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Summary

This Ph.D. thesis concerns the application of machine learning methods to hemo-
dynamic models for BOLD fMRI data.

Several such models have been proposed by different researchers, and they have
in common a basis in physiological knowledge of the hemodynamic processes
involved in the generation of the BOLD signal. The BOLD signal is modelled
as a non-linear function of underlying, hidden (non-measurable) hemodynamic
state variables.

The focus of this thesis work has been to develop methods for learning the
parameters of such models, both in their traditional formulation, and in a state
space formulation. In the latter, noise enters at the level of the hidden states,
as well as in the BOLD measurements themselves.

A framework has been developed to allow approximate posterior distributions of
model parameters to be learned from real fMRI data. This is accomplished with
Markov chain Monte Carlo (MCMC) sampling techniques, including ’parallel
tempering’, an improvement of basic MCMC sampling.

On top of this, a method has been developed that allows comparisons to be
made of the quality of these models. This is based on prediction of test data,
and comparisons of learnt parameters for different training data. This gives
estimates of the generalization ability of the models, as well as of their repro-
ducibility. The latter is a measure of the robustness of the learnt parameters
to variations in training data. Together, these measures allow informed model
comparison, or model choice.



Using resampling techniques, a measure of the uncertainty about the general-
ization ability and reproducibility of the models is also obtained.

The results show that for some of the data, the standard so-called ’balloon’
model is sufficient. More complex data have also been designed, however, and
for these, the stochastic state space version of the standard balloon model is
shown to be superior, although an augmented version of the standard balloon
model is not found to be an improvement for either data set.



Resumé

Denne Ph.D. athandling omhandler anvendelsen af machine learning metoder
til heemodynamisk modellering af BOLD fMRI data.

Flere sadanne modeller er blevet foreslaet af forskellige forskere, og de har en
feelles basis i fysiologisk viden om de for hzemodynamiske processer, der har
betydning for BOLD signalets dannelse. BOLD signalet modelleres som en
ikke-linezer funktion af underliggende, skjulte (ikke-malelige) heemodynamiske
tilstandsvariable.

Fokus for dette arbejde har vzeret udviklingen af metoder til at leere parametrene
for sadanne modeller, bade i deres traditionelle formulering, og i en tilstands-
model formulering. I sidsneevnte indtraeder stgj i de skjulte variable, savel som
i selve BOLD malingerne.

Et seet metoder er blevet udviklede, som tillader leering af tilnszermede a poste-
riori fordelinger af modelparametre fra fMRI data. Dette er gjort ved Markov
chain Monte Carlo (MCMC) sampling teknikker, heriblandt 'parallel temperering’,
en forbedring af standard MCMC sampling.

Ovenpa dette er en metode udviklet, som ggr det muligt at sammenligne kvaliteten
af disse modeller. Dette ggres gennem praediktion af test data, og sammenlig-
niger af leerte parametre for forskellige treeningsdata. Hermed estimeres mod-
ellernes generaliseringsevne, savel som deres reproducerbarhed. Reproducer-
barhed er et mal for hvor robuste, de lerte parametre er overfor variationer i
traeningsdata. Sammen giver disse mal mulighed for informerede model sam-
menligninger, eller modelvalg.



Ved hjalp af resampling-teknikker ggres det yderligere muligt at vurdere usikker-
heden af estimaterne af generaliseringsevne og reproducerbarhed.

Resultaterne viser, at den sakaldte 'ballon model’ er tilstraekkelig for nogle data.
Men mere komplekse data er ogsa blevet designet, og for disses vedkommende er
tilstands-model udgaven af ballon modellen bedst. En udvidet udgave af ballon
modellen har ikke vist sig at vaere en forbedring for de anvendte data.
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CHAPTER 1

Introduction

”There is no scientific study more vital to man than the study of his own brain.
Our entire view of the universe depends on it.” - Francis H.C. Crick

There is a general consensus that the scientific study of the human brain is vital
in every important sense. But it is only in the last few decades that the neu-
roimaging tools have become available that allow serious advances to be made
in our understanding of how the brain works. Functional Magnetic Resonance
Imaging (fMRI) is one of the most recently developed methods of neuroimag-
ing, and arguably one of the most important for developing our understanding
of brain function. This is especially true for the Blood Oxygenation Level De-
pendent (BOLD) variety of fMRI, a technique that has seen explosive growth in
application since its invention in the early nineties [63],[62] - not so many years
after the invention of MRI itself. The widespread adaptation of BOLD fMRI is
due to the ability of these techniques to non-invasively measure spatially located
signals in the brain that are closely related to local neural activity.

1.1 Contributions

This section gives an overview of the main contributions of this Ph.D. project.



2 Introduction

1.1.1 Bayesian application of hemodynamic models

Non-linear, hemodynamic models are the focus of this work. Until now, learning
of such models has been done using maximum likelihood (ML) or maximum a
posteriori (MAP) approaches, see e.g. [23], [68]. In this project, approximations
of the a posteriori distributions of the model parameters are sought. This yields
more knowledge about the models and also allows more powerful predictive uses
of the models. For one class of models, however, MAP learning has been used
due to their associated high cost in computational time.

1.1.2 A framework for comparing hemodynamic models

Several different candidates models have been proposed and described in the
literature, but very little work has been done to compare these models in a
Bayesian sense. This is a crucial goal, as in any modelling domain, since it is
the only way forward if better models are to be developed and if researchers are
to know which model is best suited for different tasks.

A Bayesian model comparison framework has been developed in this project
that takes into consideration both generalization ability and reproducibility,

the latter measured in terms of the sensitivity of the posterior distributions (or
MAP estimates) to changes in the data used for learning.

1.1.3 Model comparisons

Three different hemodynamic models have been compared using the above men-
tioned framework on two different real BOLD fMRI data sets.

1.2 Overview

Chapter 2 gives a brief introduction to the BOLD fMRI modality, the generation
of the BOLD signal and describes the real data sets used in this project.

Chapter 3] then introduces the hemodynamic models to be investigated.

Chapter /4] describes the evaluation of the likelihood for models when there is
no noise in the hemodynamic state space, which is the case for the original
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formulation of the hemodynamic models. It also describes the generation of
synthetic data with these models.

Chapter [5 goes on to describe the evaluation of the likelihood for the models
when noise is introduced into the hemodynamic state space, and describes the
generation of synthetic data with these models.

Chapter [0/ describes the Markov chain Monte Carlo methods used to learn the
parameters of the models, in terms of obtaining approximate posterior param-
eter distributions. It also describes the simulated annealing method used to
obtain maximum a posteriori (MAP) parameter estimates.

Chapter [7| describes the use of the learned posterior distributions or MAP pa-
rameters for prediction, and develops a framework for comparing model qual-
ity in terms of such predictions and in terms of the robustness of the learned
parameters to changes in training data. This chapter also contains the main
experimental results.

Finally, chapter [8 gives the concluding discussion, including an outlook on pos-
sible future research directions.

1.3 Origin of fMRI Images

Those images and figures in this thesis marked 'Courtesy of Scott Huettel’ are
taken with permission from
http://www.biac.duke.edu/education/courses/fall05/fmri/, and some of these
are used in [39)].

1.4 Nomenclature and symbols

Conventional mathematical symbols and are used throughout the thesis. In
general, matrices are presented in uppercase bold letters (e.g. A) and vectors
are shown in lowercase bold letters (e.g. x). Scalars are written in the normal
typeface (e.g. x).

Probability density functions (PDF’s) correspond to a stochastic variable, some-
times conditioned on another, and are evaluated at some point, i.e. numerical
value. A complete notation could be for example py,(a|b) meaning: the PDF
of the stochastic variable = conditional to the stochastic variable y evaluated
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at x = a and y = b. Instead, the shorter p(z|y) is preferred here to reduce
clutter. It is unambiguous and only requires one to know that x and y stand for
values (instances) of stochastic variables but also signify which PDF is referred
to (here z|y).

List of main symbols

Mathematical symbols

AT Transpose of the matrix A.

A~ Pseudo-inverse of the matrix A.

U = E[x] Expectation of the stochastic variable x.
D(x) £ E[(x — px)(x — px) 7] Dispersion or ’variance’ matrix of the

stochastic vector x.
C(x,y) £ E[(x — pux)(y — pty)T]  Covariance matrix between stochastic
vectors x and y.
O(x — p) The Dirac delta function centered on p.
=S Definition, defining equation.

t) Relative blood volume at time ¢.

) Relative deoxyhemoglobin content at time ¢.
(t) Relative blood inflow at time ¢.

Sfout(t)  Relative blood outflow at time t.

s(t) Stimulus signal at time t.

a(t) Activation signal given to subject at time t.
u(t) Neural activity at time ¢.

o} Inverse rigidity.

€ Stimulus gain factor.

To Average transit time.

Ts Stimulus autoregulation time constant.

Ty Stimulus blood flow feedback regulation time constant.
Ey Resting oxygen extraction fraction.

K Neural inhibition signal gain factor.

Tu Neural inhibition time constant.

T4 Balloon inflation time constant.

T_ Balloon deflation time constant.



CHAPTER 2

BOLD fMRI fundamentals

”More may have been learned about the brain and the mind in the 1990s - the so-
called decade of the brain - than during the entire previous history of psychology
and neuroscience.” - Antonio R. Damasio

This chapter will give a brief introduction to the techniques and physics of BOLD
fMRI. The key point is to show the BOLD signal’s dependence on physiological
variables, setting the scene for the hemodynamic models that are the main focus
of this project.

2.1 MRI

Magnetic Resonance Imaging (MRI) is a relatively new medical imaging tech-
nique (the first commercial MRI scanners appeared around 1980). The basic
principle relies on the quantum-mechanical behavior of hydrogen atoms - abun-
dant in the form of water molecules in all brain tissue types - in the presence of
controlled magnetic fields. The protons and neutrons of hydrogen atoms have a
magnetic property called ’spin’, with similar behavior to a dipole magnet!. The

1For an introduction to nucleic spins and quantum mechanics in general, see for example
[33].
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protons basically rotate, much like the earth rotates around the axis through its
poles.

If an object is subjected to an external, uniform magnetic field By, then the
spins of the hydrogen nuclei will align either in parallel or anti-parallel with the
field, see figures 2.TA. These magnetic fields are typically 1.5 T (Tesla) or 3.0 T
for scanners used for humans, while they can be stronger for scanners used on
animals.

But the aligned spins can also be made to 'precess’ around those directions, i.e.
the spin axes can be brought to rotate (figure 2.1B). This 'wobbling’ is similar
to what happens when a spinning top toy looses momentum. All the spins have
a characteristic precession resonance frequency wg (around 64MHz for a 1.5T
scanner) that depends on the strength of the external magnetic field as given
by the Larmor frequency,

wo = 7Bo (2.1)

where « is the so-called 'gyromagnetic ratio’, a constant that depends on the
atom (42.58 - 105 s71T~1! for Hydrogen).

Figure 2.1: Spinning hydrogen protons. A: Spinning with spin axes aligned to
the external magnetic field, By, after the application of a radio frequency pulse.
B: Spinning with non-aligned spin axes.

If a radio frequency (RF) pulse with the same frequency is applied to the parti-
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cles, the spins will absorb the energy? and precess coherently, i.e. the spins will
be in phase.

After the application of the RF pulse, the absorbed energy then decays, the
spins re-align with the external magnetic field, and the spins will dephase. The
timing of all these events can be measured in terms of time constants. The
realignment is measured as the so-called T1 signal, and the dephasing as the T2
signal. The signal of interest for fMRI is called T2* and measures changes in
the T2 signal that are due to differences in magnetic susceptibility of the local
tissue.

Through controlling the properties and timing of the radio pulses and magnetic
fields, and the use of various signal processing techniques, it is possible to obtain
2-dimensional image slices of the tissue using any of these time constant signals
(T1, T2 or T2*), which can then be combined into a 3-dimensional or 'volumet-
ric’ image of the entire object (e.g. a human brain). Perhaps the most widely
used technique of generating the 2D fMRI images or ’slices’ is ’gradient Echo
Planar Imaging’ (EPI); other methods are ’Spin Echo Imaging’ and MPRAGE
('Magnetization Prepared Rapid Gradient Echo’). EPT has advantages of speed,
contrast and relatively high signal-to-noise ratios (SNR) compared to other tech-
niques. The drawback is that these images have rather low spatial resolution of
around 3x3x3 mm.

The spatial orientation of 2D images is usually described by the terms axial,
sagittal and coronal; see figure [2.2.

Two other fMRI scanner parameters are 'Field of View’ (FOV) and 'Flip Angle’
(FA). The FOV is the square 2D image area that contains the region of the
brain to be scanned, given the location and orientation of the 2D slice planes.
The FA is the angle to which the net magnetization is rotated when the RF
pulse is applied.

An example of an MRI scanner is shown in figure 2.3l

2Incidentally, it is the large number of protons that allow for the generation of MRI signals,
not the high energy of the radio pulses. Energy is proportional to frequency, and radio waves,
with frequencies in the area of 107 s~1, carry on the order of a trillion (10'2) times smaller
energies than those used in X-ray or CT imaging. This is one of the advantages of MR imaging.



8 BOLD fMRI fundamentals

Sagittal

Coronal

Figure 2.2: Illustration of the anatomical terms for plane orientation, defined
relative to the human body.

2.2 BOLD fMRI

The discovery of Blood Oxygenation Level Dependent functional Magnetic Res-
onance Imaging - BOLD fMRI - in the early nineties by Ogawa and collegues
[63],]62] was a major breakthrough in brain research. The key discovery is that
when a region in the brain is activated, the local supply of oxygenated blood
exceeds the increase in oxygen metabolism, resulting in an increase in oxygena-
tion of the blood. The hemoglobin molecule that carries oxygen can exist in two
states: oxyhemoglobin (oxygen is bound in the molecule) or deoxyhemoglobin
(no bound oxygen). Very fortunately for brain imaging, the magnetic proper-
ties of these two states are different. Oxyhemoglobin is diamagnetic, and has
very little influence on the local magnetic field. Deoxyhemoglobin, on the other
hand, is paramagnetic and thus distorts the local magnetic field. This results
in a shortening of the T2* relaxation time and a decrease in the MRI (T2%*) sig-
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Figure 2.3: Siemens Magnetom Trio MRI scanner. Photo courtesy of Siemens
Medical Solutions.

nal. This signal is therefore called the 'Blood Oxygeneation Level Dependent’
or BOLD signal. Therefore, with local brain activation, a decrease in deoxyhe-
moglobin means that the BOLD signal increases, which of course is nice from
an intuitive point of view.
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2.2.1 Physiological basis of BOLD fMRI

The BOLD signal in itself carries a lot of useful information, as it somehow
relates to local brain activation. However, the relation between BOLD and brain
activation is not clear, and neither is clear what ’brain activation’ in this context
precisely means. In this project, the relations that are sought are physiological,
and it is therefore necessary to first give a physiological explanation of the BOLD
signal and to relate it to underlying physiological processes.

In other words, a representation of the BOLD signal of the form

y(n) = g(x(t,); 0, c) (2.2)

is desired, where y(n) is the discretely sampled BOLD signal, x(t,,) is a vector of
physiological variables evaluated at time t,,, 6 is a vector of unknown parameters,
and c a vector of known parameters or constants.

More than one version of (2.2) has been proposed. The first work is by Buxton
et al. [17], but here an improved version developed by Obata et al. [61] is used.
This is given by

y(n) = Vol(ky + k2)(1 — q(tn)) — (k2 + ks)(1 — v(tn)] (2.3)

where the constants are given as

kl = 4.31/0EOTE
]{12 = GToEoTE
k‘3 =e—1

A detailed derivation of (2.3)) is given in the appendix of [61], but the following
may be noted. Vj is the resting venous blood volume fraction, and is variously
estimated at 0.02 and 0.03 (e.g. [23], [16]), and it should possibly be treated as
a stochastic parameters. However, the choice here is made to consider it known
and equal to 0.02 since the variance of the empirical estimates is very small.
It enters into the equation because the BOLD signal is the sum of an intra-
vascular and an extra vascular component, and the venules (small, randomly
oriented collecting vessels) contain the most deoxyhemoglobin and are thus the
most important intra-vascular BOLD signal source.
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Ey is the resting net oxygen extraction fraction, i.e. the fraction of oxygen
extracted from the blood as it passes through the capillaries and venules at
rest. It is considered here to be an unknown parameter. v(t) and ¢(t) are the
physiological variables involved in the BOLD signal generation; v(t) is the local
blood volume of the venous compartment, and ¢(¢) is the total deoxyhemoglobin
within this compartment, both relative to resting levels. € is the intrinsic ratio
of the intravascular to the extravascular signal at rest, and is considered constant
but depends on the scanner field strength.

TE is the ’echo time’, a parameter of the EPI image formation technique, and is
usually around 30-40ms. 1y and rg are quantities used in some linear approxima-
tions used to derive the BOLD equation and are also field strength dependent,
see [01] for details. Values for the constants are given by Bandettini et al. in [§],
and these values have been used in this project. They are - with the constants
1o and 7y concatenated, but recalculated in order to keep the dependence on
TE explicit,

k1 = 173.33E,TE
ky = 47.67E,TE
ks = 0.43

for 1.5 T field strength and

k1 = 346.67TE,TE
ky = 16.67E,TE
ks = —0.5

for a field strength of 3.0 T.

It should be noted that the BOLD signal here is a percentage-wise change from
a baseline, and not the absolute level.

3This € is only used here and is not identical to the parameter ¢ used in the rest of the
report.
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2.3 Data sets

Two different real data sets have been used for the analysis in this project. In
addition to these, synthetic data sets have been generated; these are described
in chapters /4 and 5

Each of the real data sets consists of a set of BOLD measurements or samples
YN = y1, ya2,...,yn for a number of different voxels (brain locations corre-
sponding to the spatial resolution of the scanner). The samples are recorded
with a certain sampling time, in fMRI usually termed 'TR’ (repeat time), that
differs between the data sets.

Both data sets are focused on the regions of the brain that respond directly to
visual stimulus, and are generated by presenting a subject in a scanner with a
visual stimulus pattern on a display.

A B

Figure 2.4: Regions of Interest, marked with white squares. Both images are
axially oriented through the calcarine sulcus. A : Data set 1; B: Data set 2. For
this data set, voxels from three adjacent slices were used.

From the raw data, regions of interest (ROI’s) are selected as coherent collections
of voxels that are seen to be activated by the stimulus given to the subject. For
visual stimuli, these activations are robustly determined using the classical fMRI
analysis tool, SPM2 (software available from http://www fil.ion.ucl.ac.uk /spm/).
Figure 2.4] shows the locations of the ROI’s for the two data sets. The mean
of the signals of all the ROI voxels is then used as the BOLD signal of each
data set. This averaging increases SNR and is based on the assumption that for
small ROT’s, the BOLD signals are very similar, which is indeed found to hold
through inspection.
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The stimuli given to the subject are designed to include periods of rest before
each activation (data set 1) or set of activations (data set 2). This allows for
better preprocessing (see below), and has further significance for modelling.
Each such stimulus-rest period is referred to as an epoch.

2.3.1 Dataset 1

Data Set 1 was acquired by Dr. Egill Rostrup at Hvidovre Hospital on a 1.5 T
Magnetom Vision scanner. The scanning sequence was a 2D gradient echo EPI
(T2* weighted) with a 66-ms TE, a FA of 50°, a FOV of 230 mm and a sample
time (TR) of 330ms. A single slice (2D image) was obtained in a para-axial
orientation parallel to the calcarine sulcus. The calcarine sulcus, an anatomical
structure in the occipital region of the brain, is shown in figure 2.5. It contains
the primary visual cortex (V1). The visual stimulus consisted of a rest period
of 20s of darkness (using a light fixation dot that helps the subject to fixate his
eyes), followed by 10s of a full-field checker board reversing at 8 Hz, and ending
by 20s of darkness. This flickering checker board stimulates the visual regions
maximally. Ten separate runs were completed, and a total of 1000s recorded
at each voxel. A ROI of 42 (7 by 6) significantly activated (as determined by
SPM2 analysis) voxels from the visual cortex were selected.

.'I'-" k
ﬁ;u‘ mAL
L {',[.“'T'
FR“F o Sip

LaguL.E-

T LT

feitatill Campg, gynd
Ingr FUS2
e —— e
G
v&uﬁ ‘kt;u;ﬁ

Figure 2.5: Schematic of a cross-section of the human brain, showing the location
and orientation of the calcarine sulcus.
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2.3.2 Data set 2

In order to ’challenge’ the non-linear models, a random stimulus was designed
with the purpose of generating a data set as non-linear as possible. Gamma-
distributions were used to generate random stimulus durations (SD) and inter-
stimulus intervals (ISI), see figure 2.0, and the signal is different for each epoch.

Mean ISI=3.81, min=0.88, max=10.43

0.
~0.15
= 1 _
2 01
Q
0.05 1 0.3
1 1! 2 2
5 0 s 5 0 5 Zos
=]
Mean SD=4.33, min=0.07, max=12.36 E
B 0.4
0.15
3 01 1 02
20.05
o L
5 10 15 20 0 20 40 60 80
A SD B time(sec)

Figure 2.6: Stimulus design for data set 2. A: PDF’s used to randomly gener-
ate the stimulus pattern, showing mean values and smallest and largest actual
values. B: The resulting stimulus for the first epoch; note the resting period at
the end.

The data was then acquired at Hvidovre Hospital, Denmark, using a 3T scanner
(Magnetom Trio, Siemens). 1382 GRE EPI volumes each consisting of twelve
3mm slices oriented along the calcarine sulcus were obtained. Additional param-
eters where TR=725 ms, TE=30 ms FOV=192 mm, 64x64 acquisition matrix,
FA = 82°. The stimulus consisted in a circular black/white flickering checker-
board (24 degrees horizontal, 18 degrees vertical) on a grey background. The
checkers reversed black/white at 8 Hz. A ROI of 75 (25 from each of 3 slices)
significantly activated (again as determined by SPM2 analysis), contiguous vox-
els in the visual cortex were selected, and the mean of these was used as the
BOLD signal (see figure 2.4B).

2.4 Artifact removal: Preprocessing

When a BOLD signal is recorded, there are many different artifacts, i.e. un-
wanted signal components, in the raw recorded BOLD signal that must be
coped with in some way. These artifacts are nuisances, because they correspond
to variability in the data that is unrelated to the patterns of interest, i.e. the
relation of the BOLD signal to local neural activity. The main physiological
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artifacts stem from heart beats, respiration and movement of the head. The
scanner also has 'drift’, i.e. a non-stationary additive component.

Fundamentally, there are two different approaches of artifact removal. The first
is usually termed ’'preprocessing’ and consists of removing the artifacts before
further modelling. The other is to include a model of the artifacts in a general
model, so that the artifacts are handled simultaneously with the rest of the
modelling. The two data sets used in this project was preprocessed in different
ways. The advantage of the preprocessing approach is mainly simplification, in
that the model needs no added complexity for built-in artifact handling. Also,
it is possible to do very good preprocessing on the data so that most of the
artifacts are eliminated while very little relevant information is lost from the
signal.

A final piece of preprocessing that must be done if the data are to be used
for hemodynamic modelling is normalization, i.e. the expression of the BOLD
signal as a percentage-wise change in signal strength, since this is the target of
these models.

2.4.1 Data set 1 preprocessing

The data were preprocessed according to the procedure described in [30]. A
slight modification of the procedure was done in order to end up with signal
values that correspond to percentage changes in the signal, see figure [2.7.

2.4.2 Data set 2 preprocessing

Data set 2 was preprocessed following the procedure described in [54]. The pre-
processing consists of 2 separate steps: motion correction and nuisance effect
modelling. Motion correction was performed using a 6 parameter linear (rigid
body) transformation, which estimated movement parameters for each volume
by minimizing the squared difference from the previous volume. To remove
effects originating from scanner drift, movement and physiological noise, a pro-
cedure known as Nuisance Variable Regression (NVR) was used ([54]). This
procedure aims to remove unwanted effects by modelling them using a multiple
linear regression framework. The model consists of several nuisance effects (all
with mean removed prior to estimation): discrete cosine transform (DCT) basis
functions up a cut-off frequency of 1/128 Hz (a high-pass filter, 15 parameters),
movement parameters and movement parameters squared to account for motion
not corrected by rigid body realignment (12 parameters), movement parameters
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Figure 2.7: Preprocessing of data set 1. The top figure shows the raw data (first
6 epochs) after the initial 29 scanner saturation samples have been removed
from each epoch. Also shown is the linear trend fitted for each epoch using
only the resting-period samples. The bottom figure shows the result when the
linear trend has been removed and the signal has been normalized to express
the relative change in signal strength.

from previous volume and movement parameters from previous volume squared
to account for spin history effects (12 parameters), Fourier expansion of aliased
cardiac cycle parameters (10 parameters) and Fourier expansion of aliased res-
piratory cycle parameters (6 parameters). The preprocessing model thus has a
total of 55 parameters, which were determined using maximum likelihood esti-
mation assuming i.i.d. normally distributed noise (least squares estimation).

The entire BOLD signal (after preprocessing) is shown in figure [2.8. Note that
the percentage wise change in the BOLD signal is only up to about 3 % com-
pared to around 10 % for data set 1. This is due to the rapid stimulation;
longer stimulus blocks create higher activations, and there was a concern about
precisely this prior to scanning. However, due to a better scanner, the SNR is
not much worse.
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Figure 2.8: Data set 2 after preprocessing. The shaded areas correspond to the
ends of the epochs when the stimulus is off.

2.5 BOLD fMRI and other brain imaging modal-
ities

To round of this chapter, a short description of the relation of fMRI to some
other important brain imaging modalities will be given to give some feel for
the relative strengths and weaknesses of BOLD fMRI. These modalities are
PET (Positron Emission Tomography), EEG (ElectroEncephaloGraphy), MEG
(MagnetoEncephaloGraphy), single cell recording and optical imaging.

BOLD Based on blood oxygenation
Strength: High spatial resolution
Weakness: Low temporal resolution

PET Based on injected radioactive isotopes
Strength: Can measure various physiological functions
Weakness: Injection of radioactive isotopes, very low temporal resolution

EEG Measures electrical potential of cortical neurons
Strength: Very high temporal resolution
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Weakness: Low spatial resolution

MEG Measures magnetic fields created by active brain regions
Strength: Very high temporal resolution
Weakness: Low spatial resolution

Optical Imaging Optically measures blood volume and blood volume changes
Strength: Very high spatial resolution at the scale of assemblies of neurons
Weakness: Generally can not be used on humans

Single cell recording Measures activity of single neurons using electrodes
Strength: Electrical response to stimuli of single cells
Weakness: Generally can not be used on humans

As can be seen from the above comparison, the power of BOLD fMRI is the
ability to non-invasively measure a brain activity related signal with good spatial
resolution, at the price of some temporal resolution. A good overview of different
functional brain imaging methods is given in [37].



CHAPTER 3

Hemodynamic Models

”Present-day knowledge of the brain resembles in some ways earlier Furopeans’
knowledge of Africa. FExplorers have mapped the coastline in detail, but the
interior is mostly uncharted.” - Douglas Tweed

In 1998, Buxton et al. proposed a model for the BOLD signal that was termed
the "balloon’ model [17]. This model was later extended by Friston et al. [23],
and again by Buxton et al. [I6] in 2004 with new variants. These models
all attempt to explain the BOLD signal in terms of underlying physiological
processes. This chapter describes the various models and model variants. They
share the basic property of being based on hemodynamics of the local brain
tissue, i.e. the dynamics of physiological processes involved in blood volume
and flow.

These models stand in contrast to the traditional linear models for BOLD fMRI
(see e.g. [18] for an introduction), and may be seen as a more general, non-
linear description of hemodynamics than the traditional, linear 'hemodynamic
response function’ approach (see e.g. [31], [10]).
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3.1 Model design and complexity

It is worth noting that the machinery of Bayesian analysis in itself does not
tell one how to invent models (see [55], chapter 28, for a good discussion), but
only how to use and compare given models. The models described here - both
the structures of the models, the meaning of the parameters and the choice
of non-linear functions - have been designed by researchers with knowledge of
the relevant physiological processes. The level of complexity (loosely defined as
flexibility to fit the data) of the models is determined by these design choices,
so although the present models have quite few parameters, they are a priori
expected to have a roughly suitable level of complexity for the modelling of
BOLD fMRI signals.

3.2 Overview

The hemodynamic models have several components that are connected in a
common way, see figure 3.1. First off is the stimulus function, a(¢). This is
the stimulation that is given to the subject in the scanner. For both data sets
used for this project, this is a visual stimulus (see section 2.3)). The stimulus
brings about neural activity, u(¢) (1). This neural activity affects the dynamics
of the physiological state variables x(t) (2), creating a so-called hemodynamic
response which is rather sluggish and non-linear. The state variables interact
dynamically and non-linearly (3). There may or may not be internal noise in the
physiological states (4); if included, such noise is a continuous time stochastic
process, so it is referred to by its time increment, dW. The BOLD signal y(¢)
is a function of the physiological states (5) with added measurement noise v(t)

(6).

Different hemodynamic models differ in some or all of these components and
their connections, but the basic concept is the effect of increased neural activ-
ity on the blood supplied from the local capillaries. Figure [3.2] illustrates the
profusion of these small blood vessels in brain tissue.

The internal interactions are defined in terms of parameterized ordinary differ-
ential equations, one equation corresponding to each variable, of the form
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where z(t) may be any of the variables in x(¢) and 6 are the parameters. The
BOLD signal then obtains as a function of x(t,,) ((2.2) repeated for convenience,
ignoring the constants c),

Stimulus Neural activity

a(t) > u(t)

@)
©)

(4)

Internal noise Physiological States
vk — X0

©®)

(6)

Measurement noise BOLD
" > "

Figure 3.1: Overview diagram of hemodynamic models.

3.3 The standard balloon model

This model was originally developed in [17] and extended in [23]. Tt models the
dynamics of the following physiological variables:
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FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 6.9 © 2004 Sinauer Associates, Inc.

Figure 3.2: An example image of arterioles and capillaries in the cortex of the
human brain (courtesy of Scott Huettel).

e v(t): Normalized venous volume

(t)
e ¢(t): Normalized total deoxyhemoglobin content
e 5(t): Flow inducing signal

e f(t): Inflow of blood

In addition to these, the neural activity wu(t) is assumed to be known, and is
further assumed to be identical to the stimulus. The outflow of blood, f,u:(t),
is an auxiliary variable that is given as a function of v(t).

The specific differential equations for the standard balloon model are very well
described and motivated in [23] and [I6], so only a short description is given
here. w(t), the blood volume, of course depends on inflow and outflow of the
"balloon’:

= — (f() = fou(t)) (3-3)
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The parameter 7 is a time constant that equals the mean transit time for blood
across the venous compartment. ¢(t), the deoxyhemoglobin, is governed by a
more complex equation:

dqt) _ 1 1— (1 — Ep)/ 7 (1-a)/
- — — @)/e 3.4
8t T0 f<t) EQ ’U(t) 9 ( )
Here, the term
1—(1—E)Y® = E(t) (3.5)

is the extraction fraction, the fraction of oxygen extracted from the blood as
it flows through the balloon; it is an approximation given in [17] of the actual
extraction fraction. The basic construction is that the first term in (3.4) is the
increase in deoxyhemoglobin as new blood enters and has its oxygen extracted,
while the second is the clearance of deoxyhemoglobin by the out flowing blood.

s(t) is a somewhat artificial signal that is meant to subsume many neurogenic
and diffusive signalling mechanisms that respond to neuronal activity, u(t), and
connect the latter to the hemodynamics. It is governed by

0s(t)
ot

= eu(t) = s(t)/7s — (f(t) = 1)/7¢ (3.6)

The parameter e thus controls the strength of the stimulus response to the
neural activity. In addition there is negative auto-feedback in the second term,
whereby s(t) will oscillate towards zero if the neural activity ceases. The speed
of this oscillation is controlled by the parameter 75. The final terms provides
negative feedback from the inflow, controlled by the parameter 7.

The stimulus signal is assumed to directly control the outflow in that the time
derivative of the latter equals s(t),

aft) _
5 = s(t) (3.7)

The blood outflow f,,:(t) follows

Four () = v(t)!/® (3.8)
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which is not a differential equation; as stated above, f,,:(t) may thus be con-
sidered an auxiliary variable in this model. This relationship is the basis of
the ’balloon’ term and means that the venous compartment expels blood faster
when it is distended. « is an ’inverse stiffness’ parameter, which is assumed to
be between 0 and 1 (higher values would mean that the balloon expelled blood
slower as it distended, but this invalidates the physiology behind the design of
this function).

An overview of the structure of the standard balloon model is given in figure
3.9

— V(1)

VR
Q)

s(1)
/) |

q(?)

u(t)

A\ 4

A\ 4

v

Figure 3.3: Diagram of the interactions in the hemodynamic models. The details
of each of the interactions are described in the main text.

See also [74] for a good overview of some hemodynamic models.

3.4 A note on neural activity

The term ’neural activity’ as used here is not a physiologically well defined
concept. It has been shown ([52], [51], [53]) that the BOLD signal is closely
related to the so-called local field potential (LFP) that reflects local process-
ing of populations of neurons. The LFP is thought to be a weighted sum of
the membrane potentials, both excitatory and inhibitory, of all the neurons in
this population, mainly reflecting synaptic activity (resulting from input from
other neurons) localized to dendrites and soma (see figure [3.4), although action
potentials (information carrying electric waves travelling along the membrane)
may also contribute to the LFP. This means that the neural activity as used
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in hemodynamic BOLD models (u(t)) can loosely be interpreted as reflecting
the local, population-level processing of neural input rather than long-range
communication with other brain regions.

- Dendrites

Microtubule

Nucleus Mitochondrion

Nucleolus Microfilament L Soma

Rough endoplasmic
reticulum

Cell membrane

Axon hillock

- Axon

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 6.2 © 2004 Sinauer Associales, Inc.

Figure 3.4: A neuron. The dendrites (top) receive input from other neurons,
and the soma is the main body, containing the main 'machinery’ of the cell
(courtesy of Scott Huettel).

For more information on the relation between BOLD fMRI and neural activity,
see [36], [9], [6], [49] and [5].

3.5 The augmented balloon model

Buxton et al. [16] have recently introduced an alternative dynamical model for
the neural activity u(t) and its connection to the stimulus a(t), as well as a
more complex relationship between blood outflow f,,:(t) and volume v(t). The
combination of these extensions with the standard balloon model is referred to
here as the ’augmented balloon model’.
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3.5.1 Non-linear neural activity

The neural activity is proposed to follow

u(t) = a(t) — I(t)
dl ku(t) —I(t
dat Tu

(3.9)

where a(t) is the square wave stimulus function and I(t) is an inhibitory feedback
signal. K is a gain factor for the inhibition signal, and 7, is a time constant
that determines how quickly the neural activity is inhibited. This leads to an
adaptive neural response to sustained stimuli. An example of u(t) corresponding
to a single one-second pulse of stimulus with x = 2, 7, = 1 is shown in figure

3.0l

0.5
time(sec)

15

Figure 3.5: Response of the non-linear neural model u(t) (dashed curve) to a

one-second stimulus.

Note that the square pulse model used in the standard balloon model (u(t)

a(t)) obtains as a special case of this non-linear model as /7, — 0.
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3.5.2 Visco-elastic outflow model

In addition to the non-linear neural model described above, it was proposed in
[16] that the relation between outflow and volume in the standard balloon model
(3.8) is based on steady-state conditions and could be modified for dynamic
conditions. The proposed relation is

fout(v(t)) = v(t)l/a + 7'61;.7?) (3.10)

which means that the ’balloon’ will transiently resist changes (for example due
to so-called visco-elastic effects, hence the model label) and only after some
time (controlled by 7) conform to the steady-state relationship (3.8). Also, 7 is
proposed to be potentially different during inflation and deflation:

Sv(t)

T >0

T:{ + 53t) —0 (3.11)
T— st <

Inserting (3.3) into (3.10) gives

Fout t) = v(t)/* + i ) = Fout (D)
o(®)" + Z f(8)
oo ()Y + 7 £(1)

To+ T

(3.12)

The problem with this is that to see if 7 should be 7 or 7_, it is necessary

to know 613(;), but that in turn requires knowing fo,:(t). The solution to this

coupling is to add fo,:(t) as a fifth state space variable. To obtain its derivative
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with respect to time, inserting (3.3)) into (3.10)) and differentiating,

Sfout(t) _ lv(t)l/a’l(sv(t) LT 6f(t)  dfour(t)
ot o ot To ot ot
Ly(p)/a-10vt) | = 5f(t)
— @ () ot T0 Ot (313)
1+ Z
Zo(t) /o1 o0 4 o
- TO + T

Inserting (3.3) and (3.7) finally gives

8 fout () _ év(t)l/a_l(f(t) — fout(t)) + Ts(t) (3.14)
ot To+T

When solving this new system, the sign of f(t) — fout(t) must first be tested to
see if 7 should be 74 or 7_, so this is done whenever %‘ is calculated for this
model.

The augmented balloon model is somewhat more complex, with 4 additional
parameters (k, 7,, 74+ and 7_), as well as an extra dimension in the hidden
state space. The initial resting state is extended to xg =111 0 1]T, i.e. blood
outflow at resting level. An overview of the structure of the augmented balloon
model is given in figure 3.6

3.6 A priori parameter distributions

In order to learn the parameters of these models, an a priori distribution p(#)
for the parameters must be chosen. There are many approaches to making
this choice. Generally it is important that the priors are as non-informative as
possible, and yet they should reflect any prior beliefs held about the parameters.
Priors may also be designed with the purpose of limiting the complexity of the
model ('regularizing priors’), but in the present case there actually exists prior
physiological knowledge, so the choice is made to build the prior distribution on
that knowledge (see [66] for a good discussion of the importance of priors).

The prior is assumed to factorize into a product of univariate priors,
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u(t) — 5(?) Q)

q(t)

Figure 3.6: Diagram of the interactions in the augmented ballon model; note the
additional variable, f,,:(t). The details of each of the interactions are described
in the main text.

where L is the number of parameters. This seems reasonable as there is little
or no reason to believe - a priori - that the parameters are correlated.

3.6.1 Beta-distribution

For these parameters it is possible to specify more or less vague lower and upper
limits for conceivable settings ([23],[16]). The family of scaled beta distributions*
is therefore used for the priors of these parameters, as they are well suited to

1A standard beta-distribution with a scaled variable.
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design appropriately flat distributions with upper and lower limits, and allow a
natural control over the shape of the distribution. The scaled beta distribution
has three parameters s, u; and us that control its range, mode and shape:

1

0 uyp—1 1— 9 ug—1
7Z(S7ul’u2)(s ) (1 = s0)

p(0]s,u1,uz) =
with the normalizing factor

I(un)I" (u2)
Z(u,uz) = s D(uy + ug)

These parameters may be referred to as "hyper-parameters’, since they are pa-
rameters for the distribution of other parameters. See figure [3.7 and [3.8. The
design of the priors is done by first choosing an upper range (all priors have a
lower limit of zero). The scale is then the inverse of the range. The desired
mode (peak) 0,4, of each distribution is then set, followed by the 'peakedness’,
determined by us and depending on how strong the prior belief is. u; is then
given as

amaflj
U 7(’(1,2 — 1) + 1;

B 1- omax

Table [3.1/ shows the prior parameters for all of the hemodynamic parameters.

3.6.2 Notes on the design of the priors

The parameter « is the inverse stiffness of the 'balloon’ compartment modelling
mainly the local venules. It is often simply set to 0.4 according to [16]. This
indicates that large perturbations from this value are empirically and physio-
logically unexpected, and it is in any case constrained to lie between 0.0 and 1.0
(higher values would lead to the unphysiological effect of the volume increasing
exponentially with flow increase). The closer it gets to 0.0, the stiffer the venules
become, finally resisting any change in volume no matter how high the inflow of
blood. The prior chosen for alpha reflects a rather strong belief that it should
be close to 0.4.

€ may be termed the ’stimulus gain factor’ and reflects both the amplitude
of the local neural activity and the efficiency with which it is able to elicit a
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5 1
Figure 3.7: Prior distributions for the hemodynamic parameters. p(e) is the
least informative, and p(«) the most.
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Figure 3.8: Prior distributions for the parameters of the augmented balloon
model.

hemodynamic response. Its main purpose is to allow an appropriate scaling to
a given data set. With the types of data that have been used in this project, a
suitable range for € is from close to zero up to around 2.0.

T is the average transit time of blood through a voxel. It is independent of
voxel size, as the flow through a voxel also depends on its size. The value of 1y
is determined by the blood flow (ml/min) and the resting venous blood volume
fraction, V. As the flow is assumed to be around 60 ml/min in [16], flows less
than half and more than double this value are considered very unlikely.

Ts is the time constant for the autoregulation of the stimulus signal. The prior
is based on the findings in [23], where 7 is found to vary roughly from 1.2 to
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2.2. Since this is based on certain voxels in a certain task, the prior is chosen
to allow somewhat higher variation, with a cut-off at 6.0.

77 is the time constant for the feedback regulation from the blood flow on the
stimulus signal. In [23], it was found to vary from around 2.0 to 3.2, and it is
less abstract or contrived than 7,. Following the damped oscillator argument
given in [23], the resonance frequency of the feedback system is

w = 1/(2r/77)

giving around w = 0.1 Hz at 7y = 2.46, the empirical mean. Allowing 7¢ to vary
from zero to 8 corresponds to a variation in this frequency from infinity (leading
to instant suppression of s(¢) and thus of any BOLD response) to 0.056, around
half of the empirical result in [23]. This range seems appropriate for the prior
for 5.

Ej is the resting oxygen extraction fraction. It is constrained to 0 < Ey < 1.0,
and according to [23], known values vary between 0.2 and 0.55, whereas in [16],
0.4 is given as a typical value. The mode of the prior for Ey is thus set to 0.4,
and the shape chosen to correspond roughly to the normal variation.

In [16] ranges are given for k and 7,, but these ranges are not discussed in the
text. A possible reason for limiting x’s upper bound at 2.0 might be that much
higher values all lead to a neural activity shape that is basically square (only
with lower amplitude), and thus carry no further information. As smaller values
lead to the standard, square neural activity model, the mode is set very close
to zero; the cut-off is set at x = 3.0. The time constant, 7, is probably more
physiologically based, as the expected time scale of any neural adaptation is not
likely to be more than a few seconds. The cut-off for 7, is set to 4 seconds, with
a suitably flat shape reflecting the high level of prior uncertainty.

Interestingly, it was found that with the augmented neural activity models and
uniform priors, k and € become highly correlated in the posterior, which is due to
a mathematical invariance: increasing x reduces the power of the neural pulses,
in turn reducing the predicted BOLD signal; increasing e mitigates this effect.
The beta-priors actually used remove this correlation (see figures 3.7/ and [3.8).

According to [16], values for the time constants during either inflation (74) or
deflation (7_) higher than 30 seconds are onsidered very unlikely, but no bid
is given as to any values within the range (0 — 30s) that should be considered
more likely than others, a priori. Since the behavior of f,,:(t) goes increasingly
to that corresponding to the simpler standard balloon model as 7 goes to zero,
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the prior is shaped as a monotonously decreasing function with a cut-off at 30
seconds.

For the observation noise variance no prior assumptions are made other than
that it must of course be positive. A prior could be designed based on the fact
that the variance of the whole BOLD signal is an upper limit for the obser-
vation noise variance, but as the noise variance has been consistently correctly
estimated for synthetic data, there seems to be little need for such a bound. The
prior for the observation noise is therefore simply set to a constant for positive
values, p(c2) =1 for 62 > 0 and p(c2) =0 for 02 < 0.

0 s U1 w2 | Omas
1.0 3.0 40| 04
€ 1/5 | 1.025 | 1.1 | 1.0
T0 | 1/5 1.67 | 20| 2.0
Ts | 1/6 1.36 | 1.5 | 2.5
Ty 1/8 1.45 | 2.0 2.5
Ey | 033 | 1.67 | 20| 04
K 1/3 1.0 1.2 | 0.0
Tu | 1/4 1.12 | 1.2 ] 1.5
T 1/30 1.1 1.1 0.1

Table 3.1: (Hyper-) parameters for the Beta-distributed hemodynamic priors.
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CHAPTER 4

Deterministic state space
models

”It’s choice - not chance - that determines your destiny.” - Jean Nidetch

The likelihood of a hemodynamic model is defined as a function of its parame-
ters,

L(0) = p(D|0) (4.1)

where the data consist of a set of BOLD samples, D = Y = {y1,92,...,yn},
measured at discrete times {tg,¢1,...,tn}. These samples may be further con-
sidered to be divided into independent epochs (as discussed in chapter 2), but
this structure is omitted here for clarity.

The likelihood is central for learning and model comparison, and its evaluation
is the subject of this and the following chapter.

To expound the structure of the likelihood, it is helpful to consider the hemody-
namic model as a state-space model, so that the physiological state variables are
referred to as hidden variables, in the sense that they are not measurable, and
the BOLD signal samples are referred to as observation variables in the sense



36 Deterministic state space models

that they are measurable and are given as a function of the hidden variables.
This may be written as an equation for the time dynamics of the hidden states,

= JF(x(t),u(t), 0) (4.2)

and the observation function,

Yn = g(x(tn),0) + € (4.3)

for the BOLD signal, where € is considered to be distributed as N(0,02) in-
dependently of time (i.e. the €’s are identically and independently normally
distributed). A general state space model is illustrated in figure [4.1

X(to) X(ty) X(ty)

Observed

y(0) y(1) y(N)

Figure 4.1: Graphical model diagram of a state space model.

The arrows in this diagram correspond to statistical dependencies, showing that
the hidden state at time ¢, x(t,) depends on the previous state x(t,,—1), while
the observation at time t,,, y(n) depends on the hidden state at that time, x(t,,).
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Equation (4.1) can thus be expanded as

N N
£©) = [T r.) =11 /p(ynIX(tn)p(X(tn)|X(tn—1)dX(tn)) (4.4)

where p(x(t1)|x(tg)) is defined as the distribution of x(¢1) for convenience. If
there is no noise in the evolution of x(t), then the hidden states are deterministic
variables, which may be expressed by the corresponding probability density
functions being delta functions, i.e.

N
o) =[ / P () 5(x(t) — () dx(t2)) (4.5)

where X(t,,) is the calculated value of x(t) at time ¢,. This value is obtained by
solving the ordinary differential equations, going in time from one observation
time point ¢,_; to the next, t,, starting with the known initial condition x;, =
Xo. This means that the likelihood factors in the following way:

N
£(0) = [T NM(g(x(tn)) = y(n);0,07) (4.6)

n=1

where g(x(t,)) — y(n) are the residual errors of the model prediction.

4.1 Solving the ordinary differential equations

The only difficulty in the evaluation of this likelihood is then to obtain the values
for the deterministic hidden states at the time point for the next observation.
These values are given by solving the ordinary differential equations (ODE’s)
of the model (see the previous chapter). Since these form a coupled non-linear
differential system, they must be solved numerically.
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4.1.1 Runge-Kutta methods

The most basic method of solving an ODE is Euler’s method. This simply

assumes that the gradient 6’g(tt) remains constant between two observation time

points, so that

y(t + At) = y(t) + Até};—g) (4.7)

Unless the time interval At is very short, this assumption is unlikely to hold,
which can yield very inaccurate results. To get accurate results with this method
thus requires sub-division into suitably small time steps, which is inefficient.
So-called mid-point methods and Heun’s method refine Euler’s method by eval-
uating the gradient at several time points, and this idea is generalized by the
Runge-Kutta methods [I]. These predict y(t + At) as a weighted sum of the
gradients at intermediate time points, t;, k = 1..K,

0x(t)
ot

y(t+ At) = y(t) + AL (4.8)
k

t=ty,

where K is the order of the approximation. This is a much more powerful
method than Euler’s, but it is not clear how many steps should be taken be-
tween observations to obtain a desired accuracy. A variable step size method
is therefore preferred that is able to speed up (increase step size) or slow down
the integration depending on the behavior of the system. Here, an embedded
Runge-Kutta method is used. An initial step size is chosen, and a prediction is
made using both a 4th-order Runge-Kutta method and a 5th-order one. The
difference between the estimates of these two methods is then used to update
the stepsize: if the difference is very small, the 5th-order prediction is accepted
and the step size increased. If it is larger than a set tolerance, the prediction is
rejected and the step size reduced. In any other case, the step size is preserved
and the prediction continues from the new point.

The values used for the constants, vy, k = 1..K are those given in ([65], chapter
16), and the tolerances are set to different values for each dimension of x(t)
(due to different scales of the dimensions) to give prediction errors smaller than
1 %; this was tested on various synthetic data with different parameter values
(9) and neural activity functions u(t).

This variable step size method was compared with the basic Euler method and
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was shown to use average step size of around 250ms, while Euler’s method used
around 5 ms, a saving of computational time of around factor of 50. Figures|4.2
and 4.3 show an example of a solution for a simple stimulus.

1.5

x(t)

oSt

time(sec)

Figure 4.2: x(t) solution from the variable step-size Runge-Kutta solver (stan-
dard balloon model). The circles mark the solution points. From top to bottom:
f(t), v(t), q(t) and s(t). The corresponding neural activity is seen in figure [4.3.
Note the higher density of points as a function of higher curvature, and the
non-linear effect of the second stimulus.

4.2 Handling discontinuities

The non-linear neural activity of the augmented balloon model (equation [3.9/in
section [3.5.1) is discontinuous at all stimulus onset and offset times (see figure
4.3). However, the inhibition signal, I(¢) has no discontinuity after stimulus
offset, and will inhibit the neural activity of the following pulse if the pulses are
close together. Therefore, the ODE for this neural model is integrated within
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u(t)

—0.2 H H H H H

0 2 4 6 8 10 12
time(sec)

Figure 4.3: u(t) solution from the variable step-size Runge-Kutta solver. The
circles mark the solution points. The resulting hemodynamic states solution
is seen in figure 4.2. Note the higher density of points as a function of higher
curvature; also note that the second neural pulse starts slightly lower than
u(t = 4.0) = 1.0 due to inhibition from the previous pulse.

each pulse, and u(t) is set to 0 outside the pulses. The ODE for the inhibition
signal I(t) is continued between the pulses.

4.3 Interpolation

There are two occasions when simple, linear interpolation may be used to ad-
vantage in using the ODE solutions for the models. One concerns the non-linear
neural activity model (equation [3.9 in section [3.5.1)). The ODE for this model
does not depend on the other physiological variables, so it may be solved sepa-
rately. This means that the variable step size algorithm is free to find optimal
step sizes for this integration, and these steps need not coincide with those
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used in the integration of the other physiological variables. But wu(t) enters into
the ODE’s for the latter, and therefore a simple linear interpolator is used to
estimate u(t) at arbitrary times, i.e.

o ultz) —u(t)

U(t) = t2 — tl (t — tl) + u(tl);

where t; and to are the closest solution times to time t. With the chosen
integration accuracy, these time points are generally close enough that linear
interpolation adds very little error.

The second is in the solution of the ODE’s for the physiological variables. The
solution time points resulting from the use of the variable step size algorithm
do not generally coincide with the sampling times for the BOLD signal, so
here (multivariate) linear interpolation is also used, allowing the ODE solver to
disregard the BOLD sampling times when choosing step sizes.

4.4 Simulation and synthetic data

Simulation means the generation of data from a model and a set of parameters.
It is needed in order to produce synthetic data sets, which are valuable tools for
the verification and analysis of methods and models.

The stimulus signal is the same as that used to generate data set 2 (see chapter
2). To justify the assumption that the BOLD signal is independent between
epochs, the stimulus for each epoch is set to zero for at least 30 seconds; this
also holds for the synthetic data set for the stochastic balloon model, and for
data set 2. For data set 1, there is a period of 10 seconds of rest before and
after each stimulus. This structure is helpful for preprocessing (e.g. removing
low-frequency noise), in that such artifacts can be more accurately estimated
using these ’resting’ portions of data. Also, it allows us to assume a known,
resting, physiological state (xg) at the start of each epoch.

For the deterministic models, data generation is very simple. The initial state
is chosen, xg, and then the ODE’s are solved giving x(t), t € [0;¢y]. Finally,
the measurements are obtained as y(n) = g(x(t,),0), where the values of the
hidden states are interpolated using the ODE solution points.

Figures 4.4l and 4.5/ show the first two epochs for the standard and augmented
balloon models. A distinct difference between the dynamics of the standard
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and the augmented balloon model is revealed in these figures, namely that with
the augmented ballon model, the CBV (blood volume, v(t)) is forced to change
more slowly than the CBF (the inflow, f(¢)), resulting in a faster clearing of
deoxyhemoglobin (¢(t)) and an initial overshoot in the BOLD signal, relative to
the standard balloon model. Also, the post-stimulus undershoot is seen to be
much stronger in the augmented balloon model.

s(t)

—0.2 : :
0 100 2000 O 100 200
time (sec) time (sec)
f(t) g(x(n))(——) and y(n)

SIS M 0.02

Ls{ AL I 0.0aff
FI of 1"
-0.01

0 100 200 0 100 200
time (sec) time (sec)

Figure 4.4: Synthetic data generated by the standard balloon model, § =
lavero s 7p Eg02] = [040.5202525041-107°]. Only the first two
epochs are shown.
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Figure 4.5: Synthetic data generated by the augmented balloon model, § =
[a €Ty Ts Tf Eo T4 T_ U?U] = [0.4 0.52.025250415015.01- 10’5]. Only
the first two epochs are shown.
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CHAPTER 5

Stochastic state space models

”The amount of moise which anyone can bear undisturbed stands in inverse
proportion to his mental capacity.” - Arthur Schopenhauer

5.1 Non-linear, continuous-discrete state space
models

Until now, the physiological state variables v(t), q(t), f(t), fout(t) and s(?)
have been considered to be deterministic. This is based on the very strong
assumption that the hidden states will follow deterministic trajectories from the
initial condition for a whole epoch, with only the local neural activity influencing
their course. It can easily be imagined that disturbances of various kinds are
able to perturb the state variables from this deterministic course. Further, if
the true neural activity is not exactly as assumed, namely equal to the known
stimulus (or a deterministic function thereof), then the state variables will not
be accurately estimated in this manner. And finally, no hemodynamic model
will be a complete or perfect model of reality.

One way to relax this deterministic assumption is to consider the state variables
to be stochastic rather than deterministic variables. Instead of a set of ordinary
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differential equations, a set of stochastic differential equations (SDE) is obtained
that may be written as

dx(t) = f(x(t),u(t),0)dt + Adw (5.1)

Here, x(t) is the r-dimensional hidden state vector, and w is an r-dimensional
Wiener process, which is a stochastic process where the variance of the incre-
ments, w(t) —w(s),t > s, equals t —s. It introduces randomness into the system
and makes x(t) a stochastic vector variable.

f(-) is parameterized by the parameter vector § and also depends on u(t), the
neural activity function. f(-) is often referred to as the drift coefficient, since it
causes a deterministic change in x(¢) while the A matrix - of dimension [rxr] - is
called the diffusion coeflicient, since it controls the level of random perturbation
coming from the Wiener process, in itself causing x(¢) to ’diffuse’ over time from
any starting state.

In the following, f(-) is assumed to be time-invariant, since it is assumed to
represent time-invariant physiological properties of local neural tissue. A is as-
sumed to be a constant diagonal matrix, so that the parameters of 8 that apply
to A are simply its diagonal elements. The rationale behind this assumption is
that the sources of randomness for the different variables are physiologically dis-
tinct entities. To give a hypothetical example, blood volume might be perturbed
by movement of red blood cells, while the stimulus signal might be perturbed by
irregularities in the supply of some chemical involved in the signaling pathway
between neural activity and local blood supply; these two are not related. It
is also seems reasonable to assume that the noise variance does not depend on
the current state, although an investigation into this question is warranted as a
future research goal. It is probably going to far to assume that A has the form

as there is no prior knowledge supporting the idea that the noise variances for
the different physiological variables should be identical. Therefore, A contains
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a different parameter for the variance of each state space dimension,

From a modelling point of view, this is also a very attractive assumption com-
pared to a full matrix, meaning the difference of an additional (D? — D)/2
parameters, where D is the state dimensionality (e.g. 6 extra parameters for
the 4-dimensional case).

Further, the choice is made to assume that the noise variance of the hidden
states is stationary in time, as is the observation noise.

Note that it is not possible to divide by dt on both sides, as the Wiener process
is nowhere differentiable (see for example [45]).

The one-dimensional BOLD measurements are made at discrete times,

{to,t1,...,tn},

and modelled as functions of the hidden state, exactly as before, repeated here
for convenience,

yi = g(x(t:),0) + ¢ (5.3)

g(+) is also assumed to be time-invariant and parameterized by 6. The mea-
surement noise variables € are assumed to be identically and independently
distributed as the Gaussian N'(0,02).

The BOLD measurements up to and including time ¢; are termed

Yi = {y07y13"'7yti}'

For clarity, the various parameters are all included in 6, although only some of
the parameters are used in g(-).
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This form of a system of SDE’s is not the most general one, but is based on the
form of the relevant hemodynamic models and the above mentioned, informed
assumptions. A graphical model diagram is shown in figure 4.1/ (previous chap-
ter).

The theory and applications of SDE’s is a major research area, and several books
have been written on the subject (see for example [45] and [47]). The present
application is based on one particular approach [73], considering only the first
two moments (mean and covariance) of x(t), leading to approximate numerical
solutions.

This model is a generalization of the very well-known Kalman filter ([43],[80]),
a major advance in signal processing. For discrete-time, non-linear versions, the
most widely used approach for learning is some form of expectation-maximization
(see e.g. [67], [4], [71], [28]). But such maximum-likelihood approaches are not
useful here, as the task is to estimate the posterior distributions. However, the
MCMC approach is equally applicable to stochastic state space models as de-
terministic ones; the main changes are in computational time and the structure
of the likelihood function.

5.2 Likelihood structure

The likelihood function corresponding to (5.1) and (5.3) is no longer as simple
as in (4.0), since the hidden states can not be deterministically calculated. The
likelihood may instead be factorized as

L(0) = p(Y¥|0) = p(yo)p(y1|yo)p(y2ly1, vo) - - . x plyn YV )

N
= Lo(0) [T £: 54

where the £;(0) £ p(y;|Y*~1) and Lo(#) = p(yo). This factorization is of course
valid for any multivariate stochastic variable.

In order to calculate the £;(6) terms, it is necessary to obtain approximately the
predicted hidden state distributions p(x(t;41)|Y?), as the mean and covariance
of p(y;|Y*~!) are functions of these distributions. From the point of view of
interest in the hidden states themselves, the corrected distributions (also called
’a posteriori’ distributions), p(x(t;41)|Y**!) are also of interest, since they con-



5.3 The continuous-discrete unscented Kalman filter 49

tain all information on the hidden state distribution given all observations up to
time ¢;41 (in the present application, the hidden states are treated as 'nuisance
variables’) 4

There are various alternative approaches to obtaining these distributions. The
classical method is the so-called extended Kalman filter (see e.g. [25]), but this
has basic problems with convergence and accuracy. This is related to ’local
linearization’ (see e.g. [72]). A better approach is the continuous-discrete un-
scented Kalman filter, which is both more accurate and more stable (see [73] for
a discussion of the various approaches in the continuous time case).

5.3 The continuous-discrete unscented Kalman
filter

For linear stochastic differential systems, it is possible to calculate the corrected
distributions p(x(t;11)|Y*™1) exactly, using the so-called Fokker-Planck operator
for the system. But for the present case, the continuous-discrete unscented
Kalman filter offers an approximate solution. This is based on approximate
solutions for the first and second moments of the a posteriori distributions.
This is very similar to the discrete-time case unscented Kalman filter (see [40],
[410).

The Continuous-discrete Unscented Kalman filter algorithm is given by an ini-
tialization step, followed by iterations of predictive and corrective steps, from

time ¢o to ty. For derivation and details, see [73].

Initialization:

u(tolto) = po + C(wo, 90)/(D(g0) + o2) (y(0) — Elgo))
S(tolto) = X0 — C(x0,90)/(D(90) + o)) D (g0, z0)

Prediction:

D'Smoothing’ estimates p(x(t;+1)|YN), i.e. using all observations. However, this is diffi-
cult and time-consuming to do for non-linear continuous systems and is not needed for the
evaluation of the likelihood, which is the primary target in the present case.



50 Stochastic state space models

o = B, u(T))[Y"] (5.6)
dz(d';“z) — C [f(X(T), ’u,('r))7 X(T)|YZ]
+C [x(7), f(x(1), u(r))|Y] (5.7)
+ AAT

Correction:

pltiviltive) = pltivalti)
+ C(x(tis1), gis1|Y ")/ (D(gisa |[Y') + 02) (5.8)
(Yit1 — Elgi1Y"])

S(tipaltivr) = B(tigalti) — C [x(tig1), gi1[Y'] /(D(gi1|[Y") + A)

; (5.9)
X C(giv1, x(tig1)[Y")
The (i + 1)’th term of the likelihood is also calculated as
Liy1(0) = N(y(i + 1), B [g:1|Y'], D(gia|Y") + 03,) (5.10)

and this is practically done alongside the filtering. The expectations conditioned
on Y should be understood as being expectations with respect to the prior dis-
tribution of the hidden states, p(x(i+1)|Y?) as approximated with the predicted
moments, ,LL(tl+1|tl) and E(tl+1|tl)

5.3.1 Notes

The initialization of the algorithm can be seen as a correction of an initial guess,
given by uo and Xg. E[go] is calculated using the sigma-points corresponding
to Mo and 20.

The prediction step is given in terms of a system of ordinary differential equa-
tions for the a priori moments of x(7). The solution of this system is described
below.
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Comparing this likelihood with the likelihood for the deterministic model (4.0),
there is an additional variance term, namely D(g;+1|Y?). An intuitive way of
comparing the two is that while the variance in the deterministic case would
seem to be smaller, due to this additional term, the predicted measurement,
9(1), is going to be further from the actual measurement y(i), since there is
no internal noise to aid in the prediction. Therefore, the o2 estimate can be
expected to be higher for the deterministic model.

The correction step depends on the so-called ’theorem on normal correlation’.
This is not elucidated in [73], so a brief explanation is given here.

Let the stochastic vector (x, y) be normally distributed with E[(x,y)] = (ux, fty)
and

Dyx Dyy

Dyl = | g DY |

Then, according to the theorem on normal correlation, the conditional expecta-
tion is given by

E[x]y] = pix + DxyDyy (y — py) (5.11)

and

D(X|Y) = Dxx — nyD Dyx (512)

yy

Letting x correspond to the hidden state at time ¢;,1, and y to the new obser-
vation, y;41, both also conditioned on the observations up to and including the
last observation, Y*, the combined mean and variance can be written as

E[(x,y)] = (B[x[Y"], Ely[Y"))
and

Dlx(ti+1)[Y']  D[x,y|Y"
D[(x,y)] = [D[y,;pfli]] D[[>'¢+y1|\Yi]]
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Inserting these expressions into (5.11) and (5.12)) gives the needed result (see
(5.8) and (5.9)).

The proof is somewhat technical and is given in [50], pages 56-57. However,
the intuition regarding the employment of this theorem in the context of state-
space filtering is straight forward: Take the predicted mean and correct it by
some factor times the error between the predicted output and the measured.
The ”some factor” is the covariance between the state and measurement at
time ¢, times the (pseudo) inverse of the variance of the measurements. In
other words, the higher the covariance between state and measurement, and the
lower the uncertainty about the measurements (observation noise), the more
the prediction should be corrected towards the actual observation. Similarly,
the uncertainty of the state is reduced with a new observation, proportionally
to the certainty about the observations, and again depending on the covariance
between the state variables and the observation variables. The Kalman filter
is therefore said to have a ”predictor-corrector” structure, as the state is first
predicted ahead in time, then corrected using the next observation, and so on
until the entire observation time series has been processed.

A nice corollary is that

Elxly = 1] = EIx] (5.13)

which can be seen directly from (5.11). Using this, it is also easy to see that in
general for Gaussian variables,

El(x = pa)(y — py)] = El2(y — py)] = Ely(x — )] (5.14)

This is used in the implementation of the filter, saving some computational time
for the deduction of one of the means in calculations of covariances.

The correction step is also based on the optimal linear estimate ([73], see Lemma
14.1 in [50]) which gives the mean and variance of the posterior density as a
linear function of the mean and variance of the prior. This also shows in the
form of the correction formulas, which are identical in form to those obtained
in the linear, discrete time Kalman filter case (see for instance [80], [27]), even
though the non-linearites have not been linearized (as they would be in the

The key advantage of the unscented Kalman filter lies in the choice to approxi-
mate the probability density functions, which turns out to be give more accurate
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results than by approximating the non-linearities through linearization (EKF).
This can be achieved with no additional computational cost.

5.4 The unscented transformation

The prediction ((5.6), (5.7)) and correction ((5.8)),
algorithm - and most importantly the likelihood ((5.
of expectations,

(5.9)) steps of the filtering
10))) require the calculation

E[h(z)] = / h(@)p(z)dz

where h(-) is some function. With the unscented transformation method [41],
such expectations are estimated using empirical distributions on so-called ’sigma
points’ s;, approximating the distribution as

r

p(z) =~ Z w;0(x — s;)dx (5.15)

i=—T

where r = dim(z).

These points are chosen so that the first two moments (¢ and ) of the distribu-
tion are correct. With the non-linear differential equations of the hemodynamic
models, the predicted distribution p(x(t;11)|Y?) will not be Gaussian, so (5.15)
is going to be an approximation.

With this approximation, expectations and (co-) variances can be calculated as

Elh(z)] / Wa)p()de =~ 3 h(s:w: (5.16)

i=—T
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and

Using a Cholesky factorization (lowering computational cost, see [78]), ¥ = I'T'T,
and letting v; be the i’th column of T', one can use the 2r + 1 (r equalling the
dimensionality of z) sigma points

So = K
si=p+Vr+Ay, i=1.r
S_i=pu—Vr+Ay, i=1.r

with corresponding weights

wo = A/(r+A)
wi =w_; =1/(2(r + A))

A is a scaling factor, and a good setting depends on the specific problem. For
the hemodynamic systems investigated here, A = 3 was found to work well so
this value was used throughout.

Figure [5.1] shows a demonstration of the sigma points corresponding to a two-
dimensional Gaussian distribution.
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Figure 5.1: Demonstration of the location of the sigma points for a 2D Gaussian.
Also shown is the 95% confidence interval ellipse for this distribution.

5.5 ODE solution

One very appealing aspect of the unscented Kalman filter is the opportunity to
reuse whatever ODE solver has been implemented for the deterministic model
counterpart. In the present case, the variable step size Runge-Kutta solver
described in the previous chapter was reused.

The dimensionality of course goes from 7 to 2r 4+ 1, as each sigma point is
one dimension in the ODE system. Another speed bump is that the solver
must provide a solution (prediction) at each observation time point, so that the
correction step can be done before proceeding (the corrected state distribution
must be known before the ODE solution is continued). By using the last time
step size from the previous prediction solution, the ODE solver is still able to
consistently use only three to five steps to predict a one-second interval with
the models used here.

There are 2r + 1 sigma points (r being the dimensionality of the hidden state
space). The differential equations for the first r of these are simply given by
(5.6). The rest of the sigma points depend on the derivative of the hidden
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state dispersion matrix, X (7|t;)dt. The derivative of the elements of the sigma

points, z;, can thus be found by using a Cholesky factorization of the derivative
of X(7|t;))dt,

dxi(rlt:))

=117
dt

and the derivatives of the sigma points are then given as

dsg  du(rtlt;)

dt dt

ds;  dup(t|t;) .

@ _ TN | A, i = 1
dt a VIt =Ly
dS,Z'

du(T|t;) .
= ———+Vr+ XM, i=1.
dt dt rATYL "

where 4; is the ¢’th column of I.

5.6 Computational cost

Compared to the deterministic case, the estimation of the gradient (in the pre-
diction step, equations (5.6) and (5.7)) now involves expectations using the un-
scented transformation, and the correction step is an additional computational
load. An evaluation of the stochastic likelihood takes roughly 50 times longer
than the deterministic version.

5.7 Simulation and synthetic data

Simulating from a system of stochastic differential equations is a subject of
current research and of which whole books have been written (see e.g. [45]).
The simplest simulation method is Euler’s method, which works by starting at
some state, xg, and simulating according to
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x(t + dt) = x(t) + f(x(t), u(t), )0t + Adw

where 0t is a very small time step, and dw is a random increment of a Wiener
process with variance equal to &t, i.e. dw ~ N(0,6t). If 6t is chosen small
enough, this approximation will be accurate. How small depends on the char-
acteristics of f(-) and the diagonal values of A. 0t can be chosen by simply
inspecting the results of varying it, but since data generation is not a time-
critical task, this is usually not a problem. For the synthetic data generated in
this project, it was set to §t = le — 3.

A synthetic data set was generated using the standard balloon model with the
same hemodynamic parameters used for the creation of the synthetic data for
the deterministic state space model, § = [0.4 0.52.02525041- 10_5}, and
the same stimulus function. The noise variances of all hidden variables was set
to 1-1073. Figure [5.2l shows the first two epochs of the generated data.

A synthetic data set was also generated for the stochastic version of the aug-
mented balloon model (not shown).

Figure [5.7 illustrates the local shape of the log likelihood function £(6) for this
data by varying two of the parameters, 79 and 7, while the other parameters
are kept at their true values. Such inspections give a feel for the properties of
the likelihood function, but of course do not rule out the existence of more than
one modes with similar likelihood values.

5.7.1 Prior distribution for state-space noise variances

Setting the state-space noise variances to zero leads to the deterministic variant
of the given model, and thus is the simplest version of the noisy model. There-
fore, in order for the priors to reflect a belief leaning towards simplicity, the noise
variance priors should assign decreasing probability density to increasing noise
variance. As the elements of A reach around 0.1, the system of SDE’s begins
to fluctuate wildly, eventually drowning out the influence of the neural input.
Hence it is reasonable to design a prior that assigns very small probabilities are
to values higher than 0.1.

With these considerations in mind, the gamma-distribution is a suitable choice,

p(0]s,¢) = ﬁ (i)l exp <—i) (5.18)
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Figure 5.2: Synthetic data generated by a stochastic state space version of the
standard balloon model. The first two epochs are shown.

where I'(+) is the gamma function. This is a simple uni-modal distribution, with
a scale parameter s and s shape parameter, c. These parameters were set to
s = 0.1 and ¢ = 1.01, see figure 5.4l The priors for all the hidden noise variances
are set to the same distribution, as there is no prior belief that they should be
different.
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Figure 5.3: 3D surface and contour plots of the log likelihood surface of a
stochastic version of the standard balloon model evaluated while varying two
parameters around the neighborhood of the true known values (synthetically
generated data). There is a clear peak around the true value of the parameter
pair (marked with a cross on the right) for this set of parameters, the discrepancy
being caused by noise.
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CHAPTER 6

Markov chain Monte Carlo
learning

”The Bayesian 'machine’, together with MCMC, is arguably the most powerful
mechanism ever created for the processing of data and knowledge.” - James O.
Berger

"Learning’ may be defined as obtaining the distribution of the parameters 6 of a
model conditioned on a data set D, i.e. the posterior distribution p(f|D)*. Due
to the non-linear nature of the problems under consideration, it is not possible to
arrive at an analytical form for the posterior for the model parameters, p(6|D).
It is therefore necessary to use some means of approximating this distribution.

There are many possible approaches to approximate learning, one of which is
Markov chain Monte Carlo (MCMC) sampling®. The core idea in MCMC is to
represent a target distribution by samples generated from it, 8; ~ p(6|D). These
samples may then be used to represent the distribution (e.g. histograms), and
to calculate expectations with respect to it, including calculating its moments.

MCMC sampling is computationally costly, and for the stochastic state space
models, not practically viable due to the cost of evaluating the likelihood func-

IThis is a supervised learning definition, and other definitions are possible.
2A leading alternative is ’variational Bayes’, see http://www.variational-bayes.org
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tion (see equation (5.10)). In this case, a related method - ’simulated annealing’
- is used to obtain an estimate of the maximum a posteriori parameter vector.

There are many good books and articles on MCMC sampling (see e.g. [58],

[55]), and only a brief overview of the general theory is given here, the focus
being on details relevant to the present application.

6.1 Estimating expectations

The fundamental idea in MCMC sampling is that expectations with respect to
a distribution can be approximated through samples from that distribution,

Elh(z)] / M@)pla)de ~ 5 3 hw) (6.1)

where z; ~ p(z).
The necessary samples can be generated in the form of a Markov chain, which
in the present setting is a series of continuous-space, random variables XV =

[0, x1,...,2N] where the conditional probability density function of each vari-
able is only dependent on the previous one,

p(xi XN) = p(i|zi—1)

Defining the transition probability function T'(x,x’) as the probability of making
a transition from x to z’, the PDF of each variable is thus

p(z) = / p(a)T (!, 2)d’

where 2’ is the variable previous to z in the chain XV.

The task is then to construct a transition probability function such that samples
generated by first generating one sample from a chosen initial PDF, p(x¢), and
then repeatedly applying T'(z,z’) will actually be distributed according to a
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target PDF, 7(z). For this to hold, m(z) must be an invariant distribution of
the chain, meaning that

7(z) = /w(x’)T(x’,:c)dm (6.2)

A sufficient condition for invariance is that of detailed balance, which for con-
tinuous spaces is

ALW(f)T(x,x’)dx'dx:/B/AW(SUI)T(x’,x)dxd;U’ (6.3)

i.e. the probability of making a transition from some point in A to some point
in B is the same as the other way around. It is easy to see (through integration)
that if (6.3) holds, (6.2)) will hold.

The second condition is that the chain must be ergodic, which basically means
that the starting point is inconsequential, so that the sampling may start in any
place and still converge to generating samples from the target distribution.

The target distribution here is of course the conditional parameter posterior for
a given hemodynamic model, 7(-) = p(f| D). Bayes’ rule allows us to rewrite the
posterior in terms of the likelihood, p(D|#), the prior, p(f) and a normalizing
factor, p(D):

p(D[0)p(0)

p(oIp) = "2

(6.4)

6.2 Metropolis-Hastings

The Metropolis-Hastings algorithm ([81], [55]) is one way of generating a Markov
chain with detailed balance. It works by starting at an arbitrary state, 6y, and
then iteratively proposing small changes to generate the next sample in the
Markov chain. This is done using a proposal distribution, p(6'|0), where 6 is the
current state. Here, a Gaussian centered on the previous state has been chosen
as the proposal distribution,

p(0'6) = N(6,%)
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The proposal is accepted as the next discrete sample according to the acceptance
ratio:

p@1D)  p(DW)(#)
"= 0@D) ~ pDIo)pE) (65)

The proposal distribution does not figure in this ratio, since it is symmetric,
p(6']0) = p(0)]0); also note that the normalizing factor, p(D), cancels out. If
r > 1 the proposal is accepted, and the next sample generated is 6,11 = ¢'.
If » < 1, the proposal is accepted with probability r. If the proposal is not
accepted, the next sample is simply kept at the current value, 6,47 = 6. In
other words, the acceptance function is

A(6,6") = min(1,p(¢'| D) /p(6|1 D)) (6.6)

The transition probability function of the Metropolis-Hastings algorithm may
thus be expressed as a product of the proposal PDF and the acceptance function,

T(0,0") = p(6'|0) A(0,0").

It is easy to see that detailed balance holds for this transition probability func-
tion. Letting the integrand in (6.3)) represent 7(x) = p(8|D),

()T (2,2") = n(2)p(z’|z) Az, 2")
= p(@'|z)m(z) min(1, 7 (2") /7 (z))
= p(a'|x) min(r(z), 7(2)) (6.7)
= p(z[2")r(2") min(1, 7 (z)/7(z"))
=7(2")T(2', x)

since the proposal is symmetric.

In practice, of course, it suffices to compare a randomly generated variable that
is uniformly distributed from 0 to 1 with r to determine wether or not the
proposal is accepted, and no minimum need be taken.

The acceptance rate p is defined as the percentage of proposes samples that
are accepted. Generally, for higher dimensional problems, it is necessary to use
higher acceptance rates ([58]), but for the current problems of dimension around
10, an acceptance rate between P,,;, = 0.2 and P4, = 0.5 was found to give
good 'mixing’ (convergence).
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6.2.1 Automated proposal generation

The shape and scale of the proposal distribution ¥ is critical to the conver-
gence of the algorithm, i.e. how many samples need be generated before the
approximation (6.1) is sufficiently accurate. It is therefore normal to choose ¥
by trial and error, manually. However, with the application at hand, where a lot
of approximations must be done with different models and different data sets,
this is not satisfactory. Therefore, an automated procedure for finding a good
proposal was implemented.

The sampling is started with an arbitrary normal distribution of dimension
dim(#). Then, several short ’scout’ sampling runs are then performed, each
with N samples. After each of these short runs, the covariance of the generated
samples 8V is used as the new proposal covariance,

N
1
= D (00— 110) (0n — p0)” (6.8)
n=1
where pg is the empirical mean,
N
Ho =2 bn
n=1

After each update, it is necessary to scale this new proposal, i.e. to find a
scaling o so that ¥ = oX/ achieves the desired acceptance rate. This is a search
problem, which has been solved by a simple bisection method, see figure 6.1l
First, an upper bound o is found by doubling ¢ until the acceptance rate is less
than P,,;,. Bisection is then carried out until the estimated acceptance rate is
in the desired range.

After a set number (usually around 10) of these initial iterations, the main sam-
pling run is performed keeping the proposal distribution constant (the samples
of the initial runs are not used further).

It was found that 100 samples in each of these short runs was sufficient to find
good proposals. As small a number as possible is of course desirable for speed,
but too small numbers give too high of a variance in the covariance estimates
(6.8) and may also lead to divergence during the bisection algorithm, as the
variance of the estimated p is also increased with small sample size. Usually
from 1 to 5 iterations are needed for each scaling.
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max

min

Figure 6.1: Bisection is used to find an appropriate scaling for the proposal
distribution, so that the acceptance rate p lies between P,,;, and Py, 4.

6.2.2 Finding a good starting point

Another condition for reaching convergence as quickly as possible is to start
the sampling from a ’good’ starting point. ’Good’ here means a point with a
high posterior probability p(6|D). Starting far from regions of high posterior
probability means that it might take a long time to move to high probability
region, and also the proposals found in such regions might not be optimal for
sampling around the major modes, which is what the algorithm should be doing.
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Several alternative policies exist for finding a good starting point. It is impor-
tant that such a point can be found quickly, as otherwise the point of speeding
up convergence is defeated. The method used here might be called an ’itera-
tive univariate search’, and is very quick and simple. Starting from parameter
values that are expected a priori to be likely, each parameter in turn is iterated
through to equally distributed values across a range covering the bulk of the
corresponding prior distribution. It is then set to the value giving the highest
likelihood. This is then repeated for the next parameter, keeping the optimal
value for the previous parameter, until all parameters have been ’optimized’
in this way. The whole procedure is then repeated, starting with the optimal
values from the previous iteration. It was found that 2 iterations of this proce-
dure with 4 points in each range was sufficient for finding a good starting guess
across different data sets and models. This simple procedure could be improved
in countless ways (e.g. refining the search range after each iteration), but serves
its purpose very well in practice.

As an example of the benefit of this method, the log likelihood of the stochastic
version of the augmented balloon model in typical runs was around 600 with
the initial parameter setting, around 1500 after the starting point procedure,
and around 2600 after 3000 simulated annealing iterations (data set 2).

6.3 Parallel tempering

Depending on the properties of the posterior, 'mixing’, i.e. the ability of the
algorithm to generate samples representative of the whole distribution, may be
slow. The technique of parallel tempering (see e.g. [32]) may be employed as a
quite straightforward enhancement of Metropolis-Hastings sampling. It works
by sampling from several distributions p;(#|D) in parallel, each using a more or
less 'flattened’ version of the likelihood:

p(D]6)% p(0)
[ p(D]6)5ip(6)do’

pi(0|D) & i=1...C (6.9)

where 3; < 1 are so-called inverse temperatures, 3; = %, and C' is the number
of ’chains’. At certain intervals (20 samples was used here), a proposal is made
to swap the states of two adjacent chains, using an acceptance ratio somewhat
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similar to (6.5),

_ pi(D|9i+1)Pi+1(D|9i)
Pi(D|0;)pit1(D|0i41)

rPT (6.10)

where 6; is the current state of the i’th chain (the priors cancel out). This
proposal is made instead of a 'normal’ Metropolis-Hastings proposal.

The chains must be spaced across temperatures at suitable intervals. To de-
termine this dispersion it was found most logical to start with the first chain
after the basic T' = 1 chain, and set the temperature so high as to give a swap
acceptance rate of around 0.2 to 0.5. The same can then be done to find a suit-
able temperature for the second-highest chain, and so on. The number of chains
to use depends on at what point the "heated’ density becomes flatter than the
priors, so to speak, because when that happens, the proposals in that chain will
be largely rejected due to overstepping the bounds of the fixed-support priors,
which is not productive. For the present data, using 6 chains from §; = 1.0
to B = 0.04 (T = 25) was found to give good results. Good parameters were
found by experimenting with different settings (temperatures, samples between
swap proposals, number of chains) on synthetic data, see figure 6.2. The pa-
rameters are interdependent, e.g. with many chains, it is necessary to suggest
swapping moves more often.

Parallel tempering generally leads to better mixing in the same amount of com-
puter time, since the high-temperature chains are able to move around quite
freely, allowing the target distribution (at temperature 7' = 1) to ’escape’ local
minima, see figure 6.3l

6.3.1 Toy example: Mixture of Gaussians

In order to validate and get a feel for the MCMC algorithms, they were run on
a toy example with a mixture-of-Gaussians likelihood of the form

K

pla) = P(i)(x|0;)

i=1

where each component ¢; is a Gaussian:
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Figure 6.2: Log likelihoods for parallel tempering with different settings; final
part of sampling run for synthetic data (generated by the standard balloon
model, sub-sampled for clarity).

with the number of components K = 2, and the dimension of x, d = 2. By
setting the means and variance such that the overlap between the two com-
ponents is small, it is easy to illustrate the benefit of the parallel tempering
algorithm. The running time of the parallel tempering algorithm relative to the
standard Metropolis-Hastings algorithm is O(N¢), where N¢ is the number of
chains running in parallel. If parallel tempering is to be beneficial, it should
therefore cover the target distribution more than N¢ times faster (in number
of iterations) than the standard MH algorithm. For the toy example, one only
needs to remove the two components a certain distance from each other, de-
pending on their covariances of course, to see the PT algorithm outperform the
MH algorithm, see figures 6.4/ and [6.51
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P(6|D)

Ay

Figure 6.3: Parallel tempering. The high-temperature chains (top) allow the
samples to move around, so samples ’trapped’ in the lower ’colder’ chains can
escape.

6.4 Simulated annealing

For the stochastic model, evaluation of the likelihood takes too long (around 50
times longer than for the deterministic model) for the MCMC sampling approach
to be practically viable. Instead, a point estimate approximating the maximum
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Figure 6.4: MCMC sampling with only one chain and 900 samples. A: The
values for z; are confined to one mode of the distribution. B: Scatter plot of
the samples overlaid on a contour plot of the distribution.
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Figure 6.5: MCMC sampling with 3 chains, but only 300 samples. A: The
values for z; find both modes of the distribution (chain 1 has the highest-
temperatures). B: Scatter plot of the samples overlaid on a contour plot of the
distribution.

a posteriori (MAP) is used instead,

p(0|D) ~ 6(6 — Orrap) (6.11)

where 07 4p is defined as

Orrap = argmaxp(6|D) (6.12)
0
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This sample then represents the posterior distribution and may also be used to
calculate approximate expectations.

The simulated annealing technique produces an approximation to 6y;4p and
is related to both MCMC sampling and parallel tempering. The procedure is
in fact identical to the Metropolis-Hastings sampling described above with the
modifications that only the final sample is used as the estimate of Oy, 4p, and
the temperature (see (6.9)) is gradually decreased towards zero during sampling.
This means that 6 will move relatively freely around initially, but as the tem-
perature decreases will only move in the direction of the gradient of p(6|D),
hopefully resulting in a final value close to Oy ap.

The proposal is initially determined with the automatic procedure described for
the Metropolis-Hastings algorithm, but as the temperature decreases, the scale
of the proposal must be reduced in order to maintain an appropriate acceptance
ratio. As discussed in [58], if one approximates a ’heated’ likelihood p(D|6)Y/”
with a Gaussian, the standard deviation of that Gaussian will be /T, and thus
a step size of around /T will be appropriate. Therefore, the proposal is scaled
at each step by /T/T’, where T is the temperature at the last step, and T" is
the temperature at the current step.

6.4.1 Cooling schedules

Using synthetically generated data, a suitable starting temperature can be found
be doing short sampling runs at increasing temperatures, until a temperature
is found that allows rapid fluctuation of the parameters, enough so that they
are able to converge to the vicinity of the true parameters relatively quickly
(e.g. after a few hundred iterations), yet not so high as to continually overstep
the prior bounds. The starting temperature should also not be set higher than
necessary in this sense, because it will need to be gradually lowered to zero
in the subsequent search for the MAP parameters, and this so-called ’cooling’
must occur very gradually in order for the search to succeed ([58]) and it is
desirable with regard to computational time to reach that point in as few steps
as possible. The manner in which the temperature is brought down is referred
to as a ’cooling schedule’

A practical approach is thus to experiment with the speed of cooling for increas-
ingly long sampling runs, until a suitable cooling schedule has been found for
the final sampling run that ends near the MAP point for synthetic data. With
such experiments on synthetic data, it was found that an exponential decay gave
good results,
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T; = Ty exp(—irr)

where Ty is the starting temperature and T; is the current temperature. 7p is a
time constant, set to around 1000-5000 depending on the length of the sampling
run, to give temperatures close to zeros at the end of the sampling run. For
synthetic data, it was found that using a starting temperature of 7' £ % =10.0
and slowly decreasing over a sampling run of 3000 samples consistently gives a
MAP parameter estimate close to the true value.

6.5 Logarithm transformation

Instead of tracking the likelihood p(D|6) and the posterior p(6|D), the logarithm
of these is used instead. This can be done since the logarithm is a monotonous
function, and is also attractive for numerical reasons (the likelihoods are prod-
ucts of many small numbers, see 4.6/ and 5.4).

6.6 Convergence analysis in MCMC

There are a great number of suggested methods to help determine whether or
not a given Markov chain has converged (see [20] for a review). However, such
methods are heuristics, in so far as there is in principle no way to tell whether
convergence has occurred. What the various heuristics do is a test, and if the test
is not successful, then one knows that convergence has not occurred. However,
a successful test is no guarantee of convergence. Still, knowing that convergence
may have occurred is of course better than knowing that is has not occurred.

Therefore, a set of heuristics have been employed to obtain indications that the
final sampling estimate of the posterior distribution does indeed cover the true
distribution.

Measuring the autocorrelations of the obtained samples gives an indication of
how many samples are needed to obtain each independent sample. Although
the samples used in (6.1) do not need to be independent, they must contain
preferably a dozen or so ([55], p. 358) independent samples for the approxima-
tion to be good. A typical example of autocorrelations is shown in figure (6.8l
This is related to maintaining an appropriate acceptance rate throughout each
sampling run, and this can be verified after sampling, see [6.10.
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Several sampling runs are also performed as part of the resampling procedure
described in chapter [7. Comparing the distributions found for the various pa-
rameters across these runs is a test, since if the mixing is insufficient, the result-
ing distributions can be non-overlapping, whereas for good mixing, they should
be highly overlapping. An example of this is the scatter plot of o and e samples
shown in figure 6.9, This may be seen as an intuitive relative of the R statistics
convergence measure, see [42].

For synthetically generated data, it can also be verified that the distribution
is sampled around the major peaks by comparing the samples of o2 with the
known noise variance. If o2 is biased upwards, this indicates that the other
parameters are off from the true values and have not converged.

The log likelihood is a very important indicator, and it can be inspected to
determine if it seems to have converged or not, see for example figure [6.6.

Log likelihood

o950kl

2000 4000 6000 8000 10000
sample index

Figure 6.6: Log likelihood for one sampling run (synthetic data from the stochas-
tic balloon model). After the first few hundreds of samples, the likelihood seems
to have converged.

Most importantly, it is possible to confirm for synthetic data, that the true
parameter values are contained within the obtained sampling distributions. The
assumption that sampling with similar settings will yield a good approximation
of the posterior distribution for real data is not accurate, since the real data were
not actually generated by the model, but there is some confidence that some
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properties will be shared. More samples are then generated for real data than
what was found necessary for the synthetic data, to take into account the likely
discrepancy between real and synthetic data. This use of synthetic data seems
to be one of the best indicators of how long the sampling needs to be. Parameter
histograms are shown in chapter 7/ together with the model comparison results.
For simulated annealing, it is also possible to compare the MAP estimates with
the true values, and figure 6.7 shows an example for the stochastic version of
the standard balloon model where the MAP estimates for o and € converges to
the true values.

An example of MAP learning for the UKF is shown in figure [6.11), in which the
estimate of the hidden variable v(t) (blood volume) before and after learning is
also shown.

1 1
0.8 1 0.8
0.6
<]
0.4 - W P 3
0.2 1 0.2
0 0
100 200 300 400 500 100 200 300 400 500
A sample index B sample index

Figure 6.7: Convergence of the estimated parameters o and € to the true values
during simulated annealing. Synthetic data; only 500 samples from the 3000-
long sampling run are shown for clarity. The dashed line shows the true value,
and the initial values are marked on the y axis.

Finally, it is worth considering that even if not completely converged, the pos-
terior approximation might still be a better approximation than those obtained
using point estimate methods, such as maximum likelihood or maximum a pos-
teriori.

6.7 Ergodicity

The sampling is constrained to be within the region defined by the priors, with
the noise variance o2 being the only exception. There have been observed
rare occurrences of certain combinations of parameters that lead to failure of
the integration of the ordinary or stochastic differential equations. However,
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Figure 6.8: Autocorrelation for 75 as a function of lag, for several different
sampling runs (synthetic data). This shows that around 200-1000 samples are
needed for each independent sample.

as these are isolated points in parameter space, there are no barriers across the
whole of the prior region that would make the sampling non-ergodic. It has been
consistently found for all of the experiments with synthetic data, that the true
parameters could be approximately retrieved, so ergodicity is not a practical
problem with the present models.

6.8 Modifications of the stochastic augmented
model

For certain hemodynamic states, the ODE’s become ill-defined. For instance, if
the inflow, f(¢) is a very small negative number, the extraction fraction becomes
a very large negative number (see (3.5))), leading to unphysiological behavior and
numerical problems in the solution of the system.

Also, negative in- and out-flows are not physiologically acceptable in themselves,
but may occur as there is no prevention mechanism for this in the models. The
models assume that inflow is solely controlled by a stimulus signal, but it could



6.8 Modifications of the stochastic augmented model 77

QL7

QBB S

Q.G o

0.4 v o

0.35 0.4 0.45 0.5

Figure 6.9: Scatter plot of a and e parameter samples obtained from several
sampling runs (synthetic data from the standard balloon model); notice the
high degree of overlap. The true parameter values are & = 0.4 and € = 0.5.

be argued that no amount of negative stimulus from neural activity could drive
the blood flow to actually reverse direction. The relative blood volume, v(t),
may also become negative, which is not even physically conceivable.

These issues did not lead to problems for the deterministic models or the stochas-
tic version of the standard balloon model. For the stochastic version of the aug-
mented balloon model, however, they did, for both real data sets. Although the
predicted mean states rarely entered these critical regions, some of the sigma
points were found to move into them.

In order to resolve these issues, the following modifications were made for the
stochastic version of the augmented balloon model. To the ODE’s for f(t),
fout(t) and v(t) were added terms of the form

(t)?

where ¢ < 1.0 is a suitably small number and z(t) represents any of the relevant
states. This term only becomes significant in the vicinity of z(¢) = 0.0.
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Figure 6.10: Acceptance rates for several sampling runs (synthetic data from the
standard balloon model). The rates are consistently in the appropriate range.

However, even with these modifications, the stochastic version of the augmented
balloon model was unable to converge (using simulated annealing) to a good fit
of the BOLD signals in either of the two real data sets. Despite extensive work
to find a reason for this problem, no progress was made. Due to time constraints,
this model variant was not investigated further.



6.8 Modifications of the stochastic augmented model 79

~x10
4
8 3
2
3 S
X
> 21
o
0
200 400 600 800 1000 0 100 200 300 400 500
A sample index B sample index
n i n
1.6 ; R i | T True 0.03 —Obs
B A " ] - - -Initial - - -Initial
15 R (1Y 0.025 - MAP
1.4 0.02
13 o 0015
S12 3
Q o001
11 0.005]
1] q
oy
0.9
—0.005|
0.8
-0.01
0 20 40 60 80 100 0 20 40 60 80 100
C time(sec) D time(sec)

Figure 6.11: Example of MAP learning for the UKF, using synthetic data gen-
erated by the stochastic balloon model. A: Log likelihoods for two different
sampling runs, one with a length of 20000 samples, the other with 3000; only
1000 samples are shown from either run for clarity. B: MAP estimate of the
observation noise variance o2, is found quickly (500 samples shown; dashed line
shows the true value. C: Closeup of v(t) estimates. D: BOLD prediction (on
training data) before and after learning.



80

Markov chain Monte Carlo learning




CHAPTER 7

Model comparison

7 All models are wrong, some are useful” - George Box

The main goal of this work is to build a framework for the evaluation and
comparison of the quality of different hemodynamic models. Such a framework
is important as it links the model design process, based on physiological and
mathematical assumptions, to actual fMRI data - the 'real world’. This link
is necessary to encourage progression towards better models and thus increase
our knowledge about the brain, in particular as seen through the BOLD fMRI
modality.

7.1 Model evaluation and selection

Sometimes the purpose of model evaluation is to select one model over others for
a particular use. In this work, the focus is on building a framework for the eval-
uation of models, and not so much the actual model selection itself. The latter
is context dependent, but the present model evaluation and comparison frame-
work should allow for informed model selection in cases where model selection
is desired.
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7.2 Bayes factors versus prediction

The basic, classical Bayesian approach to model evaluation and comparison is
the so-called ’evidence framework’, in which the posterior probability (density)
of each model,

p(D|M;)p(M;)

(7.1)

is considered as the measure of a model’s quality. Comparison of two models is
then expressed through the Bayes factor, p(My|D)/p(Mz|D).

p(D|M;) is called the evidence for model M;, and p(M;) is the prior for that
model (usually considered equal for all models, since there is no a priori belief
that one model should be better than others). The evidence is obtained by
marginalization of the model parameters,

p(DIM;) = / p(D16, M)p(6M)do (72)

where the model-dependent parameter prior p(8|M) is the same as the p(6) used
in previous chapters (only with the model dependency implicitly given by the
context).

A very good review of Bayesian model selection methods is given in [12] (see
also [11]), and there are extensions (especially the ’intrinsic Bayes factor’) of
this basic Bayesian model evaluation approach that in some circumstances can
mitigate some of the drawbacks, which are mainly:

The true model must be included If the true model is not included, the
result can generally not be trusted (cf. the opening quote in this chapter).

The priors must be proper If not, the numerical value of the Bayes factor
is arbitrary and thus uninterpretable.

However, these drawbacks still basically characterize this approach and the
Bayes factor approach is not wholly ’trustworthy’ due to these difficulties. Based
on these considerations, the alternative prediction framework, described in the
following, is chosen as the tool for model evaluation and comparison in this
work (see [79] for a similar approach, although reproducibility is not considered
in this reference).
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7.3 Prediction

It is natural to consider the prediction ability of a model that has learnt a
posterior parameter distribution p(6|D) on a training data set, and is then
evaluated on a test set D*, marginalizing (averaging) over the posterior,

p(D*|D, M) = /p(0|D,M)p(D*|9,M)d0. (7.3)

where M is the model. This integral unfortunately cannot be solved analytically
due to the non-linearities involved in these models. For deterministic state space
models where MCMC samples are available, the MCMC approximation

L
/p(9|D, M)p(D*|6, M)df ~ %Zp(D*\H(i), M) (7.4)

can be used, since it approximately holds that (i) ~ p(6|D, M)) (L being the
number of samples). For the stochastic models, the MAP approximation can
instead be used to give

p(D*|D, M) ~ p(D*|0rrap, M) (7.5)

This prediction measure is an objective cost function that does not depend on
the right model being included in the group of models to be compared, and
neither do improper priors pose any difficulty. One might say that in this
approach, the Bayesian idea is used as the optimal way of predicting using the
posterior distribution of the parameters. The Bayesian averaging involved in the
prediction is known to be optimal, in some cases even when the chosen prior is
not identical to the 'true prior’, i.e. the prior that is assumed to have generated
the data (see [35]).

This measure can also be thought of as measuring generalization, i.e. the ability
of a model to learn on one data set and generalize what has been learned to a
different data set. Generalization is a central goal of all machine learning (see
[48], so this measure is intuitively pleasing as well. The generalization ability
for a given model, training and test set is formally defined as the logarithm of
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the predictive distribution,

G(D*, D, M) 2 logp(D*|D, M). (7.6)

7.4 Reproducibility

A second goal of machine learning is reproducibility. This is a more recent
concept than generalization, and is well described in [76] and [75]. It is related
to, but different to generalization.

Reproducibility concerns the sensitivity of what is learned to the particular data
set used for training. This is highly relevant in model comparison, because a
model that generalizes well with parameters that vary greatly depending on the
particular training data set used might be less attractive than a model with
a slightly lower ability to generalize, but that produces more robust posterior
parameter distributions. This is particularly so in the case of 'physiological’
models where the parameters carry physiological meaning. The weight one
assigns to generalization and reproducibility is therefore context dependent.
For instance, if de-noising of the BOLD signal is the objective, generalization
will be important; if one wants to understand the mechanisms underlying the
BOLD signal, reproducibility could be more important.

There is a natural way to measure reproducibility when the generalization ap-
proach is used, and that is by considering that the posterior parameter distribu-
tion, p(6|D, M) contains the information needed on what the model has learnt.
A measure is then needed of the similarity of posteriors obtained conditioned
on different data sets, and a natural candidate is the Kullback-Leibler distance
([19]) between the distributions. This can be estimated when MCMC sampling
approximations of the posterior are available, but not when only MAP estimates
are provided. In the latter case, a simple percentage-wise deviation measure is
used instead, as described below.

7.4.1 Kullback-Leibler reproducibility measure

A given split of the data into a training and a test set can be inverted by con-
sidering the training set as the test set and vice versa. By learning parameters
on both sets, in this context just called Dy and Ds, it is possible to measures
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reproducibility by the negative Kullback-Leibler (KL) distance between the two,

p(9|D17M)

(01 Da, ) de (7.7)

R(M,Dl,DQ) £ —/p(G\DhM)log

Higher KL distance of course equals less reproducibility, hence the minus sign.

Since this depends non-trivially on the dimensionality and shape of the distri-
butions, the KL distance is averaged over dimensions, i.e. the KL distance is
calculated for each dimension seperately, and the mean is then taken.

7.4.2 Kernel density estimators

Since only samples of # are available, [7.7/ cannot be calculated directly. Instead,
some form of probability density estimate must be used. The traditional method
is to use the histogram approximation, but this has several drawbacks, so a
kernel density estimator is used instead. This is a non-parametric method where
identical Gaussian distributions are used as kernels, centered on each sample,
so that the posterior distribution is approximated as

L
1
D, M)~ — K .
p(0|D;, M) L; (u) (7.8)
where

(9 — Gi)TS’l(G — 91)
h2

(7.9)

U; =

is a distance measure between 6 and the i’th sample.

The covariance matrix S is calculated from all the samples, and h - the 'kernel
bandwidth’ - is defined as

4 1/(d+4)
h = {(d+2)} L1/ (a4 (7.10)

where d = dim#. For further details, see [57].



86 Model comparison

It was found that using 100 uniformly distributed samples from the entire
MCMC sample was enough to get a good estimate of the KL distance.

7.4.3 Percentage deviation reproducibility measure

As an estimate of reproducibility for the models learned through MAP param-
eter estimates is chosen the negative of the percentage-wise difference between
the parameter estimate from each split of the training data and the mean of the
two estimates,

_‘él_MO‘

R(MaDhDQ) £
He

(7.11)
where 6; is Oyrap for data set i and po = (él + ég)/Q is the mean of the two
estimates.

When one (deterministic) model has been learnt as MCMC samples, and another

(stochastic) as a MAP estimate, the mean of the approximated MCMC posterior
can be used as a representative point estimate of the distribution,

1 &
o==-350, (7.12)
=1

I

and the percentage-wise measure of reproducibility can then be used for both
models.

7.5 Relation to AIC and BIC

Several model comparison methods exist that rely on asymptotic assumptions,
meaning that they can only be relied on to give accurate comparisons when the
samples size is very large (see e.g. [44]). Since in the present case this is not the
case, they are not really applicable.

However, it is interesting to note that the Bayesian Information Criterion is
based on Bayes factors, whereas the Aikaike Information Criterion is based
on expected likelihoods over all possible data sets. This means that the AIC is
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closer in principle to the present approach, and the resampling method described
below.

7.6 Resampling

The generalization measure for a given model depends on a particular choice
of training and test data sets (see (7.0)). But a better generalization estimate
would be independent of these choices, and so they should be marginalized.
First, the mean predictive generalization over test sets is

G(D,M) = (G(D*, D, M)),,(p-y = /[1ogp(D*|D,M)]p(D*)dD*.

From this it can be seen that apart from an additive constant (the entropy of
the true distribution), the mean generalization so defined is equal to minus the
Kullback-Leibler distance between the ‘true’ distribution of the data, p(D*),
and the model distribution, p(D*|M).

This measure still depends on the choice of training data set. Marginalizing
again, the average generalization over training data sets is

G(M) 2 (G(D, M)),py = <<G(D*’D’M)>p<D*)>p<D> B

-/ [ / 1ogp<D*D,M>p<D*>dD*] p(D)dD

These integrals can not be computed with the present models. However, using
a cross-validation approach (see e.g. [13], [69]), they can be estimated using
a resampling procedure. Resampling is a method of obtaining statistical esti-
mates when the sample size is small and traditional large-sample methods are
inapplicable ([3]). Here, the method of ’split-half resampling’ is used, mainly
because of its suitability for estimating reproducibility (see [70], [75]). The
available data (BOLD data divided into independent epochs) is split randomly
into two halves multiple times, in this way ’sampling’ from the simultaneous
distribution of test and training data sets, p(D, D*). This gives an approximate
generalization measure,

K K
Z og p(D}|D;, M) = Z G(D}, D;, M). (7.13)
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With 10 quasi-independent epochs available, each split of the data uses 5 each
for the test and training sets. Each of the resulting estimates is an unbiased
estimate of the model generalization. The mean over all splits is a convex
combination and thus also an unbiased estimate, but with a reduced variance.
In fact, each split allows either half-set to be treated as training and test set, so
there are actually 2 estimates of the generalization with each split. The maximal
size of K depends on how many epochs are available, but only K = 20 have
been used here.

In parallel with the estimation of generalization (7.13), the KL distance is mea-
sured between the two posterior parameter distributions of each split half, and
the reproducibility is then the average over all splits

p(d| D}, M)

p(@102, 1) % (7.14)

ROM) =~ Y- [ 961D} 20)log

where D} and D? are the two data sets in split 1.

Similarly, the percentage-wise reproducibility measure is estimated as

Ly 10— ool
Ri(M)é—EZ “Meue (7.15)
i=1

where R;(M) is the estimate for the current split and 0;; is the parameter
estimate for the first half (or second, as the result would be the same) of the
current split, and pg is the mean of the two.

Resampling is a widely applicable technique, not least the so-called ’bootstrap-
ping’ approach, see e.g. [3], [34], [22].

7.7 Generalization and reproducibility tradeoff

Generalization and reproducibility performance estimates present the model
user with a tradeoff. A model that is incapable of fitting the data well may still
learn very similar parameters (or distribution thereof), independent of which
data are presented to it. But most likely, such a model will be useless because
it cannot ’explain’ the data. On the other hand, a more complex model may
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learn the data well, measured in terms of generalization ability, yet may give
very different answers for the parameters depending on the data set it learns
from. This could be due to internal invariances, i.e. the likelihood function
p(D|0) could be very flat in some regions, or have multiple optima of similar
values. Thus, the MAP parameter estimate would change with small random
perturbations such as would occur with changes in the data set, and the poste-
rior distribution would reflect these invariances to some degree (depending on
how accurate an approximation is obtained). Such a model may be useless in
another way, namely if the parameters have some meaning and the information
they carry is to be interpreted, such as with the physiological parameters in the
hemodynamic models. It is therefore up to the users to select which model is
the best for the task at hand. Sometimes, of course, a certain model might have
both the highest generalization ability and the highest reproducibility, and the
choice would then be clear; but this is not typically the case.

7.8 Experimental results

Results are presented here in order of data sets, starting with the synthetic data.
First, a brief description of the types of results shown is given.

7.8.1 Parameter histograms

For the deterministic models, histograms are shown for the MCMC sampling of
the parameters. The initial ’burn-in’ samples, including those used to estimate
the proposal distribution, but also those samples deemed to precede convergence,
are disregarded. The samples from all the resampling splits are pooled together.
Some split-half sampling or simulated annealing runs may not have converged
(as determined by the convergence criteria outlined in section [6.6)), and those
are excluded prior to further analysis.

7.8.2 Mean BOLD predictions

For each iteration of the split-half resampling, a predicted mean BOLD signal
on the test data results. This allows a mean of the mean prediction to be shown,
together with confidence intervals for the mean.

The prediction of the mean BOLD signal for any sample in a test data set is
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given by

Elg(yn)] = / 9(yn)p(yn|D) (7.16)

where D is the training set. This mean prediction is of course closely related
to the likelihood, and it is approximated using the MCMC samples in the same
way,

N
/g(ym p(0|D) ~ Z 9(yn; 0:) (7.17)

For the MAP estimates (stochastic model), the approximation is
/g(yn;9)p(9lD) ~ 9(Yn; Onap) (7.18)

7.8.3 Empirical confidence intervals

For the MAP parameter estimates and the mean BOLD test predictions (7.18]),
there are only as many estimates as there are splits. For these, empirical confi-
dence intervals can be calculated, without needing to assume normal distribu-
tions. For a desired f - 100-percent confidence interval, the empirical confidence
interval can be found by simply sorting the N samples and removing M /2 of the
lowest and highest values, where M = (1 — f)N. The interval is then defined
by the lowest and highest of the remaining samples.

However, since the number of splits used is never greater than 20, the variance
of the empirical confidence interval limits is high. Therefore, the choice was
made to use the interval bounded by the lowest and highest of the samples,
corresponding to a 100 % confidence interval. It should be noted, of course,
that the limits of these intervals have significant variance, but they do capture
some information as to the uncertainty of the estimate.

The BOLD predictions and their bounds shown in all figures use these empirical
confidence intervals. It must be kept in mind that they apply to the variance of
the mean prediction, and that the total variance of the BOLD signal is composed
of this mean variance and the observation noise variance, modelled by o2 .
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7.8.4 Convergence of parameters

As en example of the convergence of the parameters to the true values for
synthetic data, the standard balloon model was learnt on the synthetic data
generated by itself. The histograms are shown in figures 7.1 and [7.2l

2.5 3 00 0.5 1

Figure 7.1: Histograms of the hemodynamic parameters of the standard balloon
model, learned from a synthetic data training set generated by itself. The true
parameters are marked on the x axis of each figure.

As the figures show, the true parameters are generally contained within the pos-
terior distribution and quite close to their mean. The corresponding prediction
on test data is shown in figure [7.3l This procedure was also carried out for the
augmented balloon model and the stochastic version of the standard balloon
model, and convergence was also found (not shown).

For the deterministic models learning on synthetic data, 15.000 MCMC samples
(after burn-in) were found to be sufficient, while 3.000 simulated annealing sam-
ples were enough for convergence in the case of the stochastic model. For the
real data sets, 40-50.000 samples were generated for the deterministic models,
and 4.000 simulated annealing steps where done for the stochastic model.
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Figure 7.2: Histograms of the observation noise variance of the standard balloon
model, learned from a synthetic data training set generated by itself. The true
parameter is marked on the x-axis.
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Figure 7.3: Test prediction of the first two epochs for the standard balloon
model, trained on synthetic data generated by itself.

7.8.5 Deterministic models - synthetic data

The generalization and reproducibility of the deterministic models were first
compared on the synthetic data set generated by the standard balloon model.



7.8 Experimental results 93

Figure 7.4 shows the result.
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Figure 7.4: Generalization and reproducibility for the two deterministic models,
evaluated on the synthetic data set generated by the standard balloon model.

When data are generated by the simpler standard balloon model, then - as might
be expected - both the generalization ability and reproducibility are seen to be
higher for the simple model, although reproducibility is not significantly higher.
But when data are generated by the augmented balloon model, the situation is
more complex: the true (augmented) model is able to generalize significantly
better, but the deterministic model is still more reproducible, see figure [7.5.
This relatively poor reproducibility is probably due to the added complexity
of the model, and means that either model could be chosen as the ’best’ one,
depending on the intended use of the model. It is possible that with higher
variance in the hidden state noise, the true model would outperform the simpler
model in both reproducibility and generalization.

7.8.6 Deterministic models - data set 1

Figures [7.6/ and [7.7 show the histograms of the parameters of the standard
balloon model, when it is trained on data set 1. The most outstanding feature
is the high range for «, a priori expected to be close to 0.4, but here has a
posterior mean of 0.92. This corresponds to a much reduced stiffness, but it is
hard to state wether or not this is very surprising. As noted in [23], the effect
of changing o is not very marked. 7y is also floating around the maximum of
the prior (74 = 8) and it might be interesting to see the effect of increasing the
upper bound in the prior. For the other parameters, the distributions are more
as expected.
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Figure 7.5: Generalization and reproducibility for the two deterministic models,
evaluated on the synthetic data set generated by the augmented balloon model.
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Figure 7.6: Histograms of the hemodynamic parameters for the standard balloon
model, learnt on data set 1. Note the high values of «, the inverse stiffness
parameter.



7.8 Experimental results 95

9.2 14 1.6

1.8 2 2.2 2.4
2

O x 10

Figure 7.7: Histograms of the observation noise variance parameter for the

standard balloon model, learnt on data set 1.

Figures 7.8, [7.9/and [7.10/ show the histograms for the augmented balloon model
for this data set. Here, « is more in the expected range, with the exception of
a few samples in the 0.9 area, as with the standard model. Ey, however, is very
high and very close to 1.0 for many samples. This may indicate a bad fit of this
model to this data, since extraction fractions above 0.55 (see [23]) are unusual.
The distributions of x and 7, correspond to a very square-like neural activity
function, which makes sense if the standard model is indeed the best model for
this data. Together, these results do seem to indicate that a square-pulse neural
activity function is a good approximation for this data set. 7, and 7_ are not
identical, but beyond that it is best left up to physiological experts to interpret
the distributions, although it may not be very relevant if the augmented model
is not suitable for this data set. o2 is slightly higher than for the standard

w
model, confirming a relative inability to fit the data for the augmented model.

The BOLD predictions on test data for the two models are shown in figure
7.11, together with the generalization and reproducibility comparison. The
performance diagram shows very clearly that the standard balloon model is the
best choice for this data set. The BOLD test prediction for the augmented
balloon model is particularly bad for the first epoch (figure [7.TTC), but is more
similar to that shown for the second epoch for the other epochs (not shown).
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Figure 7.8: Histograms of the observation noise variance parameter for the
augmented balloon model, learnt on data set 1. Note the extremely high value
of E(].

7.8.7 Deterministic models - data set 2

The parameter histograms for the standard balloon model are shown in figures
7.12 and [7.13l Compared to the parameter distributions found for data set 1
(figure [7.0)), « is distributed around 0.5 and is thus much more in accordance
with physiological expectation. It would also seem that the marginal distribu-
tions for 7 and 75 are bi-modal, corresponding to two different ’explanations’ of
the signal being given by the model. As for the previous histograms, it may also
be noted that the posterior distributions generally have a much lower variance
than the prior distributions, confirming that learning has indeed taken place.

The augmented balloon model parameter histograms are shown in figures [7.14,
7.15land [7.16. The parameters that are shared with the standard balloon model
are not all that differently distributed, except for 79 and Ej. The neural activity
parameters are not indicating a square-pulse neural activity shape for this data
set, and this is interesting considering the very different stimulus signal used to
generate this data set. In [15] it was found that for long stimulus pulses (> 3
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Figure 7.9: Histograms of the additional parameters of the augmented balloon
model, learnt on data set 1.
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Figure 7.10: Histograms of the observation noise variance parameter for the
augmented balloon model, learnt on data set 1.

seconds), linear models were adequate, while for 3-second pulses, they were not.
[15] also report from [I4] and [2] that neural adaptation occurs after 0.5 to 7
seconds after prolonged visual stimulation, which can be compared to the mean
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7. found here of around 2.0 seconds.

Interestingly, the distributions for 7 and 7_ are similar for both data sets. The
distribution of o2 for both models are very similar (figure7.13 and figure [7.16),
indicating that both models attain roughly the same error on the training data.

The performance results are less clear-cut than for data set 1, see figure [7.17.
Still, the standard balloon model does seem to be a better model both in terms of
generalization and reproducibility, as for data set 1. The BOLD test predictions
are hard to distinguish visually, giving an indication of the sensitivity of the
generalization and reproducibility metrics.

7.8.8 Standard and stochastic balloon models - synthetic
data

As the augmented balloon model was somewhat overshadowed by the standard
model for both real data sets, the next step taken was to compare the standard
balloon model (also referred to here as the 'deterministic model’) to the stochas-
tic version of the standard balloon model (also referred to as just the ’stochastic
model’). Also, as noted in section [6.8, the stochastic version of the augmented
balloon model exhibited problems with convergence.

The results for the synthetic data set generated by the standard balloon model
are shown in figure[7.18. Although the BOLD test predictions look very similar,
the generalization-reproducibility scatter plot reveals the better performance of
the true model.

For the synthetic data generated by the stochastic model, the result is not quite
the opposite, see figure [7.19. As before, the more complex model has a lower
reproducibility, even when it is the true model. However, the generalization
ability is clearly best for the true, stochastic model.

7.8.9 Standard balloon model and the stochastic version
- data set 1

Figure [7.20 shows that the deterministic model has both a higher reproducibil-
ity and a higher generalization ability than the stochastic model for this data
set. This is a very clear result, again demonstrating a very high degree of suit-
ability of the standard balloon model for this (type of) data. The BOLD test
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predictions also reveal that the stochastic model’s mean predictions are less
certain.

7.8.10 Standard balloon model and the stochastic version
- data set 2

Figure [7.21] shows that for this more 'complex’ data set, the stochastic model
proves to have a higher generalization ability, although again, the simpler de-
terministic model is more reproducible. The ability of the stochastic model to
express greater variation in the mean BOLD signal through the addition of noise
in the hidden state space and thus fit to more complex BOLD signals seems to
be rewarded for this data set. It seems that yet again, increased flexibility comes
at a price, namely a reduction in reproducibility.

The mean values of the MAP parameter estimates of the stochastic model are
shown in table 7.1, together with the smallest and highest values across all
split-half resampling estimates. Compared to the distributions obtained for the
deterministic models, the mean values are very different, but the variances are
roughly similar. The much lower estimate of o2 is deceptive, since there are
other noise sources in the stochastic model, not present in the deterministic one.
For these hidden state noise sources it is interesting to see that the standard
deviations for v(t) and s(t) are roughly double that of ¢(¢) and f(¢). This might
indicate that the components of the model corresponding to the former states
are most lacking in accuracy, leading to the possible interpretation that these
two components should be modified.

Mean Smallest Highest

@ 0.2105 0.0987 0.376
€ 0.2698 0.1493 0.766
To 2.7675 2.1667 3.301
Ts 1.2212 0.8889 2.166
Tf 3.0462 2.0935 3.971
Ey 0.5473 0.3337 0.763
Oy 0.1090 0.0617 0.202
o 0.0448 0.0107 0.090
oy 0.0368 0.0041 0.102
Os 0.0815 0.0300 0.160
o2 | 1.24e-005 | 4.90e-006 | 3.76e-005

Table 7.1: MAP parameter estimates for the stochastic version of the standard
balloon model, trained on data set 2.
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7.9 Discussion

The results presented here indicate that the simpler deterministic model - the
standard balloon model - is better than both the augmented balloon model
and the more complicated stochastic state space model for the real data based
on a straight forward block stimulus design (data set 1). When compared on
data generated with a more complex stimulus function, the stochastic model
is shown to be better able to capture the structure of the resulting BOLD
signal. The price seems to be a reduced reproducibility, so that the physiological
interpretation of the stochastic state space model is less clear. These results
indicate the crucial importance of considering the context and task when doing
model comparisons. In [§], the conclusion (based on visual and motor tasks) was
that probably both the neural and the hemodynamic activity were non-linear.
The results presented here seem rather to indicate that the non-linearity is first
and foremost in the hemodynamics, yet again underlining the dependence of the
results on the exact task and setup (see also [64]).

With more data, generalization and reproducibility would increase for both
models, and a different comparison result could be obtained. It would be of
great interest to see similar comparisons for other amounts and types of data -
such as across different parts of the brain and different stimuli - and for other
models not investigated here (e.g. [40], [7] and [83]).

7.9.1 Sources of variability

The variance in the performance estimates will come from at least four different
sources.

The first is the result of mathematical invariances in the model itself. For
instance, as mentioned before (see 3.6.2)), increasing x and decreasing € together
can produce similar BOLD responses, as the increase in x leads to weaker neural
pulses, for which the increase in the ’gain’ factor € can compensate.

The second type of variance is from the data itself - the likelihood for a given
data set is not sharply peaked and thus gives a natural variance in the posterior.
There may also be several regions in parameter space with similar likelihoods
(local optima).

Both of these sources result in flat regions or ridges in the likelihood and prob-
ably also multiple modes, that are reflected in the posterior.
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Third, the MCMC method does not give the same result on every run. Indeed,
this realization is the very reason for doing multiple MCMC runs, so that one
can with reasonable confidence believe that the variance from the algorithm has
been exhausted and further runs will not reveal significant new information on
the posterior distribution.

Finally, the resampling framework introduces variance of its own, in that each
split of the data will lead to slightly different posterior approximations.

From a physiological viewpoint, only the first of these sources of variation is a
nuisance - the others all reveal informative variation present in the data with re-
spect to the model under investigation. The mathematical invariances, however,
should preferably be relatively small, or else the physiological, interpretative use-
fulness of the model comes in question. The physiological priors hopefully help
in dampening these invariances, as was seen with x and 7.

Figure [7.22! shows the likelihoods of the split-half simulated annealing runs for
the stochastic model (learning on data generated by itself) and the correspond-
ing convergence of one of the parameters («). There is some bias from the truth
(o = 0.4) across the splits, and this is most likely mainly due to the noise in
the data. However, the split-half farthest from the truth is also the one with
the lowest likelihood, illustrating that some of the bias may be from incomplete
convergence of the simulated annealing algorithm.
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Figure 7.11: Standard and augmented balloon model results for data set 1. A:
Comparison of generalization (G) and reproducibility (R) of the standard and
augmented balloon models. B: Prediction of the first two epochs of two test

epochs by the standard balloon model. C: Prediction of the first two epochs of
two test epochs by the augmented balloon model.
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Figure 7.12: Histograms of the hemodynamic parameters for the standard bal-
loon model, learnt on data set 2. Note the bi-modal appearance of two of the
time constants, 75 and 7.

Figure 7.13: Histograms of the observation noise variance for the standard bal-
loon model, learnt on data set 2.
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Figure 7.14: Histograms of the hemodynamic parameters for the augmented
balloon model, learnt on data set 2.

Figure 7.15: Histograms of the hemodynamic parameters for the augmented
balloon model, learnt on data set 2.



7.9 Discussion 105

X 10

14

Figure 7.16: Histograms of the observation noise variance for the augmented
balloon model, learnt on data set 2.
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Figure 7.17: Standard and augmented balloon model results for data set 2. A:
Comparison of generalization (G) and reproducibility (R) of the standard and
augmented balloon models. B: Prediction of the first two epochs of two test
epochs by the standard balloon model. C: Prediction of the first two epochs of
two test epochs by the augmented balloon model.
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Figure 7.18: Results for synthetic data, generated by the deterministic model,
and learnt by that and the stochastic model. A: Comparison of generalization
(G) and reproducibility (R) of the deterministic state space and the stochastic
state space models. B: Prediction of the first two epochs of two test epochs by
the deterministic model. C: Prediction of the first two epochs of two test epochs
by the stochastic model.
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Figure 7.19: Results for synthetic data, generated by the stochastic model, and
learnt by that and the standard balloon model. A: Comparison of generalization
(G) and reproducibility (R) of the deterministic state space and the stochastic
state space models. B: Prediction of the first two epochs of two test epochs by
the deterministic model. C: Prediction of the first two epochs of two test epochs

by the stochastic model.
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Figure 7.20: Deterministic and stochastic model results for data set 1. A:

Comparison of generalization (G) and reproducibility (R) of the deterministic
state space and the stochastic state space models. B: Prediction of the first two
epochs of two test epochs by the deterministic model. C: Prediction of the first
two epochs of two test epochs by the stochastic model.
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Figure 7.21: Deterministic and stochastic model results for data set 2. A:
Comparison of generalization (G) and reproducibility (R) of the deterministic
state space and the stochastic state space models. B: Prediction of the first two
epochs of two test epochs by the deterministic model. C: Prediction of the first
two epochs of two test epochs by the stochastic model.
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Figure 7.22: A: Simulated annealing likelihood increasing as samples are gener-
ated. As the temperature decreases, fewer of the random proposals are accepted.
Synthetic data generated by the stochastic balloon model (noisy hidden states).
10 runs are shown based on as many different splits with 5 epochs in each train-
ing set. B: Corresponding convergence of the o parameter (true value is 0.4);

only 200 evenly spaced samples of the original 4600 samples are shown here for
clarity).
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CHAPTER 8

Conclusion

” After all is said and done, more is said than done.” - Aesop

In this Ph.D. work methods have been developed that are able to successfully
learn the parameters of non-linear models for fMRI, both in a classical formu-
lation, and in a stochastic state space formulation. A framework has also been
developed for comparing models in terms of their ability to generalize, and also
in terms of reproducibility. The latter is measured as the robustness of the
learned parameters to changes in training data. Comparison of models can then
be done in a principled manner, by considering both these measures together.
It is important to apply such comparison methods to current and new models
to determine their relative merit for use in different contexts.

This framework for evaluating and comparing the quality of the models was used
on real data to reveal significant differences in the suitability of the different
models for different data. In particular it was found that for the block-design
data set used here, the standard balloon model was well suited and outperformed
other models. For the data set created by rapid, random, event-related stimuli,
however, it was shown that the complexity of the stochastic state space model
is a worthwhile addition. The model comparison framework was further verified
by results using synthetic data sets, showing that it is possible to correctly
distinguish the performance of the models.
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It must be noted that these conclusions are based on the 'philosophical’ choice
of using fixed, physiologically based prior distributions for the parameters. If
the priors instead were represented by parameterized functions (using "hyper-
parameters’) that were fit to the data, it is possible that different conclusions
would be reached.

The research in BOLD fMRI is a very active field, and a great deal of work has
been done to investigate the relationships between stimuli and neural activity,
between neural activity and the hemodynamic response, and the dependence of
the BOLD signal on different types of stimuli (see e.g. [56] and [70]).

However, the widespread adaptation of non-linear models of the type described
in this thesis has not yet quite happened. It may be hoped that methods for
meaningful estimation of model quality, such as those developed in this work,
will further the application of these model families.

8.1 Future research directions

The experiments have shown that the assumptions of stationarity across time
of all model parameters may not generally hold. Both the phase and amplitude
of the BOLD signals seem to vary slightly across epochs. Although some of this
could be attributed to artifacts not completely removed during preprocessing,
there seems to be room for improvement of the models. This can either be
done by adding specific model components that can explain such variation, or
by considering whether some parameters, such as €(t), are better thought of
as time-varying variables. Related models could also be subjected to similar
analysis, such as [46] and [83], and compared to the models investigated here.

On the learning front, there are alternatives to MCMC approximations, for ex-
ample variational Bayes (see e.g. [20], [77]); see [21] for an exciting combination
of variational Bayes and MCMC. There are also many possible refinements of
MCMC (other than parallel tempering), e.g. [60], [59]. An obvious research
area is the comparison of various learning methods for these models.

These models may be inverted to produce estimates of neural activity as indi-
cated in the work of Riera et al. [68]. This task is often referred to as deconvo-
lution, because the BOLD signal is seen as a convolution of the neural activity
signal with a (linear) hemodynamic response function (see e.g. [29]). In [68] a
regularized radial basis function set is used, with parameters estimated using
a likelihood based approach which leads to rather smooth activation estimates.
Using our Bayesian sampling approach from an augmented posterior distribu-
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tion including parameters of the neural activity time course (such as stimulus
onset times etc.) may be a way to let data determine the level of regularization,
hence, potentially lead to more crisp estimates of non-trivial neural activation
sequences. This would be of particular interest in more complex activation
designs involving different stimulus activation conditions within epochs.

Deconvolution would also allow whole-brain estimation of model parameters,
since there would be no requirement to know the neural activity in advance. The
properties of the parameters across the brain (individual, spatial variances), and
across subjects, could then be investigated. Deconvolution is a very important
application of these models, and it is hoped that more work will be done to
attempt deconvolution with hemodynamic models.

A major limitation of the current models is found in the spatial dimension. The
common assumption is that the region of interest is in essence one big vascular
balloon’, and neither internal or external spatial interactions are considered.
With voxels getting smaller as scanners improve, the assumption of no spatial
interaction does not hold. It is well known that activation in one location will
affect the BOLD signal in surrounding area because of capillary recruitment etc.
Therefore, an obvious improvement to the hemodynamic models is their exten-
sion to take spatial interactions into account. On the level of regions (several
voxels), dynamic causal models ([24]) offer an interesting spatial extension of
non-linear hemodynamic models. On the voxel level, an interesting approach
was presented at the Human Brain Mapping conference in 2006 (HBM2006)
[38]; this is a continous-space continous-time physical model that is still in de-
velopment. A Bayesian discrete temporal-spatial approach is given in [82]. A
continuous-space, continuous time formulation of a hemodynamic model is a
natural next step for this model family.
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This appendix contains the article Identification of non-linear models of neural
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Imaging: Macro to Nano, 2006, pages: 952-955. Author list: Daniel J. Ja-
cobsen, Kristoffer Hougaard Madsen and Lars Kai Hansen. Own contribution
approximately 90%.
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IDENTIFICATION OF NON-LINEAR MODELSOF NEURAL ACTIVITY IN BOLD FMRI
Daniel J. Jacobsen, Kristoffer Hougaard Madsen, Lars Kai Hansen

Intelligent Signal Processing
Technical University of Denmark

ABSTRACT ance ofw,, and six physiological parametérsombined in
Non-linear hemodynamic models express the BOLD signal ag = [(y ey 7s T Eo n‘f,,]T. Ej is the so-called ‘resting net
anonlinear, parametric functional of the temporal seqe@fic oxygen extraction fraction in the capillary bed’.
local neural activity. Several models have been proposed fo  In addition, we assume that the states evolve from an ini-
this neural activity. We identify one such parametric modetial known resting statg, = [0 1 1 1]T. The latter assump-
by estimating the distribution of its parameters. Thesgidis tion is reasonable if a suitably long resting period presede
butions are themselves stochastic, therefore we estilneite t stimulation sequences. The dynamical model thus condists o
variance by epoch based leave-one-out cross validationg us the set of non-linear differential equations
a Metropolis-Hastings algorithm for sampling of the poister

parameter distribution. du(t) _ 1 1) — ()
o = 7 (FO - o)
1. INTRODUCTION p
dq(t) _ 1 [f(t)l — (1= Eg)t/f® U(t)uﬂ.)/uqt]
Neuroimaging has made major contributions to our under- ot 70 Eo
standing of the relation between behavior and distributibn ds(t)
brain information processing. The richest neuroimagingaho Fra ev(t) = s(t)/ms = (f(t) = 1)/7y
ity is fMRI based on the so-called BOLD effect, involving the af(t)
hemodynamic response which is rather sluggish, non-linear o = s(t)

and non-local. With the long term goal of increasing the
spatio-temporal resolution of BOLD fMRI, we are interestedFinally, the BOLD observation model involves the non-
in models linking subject behavior, neural activity, the so linearity,

lled hemodynamic ri n: nd fMRIBOLD rvation:
gzeieeggf[l?g)'/;’aquc esponse, and OLD observations, (x(8)) = Vol(k1 + k) (1 — a(1))

We will examine the model proposed by Friston et al. — (k2 + k(1 = v(1)))]
[2] which consists of a set of ordinary differential equago
(ODE's) that model the evolution in time of four basic phys-
iological state variables: The blood volumét), blood in-
flow f(t), amount of de-oxyhemoglobirgt) and a so-called
"flow inducing signal’s(t), collected in the state vectot(t) =
[(t) q(t) £(t) s(t)]". The flow inducing signal is driven by
an underlying neural activation functiett) - a time function
describing the local neural activity.

The measured BOLD signa), is then modeled as a non-
linear function of ‘snapshots’ of the continuously evolyin 2. STATISTICAL MODELING
states, with additive white Gaussian noisg; subscript in-

dices are used for these variables to emphasize the discrdf@" 9iven hemodynamic parameters and neural activity, the
‘sampled’ nature. likelihood of an epoch is straightforward to set up. First,

the hidden states will evolve deterministically according

(@)

with a set of empirical constants taking valués= 0.02,

v =40.3,TE = 0.03,rg = 25,¢ = 1.43,

ki1 = 4.3E0vgTE, ko = EgergTE k3 =¢— 1

for BOLD imaging at1.57" [5]. The BOLD fMRI measure-
ments are spatially sampled in volume elements (voxels).
Experiments are typically ivided temporally in quasi-
independent baseline-activation stimulus ‘epochs’.

‘l" = f(x(t), v(t)) (1) driven by the given neural activity(t). We use a vari-
ot - (1) able step-size 4th/5th-order embedded Runge-Kutta method
Yn = 9(x(tn)) +wp to solve these [6], with the starting conditior{t = 0) =

The BOLD signal is measured with a sampling imerva_l de- 1ye assume the resting blood volume fractibp, to be constant at 0.02
noted TR. The model has seven parameters,, the vari-  [2]
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xo, the initial (relaxed) statexo = [1 1 1 0]7 (all values 3.1 Markov-chain Monte Carlo sampling
relative to resting state). This gives a sequence of state;
x1.nv 2 {X1,X2,...,xn}, corresponding to the sampling
times{t;,t; + TR....,t; + N - TR}, wheret; is the start-
ing time of the epoch. The mean BOLD signal is given by

§\'Ie use a Metropolis-Hastings (MH) algorithm [7] starting
at an arbitrary statep,, and at each step proposing small
changes i from aproposal distribution, in our case a Gaus-
sian centered on the ‘current’ stat@,, +1[¢,) = N (¢,; ).

The parameters of the hemodynamic model are sampled si-

Un = 9(ni6) multaneously, but as they are not the focus of this repae; th
with the observed output modelled as are not discussed further and ignored for clarity (also fhe a
proximate marginal distribution of andr; is just the sam-
Ui = Y + wn(0) 3) pled values of these, so no further work is required to obtain
the desired distribution).
As the residuals are assumed normal i.i). ~ N (y,, 02), The MH method produces samples from the true posterior
the likelihood becomes distribution in the limit of large number of samples. We em-

ploy a set of heuristics to ensure convergence before averag
N N ing, e.g., inspection of saturation of the training setlikeod
0) = [1 pwil6) = TT Vo (w02 ar?d stzgabilizapt'ion of the actual parametervalugs.
n=0 n=0 A good proposal distribution is major determinant for suc-
ces of the Metropolis-Hastings algorithm. Again we invoke
heuristics: Starting with a spherical normal distributagrdi-
mensiondim ¢, we perform several (short) scout sampling
runs. After each of these, the covariance of the generated
samples is used to adapt the covariance of the propbsal,
scaled to give an acceptance rate of around 0.3. This proce-
dure greatly speeds up the final sampling run (the samples of
u(t) = alt) — I(1) the initial runs are not used in averaging). ) ) ]
Al s — 1) %) For‘ most of thg_parameters, we use simple uniform pri-
ae_my=w ors (p(¢)) over positive parameters; for the oxygen extraction
dt 1 fraction F, we use a uniform distribution over the interval

wherea(t) is the square wave stimulus reference function amﬁo' 1. .
1(t) is an inhibitory feedback signal. The values of the param- T_h_ese sampl(_es;;b(]: n = 1.N) can tl'_len_ be_used asan
eters are unknown a priori, although in [3], ranges are gagen empl_nc_al appro><|mat|0_n of _the target distribution, e.gor f
71 € [1;3], & € [0; 3]. We refer to them jointly ag = [r, 7;]. prediction of a BOLD signaj:

Note that the square wave model obtains as a special case
of this non-linear model as/7; — 0.

PN

The neural activity function/(¢) is traditionally assumed to
be a simple square wave signal representing signal ‘onhduri
stimulus and signal ‘off’ during baseline [2]. Buxton et i]
have recently introduced an alternative dynamical moge! re
resenting neural activity which we will use here. This model
posits

oiD) = [ plulop(aiD)as

In this report we will apply this model to real f/MRI data &
and investigate the posterior distribution of « and 7;. By way ~ ~ Z pyldn), én ~ p(d|D)
of leave-one-out cross-validation, the uncertainty on these N=

distributions will further be described. The resulting approximate distribution clearly dependghen

particular data seD. To obtain information on the uncer-
3. GENERALIZATION AND ESTIMATION tainty of the posterior, we employ epoch-wise leave-one-ou
PROCEDURES cross-validation. Wit quasi-independent epochs available,
each split of the data leaves out one epoch for a test sethwhic
The target for this investigation is tipesterior distribution of ~ ¢an be used to validate the ability of the model to prediction

the parameters of the non-linear neural model, test data, whilek” — 1 are used for a training set to give an
estimate of the posterior distribution.
, p(D]o)p(d) p(D]¢)p(d) To get an estimate of the uncertainty of the posterior dis-
p(¢ID) = - ; tributi imati fit | distribution teeth
p(D) [ p(D|¢)p(d)dé ribution approximations, we fit a normal distribution ta

samples for each cross-validation split. This yields ariist
i.e. the distribution of the parameters conditioned on thxe o bution of means and variances that can be used to illustrate
served BOLD datap. This distribution cannot be obtained the variance of the distribution. Each split yields an usbth
analytically; instead, we employ a Metropolis-Hastings estimate of the true mean and variance of the distributiod, a
Markov-chain Monte Carlo (MCMC) method to generate samthe mean over all splits is a convex combination thus also an
ples from the posterior. unbiased estimate, but with a reduced variance.
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4. EXPERIMENTAL EVALUATION 4.2. Real data

The data was acquired at Hvidovre Hospital, Denmark, us-
The described method was evaluated on a synthetically gefhg a 3T scanner (Magnetom Trio, Siemens). We obtained
erated data set and on a real BOLD fMRI data set. 1382 GRE EPI volumes each consisting of twelve 3mm slices
oriented along the calcarine sulcus. Additional paranseter
where TR=725 ms, TE=30 ms FOV=192 mm, 64x64 acqui-
sition matrix, FA = 82. The stimulus consisted in a circular
black/white flickering checkerboard (24 degrees horiZonta
1 r vertical) on a gri kground. -
The synthetic data was obtained by simulating the hemodxigrgsg tiiiklsvhifs ;to 8 :z? ‘?tzebsgti\?aggnia;:fh%izzzrs e
namic model with par_ameters set to the maximum IikelihooqO determine on- and offset of this stimulus was the same as
values reported by Friston et al.‘ [21] was used to generate the synthetic data.
0 = [0.330.540.981.542.460.34 o7 | ", Fifty significantly activated (as determined by SPM2 anal-
with o2, set to produce a desired SNR (signal-to-noise ratioysisz [8]) voxels in visual cortex were selected, and the mean
measured as the ratio of the de-noised BOLD and observatio¥f these was used as the BOLD signal.
_noise signals) close to 5.0 dB, which is similar to real reeor The results are shown in figure 2. The resulting shape of
ing conditions.s andr; were set to 2.0 and 1.6 respectively. the neural model is similar to the one found for the synthetic
The model is initialized inx,, the states are evolved using a gata, and is significantly different from square. The BOLD re
Runge-Kutta solver, and observations are made, addingGaugonstruction (see (3.1)) on test data is satisfactorydatitig
sian white noise with the prescribed variance. Each epocfhe model and method. We found posterior mean values of
contains 100 samples with sampling interV&t = 1.0s. 3.11+0.76 for x and0.87 + 0.19 (+ one standard deviation)

To justify our assumption that the BOLD signal is inde- for 7;; again, not close to a square pulse.

pendent between epochs, the stimulus for each epoch is set to Figure 3 shows the normal approximations to the posterior
zero for the last 30 seconds. This is helpful for two furtherhistograms. These indicate that although there is significa
reasons. Preprocessing (e.g. removing low-frequencypois variation, the mean of all the posterior means obtained from
is aided in that such artifacts can be more accurately etgtina the leave-one-out cross-validation is identifiable. Weeexp
using these 'resting’ portions of data. Finally, it allonsto  with longer sampling runs to bring down this variability eth
assume a known, resting, physiological statg) @t the start important point is that this is a tool that gives guidancefan t
of each epoch. The stimulus is designed to evoke non-lineaeliability of the estimated distribution.
behavior in the model; this is achieved by inter-stimulus in
tervals (ISI) and stimulus durations (SD) being samplethfro
a suitable gamma distribution. o8

Figure 1 shows parts of the reconstructed neural and BOL§ns
signals. The posterior mean efandr was 1.92+ 0.51 and §n»
1.32+ 0.22 respectively, resulting in very close reconstruc- |

tions.

4.1. Synthetic data

EE CE

(@) (b)

Fig. 2. (a): One pulse of the estimated neural activity. The
posterior mean reconstruction is shown together with the re
construction corresponding toone standard deviation of the
distribution of the posterior mean. (b): Prediction on tesat
data epochs (first 3 epochs).

BOLD level

0 s 100 200 250

50
timesec)

(b)

5. CONCLUSION
Fig. 1. (a): One pulse of the reconstructed and true neural
activity. The shape of the signal is retrieved, although thélhe method detailed here can be used obtain to obtain approx-
slope is slightly off, corresponding to a bias in theestimate. ~ imate posterior distributions of model parameters togetliti
(b): Reconstructed and true BOLD signal (first 3 epochs). estimates on the reliability of these approximations. [Rer t

2Software available from http:/Awww.fil.ion.ucl.ac.ukfap
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[1]

pleID)

[3]

[4]

Fig. 3. (a): Normal approximations of posterior parameter(5]
histograms. (a) and (b) show the variation of the mean and
variance respectively, for the posterior distributionsof(c)

and (d) show the same for (real data).

parameters of the non-linear neural activity model, we ébun
posterior mean values f11 + 0.76 for x and0.87 + 0.19

(4 one standard deviation) fat. Both of these are on the
edge of the ranges given in [3], although not statisticatly s
nificantly so. There is little other information available o
statistical estimation of these parameters.

We find that boths and are identifiable for real BOLD
data, and that:/7; for our data is significantly greater than
zero. Thus the square model of neural activity which is widel [g]
used in BOLD analysis is not supported by our findings.

The present model may be inverted to produce estimates
of neural activity as indicated in the work of Riera et al. [#]

[4] a regularized radial basis function set is used, witapar
eters estimated using a likelihood based approach whids lea
to rather smooth activation estimates. Using our Bayesian
sampling approach from an augmented posterior distributio
including parameters of the neural activity time courselfsu
as stimulus onset times etc.) may be a way to let data de-
termine the level of regularization, hence, potentiallgde

to more crisp estimates of non-trivial neural activation se
quences. This would be of particular interest in more comple
activation designs involving different stimulus activaticon-
ditions within epochs. In the present model we have focused
on the local hemodynamics in average data from a region.
The BOLD hemodynamics is non-local and it is an impor-
tant future task to produce a spatio-temporal hemodynamic
model, which could also lead to improved spatial resolution

[6]

[7]
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Abstract

Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric func-
tional of the temporal sequence of local neural activity. Several models have been proposed
both for the neural activity and the hemodynamics. We compare two such combined models:
the “original’ balloon model with a square-pulse neural model [5], and an extended balloon
model with a more sophisticated neural model [3]. We learn the parameters of both models
using a Bayesian approach, where the distribution of the parameters conditioned on the data
is estimated using Markov chain Monte Carlo techniques. Using a split-half resampling proce-
dure [14], we compare the generalization abilities of the models as well as their reproducibility,
both for synthetic and real data, recorded from two different visual stimulation paradigms.
The results show that the simple model is the best one for these data.

1 Introduction

Neuroimaging has made major contributions to our understanding of the relation between behavior
and distribution of brain information processing. The richest neuroimaging modality is fMRI based
on the BOLD (Blood Oxygenation Level Dependent) effect, involving the so-called hemodynamic
response which is rather sluggish and non-linear. With the long term goal of increasing the spatio-
temporal resolution of BOLD fMRI, we are interested in models linking subject behavior, neural
activity, the hemodynamic response, and fMRI BOLD observations, see e.g. [4, 5, 3, 13].

Non-linear hemodynamic models express the BOLD signal as a nonlinear, parametric functional
of the temporal sequence of local neural activity. Increased neural activity increases local cerebral
blood flow (CBF) and metabolic rate of oxygen consumption (CMRO,), and these affect the level
of deoxyhemoglobin and the blood volume (CBV), giving rise to the BOLD signal.

1
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The physiological relationship between neural activity and the BOLD signal is unclear, and
several variants for the components of these models have been proposed. Two such combined
models - which we simply label "A” and "B’ - are investigated here.

The purpose of this work is to compare these models in a probabilistic manner. This is important
as it links model design - based on physiological and mathematical assumptions - to the actual data
(the "real world’). This furthers progression towards better models and thus increased knowledge
about the brain, in particular the BOLD fMRI modality.

2 Model A - the static hemodynamic model

By ’static hemodynamic model’, we refer to a model combining the simplest model of neural activity
with the ’original” hemodynamic model developed in [3] and [5].

The hemodynamic part of this model consists of a set of ordinary differential equations (ODE’s)
modelling the evolution in time of four basic physiological variables: The blood volume v(t), blood
inflow f(¢), amount of de-oxyhemoglobine ¢(t) and a so-called "flow inducing signal’ s(¢), collected
in the state vector, x(t) = [v(t) q(t) f(t) s(t)]". The flow inducing signal is driven by an neural
activation function u(t) - a time function describing local neural activity. This in turn drives changes
in the other state variables through the ODE’s:

O~ ity u(e) 1
The measured BOLD signal v, is then a non-linear function of ‘snapshots’ of the continuous states,
with additive white Gaussian noise w,; subscript indices are used for these variables to emphasize
their discrete nature.
Yo = 9(x(tn)) + wn @)

The BOLD signal is measured with a sampling interval denoted TR. The model has seven parame-
ters: o2, the variance of w,,, and six physiological parameters, combined in 04 = [« € 79 75 75 Ep 0

We assume that the states evolve from an initial known resting state xg = [1 1 1 []]T - volume,
deoxyhemoglobin and flow at resting levels, stimulus at zero. This is reasonable if a suitable resting
period precedes stimulation.

The specific differential equations are

w

280 = L (50  Foult) 3)

A0 = 1 [ =B o @
B cutty ~ s/~ (50~ 1)/, (%)
%ﬁ” = s(t) ©)

2]7—
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The blood outflow fu,(¢) follows

Sou(t) = v(t)/ (7)
hence the ’static’ label (see model B below).
The BOLD observation model is

9(x(1)) = Vol(kr + k2)(1 = (1))

— (ks + k(1 — (1)) ®

with a set of empirical constants taking values V = 0.02, the rest depending on scanner type and
settings [2].

The measurements are spatially sampled in volume elements (voxels) and divided temporally in
quasi-independent baseline-activation stimulus ‘epochs’.

The neural activity in this model is identical with the stimulus given to the subject, a train of
square pulses. This assumption is common in BOLD fMRI analysis (e.g. [5]). The stimulus is set
to 1.0 during ’on’ periods and 0.0 during ’off” (no stimulus):

u(t) o a(t) - 1.0 stimulus on at time t
“ ] 0.0 stimulus off at time t

9)

3 Model B - a viscoelastic hemodynamic model with adap-
tation in neural activity.

Buxton et al. [3] have recently introduced an alternative dynamical model representing neural
activity, positing

u(t) = a(t) — I(t)
Al wu(t) — I(t) (10)
dar Tu ’

where a(t) is the square wave stimulus function and /(¢) is an inhibitory feedback signal. « is a gain
factor for the inhibition signal, and 7, is a time constant that determines how quickly the neural
activity is inhibited. This leads to an adaptive neural response to sustained stimuli. Note that the
square pulse model obtains as a special case of this non-linear model as /7, — 0.

Further, it was proposed in [3] that the relation between outflow and volume in model A (7)
is based on steady-state conditions and should be modified for dynamic conditions. The proposed
relation is
Fout(v(t)) = v(t)/* + Tég—(tt) (11)

which means that the 'balloon’ will transiently resist changes (for example due to visco-elastic
effects, hence the model label) and only after some time (controlled by 7) conform to the steady-
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state relationship (7) (this requires adding fo.(t) as a fifth state variable with its own ODE, details
omitted). Also, 7 is proposed to be different during inflation and deflation:

_ T+ f(t) > f'mt(t) (12)
T f(t) < fou(t)
This model is somewhat more complex, with 4 additional parameters (k, 7,, 74 and 7_), as
well as an extra ODE dimension. The initial resting state is extended to xo = [1 110 1]” (blood
outflow at resting level).

4 Model comparison

The purpose of comparing models can be phrased in terms of two crucial questions:
e which model provides the best generalization ability?
e which model provides the highest reproducibility?

Together, these two questions form a sound basis for comparing the models.

4.1 Generalization

Generalization ability is well known as fundamental goal of learning (see e.g. [10]). A model should
be able to learn based on one data set (’training’), and generalize to another (test) data set. In
the predictive learning framework, this means that the distribution of the parameters of a model
learned from one data set - the so-called posterior distribution, p(|D) - should be able to ’explain’
an independent test set D* according to

p(D*|D, M) = /p(9|D, M)p(D*|0, M)do. (13)

where M is the model. To compare models, we then compare this predictive density measured
at one or more test data sets.

The corresponding generalization for a given test and training data set is defined as the logarithm
of the predictive distribution,

G(D*, D, M) £ logp(D*| D, M).
The mean predictive generalization over test sets is

G(D, M) 2 (G(D*, D, M)), ) = / llog p(D*| D, M)|p(D*)dD".

Apart from an additive constant (the entropy of the true distribution), the mean generization is
equal to minus the Kullback-Leibler distance between the ‘true’ distribution of the data, p(D*), and
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the model distribution, p(D*|M). To obtain the overall generalization we furthermore average over
training sets

GOM) £ (G(D, M)y = {(GD" DM yp) =

= / [/ log[)(D*\DA,]\J)p(D*)dD*] p(D)dD

In applications we can not compute the integrals, hence, we estimate the model generalization
using independent test- and training data sets by split-half resampling, see e.g. [14],

K K
G(M) ~ % > log p(D;|D;, M) = 1% > G(D;, Di M). (14)

i=1 i=1

With K quasi-independent epochs available, each split of the data leaves uses K/2 each for the test
and training sets. Each of the resulting estimates is an unbiased estimate of the model generalization.
The mean over all splits is a convex combination thus also an unbiased estimate, but with a reduced
variance.

4.2 Reproducibility

Reproducibility concerns the sensitivity of what is learned to the particular data set used for train-
ing. This is highly relevant in model comparison, because a model that generalizes well with
parameters that vary greatly depending on the particular training data set might be less attractive
than a model with a slightly lower ability to generalize, but that produces more robust posterior
parameter distributions. This is particularly so in the case of "physiological’ models where the pa-
rameters carry physiological meaning. The weight one assigns to generalization and reproducibility
is therefore context dependent. For instance, if de-noising of the BOLD signal is the objective,
generalization will be important; if one wants to understand the mechanisms underlying the BOLD
signal, reproducibility could be more important.

In the current setting, it is the posterior distribution, p(f|D) that is in question, and a measure
is needed of the similarity of posteriors obtained conditioned on different data sets. We use a
Kullback-Leibler measure to estimate reproducibility. Parallel with the estimation of generalization
(14), the KL distance is measured between the two posterior parameter distributions of each split
half, and the reproducibility is then the average over all splits

. p(0] DL, M)
R(M) = Z/ (0D}, M) log =1t =2 D7 1) pOIDL M) (15)

where D} and D? are the two data sets in split i. Note that we measure reproducibility as the
negative of the KL distance.

Since this depends non-trivially on the dimensionality and shape of the distributions, we use the
mean KL distance over dimensions, i.e. calculating the KL distance for each dimension and taking
the mean.

ot
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5 MCMC approximation

The generalization (13) and reproducibility (15) measures both depend on an integral over the
posterior. These integrals can not be solved analytically, due to the non-linearities involved. Instead,
they are approximated using the Markov chain Monte Carlo principle. This is based on the law of
large numbers ensuring that if samples z; from some distribution p(z) can be generated, then the
approximation

[temeiz~ £ Y 1) (16)

will be increasingly accurate with K (compare with (13) and (15)) *.

5.1 Metropolis-Hastings and parallel tempering

In order to generate samples from the p(6|D), we employ the MCMC techniques of Metropolis-
Hastings sampling and parallel tempering. Several excellent sources are available that describe
these methods (see e.g. [11], [8]), and only an overview will be given here.

Metropolis-Hastings sampling works by starting at an arbitrary state,
O(n = 0) = 6y, and then iteratively proposing small changes through a proposal distribution,
p(0'|0(n)). We use a Gaussian centered on the previous state:

p(0'16(n)) = N(6(n); 2)
The proposal is accepted as the next discrete sample according to the ratio:

)/
i) -
p(6(n)|D)

If r > 1 the proposal is accepted, and the next sample generated is (n + 1) = @'. If r < 1, the
proposal is accepted with probability r. If the proposal is not accepted, the next sample is simply
O(n+1)=0(n).

The Metropolis-Hastings method produces samples from the true posterior distribution in the
limit of large number of samples (under certain conditions, see [11]). Depending on the true target
distribution, 'mixing’, i.e. the ability of the algorithm to generate samples representative of the
whole distribution may be slow. The technique of parallel tempering may be employed as a quite
straightforward enhancement. It works by sampling from several distributions p;(f|D) in parallel,
each using a more or less 'flattened’ version of the likelihood:

p(0D) & _p(DI0)*p(0)

' I'p(D10)%p(6)d6’
where 3; < 1 are so-called inverse temperatures and C' is the number of 'chains’. At certain

intervals, a proposal is made to swap the states of two of these chains (using an acceptance ratio

somewhat similar to (17), see [8]), generally leading to better mixing in the same amount of computer

time. For our data, 6 chains from ; = 1.0 to §5 = 0.04 was found to give good results.

i=1...C (18)

!The KL calculation further requires a density estimation method; we use the kernel method described in [12]
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A good proposal distribution is a major determinant for success of the algorithm. We have
therefore implemented an automated procedure for finding a good proposal. Each sampling run is
started with an arbitrary normal distribution of dimension dim @, and several short ’scout’ sampling
runs are performed. After each of these, the covariance of the generated samples is used as the new
proposal covariance, scaled to give an acceptance rate between 0.25 and 0.5. After a set number
of these initial iterations, the main sampling run is performed keeping the proposal distribution
constant (a condition for convergence; the samples of the initial runs are not used further). This
procedure greatly increases mixing.

We employ a set of heuristics to obtain indications that the final sampling estimate of the
posterior distribution does indeed cover the true distribution. For each data set, several runs are
performed. If the mixing is insufficient, the resulting distributions can be non-overlapping, whereas
for good mixing, they should be highly overlapping. For synthetically generated data, we can also
verify that the distribution is sampled around the major peaks by comparing the samples of o2, with
the known noise variance. We also confirm that the true parameter values are contained within
the sampling distribution. We then assume that sampling with similar settings will yield a good
approximation of the posterior distribution for real data, although we generate more samples for
real data.

5.2 The likelihood

Bayes’ rule allows us to rewrite the posterior in terms of the likelihood, p(D|6), the prior, p(f) and
a normalizing factor, p(D):

p(D]0)p(8)

p(D)

In order to evaluate the terms in (17), we therefore need to evaluate the likelihood and the prior
(note that the normalizing factor cancels out in (17)).

For given hemodynamic parameters and neural activity, the likelihood of an epoch is straight-
forward to set up. First, the hidden states will evolve deterministically according to (1) driven by
the given neural activity u(t). We use a variable step-size 4th/5th-order embedded Runge-Kutta
method to solve these [1], with the starting condition x(¢ = 0) = X, the initial (relaxed) state
(all values are relative to resting state). This gives a sequence of states, xi.y S {x1,%2,...,xn},
corresponding to the sampling times {t1,¢; + TR, ..., t; + N - TR}, where t; is the starting time of
the epoch. The mean BOLD signal is given by

p(0|D) =

Yo = 9(%n; 6) (19)
with the observed output given by (2).
As the residuals are assumed normally ii.d., y, ~ N (y,,02), the likelihood becomes

p(D10) £ plyn10) = [ [ p(wal0) = [T M @ 02)- (20)

n=0
Using MCMC, it is also possible to give empirical confidence intervals for the predicted mean
(19). This simply requires calculating 7, for each sample (n), n = 1... N, sorting these values
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and picking the values with the proper index. For a 1 — « confidence interval, the lower limit index
is Nr/2 and the upper is N(1 — «/2) (rounding off).

5.3 Prior distributions

There are many approaches to choosing prior distributions. Generally it is important that the
priors are as non-informative as possible, and yet they should reflect any prior beliefs we hold on
the parameters. In the present case we actually have available prior physiological knowledge, and
so the priors are built thereupon. We assume that the prior factorizes into a product of univariate
priors, as there is little or no reason to believe - a priori - that the parameters are correlated.

The prior for the observation noise is simply set to a constant for positive values, p(c2) = 0
for 02 < 0. In practice it is consistently found for synthetic data that the observation noise is
accurately estimated.

For all the other parameters, we use the family of scaled Beta distributions, as these are well
suited to design appropriately flat distributions with upper and lower limits. The scaled beta
distribution has three parameters s, u; and uy that control its range, mode and shape:

1

w—1(7 _ uz—1
Z(s,u1,u) (80> S 59)

p(0]s,ur,u) =
with

~ D(ua)U(ug)
Z(uy,us) = am

The distributions used here are based on the prior knowledge on each of the parameters as
described in [5] and [3], see figure 1.

6 Experimental evaluation

Comparisons of the two models is done both for synthetically generated data and for two different
real BOLD fMRI data sets.

For the real data, some preprocessing was done to remove artifacts (scanner and physiological).
9 resampling splits were used for the synthetic data, and 20 for the real data sets.

6.1 Synthetic data

The synthetic data was obtained by simulating the hemodynamic model with parameters set to
0 = [0.40.52.02.52.50.4 oﬁ,]T, with o2 set to produce a desired SNR (signal-to-noise ratio, measured
as the ratio of the de-noised BOLD and observation noise signals) close to 5.0 dB, similar to real
recording conditions. When generating data from model 'B’; x and 7, were set to 2.0 and 1.0
respectively, and 7, and 7_ were both set to 15.0.

The model is initialized in x¢, the states are evolved using a Runge-Kutta solver, and observations
are made, adding Gaussian white noise with the prescribed variance. Each epoch contains 138
samples with sampling interval TR = 0.725s, exactly as for data set 2 (below). The stimulus signal
is highly random, with many short stimuli that are often very close in time.
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Figure 1: Prior distributions for the model parameters.

To justify our assumption that the BOLD signal is independent between epochs, the stimulus for
each epoch is set to zero for the last 30 seconds. This is helpful for two further reasons. Preprocessing
(e.g. removing low-frequency noise), is aided in that such artifacts can be more accurately estimated
using these 'resting’ portions of data. Finally, it allows us to assume a known, resting, physiological
state (xg) at the start of each epoch. The stimulus is designed to evoke non-linear behavior in the
model; this is achieved by inter-stimulus intervals (ISI) and stimulus durations (SD) being sampled
from a suitable gamma distribution.

The models where compared for both synthetic data sets, i.e. those generated by model 'A’
and by model 'B’, and the results are shown in figure 2. When data are generated by the simpler
model "A’, then - as might be expected - both the generalization ability and reproducibility are seen
to be higher for the simple model, although reproducibility is not significantly higher (figure 2A).
But when data are generated by model 'B’, the situation is more complex: model 'B’ is able to
generalize significantly better, but model A’ is more reproducible. This means that either model
could be chosen as the 'best” one, depending on the intended use of the model.

6.2 Data Set 1

Data Set 1 was acquired by Dr. Egill Rostrup at Hvidovre Hospital, Denmark, on a 1.5 T Magnetom
Vision scanner. The scanning sequence was a 2D gradient echo EPI (T2* weighted) with 66-ms
TE, FA=50, FOV=230 mm, TR=330ms. Single slice data was obtained in a para-axial orientation
parallel to the calcarine sulcus. The visual stimulus consisted of a rest period of 20s of darkness
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Figure 2: Generalization and reproducibility for synthetic data; crosses mark the mean. A: Data
generated by model "A’. B: Data generated by model 'B’.
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(using a light fixation dot), followed by 10s of full-field checker board reversing at 8 Hz, and ending
by 20s of darkness. Ten separate runs were completed, a total of 1000s recorded at each voxel. The
data were preprocessed according to [7]. A ROI of 42 (7 by 6) significantly activated (as determined
by SPM2 analysis® [6])) voxels from the visual cortex were selected and the mean of the signals was
used (see figure 3A).

A B

Figure 3: Regions of Interest, marked with white squares. A: Data set 1; T2* weighted image slice
parallel to the calcarine sulcus. B: Data set 2; MPRAGE (Magnetization Prepared Rapid Gradient
Echo) horizontal slice.

Figure 4 shows the posterior mean prediction together with 95% confidence interval on the
predicted mean for this data set, for the first 2 epochs. Model "B’ clearly has more trouble explaining
this data (although the first epoch is actually the worst case).

6.3 Data Set 2

The data was acquired at Hvidovre Hospital, Denmark, using a 3T scanner (Magnetom Trio,
Siemens). We obtained 1382 GRE EPI volumes each consisting of twelve 3mm slices oriented
along the calcarine sulcus. Additional parameters where TR=725 ms, TE=30 ms FOV=192 mm,
64x64 acquisition matrix, FA = 82. The stimulus consisted in a circular black/white flickering
checkerboard (24 degrees horizontal, 18 degrees vertical) on a grey background. The checkers re-
versed black/white at 8 Hz. The activation pattern (a(t)) used to determine on- and offset of this
stimulus was the same as was used to generate the synthetic data. A ROI of 75 (25 from each of
3 slices) significantly activated (as determined by SPM2 analysis, contiguous voxels in the visual
cortex were selected, and the mean of these was used as the BOLD signal (see figure 3B).

Figure 5 shows the posterior mean prediction together with 95% confidence interval on the
predicted mean for this data set (first epoch). Here it is difficult for the naked eye to spot a
difference in predictive ability of the models.

2Software available from http://www.fil.ion.ucl.ac.uk /spm/

11
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The model comparison results for data set 1 and 2 are shown in figure 6. As expected from
the predictions (figure 4) data set 1 demonstrates model ’A’ as superior in both generalization and
reproducibility. Figure 6B shows a similar relation for data set 2, although it is less convincing.

7 Discussion

This method can be used to compare models of BOLD fMRI data in a principled manner, estimating
both the ability of the models to generalize and learn robustly.

The results indicate that the simple model is better than the more complicated one for the
real data used here. It generalizes somewhat better for both data sets, and is significantly more
reproducible. With more data, generalization and reproducibility would increase for both models,
and a different comparison could result - but for the data sets used here, model "A” is best. It would
be interesting to see if this holds for other types of data, such as across different parts of the brain
and different stimuli. Alternative models not investigated here also exist (e.g. [9] and [15]); these
would be interesting candidates to compare with the present models.

These models may be inverted to produce estimates of neural activity as indicated in the work
of Riera et al. [13]. In [13] a regularized radial basis function set is used, with parameters estimated
using a likelihood based approach which leads to rather smooth activation estimates. Using our
Bayesian sampling approach from an augmented posterior distribution including parameters of the
neural activity time course (such as stimulus onset times etc.) may be a way to let data determine
the level of regularization, hence, potentially lead to more crisp estimates of non-trivial neural
activation sequences. This would be of particular interest in more complex activation designs
involving different stimulus activation conditions within epochs.

In the present model we have focused on the local hemodynamics in average data from a region.
The BOLD hemodynamics is non-local and it is an important future task to produce a spatio-
temporal hemodynamic model, which could also lead to improved spatial resolution.

12
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Figure 4: Prediction of data set 1. A: Model "A’. B: Model 'B’. Note that the confidence interval is
an empirical confidence interval for the mean prediction, based on the MCMC samples.
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Abstract

Non-linear hemodynamic models express the BOLD signal in terms of ordinary differential
equations. For one such model - the *balloon’ model [6] - the benefit of considering the hemo-
dynamic state variables as stochastic rather than deterministic is investigated by transforming
the model into a stochastic state space system. To solve the resulting stochastic differential
equations and evaluate the likelihood, an unscented Kalman filter is employed. The parameters
of the deterministic model are learned in terms of their approximate posterior distributions,
using Markov chain Monte Carlo techniques. For the stochastic model, maximum a posteriori
parameters are estimated using simulated annealing. A split-half resampling procedure [19]
is then performed that divides available data into training and test sets, allowing unbiased
estimation of the generalization abilities of the models, as well as of their reproducibility.
This is done both for synthetic and real data, recorded from two different visual stimulation
paradigms. The results show that the stochastic state space system is a better model for the
more complex data.

1 Introduction

Given the long term goal of increasing the spatio-temporal resolution of BOLD fMRI, models
linking subject behavior, neural activity, the hemodynamic response, and fMRI BOLD observations
are highly relevant, see e.g. [4, 6, 3, 17].

The precise physiological relationship between subject stimulus, neural activity and the BOLD
signal is unclear, and several models have been proposed. Non-linear hemodynamic models express
the BOLD signal in terms of ordinary differential equations for a set of hemodynamic state variables.
The most widely known and used model is the 'balloon’ model, originally developed by Buxton et
al. [4] and expanded by Friston et al. [6]. In this model, increased neural activity increases local
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cerebral blood flow (CBF) and metabolic rate of oxygen consumption (CMRO,), and these affect
the level of deoxyhemoglobin and the blood volume (CBV), giving rise to the BOLD signal.

The noise in these nonlinear models is usually assumed to enter in at the BOLD measurement
level only, and very little work has been done to investigate the possible benefit of considering the
underlying physiological processes to be noisy (the author knows of only [17] and [5]).

The purpose of this work is to compare the classical balloon model to a stochastic state space
formulation in a Bayesian manner, taking both reproducibility and the ability to generalize into
account.

2 The balloon model

The balloon model consists of a set of ordinary differential equations (ODE’s) modelling the evolu-
tion in time of four basic physiological state variables, connecting subject stimulus to neural activity.
The final part is the output non-linearity describing the BOLD signal as a function of the underlying
states.

The four states are blood volume v(t), blood inflow f(t), amount of de-oxyhemoglobine ¢(t)
and a so-called *flow inducing signal’ s(¢), collected in the state vector, x(t) = [v(t) q(t) f(t) s(t)]".
These "hidden’ states are not measurable.

The local neural activity u(t) is considered to be identical to the subject stimulus. The flow
inducing signal s(¢) is driven by w(t). This in turn drives changes in the other state variables through
the ODE’s: P

5 = 00, u(0):6) (1)
The measured BOLD signal y,, is a non-linear function of ‘snapshots’ of the continuous states, with
additive white Gaussian noise w,,; subscript indices are used for these variables to emphasize their
discrete nature.

Yo = 9(x(t0); 0) +wy @)
The BOLD signal is measured with a sampling interval denoted TR. The model has seven parame-
ters: o2, the variance of w,, and six physiological parameters, combined in 6 = [ € 7o 7, 7/ Ep Uﬁ,]T.

The states are assumed to evolve from an initial known resting state xo = [1 11 O]T - volume,
deoxyhemoglobin and flow at resting levels, stimulus at zero.

The specific differential equations are

du(t) 1

50 = 7 U0~ foult) ®)

aq@) B 1 1— (1 _FE )1/.f(f) 1) /e
W _ TT) f(t)Tﬂ _ v(t)( )/ @ (4)
ds(t) _ _ 5
5 = eu(t) — s(t) /7o — (f(t) = 1) /74 )

af(t)

o 0 o

The blood outflow fo(t) follows



144 Publication: Neural Computation Il

Jou(t) = v(t)"® )
The BOLD observation model is

9(x(t);0) = Vo[(k1 + k2) (1 — q(t)) ®)
= (k2 + k3 (1 = v(1)))]
with a set of empirical constants (Vy = 0.02, the rest depend on scanner type and settings [2]).
The measurements Y = {yo, 41, ..., Yy } are spatially sampled in volume elements (voxels) and
divided temporally into quasi-independent baseline-activation stimulus ‘epochs’. Data sets D are
defined as collections of one or more epochs.
The neural activity in this model is identical with the stimulus given to the subject, a train of
square pulses. This assumption is common in BOLD fMRI analysis (e.g. [6]). The stimulus is set
to 1.0 during ’on’ periods and 0.0 during ’off” (no stimulus):

)

ult) = 1.0 stimulus on at time t
~ | 0.0 stimulus off at time t

3 Stochastic hemodynamic variables

An alternative model obtains by considering the state variables as stochastic rather than determin-
istic variables, giving a set of stochastic differential equations (SDE):

dx(t) = F(x(t), ult); 0)dt + Adw (10)

Here, x(t) is the hidden state vector, and w is a 4-dimensional Wiener process, a stochastic
process where the variance of the increments, w(t) — w(s),t > s, equals t — s. It makes x(t)
a stochastic vector variable. A is assumed to be a constant diagonal matrix, so the parameters
of # that apply to A are simply its diagonal elements. The rationale being that the sources of
randomness for the different variables are generally physiologically distinct entities,

62 0 0 0
0 o2 0 0
= q P
A 0 0 o2 0 (1)
0 0 0 o2

Further, the choice is made to assume that the noise variance of the hidden states is stationary
in time, as is the observation noise. This formulation is not the most general one, but is based on
the form of the relevant hemodynamic models and the above mentioned, informed assumptions.

The theory and applications of SDE’s is a major research area, and several books have been
written on the subject (e.g. [11], [13]). The present application is based on one particular approach
[18], considering only the first two moments (mean and covariance) of x(t), leading to approximate
numerical solutions.
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4 Likelihoods

The likelihood of the parameters of a model is defined as

L(0) = p(DI0) (12)

With deterministic hidden states, the likelihood is straightforward to set up. First, the hidden

states will evolve deterministically according to (1) driven by u(t). Here, a variable step-size 4th/5th-

order embedded Runge-Kutta method was used to solve these [1], with the starting condition x(¢t =

0) = xp, the initial (relaxed) state (all values are relative to resting state). This gives a sequence of

states, X1y 2 {X1,Xa, ..., Xy}, corresponding to the sampling times {t,,¢, + TR, ...,t; + N - TR},
where ¢; is the starting time of the data set. The estimated mean BOLD signal is given by

Un = 9(xn; 0) (13)
with the observed output given by (2). As the residuals are assumed normally i.i.d., the likelihood
becomes

p(D10) 2 p(yinl0) = [] pwal0) = [ [N @ — 410,02, (14)

n=0
The likelihood function with stochastic hidden variables is not so easily expressed; it instead
factorizes as

L(0) £ p(Y'10) = plyo)p(w1|yo)p(welyr. o) - - x plyx[YV )

2 0 [[ £ )

where the £;(0) £ p(y;|Y'™!) and Lo(6) £ p(yo). This factorization is of course valid for any
multivariate stochastic variable.

The L£;(0) terms are calculated using a continuous-discrete unscented Kalman filter (see [18])
and are given as

Lin(0) =Ny — E [gl+1\Y"} ,D(gin|[Y') +A) (16)

where E [gi41]Y] is the predicted output based on all previous measurements, and D(g;1|Y")
is the variance of this prediction.

5 Approximate learning with MCMC and simulated an-
nealing
The posterior p(f|D) cannot be evaluated analytically with the present models, so Markov chain

Monte Carlo (MCMC) and the related simulated annealing (SA) techniques are used to generate
estimates.
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Bayes’ rule allows us to rewrite the posterior in terms of the likelihood, p(D|6), the prior, p(6)
and a normalizing factor, p(D):

p(D9)p(9)
p(0|D) = ————=
(0]D) 2D
In order to evaluate the terms in (17), it is therefore necessary to evaluate the likelihood and

the prior.

5.1 Prior distributions

There are many approaches to choosing prior distributions. Generally it is important that the
priors are as non-informative as possible, and yet they should reflect any prior beliefs held about
the parameters. In the present case there actually exists prior physiological knowledge ([6], [3]),
so the priors are built thereupon. The priors are assumed to factorize into a product of univariate
priors, as there is little or no reason to believe - a priori - that the parameters are correlated.

The prior for the observation noise is simply set to a constant for positive values, p(c2) = ¢ for
02 >0 and p(o2) = 0 for 62, < 0. In practice it is consistently found for synthetic data that the
observation noise is accurately estimated with this completely non-informative prior. For all the
other parameters, the family of scaled Beta distributions is used as these are well suited to design
appropriately flat distributions with upper and lower limits, see figure 1.

5.2 Metropolis-Hastings and parallel tempering

For the deterministic state space model, p(6| D) is approximated by a number of samples 6;, i = 1..L.
In order to generate these samples the MCMC techniques of Metropolis-Hastings sampling and
parallel tempering are employed. Several excellent sources are available that describe these methods
(see e.g. [16], [9]), and only an overview will be given here.

Metropolis-Hastings sampling starts at an arbitrary state,
0(i = 0) = 6, and iteratively proposes small changes through a proposal distribution, p(6'|6(i)).
Here, a Gaussian centered on the previous state is used:

p(0)6(i) = N(6(i), %)

The proposal is accepted as the next discrete sample according to the ratio:

L p#1D) __ p(DIep(®)
p(O()ID)  p(DI6O())p(6(i))

If 7 > 1 the proposal is accepted, and the next sample generated is f(n +1) = 0. If r < 1, the
proposal is accepted with probability r. If the proposal is not accepted, the next sample is simply
0(i+1)=0(i).

The Metropolis-Hastings method produces samples from the true posterior distribution in the
limit of large number of samples (under certain conditions, see [16]). Depending on the properties
of the posterior, 'mixing’, i.e. the ability of the algorithm to generate samples representative of the
whole distribution, may be slow. The technique of parallel tempering may be employed as a quite

(17)

ot
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Figure 1: Prior distributions, p(6) A: Hemodynamic parameters. B: State space noise variance
parameters; the same distribution is used for o2, 05‘ 0'?, and o2

straightforward enhancement. It works by sampling from several distributions p;(|D) in parallel,

each using a more or less 'flattened’ version of the likelihood:

DI0)%p(0
p(o)py & P00 (18)
| p(D]0)%p(0)do

where 3; £ 1 are so-called inverse temperatures and C' is the number of 'chains’. At certain
intervals, a proposal is made to swap the states of two of these chains (using an acceptance ratio
somewhat similar to (17), see [9]), generally leading to better mixing in the same amount of computer
time. For the present data, using 6 chains from ) = 1.0 to s = 0.04 was found to give good results.
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A good proposal distribution is a major determinant for success of the algorithm, so an auto-
mated procedure for finding a good proposal has been implemented based on iterations of short
sampling runs. A set of heuristics are employed to obtain indications that the final sampling es-
timate of the posterior distribution does indeed cover the true distribution (overlapping sample
distributions for independent runs, retrieving the true parameters with synthetic data etc.).

5.3 Simulated annealing

For the stochastic model, evaluation of the likelihood takes too long (around 50 times longer than
for the deterministic model) for the MCMC sampling approach to be practically viable. Instead, a
point estimate approximating the maximum a posteriori (MAP) is used,

p(0|D) ~ 6(0 — Orrap) (19)

where Oy4p is defined as
Orap 2 arg maxp(6|D) (20)
0

The simulated annealing technique produces an approximation to 6y,4p and is related to both
MCMC sampling and parallel tempering. The procedure is in fact identical to the Metropolis-
Hastings sampling described above with the modifications that only the final sample is used as
the estimate of 0y74p, and the temperature (see (18)) is gradually decreased towards zero during
sampling. This means that 6(i) will move relatively freely around initially, but as the temperature
decreases will only move in the direction of the gradient of p(f|D), hopefully resulting in a final
value close to @y 4p. For synthetic data, this generally is the case, using a starting temperature of
T4 % = 10.0 and slowly decreasing over a run of 4000 samples.

6 Model comparison
The purpose of comparing models can be phrased in terms of two crucial questions:

e which model provides the best generalization ability?

e which model provides the highest reproducibility?

Together, these two questions form a sound basis for comparing the models.

6.1 Generalization

Generalization ability is well known as fundamental goal of learning (see e.g. [14]). A model should
be able to learn based on one data set (’training’), and generalize to another (test) data set. In
the predictive learning framework, this means that the distribution of the parameters of a model
learned from one data set - the so-called posterior distribution, p(¢|D) - should be able to ’explain’
an independent test set D* according to

p(D*|D, M) = /p(e\a M)p(D*|0, M)df. (21)

7



149

where M is the model. This integral can not be solved analytically due to the non-linearities
involved. For the deterministic state space model, the MCMC approximation

L
/p(@\&M)p(D*\H,M)dG ~ %pr*\a(i),m (22)

can be used, since it approximately holds that 6(i) ~ p(6|D, M)). In the stochastic model case,
the MAP (Maximum A Posteriori) approximation is used to give

p(D*|D, M) ~ p(D*|0arap, M) (23)

This predictive density measured at one or more test data sets is then compared. The corre-
sponding generalization for a given test and training data set is defined as the logarithm of the
predictive distribution,

G(D*, D, M) £ logp(D*| D, M).

The mean predictive generalization over test sets is
G(D,M) 2 (G(D*, D, M))F(D,) = /[logp(D*\D, M)|p(D*)dD*.

Apart from an additive constant (the entropy of the true distribution), the mean generization is
equal to minus the Kullback-Leibler distance between the ‘true’ distribution of the data, p(D*), and
the model distribution, p(D*|M). To obtain the overall generalization, averaging is furthermore
done over training sets

G(M) 2 (G(D, M), = {(G(D", D, M))MD*QP(D) =

- / [/ logp(D"|D, MWD*)dD*] p(D)dD

In applications the integrals can not be computed, hence the model generalization is estimated
using independent test- and training data sets by split-half resampling, see e.g. [19],

K K
G(M) ~ % S log p(D}| D, M) = % S G(D;, D M), (24)

i=1 i=1

With K quasi-independent epochs available, each split of the data leaves uses K/2 each for the test
and training sets. Each of the resulting estimates is an unbiased estimate of the model generalization.
The mean over all splits is a convex combination thus also an unbiased estimate, but with a reduced
variance.

6.2 Reproducibility

Reproducibility concerns the sensitivity of what is learned to the particular training data. A model
that generalizes well with parameters that vary greatly depending on the particular training data set
might be less attractive than a model with a slightly lower ability to generalize, but that produces
more robust posterior parameter distributions, particularly in the case of 'physiological” models

8
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where the parameters carry physiological meaning. The weight one assigns to generalization and
reproducibility is therefore a context dependent trade off.

As an estimate of reproducibility for the present models is chosen the negative of the percentage-
wise difference between the parameter estimate from each split of the training data and the mean
of the two estimates,

Ri(M) 2 _bu—b
0;
where R;(M) is the reproducibility estimate for the current split and én and éi2 are the parameter
estimates for the first and second half of the current split, respectively.
For the deterministic model, the mean of the approximated posterior is used as the representative
point estimate of the distribution,

L 0= (01 +0:2)/2 (25)

1 &
0:229, (26)

For the stochastic state space model, the MAP estimate is of course used.

7 Results and discussion

Comparisons of the two models is done both for synthetically generated data and for two different
real BOLD fMRI data sets. For the real data, some preprocessing was done to remove artifacts
(scanner and physiological). 10 resampling splits were used for all data sets. To justify our assump-
tion that the BOLD signal is independent between epochs, the stimulus for each epoch was set to
zero for at least 20 seconds for all data sets.

7.1 Synthetic data

Two synthetic data sets were created, one by the deterministic state space model, the other by the
stochastic model, both using the same stimulus function as the one used to generate data set 2
(below). This stimulus is designed to evoke non-linear behavior in the model, achieved by using
random and rapid stimulus pulses.

The first synthetic data set was obtained by simulating the standard balloon model with pa-
rameters set to 6 = [0.4 0.5 2.0 2.5 2.5 0.4 2],
with o2 set to produce a desired SNR (signal-to-noise ratio, measured as the ratio of the de-noised
BOLD and observation noise signals) of around 25.0 dB, deliberately higher than for real record-
ing conditions to ensure clear results. Each epoch contains 138 samples with sampling interval
TR = 0.725s, exactly as for data set 2 (below).

The second synthetic data set was obtained by simulating the stochastic balloon model with the
same stimulus signal and parameters as for the deterministic model (see above), and with the noise
variances on the hemodynamic processes set to op = oy = 0 = 7 = 1-107%. The simulation of
the stochastic state variables between the observation time points was done with Euler’s method
with very small time steps (see e.g. [11]).
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The models were compared for both synthetic data sets and the results are shown in figures 3
and 4. When data are generated by the simpler deterministic model, then - as might be expected
- both the generalization ability and reproducibility are seen to be higher for the simple model, see
figure 3A. But when data are generated by the stochastic state space model, the situation is more
complex: the true (stochastic) model is able to generalize significantly better, but the deterministic
model is still more reproducible (figure 4A). This relatively poor reproducibility is probably due
to the added complexity of the model, and means that either model could be chosen as the 'best’
one, depending on the intended use of the model. Tt is possible that with higher variance in the
hidden state noise, the true model would outperform the simpler model in both reproducibility and
generalization.

7.2 Data set 1

Data Set 1 was acquired by Dr. Egill Rostrup at Hvidovre Hospital, Denmark, on a 1.5 T Magnetom
Vision scanner. The scanning sequence was a 2D gradient echo EPI (T2* weighted) with 66-ms
TE, FA=50, FOV=230 mm, TR=330ms. Single slice data was obtained in a para-axial orientation
parallel to the calcarine sulcus. The visual stimulus consisted of a rest period of 20s of darkness
(using a light fixation dot), followed by 10s of full-field checker board reversing at 8 Hz, and ending by
20s of darkness - a simple block design. Ten separate runs were completed, a total of 1000s recorded
at each voxel. The data were preprocessed according to [8]. A ROI of 42 (7 by 6) significantly
activated (as determined by SPM2 analysis® [7]) voxels from the visual cortex were selected and the
mean of the signals was used (see figure 2A).

Figure 5 shows the results for the two models with this data set. 5A shows that the deterministic
model has both a higher reproducibility and a higher generalization ability than the stochastic
model. 5B shows the predicted BOLD signal for the deterministic model (mean of the approximate
p(D*|D, M)) together with bounds corresponding to upper and lower confidence intervals (minimum
and maximum predicted means of p(D*| D, M) across data set splits). As there are 10 splits, each test
epoch is predicted 10 times and thus using the second-highest and second-lowest mean predictions
would be an approximate 80% confidence interval, but here the highest and lowest are used instead
to get the widest possible confidence interval. 5C shows the same prediction for the stochastic model.
Although the difference in predictions is difficult to see, the G-R plot reveals the deterministic model
to be better for this data.

7.3 Data set 2

The data was acquired at Hvidovre Hospital, Denmark, using a 3T scanner (Magnetom Trio,
Siemens). 1382 GRE EPI volumes each consisting of twelve 3mm slices oriented along the cal-
carine sulcus were obtained. Additional parameters where TR=725 ms, TE=30 ms FOV=192 mm,
64x64 acquisition matrix, FA = 82. The stimulus consisted in a circular black/white flickering
checkerboard (24 degrees horizontal, 18 degrees vertical) on a grey background. The checkers re-
versed black/white at 8 Hz. The activation pattern (a(t)) used to determine on- and offset of this
stimulus was the same as was used to generate the synthetic data. A ROI of 75 (25 from each of

!Software available from http://www.fil.ion.ucl.ac.uk/spm/

10
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A B

Figure 2: Regions of Interest, marked with white squares. A: Data set 1; T2* weighted image slice
parallel to the calcarine sulcus. B: Data set 2; MPRAGE (Magnetization Prepared Rapid Gradient
Echo) horizontal slice.

3 slices) significantly activated (again as determined by SPM2 analysis), contiguous voxels in the
visual cortex were selected, and the mean of these was used as the BOLD signal (see figure 2B).

Figure 6A shows that for this more 'complex’ data set, the stochastic model proves to have a
higher generalization ability, although again, the simpler deterministic model is more reproducible.
The ability of the stochastic model to express greater variation in the mean BOLD signal through
the addition of noise in the hidden state space and thus fit to more complex BOLD signals is reflected
in the comparison of 6B and 6C, but this may also explain the reduced reproducibility. Incidentally,
this lower reproducibility is not only in the o2 parameters, but also applies to the hemodynamic
parameters (separate analysis, not shown).

7.4 Discussion

The method outlined here can be used to compare models of BOLD fMRI data in a principled
manner, estimating both the ability of the models to generalize and learn robustly. It is important
to apply such comparison methods to new models to determine their relative merit for use in different
contexts.

The present results indicate that the simpler deterministic model is better than the more com-
plicated stochastic state space model for the real data based on a block stimulus design. When
compared on data generated with a more complex stimulus function, the stochastic model is shown
to be better able to capture the structure of the resulting BOLD signal. The price seems to be a
reduced reproducibility, so the physiological interpretation of the stochastic state space model is
less clear.

With more data, generalization and reproducibility would increase for both models, and a dif-

11
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Figure 3: Results for synthetic data from the deterministic model. A: Generalization (G) and
7 (R). B and C: Prediction of the first two test epochs by the deterministic (B) and

reproducibi

stochastic (C) model.

ferent comparison result could be obtained. It would be of great interest to see similar comparisons

BOLD

BOLD

0,
% ¥
— X
0.02 ¥ * kS #ﬂ‘
—0.04 % sk
X
—0.06
—0.08 ><>§>(<
X
-0.1
X
-0.12
—-0.14
o X
'%‘iSO 3200 3250 3300 3350
G
x107° — Observed
‘Posterior mean
20 - -- PM bounds
15|
10|

150 200

Observed

AP
MAP bounds

50 150 200

100
time(sec)

12



154

Publication: Neural Computation Il

C

Figure 4: Results for synthetic data from the stochastic model. A: Generalization (G) and re-
producibility (R). B and C: Prediction of the first two test epochs by the deterministic (B) and
stochastic (C) model.
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