on route k,then the stopping time on loation i is onstraint to the previous time the bus has travelled.
sk
n+1 ≤M ∀k ∈ K (2.3.5)Constraint (2.3.5) does not allow any route to have a travel time greater than M .

∑

k∈K

∑

j∈V

xk
ij ≤ 1 ∀i ∈ L (2.3.6)Constraint (2.3.5) restrits more than one bus driving between i and j.

∑

j∈V

xk
0j = 1 ∀k ∈ K (2.3.7)Constraint (2.3.7) ensures that a bus drives out of the fatory.

∑

i∈V

xk
ih −

∑

j∈V

xk
hj = 0 ∀h ∈ L, k ∈ K (2.3.8)Here in equation (2.3.8) it is made sure that if a bus drives into a node it is required to driveout of it as well, if the node is in the set of loations (pikup points).

∑

i∈N

xk
i,n+1 = 1 ∀k ∈ K (2.3.9)Constraint (2.3.9) requires all buses to end there routes at the fatory.

xk
i,j ≤

τij

a
∀k ∈ K, i ∈ V, j ∈ V (2.3.10)In (2.3.10) s bus must travel for a ertain amount of time, a, before stoping at a new pikuppoint.



24 CHAPTER 2. BUS ROUTE PROBLEM2.3.3 LinearityThe model, as presented in the previous setion, is not linear and therefore some hanges haveto be made if it is to be solved in GAMS1. The non-linearity an be found in equations (2.3.3)and (2.3.4), where two variables are multiplied. To ensure linearity the hanges listed belowhave to be applied, to the model.
sk
0 = 0 ∀k ∈ K (2.3.11)

sk
0 + τ0,j − sk

j = (1− x0,j)W ∀k ∈ Kj ∈ V (2.3.12)
sk
i + δ + τij − sk

j = (1− xij)W ∀k ∈ K, i ∈ Lj ∈ L (2.3.13)
sk
i + τi,n+1 − sk

n+1 = (1− xi,n+1)W ∀k ∈ Ki ∈ V (2.3.14)Here W is a large number and W > |V |. Other onstraints are the same as in the previoussetion. Although when dealing with a GAMS model other onstraints have to be added:
∑

i∈V

∑

k∈K

xk
i,0 = 0 (2.3.15)

∑

j∈V

∑

k∈K

xk
n+1,j = 0 (2.3.16)

∑

i∈V

∑

k∈K

xk
ii = 0 (2.3.17)These onstraint ensure that a node does not visit itself, that no one an return to the soureand that no one an leave the sink.2.3.4 Upper BoundsFirst and the most obvious upper bound to the problem is to let one route visit all the points.

UB =
∑

i∈V

φi + β(|K| − 1) (2.3.18)This upper bound requirs one bus to ollet all the pro�ts froom every node. All pro�tsare represented by the �rst half of equation (2.3.18) and if only one bus is used then a pro�tof β(|K| − 1) is olleted from the unused buses.Relaxations to travel timeThe upper bound in (2.3.18) is the same for all values of M . Let us now inorporate M intothe upper bound. It is known that traveling further than M from the depot is impossible. Letus now de�ne VM as the set of all nodes loser than M to the depot. The new upper bound is
∑

i∈VM

φi + β(|K| − 1) (2.3.19)1GAMS is a programming language used to solve linear models in operation researh.



2.4. REVIEW OF RELEVANT PROBLEMS 25This upper bound, equation (2.3.19) does not allow pro�t outside the radius of maximumroute length. All pro�t within that radius, of maximum route length, is olleted with a singlebus.2.4 Review of Relevant ProblemsThe bus route problem fouses on routes that make there way through a number of pik uppoints before �nally stopping at the last point, known as the depot. This is similar to a wellknown problem alled the travelling salesman problem or TSP.2.4.1 TSPTSP tries to �nd the optimal, shortest, route from a soure through a number of nodes andbak to the soure. A travelling salesman leaving from New York and visiting all the majorities on the east ost, of the USA, has to �nd the best route to travel and then return homeagain, hene the name travelling salesman problem.This problem is, perhaps, the best known problem in operations researh. For this problem abinary matrix is de�ned, xij.
xij =

{

1 If one travels from node i to node j
0 If one does not travel from node i to node jAlso a ost, cij , is de�ned. This is the ost of travelling from node i to node j. The set ofnodes is V and A is the set of all ars. A model, as de�ned in Wosley [15℄ is:min∑

i∈V

∑

j∈V

cijxij (2.4.1)s. t. ∑

j:j 6=i xij = 1 ∀i ∈ V (2.4.2)
∑

i:i6=j xij = 1 ∀j ∈ V (2.4.3)
∑

i∈S

∑

j /∈S xij ≥ 1 for S ⊂ V , S 6= ∅ (2.4.4)
xij ∈ {0, 1} ∀i ∈ V,∀j ∈ V (2.4.5)

cij ≥ 0 ∀i ∈ V,∀j ∈ V (2.4.6)Constraints (2.4.2) and (2.4.3) ensure that every node is both entered and exited. The mostompliated onstraint is (2.4.4) for it is a sub tour elimination onstraint. The number ofsub tour elimination onstraints raises dramatily with the number of nodes assigned to theproblem.The number of possible solutions for TSP, with n nodes, is (n−1)!. Half that for the symmetriproblem. The TSP problem is NP-hard [6℄ Wosley [15℄ de�nes NP-hard in the follwoing way:"NP is a lass of deision problems with the property that: for any instane for wih the an-swer is YES� there is a "short" (polynomial) proof of the YES." Heuristis suh as Lagrangianheuristi and meta heuristis, suh as tabu searh, are often used to solve TSP. The largestTSP problem solved, to date, found the shortest path between 24,978 ities in Sweden [6℄. To



26 CHAPTER 2. BUS ROUTE PROBLEM�nd the solution utting plain and branh-and-ut proesses were used and it took almost ayear to �nd the �nal solution [6℄.As an be seen there are ertain similarities between the travelling salesman problem andthe bus route problem. Although in the latter it is not neessary to stop at all points but thatis the ase with TSP. Therefore in the bus route problem one must determine whih pik uppoints are important and whih are not. A variation of the travelling salesman problem alledthe prie olleting travelling salesman problem, PCTSP, deals with this problem.2.4.2 PCTSPIn PCTSP, eah node is assigned a prize, or pro�t, gained when the node is visited. Not allnodes have to be visited in PCTSP but a penalty is paid for every node skipped. As in TSP
V is the set of all nodes.Name Desription

xij Is equall to 1 if the path between i and j is used otherwise it is 0.
yi A binary number equal to 1 if node i is visited else it is 0
γi Penalty to be paid if node i is not visited.
pi Prize gained from visiting node i.
cij Cost of travelling from i to j.
B A minimum amount of olleted prizes.The PCTSP problem as presented2 in Dell'Amio [8℄:min∑

i∈V

∑

j∈V \i

cijxij +
∑

i∈V

γi(1− yi) (2.4.7)s. t. ∑

j∈V \i xij = yi ∀i ∈ V (2.4.8)
∑

i∈V \j xij = yj ∀j ∈ V (2.4.9)
y1 = 1 (2.4.10)

∑

i∈V piyj ≥ B ∀j ∈ V (2.4.11)
∑

i∈S

∑

j∈V \S xij ≥ yh ∀h ∈ V \ 1 and ∀S ⊂ V : 1 ∈ S, h ∈ V \ S (2.4.12)
xij ∈ {0, 1} ∀i ∈ N,∀j ∈ N (2.4.13)
yi ∈ {0, 1} ∀i ∈ N (2.4.14)(2.4.15)Constraints (2.4.8) and (2.4.9) ensure that if a node is entered it is also exited. Constraint(2.4.10) fores the depot to be inluded in the yle. In (2.4.11) a ertain amount of prizes hasto be gathered, a goal is de�ned, and (2.4.12) is a sub tour elimination onstraint.PCTSP was introdued by Balas and Martin in onnetion with operations of a steelrolling mill. A variant of PCTSP is the pro�table tour problem, PTP. When a PTP model is2Similar mathematial presentations were presented in Balas [1℄ and Dell'Amio [9℄, but a slightly di�erentmodel was presented in Chaves [4℄



2.4. REVIEW OF RELEVANT PROBLEMS 27onstruted it is essentially the same as PCTSP exept (2.4.10) and (2.4.11) are removed and
γi = 0 for all i ∈ V [9℄.Many methods have been used to solve PCTSP for example Lagrangian heuristi [8℄ or hybridalgorithms [4℄.In omparison the bus route problem and PCTSP are similar but PCTSP only allows a singleroute to visit pik up points. The problem presented by ALCAN an have up to �ve routes.A well know problem in operations researh deals with multiple routes, that problem is alledthe vehile routing problem or VRP.2.4.3 Vehile Routing ProblemAlloating more than one route to a number of nodes, is generally alled the vehile routingproblem.Name Desription

xk
i,j Is equal to one if route k travels from i to j and 0 otherwise.
γi Penalty to be paid if node i is not visited.
pi Prize gained from visiting node i.
cij Cost of travelling from i to j.
B A minimum amount of olleted prizes.Routing problems are harateristially di�ult to represent onisely in optimization models[12℄. These problems are often very useful in the real world. A mathematial model is presentedin the following way: min ∑

k∈K

∑

i∈V

∑

j∈V

cijx
k
ij (2.4.16)Here K is the set of routes and |K| = N while V is the set of nodes were |V | = n. In thisproblem the depot is presented by soure node, i = 0, and a sink node, i = n.

∑

i∈V xk
ih −

∑

j∈V xk
hj = 0 ∀h ∈ V \ {0, n}, k ∈ K (2.4.17)

∑

k∈K xk
ij = 1 ∀i ∈ V \ {0},∀j ∈ V \ {n} (2.4.18)

∑

i∈V xk
i,n = 1 ∀k ∈ K (2.4.19)

∑

j∈V xk
0,j = 1 ∀k ∈ K (2.4.20)

∑

k∈K

∑

i∈S

∑

j∈V \S xij ≥ 1 ∀S ⊂ V : 0 ∈ S, n ∈ S (2.4.21)
xk

ij ∈ {0, 1} ∀i ∈ V,∀j ∈ V, k ∈ K (2.4.22)The �rst onstraint (2.4.17) ensures that all nodes entered are exited. The seond onstraint(2.4.18) restrits more than one vehile visiting any node. Then onstraints (2.4.19) and(2.4.20) fore all routes to leave the soure and enter the sink. The subtour elimination on-straint is presented in (2.4.21) and lastly (2.4.22) gives xk
ij a binary value.



28 CHAPTER 2. BUS ROUTE PROBLEMThe VRP is widely used in the real world. The best example is the delivery of goods fromsuppliers to ustomers. Here the number of vehiles and apaity of vehiles an be a fator.These problems are usually solved with a tabu searh or other heuristis.The VRP allows the use of more than one routes but the method requires eah route to havethe same point of origin, alled a soure. The routes visit all points in V but must end at thesame point they started from. When the routes return the soure point is sometimes alled asink, this is the same loation but it has two names, soure and sink. In the bus route problemthis is not the ase, a bus an start at any node and then make its way to the depot. Avariation of VRP uses the same priniple. That variation of VRP is alled the open vehilerouting problem or OVRP.2.4.4 Open Vehile Routing ProblemOVRP, is similar to the vehile routing problem exept when drivers have visited all nodesthey do not need to return to the depot. This is similar to the bus route problem exept therethe bus starts at the last node and makes its way bak to the depot. OVRP uses a set ofHamiltonian paths while VRP uses a Hamiltonian yles [3℄. Both a Hamiltonian yle and aHamiltonian path are de�ned in [14℄ as follows:Before de�ning a path or a yle a walk must �rst be de�ned. G is a graph, a walkin G is a sequene of nodes and ars. A path is a walk with no repeated nodesand a trail is a walk within repeated ars. Note that all paths are trails but notall trails are paths. A iruit is a losed trail but not a path. A yle is de�ned asa iruit with at least one ar and has one repeated node is node1 = noden.In OVRP the drivers start at the depot and then �nish at the last ustomer node. Thereare normally ertain onstraints applied to this problem. A vehile has usually a maximumpredetermined apaity and this apaity annot be exeeded by the demand of the ostumernodes, on the route. Other onstraints may also apply, for example a maximum number ofvehiles or the maximum length of any single route. The OVRP has not been as extensivelystudied as VRP [3℄. It was �rst mentioned, aording to [3℄, in 1981 by Sharge in an artiledediated to the desription of realisti routing problems. The mathematial formulation ofOVRP is the same as for VRP exept c0j = 0, ∀j ∈ V .OVRP is used for a number of problems, for example the shool bus problem [17℄. In thatproblem a route for shool buses is determined. In [17℄ tabu searh is used to solve the prob-lem. Other algorithms, aording to [16℄, that have been used inlude: list-based thresholdaepting, BoneRoute meta heuristi and reord to reord travel heuristi. The last one is adeterministi variant of simulated annealing.The OVRP has similarities with the bus route problem but it has to visit all points in V .In the bus route problem one is allowed to skip some nodes, pik up points, but this is notpossible in the OVRP. The bus route problem does not have to visit all nodes, it does not haveto begin at the soure and it has to hoose nodes for there importane. A problem similar tothis is the team orienteering problem, or TOP.



2.4. REVIEW OF RELEVANT PROBLEMS 292.4.5 Team Orienteering ProblemThe team orienteering problem, or TOP, is a ombination of PCTSP and VRP. The problemde�nes a set of nodes V , a set of ars A and a set of routes K, were |V | = n and |K| = N . Inthis problem N routes visit n points, but does not have to stop at all points; eah point has aservie time and a pro�t.Name Desription
xk

i,j The number of times edge (i, j) transverses with vehile k.
yik A binary number equal to 1 if node i is visited by route k otherwise it is 0, i ∈ Vand k ∈ K
dij As the distane between two points and (i, j) ∈ A.
si Servise time ate vertex i, i ∈ V .
pi The pro�t reeived for node i, i ∈ V .
M The total duration of eah tour.This is in many ways similar to the bus route problem as a pro�t is needed for every node todetermine whih are to be visited. The TOP problem as presented in [13℄:max n−1
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i=1

N
∑
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piyik (2.4.23)s. t. ∑n−1
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0j = 2N (2.4.24)
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i>j xk
ij = 2yik ∀j ∈ V \ {n}, k ∈ K (2.4.25)
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∑

j>i dijx
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ij +

∑n−1
i=1 siyik ≤M k ∈ K (2.4.26)

∑N
k=1 yik ≤ 1 ∀i ∈ V \ {0, n} (2.4.27)

∑

i,j∈U,i<j xk
ij ≤ |U | − 1 U ⊂ V \ {0}, n − 2 ≥ |U | ≥ 2, k ∈ K(2.4.28)

xk
ij ∈ {0, 1, 2} ∀i ∈ V \ {0, n}, j ∈ V, k ∈ K (2.4.29)
xk

0,j ∈ {0, 1} ∀j ∈ V \ {n}, k ∈ K (2.4.30)
yik ∈ {0, 1} ∀i ∈ N (2.4.31)(2.4.32)The �rst onstraint (2.4.24) ensures that N tours leave the soure node and then return. Toensure onnetion of seleted nodes is (2.4.25) and (2.4.26) limits the length of any singletour. The onstraint (2.4.27) prevents more than one route going through a single node, otherthan the depot. The sub-tour elimination onstraint is (2.4.28). The last three onstraint showallowed values for the variables.The TOP lets one onstrut N routes through n − 1 nodes and the depot. Stopping at anysingle point gives a penalty or servie time. This ould for example be used for routing teh-niians to servie ustomers at geographially distributed positions.The TOP is a NP-hard problem as it is a varition of the seletive traveling salesman prob-lem [13℄. Methods used to solve TOP inlude tabu searh [13℄, greedy onstrution proedure



30 CHAPTER 2. BUS ROUTE PROBLEMand 5-step heuristi. A single route TOP, alled the orienteering problem or seletive travelingsalesman problem, has been solved with up to 500 nodes. This was done using branh-and-bound and branh-and-ut [13℄. Some times TOP is referred to as multiple tour maximumolletion problem. Of all the di�erent problems presented the TOP is most similar to the busroute problem.2.5 Review of Methods2.5.1 A Lagrangian heuristi for the Prize Colleting Travelling SalesmanProblem [8℄An artile inspeting how to solve PCTSP with a Lagrangian heuristi by M. Dell'Amio, F.Ma�oli and A. Siomahen. A good introdution to the PCTSP. The underlying unstru-tion of the bus route problem, presented in the report, is based in partially on the PCTSPmodel in this artile. The problem presented in the artile is minimized. Therefore to assist indetermining the valitity of alulated solutions a lower bound was also alulated. This lowerbound is found in [9℄. A feasible solution is found by using Adding-Nodes Proedure wheretwo rules, R1 and R2, are ompared. From these omparisons R2 was shown to be better inthis instane. This feasible solution is then de�ned as an upper bound as no feasible soultionwith a lower value objetive value is know.To improve upon feasible solutions two methods are ombined. The �rst was the so alledExtension phase tries to improve the overall pro�t of the urrent yle. The seond method wasalled Collapse phase and it tries to remove the most expensive node eah time. Together themethod was alled Extension and Collapse. Lastly a Lagragian heuristi was developed so thatExtension and Collapse was applied in eah omputation of the Lagrangian multiplier. Thismethod was then used on a few omputational experiments. The onlusion of the experimentswas that with inreased pro�t, that needs to be olleted, the omputational time requiredinreased while the quality of the solutions dereases. This quality of solutions was mesuredas the ratio between upper bound and lower bound.2.5.2 Prie Colleting Travelling Salesman Problem [1℄This is an artile by E. Balas onerning the prie olleting travelling salesman problem. Itwas Balas who, along with Martin, �rst introdued the PCTSP. There is an introdution toPCTSP in its �rst setion. After this the artile beomes very mathematial and ompliated.The main fous of this artile is to disuss the strutural properties of the PCTSP polytope,the onvex hull of the solutions to the PCTSP.2.5.3 On Prize-Colleting Tours and The Asymmetri Travelling SalesmanProblem [9℄An artile by M. Dell'Amio, F. Ma�oli and P. Värbrand. The artile ontains a short in-trodution to PCTSP and a model is presented. There is also a de�nition for PTP, pro�tabletour problem; and APTP, asymmetri pro�table tour problem. This artile featured a good



2.5. REVIEW OF METHODS 31setion on tests whih proved to be helpful in onduting tests for the model inspeted in thisreport. Test were randomly generated.The artile de�nes PTP by removing ertain onstraints from PCTSP and allowing the emptysolution. A simple heuristi is de�ned to solve PTP. It is also disussed how the PTP an bepolynomialy redued to Asymmetri TSP on a large diagraph. Three previously disoveredlower bounds for PCTSP are presented and also a new lower bound for PCTSP is put forth.For asymmetri PTP two lower bounds are presented by removing onstraints. The artile endswith a setion on omputational experiments both for PTP and PCTSP. Were all instaneswere solved in less than one minute of CPU time. It was also onluded, by inspeting ratiosbetween lower bounds, that solutions to large asymmetri PTP problems were good.2.5.4 Hybrid algorithms with detetion of promising areas for the prizeolleting travelling salesman problem [4℄This artile by Agusto and Lorena on PCTSP presents some ideas of lustering, using evolu-tionary luster searh and a hybrid approah alled CS*. This hybrid approah was onstrutedfrom Greedy Randomized Adaptive Searh Proedure, or GRASP, and Variable neighbour-hood searh. The methods are given a short desription and how they an solve PCTSP isexplained. These ideas ould be useful in further development of insert moves or bus moves.The artile starts with an introdution where PCTSP is introdued and a short history of theproblem is given. The next setion puts forth a mathematial model of PCTSP, this model isa little di�erent from the one in [8℄. In the third setion ECS, evolutionary luster searh, andits omponents, evolutionary algorithm, interative lustering, analyzer module and a loalsearh; are explained. Then a setion desribes how ECS is applied for PCTSP. The hybridapproah alled CS* is then applied to PCTSP. In this setion a few interesting moves arede�ned. These 6 moves were di�erent from the ones used in this projet. One move alled m4,is omparable with insert move 133. Other moves were similar but often used more nodes, forexample m1 inserted 2 nodes instead of one. The last setion is on omputational results andshow solution from ECS and CS*. The results from these two are also ompared to resultsfrom a CPLEX 7.5 solver. In onlusion the authors �nd that CS* returns better solutionsand use of these methods is validated.2.5.5 A tabu searh algorithm for the open vehile routing problem [3℄This artile by Brandao ontains a good introdution to OVRP and ompares it to VRP.Most of the information in the setion on OVRP ame from this soure. There is also a shortintrodution on the history of OVRP and relatively few, ompared to VRP, have studiedit. The meta-heuristi used in the artile is tabu searh. The importane of a good initialsolution is disussed and how to attain suh a solution, the methods used for this are nearestneighbour heuristi, or NNH, and a solution based on a pseudo lower bound. The pseudo lowerbound is a method based on minimum ost spanning tree with degree k subjet to relaxations.Initial solutions given with an insertion heuristi and a lower bound were experimented upon.Before applying the tabu searh to this initial solution the solution is submitted to one of twomethods: nearest neighbour or unstringing and stringing method. This was done to improvethe solution. In the tabu searh swap and insert moves are used. The goal of the algorithm was3The moves and neighborhoods are de�ned in the next setion.



32 CHAPTER 2. BUS ROUTE PROBLEMto minimize the number of routes and therefore new routes ould not be reated. A methodwas inluded that tried to join the two routes with the lowest demand. This is lever andould be implemented to the algorithm used in the report in the future. In onlusion it isstated that the algorithm gave good solutions for a very short omputing time, outperformingformer algorithms suh as the one proposed by Sariklis and Powell. For example the methodof using psuedo lower bound gave an average travel time of 416.1 while Sariklis and Powellalgorithm had an average travel time of 488.2. These are from alulations with 50 point datasets and the di�erane in running times was 88.6 seonds, Sariklis and Powell method solvedthe problem in 0.22 seonds.2.5.6 Open Vehile Routing Problem with Time Deadlines: SolutionsMeth-ods and Appliation [17℄This artile, by Aksen, Aras and Özyurt; foused on the OVRP with time deadlines, or OVRP-TD. Clarke-Wright parallel saving algorithm modi�ed for OVRP was implemented along withgreedy nearest neighbour algorithm and a tabu searh heuristi. The artile also ontains ashort desription for most of these methods. The artile explained how Clark-Wright, CW,is modi�ed for OVRP-TD, mostly by setting ertain distanes to in�nity. Then CW and thenearest neighbour algorithm were used to �nd an initial solution. There neighbourhood on-sisted of three moves, whih were 1-0 move, 1-1 exhange and 2-Opt move. These three movesare the same as the swap moves desribed in this report. Loal searh with these moves isinorporated into TS as a tool of loal post optimization, LPO. The hapter on omputationalresults solving �ve random results and one real problem , a shool bus problem in Istanbul. Inonlusion it was apparent that CW initial solution performed better than lassial heuristiswith LPO. Overall this is a very short artile that does not go muh into details.2.5.7 A general heuristi for vehile routing problems [11℄This artile, by Pisinger and Ropke, is a large, extensive and takes on various vehile routingproblems. VRP with time windows, apaitated VRP, multi-depot VRP, site dependant VRPand OVRP are all disussed and solved by transforming eah instane into a single typeof model. The model is alled Rih Pik up and Delivery Problem with Time windows, orRPDPTW. There is a mathematial presentation of this model that is a little onfusing, onaount of the number of sets involved. All the models RPDPTW solves are VRP models andtherfore have to visit all nodes presented in the system, whih means the RPDPTW an notbe appplied to the bus route problem. Next there is a setion on how one transforms these�ve di�erent VRP problems into a RPDPTW. This artile and the model presented are goodreading material when presented with a problem as disussed in this report. The artile alsoexplains di�erent objetives of its model. The �rst objetive is to minimize the number ofvehiles while the seond objetive is to minimize the travel distane. This is in aordanewith the problem presented in this report where the �rst objetive is to visit as many nodesas possible, with given travel onstraints, while using as few buses as possible and the seondobjetive is to minimize the travel distane/time. The heuristi used to solve RPDPTW isadaptive large neighbourhood searh, ALNS, a method that uses two, a onstrutive and adestrutive, neighbourhoods to �nd an optimal solution. It is explained how one applies theALNS to RPDPTW and then there is a large setion on omputational results. In onlusion



2.5. REVIEW OF METHODS 33it is stated that the ALNS should be onsidered as one of the standard frameworks for solvinglarge-sized optimization problems, as the method is very general and gave good results.2.5.8 Open vehile routing problem with driver nodes and time dead-lines [16℄This artile looks at a partiular variant of the OVRP where the vehiles, routes, start at thedepot and visit a number of nodes but all routes are required to end at ertain types of nodesalled driver nodes, this problem also has time deadlines that have to be kept. A mathematialmodel is presented for this partiular type of problem. The problem is quite di�erent from theone presented in this report but as with artiles on similar subjets it is worth a look to geta better understanding on OVRP.The introdution setion in this artile, by Aksen, Aras and Özyurt, ontains an exellenthistorial overview of OVRP. Instrumental artiles and methods used are mentioned. Theauthors also state that they know of no other artile where a similar problem, OVRP usingdriver nodes, is takled. To solve the problem a new heuristi alled open tabu searh is used.It makes use of three move operators in generating the solutions in the neighbourhood of theurrent solution. These moves are the same as de�ned in [17℄. The initial solution is foundwith a nearest insertion heuristi and a Clark-Wright parallel saving algorithm. The problemalled OVRP-d is mathematially presented as a mixed integer problem in the seond setion.This is learly presented and not ompliated. The next setion is on the tabu searh algorithmpreviously desribed. The forth setion is on omputational results where the open tabu searh,OTS, is ompared to various lassial heuristis. Then in onlusion it is determined that thenew heuristi, OTS, gives higher quality solutions then the lassial heuristis.2.5.9 A TABU Searh Heuristi for the Team Orienteering Problem [13℄This artile, by Tand and Miller-Hooks, on the team orienteering problem was very useful forthe projet. The team orienteering problem, TOP, is very similar to the model presented inthis report. Also the authors supplied data so omparison tests, between their results and thealgorithm in this projet, ould be performed.The artile starts out with a good introdution to TOP. The onnetion between TOP andseveral other problems is disussed. Also the method that have be inspeted when solvingTOP are listed, simulated annealing is not one of them. The next setion puts forth themathematial model in a very straight forward manner. The artile explains how the initialsolution is alulated with a method known as adaptive memory proedure, AMP. This is anexellent method for alulating an initial solution, although might in some ases be prob-lemati if the best solution is using no routes4. Interestingly the tabu searh algorithm usesintermediate infeasible solutions to aid in the searh proess, by moving solutions out of loaloptimums. Other methods like small and large neighbourhood searh and methods used fortour improvement are also disussed. The setion on omputational results shows omparisonbetween TABU searh, 5-step heuristi and a version of the Tsiligirides heuristi extended forTOP by Chao. In onlusion it is noted that AMP and its mehanism, alternating betweensmall and large neighbourhoods stages and using both random insertion and greedy proeduresled to an e�etive tabu searh algorithm.4For example in the algorithm used in this projet.
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Chapter 3
Simulated Annealing for the BRP
3.1 Simulated Annealing AlgorithmNow the model for the bus route problem has been put forth, similar problems explored andsolution methods for those methods disussed. The other problems, that were ompared toBRP are solved with a heuristi or a meta-heuristi methods. Also in [13℄ it is shown thatTOP is NP-hard as it is a speial ase of the seletive travelling salesman problem1. Now if, inthe bus route problem, β = 0 the we have the TOP problem with τ0,j = 0, ∀j ∈ V . Therforethe bus route problem is NP hard as well. In light of this it is neessary to hoose a heuristi ormeta heuristi to solve the problem. In omputer siene one strives to �nd as good a soltutionas possible using as short a running time as possible. A heuristi is an algorithm that sari�esone or both of these goals.Meta-heuristi is a method used for solving a lass of omputational problems, whih are om-mon in operations researh. To �nd the best method suited for solving the BRP a simple bute�etive meta-heuristi was needed. Simulated annealing is one suh method and it has givengood results in the past, when dealing with similar projets. Therefore simulated annealingalgorithm was used to solve the BRP.The idea of simulated annealing is to look at di�erent solutions and ompare them and aeptthe better solution, exept in ertain instanes a worse solution may be aepted. A pseudoode of simulated annealing is given in [15℄ and it is presented below:

1Seletive TSP is a variation of PCTSP. 35



36 CHAPTER 3. SIMULATED ANNEALING FOR THE BRPPseudo Code1. Get an initial solution S.2. Get an initial temperature, T0, and a redution fator, r, with
0 < r < 1.3. While not yet frozen do the following:(a) Perform the following loop L times.i. Pik a random neighbor S′ of S.ii. Let ∆ = f(S′)− f(S).iii. If ∆ ≥ set S′ = S.iv. If ∆ < 0 set S′ = S with probability e−∆/T .(b) Set T ← rT . Redue temperature.4. Return the best solution found.The value of T is used to alulated e−∆/T , this is the probability that determines if a worsesolution will be aepted or not. The redution fator, r, determines how fast the values of

T will drop in eah iteration. This along with a frozen value and stopping riteria is alled aooling shedule. There are many di�erent types of ooling shedules and some of them aredisussed in [10℄. The basi idea of the ooling shedule is to minimize the likelihood of theoptimal value being a loal optima and not a global optima.The ooling shedule hosen in this projet is the one desribed in Wosley [15℄. Most oolingsheduls would be e�etive for this problem, therefore the hosen shedule is just as good.3.1.1 NeighborhoodsIn the desription of the simulated annealing algortim a solution S′ is de�ned as a neighborof S. This means that a similar solution to S, ontaining almost all the same nodes as S. Thissimilar solution S′ is there fore de�ned in the neighborhood of S. In problems suh as theBRP there are a few ommon neighborhoods. These are:1. The insert move: One, or more, nodes are added to a possible solution. That is if thealgorithm hooses to add nodeh, h ∈ V , then nodeh is in S′ but not in S. Therefore
nodeh has been inserted into the possible solution. In this report this move is re�ered toas insert move 11,12,14 and 15.(a) insert move 11: Randomly selets an unused node into the solution.(b) insert move 12: Selets the highest pro�t unused node with the lowest possiblenode number2.() insert move 14: Selets the highest pro�t node farthest from the depot.(d) insert move 15: Selets the highest pro�t node losest to the depot.2Nodes have number ranging from 0 to |V |.



3.1. SIMULATED ANNEALING ALGORITHM 372. 1-1 move: Two seleted nodes, that are in S, are swaped by preserving there originalpositions. In this report this move is re�ered to as swap move 11.3. Insert and Remove: One seleted node is removed from the route and another unusednode is inserted into the route. In this report this move is referred to as insert move 13.Other possible neighborhoods are:1. Swap move 21: Here two seleted nodes, in two separate routes, are randomly hosenand exhanged, preserving their original possition.2. Swap move 31: Here a seleted node is removed from a route and inserted randomlyinto another separated route.3. Bus move: If there exists a route ontaining no nodes then a random number of unusednodes will be seleted and inserted into that route.These six moves form the neighborhood used in the simulated annealing algorithm. The �rstthree were hosen as they are often used in the literature. The di�erent types of insert moveswere devised as it is one of the, if not the most, important moves. This is manly beausethe initial guess is the empty solution, no ative routes, and therfore the algorithm has toonstrut the routes. Insert moves add new nodes to routes thereby inreasing there pro�tand the value of the objetive funtion.When de�ning insert move 14 one ould have de�ned two parameters determining what ishigh pro�t and what is far from the depot. Instead a more linear approah was hosen, simplyas it was more straight forward and easier to program. This linear approh de�ned the pro�tof a node as φi and the distane between nodei and the depot was de�ned as τ0,i. To determinewhih node to hoose insert move 14 inspeted φiτ0,i.Similarly two parameters ould have been de�ned for insert move 15, determining what ishigh pro�t and what is lose to the depot. A linear approah was also used in this ase as itwas logial and easy to program. The values inspeted by insert move 15, to determin whatnode to hoose, was the ratio φi/τ0,i.In insert move 13 the lowest pro�t node was removed from a randomly seleted route. Thenanother node, hose randomly, was inserted into the seleted route. It might be wiser to re-move a random node rather than one with low importane, but this was not implemented dueto time onstraints.The bus move may be a bit rude but it was devised to speed things along in the �rst iter-ations of simulated annealing. By using the bus move entire routes were added and therebydereasing the number of iterations needed to onstrut them simply by using insert move.The swap move 31 was deemed neessary. None of the other moves ould assist in the removalof a route so this one was onstruted. Other possibilities were inspeted, for example remov-ing a whole route and distributing its nodes to the remaining routes. This was not onsideredoptimal and ould potentially do more harm than good.



38 CHAPTER 3. SIMULATED ANNEALING FOR THE BRPOther swap moves were also used, alled swap move 11 and 12. They moved nodes around inthe routes thereby attempting to derease travel time.3.1.2 Adapting SA for BRPIn simulated annealing one inspets the objetive value, always aepting a better solutionand with a probabilty of e−∆/T aepting a worse solution. In the BRP the objetive funtionis not the only thing inspeted. Let us de�ne ωi as the ombined route lengths of all routesin a solution at iteration i. Then if ∆ = 0 there is a hane that ωnew < ωold. This newsolution S′, with travel time ωnew, may not return a higher objetive value but is none the lessa better solution. Therefore small hanges were made to the simulated annealing algorithm.This update was introdued late in the projet and therefore not implemented in all tests,before this was programmed the algorithm used a simulated annealing algorithm with onlyone ∆. This updated version of the algorithm is from here on alled the updated simulatedannealing algorithm.Pseudo Code1. Get an initial solution S.2. Get an initial temperature, T0, and a redution fator, r, with
0 < r < 1 .3. While not yet frozen, maximum number of iterations is not reahed,do the following:(a) Perform the following loop L times.i. Pik a random neighbor S′ of S. Where one of theneighborhoods is hosen.ii. Let ∆ = f(S′)− f(S).iii. If time onstraints are not broken then do the following:A. If ∆ > 0 set S′ = S.B. If ∆ = 0 and ωold > ωnew set S′ = S.C. If ∆ = 0 and ωold ≤ ωnew set S′ = S with probability

e−∆2/T .D. If ∆ < 0 set S′ = S with probability e−∆/T .(b) Set T ← rT . Redue temperature.4. Return a solution.The ooling shedule used in this pseudo ode is the one used in Wosley [15℄. The initial valuesof parametere, of the ooling shedule, were set to T0 = 3000, r = 0.5 and the stopping riteria
F = 0. The author had little experiene with this to begin with that led to this bad hoie.In Wosley [15℄ it says that the redution fator is a positive number less than one, 0 < r < 1.Therfore an average of r = 0.5 was hosen.
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Figure 3.1: Shows how lasses all other lasses.3.2 Implementation DetailsProgramming was done in the Java programming language, as the author had previous expe-riene with the language. It was deided that using CPLEX3, appliable with C and C++,would not be an option as ALCAN did not have the program and a ommerial liense isexpensive.The algorithm is divided into a number of lasses. Of the lasses there are two most important:SimulatedAnnealing.java and moves.java. These two lasses are the ore of the algorithm. Onean see how the lasses are alled in Figure 3.2.3CPLEX is an optimization software pakage.



40 CHAPTER 3. SIMULATED ANNEALING FOR THE BRP3.3 ClassesAll the lasses have di�erent roles in the whole algorithm, they an all be seen in appendix
C.2.3.3.1 Run.javaThis lass is the main �le, it is used when the algorithm is to be run. In this lass infor-mation de�ned from input �les, using GetDataFrom*.java; the initial guess is de�ned, in Ini-tialguess.java; and simulated annealing is performed, in SimulatedAnnealing.java. The wholerun of the algorithm is timed to see how long a alulation takes. Many of the onstants usedin the program are de�ned in Run.java and therefore it is ruial to hange the �le if a di�erentdata set is being tested.The initial guess generated in this projet was an empty set, all buses driving from soureto sink. There are other possibilities for generating this guess, for example in [13℄ a methodalled adaptive memory proedure is used to �nd initial guesses.3.3.2 SimulatedAnnealing.javaThis lass is the ore of the algorithm as it performs the simulated annealing. This lass allsmoves.java, CalulateOpt.java and CalulatedTime.java. All of the time onstraint are handledin this lass. The temperature, redution fator, frozen fator, maximum number of iterationsand the maximum travel time are de�ned in this lass.3.3.3 Moves.javaThis lass alls the neighborhood lasses, UnvisitedPoints.java and NumberOfBuses.java. Inthis lass the probabilities of ertain neighborhoods are determined. This is done by using aprobability matrix, P .3.3.4 Neighborhood ClassesThere are six previously de�ned neighborhoods.In BusMove.java a bus move is implemented. If the new proposed solution is infeasible, forexample the route too long, SimulatedAnnealing.java will rejet it.The three types of swap moves are alled in SwapMove11.java, SwapMove21.java and Swap-Move31.java. As with the bus move if any of the solutions alulated by the swap moves areinfeasible SimulatedAnnealing.java will rejet it.There are four di�erent insert moves (11, 12, 14 and 15). These are de�ned in InsertMove11.java,InsertMove12.java, InsertMove14.java and InsertMove15.java. As with the othe moves if a solu-tion is infeasible the soltuion is rejeted. Whih insert move is best suited for the algorithmis determined in tests.



3.3. CLASSES 41InsertMove13.java was reated for a ertain ase. If an unimportant node was added to thesolution there would be a hane that this node would be removed and replaed with a moreimportant node.3.3.5 Other ClassesTwo lasses alled alulateTime.java and alulteOpt.java alulate the travel time of the routesand the objetive funtion. In alulatedOpt.java both onstants in the objetive funtion, αand β, are de�ned.NumberOfBuses.java is used to determine how many routes are urrently ative. This has tobe used for example in BusMove.java, beause adding an already ative route is impossible.UnvisitedPoints.java is de�nitely the bottle nek of the program. It uses a triple for loop toonstrut a vetor of unused points. This is neessary in the program, for one annot add apoint that is urrently in use. The lass uses the two dimentional matrix route to determinewhih points are not in use. Route is a |K| × |V | matrix that shows the all the routes and thepoints they visit. In an earlier version of UnvisitedPoints.java a vetor alled Y was used. Thisversion was simpler and faster but unfortunatetly beause of inheritane fators in Java thisdid not work. Future inspetions of the program might �x the problem but in this projet toomuh time had been spent on the problem so it was left as is.A seond version of UnvisitedPoints.java was onstruted that removed all points within a er-tain radius of a hosen node from the set of usable nodes.Very late in the projet's proess an important lass was reated alled Derease.java. Theobjetive of this lass was to inspet whih points where within radius M from the depotand remove all other points. As it is impossible for a route to travel further than M , maxi-mum route length, beause all points at a further distane are unimportant. This lass was agreat susess dereasing runtime from over 100 seonds to under 10 seonds in one instane4.This lass also provided better solutions. Unfortunatetly the lass was introdued late in theprojet so so it was not inluded in all tests, those test that used this lass indiate so in thereintrodution.Programs were also onstruted, during experiments, to run a number of tests onseutively.These were all simple programs only onstruted for optimal use of time.
4Data set 50a, M = 20
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Chapter 4Tests4.1 Data SetsThere were 25 data sets and of those 22 were onstruted. The other three were obtained datasets from Tang and Miller-Hooks [13℄.To verify the algorithm, used for solving the bus route problem, tests were implemented. Notein this hapter τij are always Eulidian distanes, also note that τ0,i = 0, foralli ∈ V whendealing with generated data sets. Also δi, penalty for stopping at a single node, an havedi�errent values for all i ∈ L. In the test performed for onstruted data sets δi = 1,∀i ∈ L.In test using obtaind data sets δi = 0 for all i ∈ L. For the depot δ0 = 0 and δn+1 = 0 in alltests.4.1.1 Construted Data setsThe onstruted data sets are atagorized in to two types, the non-randomly onstruted anddata sets and the randomly onstruted data sets.The non-randomly onstruted data sets were situated in a graph of the sale 100× 100. Thedepot was de�ned as the enter, (50, 50), and had a number of routes in a ertain diretion.The possible number of these routes was 3 and 4. A typial data set with three routes anbe seen in Figure 4.1. Eah node was situated so that it had the oordinates (mx,my), where
mx ∈ Z+ and my ∈ Z+ (both positive integer numbers). This means that when using threeroutes, originating from the depot, the Eulidian distane between a point and its losestneighbor was either 1 or √1 + 1. In the ase were there were four routes, originating from thedepot, the distane between a point and ist losest menighbor was always 1.Of the non-randomly generated data sets six had 50 points and six sets had 100. As thesedata sets where supposed to be simple, to inspet if the algorithm works for the simple ases,the pro�t of every node was the same, with a value of 10. This was perhaps a bit to simpleso a number of nodes had to be removed or have there pro�ts dereased, otherwise the datasets would ahve been to simple. Therefore a small number, 10%, of points were hosen. thereason for hoosing 10% is that 10% is su�ently small to hange the data set but still retainthe original simpliity. This means that in a 100 points data set 10 were seleted. Of theseten points �ve were removed and �ve had there pro�ts dereased to 1. When dealing with43
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Figure 4.1: This is a test, type 1, with three routes and n points on eah route.



4.2. COOLING SCHEDULE 4550 point data sets �ve points were seleted, of these three were removed and two had therepro�ts dereased to 1.The non-randomly generated data sets were named by three parameters. First was the numberof routes, seond was the number of points and third was the data sets number among similardata sets. Therefore a three route 50 point data set generated seond, among other 50 pointthree route data sets, was named: 3_50_b. There were only three similar data sets a,b and .The randomly generated data sets were devided into two subgroups, the 50 point data setsand the 100 point data sets. The 50 point data sets were generated on a 50 × 50 graph, aswith the non-random data sets eah oordinate onsists of two positive integere numbers. Inthe data sets the depot was de�ned in one orner, (50, 50). This is similar to the loationof ALCAN aluminium plant with onern to Reykjavík. Of these 50 points eah was givena pro�t ranging from one to ten, One representing an node of unimportane and ten a nodeof great importane. This sale was used beause it has, in the past, been used in similarsituations with good result. These pro�ts were randomly generated in Java.The 100 point randomly generated data sets were situated on a 100×100 graph. The depot forthe 100 point data sets is de�ned as the point (50, 50). As with other data sets the oordinatesonsisted of two positive integer numbers. Pro�ts ranged from one to ten.The randomly generated data sets were named aording to there rank among similar datasets and the number of points in them. The ranks were de�ned as a,b,,d and e where a wasgenrated �rst and e last. Therefore a 100 point data set genrated fourth was alled data set 50c.A subset of data set 50a was also onstruted. This subset onssited of the 20 �rst points inthe data set 50a. The set was named data set 20.4.1.2 Obtained Data SetsWhen onstruting omputational experiments it is neessary to ompare your results toother similar methods. In this projet the TOP was most similar to the BRP and thus idealfor omparison. The authors of [13℄ were kind enough to send supply data sets so that aomparison ould be done. The three data sets used had 102 points, 32 points and 33 points.All of these were randomly generated and had pro�ts ranging from �ve to 501.4.2 Cooling SheduleIn Simulated Annealing a ooling shedule with three parameters, must be implemented. Thesethree parameters are the temperature, T ; redution fator, r; and the de�nition of frozen2,
F . To �nd the best ombination of these three parameters they must be tested. In one test
T0 = 3000 and r = 0.5 along with the forzen value of F = 0 was used. This ooling sheduleis very fast as an be seen in Figure 4.2, so fast in fat it has nearly the same qualities as noooling shedule what so ever. Fortunatly it was only used in one test and unfortunatly due1The was no reason given in [13℄ for the hoie of these pro�ts.2A stopping riteria.
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Figure 4.2: Shows the ooling shedule with T0 = 3000 and r = 0.5, note that T100 = 4.7332 ·
10−27.to time onstrants that test ould not be repeated.Now the initial solution to this problem is f(S) = |K|β and if the �rst iteration is a insertmove, that hooses a node with pro�t φ∗, then the new solution is f(S′) = φ∗ + (|K| − 1)β.Now ∆ = f(S′) − f(S) = φ∗ − β. It is know that for all nodes in L, onstruted data sets,the pro�t pi ∈ {1, 2, 3, ..., 10}. If values ∆ are inspeted, see Figure 4.3, φi = 5, for i ∈ L, isthe most ommon value for pro�t, therfore ∆ = −10 is the most ommon value for ∆. This isonly beause φi = 5 is the most ommon value.Somtimes, when a bus move is implemented, −5 ≤ ∆ ≤ 0. The reason for this is that busmove inserts more the one node into the solution.An initial test with data set 50a determined a ooling sheule. That shedule was then retunedwith data set 50a and then again with data set 3_50_a.In most test a value alled residual ratio was inspeted. This is now de�ned. Let us say that
Obji is the result given by a single run and that the best known value is z. Then the residualsare de�ned as:

ri = z −Obji ∀i ∈ THere T is the set of trials, for eah individual M . So the residual ratio for eah M is de�nedas:
∑

i∈T (z −Obji)

|T | (4.2.1)
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Figure 4.3: Histograms for 50 points and 4 routes. Shows how many negative values, vertialaxis, of ∆, horizontal axis, were alulated.Where |T | is the number of trials for eah individual M .4.2.1 First Trials for Calulating a Cooling Shedule using Data Set 50aTo �nd the best T0 a set of possible T0 was onstruted and tested on data set 50a. To beginwith the redution fator was set to 1 − 10−9 and the stopping riteria set to 1, so when thetemperature goes below 1 the algorithm will start using stritly loal searh. The values of T0tested were 28 and ranged from 6 to 10,000.These initial values for r and F were found in a disared test using data set 50a. There 20trials were used for eah M .After the �nding a good initial temperature a good redution fator was alulated. The newbetter T0 = T ∗
0 was used and the stopping riteria was still kept at 1. There were 14 di�erentvalues of r tested ranging from 0.99 to 1− 10−14 along with r = 0.5.To �nd good stopping riteria a test was performed inspeting di�erent values of the fatoralled frozen3. In this inspetion the better values of T0 = T ∗

0 and r = r∗ were used. Therewere 17 values inspeted ranging from 10 to 10−10.Eah value was tested for 9 values of M , maximum route length, in these trials and eah test3The stopping riteria.



48 CHAPTER 4. TESTSwas performed 50 times. The maximum number of routes was 3. In these test the updatedsimulated annealing was used.Results for Initial Temperature, T0To �nd the best initial temperature residual ratio was inspeted. The reason is so that somereferane of the performane ould be established. This was done by omparing all resultsfound from the data set 50a while M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160}. At this time thebest known objetive for these values of M and using three routes are shown in Table 4.2.Table 4.1: Best known values for the data set 50aM 10 20 40 50 70 80 100 130 160OPT 45 49 102 128 172 194 241 258 258Table 4.2: Shows the best known objetives for data set 50a. For M = 130 and M = 160theobjetive value is 258, whih is the ombined pro�t of all nodes in the data set.Now to ompare di�erent temperatures plots were made of eah. In these plot of the bestknown objetive value was ompared to the average objetive value obtained, with that ini-tial temperature, and the residual ratio was also inspeted. These �gures an be viewed inappendix D.2.1. As always the results with the result whih gave the smallest residual ratiowas the one onsidered best. Four di�erent temperatures and their results an be viewed inFigure 4.4.When these four graphs are ompared it may be hard to see whih one gives the best results.So all residual ratio values were summed and the result giving the lowest value, for the sum,is the best result. This, the sum with the lowest value, was found when T0 = 15. When alltemperatures were ompared the solution was by far the lowest. The seond lowest sum, ofresidual ratios, was found when T0 = 19. If residual ratios, for all values of M , are summedup then one an inspet how they hange in onnetion with temperature in Figure 4.5. Thevalue for T0 = 15 is onsiderably lower than the other values and outside of the 10% interval.The ±10% intervale, from the mean, is to show more learly whih T0 stand out. Other plotsthat show the same graph with the mean of all residual sums and a plot of all the residualsums an be seen in the appendix.For further trials, inspetinge the ooling shedule, T0 = 15 is used unless otherwise spei�ed.Results for Redution Fator, rAll results from the test be seen in appendix D.2.2. Figure 4.6 shows the four best results,these four have the lowest average value for there residual ratios. Of the four, and all otherinspeted r values, the value r = 1− 10−13 gives the lowest values of residual ratio.Let us now inspet Figure 4.7. This shows the total sum of the residual ratios for eah instaneand all M . The instanes are {0.5, 1− 10−2, 1− 10−3, 1− 10−4, ...1− 10−13, 1− 10−14}. Whenthis plot is ompared to the one in Figure 4.5 one an see that they are not the same when
T0 = 15 and r = 1−10−9, that is instane 7 in �gure 4.7. This is due to the fat that there area lot of random fators in the algorithm. In Figure 4.7 the �rst instane of redution fator
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Figure 4.4: Shows results for four di�erent temperatures. Blues line and dots is the averagevalue and the alulated objetives, the red line is the best known objetive and the green lineis the residual ratio.
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Figure 4.6: Shows results for four di�erent temperatures. Blues line and dots is the averagevalue and the alulated objetive values, the red line is the best known objetive and thegreen line is the residual ratio.is r = 0.5. One an see, from Figure 4.7, that it gives worse results than other instanes ofredution fator.The redution fator is now set to r = 1− 10−13 until a better value of r is found.Results for Stopping Criteria, FAll results from the test an be seen in appendix ??. The four best results an be seen inFigure 4.8 and the single best result found is the residual sum of 2.4320 when F = 2. Againthough the random fators in the algorithm led to di�erent results. If not then values alu-lated for F = 1 should have given the same results as the ones alulated previously, whenideal temperature and redution fator were determined. This was not the ase.In Figure 4.9 a plot of the di�erent residual sum ompared with the di�erent instanes an beseen. The instanes are: F ∈ {10, 8, 6, 5, 4, 3, 2, 1, } and F ∈ {10−1, 10−2, 10−3, ...10−9, 10−10}.In Figure 4.9 there is a drop in the values of residual sums in instanes 5 and up. This meansthat F ≤ 4 are better stopping riteria than F > 4. Therefore the average value for instaneshigher than 5 was inspeted. As an be seen, from the plot, the values, of residual sum, arevery similar for instanes higher than 5, F ∈ {2, 1, 0−1, 10−2, 10−3, ...10−9, 10−10}.The stopping riteria is now set to F = 2 until otherwise spei�ed. This means that whenthe tamperature reahes the value F a srit loal searh will begin, ending the possibility ofaepting worse solutions. Now better values for all three parameters of the ooling shedule
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Figure 4.8: Shows results for four di�erent temperatures. Blues line and dots is the averagevalue and the alulated objetives, the red line is the best known objetive values and thegreen line is the residual ratio.
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Instance of Frozen FactorFigure 4.9: Shows the residual sum for all frozen fators, blue line. The blak line is the averageresidual sum for instanes 6 to 18, green lines are mean±10%.have been identi�ed. This shedule is T0 = 15, r = 1− 10−13 and F = 2.4.2.2 Seond Trials for Calulating a Cooling Shedule using Data Set 50aAfter a better ooling shedule had been determined a seond run was onstruted. This wasdone to retune the shedule with the new values. In these trials the same set for M wasused but a 100 runs were done for eah value, of M . The updated simulated annealing andDerease.java were both used.As previously, a new, set of possible T0, was onstruted and tested on data set 50a. Theredution fator was set to 1− 10−13 and the stopping riteria set to 2, both alulated values.The values of T0 tested were 33 and ranged from 10000 to 6.After the �nding a good initial temperature a new redution fator was alulated. The new
T0 = T ∗

0 was used and the stopping riteria F = 2. There were 13 di�erent values of r testedraging from 0.99 to 1− 10−14.Next to �nd good stopping riteria a test was performed inspeting di�erent values of thefator alled frozen. In this inspetion the better values of T0 = T ∗
0 and r = r∗ were used.There were 17 values inspeted ranging from 4 to 10−10.
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Figure 4.10: Shows results for four di�erent temperatures. Blues line and dots are the averagevalue and the alulated objetive values, the red line are the best known objetive values andthe green line is the residual ratio.Results for Initial Temperature, T0, using Data Set 50aIn the seond run for inspeting possible values for T0, eah ombination ofM ∈ {10, 20, 40, 50, 70, 80, 100, 130, 1and T0 ∈ {6, 7, 8, ..., 32, 33} ran 100 times. This was done to limit the random fators in thealgorithm. The four best results are shown in Figure 4.10. Note that individual results fromthis test an be seen in the appendix D.2.4.The residual sum for all values of T0 was then plotted in Figure 4.11. The best value aordingto this test was T0 = 6, the old value T0 = 15 is marked on Figure 4.11 with a red dot. Inthe �rst trials T0 = 6 gave a rather high residual sum, see Figure 4.5, but inreased numberof test for eah ombination should limit the e�ets of random fators. In the previous test
T0 = 9 and T0 = 19 gave good results, in this test both initial temperatures perform betterthan average. This an be seen by inspeting the blak line displaying the average results, forall T0, in Figure 4.11.Individual result for eah possible T0 an be seen in the appendix.The initial temperature is now set to T0 = 6 until otherwise spei�ed.Results for Rredution Fator, r, using Data Set 50aThe seond run for the redution fator gave di�erent result than the �rst one. The value of
r giving the lowest residual ratio sum was r = 1 − 10−5. The four best results are shown inFigure 4.12. The four results are the four highest values, of redution fator, tested.



54 CHAPTER 4. TESTS

5 10 15 20 25 30 35
1.4

1.5

1.6

1.7

1.8

1.9

2
Residual plot

R
es

id
ua

l s
um

Temperature, T
0Figure 4.11: This �gues shows the residual sum for some temperatures, blue line. The blakline is the average residual sum for temperatures and green line is the mean±10%. The reddot is the best result from the previous test.



4.2. COOLING SCHEDULE 55
20 40 60 80 100 120 140 160

0

200

r=1−10−2, Residual sum= 2.0413

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

r=1−10−3, Residual sum=2.1497

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

r=1−10−4, Residual sum=2.2982

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

r=1−10−5, Residual sum=1.9960

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

Figure 4.12: Shows results for four di�erent temperatures. Blue line and dots are the averagevalue and the alulated objetive values, the red line are the best known objetive values andthe green line is the residual ratio.
Let us now inspet Figure 4.13. As previously the plot is of instane of redution fators versusthe residual sum. The only instane removed from the trial set was r = 0.5 as it gave the worstresults. Therefore the instanes are {1− 10−2, 1− 10−3, 1− 10−4, ...1− 10−13, 1− 10−14}. Theplot 4.13 shows that the highest values tested resulted in the lowest sum of residual ratio.Compared to the previous test, of redution fator, r = 1− 10−10 is the only of the previoustop four results to preform better than average. Note that all other results from this test anbe seen in the appendix D.2.5.The redution fator is now set to r = 1− 10−5 until otherwise spei�ed.Results for Stopping Criteria, F , using Data Set 50aThe four best results, the ones with the lowest residual sum, an be seen in Figure 4.14 andthe single best result found is the residual sum of 1.9757 when F = 1− 10−6, this is the resultdisplayed in the bottom right ourner of Figure 4.14. Other results from this test an be seenin the appendix D.2.5.In Figure 4.15 a plot of the di�erent residual sum ompared with the di�erent instanes an beseen. The instanes are: F ∈ {4, 3.5, 3, 2.5, 2, 1.5, 1, 0.58, } and F ∈ {10−1, 10−2, 10−3, ...10−9, 10−10}.In this plot, Figure 4.15, it is apperant that there are two loal minimum values and of thoseone is the global minimum value. This global minimum value is found when F = 10−6. In the
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Figure 4.14: Shows results for four di�erent temperatures. Blue line and dots are the averagevalue and the alulated objetive values, the red line are the best known objetive values andthe green line is the residual ratio.
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InstanceFigure 4.15: Shows the residual sum for all frozen fators, blue line. The blak line is theaverage residual sum for all instanes, green lines are mean±10%.�rst trials F = 10−6 also gave good results.The frozen fator is not set as F = 10−6 until otherwise spei�ed.4.2.3 Cooling Shedual Trials for Data Set 3_50_aTo ensure that the ooling shedule alulated is the best one available a new data set was usedin ooling shedule experiments. This data set was 3_50_a. After a new value T0 or r hadbeen alulated that same value was used to determine the remaining values of r or F . Theset maximum route lengths was M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160}. Eah ombinationof the tested fator (T0, r or F ) and M was run 50 times and eah run had 50,000 iterations.The values in the objetive funtion where α = 1 and β = 15.The results from tests with 3_50_a were only ompared to the results from the seond trialsof test using data set 50a, as that ooling shedule was onsidered a better shedule beauseit had been retuned.Results for Cooling Shedual Trials for Data Set 3_50_aIndividual results for eah trial, inspeting eah fator (T0, r and F ) an be seen in appendixes
D.2.6, D.2.7 and D.2.8.The ooling shedule should return good results for any number of data sets. Therefore the
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Figure 4.16: Shows the saled residuals ratios for di�erent temperatures for data sets 50a and
3_50_a.results from the seond trials using data set 50a and the trials using data set 3_50_a wereompared. It is known that data set 3_50_a is simpler, or its routes are easier to onstrut,than data set 50a. This leads to lower residuals sums for data set 3_50_a. To ompare theresults the two the residuals needed to be saled. This is done in a few steps. First let usde�ne the set of residuals as A (for 50a) and B (for 3_50_a). To even things out a little bita logaritmi funtion alulated for eah set, ln(A) and ln(B). This gives equal importaneto the high values residuals alulated with data set 50a and the high value residals alulatedwith 3_50_a. After this is done the average value of eah logarithmi set, mln(A) and mln(B),were withdrawn from the set. This ensures that both sets are distributed around zero. The�nal values of residual sums expolered were ln(A)−mln(A) and ln(B)−mln(B).The results from all this an be seen in Figure 4.16. This �gure shows that the best startingtemperature, T0, for both of these data sets is T0 = 21. This temperature was then used todeterminie the best r and F , the two remaining tests in this setion.The same method was then applied to the sets of results from di�erent redution fators. Thesaled residual plot from that an be viewed in Figure 4.17. From that plot it is seen thatinstane number 4 gives the best redution fator for these two data sets. The instanes arethe same as in the seond trials with data set 50a, meaning that the best redution fator is
r = 1 − 10−5. This is the same result as the seond trials with data set 50a determined. Theredution fator used to determine F is r=1− 10−5.The results from tests, used to determine the frozen fator, were saled as previously explained.Theses saled results an be seen in Figure 4.18. The �gure shows the best rusults found atinstane 14 were F = 10−6, whih is the best stopping riteria for data sets 50a and 3_50_a.
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Figure 4.17: Shows the saled residuals ratios for di�erent redution fators for data sets 50aand 3_50_a.
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Figure 4.18: Shows the saled residuals ratios for di�erent frozen fators for data sets 50a and
3_50_a.
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IterationFigure 4.19: Shows the hange in objetive funtion in eah iteration step, blue line. Also theproposed solution, red dots, is also shown.In Figure 4.19 the objetive value and suggested solutions an be observed. The ooliing shed-ule used in Figure 4.19 is T0 = 21, r = 1 − 10−5 and F = 10−6 and the data set is 50a, thenumber of iterations was 100,000.The best ooling shedual found for data sets 50a and 3_50_a is T0 = 21, r = 1− 10−5 and
F = 10−6.4.3 Determining the Probability MatrixIn the lass moves.java it is determined what ation will be taken in the urrent iteration.The ations are de�ned as moves4. Now in eah iterations there are di�erent senarios. Inone senario there might be no unused routes and therefore it would be impossible to allBusMove.java, in another there might be no unused points left then one annot all an insertmove or a bus move. This means that in some senraios one is only possible to use ertainmoves, while in other senarios one might be able too all all moves. If a move that is infeasibleto use in a ertain senario is alled, in that patiular senario, the result will be a alulationerror in the algorithm. Overall there are seven senarios and in eah ase, exept one5, thereare di�erent odds for di�erent moves. To represents these odds a matrix, P , was onstruted.Where:4InsertMove11.java, InsertMove13.java, SwapMove11.java, SwapMove21.java, SwapMove31.java and Bus-Move11.java5In senario 5 one an only all SwapMove11.java
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P =





















p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66

p71 p72 p73 p74 p75 p76



















The senarios are:
Scenario Description1 More the one route in use, but not all, and no available points.2 All buses in use and available points.3 All buses in use and no available points.4 More the one route in use, but not all, and available points.5 One route and no available points.6 One route and available points.7 No routes and available points.The numbers of the senarios re�et the way they were programmed and is not important inany other way. It should be noted that after Derease.java was onstruted a new senario wasdisovered. This would be referred to as senario 8, in that ase no routes are ative and nounused points are available. In this senario the only possible solution is the empty solutiongiving the objetive value as β|K|.The moves are:

Number Type of move1 SwapMove21.java2 SwapMove11.java3 InsertMove11.java4 BusMove.java5 SwapMove31.java6 InsertMove13.javaSo in some senarios it is impossible to all ertain ations, moves. Therefore to update Pthese indesable moves are replaed with zero, in the matrix.
P =





















p11 p12 0 0 p15 0
p21 p22 p23 0 p25 p26

p31 p32 0 0 p35 0
p41 p42 p43 p44 p45 p46

0 p52 0 0 0 0
0 p62 p63 p64 0 p66

0 0 p73 p74 0 0



















When test on the matrix, P , are onduted there is no need to look at line number 5 as:
∑6

j=1 pij = 100 ∀i ∈ {1, 2, 3, 4, 5, 6, 7}
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P =





















p11 p12 0 0 p15 0
p21 p22 p23 0 p25 p26

p31 p32 0 0 p35 0
p41 p42 p43 p44 p45 p46

0 100 0 0 0 0
0 p62 p63 p64 0 p66

0 0 p73 p74 0 0



















Before the test are started an initial guess for p must be onstruted:
P1 =





















40 40 0 0 20 0
30 30 20 0 10 10
40 40 0 0 20 0
30 20 25 10 10 5
0 100 0 0 0 0
0 30 50 10 0 10
0 0 90 10 0 0



















The matrix, P1, was onstruted entirely with logial guess as no other methods were available.This was done by guessing what moves would be important in eah senario. For example ifthere are no unused points left it is a given that swap moves are important. Of these threeswap moves 11 and 21 work faster than swap move 13 this is beause the former two movetwo nodes while the latter only moves one node. Therefore the odds in senario one featurean equal possibilty of hoosing 11 or 21 but a slightly smaller possibility of hoosing 31. Thiskind of logi was implemented for all senarios. The senarios are independent of eah otherin any single iteration. They may though be onneted when many iterations are put together.In order to �nd the best odds for eah ation, move, eah senario will be looked at separately6.So in order to �nd the best odds in line 3, in P , the rest of the matrix will be loked in theinitial guess while all possibilities for line 3 are inspeted. The same was then done for allother lines of the matrix, P .There were two tests onstruted to determine the di�erent values of P for di�erent data sets.The data set used for �rst experiment was 3_50_a with M = 20, T0 = 3000, r = 0.5, F = 0and there were 10 trials for eah possibility. The maximum number of routes was 3.The seond data set used was 50a with M = 100, T0 = 3000, r = 0.5, F = 0, and there were10 trials for eah possibility. The maximum number of routes was 3. Note the in this test,using this data set, a seond test was onduted for senario one. M = 160 and the maximumnumber of buses was 5 for the seond test of senario one. The reason for this is that thesenario annot our unless all the points are visited without using all the routes.Note that the �rst test, involving senario one and data set 50a, used P1 to try to determinethe best value of P , for this senario, but the results were not usable. Therefore a seondtest using P2, as a referene while inspeting possible values, was onduted and gave usableresults. The value of P2 is de�ned in the results setion.6Looking at all the senarios together may is to ompliated as there are to many possibilities.



4.3. DETERMINING THE PROBABILITY MATRIX 634.3.1 Results for Data Set 3_50_aTo limit the running time, of the tests, the probabilities did not run on a single perent,
{1%, 2%, 3%. . . .}, in line 3 alone there would be over 125,000 possibilities7. Rather on tenperent,{0%, 10%, 20%, 30%. . . .}. This dereased alulation time enough to run the tests.Senario Objetive Value Iteration Travel Time1 231.3 26,391 57.60832 231.6 22,061 57.56823 229.2 28,904 58.15044 231.4 31,025 57.79116 231.4 29,622 58.25047 229.1 28,963 57.4555232The table above shows the average objetive value, the average iteration where the objetivevalue was found and the total travel time for all the routes. In the last line of the table onean see the best known objetive value. This test then gave a new probability matrix, P2,viewable below:

P2 =





















50 30 0 0 20 0
0 10 10 0 30 50
60 30 0 0 10 0
0 10 10 60 20 0
0 100 0 0 0 0
0 0 0 70 0 30
0 0 70 30 0 0



















The probability matrix8 P2 was onstruted by inspeting not nearly all possible solutions, asthat would have taken to long9. Therefore to inspet if single perentage values are important
P ∗

2 was onstruted. The test was very similar to the one used to onstrut P2 but imple-mented an updated simulated annealing. The solutions lose to the one alulated in P2 werethe only ones inspeted.Senario Objetive Value Iteration Travel Time1 231.9 19,956 56.90002 231.8 25,712 57.00003 231.9 22,506 56.90004 232 18571 57.00006 231.8 21,686 56.80007 231.8 23,397 56.5000232The hanges in average objetive a relatively small, an be ontributed to the random fatorin the algorithm10, for most senarios. Although the greatest hanges seen in average objetivevalues are found in senarios 3 and 7.7This would then have a runtime of more than a 1000 hours, given an average runtime of about 30 seonds8The probability matrix used in tests for the ooling shedule was P2.9Approximately 120 days, at the time.10All nodes are inserted randomly into the soltuion.



64 CHAPTER 4. TESTS
P ∗

2 =





















53 34 0 0 13 0
0 7 10 0 25 58
59 34 0 0 7 0
2 7 6 55 16 14
0 100 0 0 0 0
4 5 0 72 0 19
0 0 74 26 0 0



















It is neessary for eah line of the probability matrix to have a total sum of 100%. Thereforewhen the seond trials, determining P ∗
2 , were onsruted a fail safe was put into the testalgorithm to ensure onstraint was met. Therefore some values in P ∗

2 , and later in P ∗
3 , di�ermore than 5% from there onterparts in P2 and P3.4.3.2 Results for Data Set 50aThe result in the table below show the objetive value alulated, the iteration the value wasfound and the ombined travel time for all the routes.Senario Objetive Value Iteration Travel Time1 105.6 21294.1 107.732 105.8 18187 118.003 121.2 23580.9 145.234 125.7 22051.9 146.056 96.6 19821.3 106.367 213.8 28945.6 294.83241 293.24When the table above is inspeted it is obvious that the probability values for senario 7 arethe most important. Big hanges in those values result in a muh higher average alulatedobjetive value. The results in other senarios are muh lower the best known objetive, shownin the bottom line. The value of P = P3 is shown below.

P3 =





















30 70 0 0 0 0
10 50 20 0 10 10
0 10 0 0 90 0
0 50 0 20 10 20
0 0 100 0 0 0
0 60 0 20 0 20
0 0 20 80 0 0



















The results from the test used to re-evaluate senario one are seen in the table below. Remem-ber that this test used P2 as an inital guess not P1.Senario Objetive Value Iteration Travel Time1 262.5 21384 263.4273
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p1,i =

(

70 10 0 0 20 0
)So aording to this the value of P best suited for solving problem de�ned with data set 50ais:

P3 =





















70 10 0 0 20 0
10 50 20 0 10 10
0 10 0 0 90 0
0 50 0 20 10 20
0 0 100 0 0 0
0 60 0 20 0 20
0 0 20 80 0 0



















A seond trial was done to determine the single perent values of P3. The new matrix on-struted was alled P ∗
3 . These new trials gave the following results. Note though that anupdated version of the simulated annealing algorithm was used along with Derease.java and

P3 was used as the old matrix when evaluating P ∗
3 . All other fators are the same as when P3was alulated. Senario Objetive Value Iteration Travel Time1 258 48008 417.92732 220.8 35292 293.73 216.1 30787 2944 222.6 32150 296.26 217.9 37688 291.97 216.6 36484 294.1241 293.24

P ∗
3 =





















72 5 0 0 23 0
7 46 18 0 7 22
0 24 0 0 76 0
3 452 17 7 26
0 0 100 0 0 0
0 55 0 22 0 23
0 0 18 82 0 0



















The two matrixies P2 and P3 were ompared. This is shown in later setions. Of the two P2provided better results and was then ompared to P ∗
2 . Beause P3 provide worse results P ∗

3was not inspeted further.4.4 Exploring Di�erent Insert MovesIn this projet there were four insert moves onstruted 11, 12, 14 and 15. Another insertmove, alled 13, is also used but is di�erant from the other four as it removes a node beforeinserting a new one. Therefore 13 will not be put in the same atagory as 11, 12, 14 and 15.Tests using data set 3_50_a were preformed 10 times for eah ombination of insert move and
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M ∈ {5, 10, 15, 20, 25, 30, 35, 40, 50}. For eah test several values were inspeted. First the ob-jetive value was inspeted, it was the most important value in the test. If the best known obje-tive value, the objetive alulated by hand, was reahed then for M ∈ {5, 10, 15, 20, 25, 30, 35}the route was also inspeted, for some M to �nd maximum pro�t the algorithm had to �ndthe best route, this an also be alulated due to the struture of the dat set. For M ∈ {40, 50}the maximum pro�t ould be ahieved without using the best route. The iteration value whenthe objetive value was reahed was inspeted. All tests preformed 50,000 iterations, the initialtemperature was set to 11, T0 = 11, the redution fator was set at 1−10−13, r = 1−10−13 andfrozen fator at 2, F = 2. Also an updated version of simulated annealing and Derease.javawere implemented in these tests. In the objetive funtion α = 1 and β = 15, the beta valuewas hosen suh that more than one node had to be added to a new route. The probabilitymatrix P was set to P2.Note that all fators in the program remained unhanged exept insert moves 11, 12, 14 and 15;when these experiments were arried out. One ould still hoose a swap move if the algorithmand the senario at hand demanded it.4.4.1 ResultsLet OPT be the returned objetive given by the program. Let z be the best known objetivevalue, alulated by hand, for the given problem. Then de�ne:

Z =

N
∑

i=1

OPTi

N
N are the number of runs for a given M. (4.4.1)So the Table 4.3 shows z/Z for all M and the four insert moves.M 5 10 15 20 25 30 35 40 50 AverageInserMove11 1 0.99009 0.94678 0.99914 0.99302 0.95651 0.96983 0.95579 0.98611 0.97747InserMove12 1 0.77477 0.74854 0.72414 0.71429 0.78947 0.78589 0.91111 0.93796 0.82069InserMove14 1 0.67568 0.88246 0.92672 0.67409 0.70305 0.73942 0.90602 1 0.83416InserMove15 1 0.94595 0.99415 0.94828 0.91694 0.99723 0.85742 0.9375 0.97824 0.95286Table 4.3: Shows the ratio between the returned objetive value and the best known objetivevalue alulated by hand for eah M .If Table 4.3 is inspeted one an see that insert move 11 returns on average the best objetivevalues. Also in most ases it has the highest ratio for any given M . although in two ases in-sert move 15 performed better. Of the four insert move 11 is the only one that performed wellfor all M , insert move 12 tends too give the worst performane. Insert move 12, shows poorresults for most M, exept when M ∈ {40, 50}. In those ases M is greater than the maximumroute length and insert move 12 returns aeptable results. The reason for these results maybe that insert move 12 always hooses the highest pro�t node with the lowest node number.Therefore if two nodes had equal importane, say node12 and node41, then InsertMove12.javawould always hoose node12.



4.4. EXPLORING DIFFERENT INSERT MOVES 67Another insert move showed poor results for all M exept those values that are longer thanthe longest possible route and this was insert move 14. In ases where M = 50 insert move 14returns exellent results. This is beause the method always hooses the node with the highestpro�t farthest from the depot. Therefore when this node is outside the maximum route length,insert move 14 annot �nd any node to insert into the routes.The only other insert move to return good results is insert move 15. It always hooses thehighest pro�t node losest to the depot. Therefore InsertMove15.java always �nds nodes toinsert into its routes as long as there are high pro�t nodes inside the range of the maximumroute. The main problem with InsertMove15.java is if there is a low pro�t node that one an�t into the route, then insert move 15 will not add that node to the route. Still the methoddid often produe aeptable results.M 5 10 15 20 25 30 35 40 50 AverageInserMove11 21 , 456 17,120 14,640 20,142 15,669 24,152 29,122 44,513 10,752 21,951InserMove12 24,513 13,202 3 , 419 3 , 297 5 , 176 16 , 720 22 , 707 30,749 35,755 17,282InserMove14 49,038 29,027 17,481 18,776 24,930 37,997 37,664 22 , 143 8 , 654 27,301InserMove15 24,358 7 , 716 5,327 6,578 11,703 34,121 34,174 55,155 24,703 22,648Table 4.4: Shows the number of iterations used to �nd the returned objetive value.Table 4.4 shows the average number of iterations it took for the program to �nd the objetivevalues returned for eah value of M . The values are not that di�erent but insert move 12 wasfastest and insert move 14 used the most iterations to �nd an optimum value. The resultsshow that insert move 11, the most e�etive of the four, does not require an extraordinaryamount of iterations to return an objetive value.M 5 10 15 20 25 30 35 40 50 AverageInserMove11 21 , 456 17,129 15,699 21,375 16 , 075 24 , 342 30 , 203 62,276 47,628 28,464InserMove12 24,658 13,631 5 , 261 12,496 17,374 27,190 44,066 48,681 89,509 31,429InserMove14 49,227 31,193 18,560 20,985 25,934 43,857 42,236 40 , 727 40 , 715 34,825InserMove15 24,358 7 , 716 5,465 7 , 033 12,833 34,884 40,145 63,851 62,832 28,790Table 4.5: Shows the number of iterations used to �nd the returned path.Table 4.5 above shows the average number of iterations it took for the program to �nd thereturned route for eah value of M . Here insert move 11 and insert move 15 use the fewestiterations. This still shows that insert move 11 is an aeptable method when onsidering theamount of iterations needed to �nd a good route. Note that in most instanes, espeially when
M ∈ {5, 10, 15, 20, 25, 30, 35}, the number of iterations needed to �nd an objetive value andthe number needed to �nd an returned route are often similar.In Table 4.6 the number of ases, for eah M , found were the best known objetive was reahedusing the best known path are listed. If a ertain run returned the best known objetive value,alulated by hand, taking and the best known route the test was marked with a Boolean
true if this was not the ase then the run returned a Boolean false. Of the four insert moves



68 CHAPTER 4. TESTSM 5 10 15 20 25 30 35 40 50 AverageInserMove11 10 9 5 8 7 6 1 3 1 5.0InserMove12 10 0 0 0 0 0 0 3 0 1.3InserMove14 10 0 0 0 0 0 0 2 0 1.2InserMove15 10 0 0 0 0 0 0 2 0 1.2Table 4.6: Shows the numer of times best know objetive value is reahed using best knownpath.
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IterrationFigure 4.20: Shows a example of the objetive funtion, for all insert moves, in eah iteration,blue line. The red line represents the best known objetive value.the �rst, insert move 11, gives the highest values of true. The reason insert move 15 does notreturn good results, as it did with the objetive value, beause of the method it uses.In Figure 4.20 one an see the objetive value hanging with regards to the iterations. In the�gure M is set to 25, note that none of the methods reah the best known objetive value,the red line. Of the four methods insert move 15 is losest to the best known objetive valueand insert move 14 is furthest from the best known objetive value.In Figure 4.21 one an learly see the di�erene between methods. The residual ratio is on-sistently low for insert move 11. Both insert move 12 and insert move 14 give bad results andinsert move 15 aeptable results but not as good as insert move 11.In onlusion one an see, from tables 4.3, 4.4, 4.5 and 4.6; and Figure 4.21, that of the four
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Figure 4.21: Shows alulated results in omparison with the best known objetive value. Theblue line is the average results, the blue dots are eah alulated result and the red line is thebest known objetive value. The green line is the residual ratio and is represented on the righty-axis.



70 CHAPTER 4. TESTSinsert move 11 gives the best results and does so in an aeptable amount of iterations.From this one an see that the insert move 11, a random insertion into routes, returns thebest results. Therefore it will be the only insert move used here after, unless otherwise spei�ed.4.5 Non-Randomly Generated Data SetsThe twelve non-randomly generated data sets were tested on the algorithm in this setion.The ooling shedule used was T0 = 15, r = 1 − 10−13 an F = 2. Derease.java was usedalong with the updated version of simulated annealing. The number of iterations for eah testwas 50,000 and the runs for eah possible ompnation of M and |K| was ten. In all testsusing non-randomly generated data sets α = 1 and β = 15 in the objetive funtion. In thethese data sets one ould alulate the best known objetive value by hand. This was possiblebeause of the struture of the data sets.4.5.1 Results Data Set 3_50_aThe test performed on data set 3_50_a used |K| = 3 and M ∈ {5, 10, 15, 20, 25, 30, 35, 40, 50}.As the use of Derease.java will remove points from the data set the number of points usedfor eah M is shown in Table 4.7, these points are alled feasible. Note that the maximumnumber of points is 45, not 50, beause 10% of points have been removed, to inlude an equalamount of nodes in eah route the number of points ould not be 47, 47/3 = 15.667 and thedepot then ounts as an additional two points. Also in Table 4.7 are displayed the alulatedbest known objetive values. These are known best objetive values as the unique strutureof the data sets allows one to alulated, by hand, the best objetive values and paths.M 5 10 15 20 25 30 35 40 50
3_50_a 10 22 33 41 45 45 45 45 45Best 60 111 171 232 301 361 411 432 432Table 4.7: Shows the number of points feasible for eah M and the best known objetive value,alulated by hand.In Figure 4.22 the struture of the data set is displayed.To determine whih probability matties are the best it was neessary to ompare them.Table 4.8 shows the results from alulations using P1, Table 4.9 shows results from alula-tions using P2 and Table 4.10 shows results from alualtions using P3. If the best alulatedvalues in the three tables (4.8, 4.9 and 4.10) are ompared to the best known objetive values,alulated by hand, in Table 4.7 one an see that the best known objetive value is found bythe algorithm in most ases. Of the three possabilities matries P2 returns the best solutions.Notie that neither P1 or P3 found the best known objetive value when M = 35. This isbeause of the uniqueness of the solution, displayed in Figure 4.23. The solution for M = 35
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Figure 4.22: Shows the data set 3_50_a, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.M 5 10 15 20 25 30 35 40 50Avrage 51.5 101.3 150.6 228.1 282.8 341.1 360.6 380.8 429Best 60 111 171 232 301 361 401 432 432Ratio 0.85833 0.91261 0.8807 0.98319 0.93953 0.94488 0.89925 0.88148 0.99306CPU 4101.5 5785.5 7840.4 9499 10253 9873.4 9773.2 9555 9220.7Table 4.8: Results from omputations using P1. The values shown are the average alulatedvalue, the best alulated value, the ratio between those two values and alualtion time inmilli seonds.M 5 10 15 20 25 30 35 40 50Avrage 59 102.8 168 231.8 286.9 361 394.4 424.8 430Best 60 111 171 232 301 361 411 432 432Ratio 0.98333 0.92613 0.98246 0.99914 0.95316 1 0.95961 0.98333 0.99537CPU 4482.7 6377.9 8565 10623 11628 11268 10987 10325 10065Table 4.9: Results from omputations using P2. The values shown are the average alulatedvalue, the best alulated value, the ratio between those two values and alualtion time inmilli seonds.is not straight forward but uses a remainder of a path to reah the best known objetive value.



72 CHAPTER 4. TESTSM 5 10 15 20 25 30 35 40 50Avrage 58.5 109.8 166.8 221.5 271.1 324.5 376.9 402.9 415.9Best 60 111 171 232 301 361 402 432 432Ratio 0.975 0.98919 0.97544 0.95474 0.90066 0.89889 0.93756 0.93264 0.96273CPU 4316.8 5967.1 7644.8 9889.2 10869 10282 10004 9755.3 9529.8Table 4.10: Results from omputations using P3. The values shown are the average alulatedvalue, the best alulated value, the ratio between those two values and alualtion time inmilli seonds.In tables 4.8, 4.9 and 4.10 average run times for the algorithm is displayed. Of the threematries P2 appears to have the longest run time. The di�eranes between run times an beexplained by the odds of invoking a ertain move. For example an insert move in very simpleand uses few alulaltions where a bus move uses methods similar to a single insert movemore than one. Therefore di�erent moves have di�erent run times and the three matriesgive di�erent average run times.4.5.2 Results for Data Sets 3_50_a, b and cAfter looking at eah result individually11, for the data sets ontaining 50 points and 3 routes,the results were looked at as a whole. In Figure 4.24 these results an be viewed. They showthe best known objetive value, the results alulated by the algorithm and the residual ratio.The feasible points for eah M and the best known objetive values, alulated by hand, fordata sets 3_50_b and 3_50_c are shown in Table 4.11.M 5 10 15 20 25 30 35 40 50
3_50_b 9 22 32 41 45 45 45 45 45Best 55 120 180 250 301 361 411 432 432
3_50_c 10 22 32 42 45 45 45 45 45Best 55 111 181 240 300 360 411 432 432Table 4.11: Shows the number of points feasible for eah M and the best known objetivevalue for data sets 3_50_b and 3_50_c.When inspeting Figure 4.24 it is obvious that P = P2 returns the best results. One an seethis by omparing the graphs in the enter olumn to the other graphs in Figure 4.24. Theresidual ratio, green line, is onsiderably lower for graphs in the enter olumn than the graphssituated on the right and left olumns of Figure 4.24. This shows that on average the individ-ual results of the algorithm, when using P = P2, are muh loser to the best known objetivevalues, alulated by hand, than results alulated using P1 or P3. It should be noted that theobjetive funtion is in reality a step funtion and not a ontinuous funtion as displayed inFigure 4.24. The �gure is set up this way to demonstrate how losely the tests follow the best11Individual results for data sets 3_50_b and 3_50_c an be viewed in appendix D.1.1 and D.1.2.
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Figure 4.23: Shows results for the data set 3_50_a when M = 35 and the an objetive valueof 411. Note this solution was found with P = P2 in moves.java, although it took 22 runs toprodue the result. Also ompare with Figure 4.22 to see if all point of low pro�t are inluded.
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Figure 4.24: Shows the best known objetive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.known objetive values.In Figure 4.25 the run times for every test and there average funtion an be viewed. Note howthe run times inrease with M , reah a high point, when M = 25, and then derease slightlyfor M > 25. The reason for this is that M = 25 allows for all points to be inluded, whihmeans they are all feasible. Although all points are feasible this does not mean that all pointswill be inluded in the solution. M = 25 has the lowest objetive value, alulated by hand,with the highest number of points at feasible points. This means all other solutions either havefewer feasible points or higher objetive values, alulated by hand. Therefore M = 25 shouldhave the largest number of laulations12.In onlusion it is apperant that P2 gives the best results for data sets 3_50_a, 3_50_b and
3_50_c. This an be seen by omparing the residual ratios in Figure 4.24. The run time ofthe algorithm also is the greatest when the highest number of feasible points yields the lowestobjetive values. This is obtained by omparing Figure 4.25 and Table 4.114.5.3 Results for Data Sets 3_100_a, b and cA graph displaying the individual results for 3_100_a, b and c was onstruted and an beviewed in Figure 4.26. The enter olumn of Figure 4.26 show lower residual ratios than thegraphs in the left and right olumn. This means that when P2 is used it gives, on average,better results than when P1 or P3 is used. If ompared with 4.24 it appears that the results12For example uses UnvistedPoints.java most often.
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Figure 4.25: Shows how long eah run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.
using 100 point give higher residual ratios on average. This means that the algorithm performsbetter when using smaller data sets than when using larger ones. This is most likely beausethe number of iterations is the same in both ases and therefore it is normal that objetivefuntion of larger data sets are more di�ult to alulate. This an also be seen when in-speting the residual ratios on any single graph in Figure 4.26. Notie how the residual ratiosinreases as the values of M gets larger.In Table 4.12 the number of feasible points and the best known objetive values, alulatedby hand, are displayed. If Table 4.12 and Figure 4.27 it an be seen that the run time of thealgorithm rizes till it reahes M = 50 and the falls slightly. This is beause M = 50 gives thelowest objetive value while having the largest set of feasible points. This is when M = 50and allows all 94 points to be inluded in the alulation but the best known objetive valueis lower than with M = 60 or M = 75.In onlusion it an be seen from Figure 4.26 that P2 is the best probabilty matrix for datasets 3_100_a, b and c. When Figure 4.26 was inspeted it was observed that residual ratiosrize as the values of M get larger. Also for data sets 3_100_a, b and c the algorithm gives thehighest run times when the set of feasible points is the largest while the alulating the lowestobjetive value.



76 CHAPTER 4. TESTS
10 20 30 40 50 60 70

0

200

400

600

800

Data set:3.100.a, P
1

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0.05

0.1

0.15

0.2

0.25

R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

500

Data set:3.100.a, P
2

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

0.05

0.1 R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

200

400

600

800

Data set:3.100.b, P
1

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0.05

0.1

0.15

0.2

0.25

R
es

id
ua

l r
at

io
10 20 30 40 50 60 70

0

200

400

600

800

Data set:3.100.b, P
2

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

0.05

0.1

0.15

0.2

R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

200

400

600

800

Data set:3.100.c, P
1

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

0.05

0.1

0.15

0.2

R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

200

400

600

800

Data set:3.100.c, P
2

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

0.05

0.1

0.15

0.2

R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

200

400

600

800

Data set:3.100.a, P
3

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

0.1

0.2

R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

200

400

600

800

Data set:3.100.b, P
3

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

0.1

0.2

R
es

id
ua

l r
at

io

10 20 30 40 50 60 70
0

500

Data set:3.100.c, P
3

O
P

T
 V

al
ue

Maximum route length
10 20 30 40 50 60 70

0

R
es

id
ua

l r
at

io

Figure 4.26: Shows the best known objetive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.27: Shows how long eah run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.



4.5. NON-RANDOMLY GENERATED DATA SETS 77M 10 20 30 35 40 45 50 60 75v3_100_a 21 45 67 77 85 90 94 94 94Best 121 240 370 431 500 562 620 740 863
3_100_b 22 45 67 77 85 90 94 94 94Best 130 250 380 430 500 560 630 740 873
3_100_c 21 42 66 76 84 90 94 94 94Best 110 240 350 420 480 542 602 732 880Table 4.12: Shows the number of points feaslable for eah M and the best known objetivevalue for data sets 3_100_a, 3_100_b and 3_100_c.4.5.4 Results for Data Sets 4_50_a, b and cAs with previous data sets graphs were onstruted to ompare alulated results with thebest known objetive values and also to inspet the residual ratio. These graphs an be seenin Figure 4.28. The best performane is again ahived by using P = P2 and it is onsiderablybetter the that of P1 and P3. Results alulated with P2 are displayed in the enter olumn andthey have a onsiderably lower residual ratio than the graphs in the left and right olumns.This data set was allowed to plateau, best know objetive for M ∈ {24, 28, 30, 35} is 432, theombined pro�t of all the nodes.Plots of the running times were also done, see �gure 4.29. The sharp inrease in run timesresults in the highest values when M = 12, whih is the lowest objetive value, alulated byhand, in onern with the number of feasible points. This is the same for all three data setsand an be seen in Table 4.13M 4 8 12 16 20 24 28 30 35
4_50_a 14 33 45 45 45 45 45 45 45Best 70 131 201 281 361 432 432 432 432
4_50_b 15 34 45 45 45 45 45 45 45Best 70 150 211 290 370 432 432 432 432
4_50_c 16 34 45 45 45 45 45 45 45Best 80 160 231 291 372 432 432 432 432Table 4.13: Shows the number of points feaslable for eah M and the best known objetivevalue for data sets 4_50_a, 4_50_b and 4_50_c.In onlusion it is apperant that alulations with P2 give better solutions than those using

P1 or P3 for data sets 4_50_a, 4_50_b and 4_50_c. This an be observed in Figure 4.28 byomparing the enter olumn graphs to other graphs in the �gure. Run times for the algorithmare also the highest when looking at the lowest best known objetive value, alulated by hand,in onern with the largest amount of feasible points. This is observed by omparing Figure
4.29 and 4.13.
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Figure 4.28: Shows the the best known objetive values red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.29: Shows how long eah run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.
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Figure 4.30: Shows the best known objetive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.4.5.5 Conlusion in Data Sets 4_100_a, b and cGraphs displaying the results for 4_100_a, b and c an be found in Figure 4.30. If the threeolumns in Figure 4.30 are ompared it an be seen that the graphs in enter olumn give thelowest residual ratio. These results, the ones displayed in the enter olumn of Figure 4.30,were alulated using P2 whilst the the other results were found using P1 or P3. If omparedwith results in Figure 4.28 it is apparent that the graphs displayed in Figure 4.28 give lowerresidual ratios. Although when Figure 4.30 is inspeted the residual ratios do not inrease, onaverage, as M gets larger. This does though our in some graphs in Figure 4.30, observe theright olumn. M 10 20 25 30 35 40 45 50 60
4_100_a 34 73 95 95 95 95 95 95 95Best 190 380 471 560 670 752 861 905 905
4_100_b 34 72 95 95 95 95 95 95 95Best 190 380 470 570 660 751 831 905 905
4_100_c 34 73 95 95 95 95 95 95 95Best 190 390 470 580 661 762 851 905 905Table 4.14: Shows the number of points feaslable for eah M and the best known objetivevalue for data sets 4_100_a, 4_100_b and 4_100_c.
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Figure 4.31: Shows how long eah run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.Table 4.14 shows the feasible points for eah M and the best known objetive values, alu-lated by hand. If Table 4.14 and Figure 4.31 are ompared it an be seen that the largest runtimes are the result of the sets with large sets of feasible points but a low objetive value. Thisis when M = 25 allows for all 95 points to be inluded in the alulation. This results in thelowest objetive value for all values M giving 95 feasible points.In onlusion from Figure 4.30 it was observed that P2 was best suited for alulations withdata sets 4_100_a, b and c. Also table 4.14 and Figure 4.31 showed that the largest run timesare found when the largest set of feasible points result in the lowest best known objetivevalue.4.6 Randomly Generated Data SetsIn these test the randomly onstruted data sets were used. There were 10 of these tests on-struted, 5 with 50 points and 5 with 100 points. As the points are randomly distributed therewas only a need to onstrut one pro�t vetor for 50 points and one for 100 points. Thesepro�t vetors an be viewed in appendix D.3.3.In table 4.15 the number of feasible points for a ertain M is displayed for randomly generateddata sets.



4.6. RANDOMLY GENERATED DATA SETS 81M 10 20 40 50 70 80 100 130 16050a 1 4 27 38 50 50 50 50 5050b 3 4 21 39 50 50 50 50 5050 1 3 20 38 50 50 50 50 5050d 1 4 21 37 50 50 50 50 5050 3 7 27 40 50 50 50 50 50100a 2 11 51 78 100 100 100 100 100100b 3 13 49 77 99 100 100 100 100100 4 10 49 79 100 100 100 100 100100d 4 11 47 77 100 100 100 100 100100 2 12 49 75 100 100 100 100 100Table 4.15: Show the number of feasible points for a ertain M in a data set of randomlygenerated points.4.6.1 Test with data sets 50a,b,,d and e with 450,000 iterationsIn tests with non-randomly onstruted data sets it was determined that P2 gave better solu-tions than P3 and P1. Beause P3 was alulated using randomly generated data set and P2was alulated using a non-randomly onstruted data set a seond omparison was deemedneessary. Therefore these two probability matries were ompared again using randomly gen-erated data sets.The ooling shedule used in these tests was T0 = 15, r = 1 − 10−13 and F = 2. AlsoDerease.java and the updated simulated annealing was used. In these test a large number ofiterations was used or 450,000. The initial solution was the empty solution. Ten runs wereperformed for eah possible ombination for M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160}, |K| ∈
{3, 4, 5} and p ∈ {P2, P3}.Results from data sets 50a,b,,d and e with 450,000 iterationsPlots for eah data set an be viewed in the appendix. As previously the residual ratios areimportant. So for eah data set and eah value |K| ∈ {3, 4, 5} the residual ratios were aggre-gated. From this tables 4.16 and 4.17 were onstruted.M 10 20 40 50 70 80 100 130 160 AVE|K|=3 0 0.1600 0.3075 0.7020 1.3472 1.2314 0.9670 0.2031 0.0006 0.5465|K|=4 0 0.1550 0.4850 0.6800 1.3972 0.9501 0.5440 0.5400 0.4596 0.5790|K|=5 0 0.1700 0.7550 0.8440 1.2044 1.0225 0.6990 1.0501 0.8438 0.7321Table 4.16: Shows values of residual ratios alulated with P2 for eah M and |K|. Individualtables for eah dat ser (50a,b,,d and e) wher ussed to onstrut this table.The values form Table 4.18 are plotted in Figure 4.32. As values from Table 4.17 are with-drawn from values in 4.16 Table 4.18 is onstruted. It is apparent that if more values, in



82 CHAPTER 4. TESTSM 10 20 40 50 70 80 100 130 160 AVE|K|=3 0 0.1600 0.6775 0.5240 1.6657 1.3713 1.1860 0.3609 0.0106 0.6618|K|=4 0 0.1350 1.2800 0.7540 1.3043 0.9237 0.5920 0.5500 0.4033 0.6603|K|=5 0 0.1300 1.5000 1.8300 1.1043 0.7373 0.7200 0.9577 0.7126 0.8547Table 4.17: Shows values of residual ratios alulated with P3 for eah M and |K|. Individualtables for eah dat ser (50a,b,,d and e) wher ussed to onstrut this table.M 10 20 40 50 70 80 100 130 160 AVE|K|=3 0 0 -0.3700 0.1780 -0.3185 -0.1399 -0.2190 -0.1578 -0.0100 -0.1152|K|=4 0 0.0200 -0.7950 -0.0740 0.0929 0.0264 -0.0480 -0.0100 0.0563 -0.0813|K|=5 0 0.0400 -0.7450 -0.9860 0.1001 0.2852 -0.0210 0.0924 0.1312 -0.1226Table 4.18: Is onstruted from tables 4.16 and 4.17 by withdrawing values in the latter tablefrom values in the former table.Table 4.18, are positive, then P3 is better else P2 gives better objetive values. If Figure 4.32is inspeted it is apparent that more values are less than zero, negative. Therefore one anassume that P2 gives better objetive values.The reason this was done instead of just omparing plots is that results were to similarin omparison, using plots like those onstruted for non-randomly generated data sets. Inonlusion it is apparent that P2 gives better results than P3 for randomly generated datasets.4.6.2 Comparing Probability matries P2 and P ∗
2After determining that the probability matrix P2 gives better objetive values than P3 and P1it is ideal to see if P ∗

2 gives better or equally as good results. Tests were performed on datasets 100a,b,,d and e using a |K| = 3. For eah M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160} tentrials were run. The ooling shedule used was T0 = 15, r = 1− 10−13 and F = 2. The testsused the updated simulated annealing and Derease.java.Results in Comparing Probability matries P2 and P ∗
2In Figure 4.33 the results from the tests an be observed. From that �gure one an see thatthere is little di�erane between using P2, left olumn, and P ∗
2 right olumn.To ompare further a residual plot was onstruted to inspet the di�erane between the twomatries further. This plot an be seen in Figure 4.34. The residual ratio results, alulatedwith P ∗

2 , were withdrawn from the residual ratios alulated with P2. In Figure 4.34 moreof the results are negative and thereby the residual results for P ∗
2 were greater than thosealulated with P2.In onlusion we have seen from Figure 4.33 that the di�erane between results alulatedwith P2 and P ∗

2 are not great. Furhter inspetion, seen in Figure 4.34, showed that P2 tended
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Figure 4.32: Show the residual sums for P2, P3 and P2 − P3
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Figure 4.33: Shows the best known objetive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.34: Show the result when residual sums for P ∗
2 are removed from the residual sumsof P2.to give better results on average.4.7 Comparison to GAMSA 20 point subset data set was onstruted from data set 50a. This was done in e�ort to om-pare solutions from the algorithm to solutions from a di�errent program. Thit other programwas written in GAMS.The model used in GAMS is the linear model presented in the setion on the model.The ooling shedule used in these tests was T0 = 15 and r = 1 − 10−13 and stoppingriteria F = 2. Eah run inspeted 9 possible values for maximum route length, M ∈

{10, 20, 30, 40, 50, 60, 70, 80, 90}, and there were 20 trials for eah M . The initial guess is theempty solution where no routes are ative. The maximum amount of pro�t available from thenodes was 110.These tests also used Derease.java along with the improved simulated annealing. In the ob-jetive funtion α = 1 and β = 15.4.7.1 Results Comparison to GAMSIn Table 4.19 all solutions from GAMS and the simulated annealing algortihm are ompared.The solutions presented by gams had the best alulated objetive, an ubber bound and thegap between the two. The best alulated objetiv will be alled the lower bound as GAMS



4.7. COMPARISON TO GAMS 85has proven that the objetive funtion is at least this value. If Table 4.19 is inspeted it anbe seen that the best values presented by the simulated annealing algorithm are all in betweenthe lower bound and the upper bound, alulated by GAMS. Although in all ases the upperbound proposed by GAMS is:
∑

VM

φi + |K|β (4.7.1)This is an upper bound that was shown in the setion on upper bounds.M 10 20 30 40 50 60 70 80 90 |K|Best 45 49 49 59 69 76 95 107 110 3AVE 45 48.2 49 50.45 64.55 73.3 89.05 99.2 107.45 3LB 45 49 49 59 59 61 92 78 92 3GAP 9 20 20 45 69 65 63 68 63 3UB 54 69 69 99 123 139 155 155 155 3Best 60 64 64 74 84 92 109 119 125 4AVE 60 63.6 63.8 65.9 80.75 86.55 101.65 111.3 113.35 4LB 60 64 64 74 74 76 107 102 107 4GAP 9 20 20 40 64 65 63 68 63 4UB 69 84 84 114 138 141 170 170 170 4Best 75 79 79 89 99 106 124 129 138 5AVE 75 79 78.8 80.45 95.85 101.15 118.85 122.85 125.85 5LB 75 79 79 89 89 91 122 117 122 5GAP 9 20 20 40 64 78 63 77 63 5UB 84 99 99 129 153 156 185 185 185 5Table 4.19: Shows the average results from the simulated annealing algorithm and its maximumalulated values. This is ompared with values alulated by GAMS, the upper limit proposedby GAMS and the gap between the two.A plot of the results an be viewed in Figure 4.35. The greatest variation found between av-erage value and the best known objetive value is under 20%. This is not perfet but aeptable.The omparison between GAMS and the simulated annealing algorithm show that the bestvalue alulated with simulated annealing is always loser to the best known objetive, thanthe value alulated with GAMS. Also simulated annealing muh faster as a single alulationin GAMS more then a day �nish but took only seonds using the simulated annealing algo-rithm.The GAMS ode performed well for M ≤ 50, this is most likely beause when M = 50 thereare only 12 points within the maximum route length, this inreases to 17 for M = 60 and 20for M ≥ 70. This shows that with inreasing number of points the GAMS program has moredi�ulty alulating the objetive value, whih was expeted. There fore the GAMS does givesto low values when alulating for M ≥ 60.The simulated annealing algorithm also has worse average values for high values of M . This
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Figure 4.35: Shows the best known objetive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line. These arethe results when using simulated annealing for both time and pro�t, used Derease.java and anew ooling shedule.is also due to larger number of available nodes and an be seen in �gure 4.35.From this, Table 4.19 and Figure 4.35, one an onlude that the simulated annealing algorithmis performing aaptably weel in omparison with GAMS and using data set 20.4.7.2 Results Comparison to Derease.java with New Cooling SheduleA omparision between using Derease.java and not was done. Also when Derease.java wasnot used an older ooling shedule was still in use. There T0 = 3000, r = 0.999 and F = 0. Re-sults from using Derease.java, and the new ooling shedule, an be seen in Figure 4.35 whileresults from not using it are seen in Figure 4.36. Note that both trials used an updated versionof the simulated annealing algorithm. When these two �gures are ompared it is apparent thatresults are better with Derease.java and the new ooling shedule. A table ontaining resultsfrom the older version an be seen in appendix D.4.Also run times were ompared to see whih method was faster. These results are seen in tables
4.20 and 4.21.As an be seen in tables 4.21 and 4.20 run times for low values of M are lower when De-rease.java is used. In that ase, using the new version of the algorithm, the run time is greatesfor M = 60 were all points are feasible but the objetive value is the lowest with omparison
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Figure 4.36: Shows the best known objetive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line. These arethe results when using simulated annealing for both time and pro�t.M 10 20 30 40 50 60 70 80 90 |K|mean 3208 3520 3588 4711 5418 6194 5484 5448 4991 3max 4068 6156 6257 6459 8222 9479 8899 8541 6304 3min 3009 3227 3208 4425 4406 5091 5036 5035 4505 3mean 7433 8147 8134 11384 13195 17023 14649 12603 11389 4max 10362 11848 10585 16854 18304 27887 21553 17612 16120 4min 5172 5797 5572 8168 9264 11974 9775 8142 7686 4mean 6619 7148 7275 10591 12669 16453 13278 10898 9772 5max 9404 9787 9855 14740 18074 26861 20284 15144 14207 5min 5156 5828 5611 8394 10073 13374 8211 7198 7657 5Table 4.20: Shows run times for tests using the new ooling shedule and using Derease.java,results are in milli seonds.to other sets with the same number of points. For the older version of the algorithm highrun times are reorded when M ∈ {20, 30}. In that ase there is a large number of infeasi-ble solutions proposed by the algorithm, Derease.java removes a majority of these infeasiblesolutions. Average run times in both ases were ompared and no onlusive result ould bereahed. The old version performed better on average of 0.3 seonds. In onlusion the newversion gave better solutions on similar run times whih are good results.



88 CHAPTER 4. TESTSM 10 20 30 40 50 60 70 80 90 |K|mean 7779 10278 19730 13120 7464 6413 5186 5050 4733 3max 22591 23881 29952 25254 15219 16555 7544 5525 5398 3min 6873 6858 10446 7132 5002 4998 4873 4849 4239 3mean 8196 10742 10898 12113 9301 7946 6833 5664 5107 4max 8674 15341 12453 21734 12262 10533 9089 7106 6739 4min 7950 7812 7791 8131 8216 5492 5436 4854 4318 4mean 8870 11683 12274 12721 9827 9008 6635 5695 5198 5max 9233 13504 13371 13471 12987 12287 9384 8349 8483 5min 8719 8793 8765 8763 8833 7861 4756 4755 4731 5Table 4.21: Shows run times for tests using the older version of the algorithm, results are inmilli seonds.4.8 Obtained Data SetsThese previously onduted tests were used in [13℄. There were 3 data sets tested eah indi�erent size. The sets sizes are |V | = 102, |V | = 32 and |V | = 33. There names are respetivelydata set 102, 32 and 33. To be omparable with the problem presented in [13℄ β was set tozero. This means that the only ontributing fator in the objetive funtion is ∑

i∈V piyi, as
α = 1. Now the number of possible routes was |K| ∈ {2, 3, 4}. The ooling shedule was set to
T0 = 15, r = 1− 10−13 and F = 2. The number of iterations was 50,000 and the probabilitymatrix used was P2. Eah test with all possible ombination was done 10 times. The maximumroute lengths di�ered for eah test.4.8.1 Results for Data Set 32The results for the omparison between the tabu searh algorithm presented in [13℄ and thesimulated annealing algorithm presented in this thesis an be seen in table 4.22. The tabuesearh algorithm performs better in most ases, although the simulated annealing performsequally well in a few ases and better in one (|K| = 3 and M = 13.3). In the one ase wherethe simulated annealing algorithm performs better it �nds the best known objetive value. It isstated in [13℄ that the best known objetive value for that patiular ase, when M = 13.3 and
|K| = 3, is 75. Overall the simulated annealing algorithm performs su�ently well omparedto the tabu searh.The run times of the two methods are also dispayed in Table 4.22, these time are mesuredin seonds. The omputer used in the tabu searh experiment was a DEC Alpha XP1000Computer and the one used to alulated the simulated annealing was a Dell Inspiron 5150(Pentium 4). When the two methods are ompared it is obvious that the tabu searh is muhfaster than the simulated annealing, somtimes faster by as muh as 15 seonds. The valuesshown are both maximum alulations time reored in there trials.In onslusion one an see, by inspeting Table 4.22 that the tabu searh algortihm returnsbetter soltutions faster than the simulated annealing algorithm, when daeiling with the 32point data set. Although the simulated annealing algorithm does not return as good solutions,



4.8. OBTAINED DATA SETS 89S.A. Tabu
|K| M Average Max Min CPU Max CPU4 18.8 151 165 135 13.011 175 1.54 18.2 145.62 155 130 12.708 165 1.34 12.5 72.75 75 70 11.964 75 0.83 25 188.75 220 135 11.737 220 1.53 24.3 177.88 195 140 11.395 205 2.63 21.7 147.62 165 125 10.208 170 1.43 13.3 73.0 75 70 11.712 70 0.82 23 122.25 135 95 15.860 135 1.3Table 4.22: Show the omparison between a tabu searh algorithm persented in [13℄ and thesimulated annealing algorithm persented in this thesis.as the tabu searh, it gives resonalby good results in some ases even �nding the best knownobjetive value.4.8.2 Results for Data Set 33In Table 4.23 a omparison between a tabu searh algorithm, persented in [13℄, and the sim-ulated annealing used in the thesis is displayed. The tabu searh performs better on average.The simulated annealing in some ases give equally good values as the tabu searh but neverbetter values. Though the tabu searh performs better overall the simulated annealing tendsto �nd objetive values lose to the best known objetive values, persented by the tabu searhalgorithm.The run times, displayed in table in Table 4.23, are ompared it is apparent that tabu searhis muh faster than the simulated annealing algorithm. The omputer used in the tabu searhexperiment was a DEC Alpha XP1000 Computer and the one used to alulated the simulatedannealing was a Dell Inspiron 5150 (Pentium 4). The di�erane between runtimes is onsi-darble with tabu searh out performing the simulated annealing algorithm by as muh as 12seonds. In both ases the run time are maximum numbers reorded over a few trials.Overall tabu searh out performs simulated annealing both in onern to the objetive valuesand run time, seen in Table 4.23, when ompared with data set 33. Although simulatedannealing does return good objetive values but not always the best known objetives.4.8.3 Results for Data Set 102Comparison with the 102 point data set an be viewed in Table 4.24. In most instnes thetabu searh algorithm returns better objetive values the the simulated annealing algorithm.There are also ases where the two algorithms return the same best objetive values. In onease,M = 93.3 and |K| = 3, simulated annealing returned a better objetive than the tabusearh algorithm. In this ase the best known objetive values, aording to [13℄, is 813.The run times are also ompared in Table 4.24. Values displayed are the maximum reorded



90 CHAPTER 4. TESTSS.A. Tabu
|K| M Average Max Min CPU Max CPU4 22.5 481.5 520 400 12.233 560 0.74 15 259.25 280 220 11.388 310 0.84 10 190 190 190 10.008 190 0.63 36.7 686.25 720 620 10.840 750 3.33 31.7 610.75 650 540 11.818 680 3.13 30 574 620 470 10.447 640 2.13 28.3 534.75 570 420 11.562 590 2.03 25 471.75 500 430 14.083 510 2.02 47.5 697.5 740 630 8.907 760 5.42 42.5 619.25 660 540 9.775 690 6.62 30 425.75 490 290 10.973 490 1.52 27.5 386.75 430 280 9.512 460 3.82 25 360 390 270 11.092 410 3.12 20 261.75 290 180 10.296 290 1.22 17.5 212.5 250 170 9.132 250 0.82 12.5 176 180 110 11.354 180 1.2Table 4.23: Show the omparison between a tabu searh algorithm persented in [13℄ and thesimulated annealing algorithm persented in this thesis.run times. The omputer used in the tabu searh experiment was a DEC Alpha XP1000Computer and the one used to alulated the simulated annealing was a Dell Inspiron 5150(Pentium 4). In most ases the simulated annealing algorithm uses shorter runtimes but forlow values of M the tabu searh is quiker.In onlusion the simulated annealing algorithm returns good results but not always the bestpossible and alulates them in short times ompared to other methods, when dealing withlarge data sets.4.9 Distane ConstraintWhen dealing with routes one does not want the bus to drive a short distane and beforestopping again. Two nodes lose to one another share muh of the same pro�t. Therefore asmall hange was implemented to one of the java lasses, UnvisitedPoints.java. This ensuredthat the bus had to drive either for some time or a ertain distane before stopping again,whether it was distane or time depends on the input. The new lass UnvisitedPoints2.javamade it impossible for any route to stop within a ertain radius a, from an already pikednode. Test that were onduted with UnvistedPoints2.java also used Derease.java and the up-dated version of simulated annealing. The data sets tested were 50a,b,,d and e. Eah testlooks at nine possible maximum route lengths M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160} andhad a maximum of three vehihles, |K| = 3. Values of the radius were a ∈ {1, 2, 3, 4, 5, 10}.All possible ombinations of data sets, maximum route lengths and radiuses were tested 10times and eah test used two initial guesses the seond being the solution from the �rst test.
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Maximum route lengthFigure 4.37: Shows the best known objetive values, red line; and the di�erent results andthere average value, blue dots and blue line.
The ooling shedule used in these tests was T0 = 15, r = 1 − 10−13 and F = 2. Number ofiterations was 50,000.4.9.1 Results for the Distane ConstraintAll data sets showed a derease in objetive funtion as the radius a inreased. This an beseen in the table blow and in Figure 4.37. Similar �gures for data sets 50b,,d and e wereonstruted and are viewable in appendix D.4.1.The Table 4.25 and Figure 4.37 shows that as a inreases the average objetive values derease.For example the best known objetive value for M = 20 is 49 for all values of a ∈ {1, 2, 3, 4, 5}but when a = 10 the objetive value dereases to 45. For other values of M the derease ismuh more obvious.All points in V for data set 50a are shown in Figure 4.38. When a = 3 and M=160 the routeshosen an be seen in Figure 4.39, routes onstruted for the same M and a = 10 is shown inFigure 4.40. Other similar �gures for data set 50a an be seen in appendix D.4.1.To ompare between a route with a = 0 and a route with a = 5. This an be seen in �gures
4.41 and 4.42. In Figure 4.41 blue points reprsent nodes not hosen. When ompared to 4.42one an determin nodes that were left out beuase they are to lose to there neighbor.These results on�rm that the seond version of UnvisitedPoints.java works and returns solu-
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Figure 4.38: Shows all points in data set 50a.
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Figure 4.39: Shows the routes onstruted when a = 3 and M = 160. The irles are the areawhere that must be travelled before another pik up point is hosen.
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Figure 4.40: Shows the routes onstruted when a = 3 and M = 160. The irles are the areawhere that must be traveld before another pik up point is hosen.
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Figure 4.41: Shows the routes onstruted when a = 5 and M = 100. The irles are the areawhere that must be travelled before another pik up point is hosen.
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Figure 4.42: Shows the routes onstruted when a = 0 and M = 100. The irles are the areawhere that must be travelled before another pik up point is hosen.tions where a bus is prohibited from visiting any points within radius a of a hosen node.



4.9. DISTANCE CONSTRAINT 95S.A. Tabu
|K| M Average Max Min CPU Max CPU4 100 876.3 972 672 42.110 1067 86.64 95 859.8 1008 768 48.770 1019 84.34 90 813.9 906 672 47.007 966 101.04 85 729.9 810 552 79.156 905 95.24 80 681.6 756 558 47.383 832 82.04 75 660.3 738 540 47.741 776 71.34 70 592.2 696 516 51.924 726 54.44 65 543.3 600 462 53.606 643 68.84 60 483.6 528 432 56.333 576 31.84 55 418.8 456 342 64.727 503 44.94 50 382.2 414 336 69.247 462 23.64 45 346.8 359 336 83.772 359 20.63 133.3 911.7 1032 774 30.927 1098 143.23 126.7 1895.5 972 816 32.517 1061 99.83 120 863.4 942 702 33.138 1011 93.63 113.3 790.8 900 612 32.271 966 98.83 106.7 781.5 858 714 32.503 922 74.03 100 723.6 840 606 34.229 874 102.83 93.3 677.4 792 420 33.218 789 126.53 86.7 608.1 738 486 34.962 756 121.23 80 543.9 660 360 34.602 681 69.53 73.3 529.2 632 414 40.395 632 94.43 66.7 445.2 552 300 39.312 563 107.73 60 394.2 438 336 42.797 481 36.03 53.3 327 390 270 43.955 416 34.03 46.7 312.6 330 282 56.311 344 21.02 200 951 1062 810 26.023 1165 290.62 190 1932.1 1050 798 23.908 1116 215.62 180 1885.6 972 780 23.946 1067 432.62 170 852.9 978 750 26.709 1017 239.62 160 826.5 894 750 39.186 987 272.12 150 769.8 894 648 25.499 914 202.82 140 695.1 792 534 30.222 864 224.32 130 630.9 744 456 26.995 817 174.12 120 579.9 702 450 27.055 767 217.52 110 579 642 450 30.544 702 120.12 100 495 600 324 26.256 638 118.72 90 420.6 564 282 28.611 578 84.42 80 417.3 480 258 29.395 521 52.02 70 337.2 384 234 31.648 459 74.62 60 298.2 336 222 35.746 382 42.72 50 263.7 276 246 41.383 290 37.7Table 4.24: Show the omparison between a tabu searh algorithm persented in [13℄ and thesimulated annealing algorithm persented in this thesis.



96 CHAPTER 4. TESTS

M 10 20 40 50 70 80 100 130 160Best 45 49 102 128 172 194 241 258 258
a = 1 45 49 98.90 117.7 155.2 177.9 222.3 245.05 258
a = 2 45 49 98 117.8 156.7 171.7 212.5 246.70 249.4
a = 3 45 49 92.20 108 151.5 165.6 201.9 222.10 224.4
a = 4 45 49 82.85 103.5 137.2 154.3 194.5 214.80 215.4
a = 5 45 49 82.40 101.9 125.3 155.5 182.6 191.80 192.6
a = 10 45 45 52 64.1 80.7 84.9 86.3 86.80 83.8Table 4.25: Compares the average alulated objetive values, limited by a radius a and om-pared to the best known objetive value. All this is then done for multible value of M .



Chapter 5ConlusionsThe simulated annealing algorithm has been put through a number of tests. The best knownooling shedule, T0 = 21, r = 1− 10−6 and F = 10−6; was alulated in setion 4.2.The best known probability matrix was alulated in 4.3 and then ompared to a number ofother probability matries (see setions 4.5 and 4.6). This best probability matrix was:
P2 =





















50 30 0 0 20 0
0 10 10 0 30 50
60 30 0 0 10 0
0 10 10 60 20 0
0 100 0 0 0 0
0 0 0 70 0 30
0 0 70 30 0 0



















The best node insertion method, of those proposed, was random insertion. This was shown insetion 4.4.In omparison to a program written in GAMS the simulated annealing algorithm proovedsuperior, see setion 4.7. The algorithm returned objetives between the upper bound, alu-lated by GAMS, and the objetive value suggested by GAMS, used as a lower bound. Thegap between the upper and lower bound proposed by GAMS was always large and thereforequality of solutions ould not be shown. The simulated annealing algortihm was also muhfaster than the GAMS program.The simulated annealing algorithm was then ompared to a tabu searh algorithm used forTOP, see setion 4.8. In most ases the tabu searh algorithm outperformed the simulatedannealing algorithm by returning better objetive values. There were though a few ases theresimulated annealing found better sobjetives. For small data sets the tabu searh algorithmwas also faster but for larger data sets simulated annealing had shorter run times. In all asessimulated annealing returned objetives lose to the best known objetive values.A onstraint ensuring that a bus must travel for a ertain amount of time was implemented.This onstraint worked a returned routes that did not violate the onstraint.97



98 CHAPTER 5. CONCLUSIONSThe simulated annealing algorithm designed to solve the bus route problem has been on-struted. In has a good ooling shedule and a good probability matrix. Furthermore a on-straint foring a ertain time to pass between stops is present if needed. The algorithm returnsgood results but not always the best objetive values when ompared to other algorithms.5.1 Further Work5.1.1 Real World AppliationDue to time onstritions and lak of easily aessible data the projet was not suessful inproviding a good bus routes for ALCAN Ieland. In the future a travel time matrix, inludingall possible pik up point will have to be onstruted. This matrix is estimated in size atleast as 200x200 and ould possibly be larger. This matrix would be onstruted using travelplans of loal buses, an algorithm onstruted for measurments of travel time inside Reykjavíkand real world trials. After the travel time matrix has been onstruted, pro�ts have to beassigned to eah possible pik up point. These pro�ts an be in�uened by fators determinedby ALCAN, for example the number of employees living lose by or aess to the loal bussystem. Finally the vetor determing in the time penalty for stopping at a ertain node willhave to be onstruted. This fator is easily estimated by assigning eah node, exept thesoure an sink, the same penalty. If onsidered neessary a stopping penalty dependant on thenumber of people piked up an be implemented.5.1.2 Algorithm ImprovementAs has been disussed in the report there are many things that may be improved and in-speted. The upper bound using time restritions always assumes that one bus drives to allthe nodes, in many ases this is not possible. An improvement might add a nearest neighbouralgorithm to determine some sort of route lengths, or travel times. This ould then be usedto estimate how many buses are needed to visit the nodes seleted in the upper bound.Also in Java the inheritane of variables is a bothersome. This led to the removal of the vetor
y. By doing this a double for-loop in Unvisitedpoints.java was replaed with a triple for-loop.In future versions of the algorithm inserting y into the ode ould redue the run time of theprogram, although this ould be ompliated as it hanges muh of the algorithm.In this report the initial guess introdued into the simulated annealing algorithm was theempty set, or a previously returned solution from the algorithm. There are other methodsavailable in hoosing good initial guess, for example adaptive memory proedure disussedin [13℄. These methods ould in most ases derease run time dramatially. Although insome ases, when the best objetive is an empty solution, these initial guesses result in worsesolutions. This an happen in some theoratial ases but is unlikly to matter in real worldappliation. This ould be ountered by implementing a new move that would remove a singlenode, without adding a new.The neighbourhood, moves, ould also be improved. Linking InsertMove11.java, BusMove.javaand InsertMove13.java would be useful. In that ase InsertMove13.java and BusMove.java woulduse InsertMove11.java to add points to routes. Other methods suh as evolutionary luster



5.2. A LEARNING EXPERIANCE 99searh disussed in [4℄. Methods suh as that would although lead to longer run times, sim-pler methods need fewer alulations.BusMove.java ould be improved be removing a node if the new route is too long, this is doneuntil the travel time is less than M . This would also lead to more alulations. As proposedin [3℄ one ould also inlude a funtion that would try to joint the two routes with the lowestpro�t or travel time.5.2 A Learning ExperianeDoing suh a large projet is a great learning experiene that an bene�t one in future work.A muh better understanding of basi methods suh as simulated annealing, and its oolingshedule; omputational experiments and report writing. Also understanding of ompliatedoperations researh methods suh as PCTSP, VRP, OVRP and TOP was attained. New in-sights into organizational skills, onduting produtive meetings, ommuniating with personsabroad, ritiizing one own work and navigating through time onstritions was gained.Einar Leif Nielsen
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104 APPENDIX A. RESULTSData set |K| M Average Max Min Average CPU50a 3 10 16 16 16 2265.53 20 25.1 31 21 2132.43 40 108.4 112 102 4364.73 50 136.1 141 130 6033.63 70 172.6 189 149 8300.93 80 202.9 220 184 8231.33 100 240.8 252 220 8065.73 130 257.5 258 253 7869.13 160 258 258 258 7900.550b 3 10 12.1 17 9 2054.23 20 24.6 27 24 2100.63 40 73.6 79 69 3666.93 50 106.3 115 96 6327.43 70 171.2 181 141 8383.73 80 193.8 209 160 8285.83 100 239 252 228 8135.53 130 257.6 258 256 7943.53 160 258 258 258 7955.550 3 10 4 4 4 2361.13 20 11.9 16 7 2381.83 40 77 84 64 38143 50 104 113 97 6489.93 70 177.9 204 149 8638.23 80 210.5 220 199 85613 100 239.4 252 233 8286.53 130 256.8 258 255 83983 160 258 258 258 842250d 3 10 5 5 5 2132.93 20 25 25 25 2345.43 40 73.2 79 68 3721.23 50 102.6 107 93 6015.93 70 163 180 149 84773 80 189.8 212 173 84393 100 229.5 248 207 8224.63 130 256.1 258 241 8098.33 160 258 258 258 8061.950e 3 10 9.1 11 6 2164.33 20 31.9 33 28 2396.73 40 80.6 88 69 4538.23 50 98.6 108 80 65833 70 175.1 191 149 8544.83 80 203.1 214 195 84093 100 240 252 216 8294.53 130 257.6 258 254 8147.73 160 258 258 258 8118Table A.1: Results using α = 1 and β = 0. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



105Data set |K| M Average Max Min Average CPU50a 4 10 16 16 16 2302.54 20 24.9 31 21 2182.14 40 121.7 130 106 5118.74 50 155.4 164 145 7269.84 70 207 221 194 103374 80 237.4 249 214 101504 100 256.6 258 251 9999.44 130 258 258 258 9929.94 160 258 258 258 9940.450b 4 10 13.2 17 9 2170.94 20 23.7 27 19 2339.84 40 82.8 90 77 4246.64 50 124.8 133 114 7683.74 70 204.7 224 191 104594 80 236.6 252 222 103494 100 257.5 258 255 101864 130 258 258 258 100844 160 258 258 258 1013050 4 10 4 4 4 2374.94 20 11.7 13 7 24924 40 89.3 98 76 4237.44 50 136.6 147 126 7782.54 70 212.3 228 183 106164 80 235.3 252 228 107304 100 255.2 258 252 103834 130 258 258 258 103774 160 258 258 258 1029350d 4 10 5 5 5 2181.14 20 21.5 25 15 2247.94 40 84.2 88 80 4228.44 50 117.8 123 110 7117.54 70 191.9 203 177 104184 80 229.8 244 203 103384 100 254.9 258 236 101444 130 258 258 258 100614 160 258 258 258 1161850e 4 10 9 11 6 2233.34 20 31.2 33 28 2484.74 40 93.3 98 87 5178.24 50 128 138 113 7865.44 70 210.9 221 202 105634 80 235.2 246 227 103494 100 258 258 258 101514 130 258 258 258 101164 160 258 258 258 10156Table A.2: Results using α = 1 and β = 0. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



106 APPENDIX A. RESULTSData set |K| M Average Max Min Average CPU50a 5 10 16 16 16 2362.85 20 27.6 31 21 2324.85 40 129.8 135 124 5790.25 50 170 177 158 84495 70 229 239 213 120685 80 252.8 257 241 121025 100 258 258 258 118185 130 258 258 258 118265 160 258 258 258 1185150b 5 10 14.1 17 9 2294.55 20 23.7 27 19 2360.65 40 89.9 92 88 4677.85 50 146 157 134 8964.35 70 238.2 249 225 124735 80 255.2 258 251 122925 100 258 258 258 121245 130 258 258 258 120715 160 258 258 258 1207750 5 10 4 4 4 2297.15 20 11.2 16 7 2168.85 40 99.3 103 89 4575.15 50 148.5 158 132 8635.35 70 233.1 247 227 123075 80 249.4 255 242 122255 100 257.7 258 255 121465 130 258 258 258 121445 160 258 258 258 1203750d 5 10 5 5 5 2247.35 20 21.6 25 20 2287.35 40 91.3 93 90 4824.45 50 133.1 140 113 8480.95 70 226.4 235 215 124575 80 245.6 255 234 123925 100 258 258 258 122405 130 258 258 258 121785 160 258 258 258 1218950e 5 10 8 11 6 22415 20 29.9 33 26 2532.95 40 100.7 102 97 5875.85 50 142.4 154 133 9308.65 70 230.2 238 222 123395 80 252.6 258 234 122605 100 258 258 258 121465 130 258 258 258 121395 160 258 258 258 12070Table A.3: Results using α = 1 and β = 0. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



107Data set |K| M Average Max Min Average CPU100a 3 10 11 11 11 2398.93 20 35.5 38 34 3003.33 40 89.6 102 66 9508.33 50 116.8 126 90 190743 70 152.6 174 133 282353 80 181.6 195 165 277643 100 230.8 266 210 265203 130 266.4 304 218 257253 160 335.5 379 301 25165100b 3 10 17.5 23 13 3381.53 20 43.1 47 40 4202.53 40 97.7 106 86 72833 50 113.1 130 98 125933 70 156.1 171 140 174133 80 183.9 197 168 182243 100 221.9 245 200 169833 130 278.5 325 235 165223 160 327.2 376 284 15356100 3 10 28 30 20 4146.93 20 53.3 54 47 4493.63 40 98.8 104 93 7775.13 50 128.5 143 115 129663 70 178 201 143 175803 80 205.4 233 173 166593 100 242.5 282 210 166183 130 295.5 340 248 151923 160 352.9 392 316 15150100d 3 10 20.3 22 12 3925.13 20 43.5 45 40 4427.83 40 83 91 68 6736.53 50 96.7 111 83 124873 70 145.6 163 115 173243 80 172.6 182 142 179783 100 215.9 232 198 165673 130 265.8 306 228 157953 160 314.3 335 255 15609100e 3 10 8 8 8 4633.43 20 37.7 38 35 4814.93 40 96.5 109 86 9371.83 50 123.3 141 105 127093 70 160.7 185 107 187823 80 195.1 215 175 188143 100 232.4 258 207 172163 130 288.6 315 242 160743 160 354.8 377 336 16341Table A.4: Results using α = 1 and β = 0. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



108 APPENDIX A. RESULTSData set |K| M Average Max Min Average CPU100a 4 10 11 11 11 2404.54 20 42.7 44 38 3196.84 40 115.2 126 102 116314 50 155 170 140 236274 70 206.9 227 181 356114 80 224.8 246 191 346324 100 277.3 316 235 335604 130 362.6 380 314 319084 160 411.7 452 370 31406100b 4 10 16.8 23 13 3518.74 20 50.6 54 45 4461.54 40 118 131 107 8125.34 50 142 159 125 148344 70 206.6 223 168 206744 80 209.8 243 182 209794 100 273.3 300 234 202224 130 345.9 373 301 185154 160 404.1 433 383 17062100 4 10 25.8 30 20 3683.44 20 61.5 63 54 4353.64 40 118.1 134 111 8298.94 50 154.2 174 132 149584 70 232.5 256 213 212814 80 261.1 284 221 191164 100 296.1 334 246 187894 130 378.8 435 333 177204 160 436.8 455 402 16923100d 4 10 16.9 21 12 3631.54 20 51.6 52 51 4367.44 40 99.5 115 89 75174 50 129.2 136 111 147424 70 186.7 203 162 208724 80 215.1 249 188 214404 100 281.5 307 249 193574 130 352.3 378 325 182774 160 413.9 448 372 17440100e 4 10 8 8 8 4694.24 20 44.4 46 41 56694 40 120.4 130 112 9416.64 50 154.8 176 107 154864 70 218.9 245 198 219224 80 250.8 271 230 224764 100 282.8 307 254 197844 130 366.1 402 342 199784 160 415.7 439 395 17509Table A.5: Results using α = 1 and β = 0. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



109Data set |K| M Average Max Min Average CPU100a 5 10 11 11 11 4114.65 20 45.2 46 44 4704.75 40 139.9 151 125 100745 50 180.2 204 162 175285 70 237.7 259 210 268685 80 273.6 301 255 244305 100 333 366 299 229195 130 429.4 446 406 209145 160 470.7 502 416 20513100b 5 10 17.3 23 13 3973.55 20 56.5 59 52 4989.35 40 141.7 152 119 9463.75 50 164.8 185 143 176035 70 249.5 276 226 249865 80 276.6 301 255 257925 100 335.7 358 298 224615 130 408.3 431 378 214815 160 465.7 494 433 20413100 5 10 24.6 30 20 3588.45 20 65.4 71 63 4402.75 40 131.6 152 109 8891.55 50 183.2 197 173 174265 70 265.9 283 242 253055 80 302.2 327 274 236385 100 362 404 321 224665 130 433.9 459 420 210355 160 488.3 504 459 19577100d 5 10 17 21 12 3532.45 20 53.7 55 52 4388.15 40 113.8 125 108 8386.25 50 150.1 169 134 181065 70 231.8 246 208 274035 80 265.3 288 239 248105 100 331.3 355 296 232085 130 422.7 451 395 209825 160 479.9 502 455 19146100e 5 10 8 8 8 48145 20 53 56 49 53145 40 140.3 148 127 101345 50 182.2 200 137 179485 70 245 273 211 272325 80 294.7 309 285 253935 100 342.8 372 321 243425 130 417.9 432 357 220185 160 476 502 457 22587Table A.6: Results using α = 1 and β = 0. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



110 APPENDIX A. RESULTS
Data set |K| M Average Max Min Average CPU
3_50_a 3 5 59 60 50 4482.73 10 102.8 111 90 6377.93 15 168 171 141 85653 20 231.8 232 231 106233 25 286.9 301 222 116283 30 361 361 361 112683 35 394.4 411 371 109873 40 424.8 432 371 103253 50 430 432 412 10065
3_50_b 3 5 55 55 55 4833.63 10 117 120 100 6275.63 15 171 180 140 8560.73 20 249 250 240 109933 25 292.9 301 230 120223 30 356.9 361 330 115703 35 401.8 411 370 111253 40 428.9 432 401 103173 50 423 432 372 10403
3_50_c 3 5 55 55 55 4843.83 10 104.5 111 90 6605.63 15 179 181 171 8756.93 20 228.1 231 222 115173 25 299.2 300 292 120293 30 359 360 350 117603 35 402.9 411 370 117303 40 428 432 392 114123 50 429 432 402 10319Table A.7: Results using α = 1 and β = 15. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



111
Data set |K| M Average Max Min Average CPU
4_50_a 4 4 72.5 75 65 6816.44 8 129.6 131 120 9613.74 12 190.8 201 171 170744 16 272 281 211 149324 20 359.9 361 351 144404 24 423 432 352 135354 28 431.9 432 431 127804 30 430.9 432 421 124274 35 426 432 392 12669
4_50_b 4 4 71.5 75 60 7025.34 8 144 150 120 9696.44 12 206.9 211 191 163314 16 273.4 290 241 146734 20 364.1 370 331 140504 24 423.9 432 372 128644 28 423.7 432 400 130074 30 417.9 432 341 124354 35 430.9 432 421 12172
4_50_c 4 4 75 80 60 6975.34 8 156 160 140 9060.54 12 229.9 231 220 158124 16 286.4 292 261 140744 20 361.5 372 320 131124 24 423.9 432 401 125424 28 428 432 412 122644 30 428.9 432 412 123234 35 432 432 432 11720Table A.8: Results using α = 1 and β = 15. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



112 APPENDIX A. RESULTS
Data set |K| M Average Max Min Average CPU
4_100_a 4 10 183 190 170 116104 20 362 380 300 444464 25 462.6 471 430 697664 30 544.8 561 431 574754 35 628 661 600 530554 40 697.2 750 563 479694 45 742.3 814 582 447914 50 835.2 904 713 447774 60 875.3 905 814 41065
4_100_b 4 10 182 190 150 117574 20 377 380 360 396824 25 440 470 370 657344 30 566.6 571 551 588354 35 651.2 670 621 566394 40 684.5 751 540 473374 45 790.2 841 750 444034 50 842.5 904 795 420634 60 882.2 905 834 41686
4_100_c 4 10 190 190 190 117024 20 378 390 310 429014 25 463 470 450 691214 30 548 580 450 608384 35 644.3 661 580 531204 40 681.4 761 590 474794 45 793.6 841 721 462244 50 820.8 904 721 436294 60 883.2 905 853 41369Table A.9: Results using α = 1 and β = 15. Average objetive, best alulated objetive, worstalulated objetive and average run times in mille seonds are displayed.



113
Data set |K| M Average Max Min Average CPU
3_100_a 3 10 118 121 111 6121.43 20 231.1 240 161 127293 30 358.1 370 281 230023 35 414.7 431 331 309983 40 492.1 500 480 347713 45 521.3 560 410 410773 50 587.4 620 520 437303 60 691.7 732 631 418733 75 805.6 863 713 38226
3_100_b 3 10 130 130 130 6071.33 20 246 250 220 120233 30 359 380 290 230783 35 410 430 340 289143 40 475 500 390 369203 45 540.2 560 411 377473 50 594 620 550 445923 60 681.8 741 622 402273 75 784.3 874 690 34663
3_100_c 3 10 112 120 100 5802.63 20 237 240 230 110833 30 328 350 270 227023 35 411 420 380 275483 40 456 480 340 353223 45 526.3 551 400 393223 50 563.5 601 440 389533 60 685.4 732 622 395093 75 811.2 881 753 34580Table A.10: Results using α = 1 and β = 15. Average objetive, best alulated objetive,worst alulated objetive and average run times in mille seonds are displayed.
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Appendix BSolution Types
A few types of solutions are presented here and then analyzed with SWOT analysis. Thereinternal benefators of the projet are: the student, ALCAN and the professors. The externalbenefators are:The employees of ALCAN, Hópbílar (or other transport ompanies) and thegeneral publi.Type 1: Use urrent pikup points along with new ones (prede�ned, suh as loal bus stops).Estimate the importane of eah pikup point by the number of people living lose to it, theamount of parking and onnetion to loal transit system. Buses from Hópbílar are used topik up employees. Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general solu-tion that takes into aountemployee turnover. Worksall year round, 24 hours aday. This solution is not toosimple to be onsidered aexam projet.

Not ALCAN's desired solu-tion. In this solution newnodes without a prede�ned lo-ation annot be used. Hardto estimate the general popu-lation of an area.External Dereases travel time. Dereases pro�t for Hópbílar.Dereases the urrent amountof servie provided by AL-CAN.Transportation in this solution is provided by Hópbílar.Type 2: Same as type 1 exept importane of pikup points is deided by the number ofemployees that live lose to them. 115



116 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. Works all yearround, 24 hours a day. Notto simple to be onsideredan exam projet. Relativelysimple to program and therefore a good andidate for the�rst solution.
This is a speial solution thatdoes not take into aount em-ployee turnover. In this so-lution new nodes without aprede�ned loation annot beused. Not ALCAN's desiredsolution.External Dereases travel time. Dereases pro�t for Hópbílar.Dereases the urrent amountof servie provided by AL-CAN.

Transportation in this solution is provided by Hópbílar.Type 3 Same as type 2 exept a soft wear, suh as ShorTre from AGR hf., is used todetermine the bus routes. A new route an be alulated as often as ALCAN desires.
Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. Works all yearround, 24 hours a day. A gen-eral solution that takes intoaount employee turnover. This solution depends on a 3party program. This solutionis too simple to be onsideredan exam projet unless the 3party soft wear is programmedby the student. Not ALCAN'sdesired solution.External Dereases travel time. In-reases the pro�t for theprovider of the new soft wear. Dereases pro�t for Hópbílar.Dereases the urrent amountof servie provided by AL-CAN.

Transportation in this solution is provided by Hópbílar.Type 4: Uses the loal transit system, buses, to pikup employees and return them.



117Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. This solutiongives good publiity for AL-CAN by inreasing the use ofthe loal bus system. A gen-eral solution that takes intoaount employee turnover.Solves overtime problem.
This solution is too simple tobe onsidered an exam projet.Doesn't work all year round,24 hours a day. Not ALCAN'sdesired solution.External Dereases travel time. No em-ployee will have to walk furtherthan 600m. Possible for em-ployees to use outside of work-ing hours. Inreases use of theloal bus system.
Removes Hópbílar from thepiture. Dereases the urrentamount of servie provided byALCAN. Strætó will have toput up a new bus stop inStraumsvík.Transportation in this solution is provided by Strætó.Type 5 : Car pooling. Eah ar will be given a driving diary and reeive a payment forgas used at the end of the month. It would be neessary to right a program that would put�ve optimal people together as a part of a ar pooling team.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. Might solve over-time problem. Not to simpleto be onsidered an examprojet. This solution worksall year round, 24 hours a day.
A speial solution that doesnot take into aount employeeturnover. Might be misused byemployees, who ould log morekilometers than they atuallydrove. Not ALCAN's desiredsolution.External Dereases travel time. No em-ployee will have to walk,they are piked up at theredoorstep. Removes Hópbílar from thepiture. Dereases the urrentamount of servie provided byALCAN. Employees dependon one another to be at workon time. Not every one owns aar.Transportation in this solution is provided by Employees.Type 6 : Driving grant. Eah employee would reeive an inrease in pay to ompensatefor the lak of buses. The employees would then drive themselves to work.



118 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A speial solu-tion that takes into aountemployee turnover. Solvesovertime problem. This solu-tion works all year round, 24hours a day.
Too simple to be onsidered anexam projet. Not ALCAN'sdesired solution.

External Dereases travel time. In-reases employee pay (whih isalways popular). Removes Hópbílar from thepiture. Dereases the urrentamount of servie provided byALCAN.Transportation in this solution is provided by Employees.Type 7 : Car pooling with taxis. A taxi would pikup employees and return them. Eahtaxi would be �lled with passengers. A program would tell the taxi servie where and whento pik up an employee.
Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Possiblysolves overtime problem. Thissolution works all year round,24 hours a day. Not too sim-ple too be onsidered an examprojet.

A speial solution that doesnot take into aount employeeturnover. Cost of this solutionis unknown. Not ALCAN's de-sired solution.External Dereases travel time. Servieis inreased as all employ-ees are piked up on theredoorstep. Pro�t for taxi servieis inreased. Removes Hópbílar from thepiture.
Transportation in this solution is provided by a taxi servie.Type 8 : Same as type 1 exept the pikup points would be alulated so that thereloation was optimal and not from predetermined points.



119Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general solutionthat takes into aount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Not too simple too beonsidered an exam projet.ALCAN's desired solution.
Hard to estimate general pop-ulation of an area. Of all thesolutions likely to be the mostompliated to formulate.

External Dereases travel time. Servie is dereased. Hóp-bílar's pro�t is dereased.Transportation in this solution is provided by a Hópbílar.B.0.1 Combined solutionsCombo 1 : Type 1 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 1 when type 4 is not available.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general solutionthat takes into aount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Not too simple too beonsidered an exam projet.Solves the overtime problemduring day/evening on nonholidays. Good publiityfor ALCAN as the publitransport system gains moreusers.

Not ALCAN's desired solu-tion. In this solution newnodes without prede�ned loa-tions an not be de�ned. Hardto estimate general populationof an area.
External No employee will have towalk further than 600m dur-ing day/evening on non hol-idays. Dereases travel time.Employees an use the pub-li buses when they are not atwork. More users for the publitransport system.

Servie is dereased. Hóp-bílar's pro�t is dereased.Strætó will have to build a newbus stop in Straumsvík.
Transportation in this solution is provided by a Hópbílar and Strætó.



120 APPENDIX B. SOLUTION TYPESCombo 2 : Type 2 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 2 when type 4 is not available.
Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general andspeial solution that takes intoaount, during day/eveningon non holidays, employeeturnover. This solution worksall year round, 24 hours a day.Not too simple too be onsid-ered an exam projet. Partlysolves the overtime problem.Good publiity for ALCAN asthe publi transport systemgains more users.

A general and speial solutionthat does not take into a-ount, during night or on hol-idays, employee turnover. NotALCAN's desired solution. Inthis solution new nodes with-out prede�ned loations annot be de�ned.
External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the pub-li transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays.

Servie is dereased. Hóp-bílar's pro�t is dereased.Strætó will have to build a newbus stop in Straumsvík.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 3 : Type 3 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 3 when type 4 is not available.



121Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general andspeial solution that takes intoaount employee turnover.This solution works all yearround, 24 hours a day. Partlysolves the overtime problem.Good publiity for ALCAN asthe publi transport systemgains more users.
Not ALCAN's desired solu-tion. This solution is too sim-ple to be onsidered an examprojet unless the 3 party softwear is programmed by the au-thor of the projet.

External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the pub-li transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays.
Servie is dereased. Hóp-bílar's pro�t is dereased.Strætó will have to build a newbus stop in Straumsvík.

Transportation in this solution is provided by a Hópbílar and Strætó.
Combo 4 : Type 5 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 5 when type 4 is not available.



122 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general andspeial solution that takes intoaount, during day/eveningon non holidays, employeeturnover. This solution worksall year round, 24 hours aday. Partly (even ompletely)solves the overtime problem.Good publiity for ALCAN asthe publi transport systemgains more users.
A general and speial solu-tion that does not take intoaount, during night or onholidays, employee turnover.Not ALCAN's desired solu-tion. Might be misused by em-ployees, who ould log morekilometers than they atuallyhave driven.External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the pub-li transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays.
Servie is dereased. RemovesHópbílar from the piture.Strætó will have to build a newbus stop in Straumsvík. Em-ployees depend on one anotherto be at work on time. Not ev-ery one owns a ar.

Transportation in this solution is provided by a Employees and Strætó.
Combo 5 : Type 6 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 6 when type 4 is not available.



123Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general solutionthat takes into aount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Solves the overtimeproblem. Good publiityfor ALCAN as the publitransport system gains moreusers.
Not ALCAN's desired solu-tion. This solution is too sim-ple to be onsidered an examprojet.

External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the pub-li transport system. Employ-ees reeive an inrease in pay.No employee will have towalk further than 600m duringday/evening on non holidays.
Servie is dereased. RemovesHópbílar from the piture.Strætó will have to build a newbus stop in Straumsvík. Notevery one owns a ar.

Transportation in this solution is provided by Employees and Strætó.
Combo 6 : Type 7 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 7 when type 4 is not available.



124 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Ageneral solution,duringday/evening on non holi-days, that takes into aountemployee turnover. This solu-tion works all year round, 24hours a day. Solves the over-time problem. Good publiityfor ALCAN as the publitransport system gains moreusers. Not too simple to beonsidered an exam projet.
A speial solution, at nightand on holidays, that doesnot take into aount employeeturnover. Not ALCAN's de-sired solution. Cost is an un-known fator.

External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the publitransport system. Servie is in-reased during night and holi-days. No employee will have towalk further than 600m duringday/evening on non holidays.Inreased revenue for the taxiservie.
Servie is dereased duringday/evening on non holidays.Removes Hópbílar from thepiture. Strætó will have tobuild a new bus stop inStraumsvík.

Transportation in this solution is provided by a taxi servie and Strætó.
Combo 7 : Type 8 and type 4.Desription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 8 when type 4 is not available.



125Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. A general solutionthat takes into aount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Partly solves the over-time problem. Good publiityfor ALCAN as the publitransport system gains moreusers. Not too simple to beonsidered an exam projet.
Hard to estimate general pop-ulation of an area. Not AL-CAN's desired solution. Likelya ompliated solution.

External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the pub-li transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays .
Servie is dereased. Hóp-bílar's pro�t is dereased.Strætó will have to build a newbus stop in Straumsvík.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 8 : Type 5 and type 6.Desription : Type 5 but instead of using the driving diaries, employees would reeive aninrease in pay, type 6, for driving there fellow oworkers to work.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases ost. Dereasestravel time. This solutionworks all year round, 24hours a day. Could solve theovertime problem. Not toosimple to be onsidered anexam projet.
Not ALCAN's desired solu-tion. A speial solution thatdoes not take into aount em-ployee turnover.External Dereases travel time. Employ-ees are piked up at theredoorstep. Employees reeivepay inrease. Servie provided by ALCANis dereased. Hópbílar are re-moved from the piture. Em-ployees depend on one anotherto be at work on time. Not ev-ery one owns a ar.Transportation in this solution is provided by a Hópbílar and Strætó.Combo 9 : Type 7 and type 6.Desription : Solution type 7 would be used but instead of ALCAN paying the taxi servie itwould inrease workers pay. Employees would then use that pay inrease to pay for the taxies.



126 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. This so-lution works all year round,24 hours a day. Could solvethe overtime problem. Not toosimple to be onsidered anexam projet.
Not ALCAN's desired solu-tion. Cost is unknown, likelyhigh. A speial solution thatdoes not take into aount em-ployee turnover.External Dereases travel time. Employ-ees are piked up at theredoorstep. Employees reeivepay inrease. Servie is in-reased. Inreased revenue forthe taxi servie.
Hópbílar are removed from thepiture.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 10 : Extreme solution using type 1 and type 4.Desription : Solve solution type 1 with as few routes and pikup points as possible. Em-ployees then use loal buses to get to those points, type 4.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. A gen-eral solution that takes intoaount employee turnover.Good publiity for ALCAN asthe publi transport systemgains more users. Not too sim-ple to be onsidered an examprojet.
Not ALCAN's desired solu-tion. Does not work all yearround, 24 hours a day. Costmight not be dereased. Inthis solution new nodes with-out prede�ned loations annot be de�ned. Hard to esti-mate general population of anarea.External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the publitransport system. No employeewill have to walk further than600m.
Servie is dereased. Hóp-bílar's pro�t is dereased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 11 : Extreme solution using type 2 and type 4.Desription : Solve solution type 2 with as few routes and pikup points as possible. Em-ployees then use loal buses to get to those points, type 4.



127Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. A gen-eral and speial solution thattakes into aount employeeturnover. Good publiity forALCAN as the publi trans-port system gains more users.Not too simple to be onsid-ered an exam projet.
Not ALCAN's desired solu-tion. Does not work all yearround, 24 hours a day. Costmight not be dereased. Inthis solution new nodes with-out prede�ned loations annot be de�ned.External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the publitransport system. No employeewill have to walk further than600m.
Servie is dereased. Hóp-bílar's pro�t is dereased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 12 : Extreme solution using type 3 and type 4.Desription : Solve solution type 3 with as few routes and pikup points as possible. Em-ployees then use loal buses to get to those points, type 4.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. A gen-eral and speial solution thattakes into aount employeeturnover. Good publiity forALCAN as the publi trans-port system gains more users.
Depend on a third party pro-gram. Too simple to be on-sidered an exam projet, un-less the third party programis program by the author ofthe projet. Not ALCAN's de-sired solution. Does not workall year round, 24 hours a day.Cost might not be dereased.External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the pub-li transport system. No em-ployee will have to walk furtherthan 600m. Inreased revenuefor the taxi servie.
Servie is dereased. Hóp-bílar's pro�t is dereased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 13 : Extreme solution using type 8 and type 4.Desription : Solve solution type 8 with as few routes and pikup points as possible. Em-ployees then use loal buses to get to those points, type 4.



128 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. A gen-eral solution that takes intoaount employee turnover.Good publiity for ALCAN asthe publi transport systemgains more users. Not too sim-ple to be onsidered an examprojet.
Not ALCAN's desired solu-tion. Does not work all yearround, 24 hours a day. Costmight not be dereased. Likelya ompliated solution.External Dereases travel time. Em-ployees an use the publibuses when they are not atwork. More users for the publitransport system. No employeewill have to walk further than600m.
Servie is dereased. Hóp-bílar's pro�t is dereased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 14 : Extreme solution using type 1 and type 5.Desription : Solve solution type 1 with as few routes and pikup points as possible. Em-ployees then use ar pooling to get to those points, type 5.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.Not too simple to be onsid-ered an exam projet. A general and speial solutionthat does not takes into a-ount employee turnover. NotALCAN's desired solution. Inthis solution new nodes with-out prede�ned loations annot be de�ned. Might be mis-used by employees who ouldlog more kilometers then theyatually have driven. Hard toestimate general population ofan area. Cost might not be de-reased.External Dereases travel time. Em-ployee piked up at doorstep. Servie is dereased. Hóp-bílar's pro�t is dereased. Em-ployees depend on one anotherto ath the bus. Not every oneowns a ar.Transportation in this solution is provided by Hópbílar and employees.



129Combo 15 : Extreme solution using type 2 and type 5.Desription : Solve solution type 2 with as few routes and pikup points as possible. Em-ployees then use ar pooling to get to those points, type 5.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.Not too simple to be onsid-ered an exam projet. A speial that does nottakes into aount employeeturnover. Not ALCAN'sdesired solution. Might bemisused by employees whoould log more kilometers thenthey atually have driven. Inthis solution new nodes with-out prede�ned loations annot be de�ned. Cost might notbe dereased.External Dereases travel time. Em-ployee piked up at doorstep. Servie is dereased. Hóp-bílar's pro�t is dereased. Em-ployees depend on one anotherto ath the bus. Not every oneowns a ar.Transportation in this solution is provided by Hópbílar and employees.Combo 16 : Extreme solution using type 3 and type 5.Desription : Solve solution type 3 with as few routes and pikup points as possible. Em-ployees then use ar pooling to get to those points, type 5.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours aday. A speial solution thattakes into aount employeeturnover. This solution is nottoo simple to be onsidered anexam projet.
Not ALCAN's desired solu-tion. Depends on a third partyprogram. Might be misused byemployees who ould log morekilometers then they atuallyhave driven. Cost might not bedereased.External Dereases travel time. Em-ployee piked up at doorstep.Inreases pro�t for the softwear provider. Servie is dereased. Hóp-bílar's pro�t is dereased. Em-ployees depend on one anotherto ath the bus. Not every oneowns a ar.Transportation in this solution is provided by employees and Hópbílar.Combo 17 : Extreme solution using type 8 and type 5.Desription : Solve solution type 8 with as few routes and pikup points as possible. Em-ployees then use ar pooling to get to those points, type 5.



130 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.This solution is not too sim-ple to be onsidered an examprojet. Not ALCAN's desired solu-tion. A general and speial so-lution that does not take intoaount employee turnover.Might be misused by employ-ees who ould log more kilo-meters then they atually havedriven. Cost might not be de-reased.External Dereases travel time. Em-ployee piked up at doorstep. Servie is dereased. Hóp-bílar's pro�t is dereased. Em-ployees depend on one anotherto ath the bus. Not every oneowns a ar. Likely a ompli-ated solution.Transportation in this solution is provided by employees and Hópbílar.Combo 18 : Extreme solution using type 1 and type 6.Desription : Solve solution type 1 with as few routes and pikup points as possible. Em-ployees then reeive an inrease in monthly pay to be used to get to said points, type 6.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours aday. A general solution thattakes into aount employeeturnover. This solution is nottoo simple to be onsidered anexam projet.
Not ALCAN's desired solu-tion. New nodes without pre-de�ned loations annot beused. Hard to estimate a gen-eral population of an area.Cost might not be dereased.External Dereases travel time. In-reases pay for employees. Servie is dereased. Hóp-bílar's pro�t is dereased. Notevery one owns a ar.Transportation in this solution is provided by employees and Hópbílar.Combo 19 : Extreme solution using type 2 and type 6.Desription : Solve solution type 2 with as few routes and pikup points as possible. Em-ployees then reeive an inrease in monthly pay to be used to get to said points, type 6.



131Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.A speial solution that partlytakes into aount employeeturnover. This solution is nottoo simple to be onsidered anexam projet.
Not ALCAN's desired solu-tion. New nodes without pre-de�ned loations annot beused. Cost might not be de-reased.External Dereases travel time. In-reases pay for employees. Servie is dereased. Hóp-bílar's pro�t is dereased. Notevery one owns a ar.Transportation in this solution is provided by employees and Hópbílar.Combo 20 : Extrema solution using type 3 and type 6.Desription : Solve solution type 3 with as few routes and pikup points as possible. Em-ployees then reeive an inrease in monthly pay to be used to get to said points, type 6.

Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours aday. A speial solution thattakes into aount employeeturnover. Too simple to be onsidered anexam projet, unless the thirdparty program is program bythe author of the projet. NotALCAN's desired solution. De-pends on a third party pro-gram. Cost might not be de-reased.External Dereases travel time. In-reases pay. Inreases pro�t forsoftware provider. Servie is dereased. Hóp-bílar's pro�t is dereased. Notevery one owns a ar.Transportation in this solution is provided by employees and Hópbílar.Combo 21 : Extreme solution using type 8 and type 6.Desription : Solve solution type 8 with as few routes and pikup points as possible. Em-ployees then reeive an inrease in monthly pay to be used to get to said points, type 6.



132 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours aday. A general solution thattakes into aount employeeturnover. This solution is nottoo simple to be onsidered anexam projet.
Not ALCAN's desired solu-tion. Hard to estimate a gen-eral population of an area.Cost might not be dereased.Likely a ompliated solution.External Dereases travel time. In-reases pay for employees. Servie is dereased. Hóp-bílar's pro�t is dereased. Notevery one owns a ar.Transportation in this solution is provided by employees and Hópbílar.Combo 22 : Extreme solution using type 1 and type 7.Desription : Solve solution type 1 with as few routes and pikup points as possible. Em-ployees then use a taxi servie to said points, type 7.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.This solution is not too sim-ple to be onsidered an examprojet. A general and speial solutionthat does not take into aountemployee turnover. Not AL-CAN's desired solution. Hardto estimate a general popula-tion of an area. Cost might notbe dereased. New nodes with-out a prede�ned loation an-not be used.External Dereases travel time. Em-ployee piked up on doorstep.Inreases revenue for taxi ser-vie. Servie is inreased. Hópbílar's pro�t is dereased.

Transportation in this solution is provided by taxi servie and Hópbílar.Combo 23 : Extreme solution using type 2 and type 7.Desription : Solve solution type 2 with as few routes and pikup points as possible. Em-ployees then use a taxi servie to said points, type 7.



133Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.This solution is not too sim-ple to be onsidered an examprojet. A speial solution that doesnot take into aount employeeturnover. Not ALCAN's de-sired solution. Cost might notbe dereased. New nodes with-out a prede�ned loation an-not be used.External Dereases travel time. Em-ployee piked up on doorstep.Inreases revenue for taxi ser-vie. Servie is inreased. Hópbílar's pro�t is dereased.
Transportation in this solution is provided by taxi servie and Hópbílar.Combo 24 : Extreme solution using type 3 and type 7.Desription : Solve solution type 3 with as few routes and pikup points as possible. Em-ployees then use a taxi servie to said points, type 7.Helpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round, 24 hours a day.A speial solution takes intoaount employee turnover.This solution is not too sim-ple to be onsidered an examprojet.

Depends on a third party pro-gram. Not ALCAN's desiredsolution. Hard to estimate ageneral population of an area.Cost might not be dereased.New nodes without a prede-�ned loation annot be used.External Dereases travel time. Em-ployee piked up on doorstep.Inreases revenue for taxi ser-vie. Servie is inreased. In-reased pro�t for the providerof the new soft wear.
Hópbílar's pro�t is dereased.

Transportation in this solution is provided by taxi servie and Hópbílar.Combo 25 : Extreme solution using type 8 and type 7.Desription : Solve solution type 8 with as few routes and pikup points as possible. Em-ployees then use a taxi servie to said points, type 7.



134 APPENDIX B. SOLUTION TYPESHelpful to ahieving the ob-jetive Harmful to ahieving the ob-jetiveInternal Dereases travel time. Worksall year round. 24 hours a day.This solution is not too sim-ple to be onsidered an examprojet. A general and speial solutionthat does not take into aountemployee turnover. Not AL-CAN's desired solution. Hardto estimate a general popula-tion of an area. Cost might notbe dereased.External Dereases travel time. Em-ployee piked up on doorstep.Inreases revenue for taxi ser-vie. Servie is inreased. Hópbílar's pro�t is dereased.
Transportation in this solution is provided by taxi servie and Hópbílar.



Appendix CAlgorithmC.1 Number of Possible SolutionsConsider a set of nodes V , the number of nodes in V is n, |V | = n. The soure node is j ∈ V .It is known for TSP that the number of possible solutions is:
(n− 1)! (C.1.1)If we relax relax onstraint saying all points must be visited and let i denote the number ofnodes visited in a ertain solution. All nodes are used exept the soure, sine soure to souremoves are not allowed, although soure to sink route is allowed. Now the possible values for iare i ∈ {1, 2, ..., n − 1} = S.Next a number of sets, Ii, are de�ned where Ii ⊆ V,∀i ∈ S. So eah set Ii is a reduedversion of N that inludes the soure and i nodes we i.e. have |Ii| = i+1. Next C.1.1 is appliedto eah Ii and all possibilities added up:

n−1
∑

i=1

(|Ii| − 1)! =

n−1
∑

i=1

i! (C.1.2)This sums up the possibilities for |S| TSP. Eah of the |S| TSP only uses i of the n − 1available points.For eah TSP, other than i = n − 1,there are more than one posssibility ofhoosing the i nodes used in the TSP. The possible ombination for hoie of ian be expressedwith the binomial ee�ient.
C(i) =

(

n− 1

i

)

=
(n − 1)!

i!((n − 1− i))!
(C.1.3)We now multiply C.1.2 and C.1.3. This gives the number of possible solutions for a TSPwhere you have n nodes to hoose from but are not restrited to use all, but have to use thesoure.

n−1
∑

i=1

C(i)(|Ii| − 1)! =

n−1
∑

i=1

(n− 1)!

(n− 1− i)!
(C.1.4)If the distane matrix is symmetri then the number of possible solutions is135
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(n− 1) +

1

2

n−1
∑

i=2

(n− 1)!

(n− 1− i)!
(C.1.5)Beause when dealing with 2 points the solution is the same even if the distane matrix isasymmetri. Therefore the solutions dealing with two points are symmetri and therefore donot need to be divided by 2. Now the equation C.1.7 an also be written as

|S|+ 1

2

n−1
∑

i=1

|S|!
(|S| − i)!

(C.1.6)Where S = {1, 2, ..., n − 1} and |S| = n− 1. This applies for all problems where n > 1.Now let us assume that there are |K| routes and that eah route, k, inludes all nodes in theset Vk and the soure node, j, is in that set, j ∈ Vk. Now we know that k ∈ K = {1, 2, ...,N},let us now de�ne V0 = j. Next we de�ne Jk as the set of all nodes not visited by routes in
k∗, where k∗ = {1, 2, ..., k − 1}, and the soure node. So Jk = {V \ {V0 ∪ V1... ∪ Vk−1, j}. Itis known that the omplexity for eah route dereases as a previous route has inluded somenodes. Then the number of possibilities for a multiple route problem beomes:

N−1
∑

k=0

∑

i∈Jk

(n− 1)!

(n − 1− i)!
(C.1.7)C.2 AlgorithmC.2.1 Run.javaimport java.util.Vetor;import java.util.Random;import java.io.*;import java.util.Date;import java.text.DeimalFormat;publi lass Sudo10{//int K,V;int V1;int[℄[℄ y;int[℄[℄ Route;int[℄ NN;int OPT;//File Pro = new File("profit_3_50_a.txt");//File Tim = new File("dist_3_50_a.txt");//File Sto = new File("Stop_47.txt");int[℄ Profit; //profit matrixdouble[℄[℄ time;



C.2. ALGORITHM 137int[℄ Stop;long date1;long date2;long date;//String file = "3_50_a_p3test.txt" ;//String File = "route3_50_a_p3test.txt" ;String file1 = "test50a_10_p.txt";String file2 = "test50a_20_p.txt";String file3 = "test50a_40_p.txt";String file4 = "test50a_50_p.txt";String file5 = "test50a_70_p.txt";String file6 = "test50a_80_p.txt";String file7 = "test50a_100_p.txt";String file8 = "test50a_130_p.txt";String file9 = "test50a_160_p.txt";double Time;publi Sudo10(int K, int V, File Pro, File Tim, String File, String file, int[℄[℄ p) throws IOExeption{//date1= System.urrentTimeMillis();//K=3;//V=47;Profit = new int[V℄;time = new double[V℄[V℄;Stop = new int[V℄;NN= new int[9℄;NN[0℄=10;NN[1℄=20;NN[2℄=40;NN[3℄=50;NN[4℄=70;NN[5℄=80;NN[6℄=100;NN[7℄=130;NN[8℄=160;FileWriter fw = new FileWriter(file);BufferedWriter bw = new BufferedWriter(fw);PrintWriter outFile = new PrintWriter(bw, true);FileWriter fw2 = new FileWriter(File);BufferedWriter bw2 = new BufferedWriter(fw2);PrintWriter outFile2 = new PrintWriter(bw2, true);



138 APPENDIX C. ALGORITHMSimulatedAnnealing7 Sim[℄ = new SimulatedAnnealing7[10℄;GetDataFrom1D ProData = new GetDataFrom1D(Profit,Pro);Profit=ProData.P;GetDataFrom2D TimeData = new GetDataFrom2D(time, V, Tim);time=TimeData.P;//GetDataFrom1D StoData = new GetDataFrom1D(Stop,Sto);//Stop=StoData.P;for (int i=0; i<V; i++){if (i==0 || i==V-1){Stop[i℄=0;}else{Stop[i℄=1;}}for (int k=0; k<1;k++){for (int i=0;i<9;i++){Derease DD= new Derease(V, Profit, time, Stop, NN[i℄);V1=DD.v;double[℄[℄ TT= new double[V1℄[V1℄;TT=DD.T;int[℄ profit=new int[V1℄;profit=DD.P;int[℄ stop =new int[V1℄;stop=DD.S;InitialGuess init = new InitialGuess (K, V1);Route=init.Route; //onstruts the Route matrix 2Dfor(int j=0;j<9;j++){date1= System.urrentTimeMillis();Sim[j℄ = new SimulatedAnnealing7(Route,K, V1, profit, TT, stop, file1, NN[i℄, p);OPT=Sim[j℄.S;Route=Sim[j℄.Route;



C.2. ALGORITHM 139date2= System.urrentTimeMillis();date=date2-date1;Time=Sim[j℄.TotalT;outFile.println(date+" "+NN[i℄+" "+OPT+" "+Time);}}}}}C.2.2 SimulatedAnnealing.javaimport java.util.Vetor;import java.util.Random;import java.lang.Objet;import java.io.*;publi lass SimulatedAnnealing7{int[℄[℄ Route;int S; //Solutionint ount, MAX=50000; //Maximum number of iterations//int MaxTime=5; //maximum travel time in a single routeint MRT=0;int AS=0;int JCVD=0;int[℄ SS;int iter1=0;int iter2=0;//String file = "test_3_50_a_5_1.txt";double T=15; //temperaturedouble r=1-Math.pow(10,-13); //redution fatordouble Frozen =2;double[℄ SumTime; //time traveled for bus kdouble Delta, Delta2;double prop;double Num1;double[℄ SumTemp;double TimeTemp;double Time;double Maximum;double TotalT;float RandN;



140 APPENDIX C. ALGORITHM//---------------------------------------int Snew; //temporary variablesint[℄[℄ RouteNew;alulateOpt alOpt[℄ = new alulateOpt[2℄;alulateTime alT[℄ = new alulateTime[2℄;moves2 move[℄ = new moves2[2℄;publi SimulatedAnnealing7(int[℄[℄ route, int K, int V, int[℄ p, double[℄[℄ time, int[℄ Stop, String file, int MaxTime, int[℄[℄ PROP){Random generator = new Random();Route=route;ount=0;//--------------------------------------------------alOpt[0℄ = new alulateOpt(Route, K,V, p);S=alOpt[0℄.OPT;//--------------------------------------------------alT[0℄= new alulateTime(Route,time,K,V, Stop);SumTime=alT[0℄.SumT;ount=1;try{//--------------------------------------------------FileWriter fw = new FileWriter(file);BufferedWriter bw = new BufferedWriter(fw);PrintWriter outFile = new PrintWriter(bw, true);while(ount<MAX){move[1℄=new moves2(K,V,Route, SumTime, MaxTime, time, p, PROP);RouteNew=move[1℄.route;//--------------------------------------------------alOpt[1℄ = new alulateOpt(RouteNew, K,V,p);Snew=alOpt[1℄.OPT;//--------------------------------------------------



C.2. ALGORITHM 141Delta=Snew-S;alulateTime alTemp = new alulateTime(RouteNew, time, K, V, Stop);SumTemp=alTemp.SumT;Maximum =0;TimeTemp=0;Time=0;MRT=move[1℄.temp;outFile.println("Move: "+MRT);AS=move[1℄.temp2;outFile.println("Instane: "+AS);JCVD=move[1℄.temp3;outFile.println("UsedBuses: "+JCVD);SS=move[1℄.UsedBuses;for(int i=0; i<K; i++){if (Maximum<= SumTemp[i℄){Maximum=SumTemp[i℄;}TimeTemp=SumTemp[i℄+TimeTemp;Time=SumTime[i℄+ Time;}if (Maximum <= MaxTime){if (Delta>=0){if (Delta==0){if(TimeTemp<=Time || (Time==0 && TimeTemp!=0)){S=alOpt[1℄.OPT;Route=move[1℄.route;}else{Delta2=TimeTemp-Time;Num1=-Delta/T;prop= Math.exp(Num1);RandN=generator.nextFloat();if(Delta2 <0 && prop<=RandN && Maximum<= MaxTime){S=alOpt[1℄.OPT;Route=move[1℄.route;



142 APPENDIX C. ALGORITHM}}//---------------------------if (TimeTemp<Time || (Time==0 && TimeTemp!=0)){iter2=ount; //finding the iteration when the optimal value is found}//---------------------------}else{iter1=ount; //finding the iteration with returns the optimal valueS=alOpt[1℄.OPT;Route=move[1℄.route;}}else{Num1=-Delta/T;prop= Math.exp(Num1);RandN=generator.nextFloat();if(Delta <0 && prop<=RandN && Maximum<= MaxTime){S=alOpt[1℄.OPT;Route=move[1℄.route;}}}if (T> Frozen){T=r*T; //Cooling Shedule}else{T=0; //Now we implement a loal searh}alT[1℄= new alulateTime(Route,time,K,V, Stop);SumTime=alT[1℄.SumT;ount=ount+1;//----------------------------------------------------try



C.2. ALGORITHM 143{//outFile.println(S+" " + (ount-1));//outFile.println("iteration:" + (ount-1));//outFile.println("Opt: "+iter1+" Time: " +iter2);//for(int k=0; k<K; k++)//{//for(int i=0; i<V; i++)//{//if(i==0 || Route[k℄[i℄!=0)//outFile.print(Route[k℄[i℄ +" ");//}//outFile.println();//}TotalT=0;for(int k=0; k<K; k++){//outFile.print(SumTime[k℄+" ");TotalT=SumTime[k℄+TotalT;}//outFile.println();}ath (NumberFormatExeption exeption){System.out.println ("NumberFormatExeption" );}}}ath (IOExeption exeption){System.out.println("IOExeption ");}}}C.2.3 moves.javaimport java.util.Random;import java.io.*;publi lass moves2{



144 APPENDIX C. ALGORITHMint OPT;int[℄ UsedBuses; //number of buses in routeint[℄ U; // number of unvisited pointsint[℄[℄ route;int[℄ Prop;int RandProp;int[℄[℄ Rnew;int Neighbor=6; //number of possible Swapsint temp=0;int temp2=0;int temp3=0;double SumTravelNew=0;double SumTravel=0;double[℄ Travel;double[℄ TravelNew;alulateTime alT[℄ = new alulateTime[2℄;publi moves2 (int K, int V, int[℄[℄ Route, double[℄ SumT, int MaxT, double [℄[℄ time, int[℄ profit, int[℄[℄ PROP){Random generator = new Random();Prop = new int[Neighbor℄;route = new int[K℄[V℄;UnvisitedPoints Unvi = new UnvisitedPoints(K,V,Route);U=Unvi.U;NumberOfBuses Num = new NumberOfBuses(K,V,Route);UsedBuses=Num.N;temp3=UsedBuses.length;//-----------------------------------------------------------------//If loop onstrut the odds of insert or Swap moves happening//-----------------------------------------------------------------if (UsedBuses.length>1)//more the one route{if (U.length<1 && UsedBuses.length<K) //more then 1 route and no unused points and not all buses in use{ temp2=1;Prop[0℄=PROP[0℄[0℄; //SwapMove2_1 40%Prop[1℄=PROP[0℄[1℄; //SwapMove1_1 40%Prop[2℄=0; //a hosen insert move 0%Prop[3℄=0; //a hosen bus move 0%Prop[4℄=PROP[0℄[4℄; //SwapMove3_1 20%Prop[5℄=0; //Insert1_3 10%}



C.2. ALGORITHM 145else{if (UsedBuses.length==K) //all buses in use{if (U.length>0) //unused points available{ temp2=21;Prop[0℄=PROP[1℄[0℄; //SwapMove2_1 30%Prop[1℄=PROP[1℄[1℄; //SwapMove1_1 30%Prop[2℄=PROP[1℄[2℄; //a hosen insert move 20%Prop[3℄=0; //a hosen bus move 0%Prop[4℄=PROP[1℄[4℄; //SwapMove3_1 10%Prop[5℄=PROP[1℄[5℄; //Insert1_3 10%}else //U.length <=0{ temp2=22;Prop[0℄=PROP[2℄[0℄; //SwapMove2_1 40%Prop[1℄=PROP[2℄[1℄; //SwapMove1_1 40%Prop[2℄=0; //a hosen insert move 0%Prop[3℄=0; //a hosen bus move 0%Prop[4℄=PROP[2℄[4℄; //SwapMove3_1 20%Prop[5℄=0; //Insert1_3 0%}}else //not all buses in use{if (U.length>1) //unused points left{ temp2=3;Prop[0℄=PROP[3℄[0℄; //SwapMove2_1 30%Prop[1℄=PROP[3℄[1℄; //SwapMove1_1 20%Prop[2℄=PROP[3℄[2℄; //a hosen insert move 25%Prop[3℄=PROP[3℄[3℄; //a hosen bus move 10%Prop[4℄=PROP[3℄[4℄; //SwapMove1_1 10%Prop[5℄=PROP[3℄[5℄; //Insert1_3 5%}}}}else{if (UsedBuses.length>0) //only one route{if(UsedBuses.length>0 && U.length<1) //only one route and no unused points{ temp2=5;Prop[0℄=0; //SwapMove2_1 0%Prop[1℄=100; //SwapMove1_1 100%Prop[2℄=0; //a hosen insert move 0%



146 APPENDIX C. ALGORITHMProp[3℄=0; //a hosen bus move 0%Prop[4℄=0; //SwapMove3_1 0%Prop[5℄=0; //Insert1_3 0%}else //only one route and unused points{ temp2=6;Prop[0℄=0; //SwapMove2_1 0%Prop[1℄=PROP[4℄[1℄; //SwapMove1_1 30%Prop[2℄=PROP[4℄[2℄; //a hosen insert move 50%Prop[3℄=PROP[4℄[3℄; //a hosen bus move 10%Prop[4℄=0; //SwapMove3_1 0%Prop[5℄=PROP[4℄[5℄; //Insert1_3 10%}}else //no route{ temp2=7;Prop[0℄=0; //SwapMove2_1 0%Prop[1℄=0; //SwapMove1_1 0%Prop[2℄=PROP[5℄[2℄; //a hosen insert move 90%Prop[3℄=PROP[5℄[3℄; //a hosen bus move 10%Prop[4℄=0; //SwapMove3_1 0%Prop[5℄=0; //Insert1_3 0%}}//---------------------------------------------------------------------RandProp=Math.abs (generator.nextInt())%(100)+1;//generates an number between 1 & 100if (RandProp<Prop[0℄){ temp=1;swapmove2_1 swa= new swapmove2_1(V,K, UsedBuses, Route);route=swa.r;}else//-----------------------------------------------------------------{if(RandProp<Prop[1℄+Prop[0℄ && RandProp>=Prop[0℄ && Prop[1℄!=0){ temp=2;swapmove1_1 swa= new swapmove1_1(V,K, UsedBuses, Route);route=swa.r;}else//--------------------------------------------------------------------------{if(RandProp<Prop[2℄+Prop[1℄+Prop[0℄ && RandProp>=Prop[1℄+Prop[0℄ && Prop[2℄!=0){ temp=3;InsertMove1_1 ins = new InsertMove1_1(V,K,U,UsedBuses,Route, time, MaxT );//InsertMove1_2 ins = new InsertMove1_2(V,K,U,UsedBuses,Route, time, MaxT , profit);



C.2. ALGORITHM 147//InsertMove1_4 ins = new InsertMove1_4(V,K,U,UsedBuses,Route, time, MaxT , profit);//InsertMove1_5 ins = new InsertMove1_5(V,K,U,UsedBuses,Route, time, MaxT , profit);route=ins.r;}else{if (RandProp<Prop[3℄+Prop[2℄+Prop[1℄+Prop[0℄ && RandProp >= Prop[2℄+Prop[1℄+Prop[0℄ && Prop[3℄!=0 ){ temp=4;BusMove1_1 bus =new BusMove1_1(V,K,U,UsedBuses, Route,time, MaxT);route=bus.r;}else{if (RandProp<Prop[4℄+ Prop[3℄+Prop[2℄+Prop[1℄+Prop[0℄ && RandProp >= Prop[3℄+ Prop[2℄+Prop[1℄+Prop[0℄ && Prop[4℄!=0){temp=5;swapmove3_1 swa= new swapmove3_1(V,K,UsedBuses,Route);route=swa.r;}else{if (Prop[5℄!=0){temp=6;InsertMove1_3 ins = new InsertMove1_3(V,K,U,UsedBuses,Route, profit);route=ins.r;}}}}}}}}C.2.4 InitialGuess.javaimport java.util.Vetor;import java.util.Random;publi lass InitialGuess{int [℄[℄ Route;publi InitialGuess(int K, int V){



148 APPENDIX C. ALGORITHMRoute = new int [K℄[V℄; //for(int k=0; k<=(K-1); k++){Route[k℄[0℄=0;Route[k℄[1℄=V-1; //V=L+2 but the number of nodes is V-1}}}
C.2.5 alulateOpt.javaimport java.util.Random;import java.io.*;publi lass alulateOpt{int alpha;int beta;int sumX;int sumY;int OPT;int R;publi alulateOpt (int[℄[℄ route, int K, int V, int[℄ P){alpha=1;beta=15;sumX=0;sumY=0;for (int k=0;k<K; k++){for (int i=0;i<V;i++){sumY=sumY+P[route[k℄[i℄℄;}if(route[k℄[1℄==(V-1)){sumX=sumX+1;}}OPT=alpha*sumY+beta*sumX;}}



C.2. ALGORITHM 149C.2.6 alulateTime.javaimport java.util.Random;import java.io.*;publi lass alulateOpt{int alpha;int beta;int sumX;int sumY;int OPT;int R;publi alulateOpt (int[℄[℄ route, int K, int V, int[℄ P){alpha=1;beta=15;sumX=0;sumY=0;for (int k=0;k<K; k++){for (int i=0;i<V;i++){sumY=sumY+P[route[k℄[i℄℄;}if(route[k℄[1℄==(V-1)){sumX=sumX+1;}}OPT=alpha*sumY+beta*sumX;}}C.2.7 UnvisitedPoints.javaimport java.util.Vetor;import java.util.Random;publi lass UnvisitedPoints2{int[℄ U;int sum;int temp=0;int temp2=0;publi UnvisitedPoints2(int K, int V, int[℄[℄ route, double[℄[℄ dist, int MaxDist)



150 APPENDIX C. ALGORITHM{U = new int[0℄;sum=0;for (int i=1; i<V-1; i++){temp=0;for (int k=0; k<K; k++){for(int j=0; j<V; j++){if (route[k℄[j℄==i){temp=1;}}}if(temp==0){temp2=0;for (int k=0; k<K;k++){for (int j=1;j<V; j++){if (dist[route[k℄[j℄℄[i℄< MaxDist && route[k℄[j℄!=i && route[k℄[j℄!=0){temp2=1;}}if (temp2==0){U = addArrayElement(i);}}}}publi int[℄ addArrayElement(int n){int[℄ newarray = new int[U.length + 1℄;for (int i = 0;i < U.length;i++){newarray[i℄ = U[i℄;}newarray[U.length℄ = n;return newarray;}}



C.2. ALGORITHM 151C.2.8 NumberOfBuses.javaimport java.util.Vetor;import java.util.Random;publi lass NumberOfBuses{int[℄ N;publi NumberOfBuses(int K, int V, int[℄[℄ route){N = new int[0℄;//This double for loop finds all buses that are on routefor(int k=0; k<K; k++){if (route[k℄[1℄<V-1){N = addArrayElement(k);}}}publi int[℄ addArrayElement(int n){int[℄ newarray = new int[N.length + 1℄;for (int i = 0;i < N.length;i++){newarray[i℄ = N[i℄;}newarray[N.length℄ = n;return newarray;}}C.2.9 InsertMove11.javaimport java.util.Vetor;import java.util.Random;//------------------------------------------------------------//Inserts a random node into a random route, urrently in use.//If the route will then beome to long a new route (and node)//will be hosen. The urrent route will though be tested MaxTemp//times before it is abandond (it is possible to ad a node without//inreasing travel time)//------------------------------------------------------------publi lass InsertMove1_1{int LengthU;int RandI;int LengthK;



152 APPENDIX C. ALGORITHMint RandK;int RandAdd; //the spot where the new node is added into the routeint[℄[℄ r; //routeint NewNode; //the node to be addedint AddedTo; //the route to be inreasedint NumVisitedPoints; //Number of nodes in hosen route (inludes soure and sink)int MAX=100; //maximum number of iterationsdouble[℄ SumT;//travel time for busses 0... K-1publi InsertMove1_1(int V, int K, int[℄ u, int[℄ UsedBuses, int[℄[℄ Route, double[℄[℄ time, int MaxT){Random generator = new Random();r = new int[K℄[V℄;//For loop neessary else epsilon and Y will follow eah other.for (int k=0; k<K; k++){for (int i=0; i<V; i++){r[k℄[i℄=Route[k℄[i℄;}}//-------------------------------------------------------------------//Finding a random node to be inserted//-------------------------------------------------------------------LengthU = u.length;RandI=Math.abs (generator.nextInt())%(LengthU); // Generates a random nodeNewNode= u[RandI℄;//-------------------------------------------------------------------//Finding the route the node will be inserted into//-------------------------------------------------------------------LengthK= UsedBuses.length;if (LengthK==0) //no bus in use or urrent routes are full{RandK=Math.abs (generator.nextInt())%(K);AddedTo=RandK;}else{RandK=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeAddedTo=UsedBuses[RandK℄;}//--------------------------------------------------------------------//Inserting the new node into the route//--------------------------------------------------------------------for (int i=0; i<V; i++)



C.2. ALGORITHM 153{if (r[AddedTo℄[i℄==V-1){NumVisitedPoints=i;// find the number of nodes in the urrent route}}//System.out.println(NumVisitedPoints);//System.out.println(AddedTo);RandAdd=Math.abs (generator.nextInt())%(NumVisitedPoints)+1; // Generates a random number so that a node an be added to the route//adding the new node into the urrent routeif (NumVisitedPoints==RandAdd)r[AddedTo℄[RandAdd+1℄=r[AddedTo℄[RandAdd℄;else{for (int i=NumVisitedPoints; i>=RandAdd; i--){r[AddedTo℄[i+1℄=r[AddedTo℄[i℄;}}r[AddedTo℄[RandAdd℄=NewNode;}}C.2.10 BusMove.javaimport java.util.Vetor;import java.util.Random;//------------------------------------------------------------//Inserts a random nodes into a random route, urrently not in use.//If the route will then beome to long a new route (and node)//will be hosen. The urrent route will though be tested MaxTemp//times before it is abandond (it is possible to ad a node without//inreasing travel time)//------------------------------------------------------------publi lass BusMove1_1{int LengthU;int RandI;int RandN, RandN2;int LengthK;int RandK;int Num; //number of points to be added to routeint M; //No more the this many points an be in the routeint bool=0; //Boolean number for while loopint RandAdd; //the spot where the new node is added into the route



154 APPENDIX C. ALGORITHMint[℄ Buses;int[℄[℄ r; //routeint[℄ NewNodes; //the nodes to be addedint AddedTo; //the route to be inreasedint NumVisitedPoints; //Number of nodes in hosen route (inludes soure and sink)double SumT;//travel time for the bus routedouble T;int ount=0;publi BusMove1_1(int V, int K, int[℄ u, int[℄ UsedBuses, int[℄[℄ Route, double[℄[℄ time, int MaxT){Random generator = new Random();r = new int[K℄[V℄;Buses = new int[K℄;M=V-1;//Determinging the length of the new routeLengthU = u.length;RandI=Math.abs (generator.nextInt())%(LengthU)+1; // Generates a random numberif (RandI>M){Num=M;}else{Num=RandI;}NewNodes =new int[Num℄;//For loop neessary else epsilon and Y will follow eah other.for (int k=0; k<K; k++){Buses[k℄=k;for (int i=0; i<V; i++){r[k℄[i℄=Route[k℄[i℄;}}//-------------------------------------------------------------------//Finding the route the nodes will be inserted into//-------------------------------------------------------------------LengthK= UsedBuses.length;if (LengthK==0) //no bus in use or urrent routes are full{



C.2. ALGORITHM 155RandK=Math.abs (generator.nextInt())%(K);AddedTo=RandK;}else{for (int i=0; i<LengthK; i++){for(int j=0; j<Buses.length; j++){if(Buses[j℄==UsedBuses[i℄){Buses = removeArrayElement(j); //removing used buses from the funtion}}}RandK=Math.abs (generator.nextInt())%(Buses.length); //Generates a random busAddedTo=Buses[RandK℄;}//-------------------------------------------------------------------//Finding a random nodes to be inserted & inserting them//-------------------------------------------------------------------for (int i=0; i<Num; i++){RandN=Math.abs (generator.nextInt())%(LengthU);NewNodes[i℄= u[RandN℄;r[AddedTo℄[i+1℄=NewNodes[i℄;UnvisitedPoints Unvi = new UnvisitedPoints(K,V,r); //unused nodes redefinedu=Unvi.U;LengthU= u.length;}//-------------------------------------------------------------------r[AddedTo℄[Num+1℄=V-1;} /** Creates a new array from intarray skipping element n.*///For Buses Matrixpubli int[℄ removeArrayElement(int n){int[℄ newarray = new int[Buses.length - 1℄;for (int i = 0;i < Buses.length;i++){if (i < n){newarray[i℄ = Buses[i℄;} if (i > n){newarray[i-1℄ = Buses[i℄;



156 APPENDIX C. ALGORITHM}}return newarray;}// For NewNodes matrixpubli int[℄ removeArrayElement2(int n){int[℄ newarray2 = new int[NewNodes.length - 1℄;for (int i = 0;i < NewNodes.length;i++){if (i < n) newarray2[i℄ = NewNodes[i℄;if (i > n) newarray2[i-1℄ = NewNodes[i℄;}return newarray2;}}C.2.11 SwapMove11.javaimport java.util.Vetor;import java.util.Random;//------------------------------------------------------------//Swaps to nodes in the same route//Can only be entered if there is an ative route in the system.//A swap move will only derease traveling time and not profit//------------------------------------------------------------publi lass swapmove1_1{int temp;int RandI;int LengthK;int RandK;int RandSwap1;int RandSwap2;int SwappedIn; //the spot where the new node is added into the routeint[℄[℄ r; //routeint NumVisitedPoints; //Number of nodes in hosen route (inludes soure and sink)int MAX=10;int ount=0;publi swapmove1_1(int V, int K, int[℄ UsedBuses, int[℄[℄ Route){Random generator = new Random();r= new int[K℄[V℄;for(int k=0; k<K; k++ ){



C.2. ALGORITHM 157for(int i=0;i<V; i++ ){r[k℄[i℄=Route[k℄[i℄;}}LengthK= UsedBuses.length;//This move is only feasible when there already some buses in route, visiting more the one nodeRandK=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeSwappedIn=UsedBuses[RandK℄;//Finding the number of nodes in route, they have to be at least 2for (int i=0; i<V; i++){if (r[SwappedIn℄[i℄==V-1){NumVisitedPoints=i;// find the number of nodes in the urrent route}}RandSwap1=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;RandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;while (RandSwap1==RandSwap2 && ount<MAX && NumVisitedPoints>2){RandSwap1=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1; // Generates a random number so that a node an be added to the routeRandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;ount=ount+1;}temp=r[SwappedIn℄[RandSwap1℄;r[SwappedIn℄[RandSwap1℄=r[SwappedIn℄[RandSwap2℄;r[SwappedIn℄[RandSwap2℄=temp;}}C.2.12 SwapMove21.javaimport java.util.Vetor;import java.util.Random;//------------------------------------------------------------//Swaps to nodes in the same route//Can only be entered if there are 2 our more routes ative////------------------------------------------------------------publi lass swapmove2_1{



158 APPENDIX C. ALGORITHMint temp;int RandI;int LengthK;int RandK1;int RandK2;int RandSwap1;int RandSwap2;int SwappedBetween1; //the spot where the new node is added into the routeint SwappedBetween2;int[℄[℄ r; //routeint NumVisitedPoints1; //Number of nodes in hosen route (inludes soure and sink)int NumVisitedPoints2;publi swapmove2_1(int V, int K, int[℄ UsedBuses, int[℄[℄ Route){Random generator = new Random();r= new int[K℄[V℄;for(int k=0; k<K; k++ ){for(int i=0;i<V; i++ ){r[k℄[i℄=Route[k℄[i℄;}}LengthK= UsedBuses.length;//This move is only feasible when there already some buses in route, visiting more the one nodewhile (RandK1==RandK2){RandK1=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeRandK2=Math.abs (generator.nextInt())%(LengthK);}SwappedBetween1=UsedBuses[RandK1℄;SwappedBetween2=UsedBuses[RandK2℄;//Finding the number of nodes in route, they have to be at least 2for (int i=0; i<V; i++){if (r[SwappedBetween1℄[i℄==V-1){NumVisitedPoints1=i;// find the number of nodes in the urrent route}}for (int i=0; i<V; i++){if (r[SwappedBetween2℄[i℄==V-1)



C.2. ALGORITHM 159{NumVisitedPoints2=i;// find the number of nodes in the urrent route}}RandSwap1=Math.abs (generator.nextInt())%(NumVisitedPoints1-1)+1; // Generates a random number so that a node an be added to the routeRandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints2-1)+1;temp=r[SwappedBetween1℄[RandSwap1℄;r[SwappedBetween1℄[RandSwap1℄=r[SwappedBetween2℄[RandSwap2℄;r[SwappedBetween2℄[RandSwap2℄=temp;}}C.2.13 SwapMove31.javaimport java.util.Vetor;import java.util.Random;//------------------------------------------------------------//Swaps one nodes from one route to anouther//Can only be entered if there is more then one ative route in the system.//A swap move will only derease traveling time and not profit//------------------------------------------------------------publi lass swapmove3_1{int temp;int RandI;int LengthK;int RandK1;int RandK2;int RandFrom;int RandTo;int RandSwap;int RandLoation;int SwappedFrom;int SwappedTo;int[℄[℄ r; //routeint NumVisitedPoints1; //Number of nodes in SwappedFrom route (inludes soure and sink)int NumVisitedPoints2; //Number of nodes in SwappedTo route (inludes soure and sink)int MAX=50;int ount=0;publi swapmove3_1(int V, int K, int[℄ UsedBuses, int[℄[℄ Route){Random generator = new Random();r= new int[K℄[V℄;



160 APPENDIX C. ALGORITHMfor(int k=0; k<K; k++ ){for(int i=0;i<V; i++ ){r[k℄[i℄=Route[k℄[i℄;}}LengthK= UsedBuses.length;//This move is only feasible when there already some buses in route, visiting more the one nodeRandK1=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeSwappedFrom=UsedBuses[RandK1℄;RandK2=Math.abs (generator.nextInt())%(LengthK); //Generates anouther bus that is on routeSwappedTo=UsedBuses[RandK2℄;while (RandK1==RandK2 && ount<MAX){RandK1=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeSwappedFrom=UsedBuses[RandK1℄;RandK2=Math.abs (generator.nextInt())%(LengthK); //Generates anouther bus that is on routeSwappedTo=UsedBuses[RandK2℄;ount=ount+1;}//Finding the number of nodes in route, they have to be at least 2for (int i=0; i<V; i++){if (r[SwappedFrom℄[i℄==V-1){NumVisitedPoints1=i;// find the number of nodes in the SwappedFrom route}if (r[SwappedTo℄[i℄==V-1){NumVisitedPoints2=i; // find the number of nodes in the SwappedTo route}}RandSwap=Math.abs (generator.nextInt())%(NumVisitedPoints1-1)+1; // Generates a random number determining whih node is removedRandLoation=Math.abs (generator.nextInt())%(NumVisitedPoints2)+1; // Generates a random number determining where the node is plaedtemp=r[SwappedFrom℄[RandSwap℄; //the node to be moved//Adding the node to SwappedTo route//----------------------------------------------------------



C.2. ALGORITHM 161for (int i=NumVisitedPoints2; i>= RandLoation; i--){r[SwappedTo℄[i+1℄=r[SwappedTo℄[i℄;}if (RandLoation==NumVisitedPoints2){r[SwappedTo℄[NumVisitedPoints2+1℄=V-1;}r[SwappedTo℄[RandLoation℄=temp;//---------------------------------------------------------//Removing the node from SwappedFrom//---------------------------------------------------------for (int i=RandSwap; i<=(NumVisitedPoints1+1);i++){r[SwappedFrom℄[i℄=r[SwappedFrom℄[i+1℄;}}}
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Appendix DTestThis, the appendix, ontains additional information on many of the test, experimants andanalysis arried out in the report. In some ases p may represent the probabiltiy matrixinstead of P . This is due to hange lat in the projet wher P was denoted as the probabilitymatrix as p ould onfuse with the pro�t of a single node.D.1 Non-Randomly Generated Data SetsD.1.1 Results Data Set 3_50_bResults P252.5 105.5 168.1 211.6 279.5 334.7 374.2 400.6 419.955 120 180 250 301 361 411 432 4320.95455 0.87917 0.93389 0.8464 0.92857 0.92715 0.91046 0.92731 0.971993888.7 5790.6 7312 9762.7 10273 9784.4 9572.1 9388.6 9127.7Results P155 117 171 249 292.9 356.9 401.8 428.9 42355 120 180 250 301 361 411 432 4321 0.975 0.95 0.996 0.97309 0.98864 0.97762 0.99282 0.979174833.6 6275.6 8560.7 10993 12022 11570 11125 10317 10403Results P353.5 114 167.1 213.1 279.7 350.8 376.2 404.8 413.755 120 180 250 301 361 411 432 4320.97273 0.95 0.92833 0.8524 0.92924 0.97175 0.91533 0.93704 0.957644216.7 5843.1 7815.3 9982.5 10597 10098 9943.8 9878.2 9470.6D.1.2 Results Data Set 3_50_cResults P2 163
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Figure D.1: Shows the data set 3_50_b, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.
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Figure D.2: Shows the data set 3_50_c, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.
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Figure D.3: Shows the data set 3_100_a, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.51.5 94 166 208.9 275.7 341.9 371.5 398.7 42055 111 181 232 300 360 402 432 4320.93636 0.84685 0.91713 0.90043 0.919 0.94972 0.92413 0.92292 0.972223808.2 5724.8 7530.7 10032 10144 9506.1 9350.6 9352.9 9051.4Results P155 104.5 179 228.1 299.2 359 402.9 428 42955 111 181 231 300 360 411 432 4321 0.94144 0.98895 0.98745 0.99733 0.99722 0.98029 0.99074 0.993064843.8 6605.6 8756.9 11517 12029 11760 11730 11412 10319Results P355 109.8 171.9 218.4 254.2 341 364.4 410 41155 111 181 231 300 360 411 432 4321 0.98919 0.94972 0.94545 0.84733 0.94722 0.88662 0.94907 0.951394445.5 6130.9 7790.1 10633 10959 10435 10082 10139 10004D.1.3 Results Data Set 3_100_aResults P1111.2 216.5 342.2 378.5 447.4 494.4 552.2 657.2 663.5121 240 370 430 490 551 611 712 7350.91901 0.90208 0.92486 0.88023 0.91306 0.89728 0.90376 0.92303 0.902725288.2 10992 21209 25362 29351 30888 32924 31302 30864
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Figure D.4: Shows the data set 3_100_b, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.Results P2118 231.1 358.1 414.7 492.1 521.3 587.4 691.7 805.6121 240 370 431 500 560 620 732 8630.97521 0.96292 0.96784 0.96218 0.9842 0.93089 0.94742 0.94495 0.933496121.4 12729 23002 30998 34771 41077 43730 41873 38226Results P3115.4 225.5 343.4 409.6 455.9 514.9 544.5 639.9 687.2121 240 370 431 491 561 611 692 8230.95372 0.93958 0.92811 0.95035 0.92851 0.91783 0.89116 0.92471 0.834995431.9 11390 22847 26672 33301 38870 35621 33891 31432D.1.4 Results Data Set 3_100_bResults P1113.5 219 338.5 383 460 467.7 563.5 588.2 674.1130 240 380 430 500 541 611 640 8120.87308 0.9125 0.89079 0.8907 0.92 0.86451 0.92226 0.91906 0.830175521.1 10912 19956 29231 29985 34844 37307 32935 30440Results P2130 246 359 410 475 540.2 594 681.8 784.3
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Figure D.5: Shows the data set 3_100_c, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.130 250 380 430 500 560 620 741 8741 0.984 0.94474 0.95349 0.95 0.96464 0.95806 0.92011 0.897376071.3 12023 23078 28914 36920 37747 44592 40227 34663Results P3120 240 354 391 444.2 501.6 580.5 617.5 693.5130 250 380 440 500 541 621 671 7830.92308 0.96 0.93158 0.88864 0.8884 0.92717 0.93478 0.92027 0.88575617.7 11396 22569 26318 36042 40019 39442 33956 31535D.1.5 Results Data Set 3_100_cResults P1106.5 221 330 395.1 425.2 445.3 526.6 599.8 755.8120 240 350 420 471 550 601 671 8320.8875 0.92083 0.94286 0.94071 0.90276 0.80964 0.87621 0.89389 0.908415301.6 10011 18860 24295 30413 35980 37782 33728 30042Results P2112 237 328 411 456 526.3 563.5 685.4 811.2120 240 350 420 480 551 601 732 8810.93333 0.9875 0.93714 0.97857 0.95 0.95517 0.9376 0.93634 0.920775802.6 11083 22702 27548 35322 39322 38953 39509 34580
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Figure D.6: Shows the data set 4_50_a, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.Results P3111 223 343 407 455 503.7 531.1 627.1 698.5120 240 350 420 480 551 591 711 8040.925 0.92917 0.98 0.96905 0.94792 0.91416 0.89865 0.882 0.868785530.4 10180 24435 26076 33234 38273 42131 36049 33313D.1.6 Results Data Set 4_50_aResults for P = P162.5 109.4 174.1 262.1 342 402.7 417.9 416.8 42370 131 201 281 361 432 432 432 4320.89286 0.83511 0.86617 0.93274 0.94737 0.93218 0.96736 0.96481 0.979174790.1 8160.9 14217 12665 11754 11243 11168 11130 10886Results for P = P272.5 129.6 190.8 272 359.9 423 431.9 430.9 42675 131 201 281 361 432 432 432 4320.96667 0.98931 0.94925 0.96797 0.99695 0.97917 0.99977 0.99745 0.986116816.4 9613.7 17074 14932 14440 13535 12780 12427 12669Results for P = P370 127.6 182.8 264.5 331 407.8 403.9 397.8 42475 131 201 281 361 432 432 432 4320.93333 0.97405 0.90945 0.94128 0.9169 0.94398 0.93495 0.92083 0.981485608.3 8630.3 15744 13947 12237 11754 11528 11431 11284
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Figure D.7: Shows the data set 4_500_b, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.D.1.7 Results Data Set 4_50_bResults for P = P162.5 126.5 167.4 264.7 324 379 399.8 402.7 42170 150 211 290 360 432 432 432 4320.89286 0.84333 0.79336 0.91276 0.9 0.87731 0.92546 0.93218 0.974544928.6 8316.7 14414 12453 11638 11345 11129 11180 10942Results for P = P271.5 144 206.9 273.4 364.1 423.9 423.7 417.9 430.975 150 211 290 370 432 432 432 4320.95333 0.96 0.98057 0.94276 0.98405 0.98125 0.98079 0.96736 0.997457025.3 9696.4 16331 14673 14050 12864 13007 12435 12172Results for P = P369.5 142 205.9 275.6 333 417.8 406.8 428 42175 150 211 290 362 432 432 432 4320.92667 0.94667 0.97583 0.95034 0.91989 0.96713 0.94167 0.99074 0.974546052.4 8526.6 14891 13404 11996 11668 11728 11320 11697D.1.8 Results Data Set 4_50_cResults for P = P1
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Figure D.8: Shows the data set 4_50_c, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.64.5 146.5 191.6 271.2 343.1 408.5 406.5 424.8 427.970 160 221 292 372 432 432 432 4320.92143 0.91563 0.86697 0.92877 0.92231 0.9456 0.94097 0.98333 0.990515201.6 8204.9 14624 12352 11850 11494 11322 11218 11081Results for P = P275 156 229.9 286.4 361.5 423.9 428 428.9 43280 160 231 292 372 432 432 432 4320.9375 0.975 0.99524 0.98082 0.97177 0.98125 0.99074 0.99282 16975.3 9060.5 15812 14074 13112 12542 12264 12323 11720Results for P = P371.5 148.5 228.9 277.5 342.1 412.3 406.5 422.8 418.980 160 231 292 372 432 432 432 4320.89375 0.92812 0.99091 0.95034 0.91962 0.9544 0.94097 0.9787 0.969686096.6 8785.3 15063 12749 12204 11575 11507 11309 11194D.1.9 Results Data Set 4_100_aResults P1167.5 295.6 413.5 485.7 593.1 624.6 681.3 733.7 799.2190 370 471 560 633 712 793 845 8940.88158 0.79892 0.87792 0.86732 0.93697 0.87725 0.85914 0.86828 0.8939610836 39478 55322 47922 45993 42580 38845 40281 36454
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Figure D.9: Shows the data set 4_100_a, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.Results P2183 362 462.6 544.8 628 697.2 742.3 835.2 875.3190 380 471 561 661 750 814 904 9050.96316 0.95263 0.98217 0.97112 0.95008 0.9296 0.91192 0.92389 0.9671811610 44446 69766 57475 53055 47969 44791 44777 41065Results P3183 351.3 423.5 527.7 577.3 631.2 672.8 772.5 782.7190 380 471 561 660 712 763 873 8450.96316 0.92447 0.89915 0.94064 0.8747 0.88652 0.88178 0.88488 0.9262711258 43975 67787 63596 52416 49354 43542 42345 39519D.1.10 Results Data Set 4_100_bResults P1165.5 315 425.2 508 597.4 664.8 645.7 759.7 811.2190 360 470 550 641 751 761 855 8850.87105 0.875 0.90468 0.92364 0.93198 0.88522 0.84849 0.88854 0.9166110984 35607 55929 51928 47081 41341 38896 39172 35446Results P2
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Figure D.10: Shows the data set 4_100_b, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.182 377 440 566.6 651.2 684.5 790.2 842.5 882.2190 380 470 571 670 751 841 904 9050.95789 0.99211 0.93617 0.99229 0.97194 0.91145 0.9396 0.93197 0.9748111757 39682 65734 58835 56639 47337 44403 42063 41686Results P3182 361 426 532.3 625.8 668.3 688.6 700.1 805.1190 380 470 571 661 731 752 814 8730.95789 0.95 0.90638 0.93222 0.94675 0.91423 0.91569 0.86007 0.9222211515 44669 84627 62193 51611 48193 45368 45157 40774D.1.11 Results Data Set 4_100_cResults P1157.5 341 428.5 520.4 607.4 643.7 693.8 735.6 819.9190 380 470 570 660 700 780 835 8940.82895 0.89737 0.9117 0.91298 0.9203 0.91957 0.88949 0.88096 0.9171111248 35945 58997 54339 48585 42226 40935 38906 36097Results P2
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Figure D.11: Shows the data set 4_100_c, points in red mark the point with dereased pro�tor the depot(enter). One an also see whih point have been removed form the routes.190 378 463 548 644.3 681.4 793.6 820.8 883.2190 390 470 580 661 761 841 904 9051 0.96923 0.98511 0.94483 0.97474 0.8954 0.94364 0.90796 0.9759111702 42901 69121 60838 53120 47479 46224 43629 41369Results P3180 356 446 551.1 596.4 668.7 721.5 773.5 809.6190 390 470 580 661 731 802 905 9050.94737 0.91282 0.94894 0.95017 0.90227 0.91477 0.89963 0.8547 0.8945911513 49877 70498 52944 53646 46272 45828 41829 37563D.2 Cooling SheduleD.2.1 Results for temperature, T , �rst run



174 APPENDIX D. TEST

0 10 20 30 40 50 60 70 80
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
Residual plot

R
es

id
ua

l s
um

Temperature, T
0Figure D.12: This �gues shows the residual sum for some temperatures, blue line. The blakdots are the mean residual sum for all temperatues and green dots are mean±10%.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
Residual plot

R
es

id
ua

l s
um

Temperature, T
0Figure D.13: This �gues shows the residual sum for all tested temperatures.



D.2. COOLING SCHEDULE 175

20 40 60 80 100 120 140 160
0

200

T=10000

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

T=7500

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

T=5000

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

T=2500

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

Figure D.14: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.15: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.16: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.17: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.18: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.19: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.20: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.21: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.2 Results for redution fator, r, �rst run
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Figure D.22: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.23: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.24: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.25: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.3 Results for stopping riteria, F , �rst run
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Figure D.26: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.27: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.28: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.29: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.30: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.4 Results for temperature, T , seond run
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Figure D.31: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.32: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.33: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.34: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.35: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.36: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.37: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.5 Results for redution fator, r, seond runsubsetionResults for stopping riteria, F , seond run
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Figure D.38: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.39: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.40: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.41: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.42: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.43: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



D.2. COOLING SCHEDULE 205

20 40 60 80 100 120 140 160
0

200

F=1−10−9

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

F=1−10−10

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

Figure D.44: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.45: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.6 Results for Temperature, T , Data Set 3_50_aD.2.7 Results for Redution Fator, r, Data Set 3_50_a
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Figure D.46: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.47: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.48: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.49: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.50: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.51: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.52: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.53: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.54: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.55: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.56: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.8 Results for Frozen Fator, F , Data Set 3_50_aD.3 Randomly Generated Data SetsD.3.1 50 point pro�t vetor0392493355765510106
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Figure D.57: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.845110723108569535238412
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Figure D.58: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.142102710281170D.3.2 100 point pro�t vetor056251
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Figure D.59: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.1096895510210165311369823
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Figure D.60: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the alulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.271081165358256195246101
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Figure D.61: Blues line and dots is the average values and the alulated optimums, the redline is the best known optimum and the green line is the residual ratio.105570D.3.3 Test with data sets 50a,b,,d and e with 450,000 Iterations
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,Figure D.62: Blues line and dots is the average values and the alulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Figure D.63: Blues line and dots is the average values and the alulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Figure D.64: Blues line and dots is the average values and the alulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Figure D.65: Blues line and dots is the average values and the alulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Maximum route lengthFigure D.67: Blues line and dots is the average values and the alulated optimums and thered line is the best known optimum
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Maximum route lengthFigure D.68: Blues line and dots is the average values and the alulated optimums and thered line is the best known optimum
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Maximum route lengthFigure D.69: Blues line and dots is the average values and the alulated optimums and thered line is the best known optimum
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Figure D.70: Shows the routes onstruted when a = 1 and M = 160. The irles are the areawhere that must be traveld before another pik up point is hosen.
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Figure D.71: Shows the routes onstruted when a = 2 and M = 160. The irles are the areawhere that must be traveld before another pik up point is hosen.
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Figure D.72: Shows the routes onstruted when a = 4 and M = 160. The irles are the areawhere that must be traveld before another pik up point is hosen.
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Figure D.73: Shows the routes onstruted when a = 5 and M = 160. The irles are the areawhere that must be traveld before another pik up point is hosen.


