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Summary

In this PhD project several stochastic modelling methods are studied and ap-
plied on various subjects in hydrology. The research was prepared at the Depart-
ment of Informatics and Mathematical Modelling at the Technical University of
Denmark.

The thesis is divided into two parts. The first part contains an introduction and
an overview of the papers published. Then an introduction to basic concepts
in hydrology along with a description of hydrological data is given. Finally an
introduction to stochastic modelling is given.

The second part contains the research papers. In the research papers the sto-
chastic methods are described, as at the time of publication these methods
represent new contribution to hydrology. The second part also contains addi-
tional description of software used and a brief introduction to stiff systems. The
system in one of the papers is stiff.

In Paper [A] a conditional parametric modelling method is tested. The data
originate from a waste water treatment plant in Denmark, and consists of pre-
cipitation measurements and flow in a sewage system. The goal is to predict
the flow and the predictions are to be used for automatic control in the waste
water treatment plant. The conditional parametric modelling method is a black
box method. The characteristic of such a model is that the model’s parameters
are not constants, but vary as a function of some external variables. In Paper
[A] two types of conditional parameter models were tested; a conditional FIR
model and a conditional ARX model. The parameter variation is modelled as
a local regression and the results are significant improvements compared to the
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traditional linear FIR and ARX models. The method of conditional parameter
modelling is also good for sensitivity analysis since it can be used to investigate
how parameters change when external variables/circumstances change. These
investigations might then be used for further (more global or even more physical)
modelling development.

In Paper [B] the grey box modelling approach is used, by using Stochastic Differ-
ential Equations. The parameter estimation is performed by use of the program
CTSM (Continuous Time Stochastic Modelling). The field of study is the tra-
ditional rainfall-runoff relationship in a large watershed with one precipitation
measurement station, one discharge measurement station and snow accumula-
tion during winter. The rainfall-runoff relationship is thus both non-linear and
non-stationary. Furthermore, the system is stiff, and advanced statistical and
numerical methods must be used for parameter estimation. The model struc-
ture is kept simple in order to be able to identify all the model parameters.
The case study is from a 1132 km2 mountainous area in northern Iceland with
altitude range of about 1000 m. The model performs well, despite of the fact
that the input series is only one single series of temperature and one single series
of precipitation, measured in the valley, close to the river mouth.

In Paper [C] the topic is a drought analysis in a reservoir related to a hydropower
plant. A stochastic model is developed and the model is used to simulate a time
series of discharge data which is long enough to achieve a stable estimate for
risk assessment of water shortage. Since the available data are used to design
the hydropower plant, it is demonstrated that the only way to estimate the
risk of water shortage during a hydropower’s lifetime is by using a stochastic
simulation.

In Paper [D] the data originate from a small creek in Denmark with two mea-
surement stations. The subject is flow routing where the upstream flow is used
as an input for modelling the downstream flow. As in Paper [B], the grey box
modelling approach is used, by using Stochastic Differential Equations and the
parameter estimation is performed by use of the program CTSM. The model for-
mulation is a linear reservoir model. However, the non-measured lateral inflow
between the two measurement stations is modelled as a state variable and thus
a dynamic estimate of the flow is achieved. This can be useful when modelling
chemical processes in the water.

In general, the papers show the advantages of stochastic modelling for describing
both non-linearities and non-stationaries in hydrological systems.



Resume

I dette Ph.D. projekt er forskellige stokastiske modelleringsmetoder studeret og
afprøvet inden for forskellige omr̊ader i hydrologi. Forskningen har været udført
ved Informatik og Matamatisk Modellering, DTU.

Afhandlingem er delt i to dele. Den første del indeholder en indledning og
en oversigt over fire artikler, skrevet som en del af forskningsarbejdet. Dernæst
kommer en introduktion til grundlæggende begreber i hydrologi samt en beskriv-
else af hydrologiske data. Til slut er der en introduktion til stokastisk model-
lering.

Anden del indeholder de 4 artikler, hvor de stokastiske metoder, og især hvordan
disse metoder yder nye bidrag til den hydrologiske videnskab, er beskrevet.
Anden del indeholder ogs̊a en nærmere beskrivelse af software samt indledning
til den matematiske analyse af stive systemer.

I Artikel [A] er betinget parametrisk modellering afprøvet. De data, som bruges,
stammer fra et rensningsanlæg i Danmark. Disse data best̊ar af nedbør i et
afstrømningsomr̊ade og afstrømningsmålinger i omr̊adets kloaksystem.

Formålet er en forudsigelse af afstrømningen med de formål at bruge forudsi-
gelserne i automatisk kontrol i rensningsanlæggets driftsystem. Den betingede
parametriske modelleringsmetode er en black box metode. Kendetegnet ved
denne type af modeller er, at modellens parametre ikke er konstante, men æn-
drer sig som funktioner af ydre forhold. I Artikel [A] er afprøvet to typer af
betingede parametriske modeller: Betingede FIR modeller og betingede ARX
modeller. Parametrenes dynamik er modelleret ved lokal regression, og resul-
taterne er en markant forbedring i forhold til de traditionelle lineære FIR og



iv

ARX modeller. Den betingede parametriske modelleringsmetode er ogs̊a nyt-
tig i følsomhedsanalyser, da den kan bruges til at undersøge, hvordan parame-
trene ændrer sig efter ændringer i de ydre forhold. Denne type af undersøgelse
kan bruges til videre modeludvikling, eventuelt til udvikling af mere fysisk ud-
formede modeller.

I Artikel [B] er grey box modelleringsmetoden brugt, ved at bruge Stokastiske
Differential Ligninger. Parameterestimationen er udført ved at bruge program-
met CTSM (Continuous Time Stochastic Modelling). Sammenhængen mellem
nedbør og afstrømning fra et stort opland er studeret. Om vinteren falder nedbør
b̊ade som regn og sne i bjergene. Sneen samles op som vand i elven om for̊aret.
Afhængigheden mellem nedbør og afstrømning er derfor ikke lineær og ikke
stationær. Desuden er systemet stift, hvilket gør avancerede statistiske og nu-
meriske metoder nødvendige. Modellens struktur er enkelt formuleret, s̊aledes
at alle modelles parametre kan identificeres. Data stammer fra en elv i det
nordlige Island. Oplandet er 1132 km2 med en højdeforskel p̊a 1000 m. Selvom
modellen kun bruger én nedbørsserie og én temperaturserie som input, virker
modellen overordenlig tilfredsstillende.

Emnet i Arikel [C] er en analyse af risikoen for tømning af et vandmagasin i
en flod i Island, som vil for̊arsage elsvigt fra det tilsluttede vandkraftværk. En
stokastisk model er udviklet, og den er brugt for at simulere en afstrømnings-
dataserie, som er lang nok til at opn̊a et stabilt estimat for risiko for tømning af
vandmagasinet. Det er vist, at den eneste tilfredsstillende måde til at estimere
risikoen for tømning af vandmagasinet i vandkraftværkets økonomiske levetid,
brugning af stokastisk simulation, da alle de eksisterende data er brugt til at de-
signe vandkraftværket og magasinet. Populære ingeniørmæssige metoder som f.
eks. sumkurvemetoden kan ikke h̊andtere hændelser med længere gentagelses-
perioder end måleseriens længde.

I Artikel [D] bruges data, som stammer fra en lille å i Danmark med to måle-
stationer i åen. Emnet er at forudsige vandhøjden ved nedstrømspunktet i sys-
temet p̊a basis af målinger ved opstrømspunktet i systemet samt nedbørsmålinger.
Lige som i Artikel [B] er grey box modelleringsmetoden brugt ved at bruge
Stokastiske Differentialligninger, og parameterne er estimeret i programmet CT-
SM. Modellens formulering er en lineær reservoir model, dog med den utradi-
tionelle tilføjelse, at den ikke målte indstrømning imellem de to stationer er
indført som en tilstandsvariabel. Dette medfører, at indstrømningen mellem
de to stationer er estimeret dynamisk. Det har den fordel, at resultaterne kan
bruges, n̊ar kemiske prosesser skal modelleres.

Generelt viser artiklerne fordele ved at bruge stokastisk modellering, der kan
bruges til at analysere b̊ade ikke linearitet og ikke stationaritet i hydrologiske
systemer.



Preface

This thesis is a part of the fulfillment in completion of the PhD degree in engi-
neering at the Department of Informatics and Mathematical Modelling (IMM)
at the Technical University of Denmark. The projects where carried out at the
IMM and at the National Energy Authority in Iceland.

Different stochastic models have been developed and tested on different hy-
drological problems. The main focus is on the modelling methodology, the
parameter identification and the importance of stochastic modelling in general.

The thesis consists of a summary report, a short introduction to hydrology, as
well as an introduction to stochastic modelling. Furthermore, a description of
software and introduction to stiff system can be be found in appendices, along
with a collection of four research papers, already published or to be published.

Reykjavik, June 2006

Harpa Jonsdottir
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Chapter 1

The theme

This thesis is a compilation of a PhD project at the Institute of Informatics and
Mathematical Modelling, at the Technical University of Denmark. The field
of research is stochastic modelling in hydrology. New methods are tested and
applied to different hydrological problems. A description of statistical/numerical
methods and the results of the applications are found in the papers [A]-[D].

1.1 Overview of papers included

The hydrological subjects are on very different scales and with different aspects.
The research is within the field of statistics as well as within hydrology and in all
of the research projects, empirical measurements are used to estimate unknown
parameters.

1.1.1 Paper [A]
Conditional parametric models for storm sewer runoff

In Paper[A], the data originates from a waste water treatment plant in Denmark.
The treatment plant is the outlet of a sewage system with a watershed of 10.89
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km2. The sewage system is built in the traditional manner with pipes and node
points for pumping stations. Figure 1.1 shows a sketch of a sewage system.

Pump
station

Pump
station

Pump
station

Pump
station

Pump
station Waste water

Treatment
plant

Figure 1.1: The sewage system

The input data is precipitation, measured at the waste water treatment plant.
The output data is excess flow data from the last pumping station before the
treatment plant.1 The goal is to predict the flow in the last pumping station and
use the predictions for on-line automatic control in the waste water treatment
plant. Black box models have proven to provide good predictions in hydrological
systems e.g., Carstensen et al. (1998) and thus such methods were tested. Linear
FIR and linear ARX models were unsatisfactory and thus non-linear methods
were used. The non-linear effects are mainly due to two factors; seasonality in
the balance and saturation/threshold in the pipe system. Large parts of the
measured precipitation do not enter the sewage system but evaporate or infil-
trate into the ground. The infiltration rate depends on several factors and the
wetness of the root zone plays an important role. Similarly, many factors affect
the evaporation and especially the temperature plays a major role. Because of
seasonal variations of temperature, plant growth and other physical factors, the
variation of infiltration and evaporation varies seasonally and consequently the
water balance does too. The other non-linear effect, the saturation/threshold is

1The base flow in the sewage system, also known as dry weather flow, does not originate

from rainfall. Consequently, the base flow is subtracted from the flow data and the resulting

flow, the excess flow is used in the modelling approach.
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Figure 1.2: Fnjoskadalur. (Photo Oddur Sigurdsson)

a consequence of limited capacity of the pumps in the sewage system. When a
large amount of water enters the system the pump stations in the node points
cannot serve all the water. Thus, water accumulates behind the pumping sta-
tions waiting to be served. During a very heavy rain storm the water enters
the treatment plant with a delay, as compared to a normal rain storm. These
two factors were taken into account in a conditional parametric model. Condi-
tional parametric models are models where the parameters change as a function
(conditioned) of some external variables. In this case the parameters changed
as a function of seasonality and as a function of water quantity in the system.
The method of conditional parametric modelling is a significant improvement
compared to traditional linear modelling.

1.1.2 Paper [B]
Parameter estimation in a stochastic rainfall-runoff
model

The subject in Paper[B] is a classic topic in hydrology, the rainfall-runoff re-
lationship. The data originates from a 1132 km2 mountainous watershed in
Iceland. Figure 1.2 shows a part of the watershed. It shows the valley Fn-
joskadalur and the river Fnjoska. The altitude range is about 1000 meters,
stretching from 44 m to 1083 m. More than 50% of the watershed is above 800
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Figure 1.3: A sigmoid function with center 4 and scale parameter 1.

meters. The water level gauge is down in the valley, close to the river mouth.
One meteorological observatory is in the watershed and it is located in the valley.
Thus no meteorological observatory is located in the highlands nor close to the
watershed in the highlands. The scarcity of meteorological observatories is well
known in sparsely populated areas around the world, especially in mountain-
ous areas. Because the watershed is large, and with a large altitude range, the
weather condition in the watershed can be very different depending on location
in the watershed. Furthermore, during winter, snow accumulates, and melts in
spring, resulting in large spring floods in the river. Despite of limited data, a
rainfall-runoff relationship was required. It was chosen to develop a stochastic
conceptual model, and it is found necessary to use a stochastic model since too
many effects are unknown and/or not measured.

The system is modelled in a continuous time by using stochastic differential
equations. The model structure is kept as simple as possible and with as few
parameters as possible in order to be able to use the data to estimate the pa-
rameter values. The stochastic differential equations describe a reservoir model
with a snow routine. The watershed is not divided into elevation zones, but a
smooth threshold function is used in the snow routine both for accumulation
and melting, using positive degree day method. The smooth threshold function
is the sigmoid function,

φ(T ) =
1

1 + exp(b0 − b1T )
(1.1)

where T is temperature, b0 and b1 are constants. The constant b0 is the center of
the sigmoid function and b1 controls the steepness. Figure 1.3 shows a sigmoid
function with center b0 = 4 and scale b1 = 1.

In Figure 1.4 the modelling principle is illustrated. Precipitation enters the
system and is divided into snow and rain, depending on the temperature. It
can be rain only, snow only and partly snow and rain. The rain enters the first
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Figure 1.4: The modelling principles.

reservoir which delivers water partly directly into the river and partly into the
second reservoir that finally delivers the water into the river. The snow, how-
ever, enters the snow container and stays in the snow container until it melts,
and is then delivered into the first container. As mentioned earlier, the same
smooth threshold function is used for precipitation division and snow melting.
Thus, at a same time a precipitation can be divided into partly rain and partly
snow while some ratio of the snow is melting. This modelling method computes
precipitation division and melting on an average basis. This works well, partic-
ulary since no meteorological observatory is located in higher altitudes so that
temperature lapse rate and precipitation lapse rate can be estimated and used
as a basis for elevation division.

During the winter the snow container, because of its nature, swallows the snow
and accumulates it until the temperature rises and the snow begins to melt.
During the melting, the snow container delivers water into the system until
the snow container is emptied. During summer, the snow container is inactive.
Consequently, the snow routine causes the system to be both non-linear and
stiff and, therefore, difficult to cope with numerically.

The parameters are estimated by using the program CTSM (Continuous Time
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Data:
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Figure 1.5: The input and output for different optimization principles.

Stochastic Modelling) (Kristensen et al. 2003). The estimation method is the
maximum likelihood method and the principle of extended Kalman filter is
used. Three different filtering methods or ODE solvers are implemented and
it depends on the system’s stiffness which one is the ”optimal” to use. Fur-
thermore, it is possible to choose to optimize the parameters with or without
the traditional Kalman filter updating. Figure 1.5 illustrates the optimization
principles. The optimized parameter values will not be the same we call them
A and B. Optimization with Kalman filter updating results in a parameter Set
A and those parameters are optimal for making model prediction. Contrarily,
optimization without Kalman filter updating results in parameter Set B which
is optimal for making model simulations if the true model exists.



1.1 Overview of papers included 7

1.1.3 Paper [C]
Assessment of serious water shortage in the Ice-
landic water resource system.

The topic in Paper[C] is a risk assessment of a water shortage in a hydropower
plant. The data originates from the river Tungnaá in southern Iceland, measured
at Mariufossar. The watershed is 3470 km2, of which 555 km2 is glacier. The
data consist, of daily values of discharge over a period of 50 years. Figure 1.6
shows a hydropower plant and the corresponding reservoir. The water in the
reservoir is led to the hydropower plant in pipes, located in the mountain, and if
necessary bypass flow is led into the canyon which is on left side of the reservoir.

Figure 1.6: The hydropower plant Burfell and its reservoir. (Photo: Oddur
Sigurdsson)

When a hydropower plant is designed, two major quantities are taken into con-
sideration. One is the regulated flow, Qreg, which is the flow of water delivered
into the hydropower plant for electricity production. The other quantity is the
size of the reservoir, V . For a given regulated flow Qreg and for a given dis-
charge series, a volume V exists, which is the smallest volume that can secure
regulated flow Qreg. The largest possible Qreg which can be served without any
water shortage is the mean value of the discharge. The relationship (Qreg,V)
is known as the regulation curve. Figure 1.7 shows the regulation curve for the
discharge series at Mariufossar.
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Figure 1.7: The regulation curve.

All available data are used to construct the regulation curve, and using a differ-
ent discharge series will lead to another regulation curve. Thus, for a given point
(Qreg, V ) on the regulation curve, the risk of a water shortage is zero using the
data series which was used to construct the regulation curve. However, when the
hydropower plant has been designed by choosing (Qreg, V ), the future discharge
series will not be exactly the same as the past discharge series and, thus, water
shortage might occur. Consequently, a stochastic model must be developed in
order to construct a simulated discharge series to be used for risk assessment.
It is very important to have an estimation of the risk of water shortage in the
lifetime of the hydropower plants, about 30-60 years.

A stochastic periodic model in the spirit of Yevjevich, (Yevjevich 1976) was
developed and the available data were used to estimate the parameters in the
stochastic model. The stochastic model is then used to simulate flow series in
order to estimate the water shortage probabilities. The goal is to estimate prob-
abilities of rare events and it turned out that it was necessary to simulate the
daily flow for 50000 years in order to achieve a stable estimate of the risk of
water shortage. Using the simulated data it was concluded that the water short-
age probabilities can be described by the Weibull distribution. However, even
though the distribution of the water shortage probabilities is known, simulations
are required in order to estimate the parameters in the distribution.
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1.1.4 Paper [D]
A grey box model describing the hydraulic in a creek.

In Paper[D] the subject is flow routing in a creek in a small watershed, in
Northern Zealand in Denmark. The exact size of the watershed is not known.
There are two measuring stations in the creek, see Figure 1.8. The available

L = 2191m

A B

A:  Station A

R R

                      B: Station B

R:  Rainfall runoff outlet

Kokkedal Nive mølle

Figure 1.8: A sketch of the area in Usserod river.

data are precipitation and depth at two locations in the creek. The goal is to
find a relationship between the depth at the upstream station and the depth
at the downstream station and to predict the output depth at the downstream
station. The Saint Venant equation of mass balance is used as a basis and
the lateral inflow between the two measuring stations is modelled as a first
order process with precipitation as input. The resulting model is a stochastic
linear reservoir model described in continuous time by stochastic differential
equations. The model is, however, different from the traditional reservoir model
in that the lateral inflow of water between the two measuring stations is a state
variable in the model and estimated by use of the Kalman filtering technique.
This can be used in an environmental context so that it might be possible to
estimate the concentration of chemical concentrations in the lateral inflow if
the corresponding chemical concentrations are estimated both upstream and
downstream. This can be very valuable in an environmental analysis. The
program CTSM was used to estimate the parameters.

1.2 Comparison of the models

The hydrological subjects in this PhD project are on very different scales and
with different aspects. However, all the projects are within the theory of hy-
drology. Thus the physical law, conservation of mass is the fundamental law.
In hydrology this can be referred to as the storage effect, i.e., what comes in is
either stored or comes out, see Figure 1.9.
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Figure 1.9: The storage effect

The storage equation is written

dS

dt
= I(t)−Q(t) (1.2)

where I(t) is the input, Q(t) is the output and S(t) is the storage. The change
in storage is the difference of input and output. All the projects/papers have to
do with the storage but in different aspects.

The different storage interpretations can be seen graphically in Figure 1.10. In
the following the different storage effects are summarized whereas an overview
of the included papers are given in section 1.1

The subject of Paper[A] is a rainfall-runoff relationship in a sewage system.
The input is precipitation and the output is excess flow. The storage is twofold
Firstly the storage is the time lag between input and output and, secondly, the
storage is the long term storage. The model is an input-output model or a black
box model, and since the input is precipitation and not effective precipitation
the mass balance is not conserved in the model. This can be interpreted so
that the storage container either swallows the rain or stores it on a long term
basis. However, water comes out of the system eventually. Part of the water
evaporates and some is permeated by plants. However, large part infiltrates
into the root zone and becomes groundwater and can eventually be observed in
creeks and rivers.

The subject in Paper[B] is also a rainfall-runoff relationship, the input is precipi-
tation and the output is discharge. The model is not a mass balance model, since
evaporation/transpiration are not taken into account, and the base flow is repre-
sented by a constant. However in this project there is no swallowing, a balance
between input and output exists, only the ”up-scaling” of the precipitation mea-
surements is underestimated due to the amount of evaporation/transpiration
and groundwater contribution. In this project the storage is time delay. It is
a short-term time delay between rain and discharge during the summer and
because of the snow storage it is a long-term time delay during winter time.

The topic in Paper[C] is in a different category. The topic is a risk assessment
of a water shortage in a hydropower plant, i.e., the risk of emptying the reser-
voir. The input data is discharge series and the output is risk assessment, i.e.,
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Figure 1.10: Overview of the storage effect.

probabilities versus volume of water shortage. This subject certainly involves
storage, and in fact this might be the most obvious form of storage, a storage
of water in a reservoir, measured in giga-liters, long-term storage of water from
year to year.

Finally the subject in Paper [D] is a flow routing in a creek, the input is both
a precipitation and the upstream depth. The water level at the downstream
station is modelled as a function of the water level at the upstream station and
precipitation. This is a small creek with short distance between the stations
and no sub-creek merging in between. Consequently, the upstream water level
has the largest impact on the downstream water level. Hence,S the storage is
mostly the retention time between the two measuring stations.
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1.3 Why stochastic modelling?

In an ideal world, where all phenomena have been bought in the supermarket
of physics, all occurrence can be described completely by physical equations.
However, this is not the reality in our world, and particulary not in the field of
hydrology. Consequently, use of stochastic models can be a useful option.

Models described by deterministic physical equation are often referred to as
white box models. The stochastic models can be grouped into grey box models
and black box models. The grey box models are described by physical equations
and a noise factor. The noise factor is an extra term which is due to factors that
are not described by the physical factors. The black box models are built up in
such a way that statistical methods are used to find relation between input and
output not necessarily based on physical processes.

The basic physical equation in hydrology is the equation of conservation of mass
Eq. (2.1). The change of mass within a volume equals net outflow of the vol-
ume, i.e., the difference of the mass of inflow into the volume minus the mass
of outflow out of the volume. In hydrology the control volume unit is a wa-
tershed. The total volume is found by integrating over the entire watershed,
and the change of mass is found by the time derivative of the water inside the
volume (watershed). The net outflow is found by inflow and outflow through
the watershed’s boundary. To carry out these calculations detailed information
about precipitation, evaporation, transpiration, infiltration, surface runoff and
groundwater runoff must be known. Information must be available in the whole
watershed. In general such information does not exist and it is, therefore nec-
essary to introduce stochastic terms in the models. Moreover, many of these
processes are highly non-linear and cannot be described perfectly with mathe-
matical equations, e.g., the infiltration (Viessman & Lewis 1996). Presently not
enough is known about the processes to describe the perfectly. These model
uncertainties reflect the inability to represent the physical process by use of
deterministic equations and thus provide evidence for the stochastic modelling
approach.

In addition it can be argued that both geophysical factors like the soil and many
of the meteorological factors, indeed, have a stochastic behaviour. Moreover, use
of a stochastic model can provide information about uncertainties in prediction
(extrapolation) of the future.

Last but not the least, it is well known that the hydrological data are corrupted
by errors due to measurement errors, both in the input data and output data.
Additionally, errors exist due to the transformation from the measured values
to the values requested e.g., transformation from water level measurements to
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discharge.

1.4 Conclusion and discussion

The topic of this PhD project is stochastic modelling in hydrology and in all
of the papers, parameters are estimated by using data. However, the statisti-
cal methods are of different types. One paper presents conditional parametric
modelling, which is a black box type of model. Two papers present a parameter
estimation in models described by stochastic differential equations, which are
semi-physical models, or grey box models. Finally, one paper presents results
which can be achieved by stochastic simulations only.

The topic of the rainfall-runoff relationship has been a study of interest for cen-
turies. Numerous models of the rainfall-runoff relationship exist and it depends
on the circumstances what kind of model is good to use, or possible to use.
Sometimes detailed information about the watershed is available while in other
cases the information is scarce. Models like SHE (Abbott et al. 1986a), (Abbott
et al. 1986b), MIKE-SHE (Refsgaard & Storm 1995) and WATFLOOD (Singh &
Woolhiser 2002) are physically based, distributed models. These types of models
are often referred to as white box models. In a physically based model the hydro-
logical processes of water movement are modelled either by finite difference rep-
resentation of the partial differential equations of mass, momentum and energy
conservation, and/or by empirical equations derived from independent experi-
mental research. Spatial distribution of catchment parameters such as rainfall
input and hydrological response is achieved in a grid network. All the physical
processes are captured in the model, such as; interception, evapotranspiration,
etc. However, as stated in (Refsgaard & Storm 1995), the application of a dis-
tributed, physically based model like MIKE SHE requires the provision of large
amounts of parametric and input data. Moreover, the ideal situation where field
measurements are available for all parameters rarely occurs. Hence, the problem
of model calibration (parameter estimation) arises (Refsgaard et al. 1992) and
also a decision of optimization criteria (Madsen 2000).

Contrarily, black box models have also been used in rainfall-runoff modelling.
Black box models are completely data based, i.e., the model structure is deter-
mined by statistical methods and the data is used to estimate the parameters
of the model.

In the 1970’ies linear black box models such as FIR and ARMAX models were
quite popular, and in some cases they provide acceptable results. Nevertheless
the rainfall-runoff process is believed to be highly non-linear, time-varying and
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spatially distributed, e.g., (Singh 1964). With increased computer power non-
linear models have become more popular. (Todini 1978) presented a threshold
ARMAXmodel in a state space form. (Young 2002) model time variations by in-
troducing the SDP approach, (State Dependent Parameter approach), which in
the case of a non-linearity results in a two stage DBM approach. In recent years,
various types of non-linear models have been developed such as neural networks
e.g., (Shamseldin 1997) or (Hsu et al. 2002), Bayesian methods like (Campbell
et al. 1999), fuzzy methods, e.g., (Chang et al. 2005) and non-parametric models
e.g., (Iorgulescu & Beven 2004). In Paper [A] and Paper [B] several models are
mentioned and (Singh & Woolhiser 2002) provides an overview of mathematical
modelling of watershed hydrology.

In Paper [A] the method of conditional parametric models is introduced in
hydrological modelling. A conditional parametric model is a semi parametric
model, a mixture of a non-parametric, (Härdle 1990) and a parametric black
box model. The name of the model originates from the fact that if the ar-
guments of the conditional variables are fixed, then the model is an ordinary
linear model, (Hastie & Tibshirani 1993), and (Anderson et al. 1994). In Paper
[A] the basic modelling formulation are FIR and ARX models, except that the
models parameters are non-parametrically described as a function of external
variables. In the actual case, the parameters depend on the season and on the
volume of water in the sewage system. The conditional variation is estimated
by use of local polynomials as described in (Nielsen et al. 1997). The estimation
is accomplished by using a software package LFLM (Locally weighted Fitting of
Linear Models), which is an S-PLUS library package, see (Nielsen 1997). This
approach turns out to provide improvements compared to linear modelling. By
studying how the parameters vary as the conditional variables changes. This
approach can also be used in a search for a more global modelling or structure
identification. Hence, the approach is also valuable as a tool for an analysis,
that might provide understanding of the system studied, usable in a grey box
model interpretation.

In Paper [B] the modelling principle of white box modelling and black box
modelling is combined in the grey box modelling approach. The principle is
to develop a simple model, but still physically based in some sense, so that
the parameters have at least a semi-physical or average-physical interpretation.
However, the model is kept simple enough so that the available data can be used
for parameter estimation. The model is formulated in a continuous-discrete time
state space form. The system equations consist of stochastic differential equa-
tions. Hence the estimated parameters can be directly physically interpreted.
The parameter estimation is a Maximum likelihood method, based on Kalman
filter technique, for evaluating the likelihood function. This is implemented
in a software package called CTSM (Continuous Time Stochastic Modelling),
(Kristensen et al. 2003). One advantage of the stochastic state space approach
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is that the model structure can be used for both prediction and simulation. The
parameterization can be controlled in the software CTSM depending on, whether
the model is to be used for prediction or simulation. In order to be able to esti-
mate all the parameters, the model is kept more simple in structure than many
of the existing conceptual models, such as the HBV model, (Bergström 1975)
and (Bergström 1995) or the Tank model (Sugawara 1995). Some attempts have
been made for parameter estimation in a state space models of similar type as
the model in Paper [B]. (Lee & V.P.Singh 1999) applied an on-line estimation to
the Tank model, but only for one storm at a time, calibrating the initial states
manually. In (Georgakakos et al. 1988) the Sacramento model, org. in (Burnash
et al. 1973), is modified and formulated in a state space form, but due to the
model’s complexity only some of the parameters are estimated, which, indeed,
might result in locally optimal parameter values. The structure of the model
presented in Paper[B] is simpler than in the two models mentioned above. In
(Beven et al. 1995) it is stated that a number of studies have suggested that there
is only enough information in a set of rainfall-runoff observations to calibrate 4
or 5 parameters, which is about the number of physical parameters estimated in
Paper[B]. By using a smooth threshold function for separating the precipitation
into snow and rain instead of elevation division keeps down the number of para-
meters. Physically this can be interpreted as some kind of averaging. The only
data required for estimating the parameters of the model is two input series;
precipitation and temperature and one output series, the discharge. In the light
of limited data compared to the size and altitude range of the watershed. It is,
in indeed, very satisfactory how well the model performs in the case study. The
watershed is 1132 km2, with an altitude range of about 1000 m, and 50% of the
watershed is located above 800 m. The input series; temperature and precipita-
tion are measured down in the valley, close to the river mouth. The number of
physical parameter estimated is 8, additionally the initial states and the states
variances are estimated. The calibration period is 6 years, while the validation
period is 2 years (not used in calibration). This modelling approach provides
a promising tool for further modelling in hydrology. Furthermore, (Kristensen
et al. 2004a) showed that the stochastic state space model formulation gives
significantly less biased parameter estimate than parameter estimates obtained
by the optimization method based on deterministic model formulation. See also
Section 4.7.

The topic in Paper [C] is a risk assessment of electrical power shortage in a
hydropower plant. This is the same as risk assessment of a water shortage
in the corresponding water resource system. A water shortage is met by flow
augmentation from reservoirs. The management of these reservoirs are human
interventions in the natural flow. One of the major questions in a simulation
analysis of the Icelandic power system is the performance of the reservoirs as
the electrical power system is hydropower based . During a heavy drought, the
available water storage in the reservoir may not be sufficient to fulfill the demand
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and, consequently, there will be a shortage of electrical power. It is therefore very
important to have mathematical tools to estimate the risk of water shortage,
when searching for management methods. The method of using all available
flow series in order to design a reservoir, large enough to sustain a predefined
flow output is well known in hydraulic engineering. The graphical version of
the method can be seen in (Crawford & Linsley 1964) and this principle is still
widely used. However, the method cannot predict the risk of water shortage.
Stochastic methods in hydraulic design have been known for quite some time,
e.g., (Plate 1992), but they are not yet extensively used in risk assessment. All
the available data are used for design of the hydropower plant. Thus it is clear
that the recurrence time of a drought in the reservoir is large. Consequently,
the subject is to estimate small probabilities, probabilities which are in the tail
of the corresponding distribution. A stochastic formulation of water shortage is
a peak below threshold study, see (Medova & Kyriacou 2000). The case study
is the river Tungnaá in southern Iceland. The data series consist of daily flow
values over a period of 50 years. The mean value of the flow is 80.7 m3/s.
As an example, the results in the case study showed that the probability of a
water shortage of 155 million m3 is 0.5% and thus the recurrence time is 200
years. A water shortage of this magnitude means that the power station is out
of order for about 3 weeks. If the economical lifetime of the hydropower station
is 50 years, the probability that a large drought like that will occur is 25%.
It is demonstrated that the only way to obtain a discharge series long enough
for calculating a stable estimate of the drought risk is to produce a series by
stochastic simulation.

The topic in Paper [D] is flow routing. In a broad sense the flow routing may be
considered as an analysis to trace the flow through a hydrologic system, given
the input. Numerous routing techniques exist, e.g., (Chow et al. 1988) and
(Viessman & Lewis 1996). In Paper [D] a lumped stochastic model is developed
to describe the downstream water level as a function of the upstream water
level and precipitation. The Saint-Venant equation, e.g., (Chow et al. 1988),
is used for deriving a stochastic linear reservoir model, represented as a state
space model in continuous time by using stochastic differential equations. The
parameters are estimated by using the program CTSM (Kristensen et al. 2003).
The principle of linear reservoir model was proposed by (Nash 1957) and the
concept was first introduced by (Zoch 1934, 1936, 1937) in an analysis of the
rainfall-runoff relationship. The fact that the model in Paper [D] is stochastic
allows for data to be used for parameter estimation including the parameters re-
lated to the system and observation errors. Furthermore, the model differs from
the traditional reservoir model since the non-measured lateral inflow of water
between the two measuring stations is a state variable in the model and esti-
mated by use of the Kalman filtering technique. Using this in an environmental
context means that it might be possible to estimate concentration of chemical
concentrations in the lateral inflow if the corresponding chemical concentrations
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are measured both upstream and downstream. This can be useful in an envi-
ronmental analysis. It is found that the grey box modelling approach provides
a strong modelling framework in flow routing. The possibility to combine the
physical knowledge with data information valuable. It enables an estimation of
non-measured variables and the stochastic approach makes it possible to provide
uncertainty bounds on predictions and on parameter estimates.

In general it has been concluded that stochastic modelling in hydrology has
the advantages of describing both non-linearities and non-stationaries. Further-
more, the grey box modelling approach provides a strong modelling approach
which opens up to possibility for combine prior physical knowledge with data
information. Hence, it bridges the modelling gap between the statistician and
the physical expert.
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Chapter 2

Introduction to hydrology

Water is the most vital substance on the Earth, the principal ingredient of all
living things and a major force constantly shaping the surface of the earth. The
first images of the surface of the Earth, as seen from the moon over two decades
ago helped visualizing the Earth as a unit, an integrated set of systems; land
masses, atmosphere, oceans, and the plant and animal kingdom.

This chapter provides a brief introduction to the concepts in hydrology used in
this project. The chapter is mostly based on the books (Mays 1996), (Chow
1964) (Chow et al. 1988), (Burnash 1995), (Viessman & Lewis 1996), (McCuen
1989) and (Singh & Woolhiser 2002).

2.1 The history of water resources

The book (Mays 1996) gives an excellent overview of the history of water re-
sources and human interaction with water up to 18th century. The following
paragraphs are mostly based on this book.

Water is the key factor in the progress of civilization and the history of water
resources cannot be studied without studying humanity. Humans have spent
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most of their history as hunting and food gathering beings. It is only during the
last 9000 to 10000 years that human beings have discovered how to raise crops
and tame animals. From Iraq and Syria the agricultural evolution spread to the
Nile and Indus valleys. During this agricultural evolution, permanent villages
took the place of a wandering existence. About 6.000 to 7.000 years ago, farming
villages of the Near and Middle East became cities. Farmers learned to raise
more food than they needed, allowing others to spend time making things useful
to their civilization. People began to invent and develop technologies, including
how to transport and manage water for irrigation.

The first successful efforts to control the flow of water were made in Egypt
and Mesopotamia. In ancient Egypt the construction of canals was a major
endeavor of the Pharaohs. One of the first duties of provincial governors was
the digging and repair of canals, which were used to flood large tracts of land
while the Nile was flowing high. Problems of the uncertainty of the Nile flows
were recognized. During very high flows the dikes were washed away and the
villages were flooded, drowning thousands. During low flow the land did not
receive water and no crops could grow. The building of canals continued in
Egypt throughout the centuries.

The Sumerians in southern Mesopotamia built city walls and temples and dug
canals that were the world’s first engineering work. Flooding problems were
more serious in Mesopotamia than in Egypt because the Tigris and Euphrates
carried several times more silt per unit volume of water than the Nile. This
resulted in rivers rising faster and changing their courses more often.

The Assyrians developed extensive public works. Sargon II invaded Armenia in
-714, discovering the ganat (Arabic name). This is a tunnel used to bring water
from an underground source in the hills down to the foothills. This method of
irrigation spread over the Near East into North Africa over the centuries and is
still used.

The Greeks were the first to show the connection between engineering and sci-
ence, although they borrowed ideas from the Egyptians, the Babylonians and
Phoenicians. Ktesibius (-285 - -247), invented several things e.g., the force
pump, the hydraulic pipe, the water clock. Shortly after Ktesibius, Philen of
Byzantium invented several things, one of which was the water wheel. One
application of the water wheel was a bucket-chain water hoist, powered by an
undershot water wheel. This water hoist may have been the first recorded case
of using the energy of running water for practical use. Probably the greatest
Hellenistic engineer, was Archimedes (-287 to -212). He founded the ideas of
hydrostatics and buoyancy. The Hellenistic kings began to build public bath
houses.
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The early Romans devoted much of their time to useful public projects. They
built roads, harbor works, aqueducts, baths, sewers etc. The Romans and He-
lenes needed extensive aqueduct systems for their fountains, baths and gardens.
They also realized that water transported from springs was better for their
health than river water. Knowledge of pipe making was in its infancy and the
difficulty of making good large pipes was a hindrance. Most Roman piping was
made of lead, and even the Romans recognized that water transported by lead
pipes is a health hazard.

The fall of the Roman Empire in 476 extended over a 1000 year transition period
called the Dark Ages. After the fall of the Roman Empire, water and sanitation
in Europe declined, resulting in worse public health.

During the Renaissance, a gradual change occurred for purely philosophical con-
cepts toward observational science. Leonardo da Vinci (1452-1519) made the
first systematic studies of velocity distribution in streams. The French scien-
tist Bernard Palissy (1510-1589) showed that rivers and springs originate from
rainfall, thus refuting an age old theory that streams were supplied directly by
the sea. The French naturalist Pierre Perrault (1608-1680) measured runoff,
and found it to be only a fraction of rainfall. Blaise Pascal (1623-1662) clari-
fied principles of the barometer, hydraulic press, and pressure transmissibility.
Isaac Newton (1642-1727) explored various aspects of fluid resistance (inertia,
viscosity and waves).

Hydraulic measurements and experiments flourished during the eighteenth cen-
tury. New hydraulic principles were discovered, such as the Bernoulli (1700-
1782) equation for forces present in a moving fluid and Chezy’s (1718-1798)
formula for the velocity in an open channel flow, also better instruments were
developed. Leonard Euler (1707-1783) first explained the role of pressure in
fluid flow and formulated the basic equation of motion.

Concepts of hydrology advanced during the nineteenth century. Dalton (1802)
established a principle for evaporation, Darcy (1856) developed the law of porous
media flow and Manning (1891) proposed an open channel flow formula. Hy-
draulics research continued in the nineteenth century, with Louis Marie Henry
Navier (1785-1836) extending the equations of motion to include molecular
forces. Jean-Claude Barre de Saint-Venant wrote in many fields on hydraulics.
Others, such as Poiseulle, Weisbach, Froude, Stokes, Kirchoff, Kelvin, Reynolds
and Boussinesq, advanced the knowledge of fluid flow and hydraulics during the
nineteenth century.

At the beginning of the twentieth century quantitative hydrology was basically
the application of empirical approaches to solve practical hydrological problems.
Gradually, hydrologists did combine empirical methods with rational analysis



22 Introduction to hydrology

of observed data. One of the earliest attempts to develop a theory of infiltra-
tion was by Green and Ampt in 1911, who developed a physically based model
for infiltration and in 1914 Hazen introduced frequency analysis of flood peaks.
Sherman defined the unit hydrograph in 1932, as the unit impulse response func-
tion of a linear hydrologic system i.e., a function relating excess rainfall to direct
runoff. In 1933 Horton developed a theory of infiltration to estimate rainfall ex-
cess and improved hydrograph separation techniques. In 1945 Horton developed
a set of ”laws” that are indicators of the geomorphologic characteristics of wa-
tersheds, now known as Horton’s laws. In the years 1934 to 1944 Lowdermilk,
Hursh and Brater, observed that subsurface water movement constituted one
component of storm flow hydrographs in humid regions. Subsequently, Hoover
and Hursh reported significant storm flow generation caused by a dynamic form
of subsurface flow. The underground phase of the hydrologic cycle was inves-
tigated by Fair and Hatch in 1933, who derived a formula for computing the
permeability of soil and in 1944 Jacob correlated groundwater levels and pre-
cipitation on the long Island, N.Y. The study of groundwater and infiltration
led to the development of techniques for separation of base flow and interflow
in a hydrograph. McCarthy and others developed the Muskingum method of
flow routing in the 1934-1935 and the concept of linear reservoirs was first in-
troduced by Zoch in the years 1934-1947, in an analysis of the rainfall and
runoff relationship. In 1951 Kohler and Linsley developed the Antecedent in-
dex approach, which have been used in various models. The principle is that
weighted summation of past daily precipitation amounts, is used as an index of
soil moisture.

In 1960’ the digital revolution broke out and since then numerous mathematical
models have been developed. The models are of different types and developed
for different purposes, although many of the models share structural similarities,
because their underlying assumptions are the same. There exists models for
simulation of watershed hydrology, for flood forecasting warning systems and
for environmental managements. The type of models are different, there exists
conceptual and models and detailed physically based distributed models. There
exists numerous black box models and also grey box models, e.g., Paper [B]. The
development of hydrological modelling will proceed on and on, mostly because
of constantly improving modelling techniques. In Papers [A] and [B] several
watershed models are mentioned and a fine overview of watershed models can
be found in (Singh & Woolhiser 2002).
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2.2 The hydrological cycle

Water on earth exists in a space called the hydrosphere which extends about
15 km up into the atmosphere and about 1 km down into the lithosphere, the
crust of the earth. The cycle has no beginning or end. Figure 2.1 illustrates the
hydrological cycle; the water evaporates from oceans and land surface to become
part of the atmosphere, water vapor is transported and lifted in the atmosphere
until it condenses and precipitates on the land or the ocean. Precipitated water
may be intercepted by vegetation, become overland flow infiltrates into the
ground, flows through the soil as subsurface flow and discharge into streams as
surface runoff. Much of the intercepted water and surface runoff returns to the
atmosphere through evaporation. The infiltrated water may percolate deeper
to recharge groundwater, later emerging in springs or seeping into streams to
form surface runoff, and finally flowing into the sea or evaporating into the
atmosphere as the hydrologic cycle continues.

Figure 2.1: The hydrologic cycle, (Chow et al. 1988).

Although the concept of the hydrologic cycle is simple, the phenomenon is enor-
mously complex and intricate. It is not just one large cycle but rather is com-
posed of many interrelated cycles of continental, regional and local extents. The
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hydrology of a region is determined by its weather patterns and by physical fac-
tors such as topography, geology and vegetation. Also as civilization progresses,
human activities gradually encroach on the natural water environment, altering
the dynamic equilibrium of the hydrologic cycle and initiating new processes
and events.

2.3 The storage effect

By analogy, a hydrologic system is defined as a structure or volume in space,
surrounded by a boundary, that accepts water and other inputs, operates on
them and produces outputs. The basic physical law, is the law of conservation
of mass, i.e., mass cannot be created or destroyed. Thus, for a fixed time
independent region V , the net rate of flow of mass into the region is equal to
the rate of increase of the mass within the surface. Figure 2.2 demonstrates this
principle.

v

v

v

Figure 2.2: Flow in a control volume.

Mathematically this is can be written:

d

dt

∫∫∫

V

ρdV = −

∫∫

∂V

ρvdA. (2.1)

where the d stands for the total derivative V stands for the volume, ρ is the
density, v is the velocity of the fluid, A is the area vector and ∂V is the surface
of the control volume, i.e., the surface to be integrated over. The velocity of the
flow is defined positive out of the surface. This is known as the integral equation
of continuity for an unsteady, variable-density flow. If the flow has a constant
density, the density ρ can be divided out of both terms of Eq. (2.1) leaving

d

dt

∫∫∫

V

dV = −

∫∫

∂V

vdA. (2.2)

The integral
∫∫∫
V

dV is the volume of fluid stored in the control volume, denoted

by S, thus the first term in Eq. (2.2) is the time rate of change of the storage
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dS/dt. The second term is the net outflow and it can be split into inflow, I(t),
and outflow, Q(t). The resulting equation is the storage equation

dS

dt
= I(t)−Q(t) (2.3)

which is the integral equation of continuity for an unsteady, constant density
flow. When the flow is steady, dS/dt = 0. Figure 2.3 shows a schematic repre-
sentation of the storage equation. Input enters the system, the system operates

Figure 2.3: A system operation

on the input and delivers an output. In a systematic representation the op-
eration function is often referred to as impulse response function, see Section
4.4.2.

The system considered in hydrologic analysis is the watershed. The watershed
is defined as all the land area that sheds water to the outlet during a rainstorm
i.e., all points enclosed within an area from which rain is falling at these points
will contribute to the outlet. Big watersheds are made up of many smaller
watersheds and thus it is necessary to define the watershed in term of a point.
The shaded area of Figure 2.4 represents the watershed with outlet at point A
whereas the watershed for point B is the small area enclosed within the dashed
lines.

2.4 Surface water hydrology

Surface hydrology is the theory of movement of water along the surface or the
Earth as a result of precipitation and snow melt. Runoff occurs when precip-
itation or snowmelt moves across the land surface. The land area over which
rain falls is called the catchment while the land area that contributes surface
runoff to any point of interest is called a watershed. The relationship between
precipitation and runoff has been studied for decades. The hydrological subject
in Papers [A], [B] and [D] is surface water hydrology.

A streamflow hydrograph is a graph (or table) showing the flow rate as a function
of time at a given location in a stream. The spikes, caused by rain storms, are
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Figure 2.4: Delineation of a watershed boundary. (McCuen 1989).

called direct runoff or quickflow, while the slowly varying flow in rainless periods
is called base flow.

Excess rainfall, or effective rainfall, is the rainfall which is neither retained on
the land surface nor infiltrated into the soil. After flowing across the water-
shed, excess rainfall becomes direct runoff at the watershed outlet. The graph
of excess rainfall vs. time is a key component in the study of rainfall runoff
relationships. Figure 2.5 shows a hydrograph and some of the hydrographs
components. The time base of a hydrograph is considered to be the time from

Figure 2.5: Storage flow relationship, (Viessman 1996).

which the concentration curve begins until the direct runoff component reaches
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zero. Watershed lag time or basin lag time, is defined as the time from the center
of mass of effective rainfall to the center of mass of direct runoff. If a uniform
rain is applied on a tract, the portions nearest the outlet contribute to runoff
at the outlet almost immediately. As rain continues, the depth of excess on the
surface grows and discharge rates increase throughout. A time of concentration,
tc, is defined as the time required, with uniform rain, so that 100 percent of
watershed (all portions of the drainage basin) is able to contribute to the direct
runoff at the outlet. (Singh 1988) argues that the time of concentration tc is
1.42 times the basin lag time. This fact is used in Paper [A].

2.4.1 The theory of unit hydrograph

The unit hydrograph is the unit pulse response function of a linear hydrologic
system. First proposed by (Sherman 1932), the unit hydrograph of a watershed
is defined as a direct runoff hydrograph resulting from 1 cm of excess rainfall
generated uniformly of the drainage area at a constant rate for an effective
duration.

A unit hydrograph is basically an impulse response function between excess
rainfall to direct runoff. It fulfills the equation of continuity and thus the mass
balance is conserved.

In practice the total rainfall and the total runoff (the discharge) are measured1.
Thus, for hydrograph calculations effective rainfall must be calculated and the
runoff must be divided into baseflow and direct runoff. These calculations may
be interpreted as data processing and not as an integral part of hydrograph
theory. Several methods for base flow separation are used, such as, normal
depletion curve, the straight line method, the fixed base method or the vari-
able slope method, to mention some, for a description of these methods see
e.g., (Chow et al. 1988). Likewise, for calculations of effective rainfall and
total runoff many methods are used. These are methods for calculations of
evaporation and infiltration. Methods for evaporation calculations might be
the energy balance method, aerodynamic method, the combination method
and e.g., Priestlay-Taylor’s method. Methods for infiltration calculations might
be the Horton’s equation, the Philip’s equation, Green-Ampt’s method (Chow
et al. 1988), Huggin-Monke model and Holtan model (Viessman & Lewis 1996)
and calculations of infiltration. For all the above reasons it is clear that the
identification of a hydrograph very much depends on calculations earlier, it can-
not be identified from the measured precipitation. The topics in Paper [A] and

1In general only the water level is measured and not the discharge. The discharge is not

measured in general, but the water level. The discharge is calculated from the water level

data by use of rating curves, see Section 3.2
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[B] are related to the theory of unit hydrograph as the flow is modelled as a
function of precipitation. However, the input variable is total precipitation as
it has proven advantage to develop models which do not rely on earlier calcu-
lations. Particularly, since a perfectly quantified general formula for separating
the effective precipitation from the total precipitation does not exists (Viessman
& Lewis 1996). The linear modelling approach is only an approximation of the
relationship between effective rainfall and direct runoff.

2.4.2 Flow routing

In a broad sense the flow routing may be considered as an analysis to trace the
flow through a hydrologic system. Thus given the input, i.e., a hydrograph at
an upstream location, the flow routing is a procedure to determine the time and
magnitude of the flow at a given point downstream. The flow routing techniques
are divided into lumped flow routing and distributed flow routing. When dis-
tributed flow routing methods are used, the flow is calculated as a function of
space and time through the system whereas if lumped routing methods are used
the flow is calculated as function of time alone at a particular location. Routing
by use of lumped methods is sometimes referred to as hydrologic routing, and
routing by distributed methods is sometimes referred to as hydraulic routing.
The topic in Paper [D] is flow routing.

2.4.2.1 Lumped flow routing

Lumped flow routing techniques are all founded on the equation of continuity
represented in the operational form as Eq. (2.3) In general, the storage function
may be written as an arbitrary function of I(t), Q(t) and their time derivatives

S = f

(
I,
dI

dt
,
d2I

dt2
, . . . , Q,

dQ

dt
,
d2Q

dt2

)
(2.4)

Sometimes it is possible to describe the storage as a function of only Q as,
single-valued storage function S = f(Q) as shown in Figure 2.6. For such reser-
voirs (control volumes), the peak outflow, occurs when the outflow hydrograph
intersects the inflow hydrograph, because the maximum storage occurs when
dS/dt = I − Q = 0, and the storage and outflow are related by S = f(Q).
This is shown in Figure 2.6, the point denoting the maximum storage, R and
the point denoting the maximum outflow P , coincide. Hence, when the flow
is steady, a single-value storage function always exists. When the reservoir is
long and narrow like open channels or streams the storage-outflow relationship
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Figure 2.6: Storage flow relationship. (Chow et al. 1988).

is variable. The amount of storage due to backwater depends on the time rate
of change of flow through the system. Figure 2.6 shows the relationship between
the discharge and the system storage in a variable storage-outflow relationship.
The relationship is no longer a single-valued function but exhibits a curve. Be-
cause of retarding effect due to backwater, the peak outflow usually occurs later
than the time when the inflow and outflow hydrographs intersects, as indicated
in Figure 2.6, i.e., the points R and P do not coincide.

The variable storage outflow relationship is one of the factors, which contributes
to error in the Q− h rating curve which is used to calculate the discharge form
water level data, see Section 3.2.

Several lumped flow routing exists. The level pool method is an analytical
method and can be used in situations where the storage function is single val-
ued. The Muskingum method is a well known method in a variable discharge-
storage relationship. Several other methods for variable discharge-storage re-
lationship are commonly used, such as the SCS convex method, Muskingum-
Chunge method and multiple storage method. For details see (Chow et al. 1988)
and (Viessman & Lewis 1996).

Finally, the linear reservoir routing model will be described as the principles
of the linear reservoir model is used in the flow routing model in Paper [D].
Furthermore, the modelling principle in the rainfall runoff model in Paper [B] is
a reservoir model even though the model in Paper [B] is a non-linear threshold
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model.

A linear reservoir is a reservoir where the storage is linearly related to its output
by a storage constant k, which has the dimension time,

S = kQ (2.5)

(Nash 1957) stated that a watershed may be represented by a series of n linear
identical linear reservoirs, each having the same storage constant k. Figure 2.7
demonstrates this principle.

Figure 2.7: Linear reservoirs in series. Chow et al. (1988).

A transfer function (in continuous time) of the n linear reservoir model with
storage constant k is

Q(t) =
1

(1 + kD), . . . , (1 + kD)︸ ︷︷ ︸
n times

I(t) (2.6)

where D is the differential operator. A deterministic state space representation
of this system is:

d




Q1

Q2

...
Qn


 =




−1/k
1/k −1/k

1/k −1/k
1/k −1/k







Q1

Q2

...
Qn


 dt+




1/k
0
...
0


 Idt

(2.7)

The impulse response function in this system, representing the outflow from the
n-th reservoir is

h(t) = Qn(t) =
1

kΓ(n)

(
t

k

)n−1

e−t/k (2.8)

which is the gamma distribution function.
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2.4.2.2 Distributed flow routing

The flow of water through the soil and stream channels of a watershed is a
distributed process because the flow rate, velocity, and depth vary in space
throughout the watershed. This is described in a three dimensional space and
time by the continuity equation Eq. (2.1)

For a description of flow routing in a channel the spatial variation in veloc-
ity across the channel can often be ignored. Hence, the flow process can be
approximated as varying in one space dimension along the flow channel. The
Saint-Venant equations, first developed by Barre de Saint-Venant in 1871, de-
scribe one-dimensional unsteady open channel flow. The Saint-Venant equation
for mass balance is:

∂Q

∂x
+
∂A

∂t
− q = 0 (2.9)

Where Q is the flow, x is the geometrical variable along the channel. Hence,
∂Q/∂x is the rate of change of the flow along the channel. The average cross-
sectional is denoted A and q is the lateral inflow between the upstream location
and downstream location.

The Saint-Venant equation for mass balance can be derived from the continuity
equation, if following assumptions are true:

• The flow is one-dimensional, depth and velocity vary only in the longitu-
dinal direction of the channel. This implies that the velocity is constant
and the water surface is horizontal across any section perpendicular to the
longitudinal axis.

• The flow is assumed to vary gradually along the channel so that hydrostatic
pressure prevails and vertical accelerations can be neglected.

• The longitudinal axis of the channel is approximated as a straight line.

• The bottom slope of the channel is small and the channel bed is fixed,
that is the scour effects and deposition are negligible.

• Resistance coefficients for steady uniform turbulent flow are applicable so
that relations such as Manning’s equation can be used to describe resis-
tance effects

• the Fluid is incompressible and of constant density throughout the flow.
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2.5 Subsurface water and groundwater

Surface water infiltrates into the soil and becomes soil moisture, subsurface
flow (unsaturated flow) through the soil and groundwater flow (saturated flow)
through soil or rock strata.

Soil properties control the rate at which water infiltrates into the soil, percolates
through the subsurface and travels through the soil to surface water bodies.
This rate affects the proportions of rainfall that appears as surface runoff and
groundwater losses. Subsurface and groundwater outflow occur when subsurface
water emerges to become surface flow in a stream or spring.

Infiltration is the process of water penetrating from the ground surface into the
soil. When precipitation reaches the ground it hits the intercepting surfaces,
such as trees, plants, grass and other structures. The water in excess of inter-
ception capacity then begins to fill surface depressions, and a film of water is also
built up above the ground surface. Then some proportion of the water infiltrates
downward through the surface of the earth and becomes soil moisture, recharges
the aquifers that again support base flow during dry periods. The rate at which
the infiltration occurs depends on the infiltration capacity of the soil, which i.e.,
to a large extent depends on the wetness of the soil. As a result of great spatial
variation and the time variations in soil properties occurring as the soil moisture
content changes, infiltration is a very complex process and mathematical equa-
tions can only describe it approximately (Chow et al. 1988), and, thus perfectly
quantified general relation does not exits, (Viessman & Lewis 1996).
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Hydrological data

Hydrological data are the basis for hydrological analysis. The essential data
are precipitation, stream flow, evaporation and transpiration. Evaporation and
transpiration data have not been available in the projects of this PhD program
and therefore they will not be described here.

3.1 Precipitation

Precipitation data is the main factor in hydrological models. The precipita-
tion data determine the total amount of water input into the model, and good
precipitation data are very important for the quality of the model simulations
(Sælthun & Killingtveit 1995).

Many types of rain gauges exist. The data used in this PhD project are both
from Iceland and Denmark. Two countries use different rain gauges.

The meteorological institute in Iceland uses rain gauge with a Nipher wind
shield. The gauges are located at 1.5 m height above ground, and even higher
at some few locations because of the snow. Figure 3.1 shows a sketch of a gauge
with a Nipher wind shield.
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Figure 3.1: A rain gauge with a Nipher wind shield.

Rain drops into the gauge in a bottle. The bottle is emptied by manual labour
twice within 24 hours.

In the projects where data originated from Denmark, the rain gauges used were
tipping buckets. Figure 3.2 shows a sketch of a tipping bucket. The water drops

1: Filter
2: Syphon
3: Bucket assembly with two buckets
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Figure 3.2: A tipping bucket rain gauge.

through a filter down to a syphon and then into a bucket with two boxes. The
water enters only one box at a time. When this box has collected 0.2 mm of
rain, it tips over, and the water starts to enter the second box. When the second
box has collected 0.2 mm of rain, the bucket tips over again. Consequently, the
precipitation data have values which are a multiplication of 0.2 mm.
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3.1.1 The error

It is a well known fact that the amount of precipitation measured is an under-
estimate of the ”ground true” precipitation. Experiments have been made in
order to develop models to correct the underestimate. However such models de-
pend on many factors, mainly the weather condition and the type of rain gauge
used.

The main precipitation measurement error in Iceland is caused by aerodynam-
ical effects near the rim of the gauges. No scientific experiments have been
performed in Iceland in order to achieve a model to correct the underestimate.
In 1987 a complete experimental field in Jokioinen in Finland was put up in
order to develop models for operational correction of nordic precipitation data,
see (Førland et al. 1996). Several models were developed. All of them included
wind speed as a factor in the correction model. The Swedish, Danish and
Norwegian countries included their national gauges in the experimental field.
Unfortunately the accuracy of the models can be questioned since the average
wind speed at Jokioinen is about 4 m/s whereas in the other Nordic countries
the average wind speed is much higher. Hence, the models need to be extrap-
olated extensively. Furthermore, for practical purposes, the wind speed data
must be available which often is not the case, at least not in Iceland.

The meteorologist Flosi Hrafn Sigurdsson states that measurements, not dis-
turbed by wind, can be achieved by using a precipitation gauge, located in a
hole in the ground with the gauges opening located at ground level. This type
of gauge can only be used for measuring rain. During a summer period, May -
September the ground level gauge in Reykjavik measured 21.7% more rain than
the nipher gauge at 1.5 m height. Based on the ground level measurements and
some other data, Flosi assumes that an average correction caused by wind for
rain is 28% in Reykjavik and 32% in Hveravellir1 The difference is mainly caused
by stronger wind in Hveravellir. Furthermore, Flosi assumes that average wind
correction for snow is 80% in Reykjavik and 100% in Hveravellir. More about
Sigurdsson experiment and results can be seen in (Sigbjarnarson 1990).

3.2 Discharge

The discharge is a flow of water, having the unit [m3/s]. Considering a cross
sectional area across a river the discharge is the velocity, integrated over the

1Hveravellir is located between Hofsjökull and Langjökull in middle of Iceland at a 646 m

height.
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cross sectional area. In general, the discharge is not measured on-line but the
water level is measured.

The most commonly used methods for measuring water level are the floating
principle and pressure measurements. Figure 3.3 shows a sketch of the floating

Pipe

Floating

Bottom

Surface
matter

indicates that water is flowing from the viewpoint

Cross section profile

Figure 3.3: The floating principle

principle. An L shaped pipe (open in both ends) is installed in the river. One
part of the pipe is in the river, parallel to the bottom, so that the stream is at
the same level as the open area. The other part stands perpendicular to the
river’s surface. The water level inside the pipe is the same as outside the pipe.
The water remains undisturbed in the pipe (no wind disturbance etc.) and the
water level can be measured. This is done by using a floating device in the pipe.

By using the one to one relationship of pressure and depth, pressure measure-
ments are also used to construct water level data. Figure 3.4 shows an outline

measured
pressure

Bottom

Figure 3.4: Sketch of a pressure transducer.

of a pressure transducer instrument. The transducer has a membrane and the
pressure on the membrane is measured. (The measured pressure is corrected
due to air pressure.) The pressure is sometimes measured by using bubbles.
Then a tube is led into the river and small quantity of gas is put in the tube
continuously. The pressure in the tube depends on the pressure at the tubes
opening in the river.

The measured dept is used to calculate the discharge by using the fact that
the flow equals the velocity intergrated over the cross sectional area. Conse-
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quently, velocity measurements are required. Several methods and instruments
for velocity measurements exist. The first mentioned method, and probably the
oldest one, is to use a screw, as shown in Figure 3.5. The cross section is divided

Figure 3.5: Outline of a screw velocity-measurement instrument

into sections as shown in Figure 3.6. The screw is used to measure the velocity

velocity mesured

Bottom

Surface

Cross section profile

Figure 3.6: Principles of the velocity-area method.

in each section, and then an approximative velocity map can be drawn. This
method is commonly used in Iceland

Another commonly used method is the use of magnetic flow meter. The oper-
ation of a magnetic flow meter is based upon Faraday’s Law, which states that
the voltage induced across any conductor as it moves at right angle through a
magnetic field is proportional to the velocity of that conductor. Figure 3.7 shows
a magnetic flow meter. This method is also quite commonly used in Iceland.
However it is not convenient when the velocity is very large as the rocks in the
bottom then move along the river.

The last mentioned method is the laser Doppler velocity meter, as shown in
Figure 3.8. It sends a monochromatic laser beam toward the target and collects
the reflected radiation. According to the Doppler effect the waves emitted from
a source moving toward an observer are squeezed. Hence, the velocity of the
object can be obtained by measuring the change in wavelength of the reflected
laser light.
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Figure 3.7: Magnetic flow meter
(Figure is from http://www.omega.com/prodinfo/magmeter.html).

3.2.1 The rating curve

Using velocity/flow measurements the relation between water level and discharge
is found. This relation is known as the rating curve, or the Q − h relationship
(Q for discharge and h for depth/stage). The most commonly used formula is

Q = k(h− h0)
N (3.1)

where h0 is the stage at which discharge is zero. Figure 3.9 shows water level
and flow data.

3.2.2 The error

It is clear that the discharge data are far from being without a noise. The water
level has to be measured and this process incorporates measurement errors as
no instruments are perfect. Furthermore, the velocity has to be measured for
corresponding measurement errors. Last but not the least, the Q − h relation
has to be found and this relationship is not perfectly described. Additionally
the Q − h relationship is dynamic since the cross section can change in time.
Furthermore, in most real cases the Q− h relationship is not unique. When Q
varies with time it makes a loop, similar to the variable storage flow relationship
Q − S, as shown in Figure 2.6. The hysteresis (i.e. loop-rating) in the Q − h
graph is created as for a fixed depth (h) the velocity is larger when the flow is
increasing and smaller when flow is decreasing. Thus two points on each side
of the top of a hydrograph will have different flow velocities and discharge (Q)
even though the depth is the same. Usually the time variation of the flow is slow
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Figure 3.8: Laser Doppler velocity meter
(Figure is from http://www.efunda.com/designstandards/sensors
/laser doppler/laser doppler effect theory.cfm).

Q

hh0

Figure 3.9: Water level data, flow data and a rating curve.

enough so this difference is negligible. But when that is not the case, enough
data is usually not available to determine the complete loop.

3.3 River ice

In a colder climate icing in rivers disturbs water level measurements. The fol-
lowing section is based on; (Bengtson 1988), (Chow 1964), and (Rist 1962).
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3.3.1 Construction of river ice

When the temperature of the surface water has dropped to the freezing point,
net heat loss due to the atmosphere will cause ice production. Ice formation
frequently starts with the development of many tiny disk formed crystals called
frazil as shown in Figure 3.10, left. Frazil ice particles, frequently collected by

Figure 3.10: To left frazil ice and to right is ice pan.
(http://www.clarkson.edu/ htshen)

adhesion, form larger masses which move along with the current. As the ice
content of the water increases, the water becomes oily or milky in appearance
and the viscosity of the water increases.

Ice rapidly forms on the surface of most flowing rivers. At first this consists of
agglomeration of broken surface crystals and frazil ice which unite to form round
pans. Figure 3.10, right shows an ice pan. These pans grow by accretion and the
open water between them becomes smaller. When the ice cover on the surface
is complete, the river regime changes from open water flow to flow beneath the
ice cover. However, the same flow is to be carried and as a consequence the
water level is increased.

Ice can also form on underwater objects. This is called anchor ice, shown in
Figure 3.11. The coating of anchor ice may be several inches thick and may
then grow more rapidly on sharp corners. This anchor ice may eventually dam
up the stream. Thus, it is possible to develop a staircase of a series of small ice
dams with some still water trapped behind them. The increased viscosity due
to the ice content, the damping of turbulent eddies, and the rise of the river bed
due to the formation of anchor ice also cause an increase in the river stage.
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Figure 3.11: Anchor ice. (http://www.clarkson.edu/ htshen)

3.3.2 Melting of river ice

The melting of ice in an icecovered river causes the river stage to rise in the
spring. At one point the ice cover begins to break and to move with the stream.
This initiates a chain reaction so that a complete ice cover can be removed in a
matter of hours.

If the water rises fast the ice cover can be fragmented and forced to move while
it still has almost its full strength. At particular locations depending on river
morphology ice jams are formed. Very high water levels are caused by ice jams
present during break-ups.
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3.3.3 Ice reduction

The term ice reduction is used for the complete process of correcting the observed
water levels so that these reach the levels that would have been observed if there
were no ice present in the entire river system. The difference between the water
level with ice present and the water level during summer conditions at the same
discharge, is referred to as backwater from ice formation.

In countries with a predominantly continental climate, the river state can be
catagorized into following phases:

1. Freezing-over period

2. Ice cover period from early to late winter and

3. Breaking-up period in early spring

4. Ice free summer season

In some countries this cycle is so stable that the beginning and the end of each
of its phases or periods may be predicted with an error of a few days only. In
such circumstance a wintertime rating curve can be made and used during the
winter.

In Iceland, this regularity is more or less absent. Freezing-over may start during
a cold period in early winter, but before the rivers are frozen the temperature
rises, the ice is broken up without any intervening ice cover period and an ice
free period may then follow. Each winter this may be repeated several times.

The winter period in Iceland is rather long and the weather is changing. It is
sometimes very hard to detect when an icing begins and if there is still ice in
the river after a thawing period.

The Hydrological Service (HS) has no automatic procedures for detecting sus-
picious periods. All series are treated manually, and it is up to the operator to
detect the period. At most gauging stations in Iceland, the Hydrological Service
(HS) does not employ a local observer to follow and report on the building-up
of ice jams in the river. Consequently, the usual situation is that no information
from local sources on potential ice problems is available. In this case the ex-
pertise of the hydrologist working on ice correction is the only thing to rely on.
The usual procedure is to use weather data from a nearby meteorological station
showing both temperature and precipitation. The water level data is compared
with the meteorological data and usually backwater effects are identified as an
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abrupt increase in water level during periods where this would not be expected
due to cold and dry weather. Sometimes this could be very difficult procedure
especially if the backwater effects are not very remarkable and only last for short
periods of time. Also, the effects of frazil ice and in particular anchor ice can
be very difficult to detect, but ice problems due to these types of ice formation
are quite common in Icelandic rivers. Discharge measurements during winter
conditions are performed once every winter.

Finally, Figure 3.12 shows a graph of ice corrupted water level data in the River
Fnjoska in northern Iceland in late winter 1996. Furthermore, the temperature
and precipitation at Akureyri, also in northern Iceland, is shown. The temper-
ature in January is cold and at the beginning of February the water level rises
drastically and stays high until a long warm period in March sets in. Then the
water level falls.
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Figure 3.12: Ice disturbance.

The problem of river ice is, indeed, one of the reasons for applying stochastic
models in hydrology.
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Chapter 4

The stochastic dynamic
modelling

This PhD thesis consists of stochastic modelling of hydrological systems. Four
projects have been studied and the results are illustrated in Papers [A], [B] [C]
and [D].

Journal papers are often written in a compact form as only a limited number
of pages are allowed. In this section the modelling approaches will be further
described.

4.1 Model categorization

Modelling approach may be grouped into three categories; Black box models,
white box models and grey box models.

Black box models are purely data based model. They approach the system in
terms of input and output with the internals hidden in a black box.

White box models are the opposite of the black box ones. The internal of the
system is fully known. In order the develop a white box the modeller must know
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the system in details and occasionally the model becomes over-specified.

Grey box models are placed in between black- and white- box modelling ap-
proaches. A model is viewed as grey box if physical knowledge about the sys-
tem is used along with the data. Thus the model is not completely described
by physical equations but the equations and the parameters are physically in-
terpretable.

In this project both grey box models and black box models have been used.
The choice of model depends on the aim and on the available knowledge in each
situation.

Models can be developed in continuous time and discrete time. As the time
is continuous all the physical systems studied are defined in continuous time.
However, the data are sampled in discrete time and occasionally it is more
convenient to describe the model in discrete time. The dynamical data series
studied are called the time series.

The systems, or the models, can be grouped into linear models and non-linear
models, black box systems can be both linear and non-linear.

4.2 Non-linear models in general

Broadly speaking, the way a modeller often prefers to think about a non-linear
system is a system where non-linear equations are used for describing it. In a
discrete time a system is linear if the output, y(t), is described as a linear func-
tion of past values of y, y(t− 1), . . . , y(1) and past values of input (if necessary)
u(t), . . . , u(1) and a white noise residuals. For model described in continuous
time it is referred to as linear if the differential equations used to describe the
system are linear. Furthermore the linearity can also be studied in the frequency
domain, a linear system will respond to a single harmonic input with a single
harmonic output.

A proper mathematical description of a non-linear system involves the Volterra
series, who first published his ideas nearly a century ago. Later, Wiener, Varrett
and Kalman took up the theme but from different standpoints (Tong 1990).

The aim of the modelling effort may be generally expressed as, finding a function
h such that {εt} defined by

h(yt, yt−1, . . . ) = εt (4.1)
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where εt is a sequence of independent random variables. Suppose that the model
is causally invertible, i.e., the equation above may be ’solved’ such

yt = h′(εt, εt−1, . . . ). (4.2)

Suppose that h′ is sufficiently well-behaved so that it can be expanded in a
Taylor series:

yt = µ+
∞∑

k=0

gkεt−k +
∞∑

k=0

∞∑

l=0

gklεt−kεt−l

+
∞∑

k=0

∞∑

l=0

∞∑

m=0

gklmεt−kεt−lεt−m + . . . (4.3)

The functions:

µ = h′(0), gk = (
∂h′

∂εt−k
), gkl = (

∂2h′

∂εt−k∂εt−l
), etc. (4.4)

are called theVolterra series for the process {X}. The sequences {gk}, {gkl}, . . .
are called the kernels of the Volterra series.

For linear systems the following is true:

gkl = gklm = gklmn = · · · = 0 (4.5)

Hence, the system is completely characterized by either

{gk} : Impulse response function

or

H(ω) : Frequency response function

In general there is no such thing as a transfer function for non-linear systems.
However, an infinite sequence of generalized transfer functions may be defined
as:

H1(ω1) =

∞∑

k=0

gke
−iω1k

H2(ω1, ω2) =

∞∑

k=0

∞∑

l=0

gkle
−i(ω1k+ω2l)

H3(ω1, ω2, ω3) =

∞∑

k=0

∞∑

l=0

∞∑

m=0

gklme
−i(ω1k+ω2l+ω3m)

...
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Let ut and yt denote the input and the output of a non-linear system, respec-
tively.

• For linear systems it is well known that:

L1 If the input is a single harmonic ut = A0e
iω0t then the output is a

single harmonic of the same frequency but with the amplitude scaled
by |H(ω0)| and the phase shifted by argH(ω0).

L2 The principle of superposition is valid, and the total output is the sum
of the outputs corresponding to the individual frequency components
of the input. (Hence, the system can be completely described if
the response to all frequencies is known – that is what the transfer
function supplies).

• For non-linear systems, however, neither of the properties (L1) or (L2)
holds. More specifically:

NL1 For an input with frequency ω0, the output will, in general, also
contain components at the frequencies 2ω0, 3ω0, . . . (frequency mul-
tiplication).

NL2 For two inputs with frequencies ω0 and ω1, the output will contain
components at frequencies ω0, ω1, (ω0 + ω1) and all harmonics of the
frequencies (inter-modulation distortion).

Further description can be found in, e.g., (Tong 1990) and (Madsen & Holst
2000).

4.3 Stochastic differential equations and para-
meter estimation

One of the most successful approach of grey box modelling is to use SDE, (Sto-
chastic Differential Equations). The advantages of modelling in a continuous
time is that the continuous time is a realization of the physical world and thus
the models parameters are directly interpretable.

The modelling approach in papers [B] and [D] is by use of SDE’s.
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4.3.1 Continuous-discrete state space models

A general formulation of a continuous-discrete stochastic state space model is
written as,

dxt = f(xt,ut, t,θ)dt+ σ(xt,ut, t,θ)dωt (4.6)

yk = h(xk,uk, tk,θ) + ek

where t ∈ R+ is time, xt ∈ R
n is a vector of state variables, ut ∈ R

m is a vector
of input variables and θ ∈ Rp is a vector of parameters. The functions f(·) ∈ Rn

and σ(·) ∈ Rn×q are general non-linear function. The vector yk ∈ R
l is a vector

of measurements, xk = xt=tk and uk = ut=tk . The vector ωt is a q-dimensional
standard Wiener process and ek ∈ N(0, S(uk, tk,θ)) is an l-dimensional white
noise process. The function h(·) ∈ Rl is a non-linear function.

Measurements can be used to estimate the parameter vector θ. This is per-
formed by using the software CTSM which is based on the principle of maximum
likelihood method (ML) for parameter estimation. In order for this to work out
it is necessary to assume that the function σ(·) is independent of the state vari-
able xt. Thus, a general formulation of a continuous-discrete stochastic state
space model of which parameters can be estimated by use of CTSM is:

dxt = f(xt,ut, t,θ)dt+ σ(ut, t,θ)dωt (4.7)

yk = h(xk,uk, tk,θ) + ek

In Paper [B], the function f(·) is non-linear, the function h(·) is linear and inde-
pendent of the input and the function σ is a constant, representing, a standard
deviation of the increments. The equations in Paper [B] can thus be written as:

dxt = f(xt,ut, t,θ)dt+ σ(θ)dωt (4.8)

yk = C(θ)xt + ek

Contrarily, in the Paper [D] the model is a linear time invariant model, and is
written as

dxt = A(θ)xtdt+B(θ)utdt+ σ(θ)dωt (4.9)

yk = C(θ)xt + ek

The measurements yk are used to estimate the parameter vector θ. It is a well
known fact that the likelihood function for time series is a product of conditional
densities

(θ ;YN ) =

(
N∏

k=1

p(yk | Yk, θ)

)
p(y0|θ). (4.10)
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In order to obtain an exact evaluation of the likelihood function, the initial
probability density p(y0|θ) must be known and all subsequent conditional den-
sities must be determined. This can in theory be determined by Kolmogorov’s
forward equation (Jazwinski 1970). However, this is not very suitable in prac-
tice, and with the right assumptions this can be approximated with the Normal
distribution

L(θ ;YN ) ≈

N∏

k=1

1

2πl/2

exp(εTkR
−1
k|k−1εk)

det(Rk|k−1)1/2
(4.11)

with mean

εk = yk − ŷk|k−1 = yk − h(x̂k|k−1,uk|k−1, tk−1,θ)

and variance
Rk|k−1 = V (yk − ŷk|k−1).

Conditioning on y0 and taking the negative logarithm gives:

− ln(L(θ ;YN )) ≈
1

2

N∑

k=1

(
ln(det(Rk|k−1) + ε

T
kR

−1
k|k−1εk)

)
+
1

2
N l ln(2π) (4.12)

which involves calculating a sum rather than a product.

When the stochastic differential equation in Eq.(4.8) is LTI (Linear Time In-
variant) or LTV (Linear Time Variant) the result in Eq.(4.11) is exact while in
the case of a non-linear stochastic differential equation the result in Eq.(4.11) is
approximative.

The calculations which lead to Eq. (4.11) are based on the Kalman filter equa-
tions. Thus, the continuous-discrete Kalman filter equations are written in Table
4.1, whereafter the assumptions and perquisites are discussed. The continuous-
discrete Kalman filter equations can be seen in (Jazwinski 1970).

The first equation is the output prediction, the second one is the one-step
prediction error/innovation. The third one is the covariance of the pre-
diction error. The fourth one is known as the Kalman gain. The fifth one is
the state updating, E[xt|Yt], and the sixth one is the updating’s variance,
V [xt|Yt]. The seventh one is the one-step state prediction and the eight one
is the state prediction’s variance.

It is clear that for calculation of the output prediction ŷk|k−1 and its variance
Rk|k−1 the variables x̂k|k−1 and P k|k−1 must be known. The change in time
of xt|k−1 and P t|k−1 is described in continuous time. Thus the transition from
one time to another involves integration.
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Table 4.1: The Kalman filter equations

Linear SDE Non− linear SDE
ŷk|k−1 = Cx̂k|k−1 +Duk ŷk|k−1 = h(x̂k|k−1,uk, tk,θ)

εk = yk − ŷk|k−1 εk = yk − ŷk|k−1

Rk|k−1 = CP k|k−1C
T + St Rk|k−1 = CP k|k−1C

T + St

Kk = P k|k−1C
TR−1

k|k−1 Kk = P k|k−1C
TR−1

k|k−1

x̂k|k = x̂k|k−1 +Kεk x̂k|k = x̂k|k−1 +Kεk
P k|k = P k|k−1 −KkRk|k−1K

T
k P k|k = P k|k−1 −KkRk|k−1K

T
k

dx̂t|k
dt = Ax̂t|k +But

dx̂t|k
dt = f(x̂t|k,uk, tk,θ)

t ∈ [tk, tk+1[ t ∈ [tk, tk+1[
dP̂ t|k

dt = AP̂ t|k + P t|kA
T + σσT dP̂ t|k

dt = AP̂ t|k + P t|kA
T + σσT

t ∈ [tk, tk+1[ t ∈ [tk, tk+1[

Shorthand notation Shorthand notation

A = A(θ) , and B = B(θ) A = ∂f
∂xt

∣∣∣
x=x̂k|k−1,u=uk,t=tk,θ

C = C(θ) , and D =D(θ) C = ∂h
∂xt

∣∣∣
x=x̂k|k−1,u=uk,t=tk,θ

σ = σ(θ) , and S = S(θ) σ = σ(ut, t,θ) ,S = S(uk, tk,θ)

A fundamental assumption before integrating is to define the stochastic in-
tegral. The stochastic process must be defined as an Ito process and then the
stochastic integral is an Ito integral, see (Øksendal 1995) for details.

In the case of a linear time invariant model like Eq. (4.9) the stochastic differ-
ential equation is

dxt = Axtdt+Butdt+ σdωt t ∈ [tk, tk+1[ (4.13)

and then the solution is,

xtk+1
= eA(tk+1−tk)xtk +

∫ tk+1

tk

eA(tk+1−s)Busds+

∫ tk+1

tk

eA(tk+1−s)σdωs.

(4.14)
The prediction is the expectation value

x̂k+1|k = E{xtk+1
|xtk}.

Because of the fact that the stochastic process is an Ito process it follows that

E{

∫ tk+1

tk

eA(tk+1−s)σdωs} = 0
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which actually is not true for all stochastic integrals e.g., the Statonovich integral
(Øksendal 1995). Thus, the Ito process assumption is fundamental. Given x̂k|k

the first two terms in Eq.(4.14) do not include a stochastic part. It follows that

x̂k+1|k = E{xtk+1
|xtk} = eA(tk+1−tk)xtk +

∫ tk+1

tk

eA(tk+1−s)Busds (4.15)

The state predictions covariance is

P̂ k+1|k = V {xtk+1
xT
tk+1
|xtk}

= V
[
eA(tk+1−tk)xtk

]
+ V

[∫ tk+1

tk

eA(tk+1−s)Busds

]
(4.16)

+V

[∫ tk+1

tk

eA(tk+1−s)σdωs

]
. (4.17)

The first term is

V
[
eA(tk+1−tk)xtk

]
= eA(tk+1−tk)V [xk|k]

(
eA(tk+1−tk)

)T

= eA(tk+1−tk)P k|k

(
eA(tk+1−tk)

)T
(4.18)

(using V [Ax] = AV [x]AT and V [xk|k] = P k|k). While the second term

V

[∫ tk+1

tk

eA(tk+1−s)Busds

]
= 0, (4.19)

because no stochastic part is involved. Finally, because of the fact that the noise
term in Eq.(4.8) is independent of the state variables

V

[∫ tk+1

tk

eA(tk+1−s)σdωs

]
= E

[∫ tk+1

tk

eA(tk+1−s)σdωs

∫ tk+1

tk

eA(tk+1−s)σdωs

]

= E

[∫ tk+1

tk

eA(tk+1−s)σσT
(
eA(tk+1−s)

)T
ds

]
(4.20)

since for an Ito integral the following is true

E



(∫ b

a

g(s)dωs

)2

 = E

[∫ b

a

g2(s)ds

]
. (4.21)

Again, the Ito process assumption is fundamental. Furthermore, because of
the normal distribution assumption of the measurements noise term ek, and
the Wiener process assumption for the state space variables, the conditional
distribution also becomes a normal distribution.
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For the non-linear systems like Eq.(4.8) then

xtk+1
=

∫ tk+1

tk

f(xs,us, s,θ)ds+

∫ tk+1

tk

σ(θ)dωs. (4.22)

The state prediction x̂k+1|k = E{xtk+1
|xtk} is the evaluation of the first integral

as the expectation value of the latter integral is zero due to the Ito process
assumptions. The evaluation of the integral can be calculated by linearizing the
function f() and then use methods for linear models, or numerical methods can
be applied, see more about this in Appendix E. For calculation of the covariance
matrix P̂ k+1|k = V {xtk+1

xT
tk+1
|xtk} the non-linear function f() is approximated

by its first derivative, as can be seen in the Kalman filter equations.

Finally, it is reasonable to believe that the conditional distribution can be well
approximated by the normal distribution whether or not the function f() is
linearized, or numerical methods for integration are applied.

4.4 The family of linear stochastic models

In this thesis it is argued that grey box modelling constitutes a very powerful
modelling framework, allowing modelling for both non-linear and non-stationary
systems. Furthermore, if attention is restricted to linear and time-invariant
models, then a rich family of well-known linear stochastic models are obtained
as a special case.

In this section the family of linear stochastic models are described, based on the
general formulation of linear time invariant SDE’s as in Eq. (4.9)

4.4.1 The transfer function form

The form of the linear, discrete time, transfer functions is also frequently called
the Box-Jenkins transfer functions, since (Box & Jenkins 1976) are responsible
for the great popularity of this class of models.

The relation between the discrete state space form and the transfer form is as
follows: Consider the following well known formulation of a discrete time state
space model with constant coefficients:

x(t+ 1) = φx(t) + Γu(t) + v(t) (4.23)

y = Cx(t) + e(t)
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where {u(t)} is the input and {v(t)} and {e(t)} are mutual uncorrelated white
noise processes with variance R1 and R2, respectively.

This state space model might the solution of the linear time invariant SDE in
Eq., (4.9) as shown in Eq. (4.14). Denote the constant sampling time as τ ,
where τ = tk+1 − tk, the notation in Eq.(4.23) implies τ = 1. Then

φ(τ) = eAτ . (4.24)

By assuming that the input us is constant in the time interval [t, t+ τ [ then

Γ(τ) =

∫ t+τ

t

eA(t+τ−s)Bds =

∫ τ

0

eAsBds (4.25)

where the last equation is true because of the time-invariant assumption. Fi-
nally,

v(t, τ) =

∫ t+τ

t

eA(t+τ−s)σdωs (4.26)

v(t, τ) the variance R1 of the white noise process is R1 =
∫ t+τ

t
φ(τ)σσTφ(τ)T

The z-transformation of the state space equations in Eq. (4.23)

zx(z) = φx(z) + Γu(z) + v(z) (4.27)

y(z) = Cx(z) + e(z)

Elimination of x(z) in the system of linear equations Eq. (4.27) yields

y(z) = C(zI − φ)−1Γu(z) +C(zI − φ)−1v(z) + e(z) (4.28)

The rational polynomials in u(z) are found ahead of z and v(z).

If {yt} is a stationary process (the matrix A is stable) the noise processes in
Eq. (4.28) can be combined into one stationary noise process only, (Goodwin &
Payne 1977)

y(z) = C(zI − φ)−1Γu(z) + [C(zI − φ)−1K + I]ε(z) (4.29)

or alternatively in the transfer function form,

y(z) =H1(z)u(z) +H2(z)ε(z) (4.30)

where {εt} is white noise with variance R, and H1(z) and H2(z) are rational
polynomials in z:

H1(z) = C(zI − φ)−1Γ (4.31)

H2(z) = C(zI − φ)−1K + I (4.32)
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The functionH1(z) is referred to as the transfer function (Box & Jenkins 1976).

The matrix K is the stationary Kalman gain. R is determined from the values
of R1, R2, φ and C, since

K = φPCT (CPCT +R2)
−1 (4.33)

R = CPCT +R2 (4.34)

where P is determined by the stationary Ricatti equation

P = φPφT +R1 − φPC(CPCT +R2)CPφ
T (4.35)

The ARMAX class of models are obtained in cases where the denominators in
(4.30) for H1 and H2 are equal. Hence, the models are written:

A(z)y(z) = B(z)u(z) +C(z)ε(z) (4.36)

where A, B, and C are polynomials in z. In the time domain this is written as

A(q−1)y(t) = B(q−1)u(t) +C(q−1)ε(t) (4.37)

where q−1y(t) = y(t − 1). In the case A(z) = 1, the model is a FIR model
(Final Impulse Response model).

As shown above a transfer function can be found from the state space form by
eliminating the state vector. In contrast, for a given transfer function model a
whole continuum of state space models exists. The most frequently used solution
is to choose a canonical state space model - see, e.g., (Goodwin & Payne 1977).
Eventually, physical knowledge can be used to state a proper connection between
desirable state variables, to be introduced for the state space form.

Note that compared to the discrete time state space model:

• The decomposition of the noise into system and measurement noise is lost.

• The state variable is lost, i.e., the possibility for physical interpretation is
further reduced.

4.4.2 Impulse response function models

A non-parametric description of the linear system is obtained by polynomial
division, i.e.,

y(t) =

∞∑

i=0

hiu(t− i) +N(t) (4.38)
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where Ni is a correlated noise sequence. The sequence {hi} is the impulse
response (matrix) function.

In the frequency (or z-) domain:

y(z) =H(z)u(z) +N(z) (4.39)

where H(z) is the transfer function, and for z = eiω the frequency response
function (gain and phase) is obtained.

Comparing a state space model with a transfer function model the following is
observed:

• The description of the noise process is lost.

• The non-parametric model hides the number of time constants, etc.

4.4.3 Periodic models

Periodic models can be linear in the stochastic terms. In Paper [C] the mea-
surements are discharge and, as in all Icelandic rivers the discharge is periodic.
The model is written as

Q(t) = P (t) + S(t)y(t) (4.40)

y(t) = a y(t− 1) + ε(t) ε(t) ∈ N(0, σ2) (4.41)

In order to ensure non-negative flow in the stochastic simulations, the discharge
series was transformed by using the logarithm. Q(t) denotes the log transformed
discharge, P (t) denotes the periodic mean and S(t) denotes periodic standard
deviation. The estimations of P (t) and S(t) were based on the log transformed
discharge data. By inserting Eq. (4.41) into Eq.(4.40) it becomes

Q(t) = P (t) + S(t)[a y(t− 1)ε(t)] (4.42)

and by induction

Q(t) = P (t) + S(t)[

t∑

i=1

at−iε(i)] (4.43)

(the term atS(t)y(0) can be neglected as |a| < 1). Thus, the Volterra series,
defined in Eq.(4.3) and Eq.(4.4), does not include more than a single sum, i.e.,
µ = P (t) and gk = S(t)at−k and gkl = gklm = gklmn = · · · = 0. This proves
that the system is linear in the stochastic terms.
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The periodic mean P (t) is subtracted from the data Q(t) and this difference is
scaled by the periodic standard deviation S(t). The resulting process, y(t) in
Eq. (4.40) is an AR(1) process as denoted from Eq. (4.41) Hence, the transfer
function is

y(z) = (z − 1)−1ε(z). (4.44)

4.5 Non-linear models in discrete time

4.5.1 Parametric models

A discrete time system is said to be non-linear if its present output is not a
linear combination of past input and output signal elements (Cadzow 1973).

An example of a non-linear discrete time series models are ARCH models,
Autoregressive Conditional Heteroskedasticity models. An ARCH(2) is written
as:

yt = et

√
γ + φ1y2

t−1 + φ2y2
t−2 et ∈ N(0, σ) (4.45)

φ1, φ2, and γ are parameters. The ARCH models are commonly used in finance
modelling to model asset price volatility over time.

A wide class of non-linear models are so called threshold models. The presence
of a threshold, r specifies an operating mode of the system, i.e., there are differ-
ent models in different regimes, where the regimes are defined by the threshold
value r.

Examples of threshold models are the SETAR models, Self-Exciting Threshold
Auto-regressive models and the TARSO models (Open-loop Threshold AutoRe-
gressive System). The SETAR models are extensions of the AR models whereas
the TARSO models are extensions of the ARX models.

A SETAR model consists of k AR parts, one part for each different regime.
A SETAR model is often referred to as a SETAR(k, p) model where k is the
number of regimes and p is the order of the autoregressive parts. If the auto
regressive parts have different orders it is referred to as SETAR(k, p1, . . . pk).
The regimes are defined by values related to the output values and the shift
from one regime to another depends on the past values of the output series yt
(hence the Self-Exciting part of the name). An example of a SETAR(2, 1) is:

yt =

{
0 − 0.9yt−1 + eat yt−1 < 0, eat,∈ N(0, σa)
0.9 + 0.9yt−1 + ebt yt−1 ≥ 0, ebt,∈ N(0, σb)

(4.46)
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A TARSO model consists of k ARX parts, one part for each different regime
and it is often referred to as a TARSO(k, p). However, the regimes are defined
by values r related to the input. The switch from one regime to another depends
on past values of the input series xt.

In (Gudmundsson 1970) and (Gudmundsson 1975) both SETAR and TARSO
models are tested for modelling river flow discharge in Icelandic rivers. The
results can also be seen in (Tong 1990).

The threshold modelling principle is used in Paper [B]. However the model is
defined in continuous time and by using a smooth threshold, i.e., shift between
regimes is defined by a smooth function.

The class of non-linear discrete time models is enormous and extensive literature
on the topic exists.

4.5.2 Non-parametric regression

The non-parametric regression analysis traces the dependence of a response vari-
able without specifying the function that relates the predictor to the response.
In the case of time series analysis, the predictor can be an input variable (ex-
ternal variable), past values of the output, and/or past values of the error.
Denoting the regressor variable as x as it can be a vector, i.e., more than single
regression variable, the response is denoted as y. The idea is to find a curve
which relates x and y. This is often referred to as smoothing.

Smoothing of a data set {xt, yt} involves the approximation of the mean response
curve m in the regression relationship

yt = m(xt) + et t = 1, . . . N (4.47)

If repeated observations at a fixed point x are available the estimation of m(x)
can be done by using the average of the corresponding y-values. However, in
the majority of cases repeated responses at a given point cannot be obtained
and only a single response variable y and a single predictor variable x exists.

In the trivial case when m(xt) is a constant, an estimation of m reduces to
the point estimation of location, since average over the response variables y
yields an estimate of m. However, in practical studies it is unlikely that the
regression curve is constant. Rather the assumed curve is modelled as a smooth
continuous function of a particular structure which is ’nearly constant’ in small
neighborhoods around x. This local average should be constructed in such a
way that it is defined only from observations in a small neighborhood around
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x, since y-observations from points far away will, in general, have very different
mean values. This local averaging procedure can be viewed as the basic idea of
smoothing. More formally this procedure can be defined as

m̂(x) =
1

N

N∑

t=1

wt(x)yt. (4.48)

The estimator m̂(x) is called smoother (Härdle 1990). It is a weighted average
of the response yt in a neighborhood around x. The amount of averaging is
controlled by the weight sequence {w(x)Nt=1} which is tuned with a smoothing
parameter. This smoothing parameter regulates the size of the neighborhood
around x.

If the weights wt(x) are positive and if the sum of the weights is one for all x
then m̂(x) is a least squares estimate at point x since

argmin
θ

1

N

N∑

t=1

wt(x)(yt − θ)2 (4.49)

Thus, the basic idea of local averaging is equivalent to the procedure of finding
local least squares estimate.

A local average over too large a neighborhood would cast away the good with
the bad. In this situation an extremely “over-smooth” curve would be produced,
resulting in a biased estimate. On the other hand, defining the smoothing pa-
rameter so that it corresponds to a very small neighborhood would not sift the
chaff from the wheat. Only a small number of observations would contribute to
the estimate, which makes the non-parametric regression curve rough and wig-
gly. Finding the choice of the smoothing parameter that balances the trade-off
between over-smoothing and under-smoothing is called the smoothing parame-
ter selection problem.

A simple approach to a definition of the weight sequence wt(x), t = 1, . . . N
is to describe the shape of the weight function by a density function with a
scale parameter that adjusts the size and the form of the weights near x. It
is common to refer to the shape function as a kernel (Härdle 1990). A kernel
is a continuous, bounded and symmetric real function k which integrates to
one. A kernel has a shape parameter and scale parameter, the scale parameter
is also referred to as the bandwidth (Härdle 1990). Commonly used kernel
functions are a Gauss bell, a tricube function and an Epanecnikov kernel (Härdle
1990). The choice of weight function does not have a large impact (Silverman
1986). Thus, in kernel smoothing the choice of the bandwidth is the smoothing
parameter selection problem.
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An extension of the kernel estimation is local-polynomial regression. The fit-
ted values are produced by locally weighted regression rather than by locally
weighted averaging. A local linear regression can be formulated as

argmin
θ

1

N

N∑

t=1

wt(x)(yt − (θ0 + θ1(Xt − x))
2 (4.50)

where Xt denote the regressor at time t and x is a grid point and thus wt(x)
defines a neighborhood of points around x and the local linear estimate of m(x)
is

m̂(x) = θ̂0. (4.51)

Local polynomial regression tends to be less biased than kernel regression, par-
ticularly on the boundary. Figure 4.1 shows a kernel estimate and a local-line
regression. Note that the kernel is more biased in the boundaries. Using lo-
cal lines instead of local constant allows a larger bandwidth without at bias
problem.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0.5

1

1.5

2
Kernel estimate and Locally weighted linear model, bandwidth 0.4

Locally linear
Traditional Kernel

Figure 4.1: A comparison of the kernel estimated and locally linear models.

Several other smoothing techniques exists, e.g., orthogonal polynomials, spile
smoothing and others. For more see (Härdle 1990) or (Burden & Faires 1989).
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4.5.3 Conditional parametric models

A generalization of linear models are varying-coefficient models (Hastie & Tibshirani
1993). A varying-coefficient model is formulated as a linear model where the
coefficients are assumed to change smoothly as an unknown function of other
variables. When all the coefficients depend on the same variable the model is
denoted as a conditional parametric model. The general formulation is

yt = zTt θ(xt) + et; t = 1, . . . , N, et ∈ N(0, σ2) (4.52)

The variables z and x are predictors, zt ∈ R
k is the traditional predictor variable

and xt ∈ R
r is a predictor variable which affects the variation of the coefficients,

referred to as the explanatory variable. When the functional relationship θ(xt)
is unknown (i.e., cannot not be parameterized) the relationship, be modelled
by the principle of local estimation. This can be accomplished by using kernels
and local polynomials

In a linear regression model the parameters θ1, . . . θk are constants. In a con-
ditional parameter model each of the θj j = 1, . . . k is modelled as a smooth
function, estimated locally. Using a linear function this results in:

θj(x) = θj0 + θ
T
j1x (4.53)

Hence,
yt = z1tθ10 + z1tθ

T
11x+ . . .+ zktθk0 + zktθ

T
k1x (4.54)

where θ is estimated locally with respect to x. If zj = 1 for all j this becomes a
local polynomial regression, in line with the method introduced by (Cleveland &
Develin 1988). If θ(·) is also a local constant, the method of estimation reduced

to determining the scalar θ̂j(x) so that
∑n

t=1 wt(x)(yt − θ̂(x))2 is minimized,
i.e., the method is reduced to traditional kernel estimation, see (Härdle 1990)
or (Hastie & Loader 1993).

In practice a new design matrix is defined as:

sTt = [(z1t, z1tx1t, . . . , z1txrt), . . . , (zkt, zktx1t, . . . , zktxrt)] (4.55)

and a new column vector as:

θjx =




θj0
θj1
...
θjr


 (4.56)

and
θx = [θT1x, . . . ,θ

T
jx, . . . ,θ

T
kx]

T . (4.57)
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The vector yt can then be written as

yt = sTt θx + et t = 1, . . . , N, (4.58)

The parameter vector θx is fitted locally to x. This is accomplished by using the
traditional weighted least squares, where the weight on observation t is related
to the distance from x to xt, so that

wt(x) = W (||xt − x||/d(x)), (4.59)

where ||xt − x|| is the Euclidean distance between xt and x and d(x) is the
bandwidth. Hence, it is clear that the fitted values ŷt are a linear combination
of the measurements y1, . . . yt.

When the local estimate in Eq. (4.58) θ̂x is obtained, the elements of θ̂(x)

θ̂j(xt) = [1, x1t, x2t]θ̂jx (j = 1, . . . k). (4.60)

In case of an ARX model as in Paper [A] the vector z consists of lagged values
of the output y and lagged values of the input u. An ARX(2,6) with time delay
2 as in Paper [A]

yt = a1(xt−m)yt−1 + a1(xt−m)yt−2

b2(xt−m)ut−2 + . . .+ b7(xt−m)u7 et ∈ N(0, σ) (4.61)

where m is the time delay in the explanatory variable x if any. In time series
notation this is written as

Axt−m(q−1)yt = Bxt−m(q−1)ut + et et ∈ N(0, σ) (4.62)

where

Axt−m(q−1) = 1− a1(xt−m)q−1 − a2(xt−m)q−2 (4.63)

Bxt−m(q−1) = b2(xt−m)q−2 + . . .+ b7(xt−m)q−7 (4.64)

Thus, for each, fixed value of the explanatory variable xt−m the transfer function
form in the z domain is

y(z) =
(
Axt−m(z)

)−1
Bxt−m(z)u(z) +

(
Axt−m(z)

)−1
et. (4.65)

4.6 Overview of the statistical methods

The statistical methods used in this PhD project have been described. This
section provides an overview of the methods and the model relations are shown.
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Two models are grey box models, formulated by SDE’s: one model is linear
(Paper [D]) and the other is a non-linear threshold model (Paper [B]). Two
models are black box models; of which one model is periodic model but linear
in the stochastic terms (Paper [C]). The other model is a conditional black box
model (Paper [A]).

Figure 4.2 shows an overview of the models and demonstrates how the models
are related. A linear time invariant stationary differential equation can be writ-
ten in a discrete state space form, which can be rewritten in the well known
transfer function form. The periodic model can also be rewritten in a transfer
function form. The non-linear differential equation can in each time step t be
written as a discrete state space equation, either by using a 1st order Taylor
approximation and derive the discrete state space equation from the linearized
equation, or a numerical solution to the non-linear equation can be found and
thereby relate x(t + 1) and x(t) in a discrete state space equation. This can
then be simplified further and written as a transfer function model. Finally, the
conditional parametric model can be written on the transfer function form for
each fixed value of the conditional variable.
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Φx(t+1) = x(t)+Γu(t)+v(t)

zx(z) = Φx(z)+ u(z)+ v(z)Γ

xA (z)( )−1
x (z))(B xA (z)( )−1y(z) = u(z)+ ε(t)

(z)2H+(z)u(z) (t)ε1y(t) = H

  y = Cx + Du + e

Time invariant system:
A,B,C and D const.

Integration

)θ
θ)dt +σ(t,u,θ

+ e

+ +Γx(t) v(t)u(t)x(t+1) = 
y(t+1) = Cx(t+1)+e(t)

~Φ~

y(t+1) = Cx(t+1)+e(t)

z transformation

y(z) = Cx(z) + e(z)

Delete x in the equations

Paper [D] Paper [B]
at time t

ODE solver 
at time t

Paper [C] Periodic model

Grey box Grey box

Paper [A] Conditional
ARX and FIR

= x(q−1) (t)+ε(t)Ax (q−1)y(t) B u

Stationary process − noise in single comp.

Given fixed value of x 
z transformation

)ddx = Axdt+Budt+d ωω
y = h(x,u,t,

dx=f(x,u,t,

Φ) u(z)+Γ−1y(z) = C(zI− e(t)+v(t)Φ)C(zI− −1

z transformation

y(z) = (z−a) e(z)−1

y(t) = (Q(t)−P(t))/S(t)       Q(t): Measurements
y(t) = ay(t−1)+e(t)

Transfer function form

Linearization − 1st order Taylor

u const. between samples.

Figure 4.2: An overview of the statistical methods and their relations
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4.7 Motivation for using grey box modelling

The advantage of the grey box modelling approach in continuous time is that
it combines the benefits of both the white box and black box modelling princi-
ples. Hence, the grey box approach delivers a strong modelling framework, the
possibility of combining prior physical knowledge with data information.

White box models often tend to be over specified and in hydrology sometimes
the physical processes are so complicated that true physical equations have not
yet be proposed (Viessman & Lewis 1996). However, in most cases it will be
almost impossible to establish an exact model of all the subprocess needed for
describing the true system. Furthermore, the ideal situation of knowing all
the parameters of the model is often absent, especially in hydrology (Refsgaard
et al. 1992). This calls for some form of calibration or estimation from data. It
is quite common that physical models are formulated as:

dxt = f(xt,ut, t,θ)dt (4.66)

yk = h(xk,uk, tk,θ) + ek

Compared to Eq.(4.7) there is no noise in the system equation, i.e., the dy-
namical part in Eq. (4.66), indicates that the physical dynamics is perfectly
described in the model used.

Figure 4.3: The line demonstrates a dynamic process modelled with differential
equations without system noise, whereas the dots denote typical observations
related to such a system.

A physical modelling typically results in deviations between the output predicted
by the model and observations as indicated in Figure 4.3. Hence, the model error
is serial correlated. This autocorrelation in the model errors calls for a dynamic
model which includes system noise, because if no system noise is present for the
true system then the prediction errors must be independent. In conclusion a
situation as sketched in Figure 4.3 calls for using stochastic differential equations
(SDEs) as an alternative to ordinary differential equations (ODEs).

Furthermore, in (Kristensen et al. 2004a) it is shown that in cases where true
system contains noise in the system equation (the system is not perfectly de-
scribed by the system equation) a calibration method which does not take this
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into account will lead to biased estimates, whereas parameter estimation meth-
ods which account for the system noise, as the method implemented in CTSM,
will provide the true values of the parameters.

A modelling framework based on SDE’s also provides useful techniques for find-
ing the most adequate proposal for an extension of a given model. Consider
a given model based on a dynamic description provided by a SDE. The SDE
contains, as mentioned previously, a drift term and a diffusion term. If the SDE
provides a perfect description of the system then the diffusion part vanishes, and
hence the diffusion terms describe the part of the dynamics which is not ade-
quately described by the drift part of the model. The influence of the diffusion
part is described by the incremental covariances (typically of a Wiener process).
This implies that large elements in the diagonal of the covariance matrix indi-
cate that the relevant dynamic part of the model calls for some improvement.
In (Kristensen et al. 2004b) a systematic approach for modelling extension is
proposed. The idea is to locate the dynamic equations with large incremental
covariances, and then to extend the state space with extra equations to enable
a random walk variation of some of the parameters in the original equation.

However, occasionally, sufficient knowledge about the system so that grey box
model can be developed does not exist. Some black box modelling approaches
can be used as a first step in the modelling development. In Paper [A] con-
ditional parameter modelling approach is used for flow prediction in a sewage
system. The model performs well and significantly better than the traditional
linear black box models. The modelling approach can be used for a further
analysis of the system which. This might provide an understanding which can
then be used for formulating a grey box model.

The direct arguments for including the noise part of the system equation are
the following:

• The ODE or drift part of the model contains only an approximation of
the true system.

• The measurements of the input to the system are encumbered with mea-
surement noise.

• Unrecognized inputs. Some variables, not directly considered in the model,
might affect the time evolution of the states.

Above it has been argued that the SDE based modelling approach contains many
advantages compared to the traditionally ODE approach with observation noise.

For statistical modelling discrete time stochastic state space models are often
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considered. Compared to this modelling class the continuous time based mod-
elling offered by the SDE approach offers several advantages:

• Non-linearity and non-stationary systems are easily modelled.

• The model in continuous time contains less parameters than equivalent
models in discrete time.

• Prior physical knowledge can be directly incorporated into the model.

• The models parameters are directly physically interpretable.

• Non-equidistant data can be used directly for estimation – hence missing
data can be dealt with by using the SDE based approach directly.

• The framework enables a direct collaboration between the physical expert
and the statistician.

The fact that the direct formulation of the dynamics in continuous time creates
a background for a direct collaboration between the expert and the statistician,
is most likely one of the most important aspects of the grey box modelling
approach. Traditionally, the statistical models (ARMA, Box-Jenkins, GLM,
etc.) are rather easy to deal with for the statistician, but the physical expert
most often are not able to interpret the parameters and the results. On the other
hand, for white box models, the physical expert is able to formulate a model
describing the dynamics, but the statistician, in general, is not able to estimate
the all the model parameters. Thus, the grey box approach based on stochastic
differential equations bridge the modelling gap between the statistician and the
physical expert.
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Conditional parametric models for storm sewer runoff

H. J o n sd o ttir,1,2 H. Aa N ie lse n ,1 H. M a d se n ,1 J . Elia sso n ,2 O. P . P a lsso n 2

a n d M . K . N ie lse n 3

A b stract. Th e m e th o d o f c o n d itio n a l p a ra m e tric m o d e lin g is in tro d u c e d fo r fl o w p re -
d ic tio n in a se w a g e sy ste m . It is a w e ll k n o w n fa c t th a t in h y d ro lo g ic a l m o d e lin g th e re -
sp o n se (ru n o ff ) to in p u t (p re c ip ita tio n ) v a rie s d e p e n d in g o n so il m o istu re a n d se v e ra l
o th e r fa c to rs. Co n se q u e n tly , n o n lin e a r in p u t-o u tp u t m o d e ls a re n e e d e d . Th e m o d e l fo r-
m u la tio n d e sc rib e d in th is p a p e r is sim ila r to th e tra d itio n a l lin e a r m o d e ls lik e F IR (F i-
n a l Im p u lse Resp o n se ) a n d ARX (Au to Reg re ssiv e eXo g e n o u s) e x c e p t th a t th e p a ra m e -
te rs v a ry a s a fu n c tio n o f so m e e x te rn a l v a ria b le s. Th e p a ra m e te r v a ria tio n is m o d e le d
b y lo c a l lin e s, u sin g k e rn e ls fo r lo c a l lin e a r re g re ssio n . As su ch , th e m e th o d m ig h t b e re -
fe rre d to a s a n e a re st n e ig h b o r m e th o d . Th e re su lts a ch ie v e d in th is stu d y w e re c o m -
p a re d to re su lts fro m th e c o n v e n tio n a l lin e a r m e th o d s, F IR a n d ARX. Th e in c re a se in
th e c o e ffi c ie n t o f d e te rm in a tio n is su b sta n tia l. F u rth e rm o re , th e n e w a p p ro a ch c o n se rv e s
th e m a ss b a la n c e b e tte r. Hen c e , th is n e w a p p ro a ch lo o k s p ro m isin g fo r v a rio u s h y d ro -
lo g ic a l m o d e ls a n d a n a ly sis.

1 . Introduction

Hydrology is one of the oldest fields of interest in science
a nd ha s b een stu died on b oth sm a ll a nd la rge sca les for
a b ou t 6 0 0 0 yea rs. T he goa l of the p resent w ork is to a chiev e
good p redictions of fl ow in a sew a ge system . B la ck b ox
m odels ha v e b een p rov iding good p rediction resu lts, often
m u ch b etter tha n concep tu a l or p hysica l m odels, dep ending
on how w ell the a ctu a l system is k now n. Carstensen et al.
[1 9 9 8 ] show ed tha t da ta driv en m odels a re m ore relia b le for
on-line a p p lica tions in sew ers tha n sta tiona ry determ inistic
m odels.

B la ck b ox m odels ha v e b een u sed in hydrology for
deca des; S h erm an [1 9 3 2 ] p resented the first b la ck b ox m odel
b y introdu cing the theory of u nit hydrogra p h. T he u nit hy-
drogra p h is a n im p u lse resp onse fu nction a nd a s su ch is es-
tim a ted directly a s a F IR m odel, i.e. the fl ow is m odeled
a s la gged v a lu es of p recip ita tion. T he u nit hydrogra p h de-
scrib es the rela tion b etw een eff ectiv e p recip ita tion a nd q u ick
fl ow . Hence, for the fl ow da ta , a b a se fl ow sep a ra tion m u st
b e p erform ed a nd the eff ectiv e p recip ita tion m u st b e ca l-
cu la ted from the p recip ita tion da ta . Q u ite often p hysica l
eq u a tions a re u sed for eff ectiv e p recip ita tion ca lcu la tions,
e.g. Horton’s infiltra tion form u la , H o rto n [1 9 3 5 ] or P hilip ’s
eq u a tion, P h ilip [1 9 6 9 ]. E ff ectiv e ra in identifica tion ca n a lso
b e incorp ora ted in the hydrogra p h m odeling p rocess itself,
e.g. H su et al. [2 0 0 2 ].

F or the p u rp ose of fl ow p redictions, A R X a nd A R M A X
(A u to R egressiv e M ov ing A v era ge eX ogenou s) m odels a re
in m ost ca ses m ore su ccessfu l tha n F IR m odels. T his m ea ns
tha t the fl ow is m odeled not only a s a fu nction of p recip ita -
tion, b u t a lso b y u sing p a st fl ow v a lu es a nd in tha t ca se a ll
the a v a ila b le inform a tion is a p p lied. T od ini [1 9 7 8 ] u sed a n

1D e p a rtm e n t o f In fo rm a tic s a n d M a th e m a tic a l M o d e llin g ,
B ld g . 321 D T U , D K -28 0 0 L y n g b y , D e n m a rk .

2F a c u lty o f E n g in e e rin g , U n iv e rsity o f Ic e la n d ,
H ja rd a rh a g a 2-6 , 10 7 R e y k ja v ik , Ic e la n d .

3W a ste W a te r C o n tro l a p s - W W C , K o lle m o se v e j 4 7 ,
D K -28 30 , V iru m , D e n m a rk

C o p y rig h t 20 0 6 b y th e A m e ric a n G e o p h y sic a l U n io n .
0 0 4 3-139 7 / 0 6 / $ 9 .0 0

A R M A X m odel for on-line fl ow p redictions a nd N o vo tny and
Z h eng [1 9 9 0 ] u sed a n A R M A X m odel for deriv ing w a tershed
resp onse fu nction a nd their p a p er p rov ides a n ov erv iew of
how A R M A X m odels, tra nsfer fu nctions, G reen’s fu nctions
a nd the M u sk ingu m rou ting m ethod a re rela ted.

B oth the F IR m odels a nd the A R M A X m odels a re linea r
tim e-inv a ria nt m odels. T hese m odels a re sim p le a nd ea sy
to u se a nd in m a ny ca ses p rov ide a ccep ta b le resu lts, p a r-
ticu la rly w hen the v olu m e of the fl ood is la rge com p a red
to the infiltra ted v olu m e. N ev ertheless, the ra infa ll ru noff
p rocess is b eliev ed to b e highly nonlinea r, tim e-v a rying a nd
sp a tia lly distrib u ted, e.g. S ingh [1 9 6 4 ], Ch iu and H u ang
[1 9 7 0 ], or P ilgrim [1 9 7 6 ]. W ith increa sed com p u ter p ow er,
nonlinea r m odels ha v e b ecom e increa singly p op u la r. Cap -
ku n et al. [2 0 0 1 ] ha ndle the nonlinea rity b y u sing a n A R X
m odel a nd b y m odeling the v a ria nce a s a fu nction of p a st
ra infa ll. B a yesia n m ethods ha v e a lso b een a p p lied; Cam p bell
et al. [1 9 9 9 ] u sed su ch a p rocedu re for p a ra m eter estim a tion
in their nonlinea r fl ood ev ent m odel. Io rgu lescu and B even
[2 0 0 4 ] u sed nonp a ra m etric techniq u es for the identifica tion
of ra infa ll-ru noff rela tionship u sing direct m a p p ing from the
inp u t sp a ce to the ou tp u t sp a ce w ith good resu lts. D u r-
ing the la st deca de neu ra l netw ork s ha v e b een p op u la r a s
in H su et al. [1 9 9 5 ], S h am seld in [1 9 9 7 ] a nd m ore recently
the S O L O -A N N m odel b y H su et al. [2 0 0 2 ]. K arlso n and
Y ako w itz [1 9 8 7 ] u sed a nonp a ra m etric regression m ethod,
w hich they refer to a s the nea rest neighb or m ethod. T hey
com p a re F IR , A R M A X a nd nea rest neighb or m odels. T heir
resu lts fa v or the nea rest neighb or a nd the A R M A X m odels;
how ev er, they do not distingu ish b etw een the A R M A X a nd
the nea rest neighb or m odels. P o rpo rato and R id o lfi [1 9 9 6 ]
u sed a nea rest neighb or m odel a nd fou nd tha t the loca l lin-
ea r m odel w ith sm a ll neighb orhoods ga v e the b est resu lts.
In P o rpo rato and R id o lfi [1 9 9 7 ] strong nonlinea r determ inis-
tic com p onents w ere detected in the discha rge series. T hey
u sed noise redu ction techniq u es sp ecifica lly p rop osed for the
field of cha os theory to p reserv e the delica te nonlinea r in-
tera ctions, a nd then u sed nonlinea r p rediction (N L P ) w ith
good resu lts. In P o rpo rato and R id o lfi [2 0 0 1 ] these m ethod-
ologies a re follow ed u p for m u ltiv a ria te system s. P revd i and
L o vera [2 0 0 4 ] ta ck le the nonlinea rity b y u sing tim e-v a rying
A R X m odels, w hich they refer to a s N on-L inea r P a ra m eter
V a rying M odels (N L P V ). T he p a ra m eter v a ria tion is defined
a s a n ou tp u t of a non-linea r fu nction a nd the op tim iz a tion is
p erform ed b y u sing N eu ra l N etw ork s. In Y o u ng et al. [2 0 0 1 ]

1
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the time variable parameters are considered to be state de-
pendent and the method is thu s referred to as the S D P ap-
proach. F or non-linear phenomena this approach resu lts in a
tw o stag e approach, called the D B M approach (D ata B ased
M echanistic approach) Young [2 0 0 2 ]. In recent y ears fu z z y
methods have been tested for fl ood forecasting , e.g . C h a ng
et a l. [2 0 0 5 ] and N a y a k et a l. [2 0 0 5 ].

In the present paper conditional parametric models are
u sed to develop models for fl ow predictions in a sew ag e sy s-
tem. A conditional parametric model is a linear reg ression
model w here the parameters vary as a smooth fu nction of
some ex planatory variable. T hu s the method presented here
are in a line w ith the S D P and the N L P V methodolog ies.
T he name conditional parametric model orig inates from the
fact that if the arg u ment of the fu nctions is fi x ed then the
model is an ordinary linear model, H a stie a nd T ibsh ira ni
[19 9 3 ] and A nd erson et a l. [19 9 4 ]. In the models presented
here, the parameters vary locally as poly nomials of ex ternal
variables, as described in N ielsen et a l. [19 9 7 ]. In contrast
to linear methods lik e F IR and A R X , this methodolog y al-
low s fi x ed inpu t to provide diff erent ou tpu t depending on
ex ternal circu mstances.

T his paper is org anized as follow s: In S ection 2 the mod-
els are described, follow ed by S ection 3 w ith a description of
the parameter estimation method. S ection 4 contains resu lts
and in S ection 5 there are discu ssions abou t on-line predic-
tion and control in sew ag e sy stems. F inally , in S ection 6
conclu sions are draw n.

2. The Models

In the present paper the ex cess ou tfl ow is modeled as a
fu nction of total precipitation (the base fl ow in the sew ag e
sy stem does not orig inate in rainfall). T o avoid the calcu -
lation of infi ltration it w as decided to u se the total precip-
itation as measu red on-line. T his is very convenient, par-
ticu lary since the infi ltration rate depends on several phy s-
ical factors and no perfectly q u antifi ed g eneral formu la ex -
ists, V iessm a n a nd L ew is [19 9 6 ]. S ome of the more recently
developed models identify the eff ective precipitation along
w ith the hy drog raph e.g . N a lba ntis et a l. [19 9 5 ]. T he g oal
is to predict fl ow in the sew ag e sy stem as a fu nction of mea-
su red precipitation; conseq u ently division of the precipita-
tion into eff ective rain and infi ltration/ evaporation is not
important. F or the pu rpose of fl ow prediction, conditional
parametric models are applied, N ielsen et a l. [19 9 7 ]. T hese
models are an ex tension of the w ell k now n linear reg ression
model w here the parameters vary as fu nctions of some ex -
ternal variable. In this research tw o ty pes of models w ere
tested: conditional parametric F IR models and conditional
parametric A R X models. T he models are formu lated as:

F IR : yt =

q1∑

i=0

hi(xt−m)zt−i + et et ∈ N(0 , σ 2

F IR )(1)

A R X : yt =

p∑

i=1

ai(xt−m)yt−i (2 )

+

q2∑

i=0

bi(xt−m)zt−i + et et ∈ N(0 , σ 2

A R X )

w here yt is the ou tpu t (fl ow ), zt is the inpu t (precipitation),
xt is the ex planatory variable and m is the time delay if any .
H ere, the ex planatory variable is season and/ or threshold,
see S ection 4 . T he order of the F IR model in E q . (1) is
denoted q1 and the order of the A R X model in E q . (2 ) is
denoted (p,q2).

In the F IR model the fu nction h, represented by the co-
effi cients hi(xt−m) i = 1, . . . q1 is k now n as the impu lse re-
sponse fu nction. It demonstrates how the sy stem responds
to the inpu t. In the A R X model Axt−m

(q−1) is defi ned as

the p-th order poly nomial operator

Axt−m
(q−1) = a1(xt−m)q−1 + . . . + ap(xt−m)q−p (3 )

w here q−1 is the back w ard shift operator. S imilarly
Bxt−m

(q−1) is defi ned as:

Bxt−m
(q−1) = b0(xt−m)

+ b1(xt−m)q−1 + . . . + bq2(xt−m)q−q2 (4 )

as the q2-th order poly nomial operator. T hen for a fi x ed
xt−m the impu lse response fu nction can be derived from the
transfer fu nction Axt−m

(q−1)/ Bxt−m
(q−1) as described for

ex ample by L jung [19 8 7 ]. In this case the impu lse response
fu nction inclu des coeffi cients h0,h1, . . . u p to infi nity . H ow -
ever, in practice, only the fi rst n coeffi cients are u sed.

A sh a n a nd O ’C onnor [19 9 4 ] defi ne the g ain factor G of a
u nit hy drog raph as

G =
1

A

n∑

0

hi (5 )

w here A is the area of the w atershed, n is the order of the
model, the coeffi cients hi are the coeffi cients in a u nit hy -
drog raph, w here the inpu t is eff ective rain and the ou tpu t
is ex cess fl ow . In an ideal situ ation the g ain factor is one,
bu t H ø y by e a nd R osbjerg [19 9 9 ] state that su ch a linear rela-
tionship does not ex ist. F u rthermore, A sh a n a nd O ’C onnor
[19 9 4 ] state that the overall model effi ciency is in g eneral
very sensitive to the mag nitu de of the g ain factor. In this
paper the inpu t is total precipitation; how ever, the valu e in
E q . (5 ), w ill be referred to as the g ain factor. T he g ain
factor w ill not be one. H ow ever, the g ain provides valu able
information abou t the sy stem, it provides the fraction of
the total precipitation that becomes ex cess rainfall and thu s
also the fraction that infi ltrates into the g rou nd. F u rther-
more, the chang e in the g ain factor as the ex ternal variable
x chang es provides a valu able information for u nderstanding
the sy stem.

3 . The E stim a tion Method

T he models u sed are locally linear reg ression. In order to
describe the A R X and F IR models tog ether the notation is
chang ed to the notation of a linear reg ression

yt = z
T
t θ(xt) + et; t = 1, . . . ,N, et ∈ N(0 , σ 2) (6 )

w here the ou tpu t or the response, yt is a stochastic variable;
zt ∈ R

k is the inpu t; xt ∈ R
r is an ex planatory variable.

T he parameter vector θ(·) ∈ R
k is a vector of smooth fu nc-

tions of xt, and t = 1, . . . ,N are observation nu mbers. In
the case of a F IR model, the variable zt is the lag g ed val-
u es of the precipitation and θ(xt) are the coeffi cients in a
hy drog raph. In the case of an A R X model, the zt consist
of the lag g ed valu es of precipitation and the lag g ed valu es
of fl ow , w here θ(xt) consists of the corresponding parame-
ters. If xt is constant across all the observations, the model
redu ces to a traditional linear reg ression model, hence the
name. T he estimation of θ(·) is accomplished by estimating
the fu nctions at a nu mber of distinct valu es of x. G iven
a point x, each θj, j = 1, . . . k is approx imated by a local
linear fu nction

θj(xt) = θj0 + θT
j1xt j = 1, . . . , k (7 )

T he coeffi cients θj0 and θT
j1 are estimated by u sing w eig hted

least sq u ares (by u sing k ernels).
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If xt is 2 -d im e n sio n a l θj(xt) c a n b e w ritte n a s

θj(xt) = θj0 + θj1x1t + θj2x2t j = 1 , . . . , k (8 )

h e n c e

yt = z1tθ10 + z1tθ11x1t + z1tθ12x2t

+ . . . + zktθk0 + zktθk1x1t + zktθk2x2t + et (9 )

T h e n a ro w in a n e w d e sig n m a trix c a n b e d e fi n e d a s

u
T
t = [z1t, z1tx1t, z1tx2t, . . . , zjt, zjtx1t, zjtx2t,

. . . , zkt, zktx1t, zktx2t] (1 0)

a n d b y d e fi n in g th e c o lu m n v e c to r

θjx = [θj0, θj1, θj2] (1 1 )

a n d

θx = [θT
1x, . . . , θT

jx, . . . , θT
kx]T (1 2 )

th e fl o w v e c to r yt c a n b e w ritte n a s

yt = u
T
t θx + et t = 1 , . . . , N , (1 3 )

T h e p a ra m e te r v e c to r θx is fi tte d lo c a lly to x. T h is is a c -
c o m p lish e d b y u sin g th e tra d itio n a l w e ig h te d le a st sq u a re s,
w h e re th e w e ig h t o n o b se rv a tio n t is re la te d to th e d ista n c e
fro m x to xt, so th a t

wt(x) = W (||xt − x||/ d(x)), (1 4 )

w h e re ||xt −x|| is th e E u c lid e a n d ista n c e b e tw e e n xt a n d x.
T h e fu n c tio n W : R → R is a n o w h e re in c re a sin g fu n c tio n .
In th is p a p e r th e tric u b e fu n c tio n

W (v) =

{
(1 − v3)3, v ∈ [0; 1 )
0, v ∈ [1 ;∞)

(1 5 )

is u se d . T h e sc a la r d(x) > 0 is c a lle d th e b a n d w id th . If
d(x) is c o n sta n t fo r a ll v a lu e s o f x, it is d e n o te d a fi x e d b a n d -
w id th . O n th e o th e r h a n d , if d(x) is ch o se n so th a t a c e rta in
fra c tio n o f th e o b se rv a tio n s is w ith in th e b a n d w id th , it is d e -
n o te d a s n e a re st n e ig h b o r b a n d w id th . T h e a d v a n ta g e o f th e
tri-c u b e w e ig h tin g fu n c tio n is th a t it is a sm o o th fu n c tio n
lik e th e G a u ss b e ll, b u t u n lik e th e G a u ss b e ll th e tri-c u b e
fu n c tio n is z e ro o u tsid e th e b a n d w id th , w h ich m a k e s th e
c o m p u ta tio n a l e ff o rt sm a lle r. T h e ch o ic e o f w e ig h tin g fu n c -
tio n o r k e rn e l d o e s n o t h a v e a la rg e im p a c t, se e Silverman
[1 9 8 6 ].

In g e n e ra l, if x h a s a d im e n sio n o f tw o o r la rg e r, sc a lin g
o f th e in d iv id u a l e le m e n ts o f x b e fo re a p p ly in g th e m e th o d
sh o u ld b e c o n sid e re d , e .g . C leveland and D evelin [1 9 8 8 ]. A
ro ta tio n o f th e c o o rd in a te sy ste m , in w h ich x is m e a su re d ,
c o u ld a lso b e re le v a n t. W h e n th e lo c a l e stim a te in E q . (1 3 )

θ̂x is o b ta in e d , th e e le m e n ts o f θ̂(x) in E q . (6 ) a re c a lc u la te d
a s

θ̂j(xt) = [1 , x1t, x2t]θ̂jx (j = 1 , . . . k ). (1 6 )

W h e n zj = 1 fo r a ll j th is m e th o d is a lm o st id e n tic a l to th e
m e th o d in tro d u c e d b y C leveland and D evelin [1 9 8 8 ]. F u r-
th e rm o re , if θ(·) is a lo c a l c o n sta n t, th e n th e m e th o d o f
e stim a tio n re d u c e s to d e te rm in in g th e sc a la r θ̂j(x) so th a t∑n

t= 1
wt(x)(yt − θ̂(x))2 is m in im iz e d , i.e . th e m e th o d re -

d u c e s to tra d itio n a l k e rn e l e stim a tio n , se e a lso H ärd le [1 9 9 0]
o r H astie and L oad er [1 9 9 3 ].

F u rth e rm o re , it is w o rth m e n tio n in g th a t, a s fo r tra d i-
tio n a l lin e a r re g re ssio n , th e fi tte d v a lu e s ŷi, i = 1 , . . . , N
a re lin e a r c o m b in a tio n s o f th e o b se rv a tio n s, se e N ielsen et al.
[1 9 9 7 ].

A s n o te d e a rlie r, th e m e th o d o f c o n d itio n a l p a ra m e tric
m o d e lin g h a s c e rta in sim ila ritie s to th e S D P m e th o d , e .g .
Y o u ng et al. [2 001 ], a s w e ll a s th e N L P V a s u se d in P revd i

and L o vera [2 004 ]. A ll th e se m o d e ls a re tim e v a ry in g A R -
M A X ty p e o f m o d e ls. In th e N L P V a p p ro a ch , th e n o n lin e a r
o p tim iz a tio n is b y u se o f n e u ra l n e tw o rk , w h ich is c o m p le te ly
b la ck b o x o rie n te d . T h e n o n lin e a r S D P m e th o d o lo g y re su lts
in th e tw o sta g e D B M a p p ro a ch Y o u ng [2 002 ]. In th e fi rst
sta g e a n a p p ro p ria te m o d e l stru c tu re is id e n tifi e d b y c o n sid -
e rin g a c la ss o f lin e a r tra n sfe r fu n c tio n m o d e ls w h o se p a ra -
m e te rs a re a llo w e d to v a ry o v e r tim e . In th e se c o n d sta g e a n y
id e n tifi e d (sig n ifi c a n t) p a ra m e te r v a ria tio n is m o d e le d u sin g
a p a ra m e tric a p p ro a ch , a n d th e p a ra m e te rs o f th e re su ltin g
p a ra m e tric n o n -lin e a r m o d e l a re e stim a te d u sin g n o n -lin e a r
le a st sq u a re s o r m a x im u m lik e lih o o d e stim a tio n . H e n c e , th e
re su ltin g m o d e l is a n o n -lin e a r m o d e l w ith fi x e d p a ra m e te rs.
Y o u ng [2 005 ] p ro v id e s a fi n e o v e rv ie w a n d c o m p a riso n o f th e
S D P a n d N L P V m o d e lin g a p p ro a ch e s.

T h e su g g e ste d m e th o d is ty p ic a lly a o n e -sta g e a p p ro a ch .
T h e re su ltin g m o d e l is a c o n d itio n a l p a ra m e tric m o d e l,
w h e re th e to ta l p a ra m e triz a tio n is a c o m b in e d p a ra m e tric
a n d n o n -p a ra m e tric m o d e l. C o n se q u e n tly , in e v e ry n e ig h -
b o rh o o d , th e re e x ists a n a p p ro x im a te ly lin e a r p a ra m e tric
m o d e l. F u rth e rm o re , b y stu d y in g th e v a lu e s o f th e p a ra -
m e te r θ(x) a s th e e x te rn a l v a ria b le x ch a n g e s, a c o m p le te
p a ra m e te riz e d m o d e l m ig h t b e d e v e lo p e d if th a t is d e sire d .
A c o m p le te p a ra m e te riz e d m o d e l h a s b o th a d v a n ta g e s a n d
d isa d v a n ta g e s: It o fte n p ro v id e s a b e tte r ” p h y sic a l” u n d e r-
sta n d in g o f th e sy ste m . H o w e v e r, th e p a ra m e te rs a re u n d e r
a ll c irc u m sta n c e s e stim a te d b y u se o f e x istin g d a ta a n d if
th e e x te rn a l c irc u m sta n c e s ch a n g e , th is in v o lv e s e x tra p o la -
tio n . L o c a l e stim a te s (e stim a te s in a n e ig h b o rh o o d , k e rn e l
e stim a tio n ) w ill a d a p t to n e w c irc u m sta n c e s q u ick ly . In th is
p a p e r th e n o n -lin e a rity is d e sc rib e d d ire c tly w ith o u t a n y u se
o f re c u rsiv e / a d a p tiv e e stim a tio n . In th e c a se o f tim e -v a ry in g
m o d e ls, a d a p tiv e e stim a tio n , a s d e sc rib e d in N ielsen et al.

[2 000], c a n b e su p e rim p o se d o n th e m e th o d . H e n c e , th e
a p p ro a ch m a k e s it p o ssib le to tra ck tim e v a ria tio n in a n o n -
lin e a r m o d e l, th is e x te n sio n is h o w e v e r, n o t th e fo c u s o f th e
p re se n t p a p e r.

4. Results

4.1 . D esc rip tio n o f th e D a ta a n d th e C ircum sta n ces

T h e d a ta o rig in a te fro m th e c o m p a n y W a ste W a te r C o n -
tro l a p s. in D e n m a rk a n d c o n sist o f 6 8 ra in e v e n ts w h ich
o c c u rre d in th e p e rio d 1 st J a n u a ry 2 003 to 4 th M a y 2 004 .
T h e 6 8 ra in e v e n ts c o v e r m a n y ty p e s o f ra in , o f a v a ry in g
in te n sity a n d le n g th . T h e d a ta c o n sist o f p a irs o f m e a su re d
p re c ip ita tio n [m m / (6 m in )] a n d e x c e ss fl o w [m 3/ (6 m in )].
T h e sa m p lin g tim e is, a s in d ic a te d , 6 m in u te s. T h e e x c e ss
fl o w is c a lc u la te d fro m th e to ta l fl o w b y su b tra c tin g th e sy s-
te m ’s b a se fl o w . T h e b a se fl o w , o r th e d ry w e a th e r fl o w ,
in th e se w a g e sy ste m d o e s n o t o rig in a te fro m ra in a n d is
d e fi n e d a s a c o n sta n t p lu s a d a ily v a ria tio n , se e C arstensen

et al. [1 9 9 8 ]. T h e se w a g e sy ste m is b u ilt u p in th e tra d itio n a l
m a n n e r a s a n e t, w ith p u m p in g sta tio n s lo c a te d a t so m e o f
th e n o d e p o in ts. D u rin g h e a v y ra in e v e n ts th e v o lu m e o f
w a te r e n te rin g th e p ip e s c a n e x c e e d th e p u m p in g sta tio n ’s
c a p a c ity c a u sin g so m e a k in d o f sa tu ra tio n / th re sh o ld in th e
sy ste m .

T h e a re a o f th e w a te rsh e d is 1 0.8 9 k m 2. T h e im p e rm e a b le
a re a is d o m in a te d b y u rb a n a re a a n d th e so il is m o stly c la y .
T h e d a ta c o n ta in e d 3 h e a v y ra in e v e n ts w h e re th e th re sh -
o ld / sa tu ra tio n p h e n o m e n a c a n b e se e n . A w a te r b a la n c e
stu d y w a s p e rfo rm e d w h ich sh o w e d a y e a rly v a ria tio n in th e
w a te r b a la n c e . T h is se a so n a lity is m o stly d u e to th e so il
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moisture content in the root zone and variation in ground-
w ater level; the soil is much drier during the summer than
during the w inter.

4.2. Model Construction

A n analy sis of the data using linear models w ith non-
vary ing coeffi cients show ed that the time delay from inp ut
to outp ut is 2 lags, i.e. 1 2 minutes. It has b een found that
at most 1 9 lags are needed in a F IR model, as in E q . (1 ).
In the A R X models, as in E q . (2 ), the ” b est” linear model,
using A IC criteria, is ARX(2 , 6 ) w ith a time delay of 2 , i.e.
the outp ut yt is a function of yt−1, yt−2, z t−2, . . . z t−7. F or
the sak e of convenience these model degrees w ere used in
the w hole study, i.e. the same numb er of lags w as used for
in the conditional p arametric models.

T he numerator in the A R X models is q uite high com-
p ared to w hat is often seen in hy drology . H ow ever, most
rainfall runoff studies are on a daily b asis. In this p roject
the samp ling time is 6 minutes, conseq uently the numera-
tor needs to b e higher. T he linear model order w as chosen
b y use of A IC / B IC criteria (the A IC and B IC indicated the
same model order) and use of some other criteria might have
led to low er orders. H ow ever, Porporato and Ridolfi [1 9 9 6 ]
indicate that the degree of the numerator should not b e less
than the b asin concentration time, and in order to cap ture
the entire sub seq uent runoff the numerator should b e even
greater. T he b asin concentration time in the sew age sy stem,
using the 6 minute samp ling time is ab out 6 lags (the b asin
lag is estimated to b e 4 lags and, referring to S ingh [1 9 8 8 ],
the time of concentration is 1 .4 2 times the b asin lag time,
w hich is close to 6 lags). T he order of the numerator in
the A R X model is 6 . E vidently the F IR model has a larger
model degree than the A R X model.

A s mentioned earlier the non-linear eff ects are mostly due
to seasonal variations and the saturation/ threshold eff ects
in the p ip es. T he seasonal variation is modeled as the fi rst
term in a F ourier series, i.e. a sinus w ave

xs
t = C sin(ωt + φ) (1 7 )

w here xs
t is the ex p lanatory variab le due to season. T he w a-

ter b alance study show ed the largest resp onse to p recip ita-
tion in F eb ruary and the smallest in A ugust. C onseq uently
the p arameters ω and φ are chosen such that xs

t p eak s in mid
F eb ruary . T he p arameter C is set to 1 0 0 w hich is a neces-
sary scaling in the 2 -dimensional model p resented later in
this section. In p ractise the seasonal variation is not as reg-
ular as a sinus w ave. H ow ever, since only 1 6 months of data
are availab le it is not p ossib le to estimate a seasonality func-
tion w ithout restrictions as in E q . (1 7 ). T he seasonality in
the p arameters can most lik ely b e modeled glob ally as in a
P A R M A model e.g. Rasm u ssen et al. [1 9 9 6 ].

T he saturation/ threshold eff ect is modeled either as a
function of the rain-intensity or as a function of the fl ow ,
dep ending on the model ty p e. In a F IR model the condi-
tional variab le rep resenting the saturation/ threshold is p re-
cip itation intensity , xp

t and set as

xp
t = (ut−2 + ut−3 + ut−4 + ut−5 + ut−6)/5 (1 8 )

i.e. the average rain intensity in lags 2 to 6 . T his choice
is b ased on the facts that the time delay is 2 lags, and the
time of concentration is 6 lags.

In the A R X models the saturation/ threshold is modeled
as a function of the fl ow itself instead of the rain intensity .
T his is in fact more p hy sically correct b ecause the thresh-
old occurs b ecause there is more w ater in the p ip es than the
p ump s in the node p oints can serve, even though all this w a-
ter is caused b y heavy rain. H ence, the ex p lanatory variab le
is defi ned as

xf
t = yt−1 (1 9 )

T here w ere only 3 heavy rain events during this p eriod and
since 1 9 coeffi cients need to b e identifi ed in the F IR model,
the 3 events w ith heavy rainfall w ere not q uite enough to
identify the 1 9 coeffi cients w ithin an accep tab le confi dence
level, meaning that several comb inations of solutions might
b e p ossib le. H ow ever, some solutions w ere found and those
w ere used for p rediction. A s a conseq uence of this sp arse
data it w as not p ossib le to identify a F IR model w here the
coeffi cients varied b oth w ith the season and the threshold.
O n the other hand in the A R X models the constants are
rather w ell identifi ed and it w as p ossib le to identify coeffi -
cients dep ending on tw o variab les, season and fl ow .

T he local estimation req uires b andw idth decisions. T he
b andw idth determines the smoothness of the estimate. If
the b andw idth is small the variance is large and the b ias is
small. If the b andw idth is large the variance is small b ut
the b ias increases. A n ” op timal” b andw idth is a b andw idth
w hich is a comp romise of these tw o factors. In the tradi-
tional k ernel estimation, as in H ärdle [1 9 9 0 ], the estimates
are local constant; here the estimates are local lines. T his
allow s a larger b andw idth w ithout the cost of a b ias p rob -
lem. T he b andw idths are diff erent, dep ending on the model
ty p es. In each case the b andw idths w here found b y manual
op timization, the b andw idth needs to b e small enough to
detect diff erences in the conditional variab le. H ow ever, the
larger it is, the less variation in the estimates. F or ex am-
p le in the A R X model w here the conditional variab le is the
season, it w as p ossib le to use a large b andw idth. T he sea-
sonal variab le is almost evenly distrib uted, and the op timal
b andw idth included 2 4 0 0 data p oints, w hich is ab out 6 5 %
of the data. O n the other hand in the F IR model w ith rain
intensity as a conditional variab le, the b andw idth included
only 5 5 data p oints, w hich is ab out 1 .5 % of the data. T his
is b ecause there are few events w ith heavy rain and thus,
b y using a larger b andw idth the few data-p oints no longer
have an eff ect.

T he calculations are p erformed b y using a p rogram
named L F L M (locally w eighted fi tting of linear models)
w hich is an S -P L U S / R lib rary p ack age. F or a descrip tion
see N ie lsen [1 9 9 7 ].

4.3 . Modeling R esults

M odel validation demands some measure of the model’s
q uality . T his measure is not a single numb er w hich can b e
used for each and every model and in each and every situa-
tion. In this p roject the main goal w as to achieve accurate
p redictions. T hus, the op timization (model calib ration) is a
least sq uares method and as such the model’s p erformance
is validated w ith resp ect to that. In hy drology several other
factors might b e of higher imp ortance, lik e the overall w ater
b alance, the timing of the p eak fl ow or other things.

T he coeffi cient of determination R2, often referred to as
the N ash effi ciency , is a w idely used model criterion in hy -
drology and it is a fi ne measure of the model’s effi ciency
w ith resp ect to the least sq uares minimization. T he residu-
als used for model validation are one step p rediction errors,
using the calib ration data series. A cross validation w ould
have b een adeq uate. H ow ever, the model’s p arameters w ere
estimated locally and w ill thus adap t to the data in use;
hence, cross validation does not have the same meaning as
w hen the p arameters are estimated glob ally . T ab le 1 show s
the R2 for the conditional p arametric models. A s the mass
b alance is an imp ortant dimension in hy drology , the mean
value of the error w as also calculated. T he mean value of the
error demonstrates the mass b alance on average. If the mass
b alance is w ell conserved, the mean value of the error w ill
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be zero. Table 2 shows the mean value of the error. The ta-

bles both show the overall p erformance and also the seasonal

p erformance. F or each season the seasonal calculations are

based two months in each season for better d istinction be-

tween the seasons. F or the seasonal calculations the 3 most

heavy rain events were ex c lud ed . These were events, where

the saturation/ threshold eff ect ex ists, those were g roup ed

tog ether and the calculations were p erformed for them sep -

arately in ord er to measure how the mod els p erform in that

situation. A s a reference R
2 was also calculated for the cor-

resp ond ing well k nown linear mod els F IR and A R X . It is

well k nown that the coeffi c ient of d etermination d oes not

p enalize over-p arameterizations. H owever, both A IC and

B IC stud ies led to this mod el ord er as d oes a p hy sical stud y

lik e the basin concentration time as d iscussed in S ection 4 .2.

S p ec ifi cally the cond itional p arameter mod els are comp ared

to a linear mod els of same ord ers. Thus the F IR mod els are

comp arable, and the A R X mod els are as well. The estima-

tion was based on all the events, and the tables show total

results for all the 6 8 rain events.

Table 1. The coefficient of determination R2 for v ariou s
models and diff erent conditions. The u nit is m3/6 min as
the samp ling time is 6 minu tes. The models are: L inear FIR
model, Seasonal FIR model and Threshold/ Satu ration FIR
model. L inear A R X model, seasonal A R X model, Thesh-
old/ Satu ration A R X model and b oth seasonal and thresh-
old/ satu ration A R X model. The R2 calcu lations are 1 -step
p rediction, p erformed u sing ov erall data. For w inter, sp ring ,
su mmer and fall, only 2 months w ere u sed for b etter seasonal
distinction. Finally , the R2 is calcu lated for the three heav iest
rain ev ents, Those ev ents are ex clu ded in the seasonal calcu -
lations.

H eav y
C ond. A ll W Sp . Su . F rain

8 ev . 1 3 ev . 1 3 ev . 1 2 ev . 3 ev .
FIR L in. 0 .7 9 0 .64 0 .7 3 0 .68 0 .9 0 0 .8 3

Seas. 0 .8 4 0 .7 0 0 .7 8 0 .8 5 0 .9 2 0 .8 9
Thr. 0 .8 2 0 .63 0 .7 5 0 .7 9 0 .9 3 0 .9 3

A R X L in. 0 .9 4 0 .9 1 0 .9 4 0 .9 1 0 .9 6 0 .9 3
Seas. 0 .9 5 0 .9 2 0 .9 4 0 .9 3 0 .9 6 0 .9 4
Thr. 0 .9 6 0 .9 3 0 .9 5 0 .9 4 0 .9 7 0 .9 7
S×Thr 0 .9 7 0 .9 5 0 .9 6 0 .9 7 0 .9 8 0 .9 9

In a comp arison of the three F IR mod els, the seasonal

F IR mod el has the best p erformance both with resp ect to

the R
2 and to the mass balance. The seasonal F IR is c learly

an imp rovement of the trad itional F IR mod el with constant

p arameters. E ven in a situation with heavy rain, the sea-

sonal F IR outp erforms the trad itional F IR . The threshold

F IR is the best d uring heavy rain events, as a result of its

d esig n, however the bias is q uite larg e.

A ll the cond itional p arametric A R X mod els outp erform

the trad itional A R X , both the 1 -d imensional mod els and the

2-d imensional mod el, which is the best both with resp ect to

the N ash-effi c ienc y and the bias.

In Table 2 it can be seen how the trad itional linear mod -

els und erestimate the runoff d uring the winter and overes-

timate it d uring the summer, esp ec ially the F IR mod els.

The F IR mod els have a larg er bias, and even the seasonal

F IR is not q uite ac cep table in all seasons, esp ec ially in the

sp ring season. Thus, the F IR mod els are not ac cep table for
p red ic tions.

Table 2 . The mean valu e of the error, m3/6 min . (For
nomenclatu re see Tab le 1 ).

H eav y
C ond. A ll W Sp . Su . F rain

8 ev . 1 3 ev . 1 3 ev . 1 2 ev . 3 ev .
FIR L in. 1 .1 3 1 1 .1 8 1 9 .5 4 -2 2 .8 0 -2 .4 -3 7 .2 2

Seas. 0 .2 3 0 .7 6 1 5 .7 9 -1 .1 4 -6.8 -1 0 .2 3
Thre. 3 .4 0 1 4 .1 3 2 0 .4 7 -1 7 .1 2 -2 .3 -1 7 .5 0

A R X L in. 0 .0 5 1 .67 2 .7 9 -3 .8 4 -0 .4 8 -7 .5 8
Seas. -0 .2 0 0 .0 1 2 .7 2 -0 .2 7 -1 .4 5 -2 .5 8
Thre. 0 .1 2 1 .7 7 3 .3 2 .8 5 -1 .2 9 -4 .7 4
S×Thr. -0 .0 1 0 .0 2 2 .3 7 0 .1 9 1 .4 8 -1 .7 6
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January 27th 2003

F ig u re 1. E vent in winter. The d ata is shown as p oints
and the p rec ip itation as bars, with the scale on the rig ht
ax is. The time lag is 6 minutes and the fi g ure shows a
cond itional A R X mod el, where the p arameters d ep end
on season and fl ow, and a cond itional F IR mod el where
the p arameters d ep end on season. F or comp arison the
conventional time-invariant linear mod els F IR and A R X
are also shown.
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October 11th 2003

F ig u re 2 . E vent in autumn. The d ata is shown as p oints
and the p rec ip itation as bars, with the scale on the rig ht
ax is. The time lag is 6 minutes and the fi g ure shows a
cond itional A R X mod el, where the p arameters d ep end
on season and fl ow, and a cond itional F IR mod el where
the p arameters d ep end on season. F or comp arison the
conventional time-invariant linear mod els F IR and A R X
are also shown.
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As expected, the ARX models outperform the FIR mod-
els. H ow ev er, it must b e stressed tha t the FIR models a n d
the ARX models n eed diff eren t in puts for prediction . U sin g
a FIR model, 1 -step prediction dema n ds pa st precipita tion
w hich is a lso req uired w hen usin g a n ARX model, b ut pa st
v a lues of the fl ow a re a ddition a lly req uired. For k-step pre-
diction b oth the FIR a n d the ARX models n eed pa st a n d
presen t v a lues of the precipita tion a n d a lso (k−2 ) prediction
of the precipita tion . Addition a lly the ARX models dema n d
pa st, presen t a n d (k − 1 ) step prediction of the fl ow . It
must b e men tion ed thoug h tha t usin g predicted v a lues of
precipita tion a s in put w ill n ev er b e q uite a s relia b le a s usin g
mea sured v a lues sin ce the predicted v a lues ha v e much la rg er
v a ria n ce; this is a lso true for the predicted v a lues of the fl ow .
M oreov er, the pa ra meter estima tes a re performed w ith the
a ssumption tha t the in put is mea sured n ot predicted.

For v isua l compa rison tw o ev en ts w ere chosen . T hese a re
a ’ty pica l’ ev en t in w in ter time a n d a n ev en t w ith hea v y ra in ,
show in g the sa tura tion / theshold. N ote tha t ev en thoug h
sin g le ev en ts a re show n in the fi g ures, the estima te is b a sed
on a ll the ev en ts. A sin g le con dition a l ARX model a n d a
sin g le con dition a l FIR model w ill b e dra w n a lon g w ith the
tra dition a l lin ea r models. T he fi g ures show the b est con di-
tion a l FIR model, the 1 -dimen sion a l sea son a l FIR a n d the
b est con dition a l ARX model, the 2 -dimen sion a l ARX a lon g
w ith the lin ea r FIR a n d ARX, for compa rison .

Fig ure 1 show s a n ev en t in the w in ter time; the dura tion
of the ev en t is a b out 6 .5 hours. N ote tha t the lin ea r FIR
model un derestima tes the run off a s demon stra ted in T a b le
2 , a n d a sea son a l FIR model is clea rly a n improv emen t on
the tra dition a l lin ea r FIR. T he lin ea r ARX model is b etter,
b ut n ot a s g ood a s the con dition a l pa ra metric ARX. Fig -
ure 2 show s the sa me for a n ev en t w ith hea v y ra in a n d thus
the threshold/ sa tura tion eff ect; the dura tion of this ev en t is
a b out 2 .5 hours. In this ca se b oth the lin ea r FIR a n d the
lin ea r ARX ov erestima te the fl ow pea k , a s does a sea son a l
FIR, w hile the con dition a l ARX n icely ca ptures the fl a t a n d
lon g pea k .

It mig ht b e a rg ued tha t in rea l a pplica tion s a con fi den ce
in terv a l for the prediction s w ould b e req uired. T his is in deed
true; con fi den ce in terv a ls for the predicted output a re v a lu-
a b le. H ow ev er, sin ce the model is n on -lin ea r, it is b eliev ed
tha t prediction in terv a ls should b e estima ted b y methods
lik e q uin tile reg ression a s in Nielsen et al. [2 0 0 6 ]. T his is
n ot cov ered in this pa per.

Fin a lly , con dition a l pa ra metric models w ith loca l esti-
ma tes ca n a lso b e used to study the circumsta n ces of the
w a tershed a n d thus prov ide a useful in forma tion for dev el-
opin g a n on -lin ea r g lob a l pa ra metric model if w a n ted.

For exa mple, the sea son a lity ca n b e studied. For this
purpose a sea son a l ARX model is used. In this study the
con dition a l v a ria b le represen tin g the sea son a lity is a sin us
w a v e a n d the pa ra meters a re estima ted a s loca l lin es, de-
pen din g on the v a lues of the sin us. T a b le 3 show s estima ted
coeffi cien ts in the ARX for fi xed v a lues of the sea son . D ue
to sy mmetry , it is n ot possib le to distin g uish b etw een sprin g
a n d a utumn . A compa rison of the a utoreg ressiv e pa ra meters
a1 a n d a2, show s tha t a2 is la rg er tha n a1 durin g the w in ter
w hile a2 is close to zero durin g the summer a n d a1 is the
domin a tin g a utoreg ressiv e pa ra meter. T he n eg a tiv e v a lue
of the pa ra meter b5 in Aug ust is phy sica lly in correct, a n d
this is prob a b ly due to spa rse da ta , sin ce there is on ly on e
summer sea son a n d Aug ust is close to a n d on the b oun da ry
of the sea son a l v a ria tion pa ra meter.

Table 3. Local parameter estimates in a sea-
sonal A R X mod el. S1= F eb ru ary , S2= A pril/ D ecemb er,
S3= J u ne/ O ctob er, S4= A u g u st.

S eas. a1 a2 b2 b3 b4 b5 b6 b7

S1 0 .3 4 0 .5 1 3 3 .4 5 4 2 .7 5 6 8 .5 6 2 1 .9 8 1 9 .1 3 5 .4 8
S2 0 .6 2 0 .2 0 3 2 .6 6 5 0 .6 7 4 8 .3 3 2 3 .5 7 2 1 .1 2 5 .2 3
S3 0 .8 2 -0 .0 3 2 3 .8 0 5 2 .7 3 2 2 .0 9 2 1 .8 8 1 1 .9 5 1 8 .0 4
S4 0 .7 3 0 .0 8 2 0 .3 6 7 0 .2 3 2 1 .5 9 -1 3 .3 0 1 4 .1 3 1 9 .4 4

U sin g the estima ted pa ra meters, the impulse respon se
fun ction ca n b e ca lcula ted, a s show n in Fig ure 3 , w hich
a lso show s the sum of the coeffi cien ts a n d the correspon din g
g a in fa ctor, ca lcula ted b y E q . (5 ). N ote tha t the impulse
respon se fun ction ha s the lon g est ta il durin g the w in ter a n d
shortest ta il durin g the summer, a n d it a lso rea ches la rg er
v a lues durin g the w in ter tha n the summer. C on seq uen tly ,
durin g the w in ter a b out 1 0 % of the tota l w a ter rea ches the
sew a g e sy stem, w hile durin g the summer a b out 6 % en ters
the sew a g e sy stem. A simila r a n a ly sis ha s b een performed
for the fl ow depen den ce of the impulse respon se fun ction
a n d it mostly show s tha t w hen the fl ow is la rg e the impulse
respon se fun ction is fl a tter, it pea k s la ter, the v a lues a re
sma ller, a n d the ta il is lon g er.
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F ig u re 3. Impulse respon se fun ction estima tes for four
diff eren t sea son s ca lcula ted usin g a sea son a l ARX model.

5. Discussion

T he FIR models prov ide 2 -step prediction i.e. in forma -
tion 1 2 min utes a hea d, sin ce the time dela y b etw een precip-
ita tion a n d fl ow is 2 la g s. T he ARX models prov ide 1 -step
prediction , sin ce fl ow a t time t−1 is used for prediction . For
rea l time on -lin e prediction a n d a utoma tic con trol it mig ht
b e n ecessa ry to a chiev e in forma tion w ith lon g er a time hori-
zon , sa y 3 0 min utes i.e. 5 -step prediction . For b oth the FIR
a n d the ARX models a 5 -step prediction req uires 3 -step pre-
diction of precipita tion , i.e. on -lin e w ea ther foreca st. H ow -
ev er, sin ce it is on ly a q uestion of a couple of min utes, it
mig ht b e possib le to use on -lin e precipita tion mea suremen ts
a b it further from the trea tmen t pla n t, i.e. a w ea ther sta -
tion ca pturin g the fron ta l ra in a little b it ea rlier. E v iden tly
this depen ds on the w in d a n d fron tier mov emen t direction
a lthoug h in ma n y ca ses the w in d durin g ra in is from the
(south) w est, w hich is the domin a tin g w in d direction . T he
w in d direction mig ht a lso b e a con dition a l v a ria b le in the
model if en oug h da ta a re a v a ila b le. O n the other ha n d, for
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the ARX model the situation is a little bit more complicated
because the fl ow yt−1 is a conditional v ariable. T he most
practical thing w ould be to prov ide on-line fl ow data from a
couple of node points in the sew ag e sy stem net, node points
w hich are distributed g eog raphically in the sew ag e sy stem.
T he fl ow in the node points is naturally delay ed compared to
the fl ow in the w aste w ater treatment plant, and obv iously
the delay is diff erent depending on the g eog raphical local-
ization. H ow ev er, if data from the node points are av ailable
in g eneral, it w ould be most conv enient to use the fl ow in
the node points as an input in a model for on-line prediction
and control, at the w aste w ater treatment plant, and thereby
remov e much of the unaccountable rain distribution.

6. Summary and Conclusion

C onditional parametric models hav e been dev eloped and
tested for rainfall-runoff modeling in a sew ag e sy stem. T he
models are F IR and ARX models w ith the coeffi cients v ary -
ing as a function of ex ternal v ariables. T he input of the
models is the total precipitation as measured on-line, and
the output is the ex cess fl ow prediction. T he base fl ow is
separated by using simple eq uations since the base fl ow in
the sew ag e sy stem does not orig inate in rainfall.

B oth the conditional parametric F IR and the conditional
parametric ARX prov ide results w hich are sig nifi cantly su-
perior to results from conv entional linear models. As ex -
pected the ARX models prov ide the best 1 -step predictions.

In this study the conditional v ariables are used to cap-
ture seasonal fl uctuations and threshold/ saturation due to
the limited capacity of the sy stem pumps and pipes.

U se of this modeling approach has a g ood potential for de-
v eloping g ood prediction models. F urthermore, the method
can also be used for sensitiv ity analy sis w hile constructing
a phy sical model of the sy stem fl ow . T he method of con-
ditional modeling is a useful contribution to the tools of
nonlinear modeling techniq ues used in hy drolog y .
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Parameter estimation in stochastic rainfall-runoff models
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Abstract

A p arameter estimation method for stochastic rainfall-runoff models is p resented. T he model considered in the p ap er is a

concep tual stochastic model, formulated in continuous-discrete state sp ace form. T he model is small and a fully automatic

op timiz ation is, therefore, p ossible for estimating all the p arameters, including the noise terms. T he p arameter estimation

method is a max imum lik elihood method ( M L ) w here the lik elihood function is ev aluated using a K alman fi lter techniq ue. T he

M L method estimates the p arameters in a p rediction error setting s, i. e. the sum of sq uared p rediction error is minimiz ed. F or a

comp arison the p arameters are also estimated by an outp ut error method, w here the sum of sq uared simulation error is

minimiz ed. T he former methodolog y is op timal for short-term p rediction w hereas the latter is op timal for simulations. H ence,

dep ending on the p urp ose it is p ossible to select w hether the p arameter v alues are op timal for simulation or p rediction. T he data

orig inates from I celand and the model is desig ned for I celandic conditions, including a snow routine for mountainous areas. T he

model demands only tw o inp ut data series, p recip itation and temp erature and one outp ut data series, the discharg e. I n sp ite of

being based on relativ ely limited inp ut information, the model p erforms w ell and the p arameter estimation method is p romising

for future model dev elop ment.

q 2 0 0 5 E lsev ier B . V . A ll rig hts reserv ed.

Keyw ords: C oncep tual stochastic model; R ainfall-runoff model; Parameter estimation; M ax imum lik elihood; E x tended K alman fi lter;

Prediction and simulation

1 . I n tro d u cti o n

A ll hy drolog ical models are ap p rox imations of

reality , and hence the outp ut of a sy stem can nev er be

p redicted ex actly and the p roblem is how to achiev e

an accep table and op erational model.

T he numerous hy drolog ical models w hich already

ex ist v ary in their model construction, p artly because

the models serv e somew hat different p urp oses. T here

are models for desig n of drainag e sy stems, models for

fl ood forecasting , models for w ater q uality , etc. S ing h

and W oolhiser ( 2 0 0 2 ) g iv e a comp rehensiv e ov erv iew

of mathematical modelling of w atershed hy drolog y ,

how ev er, a brief ov erv iew w ill be g iv en here. T he

H B V model, see B erg ström ( 1 9 7 5 , 1 9 9 5 ) , is a

standard model in the S candinav ian countries

J ournal of H y drolog y 3 2 6 ( 2 0 0 6 ) 3 7 9 – 3 9 3

w w w . elsev ier. com/ locate/ j hy drol

0 0 2 2 -1 6 9 4 / $ - see front matter q 2 0 0 5 E lsev ier B . V . A ll rig hts reserv ed.

doi: 1 0 . 1 0 1 6 / j . j hy drol. 2 0 0 5 . 1 1 . 0 0 4

* C orresp onding author. T el. : C 3 5 4 5 6 9 6 0 5 1 ; fax : C 3 5 4

5 6 8 8 8 9 6 ;
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and has also been used around the globe. The HBV

m odel has been c lassi fi ed as a sem i - di stri buted

c onc ep tual m odel and i s based on the theory of li near

reserv oi rs. The m odel has a num ber of f ree

p aram eters, w hi c h are f ound by c ali brati on. The

m odel p resented here i s i n the sp i ri t of the HBV

m odel, but addi ti onally , the ap p roac h suggested i n

thi s p ap er i nc ludes a p roc edure f or f ully autom ati c

p aram eter esti m ati on. The N A M /M I K E 11/M I K E 21

m odels, see e.g. N i elsen and Hansen (19 7 3 ); G ottli eb

(19 8 0); Hav nø et al. (19 9 5 ), are used f or fl ood

f orec asti ng i n D enm ark and other E urop ean c ountri es.

The N A M m odel i s based on si m i lar p ri nc i p les as the

HBV m odel and a f urther dev elop m ent of the m odel

led to the M I K E 11 sof tw are p ac k age w hi c h i s a one

di m ensi onal m odelli ng sy stem f or si m ulati on of fl ow ,

sedi m ent- transp ort and w ater q uali ty . M I K E 21 i s a

tw o di m ensi onal v ersi on. The TO P M O D E L , Bev en

and K i rk by (19 7 9 ), has been used i n G reat Bri tai n.

The m odel i s a set of c onc ep tual tools that c an be used

to rep roduc e the hy drologi c al behav i our of the

c atc hm ent area i n a di stri buted or sem i - di stri buted

w ay . The p aram eters are p hy si c ally i nterp retable and

the w atershed i s c lassi fi ed by usi ng the so- c alled

top ograp hi c i ndex . The S HE m odel i s a p hy si c ally

based, di stri buted w atershed m odelli ng sy stem ,

dev elop ed j oi ntly by the D ani sh Hy drauli c I nsti tute,

the Bri ti sh I nsti tute of Hy drology and S O G R E A H i n

F ranc e. The S HE m odel i s w i dely used, see A bbott

et al. (19 8 6 ); Bathurst (19 8 6 ); S i ngh and W oolhi ser

(2002); J ai n et al. (19 9 2); R ef sgaard et al. (19 9 2). The

M I K E S HE m odel i s a f urther dev elop m ent of the

S HE m odelli ng c onc ep t R ef sgaard and S torm (19 9 5 )

and i t has been used i n m any E urop ean c ounti es. The

A R N O m odel, Todi ni (19 9 6 ), i s a sem i - di stri buted

c onc ep tual m odel, and i t i s w ell k now n i n I taly . L i k e

the HBV and N A M m odels the Tank m odel,

S ugaw ara (19 9 5 ), i s a m odel based on li near

reserv oi rs and i t has been used i n J ap an. The

X i nanj i ang m odel, Z hao and L i u (19 9 5 ); Z hao

(2002), i s a di stri buted, basi n m odel f or use i n

hum i d and sem i - hum i d regi ons w here the ev ap orati on

p lay s a m aj or role. The m odel has been w i dely used i n

C hi na si nc e 19 8 0. I n C anada, the W A TF L O O D m odel

S i ngh and W oolhi ser (2002), i s bei ng used. The

W A TF L O O D m odel i s a di stri buted hy drologi c al

m odel based on the G R U (G roup R esp onse U ni t)

c onc ep t, i .e. all si m i larly v egetated areas w i thi n a sub-

w atershed are group ed as one resp onse uni t. The N W S

R i v er F orec ast sy stem , based on the S ac ram ento

Nomenclature

a L ow p ass fi lteri ng c onstant [1/day ]

b C onstant i n j($), c ontrolli ng the

sm oothness

b C enter of the threshold f unc ti on f($)

b1 S harp ness of the threshold f unc ti on f($)

c : P rec i p i tati on c orrec ti on f ac tor

f F i ltrati on f rom up p er reserv oi r to low er

reserv oi r [1/day ]

K C onstant rep resenti ng the base fl ow

[m/day ]

k C onstant i n j($), c ontrolli ng the

sm oothness

k1 R outi ng c onstant, f rom up p er surf ac e

reserv oi r [1/day ]

k2 R outi ng c onstant, f rom low er surf ac e

reserv oi r [1/day ]

M C onstant i n j($), c ontrolli ng the up p er

li m i t v alue

N S now c ov er [m]

P M easured p rec i p i tati on [mm]

p dd P osi ti v e degree day c onstant f or m elti ng

[m/([8 C ]day )]

S1 U p p er surf ac e w ater reserv oi r [m]

S2 L ow er surf ac e w ater reserv oi r [m]

s11 W hi te noi se p roc ess f or the observ ati ons

T(t) M easured tem p erature [8 C ]

Ts(t) L ow p ass fi ltered tem p erature [8 C ]

Y M easured di sc harge [m/day ]

duI O ne di m ensi onal W i ener p roc ess

f(x) S m ooth threshold f unc ti on (si gm oi d

f unc ti on) 1=ð1Cex p ðb0Cb1x Þ Þ

j(x) I ndi c ator f unc ti on f or the snow j(x)Z

Mex p (- bex p (- kx))

si i I nc rem ental c ov ari anc e of the W i ener

p roc ess

H . J o n sdo tti r e t al . / J o u r n al o f H y dr o l o g y 3 2 6 ( 2 0 0 6 ) 3 7 9 – 3 9 33 8 0
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Model, B u r n a s h ( 1 9 9 5 ) , i s a s t a n da r d m odel i n t h e

U n i t ed S t a t es f or fl ood f or ec a s t i n g a n d i n A u s t r a li a t h e

R O R B m odel, L a y r en s on a n d Mei n ( 1 9 9 5 ) , i s

c om m on ly em p loy ed f or fl ood f or ec a s t i n g a n d

dr a i n a g e des i g n .

I n c r ea s ed c om p u t er p ow er a n d da t a s t or a g e

c a p a b i li t i es h a v e op en ed t h e p os s i b i li t y f or w or k i n g

w i t h m or e det a i led di s t r i b u t ed m odels . H en c e, m a n y

of t h e r ec en t ly dev elop ed m odels a r e p h y s i c a lly b a s ed

di s t r i b u t ed m odels , a n d t h ey a r e oc c a s i on a lly u s ed

t og et h er w i t h G I S ( G eog r a p h i c I n f or m a t i on S y s t em s ) .

T h es e m odels b ot h u t i l i z e a la r g e a m ou n t of

i n f or m a t i on , b u t c a n a ls o p r ov i de v a r i ou s i n f or m a t i on ,

h ow ev er , i f t h e i n p u t da t a ( or i n f or m a t i on ) a r e n ot

a v a i la b le t h e m odel i s of li t t le u s e.

B la c k b ox m odels h a v e a ls o b een u s ed f or fl ood

f or ec a s t i n g , s t a r t i n g w i t h li n ea r t r a n s f er f u n c t i on

m odels i n t h e b eg i n n i n g of 1 9 7 0 s a n d s i n c e t h en

v a r i ou s k i n ds of li n ea r a n d n on li n ea r m odels . I n r ec en t

y ea r s n eu r a l n et w or k m odels h a v e b een p op u la r .

S a j i k u m a r a n d T h a n da v es w a r a ( 1 9 9 9 ) u s ed a n

a r t i fi c i a l n eu r a l n et w or k a s a n on li n ea r r a i n f a ll- r u n of f

m odel f or t h e r i v er L ee i n t h e U K a n d f or t h e r i v er

T h u t h a p u z h a i n I n di a . S h a m s eldi n ( 1 9 9 7 ) u s ed n eu r a l

n et w or k s f or r a i n f a ll- r u n of f m odelli n g w h i c h w a s

t es t ed on s i x di f f er en t c a t c h m en t a r ea s .

T h e m a i n a dv a n t a g e of b la c k b ox m odels i n

h y dr olog y i s t h a t t h ey a r e n ot a s da t a dem a n di n g a s

t h e p h y s i c a l m odels ; t h i s r ef er s t o a ll k i n ds of p h y s i c a l

i n f or m a t i on a b ou t t h e w a t er s h ed a s w ell a s lon g

r ec or d of fl ow a n d p r ec i p i t a t i on .

S om e of t h e c on c ep t u a l m odels a r e n ot v er y da t a

dem a n di n g a n d i t i s i m p or t a n t t o w or k w i t h t h os e k i n d

of m odels a s w ell, i . e. m odels w i t h f ew i n p u t da t a , f ew

p a r a m et er s a n d li m i t ed p r i or i n f or m a t i on . T h e

p a r a m et er s i n a lu m p ed c on c ep t u a l m odel c a n b e

i n t er p r et ed a s s om e k i n d of a n a v er a g e ov er a la r g e

a r ea , b u t i n g en er a l t h e m os t li k ely p a r a m et er v a lu es

c a n n ot b e g i v en , a n d t h e fi n a l p a r a m et er es t i m a t i on

m u s t , t h er ef or e, b e p er f or m ed b y c a li b r a t i on a g a i n s t

ob s er v ed da t a . R ef s g a a r d et a l. ( 1 9 9 2 ) s t a t ed t h a t i n

p r i n c i p le t h e p a r a m et er s i n a p h y s i c a lly b a s ed m odel

c a n b e es t i m a t ed b y fi eld m ea s u r em en t s , b u t s u c h a n

i dea l s i t u a t i on r eq u i r es c om p r eh en s i v e fi eld da t a ,

w h i c h c ov er a ll t h e p a r a m et er s . T h i s s i t u a t i on r a r ely

oc c u r s a n d t h e p r ob lem of c a li b r a t i on w i ll a r i s e.

B ec a u s e of t h e la r g e n u m b er of p a r a m et er s i n a

p h y s i c a lly b a s ed m odel t h e p a r a m et er es t i m a t i on c a n

n ot b e don e b y f r ee op t i m i z a t i on f or a ll p a r a m et er s ,

h ow ev er , a n ov er a ll p a r a m et er es t i m a t i on i s p os s i b le

f or s i m p ler m odels .

T h e s t a t e s p a c e f or m u la t i on a n d t h e K a lm a n fi lt er

h a s b een u s ed i n h y dr olog y f or y ea r s , r ep r es en t i n g

b ot h b la c k b ox m odels a n d g r ey b ox m odels , i . e.

c on c ep t u a l p h y s i c a l m odels w h er e p a r a m et er v a lu es

a r e es t i m a t ed u s i n g da t a . S z ollos i - N a g y ( 1 9 7 6 ) u s ed a

s t a t e s p a c e f or m u la t i on f or on - li n e p a r a m et er es t i -

m a t i on i n li n ea r h y dr og r a p h y u s i n g a F I R m odel

( F i n i t e I m p u ls e R es p on s e m odel) . T odi n i ( 1 9 7 8 )

p r es en t ed a t h r es h old A R MA X m odel, f or m u la t ed i n

a s t a t e s p a c e f or m a n d t h e p a r a m et er s es t i m a t ed of f

li n e, i . e. i n a b a t c h f or m . R ef s g a a r d et a l. ( 1 9 8 3 )

r ef or m u la t ed t h e N A M m odel i n a s t a t e s p a c e f or m

w h er e t w o of t h e m odel p a r a m et er s w er e t i m e v a r y i n g

i . e. on - li n e es t i m a t ed. H a lt i n er a n d S a la s ( 1 9 8 8 ) u s ed

A R MA X m odels , b ot h w i t h of f - li n e ( b a t c h ) p a r a m et er

es t i m a t i on a n d on - li n e p a r a m et er es t i m a t i on m et h od

i n t h e S R M m odel, s ee a ls o Ma r t i n ec ( 1 9 6 0 ) ;

Ma r t i n ec a n d R a n g o ( 1 9 8 6 ) . A ll t h e a b ov e- m en t i on ed

m odels a r e f or m u l a t ed i n a di s c r et e t i m e. I n

G eor g a k a k os ( 1 9 8 6 a ,b ) r a t h er la r g e p h y s i c a l m odels

a r e p r es en t ed u s i n g a s t a t e s p a c e f or m u la t i on .

H ow ev er , t h e m odel p a r a m et er s a r e c on s t a n t s a n d

n ot es t i m a t ed. I n G eor g a k a k os et a l. ( 1 9 8 8 ) t h e

S a k r a m en t o m odel ( or g . i n B u r n a s h et a l. ( 1 9 7 3 ) ) , i s

m odi fi ed a n d f or m u la t ed i n s t a t e s p a c e f or m a n d s om e

of t h e p a r a m et er s a r e es t i m a t ed. R a j a r a m a n d

G eor g a k a k os ( 1 9 8 9 ) r ep r es en t a m odel f or a c i d

dec om p os i t i on i n a la k e w a t er s h ed s y s t em f or m u la t ed

i n a c on t i n u ou s - di s c r et e s t a t e s p a c e f or m , a n d t h ey

es t i m a t ed t h e p a r a m et er s . L ee a n d V . P . S i n g h ( 1 9 9 9 )

a p p li ed a n on - li n e es t i m a t i on t o t h e T a n k m odel ( s ee

e. g . S u g a w a r a ( 1 9 9 5 ) ) , f or s i n g le s t or m a t a t i m e,

c a li b r a t i n g t h e i n i t i a l s t a t es m a n u a lly . L ee a n d V . P .

S i n g h ( 1 9 9 9 ) a l s o g a v e a s h or t ov er v i ew of

a p p li c a t i on of t h e K a lm a n fi lt er t o h y dr olog i c a l

p r ob lem s u p t o 1 9 9 9 . I n A s h a n a n d O ’ C on n or ( 1 9 9 4 )

a g en er a l di s c u s s i on a b ou t t h e u s e of K a lm a n fi lt er i n

h y dr olog y i s f ou n d.

I n t h e f ollow i n g a s t oc h a s t i c lu m p ed, c on c ep t u a l

r a i n f a ll- r u n of f m odel i s dev elop ed. T h e m odel i s

f or m u la t ed a s a c on t i n u ou s - di s c r et e t i m e s t oc h a s t i c

s t a t e s p a c e m odel. T h e dy n a m i c s a r e des c r i b ed b y

s t oc h a s t i c di f f er en t i a l eq u a t i on s a n d t h e ob s er v a t i on s

a r e des c r i b ed b y eq u a t i on s r ela t i n g t h e di s c r et e t i m e

ob s er v a t i on s t o t h e s t a t e v a r i a b les a t t i m e p oi n t s w h er e
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observations are available. The main advantage of this

model formu lation is that the stoc hastic p art p ermits a

desc rip tion of both the model and the measu rement

u nc ertainty , and henc e more rigorou s statistic al

methods c an be u sed for p arameter op timiz ation.

F u rthermore, the stoc hastic modelling ap p roac h

allow s a mu c h simp ler model stru c tu re than a

deterministic modelling ap p roac h sinc e some of the

variations observed in data are desc ribed by the

stoc hastic p art of the model. The model p resented is a

w atershed model designed for disc harge forec asting.

I t is a simp le lu mp ed reservoir model w ith tw o inp u t

variables, p rec ip itation and temp eratu re and one

ou tp u t variable, the disc harge. B ec au se of the

simp lic ity of the model and few p arameters it is

p ossible to estimate all the p arameters inc lu ding

threshold p arameter in the snow rou tine and the

sy stem noise, w hic h often has been diffi c u lt to identify

in hy drology . The method su ggested for p arameter

estimation (in batc h form) is a max imu m lik elihood

method, w here the one step ahead p redic tion errors

req u ired for evalu ating the lik elihood fu nc tion are

evalu ated u sing the K alman fi lter tec hniq u e. M ore-

over, the state sp ac e formu lation allow s the model to

be u sed for simu lation as w ell, how ever, good

simu lation resu lts req u ire different p arameter valu es,

K ristensen et al. (20 0 4 ) . P arameter valu es, w hic h are

su itable for simu lation c an be ac hieved by fi x ing the

sy stem noise to a small valu e and then estimating the

remaining p arameters. C onversely good p redic tion

resu lts are obtained by u sing p arameter valu es w here

all the p arameters have been op timiz ed, inc lu ding the

p arameters desc ribing the sy stem noise.

The p ap er is organiz ed as follow s. I n S ec tion 2 the

availability of data is disc u ssed. The model is

desc ribed in S ec tion 3 and the method for p arameter

estimation is desc ribed in S ec tion 4 . S ec tion 5

inc lu des disc u ssion of some estimation p rinc ip les. I n

S ec tion 6 resu lts are demonstrated and in S ec tion 7

c onc lu sions are draw n.

2. The data

The goal is to develop a model, w hic h c an be u sed

in mou ntainou s areas w ith snow ac c u mu lation. S u c h

areas are often thinly p op u lated and the meteorologi-

c al observatories are often rather sp read. H ow ever,

there is a need for fl ood forec asting for variou s

reasons, su c h as w arning related to the sp ring fl oods or

for op erational p lanning of hy drop ow er p lants. The

data u sed in this p roj ec t originates from I c eland w hic h

has in general only mou ntainou s c atc hment areas and

it c ertainly is thinly p op u lated w ith only 2.8

inhabitants p er k m2 , and only a few meteorologic al

observatories ex ists.

P rec ip itation is the main inp u t for hy drologic al

models as the p rec ip itation and the evap oration

c ontrol the w ater balanc e. I n I c eland, the evap oration

p lay s only a minor role, bu t the p rec ip itation is

imp ortant. H ow ever, there is a shortage of good

p rec ip itation data, w hic h indeed has an effec t on the

p redic tion p erformanc e of the model. The p oor q u ality

of p rec ip itation data arises both from a rain gau ges

bias tow ards too small valu es, and a limited nu mber of

rain gau ge measu rement stations. D u e to the infl u enc e

of w ind the amou nt of p rec ip itation measu red is an

u nderestimate of the ‘ grou nd tru e’ p rec ip itation.

U nfortu nately , no ex p eriments have been made in

I c eland in order to develop models to adj u st for this

bias. E x p eriments, lik e for instanc e the N ordic p roj ec t

in J ok ioinen in F inland du ring the y ears 1 9 8 7 – 1 9 9 3

(F ø rland et al. (1 9 9 6 ) ) , had the p u rp ose of develop ing

models to desc ribe the u nderestimate of the different

rain gau ges dep ending on w eather c ondition. This

ex p eriment is of little u se here sinc e the w ind sp eed in

I c eland in general is mu c h higher than in F inland.

F u rthermore, most of the meteorologic al stations in

I c eland are loc ated along the c oastal line in the

inhabited areas and most rivers, esp ec ially the larger

ones, stretc h far into the c ou ntry and have thu s

w atershed in high mou ntainou s areas. O c c asionally ,

there are no meteorologic al stations in the w hole

w atershed and if any they are ty p ic ally loc ated near

the c oast. P rec ip itation lap se rate is also diffi c u lt to

trac k sinc e in p rac tic e the lap se rate dep ends highly on

w ind sp eed and direc tion in the mou ntainou s areas.

The disc harge data are c alc u lated from w ater level

data u sing the QKh formu la. The errors of the

disc harge data are c au sed both by u nc ertainty of the

w ater level data and u nc ertainty of the p arameters in

QKh formu la. The errors of the w ater level

measu rements more or less only oc c u r du ring the

w inter bec au se of the ic ing, w hic h c au ses the w ater

level to rise even thou gh the fl ow of w ater is not

inc reasing. This has to be c orrec ted manu ally .
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In Iceland few discharge measurements with very

large discharge ex ist. T his is due to the fact that even

tho ugh annual sp ring fl o o ds o ccur, it is diffi cult to

p redict p eak s several days ahead, and the numb er o f

rivers that can b e measured simultaneo usly is limited.

T he discharge used in this p ro j ect o riginates fro m

the river F nj o ´sk á in N o rthern Iceland, see F ig. 1 . T he

river is a direct runo ff river with no glacier in the

watershed, whereas many larger rivers in Iceland have

a glacier facto r. T he watershed is ab o ut 1 1 3 2 k m2 , the

altitude range is b etween 4 4 and 1 0 8 4 m, and 5 4 % o f

the catchment area is ab o ve 8 0 0 m. T he catchment

area is do minated b y grit and ro ck s; a very small p art

o f the regio n in the valley is co p se and grassland. A

meteo ro lo gical o b servato ry is lo cated in the water-

shed, at L erk ihlid, ab o ut 20 k m fro m the o utlet o f the

watershed, and it is situated 1 5 0 m ab o ve sea level. N o

meteo ro lo gical o b servato ry is lo cated in the highlands

which co uld have given info rmatio n ab o ut the

weather co nditio n in the catchment area there. T he

data used are diurnal averages o f the discharge,

diurnal averages o f the temp erature and the to tal

p recip itatio n fo r the p ast 24 ho urs. F ig. 2 sho ws the

discharge, the temp erature and the p recip itatio n fo r

the who le p erio d o f 8 years, starting 1 st o f S ep temb er

1 9 7 6 and ending 3 1 st o f A ugust 1 9 8 4 .

3. The stochastic model

T he sto chastic mo del p ro p o sed is a simp le smo o th

thresho ld mo del with a sno w ro utine, and the b asic

idea is similar to the idea b ehind the H B V and N A M

mo dels, see B ergstro ¨m and F o ssman ( 1 9 7 3 ) ; B erg-

stro ¨m ( 1 9 7 5 ) ; N ielsen and H ansen ( 1 9 7 3 ) , and

F ig. 1 . T he watershed o f the river F nj o ´sk á is ab o ut 1 1 3 2 k m2 and lo cated in N o rthern Iceland.
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Gottlieb (1980). A dia g r a m of th e m odel str u c tu r e is

sh ow n in F ig . 3 .

T h e w a ter is stor ed in r eser v oir s a n d th e ou tfl ow of

th e r eser v oir s a r e r ou ted to th e str ea m w ith dif f er en t

tim e c on sta n ts. T h e m a in distin c tion betw een th e n on -

stoc h a stic H B V a n d N A M m odels a n d th e stoc h a stic

m odel su g g ested h er e is th a t th e w a ter fl ow is

m odelled a s a f u n c tion of on ly p r ec ip ita tion a n d

tem p er a tu r e, a n d th er e a r e n o f a c tor s f or ev a p or a tion

a n d in fi ltr a tion in to th e g r ou n d. O n th e oth er h a n d n o

m a n u a l c a libr a tion is r eq u ir ed sin c e th e stoc h a stic

m odel a llow s f or sta tistic a l m eth ods f or p a r a m eter

estim a tion . T h e tota l p r ec ip ita tion is div ided in to

sn ow a n d r a in u sin g a sm ooth th r esh old f u n c tion

f(T(t)), w h er e T(t) is th e a ir tem p er a tu r e. T h e

th r esh old f u n c tion is f or m u la ted a s th e sig m oid

f u n c tion

fðTðtÞÞZ
1

1Cex p ðb0Kb1TðtÞÞ
(1)

T h e sa m e sm ooth th r esh old is u sed f or th e m eltin g

p r oc ess, w h er e th e m eltin g M(t) is f or m u la ted u sin g

th e p ositiv e deg r ee da y m eth od

MðtÞZ p dd TðtÞ fðTðtÞÞ (2)

w h er e p dd is th e p ositiv e deg r ee da y c on sta n t, w h ic h

ty p ic a lly is c a libr a ted. N o a ttem p t is m a de to m odel

th e a c tu a l p h y sic a l p r oc ess of m eltin g , i.e. th e f a c t th a t

in th e beg in n in g of th e m eltin g p r oc ess th e w a ter fi r st

sta y s in th e sn ow p a c k a n d is n ot r elea sed u n til th e

sn ow p a c k is w et en ou g h . H ow ev er , in or der to ta k e

th is in to a c c ou n t th e tem p er a tu r e T(t) is low p a ss

fi lter ed

dTsðtÞZ ½Ka TsðtÞC a TðtÞ� dtCdwðtÞ (3 )

F ig . 2. T h e da ta ser ies f or disc h a r g e, tem p er a tu r e a n d p r ec ip ita tion sta r tin g 1st of S ep tem ber 197 6 a n d en din g 3 1st of A u g u st 1984 .

F ig . 3 . T h e m odel str u c tu r e. T h e p r ec ip ita tion is div ided in to sn ow

a n d r a in , N is sn ow a c on ta in er , S1 a n d S2 a r e u p p er a n d low er

su r f a c e r eser v oir s, M is m eltin g , f is fi ltr a tion betw een th e r eser v oir s

a n d k1 a n d k2 a r e th e r ou tin g c on sta n ts. K is a c on sta n t r ep r esen tin g

th e ba se fl ow a n d Q is th e disc h a r g e.
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The consequence is that a single warm day does not

giv e as much imp act as a warm day f ollowed b y

another warm day.

The suggested stochastic state sp ace model is:

dTsðtÞZ ½Ka TsðtÞC a TðtÞ� dtCs1dw1ðtÞ (4)

dNðtÞZ½Kp ddTsðtÞfðTsðtÞÞjðNðtÞÞC

ð1KfðTsðtÞÞÞcPðtÞ� dtCs2dw2ðtÞ
(5 )

dS1ðtÞZ½p ddTsðtÞfðTsðtÞÞjðNðtÞÞK

ðf Ck1ÞS1ðtÞC ðfðTsðtÞÞcPðtÞÞ� dtCs3dw3ðtÞ

(6 )

dS2ðtÞZ ½fS1ðtÞKk2S2ðtÞ� dtCs4 dw4ðtÞ (7 )

YðtÞZ k1S1ðtÞCk2S2ðtÞCKCe1ðtÞ (8 )

where N is the amount of snow in the snow container

in meters and the f unction j is a smooth indicator

f unction, controlling whether there is snow to melt

or not,

jðNÞZMexp ðKbexp ðKkNÞÞ (9 )

S1 and S2 are water content reserv oirs, f is fi ltration

f rom the up p er surf ace reserv oir to the lower surf ace

reserv oir, k1 and k2 are the routing constants, and c is a

p recip itation correction f actor. s1,.,s4 are constants

rep resenting the v ariances of the system noise and the

noise terms dw1(t ) ,.,dw4(t ) are assumed to b e

indep endent standard W iener p rocesses and all are

assumed indep endent of measurement noise e1(t) . The

b ase fl ow is assumed to b e constant. A n extension of

the model with a ground water reserv oir would

imp rov e the p hysical reality of the model and it

might b e a task f or f uture research.

4. Parameter estimation

I n this section a maximum lik elihood method f or

estimation of the p arameters of the continuous–

discrete time stochastic state sp ace models is outlined.

The p rocedure is imp lemented in a p rogram called

C TS M (C ontinuous Time S tochastic M odelling) , and

f or a f urther descrip tion of the mathematics and

numerics b ehind the p rogram, see K ristensen et al.

(2003) , and K ristensen et al. (2004) .

The hydrological model describ ed b y E q. (4) – (8 ) is

a continuous- discrete time stochastic state sp ace

model. The stochastic dif f erential equations describ e

the dynamics of the system in continuous time as

stated b y E q. (4) – (7 ) , and the algeb raic equation

E q. (8 ) describ es how the measurements are ob tained

as a f unction of the state v ariab les at discrete time

instants. U sing a slightly dif f erent and more comp act

notation, the mathematical f ormulation of the con-

tinuous- discrete time stochastic state sp ace model is

dxt Z f ðxt; ut; t; qÞdtCsðut; t; qÞdut (10)

yk Z hðxk; uk; tk; qÞCek (11)

where t2RC is time, xt2R
4 is a v ector of the state

v ariab les (since xtZ ½TsðtÞ;NðtÞ; S1ðtÞ; S2ðtÞ�
T ) , ut2

R
2 is a v ector of the inp ut v ariab les (since utZ

[T(t ) ,P(t ) ] ) . q2R
p is a v ector of the unk nown

p arameters. The v ector yk2R is a v ector of

measurements (i.e. the discharge) . The notation xkZ

xtZtk
and ukZutZtk

is used. F urthermore, the f unctions

f ð$Þ2R
4, sð$Þ2R

4!4 and hð$Þ2R are nonlinear

f unctions, ut is a 4- dimensional standard W iener

p rocess and ek2Nð0;Sðuk; tk; qÞÞ is a G aussian white

noise p rocess. W ith this model f ormulation the

p arameters are constants and estimated o ff- l i n e or in

a b atch f orm. A n o n - l i n e estimation of (some)

p arameters is p ossib le b y extending the state v ector

with the relev ant p arameters. A s mentioned, E q. (10)

is k nown as the system equation and E q. (11) is k nown

as the measurement equation.

The measurements yk are in discrete time. I t is well

k nown that the lik elihood f unction f or time series

models is a p roduct of conditional densities (see e.g.

R estrep o and B ras (19 8 5 ) ) . B y introducing the

notation

Yk Z ðyk; ykK1;.; y1; y0Þ (12)

where (yk,ykK1,.,y1,y0 ) is the time series of all

measurements up to and including the measurement at

time tk. The lik elihood f unction can b e written as

Lðq;YNÞZ
Y

N

kZ1

pðykjYk; qÞ

 !

pðy0jqÞ (13)

I n order to ob tain an exact ev aluation of the

lik elihood f unction, the initial p rob ab ility density

p(y0jq ) must b e k nown and all sub sequent conditional
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densities can be determined by successively solving

Kolmogorov’ s f orw ard eq uation and ap p lying

B ayes’ s rule, J az w inski ( 19 7 0) . Th is ap p roach is not

f easible in p ractice. H ow ever, since th e dif f usion term

in th e system eq uation, E q . ( 10) , in th e continuous–

discrete state sp ace model is a W iener p rocess, w h ich

is indep endent of th e state variables, and th e error

term in th e measurement eq uation, E q . ( 11) , it f ollow s

th at f or L TI ( L inear Time I nvariant) and L TV ( L inear

Time V ariant) models th e conditional densities are

G aussian, J az w inski ( 19 7 0) . I n th e N L ( N on L inear)

case it is reasonable to assume th at under suitable

regularity conditions, th e conditional densities can be

w ell ap p roximated by th e G aussian distribution,

Kristensen et al. ( 2004 ) . Th is assump tion can be

tested af ter th e estimation e. g. by considering

th e seq uence of residuals. Th us, assuming th at th e

conditional densities pðykjYk; qÞ are G aussian th e

likelih ood f unction becomes

LðqjYNÞZ
Y

N

kZ1

exp K
1
2
3
T
kR

K1
kjkK13k

� �

ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi

detðRkjkK1Þ
p

ffi ffi ffi ffi ffi ffi

2p
p� � l

0

B

@

1

C

A
pðy0jqÞ

( 14 )

w h ere 3kZykKŷkjkK1ZykKEfykjYkK1; qg is th e one

step p rediction error and R̂kjkK1ZVfykjYkK1; qg is th e
associate conditional covariance. F or given p ar-

ameters and initial states, 3k and RkjkK1 can be

comp uted by means of a Kalman fi lter in th e linear

case or an extended Kalman fi lter in th e nonlinear

case. Th e continuous- discrete Kalman fi lter eq uations

are ( Kristensen et al. ( 2004 ) or J az w inski ( 19 7 0) ) :

ŷkjkK1 Z hðx̂kjkK1;uk; tk; qÞ ð O utp ut p redictionÞ
( 15 )

RkjkK1ZCPkjkK1C
T
CS ð O utp ut variance p redictionÞ

( 16 )

3k Z ykŷkjkK1 ð I nnovationÞ ( 17 )

Kk Z PkjkK1C
TRkjkK1 ðKalman gainÞ ( 18 )

x̂kjk Z x̂kjkK1 CK3k ðU p datingÞ ( 19 )

Pkjk ZPkjkK1KKkRkjkK1K
T
k ðU p datingÞ ( 20)

dx̂tjk
dt

Z f ðx̂tjk;uk; tk; qÞ t2½tk; tkC1�

ðState p redictionÞ
( 21)

dP̂tjk
dt

ZAP̂tjk CPtjkA
T
Css

T
t2½tk; tkC1�

ðState var: p red:Þ
( 22)

w h ere

AZ
vf

vxt
jxZx̂kjkK1;uZuk ;tZtk ;q

;

CZ
vh

vxt
jxZx̂kjkK1;uZuk ;tZtk ;q

( 23 )

and

sZ sðuk; tk; qÞ; SZ Sðuk; tk; qÞ ( 24 )

G iven inf ormation up to and including time t th e p rediction

x̂kC1jkZEfxtkC1
jxtk g and PkC1jkZEfxtkC1

xTtkC1
jxtk g are

needed f or th e Kalman fi lter eq uations. E q . ( 22) is a linear

dif f erential eq uation, w h ich can be solved analytically. Th is

analytical solution is used to calculate th e ‘ initial’ p roblem

PkC1jk. O n th e oth er h and eq uation E q . ( 21) is nonlinear

w ith a nontrivial solution. Th e sof tw are CTSM of f ers th ree

op tions f or h andling th is:

L ineariz ation by fi rst order Taylor, th e linear

eq uation is solved analytically, iteratively in a

subsamp led interval.

N umerical solution of th e O D E eq uation E q . ( 21)

by using a Predictor/ Corrector sch eme, also occasion-

ally ref erred to as G ears meth od or A dams meth od

( see e. g. D ah lq uist and B j örck ( 19 8 8 ) ) .

N umerical solution of th e O D E eq uation E q . ( 21)

by using B D F ( B ackw ard D if f erence F ormula) ( see

e. g. D ah lq uist and B j örck ( 19 8 8 ) ) .

F or a detailed descrip tion of all th e meth ods see

Kristensen et al. ( 2003 ) . Th e B D F f ormula demands a

N ew ton- like meth od f or solving a nonlinear z ero-

p oint eq uation and is th us th e most time consuming

algorith m. H ow ever, f or stif f systems th e B D F

f ormula is th e most reliable meth od ( D ah lq uist and

B j örck ( 19 8 8 ) ) and conseq uently th is op tion h as been

used in th e f ollow ing.

Th e h ydrological model described by E q . ( 4 ) – ( 8 ) is

a model w ith f our states, th e low p ass fi ltered

temp erature TS , th e snow container N, and up p er
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and lower surface containers S1 and S2. I t is found

im p ortant to include th e snow container as a state

v ariab le and not to treat th e water from snow m elt as

an inp ut as som e tim es is done, e.g . R efsg aard et al.

( 19 8 3 ) . T reating th e snow- m elt as an inp ut req uires

m anual control of th e snow b alance. H owev er, b y

including th e snow container into th e state v ector

leads to num erical com p lications. T h e system is

sing ular during sum m er, fall, and m ost of th e winter

or m ore accurately wh ile snow is not m elting . T h e

system is non- stiff during sp ring fl oods, i.e. wh en

m elting is sig nifi cant and extrem ely stiff during th e

transition p oints in b etween.

O n of th e streng th s of using th e m axim um

lik elih ood m eth od for p aram eter estim ation it th at it

follows from th e central lim it th eorem th at th e

estim ator q̂, is asym p totically G aussian with m ean q

and cov ariance

Ŝ
q̂
ZH

K1 ( 25 )

wh ere th e inform ation m atrix H is g iv en b y

hij ZKE
v
2

vqivqj
l n ðLðqjYÞÞ

� �

i; jZ 1;.; p: ( 26 )

A n ap p roxim ation of H can b e ob tained b y

ev aluating hijZv
2=ðvqivqjÞlnðLðqjYÞÞ in th e p oint

qZ q̂. T h e asym p totic G aussianity of th e estim ator

also allows m arg inal t- test to b e p erform ed lik e a test

for th e h yp oth esis:

H0 : qj Z 0 H1 : qjs0 ( 27 )

T h e one step p rediction of th e outp ut ŷkjkK1 , th e state

up date x̂kjk , and th e state p rediction x̂kjkK1 , corre-

sp onding to each tim e instant tk are g enerated b y th e

( extended) K alm an fi lter. A sim ulation x̂tj0 and ŷtj0
can b e ob tained using th e ( extended) K alm an fi lter

eq uations with out th e up dating .

5. Some comments on parameter estimation

in h y d rol og ical mod el s

M odel calib ration h as b een a top ic in h ydrolog y

since th e com p uter ev olution in 19 6 0 and since th en

p aram eter op tim iz ation h as b een p racticed. A solution

to a rainfall- runoff p rediction p rob lem is to op tim iz e

th e p aram eters such th at th e m odel p erform s th e ‘ b est’

fi t to data. O n th e oth er h and wh at is b est th e fi t to

data? T h is is a selectiv e q uestion with a selectiv e

answer. B est fi t can b e such th at th e sum of sq uared

sim ulation error is m inim iz ed, or th e sum of sq uared

p rediction error is m inim iz ed, or m odels, wh ich

conserv e th e water b alance b est, or th ose wh o h av e

th e b est tim ing of fl ood p eak s. I n th e recent years

m ulti ob j ectiv e calib ration and P areto op tim ality h av e

b een ap p lied in rainfall- runoff m odelling , see e.g .

M adsen ( 2000) . H owev er, two estim ation m eth ods

h av e freq uently b een used in h ydrolog y. T h ose are,

th e O utp ut E rror m eth od ( O E ) , and th e P rediction

E rror m eth od ( P E ) . T h e O E m eth od m inim iz es th e

sum of sq uared sim ulation error and is used in wh ite

b ox m odelling b ut also in oth er contexts. T h is m eth od

is always off line. T h e P E m eth od m inim iz es th e sum

of sq uared one step p rediction error, th is m eth od

offers b oth off- line and on- line estim ation. I n order to

allow for a com p arison b etween th e m eth ods th e off-

line m eth od is considered in th e following . Y oung

( 19 8 1) g i v es an ov erv iew and com p arison of

p aram eter estim ation for continuous tim e m odels,

wh ich includes P E and O E p rincip les. T h e m axim um

lik elih ood m eth od as p resented h ere is a P E m eth od,

wh ereas th e O E m eth od, can in statistical im p lications

include M axim um L ik elih ood term s for th e case

wh ere th ere is no system noise, Y oung ( 19 8 1) . U sing

th e K alm an fi lter notation, th e sum of sq uares of th e

error term s for th e O E m eth od is written as

SðykKŷkj0Þ
2. T h is corresp onds to a state sp ace

rep resentation with out system noise and all th e errors

incorp orated in th e m easurem ent noise, wh ich m eans

p rediction with out up dating , i.e. a sim ulation.

C om p aring th e com p utational tim e for th e two

m odelling ap p roach es, th e state sp ace form ulation and

th e K alm an fi lter in g eneral inv olv e m ore calculations

since a state fi ltering th roug h th e wh ole data series is

needed for each ev aluation of th e ob j ectiv e function.

I t is th us q uestionab le wh eth er th is tim e- consum ing

estim ation m eth od is worth th e tim e. K ristensen

( 2002) p erform ed a sim ulation study for continuous

discrete m odels b y com p aring th e P E m eth od as

im p lem ented in th e p rog ram C T S M and th e O E

m eth od as im p lem ented b y B oh lin and G raeb e ( 19 9 5 ) .

T h e calculations for th e O E m eth od were p erform ed

b y using th e M oC aV a software ( B oh lin ( 2001) ) ,

wh ich runs under M atlab . S om e of th e results and

discussions are also dem onstrated in K ristensen et al.
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(2004). T h e r e s u l t s s h o w t h a t t h e P E e s t i m a t i o n

m e t h o d g i v e s s i g n i fi c a n t l y l e s s b i a s e d e s t i m a t e o f t h e

p a r a m e t e r s t h a n t h e O E m e t h o d . F o r s i m u l a t i o n s w i t h

n o s y s t e m n o i s e t h e m e t h o d s w e r e s i m i l a r , b u t t h e

m o r e n o i s e t h e g r e a t e r i s t h e d i f f e r e n c e b e t w e e n t h e

t w o m e t h o d s r e s u l t i n g i n l a r g e r b i a s f o r t h e O E

m e t h o d . M o r e o v e r , t h e P E e s t i m a t i o n m e t h o d

p r o v i d e s u n c e r t a i n t y i n f o r m a t i o n i n t e r m s o f s t a n d a r d

d e v i a t i o n s o f t h e e s t i m a t e s a n d o t h e r s t a t i s t i c a l t o o l s

f o r m o d e l e v a l u a t i o n . T h e r e f o r e , f o r t h e p u r p o s e o f

s h o r t - t e r m p r e d i c t i o n s u c h a s i n fl o o d w a r n i n g

s y s t e m s i t i s t r u l y r e c o m m e n d e d t o u s e t h e P E m e t h o d

e v e n t h o u g h t h e m e t h o d i s m o r e c o m p u t a t i o n a l

d e m a n d i n g . O n c e t h e p a r a m e t e r s a r e e s t i m a t e d t h e

o u t p u t p r e d i c t i o n i s n o t t i m e c o n s u m i n g . O n l y i f t h e

m o d e l f o c u s o n g o o d l o n g - t e r m p r e d i c t i o n c a p a b i l i -

t i e s , t h e O E m e t h o d i s t o b e p r e f e r r e d K r i s t e n s e n e t a l .

(2004). I t m u s t , h o w e v e r , b e k e p t i n m i n d t h a t t h e

i n p u t , i .e . p r e c i p i t a t i o n a n d t e m p e r a t u r e a r e a l w a y s

n e e d e d a s i n p u t a n d l o n g - t e r m p r e d i c t i o n f o r

p r e c i p i t a t i o n a n d t e m p e r a t u r e v a r i a b l e s a r e n o t

p a r t i c u l a r l y p r e c i s e a n d f o r t h a t r e a s o n l o n g - t e r m

p r e d i c t i o n m i g h t n o t b e s o r e l i a b l e . L a s t , b u t n o n e t h e

l e a s t , i n a s t a t e s p a c e f o r m u l a t i o n i t i s e a s y t o h a n d l e

m i s s i n g v a l u e s i n o b s e r v a t i o n s a u t o m a t i c a l l y , a n d t h i s

p r e v e n t s t h e u s e r f r o m h a v i n g t o r e s o r t o t h e r m o d e l s

(e .g . b l a c k b o x m o d e l s ) t o fi l l i n g a p s i n t h e d a t a .

I t i s w o r t h m e n t i o n i n g t h a t R a j a r a m a n d G e o r g a -

k a k o s (19 8 9 ) p r e s e n t e d a p a r a m e t e r e s t i m a t i o n o f

s t o c h a s t i c h y d r o l o g i c m o d e l s f o r m u l a t e d i n a c o n -

t i n u o u s - d i s c r e t e s t a t e s p a c e f o r m , w i t h t h e p a r a m e t e r s

e s t i m a t e d i n a b a t c h f o r m . T h e i r m e t h o d m a i n l y

d i f f e r s f r o m t h e o n e p r e s e n t e d h e r e i n t w o w a y s .

F i r s t l y , t h e fi l t e r i n g , o r t h e s t a t e p r e d i c t i o n i s

c a l c u l a t e d b y a f o u r t h o r d e r p r e d i c t o r – c o r r e c t o r

s c h e m e , w h i l e h e r e a B D F m e t h o d i s u s e d . S e c o n d l y ,

a n d p r o b a b l y t h e m o s t i m p o r t a n t d i f f e r e n c e , i n

t h e m e t h o d o l o g y p r e s e n t e d h e r e t h e s y s t e m e r r o r ,

s(ut,t,q)d ut i s e s t i m a t e d . C o n v e r s e l y i n t h e m e t h o d -

o l o g y p r e s e n t e d b y R a j a r a m a n d G e o r g a k a k o s (19 8 9 ),

t h e e s t i m a t i o n o f t h e s t a t e e r r o r s(ut,t,q)d ut d e m a n d s a

h u m a n i n p u t . I n R a j a r a m a n d G e o r g a k a k o s (19 8 9 ) t h e

s t a t e e r r o r s(ut,t,q)d ut i s d e c o m p o s e d i n t o t h r e e e r r o r

t e r m s ; e r r o r t e r m f r o m i n p u t , e r r o r t e r m a s s o c i a t e d

w i t h e s t i m a t i o n o f u n c e r t a i n c o n s t a n t s (s u c h a s

t o p o g r a p h i c o r r a t i n g c u r v e c o n s t a n t s ) a n d e r r o r

t e r m i n m o d e l s t r u c t u r e . O n l y t h e l a s t t e r m i s

e s t i m a t e d , t h e t w o fi r s t m u s t b e s e t a s a d e g r e e o f

b e l i e v e b y t h e t r a i n e d h y d r o l o g i s t s i f t h e y a r e n o t

e x a c t l y k n o w n , R a j a r a m a n d G e o r g a k a k o s (19 8 9 ).

6. Results

T h e s t o c h a s t i c m o d e l i n E q . (4)– (8 ) i s u s e d t o

i n v e s t i g a t e h o w t h e p a r a m e t e r e s t i m a t i o n m e t h o d

p e r f o r m s f o r t h e h y d r o l o g i c a l p r o b l e m d e s c r i b e d i n

S e c t i o n 2. T h e p a r a m e t e r s a r e e s t i m a t e d b y u s i n g t h e

fi r s t 6 y e a r s o f t h e d a t a w h i l e t h e l a s t t w o y e a r s a r e u s e d

f o r v a l i d a t i o n . F o r a c o m p a r i s o n b e t w e e n t h e P E a n d

O E m e t h o d t h e o p t i m i z a t i o n w a s p e r f o r m e d u s i n g b o t h

m e t h o d s . F i r s t i n a P E s e t t i n g b y e s t i m a t i n g al l t h e

p a r a m e t e r s , i n c l u d i n g t h e s y s t e m n o i s e , a n d t h e n i n a n

O E s e t t i n g s b y fi x i n g t h e s y s t e m n o i s e t e r m p a r a m e t e r s

t o a s m a l l v a l u e . T h e f o r m e r p a r a m e t e r v a l u e s a r e

o p t i m a l f o r p r e d i c t i o n a n d t h e l a t t e r f o r s i m u l a t i o n s .

T h e e s t i m a t e d p a r a m e t e r v a l u e s a r e s h o w n i n T a b l e 1.

T h e u n i t s f o r t h e s n o w c o n t a i n e r N a n d t h e u p p e r

a n d l o w e r r e s e r v o i r s S1 a n d S2 a r e g i v e n i n m e t e r s .

T h e t o t a l v o l u m e i s c a l c u l a t e d b y m u l t i p l y i n g w i t h t h e

w a t e r s h e d a r e a . F i g . 4 i l l u s t r a t e s t h e r e s u l t s f r o m t h e

P E m e t h o d a n d F i g . 5 i l l u s t r a t e s t h e r e s u l t s f r o m t h e

O E m e t h o d .

N o t e f r o m F i g . 5 , t h a t t h e O E f o r m u l a t i o n p r o d u c e s

t h e s a m e p r e d i c t i o n a n d s i m u l a t i o n a n d h e n c e t h e

c o e f fi c i e n t o f d e t e r m i n a t i o n (N a s h a n d S u t c l i f f e ,

19 7 0), i s t h e s a m e , R2
Z0.6 9 , i n b o t h c a s e s .

C o n v e r s e l y , t h e P E m e t h o d p r o d u c e s v e r y

d i f f e r e n t r e s u l t s f o r p r e d i c t i o n a n d s i m u l a t i o n w i t h

c o e f fi c i e n t s o f d e t e r m i n a t i o n a s R2
p r e d i c t i o n Z0: 9 3 a n d

R2
s i m u l a t i o n Z0:43 , r e s p e c t i v e l y . F u r t h e r m o r e , i t i s

i n t e r e s t i n g t o c o m p a r e s o m e o f t h e e s t i m a t e d

p a r a m e t e r v a l u e s y i e l d e d b y t h e t w o d i f f e r e n t

e s t i m a t i o n t e c h n i q u e s . T h e p r e c i p i t a t i o n c o r r e c t i o n

f a c t o r c, t h e t h r e s h o l d p a r a m e t e r b0 (f o r s n o w / r a i n )

a n d t h e p o s i t i v e d e g r e e - d a y c o n s t a n t p d d a r e m u c h

l a r g e r f o r t h e O E e s t i m a t i o n t h a n f o r P E e s t i m a t i o n ;

t h e d i f f e r e n c e b e i n g a l m o s t f a c t o r 2. T h e r o u t i n g

c o n s t a n t s k1 a n d k2 a r e , h o w e v e r , s m a l l e r i n t h e O E

e s t i m a t i o n , w h e r e a s t h e fi l t r a t i o n f i s s i m i l a r . N o t e a l s o

t h a t t h e P E m e t h o d e s t i m a t e s s o m e m e m o r y i n t h e

t e m p e r a t u r e , i .e . aZ1.47 5 w h i l e t h e O E e s t i m a t e s n o

m e m o r y i n t h e t e m p e r a t u r e i .e . aZ4.9 3 9 . F i n a l l y , t h e

t o t a l n o i s e i s i n c o r p o r a t e d i n t h e m e a s u r e m e n t n o i s e i n

t h e O E s e t t i n g s , r e s u l t i n g i n l a r g e r p r e d i c t i o n e r r o r
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and hence, the confidence band around the prediction

is l arg er than in the P E s etting s .

I n the f ol l ow ing the res ul ts f rom the P E es tim ation

w il l be dis cus s ed. T he routing cons tants k1 and k2, and

the fil tration f are m eas ured in the unit 1/ day , i. e. 24 h.

F or hourl y v al ues the cons tants can be m ul tipl ied by

1/ 24 . T he routing cons tants are rather s m al l but

bearing in m ind that the s iz e of the w aters hed is

F ig . 4 . T he res ul ts f rom P E es tim ation. T he v al idation period f rom 1s t of S eptem ber 19 82 to 3 1s t of A ug us t 19 84 . T he fig ure s how s the riv er

dis charg e the one s tep prediction and the s im ul ation. T he tem perature s how n is the l ow pas s fil tered air tem perature.

T abl e 1

E s tim ation res ul ts and com paris on of the P E and O E m ethod

P E m ethod O E m ethod U nit

P ar. E s tim ate S td. dev . E s tim ate S td. dev .

N0 0. 000 0. 000 m

S0 0. 0009 9 0. 00020 0. 00010 3 !10K7
m

S1 0. 0003 7 0. 00022 0. 00016 5 !10K7 m

Ts0 3 . 000 3 . 000 8C

b0 4 . 5 11 0. 012 8. 13 1 0. 073 8C

b1 1. 000 1. 000

M 1. 000 1. 000

B 100 100

K 200 200

c 1. 5 18 0. 00075 2. 788 0. 05 4

pdd 0. 003 4 2 9 !10- 7 0. 005 85 6!10K6 m / 8C day

F 0. 03 1 0. 00065 0. 04 9 0. 002 1/ day

k1 0. 674 0. 05 704 0. 216 0. 010 1/ day

k2 0. 09 7 0. 004 24 0. 04 9 0. 070 1/ day

A 1. 4 75 0. 014 11 4 . 9 3 9 0. 023

sT s 10- 8 10K8
8C

sN 0. 0074 0. 00012 1!10- 6 m

sS1
0. 0011 0. 0004 2 1!10K6 m

sS2
0. 0008 0. 00002 1!10- 6 m

K 0. 0019 8 0. 00005 0. 00175 0. 00003 m / day

s1 2. 2!10K10 7. 6!10K12 1. 4 !10K6 5 . 0!10K8 m / day

R2
pred:

0. 9 3 0. 69

R2
s im :

0. 4 3 0. 69
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1132 km2, t h e s e s ma l l c o n s t a n t s a r e r e a l i s t i c . T h e

u p p e r r o u t i n g c o n s t a n t i s 0.6 7 4 / d a y a n d t h u s t h e

c o r r e s p o n d i n g t i me c o n s t a n t s i s a b o u t 1 a n d a h a l f

d a y , w h e r e a s , t h e l o w e r r o u t i n g c o n s t a n t i s 0.09 7 / d a y ,

a n d h e n c e t h e t i me c o n s t a n t i s a b o u t 10 a n d a h a l f d a y .

T h e fi l t r a t i o n c o n s t a n t i s 0.031/ d a y a n d t h e c o r r e -

s p o n d i n g t i me c o n s t a n t a b o u t 32 d a y s . C o n s e q u e n t l y

mo s t o f t h e s p r i n g fl o o d i s d e l i v e r e d t h r o u g h t h e r i v e r

v i a t h e fi r s t r e s e r v o i r . T h e t h r e s h o l d f u n c t i o n E q . ( 1)

f o r d i v i d i n g p r e c i p i t a t i o n i n t o s n o w a n d r a i n i s t h e

s a me a s t h e t h r e s h o l d f u n c t i o n f o r me l t i n g s n o w . T h e

p a r a me t e r b1 c o n t r o l s t h e s t e e p n e s s a n d h a s b e e n s e t t o

o n e , a n d t h e p a r a me t e r b0 c o n t r o l s t h e c e n t e r a n d i s

e s t i ma t e d t o 4 .5 0 8C . T h u s , t h e t h r e s h o l d f u n c t i o n i s

a b o u t z e r o w h e n t h e t e mp e r a t u r e i s 0 8 C a n d t h e n n o

s n o w i s me l t i n g a n d a l l p r e c i p i t a t i o n i s s o l i d . W h e n

t h e t e mp e r a t u r e i s a b o u t 9 8 C s n o w i s me l t i n g

e v e r y w h e r e a n d a l l p r e c i p i t a t i o n i s r a i n . I n b e t w e e n

s o me p r e c i p i t a t i o n i s s n o w a n d s o me a s r a i n , a n d a

p r o p o r t i o n o f t h e s n o w i s me l t i n g ( i f t h e r e i s s n o w i n

t h e s n o w - c o n t a i n e r ) . R e c a l l t h a t t h e w a t e r s h e d i s

1132 km2 w i t h a n a l t i t u d e r a n g i n g f r o m 4 4 t o 108 4 m

a n d t h e me t e o r o l o g i c a l o b s e r v a t o r y i s l o c a t e d a b o u t

20 km f r o m t h e w a t e r s h e d o u t l e t a t a n a l t i t u d e a b o u t

15 0 m. T h e c e n t e r o f ma s s o f t h e w a t e r s h e d s a l t i t u d e

i s a b o u t 8 30 m a n d , i f i t i s a s s u me d t h a t t h e

t e mp e r a t u r e i n a l t i t u d e 8 30 m i s z e r o w h e n t h e

t e mp e r a t u r e i s 4 .5 8C a t t h e o b s e r v a t o r y , i t l e a d s t o

a t e mp e r a t u r e l a p s e r a t e o f 4 .5 / 6 .8 Z0.6 6 8 C / 100 m,

w h i c h i s p h y s i c a l l y r e a l i s t i c . H e n c e , t h i s s mo o t h

t h r e s h o l d f u n c t i o n h a s t h e e f f e c t t h a t i t i s n o t

n e c e s s a r y t o d i v i d e t h e a r e a i n t o e l e v a t i o n z o n e s .

T h e p r e c i p i t a t i o n c o r r e c t i o n c o n s t a n t c i s e s t i ma t e d

a s 1.5 . T h i s c o r r e c t i o n i s b o t h c o r r e c t i n g t h e u n d e r -

e s t i ma t e o f t h e r a i n g a u g e a n d t h e a v e r a g e i n c r e a s e i n

p r e c i p i t a t i o n d u e t o a l t i t u d e . T h e f a c t o r c c o n t r o l s t h e

i n p u t - o u t p u t b a l a n c e o f t h e mo d e l . A w a t e r b a l a n c e

mo d e l w i t h g r o u n d w a t e r c o n t a i n e r a n d e v a p o t r a n -

s p i r a t i o n w o u l d h a v e h a d a mu c h l a r g e r c o r r e c t i o n

c o n s t a n t . H o w e v e r , i t s h o u l d b e me n t i o n e d t h a t i t i s

n o t p o s s i b l e t o i d e n t i f y ( e s t i ma t e ) b o t h t h e c o r r e c t i o n

c o n s t a n t a n d e v a p o t r a n s p i r a t i o n g i v e n o n l y me a s u r e -

me n t o f t h e p r e c i p i t a t i o n a n d d i s c h a r g e . F i n a l l y , F i g . 6

s h o w s t h e s t a t e e s t i ma t e s o f t h e c o n t e n t s o f t h e s n o w -

c o n t a i n e r , N, a n d t h e u p p e r a n d l o w e r s u r f a c e

c o n t a i n e r s S1 a n d S2 a s p r e d i c t e d b y t h e mo d e l u s i n g

t h e P E p a r a me t e r s .

T h e u n i t i s me t e r a n d t h e t o t a l v o l u me i s c a l c u l a t e d

b y mu l t i p l y i n g w i t h t h e w a t e r s h e d a r e a , 1132 km2.

T h e e s t i ma t e d n o i s e t e r ms sN, sS1 a n d sS2 h a v e a o r d e r

o f ma g n i t u d e 10K3 a n d t h u s t h e n o i s e t e r ms mo r e o r

l e s s o n l y h a v e a n e f f e c t w h e n t h e s t a t e s a r e a r o u n d

z e r o , w i t h t h e c o n s e q u e n c e t h a t t h e s t a t e s mi g h t

b e c o me s l i g h t l y n e g a t i v e . T h i s h a s n o t l e a d t o

p r o b l e ms i n t h i s c a s e . T h e p r o b l e m mi g h t b e s o l v e d

b y t r a n s f o r mi n g t h e mo d e l u s i n g t h e l o g a r i t h m.

F i g . 5 . T h e r e s u l t s f r o m O E e s t i ma t i o n . T h e fi g u r e s h o w s r i v e r d i s c h a r g e , t h e o n e s t e p p r e d i c t i o n a n d t h e s i mu l a t i o n . T h e v a l i d a t i o n d a t a a r e

f r o m 1s t o f S e p t e mb e r 19 8 2 t o 31s t o f A u g u s t 19 8 4 .
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As a flood forecasting model it is concluded that this

simp le model is satisfactory . U sing the simp le model

mak es it p ossib le to estimate all the p arameters, thus

allow ing the data to b e used for an automatic

calib ration. T he op timiz ation, using 6 y ears of data,

tak es sev eral hours on a P C comp uter b ut as

mentioned earlier, once the p arameters are estimated

the up date of the K alman fi lter and the p rediction are

not comp utational demanding. C T S M can b e run on a

p arallel comp uter using sev eral C P U s and then the

comp uter time w ill b e much low er.

F or the p urp ose of flood forecasting the most

interesting dev elop ment of the model w ould b e to

include some of the p arameters in the state v ector and

thus allow for time v ary ing p arameters. P articularly

since the p arameters hav e b een estimated, these

estimates could act as good initial states for the time

v ary ing p arameters. T his could p articularly b e done

for the b ase flow constant.

F inally , it is interesting to p oint out some rev isions,

w hich might imp rov e the p erformance of simulation

using an O E estimation. T he large threshold temp era-

ture b0Z 8 . 1 8 C indicates that it might b e necessary to

div ide the area into tw o elev ation z ones, still using

smooth threshold functions b ut w ith different centers.

T he former sp ring flood is much higher and narrow er

than the latter and such a narrow flood is diffi cult to

p roduce. I t might b e necessary to hav e three surface

containers and thus three time constants for the flow . I t

w ould also b e interesting to let the p dd constant v ary in

time. R ango and M artinec ( 1 9 9 5 ) state that the p ositiv e

degree day factor should gradually increase during the

melting season and this could certainly b e introduced

in the P E settings as w ell. A time v ary ing p dd might

though hav e larger differences in cases w here the

melting season is longer such as for glacier riv ers.

7. Conclusions

All p recip itation runoff models are ap p rox imations

of the reality and hence they cannot b e ex p ected

to p rov ide a p erfect fi t to data. T he p rocess is highly

non- stationary and the dy namics related to the

snow is ex tremely non- linear. F urthermore,

the dev iations b etw een the model p rediction and the

F ig. 6 . S tate estimates of the contents of the snow container and the up p er and low er surface containers.
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data (the residuals) are almost always serially

c orrelated. T his c alls f or a stoc hastic model with

b oth system n oise an d measuremen t n oise.

I n this p ap er a simp le c on c ep tual stoc hastic

rain f all- run of f model is sug g ested. A method f or

estimation of the p arameters of the model is outlin ed.

T he estimation method is a g en eric max imum

lik elihood method f or p arameter estimation in

systems desc rib ed b y c on tin uous- disc rete time state

sp ac e models, where the system eq uation c on sists of

stoc hastic dif f eren tial eq uation s. H en c e, the dyn amic s

are desc rib ed in c on tin uous time, whic h allows f or a

direc t use of p rior p hysic al k n owledg e, an d the

estimated p arameters c an b e p hysic ally in terp reted

direc tly.

A f urther adv an tag e of the stoc hastic state sp ac e

ap p roac h is that the same model struc ture c an b e used

f or b oth p redic tion an d simulation . I t is adv oc ated that

the on ly dif f eren c e lies in a dif f eren t p arameteriz ation

of the system error leadin g to dif f eren t p arameter

v alues.

T he p resen ted model is simp le an d deman ds

on ly two in p ut v ariab les, n amely p rec ip itation an d

temp erature, an d a sin g le outp ut, the disc harg e.

T he results f or simulation are reason ab le b ut n ot

f ully satisf yin g an d it is c on c luded that a slig htly

more c omp lic ated model is n eeded ev en thoug h it

is q uestion ab le whether it is p ossib le to ob tain a

b etter p erf orman c e due to the p oor p rec ip itation

data as in this study. H owev er, the results

ob tain ed f or p redic tion (fl ood f orec astin g ) are

satisf yin g .
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Assessment of serious water shortage in the Icelandic
water resource sy stem

H . J onsdottir a, * , J . E liasson b, H . M adsen a
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b Department of C iv il and E nv ironmental E ngineering, Univ ersity of Iceland, H j arðarhaga 2-6 , 107 R eykj av ik, Iceland

Abstract

W ater resources are economically imp ortant and env ironmentally ex tremely v ulnerable. T he electrical p ower sy stem in Iceland is
hy drop ower based and due to the country �s isolation, p ower imp ort is not an op tion as elsewhere in E urop e. In the hy drop ower
sy stem, a water shortage is met by fl ow augmentation from reserv oirs. T he management of these reserv oirs are a human interv ention
in a natural fl ow and therefore necessarily limited by env ironmental regulations. D uring a heav y drought, the av ailable water stor-
age in the reserv oir may not be suffi cient to cater for the demand and conseq uently there will be a shortage of electrical p ower. T his
is p olitically accep table as long as it only touches heav y industries but not p ower deliv eries to the common mark et. E mp ty or near
emp ty reserv oirs cause p ower shortage that will be felt by homeowners and businesses, until sp ring thaw sets in and infl ow to the
reserv oirs begins. If such a p ower shortage ev ent occurs, it will cause heav y social p roblems and a p olitical decision mak ing will
follow. It is commonly agreed, that management methods leading to such a disastrous ev ent as a general p ower shortage in the
whole country , are not accep table. It is therefore v ery imp ortant to hav e mathematical tools to estimate the risk of water shortage
in the sy stem when searching for the best management method. In v iew of the fact that the subj ect is to estimate the risk of ev ents
that hav e to be v ery rare, i. e. with large recurrence time, stochastic simulation is used to p roduce sy nthetically run- off records with
adeq uate length, in order to estimate v ery rare droughts. T he method chosen is to mak e the run- off series stationary in the mean and
the v ariance and simulating the resulting stationary p rocess. W hen this method is chosen, future trends in the run- off from climate
change and glacier reduction can easily be incorp orated in the model. T he p robabilities of ex treme droughts are calculated and their
freq uencies are comp ared to theoretical distributions.
� 2005 Elsevier Ltd. All rights reserved.

Keyw ords: D roughts; S tochastic simulation; H y drop ower p lant

1 . I n tro d u cti o n

C omp uter simulations hav e been used to analy z e the
cap acity of the Icelandic p ower sy stem since about 1 9 7 0 .
T he simulation sy stem has steadily been up graded and
ex tended to meet the v arious req uirements for sp ecifi ed
information on risk s and cap acity fi gures. H owev er,
simulations with stochastic fl ow models hav e not been
much used so far, ex cep t for a few attemp ts in the y ears

1 9 7 0 – 1 9 9 0 . O ne of the main q uestions is the risk of emp -
ty ing the main reserv oir and the magnitude of the fol-
lowing drought. S uch a drought will inev itably cause a
maj or p ower shortage. If this p ower shortage is long en-
ough ( more than a few day s) it will cause serious social
and economic p roblems such as degradation of food
stock s in cold storage, op erational failure of large dis-
trict heating sy stems and immense diffi culty in commu-
nication and telecommunication.

S tochastic methods hav e been k nown in hy draulic
design for q uite some time, e. g. , P late ( 1 9 9 2 ) but they
are still not ex tensiv ely used in risk assessment. O ne
of the maj or q uestions in the simulation analy sis of
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the Icelandic power system is the performance of the res-

erv oirs and the mag nitu de and the energ y shortag e if

they ru n dry (J ohannsson and E liasson, 2 002 , 2 003 ) .

T he method of u sing all av ailab le fl ow series in order

to desig n a reserv oir larg e enou g h to su stain a prede-

fi ned fl ow ou tpu t is well k nown in hydrau lic eng ineering .

T he non-compu teriz ed g raphical v ersion can b e seen

e.g ., in L insley and F ranz ini (19 6 4 ) . T his method is still

larg ely u sed b y eng ineers in reserv oir capacity planning ,

b u t the method cannot predict the risk of water short-

ag e. It is howev er, ev ident that the long er the infl ow ser-

ies is, the more reliab le is the resu lting v olu me capacity,

b u t there is no way of presenting this k nowledg e in an

ex plicit form. H owev er simu lation with stochastic fl ow

models can prov ide that. T o demonstrate this principle

we hav e selected a reserv oir in the riv er T u ng naá in Ice-

land, orig inally proposed in 19 6 0 b u t not yet b u ilt.

2. Regulated flow and volume of reservoir

T he maj or decision of a hydropower constru ction is

how mu ch power is to b e produ ced. T he power pro-

du ced is linearly dependent on the fl ow. T o su pply the

power net a fl ow is needed that is v ery constant com-

pared to the natu ral fl ow; this constant ou tfl ow is k nown

as the reg u lated fl ow. T hese decisions are made on a

b asis of discharg e time series. F ig s. 1 and 2 show the

discharg e in the riv er T u ng naá.

A diag ram of a simple hydropower plant with one

reserv oir is shown in F ig . 3 . S u ch a model is u sed b y

the N ational P ower C ompany of Iceland in order to cal-

cu late water v alu es in their system simu lation stu dies

(J ohannsson and E liasson, 2 002 ) .

It is clear that the max imu m reg u lated fl ow is the

av erag e fl ow Qmean of the whole series, shown in

F ig . 1, and then no fl ow is b ypassed at any point in time.

T he reserv oir is hig h u p in the mou ntains. Its pu rpose

is fl ow au g mentation for a series of power stations, at

lower elev ations, downstream in the riv er b asin. T he

water lev el in the reserv oir does not aff ect the power

capacity of any of these stations. In the following anal-

ysis it will b e assu med for the sak e of simplicity, that

Qreg is constant in time which implies that P is constant

and the ou tfl ow from the power station is constant and

eq u al to Qreg . In practice Qreg will b e somewhat larg er in

wintertime than in su mmertime; this will increase the

storag e v olu me req u irement somewhat, so the V v alu es

discu ssed in this article can b e reg arded as minimu m

v alu es.

In g eneral the water b alance is calcu lated as the total

infl ow minu s the total reg u lated fl ow at any g iv en time

step i.e.

B alanceðiÞ ¼

Z i

0

QðsÞds� i � Qreg . ð1Þ

F ig . 4 shows the water b alance for the data in F ig . 1 with

reg u lated fl ow as the av erag e fl ow, i.e. Qreg = Qmean. T he

water b alance means the b alance b etween total infl ow

and total ou tfl ow. T he only ev aporation and rainfall

to b e considered is on the reserv oirs su rface itself and

that water amou nt is neg lig ib le.

A s mentioned the larg est possib le fl ow which can b e

reg u lated is the av erag e fl ow Qmean. D efi ne Vmax as the

smallest reserv oir which can serv e the max imu m reg u -

lated fl ow, Qmean. C onsidering the time series of

the water b alance, B alance(i ) , defi ned b y E q . (1) and

shown in F ig . 4 , it is clear that the v olu me Vmax =
F ig . 1. N atu ral fl ow in the riv er T u ng naá S eptemb er 1st 19 5 1– A u g u st

3 1st 2 001 (N at. E nerg y A u thority of Iceland) .

F ig . 2 . N atu ral fl ow in the riv er T u ng naá S eptemb er 1st 19 8 1– A u g u st

3 1st 19 8 5 (N at. E nerg y A u thority of Iceland) .

F ig . 3 . S chematic drawing of reserv oir (V ) , and power station (P ) .
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max[Balance(i)] � mi n[Balance(i)] . Th i s v o lu me s er v es
t h e p u r p o s e o f s ecu r i ng z er o b y p as s and t h u s mai nt ai ns
t h e av er ag e fl o w as r eg u lat ed fl o w , i .e. Qmean = Q r eg . I n
g ener al f o r a g i v en r eg u lat ed fl o w Q r eg t h er e i s a co r r e-
s p o nd i ng v o lu me V w h i ch i s t h e s malles t r es er v o i r v o l-
u me t h at can s ecu r e Q r eg w i t h o u t any w at er s h o r t ag e
o ccu r r i ng acco r d i ng t o t h e fl o w s er i es i n F i g . 1. I n o t h er
w o r d s , f o r a g i v en V, Q r eg can b e calcu lat ed as t h e max-
i mu m r eg u lat ed fl o w s u ch t h at no w at er s h o r t ag e o ccu r s .
F i g . 5 s h o w s t h i s cu r v e f o r t h e Tu ng naá d at a i n F i g . 1,
no t e t h e p o i nt (Qmean,Vmax) = (8 0.7 m3 / s , 219 2.8 ·

106 m3).
Th e cu r v e (Q r eg ,V) i s co mp let ely b as ed o n t h e t i me

s er i es f o r Q and f r o m a d et er mi ni s t i c p o i nt o f v i ew t h e
r i s k o f w at er s h o r t ag e i s z er o , w h en u s i ng a p o i nt
(Q r eg ,V) f r o m t h e cu r v e. I n o r d er t o es t i mat e t h e r i s k
o f w at er s h o r t ag e a s t o ch as t i c mo d el i s r eq u i r ed t o p er -
f o r m s i mu lat i o n s t u d i es .

3. Stochastic model

Th e mo d el ch o s en i s a s t o ch as t i c p er i o d i c mo d el as
s u g g es t ed b y Y ev j ev i ch (19 7 6). Th e leng t h o f t h e p er i o d
i s d eno t ed as T and nu mb er o f p er i o d s i s d eno t ed as n.
L et Q d eno t e t h e mat r i x o f d i s ch ar g e d at a

Q ¼

Qð1; 1Þ � � � Qð1; T Þ

.

.

.
.
.

.
.
.
.

Qðn; 1Þ � � � Qðn; T Þ

0
BB@

1
CCA.

D efi ne P(t) as a p er i o d i c mean, and S(t) as a p er i o d i c
s t and ar d d ev i at i o n. P(t) i s es t i mat ed as

P ðtÞ ¼
1

n

Xn

j¼1

Qðj; tÞ t ¼ 1; . . . ; T ð2Þ

and s i mi lar ly S(t) i s es t i mat ed as

SðtÞ ¼

ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi
1

n� 1

Xn

j¼1

Qðj; tÞ � P ðtÞð Þ2

vuut . ð3Þ

Th e s t and ar d i z ed r es i d u als ar e calcu lat ed as

Y ðj; tÞ ¼
Qðj; tÞ � P ðtÞ

SðtÞ
j ¼ 1; . . . ; n and

t ¼ 1; . . . ; T . ð4Þ

Th e mat r i x o f s t and ar d i z ed r es i d u als i s r eo r g ani z ed as a
r o w v ect o r b y Y v ect = Y(1,1), . . .,Y(n, 1),Y(2,1), . . . ,
Y(2,n), . . .,Y(T,n) and fi t t ed t o a s eas o nal A R mo d el
/(B)U(BT)Y(i) = e(i), i = 1, . . .,T Æ n. Th e o p er at o r / i s
a p o ly no mi al o f d eg r ee p i n t h e b ack w ar d s h i f t o p er at o r
B, i .e. /(B)Y(i) = (1 � a1B � � � � � apB

p)Y(i) = Y(i) �
a1Y(i � 1) � � � � � ap Y(i � p). S i mi lar ly t h e o p er at o r U

i s a p o ly no mi al o f d eg r ee p i n t h e s eas o nal b ack w ar d
s h i f t o p er at o r BT, t h u s r ep r es ent i ng t h e s eas o nal co mp o -
nent o f t h e A R mo d el, i f need ed . Th en t h e s t o ch as t i c
p er i o d i c mo d el (Y ev j ev i ch , 19 7 6) i s w r i t t en as

~QðtÞ ¼ P ðtÞ þ SðtÞ~Y ðtÞ t ¼ 1; . . . ; T

uðBÞUðBTÞ~Y ðtÞ ¼ eðtÞ eðtÞ � Nð0; r2Þ
ð5Þ

w h er e ~Y ðtÞ i s s i mu lat ed b y u s i ng t h e s eas o nal A R mo d el
as i n E q . (5) and ~QðtÞ i s t h e p er i o d i c d i s ch ar g e, s i mu lat ed
b y u s i ng t h e ~Y ðtÞ.

I n t h i s p r o j ect a s amp li ng t i me o f o ne w eek i s ch o s en.
Th e d ai ly d i s ch ar g e d at a ar e lo w p as s fi lt er ed w i t h a s e-
v en d ay av er ag e i n o r d er t o d ecr eas e t h e v ar i ance o f t h e
d at a, b u t y et t h e w eek ly s amp li ng t i me i s s mall eno u g h
f o r d eci s i o n mak i ng . Th u s t h e leng t h o f t h e p er i o d i s
52 t i me s t ep s , and t h e d at a av ai lab le s p an 49 s eas o nal
p er i o d s .

To ens u r e t h at p h y s i cal law s ar e co ns er v ed , s u ch as
no nneg at i v e fl o w i t w as ch o s en t o t r ans f o r m t h e d at a
b y u s i ng t h e lo g ar i t h m b as e (lo g e) o f t h e d at a. F o r t h e
t r ans f o r med d at a t h e ap p r o p r i at e mo d el w as f o u nd i .e.

eQlo g ðtÞ ¼ P lo g ðtÞ þ Slo g ðtÞ~Y lo g ðtÞ t ¼ 1; . . . ;T

uðBÞUðBTÞ~Y lo g ðtÞ ¼ eðtÞ eðtÞ � Nð0; r2Þ
ð6Þ

w h er e Plo g (t) and Slo g (t) ar e calcu lat ed f r o m t h e lo g -
t r ans f o r med d at a. A f t er w ar d s t h e r es i d u als Y lo g (t) =
(Qlo g (t) � Plo g (t))/ Slo g (t) ar e mo d elled . Th i s t r ans f o r ma-
t i o n i mp li es t h at t h e r es i d u als i n t h e o r i g i nal mo d el e(t)

F i g . 5. R eg u lat i o n cu r v e f o r t h e Tu ng naá r i v er .

F i g . 4. Th e w at er b alance.
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as defined in Eq. (5 ) ar e l o g no r mal dist r ib u t ed, w h ic h in-
deed h as a p h y sic al meaning . T h e c al c u l at io ns ar e p er -
f o r med in t h e p r o g r am S p l u s and t h e r esu l t is as f o l l o w s:

ð1� 0.62BÞY l o g ðtÞ ¼ eðtÞ eðtÞ � Nð0; 0.06Þ ð7Þ

i.e. an A R (1) mo del w it h o u t a seaso nal c o mp o nent .
F ig . 6 sh o w s t h e c u r v es Pl o g (t) and S l o g (t). N o t e t h e sim-
il ar it y b et w een t h e der iv at iv e o f t h e fl o w (i.e. $Pl o g (t))
and t h e st andar d dev iat io n (i.e. Sl o g (t)).

4. The simulation study

T h e simu l at io n w as p er f o r med u sing t h e t h eo r et ic al
mo del in Eq. (6) w h er e t h e p r o c ess Y l o g (t) is an A R (1)
mo del w it h o u t a seaso nal c o mp o nent as est imat ed in
Eq. (7), t h e r esu l t ing simu l at ed ser ies is deno t ed Qsim(t).
T w o dr o u g h t s ar e defined as indep endent if t h ey eit h er
o c c u r in t w o diff er ent y ear s o r if t h ey o c c u r in t h e same
y ear and t h e r eser v o ir is r efil l ed b et w een t h e t w o
dr o u g h t s, t w o o r mo r e dep endent dr o u g h t s ar e g r o u p ed
t o g et h er in sing l e indep endent dr o u g h t s. T h e w at er
sh o r t ag e is c al c u l at ed as t h e t o t al sh o r t ag e o f w at er
w it h in a sing l e indep endent dr o u g h t . L et X deno t e t h e
t o t al w at er sh o r t ag e w it h in a dr o u g h t , t h en t h e r equ ir ed
p r o b ab il it y is t h e p r o b ab il it y o f a w at er sh o r t ag e l ar g er
t h an x, i.e. P(X P x) w h er e X deno t es t h e r ando m v ar -
iab l e o f w at er sh o r t ag e. S imu l at io ns w er e p er f o r med f o r
sev er al p air s (Q r eg ,V) o n t h e r eg u l at io n c u r v e sh o w n in
F ig . 5 . T h e g o al is t o est imat e p r o b ab il it ies o f ev ent s t h at
ar e v er y r ar e and it w as f o u nd nec essar y t o simu l at e f o r
5 0,000 y ear s in o r der t o ac h iev e a st ab l e est imat e o f t h e
w at er sh o r t ag e p r o b ab il it ies. N o t e t h at t h e simu l at io ns
o f 5 0,000 y ear s do es no t imp l y p r edic t io n 5 0,000 y ear s
int o t h e f u t u r e b u t a st o c h ast ic g ener at io n f o r 5 0,000
y ear s g iv en t h at t h e w eat h er c o ndit io n w il l b e l ik e t h e
p ast 5 0 y ear s w h ic h w er e u sed f o r p ar amet er est imat io n

in t h e st o c h ast ic mo del . H o w ev er , sinc e t h e dev iat io n
ser ies Y(t) is st at io nar y in mean and v ar ianc e, c l imat e
c h ang e p r edic t io ns f o r f u t u r e t r ends in r u no ff ser ies su c h
as g l ac ier mel t c an b e t ak en int o ac c o u nt eit h er as det er -
minist ic o r st o c h ast ic v ar iab l es dep ending o n t h e c l imat e
c h ang e mo del o u t p u t .

N o ne o f t h e simu l at io n r esu l t s inc l u ded ev ent s w it h
t w o indep endent dr o u g h t s w it h in t h e same y ear t h u s
t h e p r o b ab il it ies o f w at er sh o r t ag e is est imat ed as

P ðX P xÞ

¼
N u mb er o f y ear s w it h w at er sh o r t ag e l ar g er o r equ al t h an x

N u mb er o f y ear s in simu l at io n

ð8Þ

T h u s t h er e ar e est imat ed n p r o b ab il it y v al u es p1, . . .,pn,
w h er e n is t h e t o t al nu mb er o f dr o u g h t s w h ic h o c c u r r ed
in t h e simu l at io n and

pj ¼ P ðX P xjÞ ð9Þ

w h er e xj is t h e jt h l ar g est w at er sh o r t ag e, t h u s p1 =
1/ 5 0,000, p2 = 2/ 5 0,000, . . ., pn = n / 5 0,000.

N o t e t h at P(X P x) � P(X > x) = 1 � F(x), w h er e
F(x) is t h e p r o b ab il it y dist r ib u t io n f u nc t io n. T h e p r e-
sent ed r esu l t s ar e f r o m simu l at io ns w h er e t h e r eser v o ir
is 1315 .7 · 106 m3 and r eg u l at ed fl o w is 78.36 m3 / s,
w h ic h is a p o int o n t h e r eg u l at io n c u r v e il l u st r at ed in
F ig . 5 . T h e simu l at io ns w er e r ep eat ed 100 t imes in o r der
t o o b t ain inf o r mat io n ab o u t t h e v ar iat io ns. C o nse-
qu ent l y f o r eac h p r o b ab il it y pj t h er e c o r r esp o nd 100 dif -
f er ent x v al u es x(j, 1),x(j, 2), . . .,x(j, 100), w h ic h y iel ded
t h e est imat e pj = P(XP x(j, i)), i = 1, . . ., 100. T h e c o n-
dit io nal dist r ib u t io n o f t h e r ando m v ar iab l e { x(j, i)jp(j)}
is assu med t o b e a no r mal dist r ib u t io n N(l(j),r2(j)). T h e
mean, l(j), and t h e v ar ianc e r2(j) ar e est imat ed (u sing
100 o b ser v at io ns) w it h t h e max imu m l ik el ih o o d met h o d
and t h e est imat ed mean l̂ðjÞ w il l b e deno t ed as xmean

and t h e p air s (xmean(i),p(i)) w il l b e r ef er r ed t o as t h e sim-
u l at io n r esu l t . T h e g ener al iz ed ex t r eme v al u e dist r ib u -
t io n (G EV ), is fit t ed t o t h e ac c u mu l at ed p r o b ab il it ies
(1 � p). T h e G EV dist r ib u t io n c an b e p ar amet er iz ed as
(R eiss and T h o mas, 1997)

P ðX P xÞ ¼ G EV a;b;nðxÞ

¼ ex p � 1þ n
x� a

b

� ��1
n

" #

. ð10Þ

T h e p ar amet er s ar e est imat ed u sing t h e l east squ ar e
met h o d and t h e r esu l t is sh o w n in T ab l e 1.

F ig . 7 sh o w s t h e (xmean,p), t h e 2.5 % qu ant il e,
(x0.025 ,p), t h e 97.5 % qu ant il e, (x0.975 ,p) and t h e fit t ed
dist r ib u t io n (xmean,pfit ), i.e. 1 � G EV (x).

T h e diff er enc e o f t h e simu l at io n r esu l t and t h e fit t ed
p r o b ab il it ies c an h ar dl y b e det ec t ed, b u t f r o m p r o b ab il -
it ies ar o u nd 0.1% (i.e. r ec u r r enc e t ime 1000 y ear s) t h e
fit t ed dist r ib u t io n c o nv er g es t o z er o f ast er t h en t h e sim-
u l at ed p r o b ab il it ies. T h is c an b et t er b e det ec t ed in a

F ig . 6. T h e p er io dic av er ag e Pl o g (t) and t h e p er io dic st andar d
dev iat io n S l o g (t) o f t h e l o g - t r ansf o r med dat a.
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quantile diagram. There is an interest in the tail of the
distrib ution and c onsequently it w as c hosen to div ide
the data into as many interv als as reasonab le. H enc e,
16 0 interv als w ith equal p rob ab ilities are generated, w ith
the ex p ec ted numb er of ob serv ations in eac h interv al as
5 .4 8 . F ig. 8 show s a quantile diagram for the G E V (x)
distrib ution, w ith (a,b,n) = (� 8 97 .95 , 37 6 .8 6 ,�0.27 4 4 )
and estimated p rob ab ilities from histogram w ith the
16 0 interv als. The c hi- square test statistic s for test of dis-
trib ution using the same interv als is z = 12.0228 , and the

90% quantile is vð15 6 Þ20.9 ¼ 17 9 and it follow s that a
hy p otheses that the w ater shortage is G E V distrib uted
w ith the estimated p arameters as show n in Tab le 1,
(a,b,n) = (� 8 97 .95 , 37 6 .8 6 ,�0.27 4 4 ) is ac c ep ted. H ow -
ev er, it must b e k ep t in mind that the simulations are
nec essary in order to estimate the p arameters.

The shap e p arameter n in the generaliz ed ex treme v a-
lue distrib ution has b een estimated as negativ e, thus the
ex treme v alue distrib ution is identifi ed as the W eib ull
distrib ution (R eiss and Thomas, 1997 ).

The domain the of distrib ution is the interv al
]�1,�b/n + a] = ]�1, 4 7 5 .23]. N ote that ab out 98 %
of the p rob ab ility mass is b elow z ero, i.e. w ith negativ e
x v alues. The mean and the standard dev iation of the
distrib ution are (R eiss and Thomas, 1997 ):

EðxÞ ¼ l ¼ a�
b

n
þ
b

n
Cð1� nÞ ¼ � 7 6 2.96 ð11Þ

V ðxÞ ¼ r2 ¼
�b

n

� �2

Cð1� 2nÞ þ C2ð1� nÞ ¼ 17 91.392

ð12Þ

The W eib ull distrib ution c an b e re- p arameteriz ed w ith
domain ]� 4 7 5 .27 ,1 [ . Then the distrib ution func tion is
refl ec ted ab out the y - ax is and the random v ariab les mul-
tip lied b y �1. H enc e, the distrib ution func tion b ec omes

1� ex p � 1þ n
�x� a

b

� ��1=n
 !

w ith xP�ð�b=nþ aÞ

ð13Þ

setting k = �1/n > 0, b = kb = �b/n and a =
�(a + kb) = �a + b/n this b ec omes

1� ex p �
x� a

b

� � k
� �

w ith x P a ð14 Þ

w hic h is a more c ommonly used p arameteriz ation in
hy drology . U sing this interp retation the random v ari-
ab le is interp reted as the result of the w ater b alanc e
equation

X ðiÞ ¼

Z i

0

QsimðsÞds� i � Qreg ð15 Þ

and w ater shortage w ill oc c ur if X(i) is negativ e. The sto-
c hastic formulation of a w ater shortage, using this inter-
p retation, is a p eak b elow threshold study , w ith
threshold z ero, see e.g. M edov a and K y riac ou (2000).
O n the other hand for p rac tic al p urp oses it is more c on-
v enient to w ork w ith w ater shortages as p ositiv e v ari-
ab les w ith dec reasing p rob ab ilities. (N ote that the
dy namic v ariab le X(t) in E q. (15 ) is an unstab le time ser-
ies i.e. w ith p ole equal to one, sinc e (1 � B)X(t) = u(t)
w ith u(t) = Qsim(t) � Qreg).

U sing the quantile diagram in F ig. 8 , the p rob ab ility
of w ater shortage of 15 5 million m3 is 0.5 % and thus the
rec urrenc e time for a w ater shortage of 15 5 million m3 is

Tab le 1
E stimated p arameters in the G E V distrib ution using the least square
method

a b n

E stimation �8 97 .95 37 6 .8 6 �0.27 4 4

F ig. 7 . The estimated mean v alue of the rep eated simulations,
ap p rox imated 2.5 % and ap p rox imated 97 .5 % quantiles and the fi tted
G E V distrib ution.

F ig. 8 . Q uantile diagram for the data c omp ared to the G E V
distrib ution w ith the p arameter estimate ac c ording to Tab le 1
(a,b,n) = (�8 97 .95 , 37 6 .8 6 ,�0.27 4 4 ).

4 24 H . J o n s d o ttir e t al . / P h ys ic s an d C h e m is tr y o f th e E ar th 3 0 ( 2 0 0 5 ) 4 2 0 – 4 2 5



104

200 years or larger. A water shortage of 155 million m3

means that the p ower station is ou t of op eration for

ab ou t three week s. T here is a 15– 30% p rob ab ility that

a large d rou ght lik e that will oc c u r in the ec onomic al

lifetime of the p roj ec t, whic h is 30– 6 0 years for hyd ro-

p ower stations in I c eland .

5. Conclusions

T he risk of water shortage in a hyd rop ower p lant has

b een estimated throu gh stoc hastic mod eling and simu la-

tions. I n general the av ailab le d ata are u sed for d esign of

a hyd rop ower p lant. T hu s the rec u rrenc e time of

d rou ght is large and therefore a v ery long time series

is need ed in ord er to estimate the d rou ght risk . T he sto-

c hastic simu lations p rod u c e a time series long enou gh

for ac hiev ing an estimate of the p rob ab ility d istrib u tion

fu nc tion of a water shortage. F u rthermore the rep eated

simu lations p rov id e an estimate of u nc ertainty of the

p rob ab ility fu nc tion estimation. T he simu lation stu d y

in this p roj ec t was p erformed for a simp le system with

one hyd rop ower p lant and one reserv oir, b u t u sing the

tools alread y d ev elop ed for p ower system stu d ies in I c e-

land , it is straightforward to ex tend the mod el for more

c omp lic ated systems.

As mentioned the rec u rrenc e time for water shortage

of 155 million m3 is estimated to b e 200 years or larger,

whic h means the p ower station is ou t of op eration for

ab ou t three week s. F or a water p ower station with a life

time of 50 years, there is a p rob ab ility of 25% that water

shortage of this magnitu d e will oc c u r in the ec onomic al

lifetime. O n top of that, there is a great p rob ab ility that

water shortage will oc c u r in other reserv oirs as well d u e

to sp atial c orrelation in I c eland ic ru n- off d ata. A p ower

failu re of this magnitu d e will most lik ely b e c onsid ered

soc ially and p olitic ally u nac c ep tab le with d isastrou s

c onseq u enc es for p ower system management p rac tic es.
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E.1 Introduction

The program CTSM is a software package for parameter estimation for models
formulated as Stochastic Differential Equations.

The original version of the program was developed by Professor PhD Henrik
Madsen in 1985 with the name CTLSM, Continuous Time Linear Stochastic
Modelling. The program was written in Fortran using optimization routine
VA13CD from the HARWELL Subroutine Library. The optimization routine is
a quasi Newton method, using finite difference approximation to the gradient.
The Hessian is updated by the BFGS updating formula. In 1991 there was a
numerical revision created by Henrik Melgaard. In 1993 the first version with
a k-step optimization and k- step predictions were developed and in 1994 the
first version with non-linear routine where build. The routine was based a linear
approximation of the non-linear function and sub-sampling methods using the
extended Kalman filter.

In 2000 Niels Rode Kristensen developed the first general non-linear program,
CTSM (Continuous Time Stochastic Modelling), still using the optimization
routine VA13CD from the HARWELL Subroutine Library. The first graphical
version, programmed in java was developed in 2001. In April 2003 a version
with different filtering routes where developed, this is the first version with an
ODE solver for filtering in non-linear models. The user can choose between
three different filtering routines; The function f() is linearized in sub-sampled
intervals, an ODE solver with Adams method for non-stiff systems and an ODE
solver with BDF for stiff systems (Backward Differentiation formula), see Section
E.2 for an outline of the filtering methods and Appendix F for an introduction
to stiff systems. The latest version came out in December 2003, this version
is the first graphical version which provides a smoothing and k-step prediction
along with one step prediction and pure simulation.

In the following sections some of the numerical methods used in the program are
outlined, a further description is available in the manual (Kristensen et al. 2003).

The task is to find parameters such that the logarithm of the likelihood function,
Eq. (4.12) is minimized. A single value of the likelihood function involves
calculation of one step prediction εt and is variance Rt|t−1, in all the data
points t = 1, . . . N . The optimization procedure might thus be classified into
two numerical tasks:
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• The filtering, i.e., calculation of all the one step prediction. This involves

– Computation of the exponential eAτs . Test for singularity and in case
of singularity, use of singularity routines.

– Numerical integration - ODE solvers

• The optimization

– Calculation of a gradient, which is performed by finite difference ap-
proximations.

– Penalty calculations, since the optimization is a constrained.

E.2 Filtering methods

Calculation of the predictions is referred to as the filtering. In this context it
refers to prediction of the state variable x̂k+1|k. Different filtering routines can
be applied:

• Linear models: The stochastic differential equation is solved analytically
as shown in Eq.(4.14). The numerical task is to compute the exponential
eAτ This might involve eigenvalue problems in case of a singularity. The
program CTSM contains a singularity test routines and special singularity
routines.

• Non-linear models: In this case, three different methods are imple-
mented:

1. Sub-sampling approximations; the time interval [tk, tk+1[ is sub-sampled
into [tk, . . . tj , . . . tk+1[ and the equations are linearized at each sub-
sampling instant.

dx̂t|j

dt
= f(x̂j|j−1,uj , tj ,θ) +A(x̂t − x̂j) +B(ut − uj)

[tkj , tkj+1
[ (E.1)

dP̂ t|j

dt
= AP̂ t|j + P t|jA

T + σσT t ∈ [tkj , tkj+1
[ (E.2)

using same shorthand notation as in Table 4.1. An analytic solu-
tion to the linear differential equation is found in each sub-sampled
interval as for linear models.
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2. Numerical ODE solution using Adams method with predictor-corrector
scheme, for non stiff systems. The principle is as follows (shown for
one dimension in order to keep focus on the method).

The task is to solve initial value problem:

dx

dt
= f(t, x) x(tk) = c (E.3)

The well known Euler method is to divide into subintervals and ap-
proximate the derivative dx

dt with difference quotient (x̃k+1 − x̃k)/h,
where x̃k denotes a numerical approximation to xk and h denotes the
length of the interval. This leads to the difference equation

x̃k+1 − x̃k
h

= f(tk, x̃k) or x̃k+1 = x̃k + hf(t, x̃k). (E.4)

The weakness of the Euler’s method is that the step needs to be small
in order to obtain acceptable accuracy (Burden & Faires 1989). The
Euler’s method is called a one step method because the approxima-
tion t point tk only involves information from one previous point.
Methods using approximations k previous values are called k step
methods or kth order methods. Adams predictor-corrector scheme
is a multi step method. An example of a predictor-corrector scheme
can be a fourth order Adams-Bashford, for predicting x̂4

x̂
(0)
4 = x̂3 +

h

24
[55f(t3, x̂3)− 59f(t2, x̂2) + 37f(t1, x̂1)− 9f(t0, x̂0)]

(E.5)

then the predicted value x̂
(0)
4 is used in a three order Adams-Moulton

formula

x̂
(1)
4 = x̂3 +

h

24
[9f(t4, x̂

(0)
4 )− 19f(t3, x̂3) +−5f(t2, x̂2) + f(t1, x̂1)]

(E.6)
Equations like Eq.(E.6) are known as implicit formulas since x̂4 oc-
curs on both sides. Summarizing; the first equation is used to predict
the value x4 and the predicted value is then used in the latter, im-
plicit formula equation for improving (correcting) the approximation
obtained by the explicit formula Eq.(E.5), a detailed description of
the method can be seen in (Dahlquist & Björck 1988).

3. Numerical ODE solution using the Backward Difference Formula,
There exists several BDF formulas, in (Dahlquist & Björck 1988) it
is formulated as:

hD = −ln(1−∇) = ∇+
1

2
∇2 +

1

3
∇3 + . . .+

1

m
∇m (E.7)
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Linear Model Nonlinear Model

Adams medhod

Solution of a nonliear
zero point equation

1st order Taylor approx.

Filtering methods

BDF

Linear Equation

Subsampling

Solved analytically

Subsampling approx.

Predictor−Corrector
scheme

Figure E.1: Overview of the filtering methods in the program CTSM.

or

hf(xk+1) = ∇xk+1 +
1

2
∇2xk+1 + · · ·+

1

m
∇mxk+1 m ≤ 6 (E.8)

i.e.

0 = −hf(xk+1) +∇xk+1 +
1

2
∇2xk+1 + · · ·+

1

m
∇mxk+1 m ≤ 6

(E.9)
where ∇ is the backward difference operator and D is the differenti-
ation operator. As m increases the local truncation error decreases,
but the stability properties become worse (Dahlquist & Björck 1988).
Hence, the numerical task is to solve a non-linear zero point problem,
often implemented by using ”Newton-like” formulas.

Figure E.1 shows an overview of the filtering methods.

E.3 Optimization routine

The optimization method used in CTSM is a quasi-Newton method based
on the BFGS updating formula and a soft line search algorithm to solve the
non-linear optimization problem Eq.(4.12). In analogy with ordinary Newton-
Rapson methods for optimization, quasi-Newton methods seek a minimum of
the non-linear objective function, the likelihood function − ln(L(θ ;YN )). In
this section this will be denoted by F(θ) i.e., define the short term notation
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F(θ) = − ln(L(θ ;YN )) The minimum is found where the gradient is zero, i.e.,

∇F(θ) = 0. (E.10)

As well as the Newton-Rapson, the quasi-Newton is based on the Taylor expan-
sion of first order of the gradient ∇F(θ).

∇F(θi + δ) = ∇F(θi) +
∂∇F(θ)

∂(θ)

∣∣∣∣
θ=θi

δ + o(θ). (E.11)

the partial derivative in Eq. (E.11) is the Hessian. The gradient is approximated
by finite difference approximation and the Hessian is updated with the BFGS
updating formula, see (Kristensen et al. 2003) for mathematical formulas.

The optimization routine is a routine which finds minima within the limited
area. i.e., not on the boundary. Thus the constrains must be defined such that
the optimum parameter values is in between i.e.,

θmin
j < θj < θmax

j . (E.12)

The traditional way of attacking this task is to to defining a new objective
function F̂(θ) by adding a penalty function P (λ,θ,θmin

j ,θmax
j ) to the objective

function F(θ)

F̂(θ) = F(θ) + P (λ,θ,θmin
j ,θmax

j ). (E.13)

A proper choices of Lagrange multiplier λ, and the limiting values θmin
j and θmin

j

the penalty function has no influence of the estimation. However, the penalty
function will force the finite difference derivative to increase when θj is close to
one of the limits.
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Stiff systems
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F.1 Introduction

When a system consists of more than one first order differential equations the
possibility of stiffens arises. The phenomenon of stiffness is difficult to define
in precise mathematical turns in a satisfactory manner (Lambert 1991). Stiff-
ness has to do with numerical stabilities and step-lengths. A frequently used
statement is:

[S1]: Stiffness occurs when stability requirements, rather than those of accuracy
constrain the step-length.

Another statement is:

[S2]: Stiffness occurs when some components of the solution decay much more
rapidly than others.

Broadly speaking this means that there are different time scales in the system.
A frequently used definition is

[S3]: A linear constant coefficient system is stiff if all of its eigenvalues have
negative real part and the stiffness ratio is large.

The stiffness ratio is defined as λmax/λmin if the eigenvalues are Real (as in this
project). Frequently the ratio λmax/λmin is called the matrix condition number
(Montgomery & Runger 2002). Furthermore, (Montgomery & Runger 2002)
state that if the condition number is less than 100 the system is non-stiff whereas
it stars to show stiffness characteristics when the condition number exceeds 100.

In (Lambert 1991) there is shown that none of these state ments quite cover the
phenomena of stiffness. In (Lambert 1991) the following definition is used

[S4]: If a numerical method with a finite region of absolute stability, applied
to a system with any initial conditions, is forced to use in a certain interval of

integration a step-length which is excessively small in relation to the smoothness

of the exact solution in that interval, then the system is said to be stiff in that

interval.

In non-linear systems, the Jacobian ∂f/∂x can be calculated and the char-
acteristics of the Jacobian can be studied. For more about stiff systems see
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(Lambert 1991).

Consider system

x
′

1 = −2x1 + 1x2 x1(0) = 1

x
′

2 = 998x1 − 999x2 x2(0) = 1 (F.1)

A solution to this equation is:

x1 = e−t + 1e−1000t (F.2)

x2 = e−t − 998e−1000t (F.3)

The e−1000 term is completely negligible in determining the values of x1 and x2

as soon as one is away from the origin. However, a general forward equation
would demand a step size h¿ 1/1000 for the method to be stable.

In general for a set of linear differential equations:

dx

dt
= −Cx x(t0) = c (F.4)

where C is a positive definite matrix. A first order Euler yields

x̃k+1 = (I −Ch)x̃k = (I −Ch)n+1x̃0 (F.5)

A matrix An tends to zero as n → ∞ only if the largest eigenvalue of A has
magnitude less then unity, thus x̃n is bounded as n → ∞ only if the largest
eigenvalue of (I −Ch) is less than 1, or

h <
2

λmax
(F.6)

where λmax is largest eigenvalue of the matrix C. Implicit differences is

x̃k+1 = x̃k − hCx̃k+1 (F.7)

or

x̃k+1 = (I +Ch)−1x̃k (F.8)

if the eigenvalues of C are λ the the eigenvalues of (I +Ch)−1 are (1 + λh)−1

which has magnitude less than h for all h, thus the method is stable for all
step sizes h. This explains why implicit methods are desirable option when the
system is stiff. Note that the penalty for the stability of the implicit methods
is that the inverse of a matrix must be found at each step.
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F.2 The stiffness of the non-linear system in Pa-
per [B]

The non-linear system in Paper [B] is a stiff system. Furthermore, the system
swings between being singular to being stiff to being singular again which is a
real computational challenge, which succeeded to accomplish.

The system is stiff in that sense that the method controls the convergence. In
order to achieve a solution at all, and to achieve a stable solution it was necessary
to use an implicit method for ODE solver as described in Section E.2

Furthermore, it is also stiff with respect to the stiffness ratio as in [S3].

The linear approximation (a part of the Jacobian) to be considered is the partial
drievetive with respect to the state variables in the state space model:

A =
∂f

∂xt

∣∣∣∣
x=x̂j|j−1,u=uj ,t=tj ,θ

(F.9)

which is



−a 0 0 0

−pddφ(Ts)Ψ(N) −pdd Tsφ(Ts)Ψ
′(N) 0 0

−pdd Tsφ
′(Ts)Ψ(N)− c Pφ′(Ts)

0 −pdd Tsφ(Ts)Ψ
′(N) −(f + k1) 0

0 0 f −k2




(F.10)

The matrix is a lower diagonal matrix and thus the eigenvalues are the values
on the diagonal. The values −a, −(f + k1) and −k2 are constants which values
varies from 0.05 to 5, see Table 1 in Paper [B]. The largest is 100 times the
larger than the smallest and according to (Montgomery & Runger 2002) then
the system begins to behave stiff.

Figure F.1 shows the threshold function for the snow container Φ(N) and Figure
F.2 shows its derivative Φ′(N)

When there is enough snow to melt the function −pdd Tsφ(Ts)Ψ
′(N) is zero and

the system is singular. In the transforming period then there is little snow left
to melt and N converges to zero the derivative alters from being 0 to about 80
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Figure F.1: The threshold function for snow
Ψ(N) = 100 exp(−100 exp(−200N)).
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Figure F.2: The derivative of the threshold function for snow.

or even larger during the optimization procedure. Hence, the eigenvalue alters
from being 0 to being about 4, depending on the value of the temperature T
and then the derivative becomes zero. During the optimization the numerical
routine uses a singularity route or a non-singularity routine depending on the
situation. In the shifting phase some eigenvalues can be very small, resulting in
a large stiffness ration.

It was necessary to have the threshold function for snow, Psi(N) steep to secure
nonnegative values in the snow container. However, the steeper the threshold
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value, the larger is its derivative, resulting in the stiffer system.
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