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Abstract

In chemometrics traditional calibration in case of spectral measurements express a
quantity of interest (e.g. a concentration) as a linear combination of the spectral measure-
ments at a number of wavelengths. Often the spectral measurements are performed at a
large number of wavelengths and in this case the number of coefficients in the linear com-
bination is magnitudes larger than the number of observations. Traditional approaches to
handling this problem includes principal components, partial least squares, ridge regres-
sion, LASSO, and other shrinkage methods. As a continuous-wavelength alternative we
suggest replacing the linear combination by an integral over the range of the wavelength of
a unknown coefficient-function multiplied by the spectral measurements. We then approxi-
mate the unknown function by a linear combination of some basis functions, e.g.B-splines.
The method is illustrated by an example in which the octane number of gasoline is related
to near infrared spectral measurements. The performance is found to be much better that
for the traditional calibration methods.

1 Introduction

We consider the problem where a quantity characterizing a liquid, eg. the concentration
of nitrate in waste water, is to be predicted from a spectrum measured on the liquid. To
be able to perform such predictions we must first obtain reliable measurements of the
quantity for a number of (well chosen) liquids, measure the spectrum for each liquid,
and relate the measured quantities to the corresponding measured spectra. This process
is known under the term multivariate calibration.

In chemometrics traditional multivariate calibration in case of spectral measurements
express a quantity of interest (e.g. a concentration) as a linear combination of the spec-
tral measurements at a number of wavelengths. Often the spectral measurements are
performed at a large number of wavelengths and in this case the number of coeffi-
cients in the linear combination is magnitudes larger than the number of observations.



Traditional approaches to handling this problem includes principal components, partial
least squares, ridge regression, LASSO, and other shrinkage methods. Variable selection
methods have also been applied (Brown 1993, Osborne, Presnell & Turlach 2000). As a
continuous-wavelength alternative the linear combination of the spectral values can be
replaced with an integral over the range of the wavelengths of an unknown coefficient-
function multiplied by the spectral measurements. The unknown function can then be
approximated by a linear combination of some basis functions (e.g. B-splines). The
problem then becomes a linear regression problem where the number of regressors de-
pend on the number of basis functions and not the number of wavelengths.

To our knowledge the approach was first suggested by Hastie & Mallows (1993) who
focused on smoothing splines for estimation of the coefficient-function. Similarly Goutis
(1998) used smoothing splines to estimate a coefficient-function in the case where the
predictive information is related to the second derivative of the spectrum. Marx & Eilers
(1999) project the spectral measurements onto a moderate number of equally spaced B-
spline bases. This approach is very similar to the approach presented here. However, the
difference being that (i) we formulate the underlying model using an integral over the
wavelengths, and (ii) we do not restrict the number of basis functions to be less than the
number of observations. For near-continuous measurements (i) is largely a technicality
which allow us, in a simple way, to study what happens if the predictive ability is related
to derivatives of the spectra rather than the actual spectra.

In Section 2 the underlying model is described. Section 3 describes the approximations
used. An application is presented in Section 4. Finally, in Section 5 some conclusions
and discussions are listed, together with a short description of available computer pro-
grams which we are aware of. Figure 3 and 4 referred in Section 4 are placed after the
list of references.

2 Model

The spectra are measured at a number of wavelengths λj ; j = 1, . . . , m. The measure-
ments of the characteristic quantity is called yi; i = 1, . . . , N and the measured spectrum
corresponding to yi is called ai(λj); j = 1, . . . , m. The traditional approaches to calibra-
tion focus on the model

yi = β0 +

m∑

j=1

βjai(λj) + ei; i = 1, . . . , N (1)

where ei; i = 1, . . . , N are the model errors which are assumed to be independently
identical distributed (iid.) random variables, and βj ; j = 0, . . . , m are some coefficients
which must be determined from data. Model (1) is a linear regression model. However,



as measurement equipment get more advanced the spectra are measured at an increasing
number m of wavelengths, so that each spectrum often can be considered known for
every wavelength λ ∈ [λ, λ]. Therefore, the number of regressors m is often magnitudes
larger than the number of observations N . Traditional approaches to handling this prob-
lem are mentioned in Section 1. We argue that, conceptually, it is more convenient to
use a model which explicitly regard the spectra as functions ai(λ); i = 1, . . . , N of the
bandwidth λ. As a generalization of (1) it is convenient to replace the summation with
an integral over the interval of wavelengths, i.e. to use the model

yi = β0 +

∫ λ

λ
β(λ)ai(λ)dλ+ ei, (2)

where the coefficient β0 and the function β(·) must be determined from data, c.f. Sec-
tion 3. It is interesting to note that if it is suspected that some predictive ability is related
to the first- and second-order derivatives of the spectra rather than the spectra itself (2)
can still be used if the range of wavelengths over which the spectra is measured is wide
enough.

To see this consider the model

yi = β0 +

∫ λ

λ

(
φ0(λ)ai(λ) + φ1(λ)

dai
dλ

(λ) + φ2(λ)
d2ai
dλ2

(λ)

)
dλ+ ei, (3)

which take into account both the actual spectra and its first- and second order derivatives.
Assuming that the derivatives exists, simple calculations (partial integration) show that
(3) can be written

yi = β0

+

(
φ1(λ)− dφ2

dλ
(λ)

)
ai(λ)−

(
φ1(λ)− dφ2

dλ
(λ)

)
ai(λ) + φ2(λ)

dai
dλ

(λ)− φ2(λ)
dai
dλ

(λ)

+

∫ λ

λ

(
φ0(λ)− dφ1

dλ
(λ) +

d2φ2

dλ2
(λ)

)
ai(λ)dλ+ ei. (4)

Given that the range of the wavelengths is so large that all important wavelengths are
covered then φ1(λ) = φ1(λ) = φ2(λ) = φ2(λ) = 0. In this case the second line in (4)
vanish and the term inside the parenthesis in the integral is a function of λ which can
be handled by β(λ) in (2). If not all important wavelengths are covered it is necessary
to extent (2) with regression terms containing ai(λ), ai(λ), daidλ (λ), and dai

dλ (λ) in order to
take first- and second-order derivatives of ai(λ) into account.

3 Approximations

To be able to determine the scalar β0 and the function β(·) in (2) from data we approx-
imate the function by a linear combination of a set of basis functions, such as B-spline



basis functions, natural spline basis functions, or wavelet basis functions (de Boor 1978,
Bruce & Gao 1996).

β(λ) = B′(λ)θ, (5)

where B(λ) = [b1(λ) . . . bp(λ)]′ are the basis functions and θ = [θ1 . . . θp]
′ are some co-

efficients to be determined from data. With (2) and (5) simple calculations show that

yi = β0 +

p∑

k=1

θkxki + ei, (6)

where

xki =

∫ λ

λ
bk(λ)ai(λ)dλ; k = 1, . . . , p; i = 1, . . . , N, (7)

does not depend on θ and can be determined from the measurements of the spectra at
the wavelengths λj ; j = 1, . . . , m by use of the trapezoid rule of integration.

xki =
1

2

m−1∑

j=1

(λj+1 − λj) [bk(λj)ai(λj) + bk(λj+1)ai(λj+1)] (8)

It is seen that, handled this way, the calibration problem is not dependent on m as long
as the spectra is measured at fine enough intervals to allow the integrals in (7) to be
evaluated with reasonable precision. Furthermore, although m > N , the number of basis
functions can often be chosen so that p < N , whereby (6) becomes an ordinary regres-
sion problem. We may choose to use N < p < m, in this case principal components,
partial least squares, ridge regression, LASSO, and other shrinkage methods may be
applied.

As noted by Marx & Eilers (1999) the application of models like (6) regularize estima-
tion as compared to models like (1). However, we argue that, depending on the spectra,
the regressors in (6) may still be very collinear. Figure 1 shows a cubic B-spline basis
with six equally spaced knots covering the interval 900 to 1700 nm, this results in p = 8.
It is seen that the basis-functions are non-zero only for wavelengths around their max-
imum, this is the key feature by which (5) becomes a good approximation. However,
if ai(λ) is constant across i for some wavelengths then the nature of the basis-functions
may result in collinearity of the regressors (7). It is therefore suggested that instead
of using model (6) directly the regressors are replaced by their principal components. If
variable selection techniques are then applied to the principal components both problems
where p < N and p ≥ N can be handled.

The type of basis functions used influence the type of functions which can be approx-
imated by (5). A B-spline basis of order n result in β(·) having continuous derivatives
up to order n, i.e. a cubic B-spline basis is of order 2. This also hold for a natural spline
basis, but here β(·) has the additional property that it is linear outside [λ, λ]. Opposed to
this a wavelet basis can be used to approximate a function with sharp peaks.
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Figure 1: CubicB-spline basis with six equally spaced knots (four internal) covering the interval
900 to 1700 nm.

4 Application to NIR spectra of gasoline

The method has been applied to predict the octane number based on near infrared (NIR)
spectral measurements. The data set contains 60 gasoline samples with specified octane
numbers. Samples were measured using diffuse reflectance (R) as log(1/R) from 900 to
1700 nm in 2 nm intervals. So we have N = 60 and m = 401. The data set was divided
into five parts for use in a 5-fold cross-validation. To achieve this the octane numbers
were sorted in ascending order and numbered successively from 1 to 5 in order to get
five sets that cover approximately the same range. We follow Brown (1993, p. 42) and
center all spectra, that is

∑
i ai(λj) = 0; j = 1, . . . , m. The octane numbers are also

centered. The mean values of the calibration data is used to center the validation data.

For comparison reasons we have applied the well known methods, PCR, PLS, Ridge
and LASSO, to the setup described above, i.e. using model (1) without β0. The optimal
model for the methods is chosen by minimizing the root mean squared error of predic-
tion, (RMSEP), based on the 5-fold cross-validation. These values are summarized in
Table 1. PCR, PLS and Ridge produce the best results. Finally, Figure 3 show the pa-
rameter estimates plotted against their corresponding wavelengths. The estimates are
obtained using the tuning-parameters listed in Table 1 together with the full data set.

Method Regularization parameter RMSEP
PCR no. of components = 13 0.2333
PLS no. of components = 7 0.2327

Ridge k = 0.002 0.2357
LASSO

∑
(|β|)=236.5 0.2779

Table 1: RMSEP-values for the regularization methods.

We now use the model defined by (6) and (8), with b1(λ), . . . , bk(λ) generated using a
cubic B-spline basis with knots placed equidistantly over the range of wavelengths. If



we restrict the number of basis-functions to be less than the number of observations, N ,
we have a standard linear regression problem which can be solved using ordinary least
squares. If we allow the number of basis-functions to exceed the number of observations
we can apply PCR, PLS, Ridge or LASSO.

The same setup as mentioned earlier is used to find the best model. The approach is
straightforward, find the RMSEP-values for a fixed regularization parameter and vary-
ing number of basis-functions, now fix the regularization parameter to another value
and find new RMSEP-values. This produces a matrix of RMSEP-values; find the small-
est RMSEP-value and the corresponding value for the regularization parameter and the
number of basis-functions. For LASSO the optimum is

∑
(|θ|)=17.15 and 33 internal

knots; Figure 2 indicates the curvature of the RMSEP-surface around the optimum.
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Figure 2: The RMSEP-values for LASSO for fixed number of internal knots (left) and fixed
value for

∑
(|θ|) (right).

The RMSEP-values are listed in Table 2. It is seen that LASSO performs best and that
all methods are superior to the methods listed in Table 1. Comparing the best results
between Table 1 and 2 results in a 17% reduction in RMSEP-values when using spline
functions. The simple OLS-solution results in a 12% reduction.

Method Regularization parameter No. of internal knots RMSEP
OLS 4 0.2053
PCR no. of components = 7 4 0.2001
PLS no. of components = 7 4 0.2012

Ridge k=0.0008 4 0.2002
LASSO

∑
(|θ|)=17.15 33 0.1926

Table 2: RMSEP-values for the regularization methods combined with the spline-method.

Figure 4 show the estimates of β(λ) = B′(λ)θ. The estimates are obtained using the
tuning-parameters listed in Table 2 together with the full data set. For the OLS-solution
curves indicating two times the pointwise standard error are also shown (obtained by



disregarding that the number of internal knots are selected by use of cross-validation).
For all but LASSO the estimates are quite similar. Comparing the standard error bands of
the OLS-solution with the LASSO-solution reveals that LASSO selects basis-functions
corresponding to wavelengths for which the OLS-solution is significantly different from
zero.

5 Conclusion and discussion

An approach to multivariate calibration in which the model is formulated using an inte-
gral of an unknown coefficient-function multiplied with the measured spectrum is pre-
sented. The unknown function is approximated as a linear combination of some basis
functions, whereby estimation is made feasible. A key feature of the method is that
the dimension of the resulting model is not dependent on the number of wavelengths at
which the spectral measurements are performed.

When the number of basis functions is low, standard linear regression techniques can
be applied. However, some of the regressors may be collinear when the number of
basis functions increase. In this case standard shrinkage methods used in multivariate
calibration can be applied. This also opens the possibility of using more basis functions
than the number of observations.

In an example with 60 near infrared spectra of gasoline, which are used to predict octane
numbers, cubic B-spline bases with knots placed equidistantly are used. Compared to
standard methods the spline-based methods performs 12% to 17% better in terms of
the root mean square of five-fold cross-validated prediction errors (RMSEP). Even the
simple linear regression model obtained when using eight basis functions results in a
12% reduction in RMSEP compared to the standard methods.

When the number of basis functions are low the knot placement may have large influ-
ence; it may move the valleys and peaks (Hastie & Tibshirani 1990, pp. 251-254). To
avoid this the smoothing splines solution used by Hastie & Mallows (1993) and Goutis
(1998) may be applied. The P -spline approach by Marx & Eilers (1999) provides a
mix between these two approaches. All these approaches result in estimates of the
coefficient-function which have approximately the same degree of smoothness for all
wavelengths for which the spectral measurements are performed. There is no reason to
believe that this is desirable.

The B-spline/LASSO approach is one solution to the problem just outlined. Another
solution would be to use wavelet basis functions together with LASSO. Since wavelets
cover a large range of scales and positions, they may be more appropriate thanB-splines.



As yet another solution an adaptive knot-placement procedure could be applied together
with standard linear regression. It is however not clear how to construct such a proce-
dure.

For people using the traditional multivariate calibration techniques the main problem of
applying the techniques presented here is the generation of spline bases. In S-PLUS
(www.splus.mathsoft.com) and R (www.r-project.org) these can be generated with the
build-in functions bs (B-splines) or ns (natural splines). In Matlab
(www.mathworks.com) we use bsplval.m by Dr. Graeme A. Chandler, Mathematics
Department, The University of Queensland, Australia. A ZIP-archive containing this
function can be downloaded as www.maths.uq.edu.au/∼gac/mn309/mfilez.zip and in
www.maths.uq.oz.au/∼gac/mn309/bspl.html examples of how to apply it can be found.
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Figure 3: The 60 NIR spectra, together with the parameter estimates for PCR, PLS, Ridge and
LASSO.
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Figure 4: Estimated coefficient-functions using PCR, PLS, Ridge, OLS, and LASSO together
with spline bases.
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