
High-Level Modeling of Network-on-Chip
M.Sc. thesis

Master of Science thesis nr.: 83
Computer Science and Engineering
Informatics and Mathematical Modelling (IMM)
Technical University of Denmark (DTU)

31st of July 2006

Supervisor: Prof. Jens Sparsø
Co-supervisor: Ph.d. student Mikkel Bystrup Stensgaard

Matthias Bo Stuart (s011693)

Abstract

This report describes the design, implementation and testing of a high-level model of
an asynchronous network-on-chip called MANGO that has been developed at IMM, DTU.
The requirements to the model are twofold: It should be timing accurate, which allows it
to be used in place of MANGO, and it should have a high simulation speed. For these
purposes, different approaches to modeling network-on-chip and asynchronous circuits have
been investigated. Simulation results indicate a simulation speedup on a magnitude of a
factor 1000 over the current implementation of MANGO, which is implemented as netlists
of standard cells.

Acknowledgements

This Master of Science project has been carried out at Informatics and Mathematical
Modelling at the Technical University of Denmark in the spring and summer of 2006.
I would like to thank my fellow students Morten Sleth Rasmussen and Christian Place
Pedersen for thorough discussion of different issues that popped up along the way. I
would also like to thank Tobias Bjerregaard, who created the current implementation
of MANGO, for invaluable discussions on the inner workings of MANGO. I am
grateful to Shankar Mahadevan for a kick-start discussion on how to model MANGO.
I would especially like to thank my supervisor Jens Sparsø and my co-supervisor
Mikkel Bystrup Stensgaard for invaluable guidance and discussions.

Matthias Bo Stuart
Kgs. Lyngby

July, 2006

iii

Contents

Acknowledgements iii

Contents iv

List of Figures vii

1 Introduction 1
1.1 Network-on-Chip . 1
1.2 System Modeling . 2
1.3 Asynchronous Circuits . 2
1.4 This Work . 3

2 Network-on-Chip 5
2.1 Network-on-Chip Characteristica 5

2.1.1 Transaction Transport . 5
2.1.2 Routing Schemes . 6
2.1.3 Service Levels . 6
2.1.4 Virtual Circuits . 6

2.2 Basic Components . 8
2.2.1 Node . 8
2.2.2 Link . 8
2.2.3 Network Adapter . 9
2.2.4 Intellectual Property Core 9

2.3 Levels of Abstraction . 9
2.3.1 Application Level . 9
2.3.2 System Designer Level . 9
2.3.3 Network Designer Level 11

3 The MANGO Clockless Network-on-Chip 13
3.1 Node Architecture . 13

3.1.1 Node Overview . 14
3.1.2 Arbitration Scheme . 15
3.1.3 Preventing Blocking of Shared Areas 16

3.2 Link Architecture . 18

iv

CONTENTS v

4 Modeling Approaches 19
4.1 Modeling System Communication 19

4.1.1 Behavioural Model . 19
4.1.2 Structural Model . 21

4.2 Conclusions . 22

5 Asynchronous Circuits 25
5.1 Introduction to Asynchronous Circuits 25

5.1.1 Handshake Protocols . 25
5.1.2 Encodings . 26
5.1.3 Basic Building Blocks . 27
5.1.4 Pipeline Concepts . 29

5.2 Modeling Asynchronous Circuits 30
5.2.1 Handshake Level Modeling 30
5.2.2 Higher Level Modeling . 31

5.3 Conclusions . 33

6 Modeling MANGO 35
6.1 Functionality . 35

6.1.1 Link . 35
6.1.2 Node . 36

6.2 Timing . 37

7 The Model 43
7.1 Choice of Modeling Language . 43

7.1.1 Introduction to SystemC 44
7.1.2 Simulation Performance 46

7.2 Implementation Details . 47
7.2.1 Data Representation and Transport 47
7.2.2 Components . 48

7.3 Network Adapter . 52
7.3.1 Introduction . 52
7.3.2 Interfacing Approaches . 52
7.3.3 Implementation Details . 54

8 Verification and Results 57
8.1 Test System . 57

8.1.1 Topology . 57
8.1.2 Method of Testing . 58

8.2 Functionality . 59
8.3 Timing . 59
8.4 Simulation Performance . 61

vi CONTENTS

9 Discussion 65
9.1 Resolving Known Issues . 65
9.2 Application of Model . 66

9.2.1 Exploring Concepts of Network-on-Chip in MANGO 66
9.2.2 System Modeling . 67
9.2.3 Abstracting Bus-Interfaces Away 68

9.3 Future Work . 68
9.3.1 Parametrising the Model 68
9.3.2 Estimating Power Consumption 69
9.3.3 Handshake Level Model 69

10 Conclusions 71

Bibliography 73

A Source Code A.1
A.1 Top Level Files . A.1

A.1.1 interfaces.h . A.1
A.1.2 types.h . A.2

A.2 Components . A.3
A.2.1 arbiter.h . A.3
A.2.2 arbiter.cpp . A.4
A.2.3 link.h . A.5
A.2.4 link.cpp . A.6
A.2.5 vc.h . A.6
A.2.6 vc.cpp . A.7
A.2.7 node.h . A.8
A.2.8 node.cpp . A.9

A.3 Test Files . A.10
A.3.1 mango_thesis_model.h . A.10
A.3.2 mango_thesis_model.cpp A.13
A.3.3 na_conv.h . A.13
A.3.4 link_sink.h . A.17
A.3.5 OCP_cores.h . A.17
A.3.6 OCP_cores.cpp . A.19
A.3.7 gen_test_vecs.cpp . A.22

List of Figures

1.1 An example of a Network-on-Chip based system 2

2.1 Time slot and virtual channel access schemes 7
2.2 Generic node model . 8
2.3 Abstraction levels in Network-on-Chip 10

3.1 MANGO node architecture . 14
3.2 The MANGO BE router . 15
3.3 The ALG arbiter . 16
3.4 The merge in the ALG arbiter . 17
3.5 The MANGO GS VC buffer . 17

5.1 Handshake protocols . 26
5.2 Dual-rail encoding . 26
5.3 The Muller C-element . 27
5.4 Asynchronous latch . 28
5.5 An asynchronous pipeline . 28
5.6 Tokens and bubbles in an asynchronous pipeline 29
5.7 Execution of an asynchronous pipeline 32
5.8 Execution of pipeline with a bottleneck 33

6.1 Model of communication between two nodes 39
6.2 Timing of unlock signals . 40

7.1 SystemC interfaces and modules . 44
7.2 The call stack when flits arrive . 53

8.1 The test system . 57
8.2 Mean and variance of transaction latencies 60
8.3 Distribution of samples in test system 62

vii

Chapter 1

Introduction

Decreasing transistor sizes have led to more transistors being able to be placed on
a single chip. This has led to ever more complex chips, which can hold an entire
system, so-called System-on-Chip (SoC). SoCs can be described as “heterogeneous
architectures consisting of several programmable and dedicated processors, imple-
mented on a single chip” [11]. These processors, memories, IO-controllers, etc -
called Intellectual Property Cores (IP-Cores) - may be connected by a number of
different means such as busses, point-to-point connections and network structures.
Busses have the issue that wires do not scale very well, while at the same time more
IP-cores are connected to them further increasing the capacitance on the bus. Less
bandwidth is available to each IP-core at an increased cost in latency and power con-
sumption.

Direct connections between IP-cores result in very inflexible designs, as the avail-
able connections in the system are fixed, once the chip enters production. If two
IP-cores that have no direct connection needs to communicate, a path through other
IP-cores must be taken, requiring these intermediate IP-cores to handle communi-
cation rather than their own computation, if such a path exists at all. Furthermore,
single IP-cores become much harder to reuse between designs, due to the lack of a
single standard interface to the IP-core. At the same time the scalability of direct
connections is very poor, as the number of connections may grow quadratically with
the number of IP-cores in the system.

1.1 Network-on-Chip

The Network-on-Chip (NoC) approach to communication systems has none of these
issues. NoCs make use of segmented communication structures similar to computer
networks. Network Adapters (NA) provide a standardised interface between the IP-
core and the network, while the network is made up of network nodes connected by
links. An example NoC is shown in figure 1.1.

The length of wires is kept fairly constant relative to transistor sizes due to the
segmented structure of networks. The longest wires in the network are used exclu-

1

2 CHAPTER 1 INTRODUCTION

adapter

Network

IP−core

Link

Node

Figure 1.1: An example of a Network-on-Chip based system.

sively to connect neighbouring network nodes, which has the effect that these wires
only have one driver, reducing the capacitance of the wires. Long wires may also
be pipelined, further reducing wire length while increasing throughput at the same
time. Using standardised interfaces to the network makes design-reuse effortless, as
a plug-and-play style of system design becomes possible.

1.2 System Modeling

In early stages of the design process when exploring different network topologies, ap-
plication mappings and other system-level considerations, there is little or no need for
fully accurate and synthesisable descriptions of the IP-cores in the system, as these
take a very long time to simulate. For purposes of system exploration, high-level
models that produce a reasonably accurate estimate of performance and possibly
power consumption and area should be used.

Similarly, a high-level model of the communication system should be employed
at this stage, for fast simulation. The level of detail in such a high-level model of
a NoC depends on the abstraction level at which it is to be used. While application
programmers might not care at all about communication between processes having a
non-zero latency, system designers need a detailed communication model in order to
ensure the system functions properly.

Another use for such a model is for the network designer to explore the impact
of different implementations of different components of the network. For exam-
ple, different switching structures, arbitration schemes, link encodings and packeting
schemes may be explored by use of a high-level model. New hardware structures
may be examined without the need to accurately simulate the uninteresting environ-
ment to these structures, and packeting schemes may be tried out without restrictions
on bit widths.

1.3 Asynchronous Circuits

Asynchronous - or clock-less or self-timed - circuits are a type of circuits which
use local handshakes for controlling the data flow through the system, rather than

THIS WORK 3

a global controller as seen in synchronous circuits. Asynchronous circuits have an
advantage in NoCs as they allow for Globally-Asynchronous Locally-Synchronous
(GALS) designs, where the lack of a global clock reduces timing closure to a local
problem for each IP-core. Furthermore, asynchronous circuits have zero dynamic
power consumption when idle. As a NoC will not be utilised 100% most of the
time, this can lead to an advantage in power consumption over synchronous circuits.
This advantage over synchronous circuits may however be lessened due to increasing
leakage currents in newer manufacturing technologies.

Asynchronous circuits are however not as straight-forward to create timing accu-
rate models of compared to synchronous circuits. While clock-cycle accurate models
of synchronous circuits may be developed, a similar notion does not exist for asyn-
chronous circuits.

1.4 This Work

This thesis describes the development of a high-level model of a Network-on-Chip
called MANGO which is developed at IMM DTU. This Network-on-Chip is asyn-
chronous, requiring different modeling techniques than those commonly used for
synchronous designs. The current implementation of this NoC is constructed by
netlists of standard cells from a given library, making it very slow to simulate.

The purpose of the model is twofold: First, it should be usable for rapidly eval-
uating different system designs, characterised by different network topologies and
application mappings. Second, a network designer should be able to accurately ex-
amine the impact of new implementations of physical components using the model.
In order to fulfil these requirements, a fairly timing accurate model that is fast exe-
cuting is required.

Chapter 2 will introduce the Network-on-Chip concept, chapter 3 will give an
introduction to MANGO, chapter 4 will take a look at different approaches to mod-
eling NoCs, chapter 5 will introduce asynchronous circuits and develop a method for
modeling the circuits found in MANGO, chapter 6 will describe the design choices
made for the model, chapter 7 will describe implementation details of the model,
chapter 8 will present and discuss the results of simulations of both the model and
the current implementation of MANGO while chapter 9 will discuss how the model
may be applied to system modeling and design and where to proceed with the model.
Chapter 10 will conclude the report.

Chapter 2

Network-on-Chip

This chapter gives a general introduction to Network-on-Chip. First, the main char-
acteristica of a NoC are presented. Then the basic components that comprise a NoC
are introduced, and finally different abstraction levels of NoCs are discussed.

2.1 Network-on-Chip Characteristica

Network-on-Chip may be seen as a subset of System-on-Chip (SoC) [7]. A SoC is
an entire system implemented on a single chip, whereas a NoC is one approach to
the communication structure in a SoC. A NoC is made up of network adapters, nodes
and links as illustrated in figure 1.1.

2.1.1 Transaction Transport

One of the characteristica of a given NoC is how transactions are transported between
IP-cores. An IP-core may communicate with any other IP-core in the system by
means of the NoC. As long as the protocol of the standardised interface is complied
with, the IP-cores need no knowledge of the NoC.

Often a transaction has too many bits to be transported through the NoC all at
once. Therefore, transactions are split into smaller transmittable parts and then re-
assembled at the destination before being presented to the IP-core. Two general
approaches to transporting these transmittable parts - sometimes called flow control
units (flits) - are store-and-forward and wormhole routing.

In a NoC using store-and-forward, a node must receive all the flits in a single
transaction before the flits are sent on to the succeeding node. When using wormhole
routing, the first flits of a transaction can be sent on from a node before the last flit
has arrived. This allows a transaction to span many nodes, reducing buffering needs,
but potentially increasing the impact of stalls.

5

6 CHAPTER 2 NETWORK-ON-CHIP

2.1.2 Routing Schemes

NoC routing schemes range from basic static to highly adaptive schemes. For NoCs
with grid or torus topologies, a simple deadlock free routing scheme is xy-routing.
The strategy is to route along one axis of the NoC before routing along the other axis.
A proof that no deadlocks occur using this strategy is presented in [8]. However, it
makes the assumption that a flit that has reached its destination will be removed from
the NoC. Some IP-cores - such as on-chip memories - may need to insert a response
to a previous request before accepting a new one. If this is the case, the proof must
be made at the system level rather than at the network level.

Adaptive schemes generally try to minimise congestion in the NoC by routing
around areas with heavy load. Adaptive schemes generally have a higher cost in
terms of routing logic and complexity of avoiding deadlocks, but may yield better
performance under heavy load compared to static schemes.

Another issue in routing is where routing decisions are made. Either the route
is pre-determined - called source routing - or it is determine on a hop-to-hop basis -
called distributed routing. Source routing goes well with wormhole routing, as the
entire route needs to be contained in a flit. If store-and-forward were to be used, this
would require a large header in each flit. However, distributed routing goes well with
store-and-forward, as only a few bits are required to determine the coordinates of the
destination. In an adaptive NoC, distributed and source routing may be combined,
allowing a node to alter the route in order to minimise or avoid congestion in the
NoC.

2.1.3 Service Levels

A NoC may provide a wide range of service guarantees. The most basic guarantee
is that a transmitted flit will eventually arrive at its destination. This is characteristic
of a so-called best effort (BE) net. Multiple flits from the same transaction need
not arrive in the same order they were sent, but a guarantee may be provided that
arrivals are in-order. In any case, the network adapter must reassemble the flits into
a transaction, but an overhead in flit size is introduced if flits may arrive out of the
order in which they were sent, as some header bits are needed to keep count of the
order of the flits.

Another type of guarantee is a maximum latency or a minimum bandwidth or a
combination of the two on a connection between two IP-cores. Such guarantees are
commonly known as Guaranteed Service (GS). The guarantees can be either absolute
or statistical. Whether statistical guarantees suffice depends on the application.

2.1.4 Virtual Circuits

Standardised interfaces provide the illusion of a point-to-point connection between
IP-cores. In a NoC, these connections are called virtual circuits and may also be used
to guarantee that the NoC never enters a deadlock.

NETWORK-ON-CHIP CHARACTERISTICA 7

One possibility is to assign each connection a time interval in which transactions
can be made. Figure 2.1(a) shows a system with 16 time slots and 7 connections,
A through G. Such a system has a tight coupling between latency and bandwidth.
Assume the current time is 1 and connection A needs to make a transaction. It then
needs to wait 15 time slots before being able to make the transaction, as it has re-
served the time interval [0; 1]. Connection F may at most have to wait 12 time slots,
as it has reserved the time interval [9; 13], but at the same time connection F has
reserved 25% of the bandwidth in the system. Using this time slot allocation, it can
be guaranteed that no contention will occur in the NoC, which results in very simple
control circuits [7]. Furthermore, deadlocks are not an issue, as a flit will never have
to wait for another in the NoC.

Another option is to make use of virtual channels. A channel is represented by a
buffer, and a number of parallel channels exist on a link. Depending on the service
guarantees of the NoC, fair access arbitration must be implemented on the link. Well-
known arbitration schemes are static priorities and round-robin, but more elaborate
schemes may be implemented. Figure 2.1(b) shows eight parallel virtual channels
sharing a link by means of an arbiter. Deadlocks are prevented by only allowing
one connection to use a given virtual channel buffer, making these private areas of a
connection. If a flit only enters the shared areas of the NoC when it is known that it
may enter a private area upon arrival, deadlocks do not occur.

0
1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

A

B

C

D

E

F

G

(a)

Virtual channel buffers

Virtual channel buffers

Arbiter

(b)

Figure 2.1: 2.1(a): A time slot allocation with 16 time slots available for 7 connec-
tions, A through G. 2.1(b): An access control system using arbitration between eight
virtual channels.

8 CHAPTER 2 NETWORK-ON-CHIP

2.2 Basic Components

The following will give a brief description of each of the components shown in figure
1.1.

2.2.1 Node

The nodes and the links, constitute the basic framework of a NoC. Figure 2.2 shows
a generic router model. Input and output buffers are connected through the switch,
which is controlled by the arbitration and routing algorithms. The local ports connect
to the network adapter, which in turns connects to an IP-core as shown in figure 1.1.
A node needs not have both input and output buffers and if virtual channels are used,
arbitration may be part of the output link controllers, as is the case in MANGO which
is presented in chapter 3.

LC

LC

LC

LC

LC

LC

LC

LC

LCLC

Local outputLocal input

In
p
u
t

ch
an

n
el

s

O
u
tp

u
t ch

an
n
els

Routing and Arbitration

Switch

Figure 2.2: A generic model of a node, adapted from [7]. The boxes labelled LC are
link controllers.

2.2.2 Link

Links are the wires that connect nodes. These should be kept at a reasonable length or
possibly pipelined in order to provide a reasonable throughput. Due to the increased
effect of variability on wire delays in deep sub-micron technologies, links may have
to be heavily pipelined or make use of delay insensitive encoding [15] in order to not
significantly reduce the production yield. This is a topic of ongoing research.

LEVELS OF ABSTRACTION 9

2.2.3 Network Adapter

The network adapter (NA) provides a conversion from the interface protocol used by
the attached IP-core and the transmission format used in the NoC and back again.
Multiple interface protocols may exist in a NoC, as long as it is possible to insert
transactions from all protocols into same-sized flits for transmission. Each interface
protocol requires a different NA.

2.2.4 Intellectual Property Core

The intellectual property cores (IP-cores) cover processing elements (CPU, DSP,
ASIC), peripherals (on-chip memory, off-chip memory controller, off-chip bus in-
terface), IO-controllers (UART, ethernet, VGA) and any other core one might put on
a chip. Given a standard interface on the core as well as an NA with the same inter-
face, it is possible to do a plug-and-play style of design using IP-cores from multiple
different vendors, and reuse these cores between multiple designs.

2.3 Levels of Abstraction

NoCs may be considered at several different levels of abstraction. This section will
give an introduction to levels of abstraction based on the designers working at differ-
ent levels. In [7], levels of abstraction for NoC that resemble the OSI network model
are presented.

Figure 2.3 illustrates the levels of abstraction based on the different design levels:
Application, system and network designer.

2.3.1 Application Level

At this level, the NoC is considered as a medium which provides connections be-
tween all cores. How these connections are made is irrelevant, and communica-
tion delays may be disregarded, essentially making the NoC a huge fully connected,
delay-less crossbar. Communication may be handled by message passing or shared
memory. Connections may be created explicitly by a function call such as int my-
Conn = openConnection(int dest) and messages passed by send(int myConn, struct
myData) and struct myData = receive(int myConn). Another option is to have all
possible connections open at all times, and simply identify the receiver by a unique
identifier, such as a process ID. This level of abstraction is illustrated in figure 2.3(a).

Models at this level of abstraction are independent of the actual NoC, and will
not be considered further.

2.3.2 System Designer Level

Figure 2.3(b) presents a NoC as seen from the system designer. A mesh-topology
with IP-cores attached to specific points in the NoC is shown. This mapping of
IP-cores to access points must be able to satisfy the application’s communication

10 CHAPTER 2 NETWORK-ON-CHIP

Network−on−Chip

IP−Core

IP−Core

IP−Core

IP−Core

IP−Core

IP−Core

IP−Core

IP−Core

(a)

CPU

DSP

DSP CPU IO

DSPMEM

MEM IO

(b)

Fully
connected
crossbar

Link
decoder

Link
encoder

(De)packetiser

Buffers

Addr

Cmd

Data

De−muxArbiter

(c)

Figure 2.3: 2.3(a): At the application level, the NoC is simply considered as a
medium which provides connections between all cores. 2.3(b): At the system level,
issues such as network topology and application mapping are considered. 2.3(c): At
the network level, circuit implementations are considered, while actual systems are
not considered. The NoC is simply nodes, links and network adapters that provide a
service and may be connected to form an actual NoC.

LEVELS OF ABSTRACTION 11

requirements using the services offered by the NoC. A reasonably accurate model
of the NoC must be used in order to evaluate whether these requirements are met.
Other objectives such as constraints on power consumption may also be a factor in
deciding on a topology and mapping, if switching activity on the long wires in the
links constitute a major contribution to power consumption, which may be the case
in deep sub-micron technologies.

2.3.3 Network Designer Level

At this level, circuit implementations are considered, as shown in figure 2.3(c). De-
cisions on arbitration and routing schemes, principles for creating virtual circuits,
which service guarantees are offered, how transactions are transmitted through the
NoC and how data is encoded on the links are all made at this level. Any involvement
with the system and application levels is to ensure that the communication require-
ments can be satisfied by the NoC. Possible restrictions on power consumption and
area must also be taken into consideration during the design of a NoC.

Chapter 3

The MANGO Clockless
Network-on-Chip

MANGO is an abbreviation of “Message passing, asynchronous Network-on-Chip
providing guaranteed services over OCP interfaces,” and is a NoC developed at IMM
DTU by Tobias Bjerregaard as part of his ph.d. thesis [2].

Messages may be passed between two IP-cores connected to the network over a
connection with service guarantees in the form of latency and/or bandwidth guaran-
tees. Memory mapped access is also possible on a best effort (BE) network, which
guarantees that messages eventually arrive and arrive in-order.

An introduction to asynchronous circuits and how they are modeled will be pre-
sented in chapter 5.

Guaranteed Services (GS) are provided as minimum bandwidth and/or maximum
latency for a given connection. Guarantees are given as “data items pr second” for
bandwidth and (nano)seconds for latency guarantees. As there is no global clock,
latency guarantees can not be given in terms of “number of clock cycles.” These
guarantees are obviously affected by switching to a different technology.

Open Core Protocol (OCP) [14] is a collaboration between companies and uni-
versities for providing a standardised interface between IP-cores. Although only the
OCP interface is supported currently, providing access points for different interfaces
should be relatively simple. This standardised interface is used to provide point-to-
point interfaces into a shared address space for IP-cores.

This chapter will present the node and link architectures and describe the current
implementation of MANGO.

3.1 Node Architecture

The node architecture in MANGO is presented in [4] with in depth circuit descrip-
tions in [6]. The main points are presented in the following.

13

14 CHAPTER 3 THE MANGO CLOCKLESS NETWORK-ON-CHIP

3.1.1 Node Overview

The MANGO node architecture is shown in figure 3.1. A node has five input and five
output ports: Four to links connecting to neighbouring nodes and one to a network
adapter to which an IP-core can be connected. The nodes are output-buffered with a
number of virtual channels (VC) on each interface.

...

...

...

...

GS router

BE router

Lin
k

de
co

de
r

V
irt

ua
l c

ha
nn

el
 b

uf
fe

rs

U
nl

oc
kb

ox

Lin
k

en
co

de
r

A
rb

ite
r

Loc
kb

ox
Local in− and outputs

Local in− and output

L
in

k
 i

n
p
u
ts

L
in

k
 o

u
tp

u
ts

Programming
interface

Figure 3.1: MANGO node architecture

VCs are provided by parallel buffers on the output ports of network nodes for
GS VCs, and buffers on both in- and output ports for BE VCs. Access to the link
is granted by an arbitration scheme called asynchronous latency guarantees (ALG)
described in section 3.1.2. In order to prevent congestion in the shared regions of the
network, access to these is only granted when it is guaranteed that the flit will be able
to leave the shared regions by entering the VC buffer in the neighbouring node. The
means for making these guarantees are described in section 3.1.3.

Routing information for BE is contained in a header flit, while for GS it is stored
in routing tables in the nodes. These tables are programmed through BE transactions
as explained in [1].

BE traffic uses source routed wormhole routing based on a memory map. The
NA looks up the route based on the address being accessed and sends out a flit with
this routing information followed by the packeted transaction. In each flit, a bit is
reserved to indicate the final flit. Flits from two different BE transactions can not be
interleaved on a link.

GS transactions make use of a connection ID, which labels one of the VCs avail-
able to the IP-core. The flit is routed through the network using the routing tables
in the network nodes. Conceptually, these tables contain information in the form of

NODE ARCHITECTURE 15

“incoming flits on port pi, VC vi are routed to port po, VC vo.” It is important to
have the routing information set up properly before using GS connections, as there is
otherwise no way of telling where the flits end up.

In the present implementation, there are seven GS VCs and one BE VC on each
link. On the interface between the network adapter and the node, there are three GS
VCs and one BE VC. The GS router is fully connected and non-blocking. The BE
router has four input and output buffers, which are connected through a single latch,
as illustrated in figure 3.2. The VCs associated with the NA do not need buffers, as
transmissions on these channels do not occupy shared areas of the NoC.

The present implementation of MANGO uses 4-phase bundled data signals inter-
nally in the router. This - and other concepts of asynchronous circuits - are presented
in chapter 5.

SplitMerge

Credits

0

1

4

1

0

4

1

0 0

4

1

Credits

Latch

CreditsCredits

4

Figure 3.2: The MANGO BE router. Port 0 indicates the local port. Credits are used
to ensure that transmitted flits will be accepted into the VC buffer in the next node in
order to prevent stalling the link.

3.1.2 Arbitration Scheme

Access to links is granted based on a scheduling discipline called Asynchronous
Latency Guarantees (ALG), which is described thoroughly in [5]. Each VC has a
static priority in ALG, but with the restriction that no flit may wait for more than one
flit on each higher priority level. With eight VCs trying to access a link, a flit on
the lowest prioritised VC - the BE channel - may wait for at most seven flits to be
transmitted before being given access.

ALG has the advantage over other scheduling disciplines that latency and band-
width guarantees are decoupled. A low-latency low-bandwidth connection may re-
serve the highest priority channel and be given immediate access for its transmis-
sions, as long as these transmissions are made rarely - ie. the low-bandwidth re-
quirement. For a more detailed presentation and a proof of the correctness of the
guarantees, refer to [5].

The implementation of ALG is illustrated in figure 3.3. It has two levels of latches
in front of a merge component. The first level is the admission control, where flits

16 CHAPTER 3 THE MANGO CLOCKLESS NETWORK-ON-CHIP

on a given channel are stalled, if a lower-priority flit has already waited for another
flit on the given channel. For example, a flit arrives on each of the first and second
highest prioritised channels simultaneously. Both pass the admission control, and
the flit on the first channel is transmitted. If another flit arrives on the first channel, it
will be stalled in the admission control, until the flit on the second channel has been
transmitted.

The second level is a static priority queue, which ensures that flits on the highest
prioritised channel are transmitted before flits on lower prioritised channels, ie. this
level along with the merge component contains some control structures beside the
latches that enact these static priorities.

Merge

H
ol

d
bu

ff
er

Sta
tic

 p
rio

rit
y

qu
eu

e

F
ro

m
 v

ir
tu

al
 c

h
an

n
el

 b
u
ff

er
s

T
o
 lin

k
 en

co
d
er

Figure 3.3: The ALG arbiter.

The merge component is constructed in such a way that all VCs are guaranteed a
fair share of the bandwidth. The control part is shown in figure 3.4. The arbitration
unit chooses an input that is allowed to propagate through it. If only one input is
active, that input is selected. If both inputs are active, a choice is made, but the
input that was not allowed to pass the arbiter at first is guaranteed to pass as the
next one. For the asynchronous arbiters presented in [15], the choice is random.
The asynchronous latches1 provide pipelining of the merge component in order to
improve throughput.

3.1.3 Preventing Blocking of Shared Areas

In order to make guarantees on latency and bandwidth, it is required that no flits
stall on the link or in other shared areas, effectively blocking the NoC. These areas

1Asynchronous circuits are presented in chapter 5.

NODE ARCHITECTURE 17

F
ro

m
 V

ir
tu

a
l

C
h
a
n
n
e
ls

T
o
 lin

k

L
at

ch

A
rb

it
ra

ti
o
n

Figure 3.4: The control circuit in the merge in the ALG arbiter.

comprise the links and the routers. Two different means have been developed, and
the current implementation of MANGO uses one for GS VCs and the other for BE
VCs.

Lock- and Unlockboxes for GS

Only one flit may be in flight on a GS VC at any time. Figure 3.5 shows the lock- and
unlockboxes used to guarantee that once a flit leaves the VC buffer, it will be admitted
into the buffer in the neighbouring node. When a flit enters a lockbox, no further flits
may enter. The flit is then granted access to the link by the ALG, transmitted over the
link, and when it arrives at the VC buffer in the next node, it passes the unlockbox,
which toggles the wire to the lockbox, unlocking it for a new flit to use.

Unlock Unlock

To ALGFrom GS router

Buffer LockboxUnlockbox

Figure 3.5: The MANGO GS VC buffer with lock- and unlockboxes. These boxes
allow only one flit in flight from a VC at a time.

In the current implementation, the lock- and unlockboxes contain a latch each,
while the buffer inbetween consists of a single latch. The wire connecting lock- and
unlockboxes over a link only toggles once to indicate an unlock in order to reduce
power consumption in this long wire.

18 CHAPTER 3 THE MANGO CLOCKLESS NETWORK-ON-CHIP

Credit Based Transmission for BE

The scheme used for BE channels allows more flits in flight at a time by use of a
credit based system. It is illustrated in figure 3.2. The output VC buffer has as many
credits as the number of flits that may be stored in the input VC buffer. When a flit is
sent, a credit is consumed. When this flit leaves the input buffer, the credit is restored.

3.2 Link Architecture

A property that the links in MANGO gain from being implemented as asynchronous
circuits is that they may be pipelined as deeply as the designer may wish, with-
out upsetting latency guarantees based on a transmission taking a certain number of
clock-cycles. In [1] it is reported that the addition of two pipeline latches to the link
only increases the forward latency2 by 240 ps.

The current implementation of MANGO uses delay-insensitive coding on the
links with a 2-phase protocol. This results in less switching activity and thereby less
power consumption at the cost of double the number of wires. Another cost is in
the conversion between the 4-phase bundled data protocol used in the router and the
coding on the links.

2Forward latency and other elements of asynchronous circuits are introduced in chapter 5.

Chapter 4

Modeling Approaches

This chapter will describe general approaches to system modeling. The chapter will
be concluded by a discussion and a decision of which approach to take for modeling
MANGO.

4.1 Modeling System Communication

NoC models are either analytical or simulation based [7]. The following will con-
centrate on simulation based models, as analytical models do not allow the network
designer to interchange parts of the model with parts of the actual network for eval-
uation of new or modified components.

Simulation based models can be divided into two classes: Structural and be-
havioural models. Structural models use models of the subsystems which are then
tied together similarly to a structural RTL design. Likewise, a structural NoC model
uses models of the major components which are then tied together. A behavioural
model tries to capture the behaviour of the entire system at once in a single model or
an abstract modeling framework.

In the following, behavioural and structural models will be described.

4.1.1 Behavioural Model

A general behavioural model is characterised by having the same behaviour as an
RTL or similar description of what is being modeled. The behaviour may be timing
accurate, but this is not a requirement. An example is a clocked micro processor,
which can be modeled either as all instructions executing in a single cycle or at a
cycle-accurate level, which includes pipeline stalls, branch delays and other specifics
of processor design.

For a Network-on-Chip, the requirements to a behavioural model depends on
the abstraction level at which the model is to be used. An application programmer
may see the NoC as a multi-port black box, which allows communication between
all ports. In this case, the model needs only act as a large crossbar switch: No

19

20 CHAPTER 4 MODELING APPROACHES

conflicts between packets are considered, and communication is instantaneous or
some constant delay. Such a model obviously executes very fast and is very simple
to create, but it can be used for neither system architecture exploration nor network
component development. This simple type of behavioural model is not considered
further in this text.

A more detailed behavioural model - without the shortcomings of the simple one
- makes use of one or multiple data structures which contain representations of the
resources in the network. The granularity at which resources are represented must be
fine enough to accurately model the behaviour of the network, but also coarse enough
not to slow down the simulation speed unnecessarily. When a transaction is initiated,
the resources used for the transaction are reserved for the required time intervals. If
a resource is not available, arbitration identical to the one performed in the network
must be done. The reservation and arbitration may be done all at once or one resource
at a time. The disadvantage of all-at-once is that periods with heavy load on the net-
work will lead to many changes in the reservations and arbitration results of existing
transactions whenever a new transaction is initiated. However, during periods with
light load, transactions may be considered only once by the model, as no conflicts
will occur. The execution speed of the model varies according to the traffic patterns
of the system, with heavy traffic leading to slower execution than a constant added
time for each extra transaction, as all active transactions must be reevaluated for each
new transaction. Reserving only one resource at a time yields a more constant exe-
cution speed, as a resource conflict only has local implications on the latency of the
transactions involved. The delayed arrival at the succeeding resource is automatically
achieved, as this resource is only reserved once the currently reserved resource has
been released. Furthermore, no global rearbitration must be done in the event of a
resource conflict as in the case of all-at-once reserving.

Using a behavioural model to examine the impact of new implementations of sin-
gle network components - such as for example the switching structures in the node -
is not easy, as they can not simply be “plugged into” the model. Rather, the behaviour
- including timing - of the new implementation needs to be integrated into the model.
The network designer thus has to determine how the new implementation behaves
without using the model in order to insert this behaviour into the model. However,
for trying out new arbitration or packeting schemes, a properly implemented be-
havioural model allows the network designer to experiment by making only small
changes to the model.

An example of an abstract modeling framework that may be used to model the
behaviour of a NoC is presented in the following.

ARTS

ARTS is a System-level MPSoC Simulation Framework developed at IMM DTU
[10]. It can be used to model NoCs through the means of a behavioural model.
The workings of ARTS is described in [11] and [12] and is summarised here to
demonstrate what a behavioural model may look like.

MODELING SYSTEM COMMUNICATION 21

ARTS is intended for system level simulation of multiprocessor System-on-Chip
systems. Each process in the system is represented by a task with certain resource
requirements. A processing element (PE) is represented by a real-time operating sys-
tem (RTOS) model, which makes use of a scheduler, an allocator and a synchroniser.
The scheduler models a real-time scheduling algorithm, while the allocator arbitrates
resource access between tasks. The synchroniser is common for all PEs and is used
to model the dependencies - including inter- and intra-process communication - be-
tween tasks. In this way, a task which needs to wait for data from another task is
stalled until that other task has sent the data.

Communication in ARTS is modeled in a very similar manner. One task is used
to model a transaction between one pair of PEs, requiring O(n2) communication tasks
where n is the number of PEs. A communication task is then dependent on a pro-
cessing task, representing some processing going on before data is transmitted. The
receiving processing task is similarly dependent on the communication task, simu-
lating that the task waits for the transmitted data. These dependencies are handled in
the synchroniser.

The NoC model has its own allocator and scheduler, similarly to an RTOS model.
The allocator has a resource database and arbitrates access to the resources in this
database, effectively making it reflect the topology of the network. The scheduler
“executes” the communication tasks, reflecting the protocol in the network [11].

The arbitration method in ARTS is first-come first-serve [12] and the routing is
static, but provisions for implementing other arbitration and routing schemes exist
[11].

ARTS provides a framework for fast investigation of entire SoCs, including both
processing and communication. It is well suited for exploring the design space of
different network topologies and application mappings. The network designer may
also use ARTS to investigate arbitration, routing and packeting schemes, but exam-
ining the impact of new implementations of network components is not easily done
for the same reasons as why it is not easily done in general behavioural models.

4.1.2 Structural Model

A structural model is comparable to hierarchical RTL models. Single components
are modeled individually, and these components are then connected similarly to how
RTL models are connected by signals or wires.

When an IP-core initiates a transaction, the first component model to receive the
transaction performs the processing its comparative implementation does and delays
the transaction for the duration of the processing. After this delay, the transaction is
passed on to the next component which also processes and delays. This is done for
all components on the communication path until the destination is reached. At this
point the transaction is presented to the destination IP-core.

The main challenge of creating a structural model is having the components co-
operate to accurately reflect the system being modeled. The component models are in

22 CHAPTER 4 MODELING APPROACHES

fact small behavioural models, but they only capture the behaviour of the component
and not that of the entire system.

The execution speed of a structural model is fairly constant with the traffic load.
No global knowledge is present in the model, and therefore only local decisions are
made. The magnitude is comparable to that of the behavioural model that reserves a
single resource at a time. The behavioural model has some processing overhead in
updating the data structures with resources, while the structural model relies on the
simulation kernel for transferring data between components and managing delays,
causing a processing overhead in the kernel rather than in the model.

System architecture exploration may be performed easily with a structural model.
The network topology is created by connecting nodes and links, while standardised
interfaces at the network adapters allows for easy movement of IP-cores between
nodes, allowing exploration of the impact application mappings have on traffic pat-
terns.

Trying out new packeting, routing and arbitration schemes is also quite easy with
a structural model, as changes only need to be made in the affected components,
while all other components are untouched. Inserting actual implementations of com-
ponents into the model is also doable, but requires some conversion between the
data representation used in the model and the physical data representation of an im-
plementation. The complexity of this conversion depends on how closely the data
representation in the model matches that of the implementation.

4.2 Conclusions

It has been argued that structural and behavioural models may be developed with
roughly equal complexity and simulation speed. Both types of models adequately
fulfil the requirement of being usable for exploring system architectures in a rea-
sonable amount of time. Both may be used for examining the impact of changes in
arbitration, routing and packeting schemes, but only the structural model allows the
network designer to evaluate new implementations using the model.

The behavioural models - particularly the ARTS framework - allow a unified
approach to modeling computation and communication while keeping the design of
the two independent of each other. A structural model requires separate models of
IP-cores to be obtained and attached to the network, causing a slight disadvantage in
system exploration compared to behavioural models.

With regard to accurately modeling asynchronous circuits described in chapter
5, capturing the behaviour of these circuits which use distributed, local control cir-
cuits can be very difficult in a purely behavioural model. A structural model lends
itself much better to modeling such control circuits, as the structure of the actual
implementation is inherently reflected in the model.

Both types of models have advantages and disadvantages compared to each other,
but as actual implementations of network components can only be inserted into a

CONCLUSIONS 23

structural model and a purely behavioural model is unlikely to accurately capture the
behaviour of asynchronous circuits, the model of MANGO is to be structural.

Chapter 5

Asynchronous Circuits

Asynchronous circuits [15] are circuits that make use of local handshakes for flow
control rather than the global clock used in synchronous circuits. This chapter first
gives an introduction to asynchronous circuits and then discusses how they may
be modeled. The introduction to asynchronous circuits is only meant to cover the
schemes used in the current implementation of MANGO. Topics not discussed in-
clude data validity schemes, push vs pull circuits and flow control structures beyond
the basic C-element. A comprehensive guide to asynchronous circuits can be found
in [15].

5.1 Introduction to Asynchronous Circuits

Two of the basic concepts of asynchronous circuits are handshake protocols and
data encodings. Once these have been introduced, the basic building block of asyn-
chronous circuits, the C-element, will be presented along with how to use it to create
pipelines. Lastly, properties of these pipelines will be discussed.

5.1.1 Handshake Protocols

Because asynchronous circuits do not make use of a global clock as synchronous
circuits do, one slow path does not restrict the speed of all other paths in the circuit.
In other words, the concept from synchronous circuits of a critical path restricting
the speed of the entire circuit does not exist in asynchronous circuits. Every path
operates at its full speed potential, due to the local handshakes.

Two common handshake protocols are 2-phase and 4-phase handshakes. Both
make use of request and acknowledge signals, with 2-phase requiring one transition
of each signal for a complete handshake while 4-phase requires two transitions of
each signal. This is illustrated in figure 5.1(b) for 4-phase handshakes and in figure
5.1(a) for 2-phase handshakes. In either protocol, handshakes may not overlap.

25

26 CHAPTER 5 ASYNCHRONOUS CIRCUITS

data

handshake cycle

time

req

ack

(a)

data

handshake cycle

time

req

ack

(b)

Figure 5.1: Handshake protocols used in asynchronous circuits. 5.1(a) shows the
2-phase protocol and 5.1(b) shows the 4-phase protocol.

5.1.2 Encodings

Two encoding schemes used in asynchronous circuits are bundled data encoding and
dual-rail, delay insensitive or one-hot encoding. Both of these schemes are used in
the current implementation of MANGO.

In the bundled data encoding, data and handshakes are carried on separate signals.
The request signal needs to be delayed by at least the maximum delay the data may
experience. The acknowledge signal does not need to be delayed, as it does not
indicate data validity as the request signal does. This encoding is illustrated in figure
5.1.

In dual-rail or one-hot encoded circuits, requests are embedded in the data. Two
wires are used for each bit, one wire signifying ’0’ and the other ’1’. Figure 5.2
shows the handshake phases of the dual-rail encoding. In the 4-phase protocol, the
data value is indicated by signal levels, while for 2-phase, the value is indicated by
transitions.

handshake cycle

data.0

data.1

time

ack

req

(a)

handshake cycle

data.0

data.1

time

ack

req

(b)

Figure 5.2: 5.2(a): 2-phase dual-rail handshakes. 5.2(b): 4-phase dual-rail hand-
shakes. In both figures, a ’0’ is transmitted first and then a ’1’. The request signal is
not physically present, but included to clearly indicate the phases of the handshakes.

INTRODUCTION TO ASYNCHRONOUS CIRCUITS 27

5.1.3 Basic Building Blocks

This section will introduce the Muller C-element and show how to use it to create
asynchronous pipelines. Concepts of these pipelines will then be introduced. These
concepts are to be used in the discussion on modeling asynchronous circuits.

The Muller C-element

The basic element in asynchronous circuits is the Muller C-element shown in figure
5.3. The output only changes when both inputs have identical values. The feed-
back inverter shown in figure 5.3(b) is only necessary in technologies where leakage
currents are a concern when the output is connected to neither source nor ground.

C
a

b

z

(a)

a

b

z

(b)

Figure 5.3: 5.3(a): The symbol denoting the basic building block of asynchronous
circuits, the Muller C-element. 5.3(b): An implementation of the Muller C-element.
The functionality is to only change the output value when both input values have
changed.

Latches

The C-element can be used as a controller for a latch, as shown in figure 5.4(a). The
symbol for an asynchronous latch is shown in figure 5.4(b). This description illus-
trates the functionality of an asynchronous latch in a 4-phase bundled data circuit.

Assuming as an initial state of the C-element that all in- and outputs are ’0’, the
latch is transparent. Using the signal names of figure 5.4(a), let a be the input request
signal, reqin, b the inverted acknowledge from the output, ackout and z the output
request, reqout and the acknowledge back to the input ackin. When a request arrives
on reqin, then ackin, reqout and en are all asserted. When ackout has been asserted,
the data has been processed by the output and the latch no longer needs to hold the
data. The output of the C-element is thus free to return to zero, which requires that

28 CHAPTER 5 ASYNCHRONOUS CIRCUITS

reqin is deasserted, which may happen at any time relative to ackout being asserted -
both earlier, simultaneously or later.

When using the asynchronous latch symbol in figure 5.4(b) in schematics, the
handshake signals are rarely drawn separately. A line connecting two latches is sim-
ply taken to mean both data and handshake signals.

C
a

b

z

en

D Q

(a)

D Q

(b)

Figure 5.4: 5.4(a): A schematic of an asynchronous latch using a C-element as a
controller. The latch holds data when the enable port is ’1’. 5.4(b): The symbol used
for an asynchronous latch. The handshake signals are not explicitly drawn.

Pipelines

C-elements can be connected as shown in figure 5.5(a) to function as the controller
of a pipeline in a 4-phase bundled data circuit. The output of each C-element goes
to the enable-port on a latch as shown in figure 5.4(a). The corresponding schematic
using the symbol for an asynchronous latch is shown in figure 5.5(b).

C

en

D Q

C

en

D Q

C

en

D Q

delay delay delay

Combinational

logic

Combinational

logic

(a)

Combinational

logic

Combinational

logic

(b)

Figure 5.5: 5.5(a): An asynchronous pipeline with handshake signals exposed.
5.5(b): The same asynchronous pipeline using the schematic symbol for a latch in
figure 5.4(b)

INTRODUCTION TO ASYNCHRONOUS CIRCUITS 29

The setup and hold times of the latches must not be violated, which requires the
request signals to be delayed by at least the slowest path through the combinational
logic. This is accomplished by a delay element, which may be implemented in any
manner, as long as the delay is “long enough” and no glitches occur on the output of
the delay element.

5.1.4 Pipeline Concepts

Tokens And Bubbles

A common concept used in describing pipelines is tokens and bubbles [15]. These
indicate the state and contents of an asynchronous latch, with a valid token indicating
valid data and an empty token indicating the return-to-zero part of the handshake.
Bubbles indicate that the latch is able to propagate a token of either type. Thus
tokens flow forward while bubbles flow backward, feeding the flow of tokens. If
all latches in the pipeline are filled with tokens, data will not be able to propagate
until a bubble has been inserted at the end of the pipeline. For a steady flow of data,
a balance between tokens and bubbles must thus be established. Figure 5.6 shows
a snapshot of a pipeline described by latches containing tokens and bubbles. Valid
and empty tokens are represented by the letters ’V’ and ’E’ respectively. Tokens are
distinguished from bubbles by tokens having a circle around their descriptive letter.

VEE E VV

tokenbubble bubble token token token

Figure 5.6: Part of an asynchronous pipeline with tokens and bubbles marked.

A consequence of having both valid and empty tokens is that only every other
latch may hold valid data, but this is no different than the case of synchronous cir-
cuits, where two latches are used to make a flip-flop which stores a single data el-
ement. However, more elaborate latch controllers called semi-decoupled and fully-
decoupled controllers exist that allow valid tokens in all latches when the pipeline is
full [15].

When dealing with 2-phase protocols, no empty tokens are used, as there is no
return-to-zero part of the handshake.

Forward And Reverse Latencies

A metric used for the timing of handshakes is forward and reverse latencies. The
forward latency is the time it takes a request to arrive at the next pipeline latch, while
the reverse latency is the time an acknowledge takes to arrive at the previous latch.
The latencies of both 0 → 1 and 1 → 0 transitions of both request and acknowledge
signals are used, even though the latencies of both transitions are normally identical.

30 CHAPTER 5 ASYNCHRONOUS CIRCUITS

The 0 → 1 transition is the latency of a valid token or bubble while the 1 → 0 tran-
sition is the latency of an empty token or bubble, provided that the other handshake
signal is “in place” when the one considered arrives, eg. the value of the forward
valid latency assumes that the acknowledge from the succeeding stage is ’0’ when
the request arrives [15].

The symbols used to denote these latencies are L f ,V , L f ,E , Lr,V and Lr,E for for-
ward valid and empty and reverse valid and empty latencies respectively.

5.2 Modeling Asynchronous Circuits

A typical timing accurate model of a synchronous circuit goes along the lines of
“wait for the clock to tick and then do these computations.” However, asynchronous
circuits are without the global clock of synchronous circuits, requiring modelers to
find some other means of generating timing accurate models.

5.2.1 Handshake Level Modeling

The modeling level comparable to the in-between-clocks level for synchronous cir-
cuits, is the handshake level. [3] describes a library for simulation at this level. As
in RTL models of synchronous circuits, the handshake level modeling uses latches
and combinational logic. The addition over RTL models is explicit delays for the
handshake signals.

A fully timing accurate model at this level is quite easy to develop, as a latch
can be fully characterised by the forward and reverse latencies of the pipeline stage.
Even though these values assume that the previous part of the handshake is completed
when the signal triggering the next part arrives, these latencies are a good measure
for the delay between the arrival of any signal triggering a transition of the C-element
and this transition arriving at the neighbouring C-elements in the pipeline.

While the number of signals is reduced considerably compared to a netlist of stan-
dard cells, at least four signal transitions happen for each latch: One for each transi-
tion on an output for two outputs each performing two transitions. Each of these tran-
sitions needs to be handled by the simulation engine, each causing a slightly slower
simulation execution. However, replacing components in the model with those from
the current implementation of MANGO is quite easy, as the model and MANGO
components have nearly identical module declarations in Verilog terminology.

For simulation purposes, this modeling level is equivalent to considering tokens
and bubbles. Although all the details of the handshake are not explicitly modeled by
transitions of request and acknowledge when considering token and bubble flow, the
number of events1 to be handled by the simulation engine is of the same magnitude
as when fully modeling the handshake.

1By an event is meant a condition that the simulation engine needs to react to. This is for example
to trigger all processes that are sensitive to changes in a signal when said signal makes a transition.

MODELING ASYNCHRONOUS CIRCUITS 31

5.2.2 Higher Level Modeling

An even higher level of abstraction in modeling asynchronous circuits requires that
the details of handshakes are abstracted away. This section will explore how this may
be possible.

Non-Stalling Pipelines

The main issue in correctly capturing the behaviour of asynchronous circuits in high
level models is not the forward flow of data, but rather the reverse flow of bubbles
needed to enable the data flow. A non-stalling pipeline is characterised by the desti-
nation always accepting data immediately when it arrives, as is the case of the shared
areas of MANGO, ie. the link and switching structures in the nodes.

At initialisation, the pipeline is full of bubbles. When a valid token arrives at
such a pipeline, that token will have passed through the pipeline after

∑
i Li

f ,V , where
i denotes a pipeline stage - ie. the sum of the forward latencies of all pipeline stages.
If the maximum rate at which tokens may be injected into the pipeline is no faster than
the slowest pipeline stage is able to accept new tokens, a token will never be stalled
inside the pipeline by another token, ie. the pipeline performance is constrained by
the forward flow of tokens. This is true, as the empty token will never catch up with
the valid token, as it will never wait longer in a stage than the difference in insertion
times between the valid and the empty token.

In this case, the behaviour of a non-stalling pipeline is fully characterised by the
forward latency of the entire pipeline and the maximum rate of injection of valid
tokens. There is no need to consider empty tokens as valid tokens simply may enter
the pipeline half as often as tokens in general. Also, it is not necessary to consider
bubbles, as “enough” exist in the pipeline in order to avoid tokens waiting for each
other as described above. An arbitrarily long pipeline may thus be reduced to a
FIFO with a constant delay from input to output and a restriction on the frequency
of insertion of new elements. This is illustrated in figure 5.7 which shows a pipeline
with an injection rate of one token each two “time units” - for simplicity a “time unit”
is a new state of the pipeline - and a latency of each pipeline stage of one time unit.

Now, consider the case where one of the pipeline stages is slow compared to the
rate at which tokens are injected into the pipeline. As tokens will be injected faster
than they can pass the slow pipeline stage, they will accumulate in the pipeline up to
the bottleneck stage. In a “steady state”, the pipeline performance after this stage will
thus be constrained by the forward flow of tokens as before, but up to the bottleneck,
performance will be limited by the reverse flow of bubbles. In this steady state, there
will be a constant forward latency through the pipeline as well as a constant injection
rate of new tokens. However, until the steady state is reached, the forward latency
and injection rate vary and are not easily modeled. This situation is illustrated in
figure 5.8 where the injection rate is one token every two time units as before, but
the middle pipeline stage has a latency of three time units. In this figure, the initial
forward latency and injection rate are seven time units and one token every two time

32 CHAPTER 5 ASYNCHRONOUS CIRCUITS

E E E E E

E E E EV

E E EVV

E E

EE

V V

V V

E V V

E V

E

E

E

E

E

V

VV

EV VE

Figure 5.7: Execution of an asynchronous pipeline. Time progresses from top to
bottom. New tokens are inserted every two time units while all pipeline stages have
a latency of one time unit, making the latency of the entire pipeline five time units.

units respectively, while the steady state forward latency and injection rate are eleven
time units and one token every four time units respectively.

Depending on the pattern of use of the pipeline in the modeled system, either
the initial or the steady state parameters may provide useful models. In case tokens
are rarely injected, the initial parameters may provide an accurate model, but in case
tokens are injected at the maximum rate, the steady state parameters accurately model
the behaviour of the pipeline except for the first few tokens, which have a longer
forward latency than would really be experienced. If nothing is known about the
pattern of use of the pipeline, a compromise might be used or a more detailed model,
such as fully modeling the handshakes.

This type of model only considers what happens at the two ends of the pipeline.
There is no information concerning the internals of the pipeline - not even the depth of
it. Realistic injection rates and forward latencies ensure that the model pipeline holds
no more tokens than an implementation would be able to. This makes this type of

CONCLUSIONS 33

E E E E E

E E E EV

E E EVV

E E

EE

V V

V

E

E

E

V

V

E

E E

V

V

E EV

VVE EV

VVEV V

VVEE V E V

VEE V

VVEE V

VVEV

VVE

V

E

E V

VEE V E

EV E

E V E

E E

E

E

VEV

VEV

EV

V

E

E EV

Figure 5.8: Execution of an asynchronous pipeline with a bottleneck. All pipeline
stages have a latency of one time unit, except for the middle pipeline stage which has
a latency of three time units, which causes variations in forward latency and injection
rate until a steady state is reached.

model very fast executing, as the number of events the simulation engine must handle
is reduced even further compared to the handshake level model. However, replacing
components in the model with actual implementations becomes more complicated,
as a translation between handshake signals and the model is necessary.

5.3 Conclusions

The two approaches to modeling asynchronous circuits examined in this chapter have
each their advantages and disadvantages with regard to the purposes of modeling
MANGO. A handshake level model allows very easy replacement of model compo-
nents with actual implementations of the same components, whereas a higher level
model needs some translation between handshake signals and the model. However,
the higher level model triggers very few simulation events, the number being inde-
pendent of the length of the asynchronous pipelines. A handshake model triggers
more events per token, and this number of events increases linearly with the depth of

34 CHAPTER 5 ASYNCHRONOUS CIRCUITS

the pipeline.
A faster executing model will have lasting benefits with regard to exploring dif-

ferent network topologies and application mappings. The added effort of converting
between a high level model and handshake signals when replacing model compo-
nents with actual implementations is better justified than a general reduction in sim-
ulation speed when exploring system designs.

The model to be developed is based on the higher level modeling of asynchronous
circuits.

Chapter 6

Modeling MANGO

This chapter will describe the design of a structural, high level model of the current
implementation of MANGO. As previously mentioned, a high level model does not
allow effortless replacement of model components with actual implementations. The
focus of this section is on correct functionality and accurate timing of the model,
while interchanging model components and actual implementations are defered to an
example of such in chapter 7.

6.1 Functionality

A functionally accurate model of MANGO - or any other Network-on-Chip - is char-
acterised by transporting transactions between IP-cores. How data is represented and
whether transports are timed is irrelevant to a functional model. Specifically, the data
coding - 4-phase bundled data or 2-phase dual rail - may or may not be reflected in
the model, and has no influence in terms of functionality. However, replacing model
components with actual implementations require a conversion between the model
data representation and the coding used in the actual implementations. This is sim-
ilar to the requirement of converting between handshake signals and the model, and
both conversions may be done at the same point.

Most of the components in MANGO have a rather simple functionality. Models
of the major components in MANGO will be described in this section.

6.1.1 Link

The links - including link encoders and decoders - are essentially FIFO buffers. The
link acts as an asynchronous pipeline without combinational logic between pipeline
stages. The only combinational logic is at the ends of the link, where flits are encoded
and decoded for transmission. As this coding is of no consequence to a functional
model, it may be omitted completely, but it may also be included if this is advanta-
geous to the implementation of the model.

35

36 CHAPTER 6 MODELING MANGO

6.1.2 Node

As described in chapter 3, the node is comprised of VC buffers, BE and GS routers
and ALG arbiters. Each of these will be dealt with individually in the following.

Virtual Channel Buffers

A different type of buffer is used for each of GS and BE channels. A common char-
acteristic of these two buffers is that a mechanism is in place for either type that
guarantees that when a flit is transmitted, it can be stored in the destination buffer - it
may not stall in the shared areas of the NoC. This mechanism may be taken advan-
tage of in a model, as the node knows that all incoming flits may proceed directly to
their destination buffer when they arrive. This supplants backwards to the link that
also knows that any flit it receives will be accepted by the node. There is thus no
need for an indication backwards of whether a flit may be accepted or not in these
parts of the model. Otherwise, both types of buffer acts like FIFOs. The following
will deal with each VC type individually.

The GS buffers consist of three decoupled latches, meaning three flits may be
stored in the buffer at a time. One latch is the lockbox and another latch is the
unlockbox. A GS buffer may not transmit a flit before receiving an unlock signal
from the destination buffer in the neighbouring node. This unlock is generated when
a flit leaves the unlockbox, and for GS this is the mechanism mentioned above that
prevents stalls in the shared areas of the NoC. A GS VC buffer thus needs unlock in-
and outputs and data in- and outputs, and no signals for indicating whether a flit may
be received or not.

The BE channels use both in- and output buffering in the node. Four flits may
be stored in each buffer, and a credit based system is used to ensure no more flits are
sent than may be received. An input BE buffer does not need to know how deep it
is, as long as the output buffer in the neighbouring node knows how many credits are
available. For the output buffers, an indication backwards is needed to the router in
order to prevent too many flits being sent to them. Furthermore, a similar indication
is needed between the arbiter and output buffer. This will be described below when
the arbiter is described.

Routers

The routers in the nodes are controlled by the incoming flits and transport these flits
to their destination VC buffer. The GS and BE routers are quite different as described
in chapter 3.

Flits can not stall in the GS router which can simply pass an incoming flit on to
its destination. The GS router is non-blocking, which means practically no effort is
needed in modeling it, as flits make no interactions in the GS router. Furthermore, no
two flits from different inputs may be routed to the same output, as channel reuse is
not allowed in MANGO.

TIMING 37

The current BE router is problematic in that all flits must pass through a single
latch creating additional dependencies between VCs. This leads to some uncovered
deadlock problems that require a more restrictive routing scheme than the xy-routing
scheme described in section 2.1.2. Efforts to replace the current BE router are under-
way, but not completed. For this reason, no detailed model of the BE router will be
created as part of this work. Furthermore, as the router must contain some means of
preventing interleaving of flits from different BE input channels on one output chan-
nel, which requires interaction between the BE router and BE VC buffers, the BE VC
buffers will not be fully implemented either.

ALG Arbiter

The functionality of the ALG is described in both [5] and section 3.1.2. One model
of this arbitration scheme closely resembles the implementation. It uses two levels
of eight latches, one for each channel. The first level is the admission control, while
the second is the static priority queue (SPQ). When a flit moves from the admission
control to the SPQ, a list of which other channels the current channel must wait for
before another flit may enter the SPQ is updated.

In order to determine which flit in the SPQ to transmit first, a model of the control
path of the merge shown in figure 3.4 should be made. This is simply a binary tree,
where flits enter at the leaf corresponding to the VC they are being transmitted on
and progress upwards until they reach the root of the tree. At this point, the flit has
passed through the merge and may be passed on to the link.

The model of the ALG takes advantage of the fact that at most one flit is in flight
at a time on each GS VC. There will thus at most be one flit in the arbiter on each
channel, removing the need for an indication backward of readiness to accept another
flit. Similarly, as flits can not stall on the link, there is no need for such an indication
from the link back to the arbiter. However, such an indication is needed for BE VCs,
as these may have more flits in flight at a time.

6.2 Timing

The service guarantees - and thereby the behaviour - of MANGO are based fully
on the arbitration scheme employed [6]. Thus, an accurate model may be created
by ensuring that flits arrive at the correct time at the arbiter and that flits are passed
accurately through the arbiter. This section will add timing to the functional model
designed above in order to fulfil these requirements as closely as possible.

One of the goals for this model is to be fast executing, which means that the
number of simulation events must be minimised. As each delay or delayed signal
assignment1 triggers an event, the number of single delays should be minimised. This

1A delayed signal assignment is for example Z <= A and B after 5 ns; while a delay might be wait
5 ns; in VHDL.

38 CHAPTER 6 MODELING MANGO

means that optimisations are made across multiple components and components are
only discussed individually when some special cases are present.

Assumptions

A number of assumptions are made concerning the timing behaviour of different parts
of MANGO. These assumptions are presented and justified here.

The first assumption is that all paths through the GS router have symmetrical
delays, which means that the entire area between the output of the arbiter and the VCs
in the neighbouring node may be seen as an asynchronous pipeline. It is assumed
that the pipeline is constrained by the forward flow of flits, ie. it may be accurately
described by a single forward latency and a maximum rate of injection of new flits
as described in section 5.2.2. This is supported by [5] that states that the forward
latency in the shared areas is constant. The only variation in the time flits take moving
between two VC buffers is caused by being stalled in the arbiter, waiting to be granted
access to the shared areas.

The second assumption is that the forward latency through the arbiter is constant
for all channels. Furthermore, it is assumed that a flit does not propagate beyond the
SPQ before being granted access to the link. Thus, the constant forward latency is
applied to the flit from the moment it is granted access to the link. While this is not
entirely consistent with the implementation of the arbiter presented in [6], the actual
deviation should be minimal. Furthermore, the guarantees provided by MANGO
assume worst case latencies, which are the same for all VCs through the arbiter.

The third assumption is that the arbiter is ready to accept a new flit when it arrives,
ie. the handshake is in its initial state - request and acknowledge are ’0’ - when
the flit arrives. For GS connections this is realistic as the previous flit must first
propagate through the shared areas and through the unlockbox in the VC buffer in the
neighbouring node, and then the unlock signal must propagate back across the link.
The input of the arbiter has all this time to complete a handshake. As completing a
handshake only involves propagation through a single C-element, this is more than
enough time, making the assumption very realistic.

The fourth assumption is very similar to the third one, in that it states that the
unlockbox is ready to accept a new flit when it arrives. As there is a significant
amount of time between flits similarly to above, this assumption is realistic.

Merging Delays

Using these assumptions, the general model may now be described. In order to
minimise the number of simulation events, the delays through the shared areas are
merged into a single pipeline model. Thus, the model of the routers in the nodes
is delay-less, while the actual delay through these is contained in the model of the
link. In order to further reduce the number of simulation events, the forward latency
through both the VC buffers and the arbiters may also be merged into the delay on
the link. In order to realise that this creates a realistic timing model, consider figure

TIMING 39

6.1. This figure shows a model of the communication on a VC between two nodes.
The single delay used on the link in the model covers the area from just before one
arbiter to just before the next one. A number of different cases will now be examined.

Loc
kb

ox
es

V
C
 b

uf
fe

rs

...

A
rb

ite
r

...

V
C
 b

uf
fe

rs

Loc
kb

ox
es

U
nl

oc
kb

ox
es

A
rb

ite
r

R
ou

te
r

Lin
k

pi
pe

lin
e

Figure 6.1: A model of the communication between two nodes. The entire delay is
contained in the link, while all other parts of the model are delay-less.

In the first case, there are no flits already present in the parts considered in the
figure. When a flit arrives at the VC buffer on the left, it is instantly moved to the
arbiter, which grants it access immediately. It then enters the link, where it is delayed
for the aforementioned amount of time. After this time has passed by, the flit arrives
at the router and is instantly passed on to the destination VC buffer, where it is passed
on to the arbiter. As the delay on the link encompasses everything between the first
lockbox and the second arbiter, the flit arrives on time at the second arbiter. However,
the unlock signal caused by passing the unlockbox is generated “too late” as the
flit has already passed the buffer and the unlockbox when it is generated. This can
be rectified by shortening the delay on the unlock propagation across the link by a
similar amount of time, causing the unlock to arrive2 on time, assuming the unlock
propagation is longer than the time to be subtracted from it. This is a reasonable
assumption, because the unlock signal both needs to pass through a router and across
the link. The timing of a transmission of a single flit is accurately modeled in this
case.

Transmission of multiple flits on a single VC requires a minor modification to the
design above. If the second flit arrives after the lockbox has been unlocked, the situ-
ation is as above and everything is fine. However, if it arrives before the lockbox has
been unlocked, the propagation from VC buffer to arbiter happens instantly, rather
than taking the time this propagation does in the actual implementation. Thus, the
flit arrives too early at the arbiter compared to the implementation. This may be rec-
tified by delaying the unlock by the forward latency of the lockbox. Now, the unlock
arrives later in the model than it does in the implementation, but still, the timing of
flits is correct. In order to realise this, observe figure 6.2 which shows wavetrace-like
illustrations of the sequence and timing of events around the lockbox. The dataA
and dataZ signals represent the positions just before and just after the first lockbox in
figure 6.1 respectively. The forward latency of the lockbox is arbitrarily assumed to

2By the arrival time of the unlock is used as a reference the time at which the lockbox is able to
accept a new flit, and not the time at which the lockbox starts reacting to the unlock signal.

40 CHAPTER 6 MODELING MANGO

be two time steps in the figure. The actual value is of no consequence to the design.
In all the figures, the lockbox starts out locked, and the three topmost signals indicate
the situation in MANGO while the other signals indicate the situation in the model.

unlock

dataA

dataZ

unlock

dataA

dataZ

MANGO

Model

(a)

unlock

dataA

dataZ

unlock

dataA

dataZ

MANGO

Model

(b)

unlock

dataA

dataZ

unlock

dataA

dataZ

MANGO

Model

(c)

unlock

dataA

dataZ

unlock

dataA

dataZ

MANGO

Model

(d)

Figure 6.2: Wavetraces showing the timing around the leftmost unlockbox in figure
6.1.

In figure 6.2(a), the lockbox is first unlocked, and a flit arrives a “long” time
afterwards. This is similar to the initial situation, as the system considered here is
back in its initial state before the flit arrives. In MANGO, the flit needs two time
steps to propagate through the lockbox, while in the model, the flit’s arrival at the
lockbox is delayed, but a delay-less lockbox ensures that the flit is produced at the
output of the lockbox at the correct time. Also notice that the unlock signal in the
model is delayed by the forward latency of the lockbox compared to MANGO as
discussed above.

In figure 6.2(b), the flit arrives just after the lockbox has been unlocked. Again,
the flit takes some time to propagate through the lockbox in MANGO, while its
arrival is delayed in the model, such that it is output at the same time in both MANGO
and the model. If the lockbox is unlocked and the flit arrives within a very short time
of each other, it has no effect on this timing due to the definition of the time when the
unlock arrives - which is the same as the time when the lockbox is unlocked - made
above.

In figure 6.2(c), the flit arrives just before the lockbox is unlocked. In MANGO,
the flit is at the output of the lockbox two time steps after it has been unlocked. In
the model, the flit arrives at the input to the lockbox at the same time relative to the

TIMING 41

unlock as in MANGO. However, in the model the flit propagates through the lockbox
in zero time when the unlock arrives, allowing it to reach the output at the same time
as in MANGO.

In figure 6.2(d), the flit arrives a “long” time before the lockbox is unlocked.
Again, the flit spents some time propagating through the lockbox in MANGO, while
in the model, the flit is instantly propagated once the unlock arrives. Both MANGO
and the model output the flit from the lockbox at the same time. In all four cases, the
timing is seen to be accurate.

It has been shown that by merging all forward latencies from arbiter input to
arbiter input into one single latency and by making the latency of an unlock that of
the time it takes from the generation of an unlock until the receiving lockbox is ready
to accept a new flit subtracted the forward latency of a VC buffer and a lockbox and
added the forward latency of a lockbox back again, a model that has flits arrive at the
correct time at the arbiter can be made. This model is unaffected by the time spent
in the arbiter waiting for access to the link, as extra time spent here simply results in
the lockbox being unlocked at a later point in time.

Network Adapter

When a flit is heading to the NA rather that a VC buffer, the forward latency is most
likely different and somehow this difference in delay must be modeled. Whether it
is done by allowing variable delays on the link or using a short delay for all flits
followed by the remaining delay for those flits that require an additional delay is
decided in the implementation of the model.

For data entering a node from the NA, this design can also be used, as this part
of MANGO is functionally identical with a lockbox preventing too many flits being
sent. The only difference is that flits from the NA have a much shorter delay to their
destination VC buffer than flits being transmitted over a link. Thus, the exact same
construct with a single delay may be used to generate the desired timing behaviour.

Arbiter

The requirements for an accurate timing model stated at the beginning of this sec-
tion were that flits arrive at the correct time at the arbiter and that flits are passed
accurately through the arbiter. The first requirement has been fulfilled by the timing
model described above, while a functionally accurate arbiter was described in section
6.1.2. Under the assumptions made at the start of this section, the delay through the
arbiter is constant. This constant delay has been merged into the single delay in the
link, requiring the only timing in the arbiter to be a constant delay between granting
flits access to the link - the rate of injection. Even though flits do not arrive at the
merge in the arbiter at the correct absolute time, they do arrive at the correct time rel-
ative to each other due to the constant forward latency through the admission control
and the static priority queue which is the same for all VCs.

42 CHAPTER 6 MODELING MANGO

One element of the arbiter which is impossible to model such that the behaviour is
identical to what would be seen in a manufactured chip is the arbitration unit seen in
figure 3.4. This arbitration unit makes a random choice if two flits arrive at the same
time as described in section 3.1.2. How this choice is implemented in the model is
irrelevant as long as no VC is favored.

Chapter 7

The Model

This chapter will present the implementation of the model created as part of this
work. It follows mostly the design created in the previous chapter. As a model of the
network adapter has not been created, the actual implementation of the NA is used
instead. This also provides some insight into the issues associated with using actual
implementations of components within the model.

First, a choice of modeling language is made, then the implementation of the
model is described and lastly the inclusion of the actual implementation of the NA in
the model is described.

7.1 Choice of Modeling Language

Under the requirement to be able to co-simulate the model with the real network,
three modeling languages are available: VHDL, Verilog and SystemC. The current
implementation of MANGO is written as netlists of standard cells in Verilog. The
environment to be used for simulation is Mentor Graphics’ Modelsim [13] as it sup-
ports co-simulation of these languages.

VHDL and Verilog are straight-forward to co-simulate in Modelsim. Component
and entity declarations can be moved fairly freely between the two, as long as no
user-defined types are used.

A model in Verilog can obviously be co-simulated with the current implementa-
tion of MANGO. However, Verilog does not allow the user to define types, requiring
all modeling interfaces to be at the bit-level, ie. rather than passing an OCP request
type, it is necessary to pass all the fields of a request as appropriately wide vectors.

A SystemC model can be co-simulated with the Verilog description of MANGO
fairly easily. Wrappers must be used in order to convert to and from user-defined
types, but the model itself may use any abstraction of for example OCP requests and
flits. Furthermore, inheritance in C++ allows for easy replacement of component
types in the model, which is not possible in either VHDL or Verilog.

SystemC is chosen as the modeling language, due to the ease with which abstrac-
tions can be made as well as the easy replacement of component types. The execution

43

44 CHAPTER 7 THE MODEL

speed of a SystemC model should also be faster than that of other models in other
languages, as SystemC is compiled to native machine code. The following will give
a brief introduction to SystemC and general methods for getting fast execution times
of SystemC models.

7.1.1 Introduction to SystemC

SystemC is a class library for C++ and a reference simulator is freely download-
able at http://www.systemc.org. The basic terminology of SystemC is as follows: A
design unit is called a module, the contents of modules are defined in methods or
threads and connections between modules are made on ports. This will be elaborated
below.

Modules and Interfaces

High-level modeling in SystemC operates with interfaces and modules, which are
both defined as classes. In order to avoid confusion with bus interfaces such as
OCP, SystemC interfaces will be denoted by their class name, sc_interface. Gen-
eral sc_interface and module classes are provided by SystemC and user defined
sc_interfaces and modules must inherit from these.

An sc_interface is an abstract definition of the functions a module implementing
that sc_interface must provide. A module implements an sc_interface by inheriting
from it. These concepts are illustrated in figure 7.1. In this figure, the user defined
abstract class link_tx_if inherits from sc_interface, and the class called link inherits
from both link_tx_if and sc_module. The link_tx_if class defines the functions that
must be implemented by a link class that may be used for transmitting flits.

class link_tx_if : virtual public sc_interface {

 void tx_flit(flit*)=0;

};

 ...

class link : public sc_module, public link_tx_if {

 void tx_flit(flit* f) { ... }

};

sc_interface sc_module

User defined classes

SystemC classes

Figure 7.1: SystemC interfaces and modules. The link_tx_if sc_interface defines the
functions the link module must implement.

Methods and Threads

SystemC has three means of defining the contents of a module. These are methods,
threads and cthreads. Cthreads are special-case threads, which are only sensitive to a

CHOICE OF MODELING LANGUAGE 45

clock signal. Methods and threads will be described in the following.

Methods

A method is a state-less process. A method is defined as a function in the module
such as the tx_flit function in figure 7.1, and is made sensitive to a list of events in the
module constructor. These may be explicit sc_event objects or events on for example
input ports on the module. The sensitivity list may be dynamically updated, if such
is required. It is also possible to temporarily disable the sensitivity list and instruct
the simulation engine to trigger the method again after a certain amount of time.
Whenever an event in the sensitivity list is triggered, the method is executed, and due
to the state-less nature of methods, it is not possible to wait for a certain amount of
time or for an event to occur in the middle of execution. Thus, when the sensitivity
list is dynamically updated or temporarily replaced by a fixed time before triggering
the method again, execution continues until a return statement is encountered.

Methods are light-weight processes due to their lack of state. This means low
memory requirements and fast execution, as they simply need to be called by the
simulation kernel. If a method needs to have memory between different executions,
it can be achieved by storing the required data in members of the module.

Threads

Threads are processes which are able to retain state. Threads are defined just like
methods. A thread’s execution is only started once, and if the end of execution is
reached, the thread may not start again. Looping behaviour thus requires an explicit
loop in the function code. Threads may also have a sensitivity list which may also
be updated dynamically. Execution can be suspended for a specific amount of time
or until an event in the sensitivity list or a specific event occurs. Threads are heavier
than methods due to the requirement to store all data used by the thread as well as a
pointer to the present point of execution.

Module Ports

SystemC provides four types of ports: In-, out- and inout-ports and simply ports,
which will be called sc_ports in order to avoid confusion. The first three are com-
parable to the port types of identical names in other modeling languages, while an
sc_port is to be used at higher level of abstraction than provided by other languages.
The following will deal exclusively with these high-level sc_ports.

An sc_port is a templated class that may have any class type as template argu-
ment. Typically, an sc_interface will be given as template argument, as these define
the functions a module of the given type must implement. Any such module can be
bound to the sc_port during design elaboration. It is thus possible to change what
type of module is actually used in a top-level module, which connects lower-level
modules. For example, in a system consisting of a producer, a consumer and a FIFO,
multiple implementations of the FIFO may exist such as a high-level model, an RTL

46 CHAPTER 7 THE MODEL

model or even a netlist of standard cells. If all three implementations implement the
same interface, they may be interchanged with absolutely no changes made to the
producer or consumer. It is also possible for the different implementations to have
different behaviour - e.g. blocking or non-blocking writes - but extreme care must
be taken when using implementations with different behaviour, as the producer or
consumer may rely on a specific behaviour.

7.1.2 Simulation Performance

A number of modeling techniques for high performance simulation are presented in
chapter 8.5 of [9]. These include using transactions on sc_ports and not signals for
transporting data between modules. When the functions defined in the sc_interface
are called, both control and all the data in the transaction are transferred to the re-
ceiving module without involving the simulation engine. This also has the effect that
modules are not pin-accurate - they do not have all in- and outputs defined explicitly
as an RTL model would have. For example, a burst write may be made through a
function burst_write(int addr, int* data, int length). When this function is called,
control is transferred to it along with the address, the burst length and a pointer to the
data being written.

This leads to another technique, which is to pass data by reference as often as
possible in order to avoid spending time copying the data. One must of course take
care in case the producer needs to access the data after having transmitted it, as
any changes made to the data by the consumer also affect the data as seen by the
producer. This is not an issue in MANGO, as the components do not change the flits
after passing them on to the next component.

Another technique used in the small example of a burst write above is to use only
high-level data types. Bit-vectors and logic-vectors1 should be avoided. It is also
possible to transfer a single object or struct with the entire request rather than the
individual fields. The function would then be burst_write(req_t& req).

One more technique which may be taken advantage of in modeling MANGO
is to have some modules that contain no processes. Rather, all the processing these
modules do is made in the function called through the sc_interface. This may be used
in the delay-less modules in the model. Rather than receiving the data, then inform
the simulation engine that the data should be processed immediately and then have
the simulation engine trigger the function that does the processing, this technique
lets the function that receives the data do the necessary processing right away and
possibly pass the data on to the next module. This will be elaborated when the
implementation of the model is described below.

The last technique which will be used in the implementation of the model is to
use methods rather than threads as often as possible. Due to their state-less nature,
methods execute more quickly than threads which require a context switch each time
they are triggered [9].

1A logic type variable may for example have values 0, 1, X and Z, whereas a bit type variable may
only have values 0 and 1.

IMPLEMENTATION DETAILS 47

Some further techniques include using dynamic updates of the sensitivity list to
avoid unnecessary triggering of methods and threads and make methods and threads
that are triggered frequently do as little work as possible. However, these are not
really relevant to a model of MANGO as the methods used are only sensitive to a
single event and all methods are triggered equally often.

7.2 Implementation Details

This section will present the implementation of the model as it currently is. First, the
representation and transport of flits in the system is discussed, then the implementa-
tions of the node, arbiter, VC buffers and link are presented and it is described how
the actual implementation of the NAs is fitted into the model.

7.2.1 Data Representation and Transport

Transporting data is at the heart of every NoC. The key factor for an accurate model
is that data arrives at the same time in both the model and in the actual NoC. How it
gets there in the model is unimportant.

In MANGO, the OCP [14] interface is used to provide end-to-end communi-
cation between IP-cores. The OCP transactions are divided into multiple flits for
transmission through the network with each flit containing a certain part of the trans-
action. This partitioning into flits must be reflected in the model, as the transaction
can only initiate at the slave core when a certain number of flits have arrived. The
specific number depends on the transaction type and on whether the transaction is
made on a GS or a BE connection.

One possibility for transporting data through the model is to let each flit reflect
the contents it would have in MANGO. This is a very straight forward approach that
allows easy replacement of model components with the actual implementations that
have a certain bit-width. The contents of the flit simply needs to be converted to
a logic- or bit-vector of that width before the replaced component and back again
afterwards.

It is possible in the model to disassociate a flit and it contents. A scheme for
transporting data that does this is to keep the entire transaction in the first flit and let
the remaining flits be “dummy” or empty flits. The receiving NA would then have
to keep count of the number of flits received and only initiate the transactions when
the correct number has arrived. Using this approach, it is less straight forward to
replace model components with the actual implementation. The contents of the first
flit would need to be passed around the replaced component, as all the data simply
would not be able to be passed through the component.

A variation of this last scheme is to immediately move the transaction to the des-
tination NA around the network and only transmit dummy flits through the network.
This makes the NAs more complex, as they theoretically need to be able to store an
arbitrary number of transactions while waiting for the flits to arrive. Realistically
the number would be limited, but some complexity would still be added to the NA.

48 CHAPTER 7 THE MODEL

Moving data like this also allows easy replacement of model components with ac-
tual implementations, as the dummy flits contain nothing and thus can be converted
to any bit-width. However, if the purpose of replacing a component is to evaluate
power consumption in that component, any correlation between the contents of suc-
ceeding flits that might impact switching activity would be lost.

As the NA has not been modeled as part of this work, the decision necessarily is
to have each flit contain the same parts of the transaction as it does in MANGO. This
would also be the decision made if the NA had been modeled, as it is the option with
the lowest overhead and the easiest replacement of components. The data structures
used for the flits would be an abstract flit class from which each unique type of flit
would inherit. These types should match the individual flits in a transaction described
in [1]. The implementation presented below is ready for this approach as the data type
used in the sc_interface functions is pointers to an abstract flit type.

7.2.2 Components

This section will describe the implementations of the individual components. The
source code for both these components and the test benches described in chapter 8
can be found in appendix A.

Link

There are two sc_interfaces to a link: One at either end. For a module sending flits
on a link, the sc_interface consists of a single send function, which takes a flit as
an argument. For a module receiving flits, the sc_interface consists of functions for
unlocking GS and for crediting BE connections. A link in the model implements
both these sc_interfaces. A link makes use of two sc_interfaces as well: One to the
node at either end. These have the same functions as those of the link itself. This
description matches a one-way link, and two links are used to create a bi-directional
link between two nodes.

Transporting flits across the link is done in a C++ standard queue used as a FIFO
buffer. As mentioned in section 5.2.2, the depth of the pipeline - here represented by
the maximum number of flits on the link at a time - does not need to be known if
the timing is accurate. A C++ standard queue is thus ideally suited to the purpose of
the link. When the send function is called, the flit is pushed onto the queue, along
with a time stamp indicating when the flit should be removed from the queue again.
An event associated with the send functionality is notified with the delay on the link,
triggering when the flit has arrived at the receiver. As it is only possible to have one
pending notification of an event in SystemC, the event is notified on transmission of
a new flit only if there are no other flits on the link. Otherwise, when a flit leaves
the link, the event is notified with the remaining delay of the next flit to arrive at the
receiver.

Transmission of unlock and credit signals is handled in much the same way as
transmitting flits. The link model imposes no restriction on the frequency with which

IMPLEMENTATION DETAILS 49

these signals can be transmitted. In MANGO a separate wire is used for unlock
signals for each channel, which has the effect that no restrictions on the timing of
unlocks between separate channels exist. The only restriction is on the frequency
with which a specific channel may be unlocked, but as the lockbox/unlockbox mech-
anism prevents a new flit from being transmitted before the channel is unlocked, this
restriction is automatically enforced.

In order to properly identify to the nodes from where an unlock signal arrives, the
link has a direction value. The value is the direction relative to the receiving node.
For example, a link transmitting flits from north to south and unlocks the other way
would have a direction value of north.

The link has two methods that are sensitive to the events triggered when flits or
unlock signals arrive at their destination. The functionality of initiating a transfer is
implemented in the functions defined in the sc_interface and thus need no methods
as described in section 7.1.1.

Node

The node is a combination of structural and behavioural modeling. The delay-less
routers are not implemented as separate components, as they can be implemented
simply as indexing into an array of VC buffers.

The implementation of the node does not contain a BE router or BE VC buffers,
as mentioned previously. However, as all programming flits are sent on the BE chan-
nel, it needs to be present somehow. Currently, that is done by simply having eight
GS VC channels and using statically programmed routing tables.

The model of the node is also different from MANGO in that the routing infor-
mation is appended to the flit at different points in the two. In MANGO, the routing
bits are appended to the flit as it leaves the node, such that the routing tables in one
node actually contain the values used in the neighbouring nodes. This is advanta-
geous, as the flits may be routed directly to their destination VC buffer when they
enter a node rather than have to wait for a table look-up. However, in the model, the
node looks up the destination based on the VC number the flit was transmitted from.
As statically programmed routing tables are used, this is not an issue, but if dynamic
programming is implemented, this must also be changed as the information is cur-
rently stored in two different places in MANGO and in the model. The programming
flits to the nodes would thus be sent to the wrong destination in the model.

The node implements a significant number of sc_interfaces: Two for the links to
use, one for the arbiter, one for the VCs internally and two for the NA. It makes use
of the two link sc_interfaces described above and one sc_interface to the NA. The
sc_interfaces implemented by the node will be presented here.

The sc_interfaces used by the links has the same functions as the link sc_interfaces
used by the node: Sending flits and unlock signals. The link identifies itself by a di-
rection as mentioned above.

The sc_interface used by the arbiter has two functions: One for moving a flit to
the link and one to indicate that the arbiter is ready to receive another flit on a given

50 CHAPTER 7 THE MODEL

VC. As this indication is only needed for BE VCs, it has no effect in this implemen-
tation. Similarly to the link, the arbiter must also identify itself by a direction.

The VCs have an sc_interface to the node which is used to transmit unlock sig-
nals. The VCs identify themselves by a direction and a number, which corresponds
to their priority in the ALG. These are used to look up the destination of the unlock
signal, just like it is done in MANGO.

The sc_interfaces used by the NA have one function each: Sending a flit and
sending an unlock signal. However, the sc_interface which provides the unlock func-
tion ought not be there, as the unlockbox is actually positioned in the node - not in
the NA. Sending flits from the NA functions similarly to sending flits from a link:
The destination is looked up in a table and the flit is delivered to the appropriate VC
buffer. This delivery ought to be delayed by the forward latency through the router,
unlockbox, VC buffer and two lockboxes - one when entering the node and one when
entering the arbiter - but this delay is not currently implemented.

The sc_interface used by the node to access the NA defines two functions: One
for sending flits and one for unlocking VCs. Similarly to the unlock function pro-
vided by the node to the NA, this functionality is in the node in MANGO and should
be moved there also in the model. The function could then be removed. Sending flits
functions the same as in all other sc_interfaces.

Arbiter - ALG

The arbiter implements one sc_interface for the forward flow of flits. As no high-
level reverse flow exists through the arbiter, this is the only sc_interface needed to
the arbiter. The arbiter makes use of an sc_interface to the node which has functions
for sending flits and for indicating to the BE VC buffers that the arbiter is ready to
accept a new flit.

The arbiter is implemented by two functions: One for graduating flits from the
admission control to the SPQ and one for transmitting the appropriate flit from the
SPQ on the link. When a flit is admitted to the SPQ, a boolean array is updated
to indicate which lower priority VCs have flits in the SPQ. This array is used to
guarantee that a flit on a given VC does not stall more than one flit on each lower
priority VC. When a flit from a given VC leaves the arbiter, this boolean array is
updated to indicate that higher priority VCs must no longer wait on the given VC.

The function that transmits flits does not accurately model the binary tree control
structure shown in figure 3.4. Rather, when it is time to transmit a flit, the highest
priority VC with a valid flit is selected. The binary tree control structure should be
included in the model to assure that flits are transmitted in the correct order.

When a flit is transmitted, a boolean variable is set to indicate that the arbiter
is busy, and an sc_event is set to trigger after the minimum time between flits can
be admitted to the link: The maximum injection rate of flits. A method sensitive to
this sc_event is then triggered when it is time to transmit a new flit. This function
has three steps: First, if there is a flit in the SPQ, the highest priority flit is trans-
mitted. Second, flits are graduated from the admission control to the SPQ. Lastly, if

IMPLEMENTATION DETAILS 51

no flit was transmitted in the first step, the current highest priority flit in the SPQ is
transmitted.

When a new flit arrives at the arbiter, it is placed in the admission control. If the
arbiter is not busy, the method described above is executed, otherwise the flit is left
in the admission control and will be handled by the method at some future point in
time. As mentioned, this does not accurately model the actual implementation of the
control structure in figure 3.4 and should be changed.

Virtual Channel Buffers

The VC buffers present two sc_interfaces to the node: One for sending flits to the
buffer and one for sending unlock signals and indications of the arbiter being ready
to accept a new flit. Even though the unlock mechanism is different for GS and
BE VCs, the same function signature may be used for the unlock function of both
types. Even though the GS VC buffers do not need the indication from the arbiter,
they may still implement a function that simply has no effect. This allows the VCs
to implement the same sc_interfaces and thus be interchangeable transparently to the
surrounding components. Of course, when the BE router has been implemented, care
must be taken to route flits on BE and GS VCs through the correct router. However,
as previously mentioned the BE parts of MANGO are not modeled in this work.

Two sc_interfaces are used by VC buffers: One to send flits to the arbiter and
another to send unlocks to the node which passes them on to the appropriate link.

The GS VC buffer model is delay-less as discussed in section 6.1.2. Therefore,
it contains no methods or threads and all work is done in the functions defined in the
sc_interfaces. The buffer can hold three flits at a time: One in the unlockbox, one
in the lockbox and one in a latch inbetween. When a flit is sent to the buffer, it is
immediately moved as far as possible towards the arbiter. If the flit enters or passes
the lockbox, a boolean variable is set to indicate the locked state. If the lockbox is
locked when the flit arrives, it is moved to the latch if it is empty or the unlockbox
if the latch is not empty. In case the unlockbox is passed, the unlock function in
the node sc_interface is called. When a VC buffer is unlocked, flits in the latch or
unlockbox are moved forward if any are present. The flit in the latch is sent to the
arbiter while the flit in the unlockbox is moved to the latch. The unlock function is
then called. If no flits are present in the VC buffer when the lockbox is unlocked, the
boolean variable that indicates the state of the lockbox is set to indicate that it is not
locked.

Overall

The effect of the node and VC buffers being without methods is that all processing
of flits in the nodes happens when the methods in the link and arbiter are triggered.
When a method on the link that indicates the flit has arrived at its destination is
triggered, the send function in the node sc_interface is called which calls the send
function in the VC buffer sc_interface. If the lockbox is not locked, the send func-

52 CHAPTER 7 THE MODEL

tion in the arbiter sc_interface is called, which calls the send function in the link
sc_interface. When control is returned to the VC buffer, it calls the unlock function
in the node sc_interface as the flit has left the unlockbox. The node then calls the
unlock function in the appropriate link, completing all the processing required in the
node for that flit. The call stack would be as shown in figure 7.2(a). If the lockbox is
locked at the time of the function call, the unlock function is called if the flit passes
the unlockbox and the call stack would be as shown in figure 7.2(b). If the flit is not
able to pass the unlockbox, the node::unlock_vc function would not be called, and
that part of the figure should be omitted.

The situation when an unlock arrives is similar and will not be described in detail.
The point is that the simulation engine is involved in very little of what happens inside
the node. The only time a function in the node is invoked by the simulation engine
is when a flit has been stalled in the arbiter. When a new flit can be sent on the link,
the simulation engine calls the method in the arbiter which in turn calls the link::send
function before returning control to the simulation engine.

7.3 Network Adapter

The NAs in MANGO have not been modeled as part of this work. Therefore, the
actual implementations need to be connected to the model in order to simulate a
system. This also presents an opportunity to discuss the issues involved when using
actual implementations alongside the model. First, a brief introduction to the NAs
will be given, then two approaches to interfacing between the model and the NAs
will be discussed and finally the details of this interfacing will be described.

7.3.1 Introduction

Two types of NAs exist: An initiator adapter which connects an OCP master IP-core
to the network and a target adapter which connects an OCP slave IP-core. Both NAs
have the same interface to the node, which consists of four 39 bit wide input ports and
four 39 bit wide output ports along with handshake signals on all eight ports. These
ports are treated similarly to virtual channels, three of them being able to access GS
connections and the last being assigned to BE traffic.

Each NA contains tables with routing information which need to be programmed
before they can be used. The tables in the initiator are programmed by the attached
master IP-core, while the tables in the target are programmed by a master IP-core
which transmits the programming information on BE transactions.

7.3.2 Interfacing Approaches

The NAs have two interfaces each: The one described above to the node and an OCP-
interface to the attached IP-core. It is only the interface to the node that needs to be
converted.

NETWORK ADAPTER 53

Simulation engine Simulation engine

link::flit_arrive

Simulation engine

link::flit_arrive
node::send

Simulation engine

link::flit_arrive
node::send

vc::send

link::flit_arrive
node::send

arbiter::send

Simulation engine

vc::send

Simulation engine

link::flit_arrive
node::send

vc::send

arbiter::send

link::send

Simulation engine

Simulation engine

link::flit_arrive
node::send

vc::send

arbiter::send

link::send

Simulation engine

link::flit_arrive
node::send

vc::send

arbiter::send

link::send

Simulation engine

link::flit_arrive
node::send

vc::send

arbiter::send

Simulation engine

link::flit_arrive
node::send

vc::send

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc
link::unlock

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc
link::unlock

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc
link::unlock

Simulation engine

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc

Simulation engine

link::flit_arrive
node::send

vc::send

Simulation engine

link::flit_arrive
node::send

Simulation engine

link::flit_arrive

Simulation engine

(a)

Simulation engine Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc

Simulation engine

link::flit_arrive
node::send

vc::send

Simulation engine

link::flit_arrive
node::send

Simulation engine

link::flit_arrive

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc
link::unlock

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc
link::unlock

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc
link::unlock

Simulation engine

Simulation engine

link::flit_arrive
node::send

vc::send

node::unlock_vc

Simulation engine

link::flit_arrive
node::send

vc::send

Simulation engine

link::flit_arrive
node::send

Simulation engine

link::flit_arrive

Simulation engine

(b)

Figure 7.2: The call stack when flits arrive at a GS VC. The calls to the simulation
engine from link::unlock and link::send are used to delay the unlock signal and the
flit respectively. 7.2(a): The flit passes straight through the VC. 7.2(b): The flit is not
able to pass through the lockbox in the VC, but it passes the unlockbox, resulting in
the unlock functions being called.

54 CHAPTER 7 THE MODEL

This can be done in two ways. One is to create a SystemC module that encap-
sulates the NA and interfaces to both the OCP IP-core and the node. The other is
to create a SystemC module that sits inbetween the node and the NA. Generally,
when a model of a component is replaced with an actual implementation, conver-
sion between a bit-level interface and the model needs to be done at both inputs and
outputs of the component. In such a case, an encapsulation of the component in a
SystemC module that handles both conversions will be the most practical approach.
Suppose for the sake of the example that the link including encoder and decoder is
to be replaced by the actual implementation. The module would the implement both
sc_interfaces for the link and would have sc_ports with each of the sc_interfaces to
the node used by the link. When the send function in the link sc_interface is called,
the flit is converted to a bit or logic vector which is applied to the encoder input.
A short time later, the request input to the encoder can be asserted and deasserted
once the acknowledge has been asserted. The minimum delay between sending new
flits implemented in the arbiter will make sure that flits do not arrive faster than the
encoder can accept them. The data proceeds down the link pipeline, and when the
decoder asserts its output request the logic vector can be converted back into a flit
and the send function in the node can be called. The handshake on the output of the
decoder of course needs to be completed. A similar string of events will take place
for unlocks transmitted across the link.

In the case of the NA however, it is only the interface to the node that needs to
be converted. Thus, there is no need to encapsulate the NA, as the OCP interface
signals are not processed in any way. Thus, it would be advantageous to simply
insert a module between the NA and the node which handles the conversion from
logic vectors and handshake signals to flits and function calls and back again. This
module needs to make realistically timed handshakes with the NA on one side and to
observe the assumptions and behaviour of the model on the other side.

7.3.3 Implementation Details

One issue that must be dealt with in the implementation of this conversion module
is the positioning of the lock- and unlockboxes as mentioned in section 7.2.2. In the
current implementation of MANGO they are placed immediately inside the node,
while the model has them in the NA. Thus, when using the model of the node and
the actual implementation of the NA, the lock- and unlockboxes are nowhere to be
found. The conversion module therefore needs to implement their functionality.

This section will first describe how transmissions from the NA and then trans-
missions to the NA are handled. Achieving the behaviour of lockboxes is covered in
the part about transmissions from the NA, while unlockboxes are covered in the part
about transmissions to the NA.

NETWORK ADAPTER 55

Transmissions from the NA

When a transaction is made from the NA on one of the VCs, one of the corresponding
four - one for each VC - TxReq signal is asserted. This change in signal value triggers
a function which inserts the 39 bits on the data port in a templated generic data flit.
This flit may hold any value of the template type, which in this case is a logic vector
representation of a flit. The acknowledge signal - TxAck - is only asserted when the
unlock function is called by the node. This emulates the behaviour of the lockbox,
as the NA will not be able to transmit another flit before it may be accepted by the
destination VC buffer in the node. Once the NA deasserts the TxReq signal, the
TxAck signal is also deasserted after a fixed delay of 0.4ns which has been measured
as the actual delay in simulations of MANGO.

One issue in this implementation of the conversion module is that the transmis-
sion of flits from the NA to the VC buffers in the node is delay-less. Thus, flits arrive
too early at the arbiter. A delay should be inserted in order to ensure that the flits
arrive at the correct time. Similarly, the unlocks are transmitted from the VC buffers
to the conversion module with no delay, but a delay of 5.1ns has been inserted be-
tween the unlock arrives and the TxAck signal is asserted. This is the delay that has
been measured between rising edges on TxReq and TxAck signals in simulations
of MANGO when the destination VC buffer is empty. This delay includes both the
forward latency from the interface between NA and node to the VC buffer and the
latency of the unlock signal back to the lockbox. It thus has the effect that the interval
between flits being admitted into the node is the same in the model and in MANGO
as long as the VC buffer does not become filled. The value of this delay should be
corrected at the same time the forward latency of flits is inserted into the model.

Transmissions to the NA

When a flit arrives in the conversion module, the logic vector is retrieved and written
to the RxData port. After a delay of 1.5ns, the RxReq signals is asserted. This delay
has been measured in simulations of MANGO. When the NA asserts RxAck, the
conversion module deasserts RxReq after 0.7ns for the three GS channels and 3.6ns
for the BE channel. These values have also been measured in simulations. When the
NA deasserts the RxAck signal, the unlock function in the node is called.

This part of the conversion module also has some timing issues that need correct-
ing. These are however not directly part of the conversion module, but are placed in
the link. The issue is that the delay when transmitting a flit or unlock across a link is
constant. In reality, the delay is different if the flit is destined for a VC or for the NA.
These delays should be corrected as well, but a discussion of how to implement this
is defered to chapter 9.

Chapter 8

Verification and Results

This chapter will present the verification of functionality and timing of the model
along with the difference in performance between the model and MANGO. First the
test system will be introduced.

8.1 Test System

This section will first introduce the topology of the test system and then the method
of testing applied.

8.1.1 Topology

The test system used is the same as the one presented in [1], which will be described
here as well. The system consists of three nodes, one initiator NA, one target NA
and a pair of OCP cores. The structure of the system is shown in figure 8.1. Two GS
connections are used in the system: One from the initiator to the target and one from
the target to the initiator, which is used for responses. These connections are set up
by the master OCP core when MANGO is used and statically programmed into the
model.

Master/Initiator

Slave/Target

Figure 8.1: The system used in testing the model and for determining the difference
in simulation performance between MANGO and the model.

In both MANGO and the model, the target NA needs to be programmed. This
happens through BE transactions from the OCP master. However, the BE part of
MANGO is not modeled, but this issue may be overcome by making a statically

57

58 CHAPTER 8 VERIFICATION AND RESULTS

programmed GS connection in place of the BE VCs. Thus, any BE flits transmitted
by the initiator NA will be routed to the target NA, allowing it to be properly pro-
grammed and used. One issue though is that the BE router in MANGO rotates the
first flit of a BE transaction - the flit that contains the route - a certain number of bits
in each node. This rotation is implemented by the conversion module before the flit
is transmitted through the network in the model. This way, the flit that is presented
to the target adapter has the correct contents.

In MANGO, the ports on the nodes that are not connected to something in the
system have traffic generators attached. These generators can be used to include
background traffic in simulations, but as time constraints did not allow a conversion
between the 2-phase dual-rail generators and the model, the results presented here
have only the system traffic included.

The same OCP cores and NAs are used when simulating both the model and
MANGO. The only variation is thus the actual network, which is also the object of
interest. The testing environment should thus be as neutral as possible towards the
test.

8.1.2 Method of Testing

The testing of the model can be divided into three major parts: Functionality, timing
and simulation performance. The method for testing each will be presented individ-
ually along with the testing results in the following sections in this chapter. This
section will present the environment used in the tests.

The two OCP cores used in the test system are implemented in a single SystemC
module. The master OCP core reads the test vectors from input files in the module’s
constructor. This means that the files are read during design elaboration and that the
actual simulation will not be affected by this disc activity.

The files contain one OCP transaction on each line. If the OCP master is to be
idle for a clock cycle, an idle OCP command - which has no effect - is inserted on a
line. The simulation has three phases: A programming phase where the NAs - and
nodes when simulating MANGO - are programmed, a wait phase where the OCP
cores are idle and wait for the programming to complete and finally the interesting
phase where the network is actually used which will be called the data phase. Two
files are used to ease simulating either the model or MANGO: One which contains
the transactions used for programming the NAs and nodes, and one which contains
data test vectors. The programming file has a number of idle commands at the end to
wait for the programming of the network to complete.

During the data phase, the time when a transaction is initiated by the master and
received by the slave are recorded. Similarly, the time when a slave responds to a
read request is recorded along with the time when the master receives the response.
These are the end-to-end latencies, which should be identical between MANGO and
a fully timing accurate model and are the interesting latencies for a system which
utilises MANGO.

FUNCTIONALITY 59

The test vectors used in the data phase are randomly generated previous to the
simulation. A bug in the NA requires the upper eight bits of the address field to be
different from zero - even on GS transactions - as the transaction is otherwise taken
to be a programming transaction to the NA. The lower fifteen bits of both address
and data are randomly generated, as the largest random number that can be generated
with the C++-compiler that was used is 215 − 1. The upper seventeen bits are fixed
at ’0’ for both data and address except for a few ’1’s thrown in the upper eight bits of
the address to avoid the bug in the NA. The program that generates the test vectors
inserts an idle operation with 80% chance at each iteration. It generates 10000 writes
and 5000 reads on the GS connection between master and slave. These are ordered
such that all the writes are executed first.

8.2 Functionality

The functionality test can be divided into two parts. One is correct end-to-end trans-
port of transactions and the other is correct ordering of flits through a single arbiter.

For the end-to-end transport of transactions, simulations of the test system show
that all transactions are completed. This means that the model is able to correctly
transport flits generated by the NAs to their destination using the statically pro-
grammed routes.

It has not been tested if the arbiter outputs flits in correct order - the same order
the actual implementation of the arbiter outputs. However, it is almost certain that
the ordering will be incorrect, as the binary tree control structure of the actual arbiter
has not been modeled. A test should be developed specifically for this purpose, and
would also necessarily include some measure of timing, as flits would otherwise
simply be passed through the model arbiter instantly. This timing would only have
to include the required delay between outputing flits, as this would cause interactions
between flits stalled in the arbiter. The actual delay through the arbiter is irrelevant,
as it has been assumed constant in section 6.2 regardless of how long the flit has
been stalled in the arbiter. If tests show that this assumption is faulty and affects
the simulation results, this difference in forward latency needs to be included in the
model. However, it will never be possible to accurately model the arbitration unit in
figure 3.4, which behaves randomly if two flits arrive at the same time.

8.3 Timing

In order to evaluate the timing accuracy of the model, the end-to-end latencies of
transactions have been measured in simulations of both MANGO and the model.
These should ideally be identical, but the values used for the forward latency of flits
across links and the latency of unlock signals in the model have not been measured
in simulations of MANGO but rather estimated at 10.5ns and 3ns respectively. The
minimum time between the arbiter admitting flits onto the link has been measured in
simulations of MANGO as 2.6ns.

60 CHAPTER 8 VERIFICATION AND RESULTS

The table in figure 8.2 summarise the mean and variance of the end-to-end laten-
cies in both MANGO and the model. The write requests consist of two flits, while
the read requests and responses consist of a single flit.

Mean Variance
MANGO Model MANGO Model

Read request 28580 33601 6.62 · 105 7.44 · 105

Read response 32019 36446 6.62 · 105 1.52 · 106

Write request 37426 91340 3.23 · 106 3.27 · 108

Figure 8.2: The mean and variance of transaction latencies in the model and in
MANGO. All times are in ps.

The mean and variance for single flit transactions are fairly close between the
model and MANGO. Both values are somewhat higher for the model, but some of the
latencies used in the model are estimated and not measured in MANGO. If accurate
measurements of these latencies are made, the model should achieve approximately
the same latencies as MANGO produces. However, there is a large difference in the
end-to-end latency of write requests between MANGO and the model. This differ-
ence is much larger than the one observed for the single flit transactions. Similarly
the variance on the latencies of the write requests in the model is much larger than
the one for MANGO.

A possible explanation for these large differences may be found by taking a closer
look at the latencies of the read requests. In the simulations, the read requests are
executed after all the write requests have been transmitted. When a read request is in
progress, the master must wait for the response before making a new request. Thus,
only the flit associated with the read request is present in the network. By the time a
new request is made, all VCs should be unlocked and succeeding flits should not have
any influence on each other at all. It is observed that the latency of all flits beside the
first one distributes roughly evenly over three discrete values: 27.6, 28.6 and 29.6ns
for MANGO and 32.6, 33.6 and 34.6ns for the model. The very first read request
however has a latency of 26.6ns in MANGO and 43.6ns in the model. This request
follows a write request, and may thus experience influences from a flit immediately
in front. In the model, this influence is seen to be very large - at least an extra delay
of 9ns. While the difference for write transactions is much larger than this between
MANGO and the model, it must be remembered that too large values for the unlock
delays can have significant consequences when transactions are made at maximum
speed. In this case, the VC buffers in the model may fill up faster than they do in
MANGO. The flits involved in such a burst of traffic would thus experience a much
larger transmission latency in the model than they would in MANGO. Whether this
is actually the cause of this large difference in latency needs a more detailed analysis
of simulation traces to decide.

Another contributing factor could be in the conversion module to the NA, where
the TxAck signal is only asserted 5.1ns after the unlock function has been called

SIMULATION PERFORMANCE 61

from the node. If this delay is too large, the NA may itself become unable to accept
new transactions, stalling the transaction already at the OCP interface. Similarly,
VC buffers filled to capacity would eventually cause the TxAck signal to be asserted
after a very long time, as the new flit would stall in the unlockbox. Only when a
preceding flit has left the unlockbox in the succeeding buffer and the unlock sig-
nal has propagated backwards, the new flit will be able to unlock the NA. All in
all, it would be better to resolve the currently known issues in the implementation
mentioned throughout this and the previous chapter before digging deeper into the
cause of the observed difference in latency for write requests. Resolving these issues
includes measuring the delays in MANGO that are currently only estimated in the
model.

8.4 Simulation Performance

Measuring the execution speed of a simulation - or any other computer program -
is not as straight forward as taking a stopwatch and measuring the time from the
execution is started until it terminates. Furthermore, the actual implementations of
the NAs are used when simulating the model, which will have a large impact on the
execution speed.

ModelSim includes a performance profiler, which pauses the simulation every
x milliseconds and samples which part of the design is being executed. When the
simulation run is completed, the distribution of samples between components can be
reported. It is not the absolute number of samples taken in a specific component that
is interesting, but rather the relative distribution between components. Furthermore,
the distribution of samples does not necessarily indicate a difference in simulation
performance between components. For example, if a system has two components
and roughly 50% of the samples are taken in each component, it can be deduced that
roughly half of the time during the simulation is spent in each component. However,
it might be that one component is activated only once while the other is activated
thousands of time, indicating a huge difference in simulation performance between
the two components, but this is not reported by the performance profiler. In the test
system used here though, all components are activated equally often.

Apparently, the performance profiler does not report in which part of SystemC
code samples are taken, but all samples in SystemC code are commonly reported
under an entry simply called NoContext. It is thus not possible to observe whether
the samples are taken in the model or in the SystemC OCP cores, but as will be seen
from the results, this is not really relevant.

The table in figure 8.3 shows the number of samples taken in the NAs, the net-
work and SystemC code and the percentage of the total number of samples taken in
user code during the simulation. When simulating MANGO, 16325 samples were
taken, 7266 or 45% of these in user code. For the model, the numbers were 3631
samples in total and 545 or 15% in user code. The simulation environment was iden-
tical between the two simulations.

62 CHAPTER 8 VERIFICATION AND RESULTS

Number of samples % of samples
MANGO Model MANGO Model

Initiator NA 312 192 4.3 35.2
Target NA 510 347 7.0 63.7
Network 6440 − 88.6 −

SystemC 4 6 0.1 1.1
Total 7266 545 100 100

Figure 8.3: The distribution of samples between simulations of MANGO and the
model. No samples are reported in the network in the model, as it is not reported
which part of SystemC code samples are taken in.

As can be seen, the number of samples is significantly decreased in the model
compared to MANGO. The drop in the relative number of samples in user code is
not readily explained. It may be caused by the faster executing model which prompts
the threads in the OCP cores to be triggered more often, measured in wall clock
time. As triggering a thread involves a context change, it is quite expensive and may
be the cause of many of the samples taken outside user code. Also, the number of
simulation events in the NAs is approximately constant between simulations - the
same flits and OCP transactions pass through - causing the amount of time spent by
the simulation engine to handle these events to increase relative to time spent in user
code. However, this is difficult to state for a fact without more detailed knowledge of
the implementation of the performance profiler than is given in the ModelSim user
manual.

Another notable difference between MANGO and the model is that fewer sam-
ples are taken in the NAs in the model than in MANGO, despite the fact that the same
number of flits pass through in both. One possible explanation is that in the model,
the entire data input to the NA from the network is set up at the same time, whereas in
MANGO individual bits may arrive at slightly different times due to different delays
through the standard cells. The model thus produces a single simulation event when
setting up data, whereas MANGO may produce up to 32 events. Another possible
explanation may be found in the smaller code base of the model possibly produc-
ing fewer cache misses during simulation. However, determining this as a plausible
cause also requires more detailed knowledge of how the performance profiler works.

Despite the apparent shortcomings of the performance profiler, it can be seen
that the majority of samples taken in the model are taken in the NAs. Compared to
MANGO, the NAs percentage of samples has increased dramatically from 11.3% to
98.9% combined. At the same time, the percentage of samples taken in the network
has decreased from 88.6% to at most 1.1%. This is a very dramatic increase in
performance in this part of the system, and introducing a high-level model of the
NAs should yield a significant increase in overall simulation performance. While the
number of samples taken in SystemC code is very small, the expected speedup of
a purely high-level SystemC model appears to be on a magnitude of a factor 1000

SIMULATION PERFORMANCE 63

compared to simulating the netlists of standard cells. This factor is calculated as
the ratio of the number of samples in SystemC code in the model to the number of
samples in the network in MANGO, 6

6440 . However, in the test vectors, only the
lower 15 bits are different from ’0’, which halves the potential switching activity in
MANGO, thereby reducing the possible number of simulation events considerably.
The speedup may thus be greater, but the number of samples in SystemC code is very
small for concluding a specific speedup, but a factor with a magnitude around 1000
is not unrealistic based on these measurements.

Chapter 9

Discussion

This chapter will discuss how to resolve the known issues in the current implemen-
tation of the model, how the model may be applied to system level modeling and
simulation and finally how the model may be expanded and improved upon in the
future.

9.1 Resolving Known Issues

The known issues in the current implementation of the model include that flits should
be delayed by a different amount of time if they are destined for the NA or a VC
buffer. How to resolve this issue will be discussed here.

Two possible solutions have been presented previously: Allow variable delays on
the link or apply the shortest delay on the link and have a separate delay component
in the node for the flits that need additional delays.

The cost of adding a second delay component in terms of simulation time depends
on which destination requires the additional delay. If it is flits heading to the NA that
require an additional delay, only one delay - and thus one simulation event - will be
added to each flit. If however it is the flits heading to VC buffers that require the
additional delay, one simulation event is added to each node each flit passes through,
increasing the number of simulation events by 50%1. The percentage increase when
it is flits to the NA that require an extra delay depends on the length of the routes in
the system. If the system is small - for example a 3-by-3 grid network - the longest
path passes through four nodes, generating ten events including the delays for the
forward latency and the unlock signal on the boundary between the initiator NA and
the node. An additional event is thus a 10% increase, while for the shortest path -
a single hop in the network - four events are generated, resulting in a 25% increase.
For a large system with a 10-by-10 grid, the maximum increase is still 25%, but the
minimum is 2.5%. Assuming a simulation time that is proportional to the number

1Currently, two simulation events are generated per hop: One for the forward latency of the flit and
one for the unlock signal.

65

66 CHAPTER 9 DISCUSSION

of events generated, this can be a significant increase in simulation time for large
simulations.

Allowing variable delays on the link incurs no cost in added simulation events.
However, depending on the relation between the minimum time between allowing
flits onto the link, the forward latency to a VC buffer and the forward latency to
the NA, some extra processing overhead may be required when inserting flits in the
queue on the link. Let t f lit denote the minimum time between flits, tVC the delay
applied to the flit when it is headed to a VC buffer and tNA the delay when the NA
is the destination. If |tVC − tNA| > t f lit, the flit with the shorter delay may arrive first
at its destination even when transmitted after the flit with the longer delay. This does
not mean that one flit overtakes another in the link, but that the delay through the
router and other parts of the node is much smaller for one flit than for the other. It is
thus necessary to order the flits by arrival time in the model of the link when a new
flit is transmitted. This incurs some additional processing overhead for every hop a
flit makes, but as the size of the queue is generally not very large - the number of flits
is less than the depth of the asynchronous pipeline - this processing overhead should
be minimal. If |tVC − tNA| ≤ t f lit however, no flit arrives before its predecessor and no
ordering of the flits on the link is necessary.

Which solution is preferable depends on a number of variables, but overall, allow-
ing variable delays on the link seems to have the smallest cost in terms of simulation
time.

9.2 Application of Model

This section will take a look at how this model may be applied to various tasks in
both the development of MANGO and in modeling systems that use a MANGO
based network-on-chip for communication. It will also be discussed how the NAs
can be modeled such that bus-interfaces may be abstracted away.

9.2.1 Exploring Concepts of Network-on-Chip in MANGO

A high-level model as the one developed in this work may be used to explore various
concepts of network-on-chip in MANGO without producing netlists of standard cells
and spending time simulating these. It may also be used to investigate alternative
implementations of MANGO.

Currently, programming flits to the router tables in the nodes and NAs are trans-
mitted on the BE part of MANGO and no acknowledgement that the programming
has completed is sent. This has the effect that the time it takes for a GS connection
to be set up is unknown and the system has to wait “long enough” before utilising
the GS connections. Work is presently under way to improve upon this situation, but
a high-level model could have been used to investigate the impact of different im-
provements. For example, the impact of adding a BE VC reserved for programming
flits could be examined compared to the current approach of sharing the BE VC for
both programming and data flits.

APPLICATION OF MODEL 67

On another level, the model might be used to examine the impact of varying VC
buffer depth on average case latencies in a system. While hard guarantees are made
for the worst case latencies, and the best case latencies can be calculated, the average
case latencies depend on other traffic in the network and can thus only be determined
through simulation. Larger VC buffers may improve the average case latencies as
more flits are allowed to propagate further along their routes, eventually resulting
in earlier arrival at their destination. However, if all links along the route are fully
utilised, most flits will still have their worst case latency, but for moderate traffic
loads, deeper buffers may have a significant impact on average case latencies. The
model can help in determining how large this impact is.

Another application of the model in the development of MANGO could be to ex-
amine the impact of different routing schemes. For BE traffic, adaptive routing might
be employed in order to reduce congestion in areas with high traffic load. Several
different adaptive routing schemes may be tried out in a relatively short amount of
time with much less effort than would be required to construct netlists of standard
cells.

9.2.2 System Modeling

It has been stated previously that a network-on-chip is an approach to system level
communication in system-on-chip. Models at varying level of detail are employed at
different phases of the system development process. Early on in this process, there
is no need for fully detailed models of any of the components. Purely behavioural
models are used for processing elements, and it may not even be decided at this point
if the tasks executed are to be implemented in software or hardware or a combination
of the two. This corresponds to the application level of abstraction of section 2.3,
where even the high-level model of MANGO developed as part of this work may be
too detailed.

However, at the system designer level, CPUs may be represented by instruction
set simulators and dedicated hardware elements by cycle accurate behavioural de-
scriptions. Similarly, a timing accurate model of the communication system should
be used in order to generate realistic estimates of the system performance. The model
also needs to be high-level in order to simulate many system configurations in a short
amount of time such that the best configuration may be selected for implementation.
These configurations involve assignment of GS VCs to connections as well as differ-
ent network topologies and mappings of IP-cores to the network. For a system with
16 IP-cores, 3 different grid-based topologies exists with 16! possible application
mappings each. If other topologies such as trees, toruses and heterogeneous topolo-
gies are also taken into account, the number of possible configurations increases
rapidly, and simulating even a handful becomes a very large task. A fast execut-
ing model allows more configurations to be simulated than would be feasible with a
detailed model, such as the netlists of standard cells presently available for MANGO.

Including the number of possible assignments of VC buffers to GS connections
increases the number of configurations even further, and changing the route a GS con-

68 CHAPTER 9 DISCUSSION

nection takes through the network may impact performance greatly, if some highly
congested links can be avoided. A high-level model may help in determining the
traffic patterns in the network, which allows the system designer to change the routes
taken by GS connections, the application mapping or the topology in order to min-
imise congestion. Iterations on this design step can be made quickly with a high-level
model.

9.2.3 Abstracting Bus-Interfaces Away

One issue in system modeling is how to connect the models of individual compo-
nents. When dealing with high-level models, it does not make much sense to have
pin-accurate interfaces between components, as the models do not have this level
of detail otherwise. In fact, when it has not yet been decided if individual compo-
nents are to be implemented in hardware or software, it makes no sense to speak of
a specific bus-interface. What should rather be done is to move to transaction level
modeling (TLM) [9], where sc_interfaces are used to provide the same functionality
a bus-interface would provide.

In a model of MANGO, this could be realised by letting the initiator NA im-
plement an sc_interface with functions such as void write(int address, int data) and
int read(int address). The model would then need a flit capable of transporting an
integer through the network. However, requiring the users of the model to use only
integers when communicating between processes would be very restricting. Thus,
the model would have to be able to transport every type the user might use, including
user-defined classes. For this purpose, a templated generic data flit could be used,
such as the one used in the conversion module for the network adapters described in
section 7.3.3. This data flit may hold any type that may be defined in C++. How-
ever, a user-defined class may very well exceed the 32 bits available in a single flit,
thereby upsetting the timing in the system as too few flits are transmitted for such a
class. A simple solution would be to require the user to inform the NA how many
flits the class should be partitioned into, allowing the correct number of flits to be
transmitted. Adding this functionality to a model of the NAs would make the model
very versatile when simulating systems.

9.3 Future Work

This section will discuss how the current model can be extended and improved upon
in order to be even more useful in system design and exploration of network design
choices.

9.3.1 Parametrising the Model

While the current implementation of the model reflects the current implementation
of MANGO, it might be extended to allow experimentation with the setup of the
network. For example, a system designer might want to experiment with nodes with

FUTURE WORK 69

more than four neighbours, or a different composition of virtual channels than seven
GS and one BE channel on each link. It might also be that a system has a highly
congested link and the system designer would like to have two physical links between
the affected nodes, the impact of which could be examined in a parametrised model.
Another part of the model that might benefit from parametrisation is the depth of VC
buffers which can be used to improve average case latencies as described above.

These and other design choices can be tried out in a parametrised model before
setting out to implement them in the actual network. The timing in such a model
needs to be estimated, as measurements can not be made in an actual implementation.
Even though the timing will not be completely accurate, the model should still be able
to present a realistic indication of how an implementation of MANGO with the given
parameters would behave.

9.3.2 Estimating Power Consumption

Currently, the model is very focused on behaving correctly with regard to timing.
Another performance metric it would be very useful to have the model report is the
estimated power consumption. In systems with low-power requirements, minimising
power consumption can be equally or more important than optimising speed.

An estimate of the power consumption can be made by keeping a copy of the
last flit to pass through a component and calculating the switching activity caused by
the next flit to pass through. The switching activity can then be used to provide an
estimate of how much power is consumed.

With the addition of power estimation, the high-level model may be used to inves-
tigate the impact of various power reducing techniques such as encoding transactions
on the link in order to minimise switching activity. Topologies, application mappings
and GS connection routes may also influence power consumption, as the number of
hops on GS connections vary with these. These influences may also be examined
with a high-level model.

9.3.3 Handshake Level Model

With the large increase in simulation speed observed by going to a high-level model,
it could be interesting to see how a handshake level model performs. It is easier to
achieve a timing accurate model using handshake level modeling, due to the finer
granularity of the model. Where the link component in the high-level model cov-
ers all forward latencies, they would be distributed between smaller components in
a handshake level model. Power consumption would also be estimated more accu-
rately, due to the finer granularity.

In a model at the handshake level, it would also be easier to replace model com-
ponents with actual implementations than in a high-level model, as there is no need
for a conversion between handshakes and the model. However, investigating high-
level concepts such as adaptive routing schemes or system design elements such as
the number of links into and out of a node would be more difficult in a handshake

70 CHAPTER 9 DISCUSSION

level model, as components would have to be added and connected by signals to
other components. In the current high-level model, adding a port to a node can be
done simply by increasing the size of the arrays that represent the sc_ports and the
routing tables.

The two different models each have advantages and disadvantages, and the better
choice might actually be not to have one or the other, but both. Early system-level
exploration would then use the high-level model to investigate topologies, application
mappings and GS connection routings, while the handshake level model could be
applied to provide a more fine-grained picture of timing and power consumption.
Network developers would use the handshake level model to investigate the impact
of new implementations of components.

Chapter 10

Conclusions

In this work, the design, implementation and testing of a high-level model of MANGO
has been presented. The purpose of the model was to obtain a high simulation speed
while being accurate in terms of timing. A model that meets both requirements has
been designed, and implemented, but some issues are present in the implementation
that should be corrected.

A small test system has been setup in order to compare simulations of the actual
implementation of MANGO and the model. The two behave comparably when iso-
lated flits are transmitted through the network, as happens in single flit transactions.
When multiple flits are present on a GS connection however, they interact differently
in the model than in MANGO. This may be caused by the fact that the values used for
delays in the model are only estimated and not based on measurements in simulations
of the current implementation of MANGO.

The test system demonstrates using actual implementations of components in
conjunction with the model. The actual implementations of the network adapters are
used, and a conversion module has been implemented that converts between hand-
shakes and the model. This module shows the general approach to and feasibility of
replacing components from the model with those from the actual implementation.

The performance profiler available in ModelSim has been used to measure the
execution time of various parts of the test system in simulations of both MANGO
and the model. A drop in the simulation time was observed when replacing MANGO
with the model. However, the network adapters used in both simulations are the ones
from MANGO, which are implemented as netlists of standard cells, which means the
drop in total simulation time is relatively modest. However, in the simulation of the
model, the majority of the execution time spent in user code was spent in the NAs.
The speedup observed in the network between the simulation of MANGO and the
model indicates that the magnitude of the achievable speedup by using a high-level
model is roughly a factor 1000.

71

Bibliography

[1] T. Bjerregaard. Programming and using connections in the mango network-on-
chip. To be submitted.

[2] T. Bjerregaard. The MANGO clockless network-on-chip: Concepts and im-
plementation. PhD thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, 2005.

[3] T. Bjerregaard, S. Mahadevan, and J. Sparsø. A channel library
for asynchronous circuit design supporting mixed-mode modelling. In
Odysseas Koufopavlou Enrico Macii, Vassilis Paliouras, editor, PATMOS 2004
(14th Intl. Workshop on Power and Timing Modeling, Optimization and Sim-
ulation), Lecture Notes in Computer Science, LNCS3254, pages 301–310.
Springer, 2004.

[4] T. Bjerregaard and J. Sparsø. A router architecture for connection-oriented
service guarantees in the MANGO clockless network-on-chip. In Proceed-
ings of the Design, Automation and Test in Europe Conference and Exhibition
(DATE’05), pages 1226–1231. IEEE Computer Society, mar 2005.

[5] T. Bjerregaard and J. Sparsø. A scheduling discipline for latency and bandwidth
guarantees in asynchronous network-on-chip. In Proceedings of the 11th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC’05),
pages 34–43. IEEE Computer Society, mar 2005.

[6] T. Bjerregaard and J. Sparsø. Implementation of guaranteed services in the
MANGO clockless network-on-chip. IEE Proceedings: Computing and Digital
Techniques, 2006. Accepted for publication.

[7] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Surveys, TBA. Accepted.

[8] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture, A
Hardware/Software Approach. Morgan Kaufmann, 1999.

[9] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design
with SystemC. Kluwer Academic Publishers, 2002.

73

74 BIBLIOGRAPHY

[10] http://www.imm.dtu.dk/arts.

[11] J. Madsen, S. Mahadevan, K. Virk, and M. J. Gonzalez. Network-on-chip mod-
eling for system-level multiprocessor simulation. In The 24th IEEE Interna-
tional Real-Time Systems Symposium, pages 265–274. IEEE Computer Society,
dec 2003.

[12] S. Mahadevan, M. Storgaard, J. Madsen, and K. M. Virk. ARTS: A system-level
framework for modeling mpsoc components and analysis of their causality. In
13th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE Computer So-
ciety, sep 2005.

[13] http://www.model.com.

[14] http://www.ocpip.org.

[15] J. Sparsø. Asynchronous circuit design - a tutorial. In Chapters 1-8 in ”Prin-
ciples of asynchronous circuit design - A systems Perspective”, pages 1–152.
Kluwer Academic Publishers, Boston / Dordrecht / London, dec 2001.

A
pp

en
di

x
A

So
ur

ce
C

od
e

T
hi

s
ap

pe
nd

ix
lis

ts
th

e
so

ur
ce

co
de

of
th

e
so

ur
ce

fil
es

pr
od

uc
ed

in
th

is
w

or
k.

A
sh

or
td

es
cr

ip
tio

n
to

th
e

fil
e

w
ill

be
gi

ve
n

w
he

re
ne

ce
ss

ar
y.

A
.1

To
p

L
ev

el
Fi

le
s

A
.1

.1
in

te
rf

ac
es

.h

1
/∗

2
C

om
po

ne
nt

in
te

rf
a

c
e

s
.

A
ll

co
m

p
o

n
en

ts
m

u
st

in
h

e
ri

t
fr

o
m

th
e

se
.

3
∗
/

4 5
#

if
n

d
ef

_I
N

T
E

R
FA

C
E

S_
H

6
#

d
ef

in
e

_I
N

T
E

R
FA

C
E

S_
H

7 8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
"

ty
p

es
.h

"
10

11
/∗

A
rb

it
e

r
∗
/

12
cl

a
ss

a
rb

it
e

r_
if

:
v

ir
tu

a
l

p
u

b
li

c
sc

_
co

re
::

sc
_

in
te

rf
a

c
e

{
13 14

p
u

b
li

c
:

15
v

ir
tu

a
l

vo
id

a
rb

it
ra

te
(

fl
it
∗

,
in

t)
=

0;
16 17

}
;

18 19
/∗

V
ir

tu
a

l
C

h
a

n
n

el
∗
/

20
cl

a
ss

v
c

_
tr

a
n

sm
it

te
r_

if
:

v
ir

tu
a

l
p

u
b

li
c

sc
_

co
re

::
sc

_
in

te
rf

a
c

e
{

21 22
p

u
b

li
c

:
23

v
ir

tu
a

l
vo

id
se

n
d

(
fl

it
∗

)=
0;

24 25
}

;
26 27

cl
a

ss
v

c
_

re
c

e
iv

e
r_

if
:

v
ir

tu
a

l
p

u
b

li
c

sc
_

co
re

::
sc

_
in

te
rf

a
c

e
{

28 29
p

u
b

li
c

:
30

v
ir

tu
a

l
vo

id
u

n
lo

ck
()
=

0;
31

v
ir

tu
a

l
vo

id
ar

b
_

re
ad

y
()

{}
32 33

}
;

34 35
/∗

L
in

k
∗
/

36
cl

a
ss

li
n

k
_

tr
a

n
sm

it
te

r_
if

:
v

ir
tu

a
l

p
u

b
li

c
sc

_
co

re
::

sc
_

in
te

rf
a

c
e

{
37 38

p
u

b
li

c
:

39
v

ir
tu

a
l

vo
id

se
n

d
(

fl
it
∗

)=
0;

40 41
}

;
42 43

cl
a

ss
li

n
k

_
re

c
e

iv
e

r_
if

:
v

ir
tu

a
l

p
u

b
li

c
sc

_
co

re
::

sc
_

in
te

rf
a

c
e

{
44 45

p
u

b
li

c
:

46
v

ir
tu

a
l

vo
id

u
n

lo
ck

_
g

s
(

in
t)
=

0;
47

v
ir

tu
a

l
vo

id
c

re
d

it
_

b
e

(
in

t)
=

0;
48 49

}
;

50 51
/∗

N
od

e
∗
/

52
cl

a
ss

n
o

d
e

_
tr

a
n

sm
it

te
r_

if
:

v
ir

tu
a

l
p

u
b

li
c

sc
_

co
re

::
sc

_
in

te
rf

a
c

e
{

53 54
p

u
b

li
c

:
55

/∗
U

n
lo

ck
s

fr
o

m
li

n
k

s
∗
/

A.1

A.2 APPENDIX A SOURCE CODE

56
v

ir
tu

a
l

vo
id

u
n

lo
ck

_
g

s
(c

on
st

in
t

,
co

n
st

d
ir

e
c

ti
o

n
)=

0;
57

v
ir

tu
a

l
vo

id
c

re
d

it
_

b
e

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)=
0;

58 59
}

;
60 61

cl
a

ss
n

o
d

e
_

re
c

e
iv

e
r_

if
:

v
ir

tu
a

l
p

u
b

li
c

sc
_

co
re

::
sc

_
in

te
rf

a
c

e
{

62 63
p

u
b

li
c

:
64

v
ir

tu
a

l
vo

id
se

n
d

(
fl

it
∗

)=
0;

65 66
}

;
67 68

cl
a

ss
n

o
d

e
_

a
rb

it
e

r_
if

:
v

ir
tu

a
l

p
u

b
li

c
sc

_
co

re
::

sc
_

in
te

rf
a

c
e

{
69 70

p
u

b
li

c
:

71
v

ir
tu

a
l

vo
id

ar
b

_
se

n
d

(
fl

it
∗

,
co

n
st

d
ir

e
c

ti
o

n
)=

0;
72

v
ir

tu
a

l
vo

id
ar

b
_

re
ad

y
(c

on
st

in
t

,
co

n
st

d
ir

e
c

ti
o

n
)=

0;
73 74

}
;

75 76
cl

a
ss

n
o

d
e

_
in

te
rn

a
l_

if
:

v
ir

tu
a

l
p

u
b

li
c

sc
_

co
re

::
sc

_
in

te
rf

a
c

e
{

77 78
p

u
b

li
c

:
79

/∗
U

n
lo

ck
s

fr
o

m
V

C
s
∗
/

80
v

ir
tu

a
l

vo
id

u
n

lo
ck

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)=
0;

81
v

ir
tu

a
l

vo
id

c
re

d
it

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)=
0;

82 83
}

;
84 85

cl
a

ss
n

o
d

e
_

n
a

_
re

c
e

iv
e

r_
if

:
v

ir
tu

a
l

p
u

b
li

c
sc

_
co

re
::

sc
_

in
te

rf
a

c
e

{
86 87

p
u

b
li

c
:

88
v

ir
tu

a
l

vo
id

n
a_

se
n

d
(

fl
it
∗

)=
0;

89 90
}

;
91 92

cl
a

ss
n

o
d

e
_

n
a

_
tr

a
n

sm
it

te
r_

if
:

v
ir

tu
a

l
p

u
b

li
c

sc
_

co
re

::
sc

_
in

te
rf

a
c

e
{

93 94
p

u
b

li
c

:
95

v
ir

tu
a

l
vo

id
n

a_
u

n
lo

ck
_

g
s

(c
on

st
in

t)
=

0;
96 97

}
;

98 99
/∗

N
et

w
o

rk
A

d
a

p
te

r
∗
/

10
0

cl
a

ss
n

a_
if

:
v

ir
tu

a
l

p
u

b
li

c
sc

_
co

re
::

sc
_

in
te

rf
a

c
e

{
10

1
10

2
p

u
b

li
c

:
10

3
v

ir
tu

a
l

vo
id

u
n

lo
ck

(c
on

st
in

t)
=

0;
10

4
v

ir
tu

a
l

vo
id

se
n

d
(

fl
it
∗

)=
0;

10
5

10
6

}
;

10
7

10
8

#
en

d
if

A
.1

.2
ty

pe
s.h

1
/∗

2
T

yp
es

fo
r

u
se

in
N

oC
m

od
el

.
3 4

C
o

n
ta

in
s

:
5

D
ir

e
c

ti
o

n
6

F
li

t
7 8

∗
/

9 10
#

if
n

d
ef

_T
Y

PE
S_

H
11

#
d

ef
in

e
_T

Y
PE

S_
H

12 13
#

in
cl

u
d

e
<

v
ec

to
r>

14 15
/∗

T
he

no
n
−

lo
c

a
l

d
ir

e
c

ti
o

n
s

m
u

st
be

nu
m

be
re

d
fr

o
m

0
to

n−
1
∗
/

16
ty

p
ed

ef
in

t
d

ir
e

c
ti

o
n

;
17

co
n

st
d

ir
e

c
ti

o
n

d
ir

_
n

o
rt

h
=

0
;

18
co

n
st

d
ir

e
c

ti
o

n
d

ir
_

e
a

st
=

1
;

19
co

n
st

d
ir

e
c

ti
o

n
d

ir
_

so
u

th
=

2
;

20
co

n
st

d
ir

e
c

ti
o

n
d

ir
_

w
es

t
=

3
;

21
co

n
st

d
ir

e
c

ti
o

n
d

ir
_

lo
c

a
l
=

4
;

22
co

n
st

d
ir

e
c

ti
o

n
d

ir
_

in
v

a
li

d
=
−

1;
23 24

/∗
E

nu
m

to
id

e
n

ti
fy

th
e

ty
p

e
o

f
fl

it
∗
/

25
en

um
fl

it
ty

p
e

{
ft

_
in

v
a

li
d

,
ft

_
d

a
ta

}
;

26 27
/∗

N
on
−

in
st

a
n

ti
a

b
le

fl
it

c
la

ss
.

A
ll

fl
it

s
in

h
e

ri
t

fr
o

m
th

is
∗
/

28
cl

a
ss

fl
it

{
29 30

p
u

b
li

c
:

31
co

n
st

fl
it

ty
p

e
g

et
_

ty
p

e
()

co
n

st
{

32
re

tu
rn

_
ty

p
e

;

COMPONENTS A.3
33

}
34 35

co
n

st
b

oo
l

is
_

la
st

()
co

n
st

{
36

re
tu

rn
_

la
st

;
37

}
38 39

co
n

st
d

ir
e

c
ti

o
n

g
e

t_
d

ir
e

c
ti

o
n

()
co

n
st

{
40

re
tu

rn
_

d
ir

;
41

}
42 43

co
n

st
in

t
g

et
_

v
c

()
co

n
st

{
44

re
tu

rn
_v

c
;

45
}

46 47
vo

id
se

t_
d

ir
e

c
ti

o
n

(
d

ir
e

c
ti

o
n

d
)

{
48

_
d

ir
=

d
;

49
}

50 51
vo

id
se

t_
v

c
(

in
t

vc
)

{
52

_v
c
=

vc
;

53
}

54 55
p

ro
te

ct
ed

:
56

fl
it

(c
on

st
fl

it
ty

p
e

ft
,

co
n

st
b

oo
l

la
st

)
:

_
ty

p
e

(
ft

)
,

_
la

st
(

la
st

)
{

57 58
}

59 60
p

ri
va

te
:

61
co

n
st

fl
it

ty
p

e
_

ty
p

e
;

62
co

n
st

b
oo

l
_

la
st

;
63

in
t

_v
c

;
64

d
ir

e
c

ti
o

n
_

d
ir

;
65 66

}
;

67 68
/∗

T
em

p
la

te
d

d
a

ta
fl

it
∗
/

69
te

m
p

la
te
<

ty
pe

na
m

e
T>

70
cl

a
ss

fl
it

_
d

a
ta

:
p

u
b

li
c

fl
it

{
71 72

p
u

b
li

c
:

73
T

g
et

_
d

at
a

()
{

74
re

tu
rn

_
d

at
a

;
75

}
76

77
fl

it
_

d
a

ta
(c

on
st

T
d

at
a

,
co

n
st

b
oo

l
la

st
)

:
fl

it
(

ft
_

d
a

ta
,

la
st

)
,

_
d

at
a

(
d

at
a

)
{

78 79
}

80 81
p

ri
va

te
:

82
T

_
d

at
a

;
83 84

}
;

85 86
#

en
d

if

A
.2

C
om

po
ne

nt
s

A
.2

.1
ar

bi
te

r.h

1
/∗

2
H

ea
de

r
fo

r
th

e
m

od
el

o
f

th
e

AL
G

a
rb

it
e

r
3

∗
/

4 5
#

if
n

d
ef

_A
R

B
IT

E
R

_H
6

#
d

ef
in

e
_A

R
B

IT
E

R
_H

7 8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
"

..
/

in
te

rf
a

c
e

s
.h

"
10

#
in

cl
u

d
e

"
..
/

ty
p

es
.h

"
11 12

/∗
N

um
be

r
o

f
in

p
u

ts
∗
/

13
co

n
st

u
n

si
gn

ed
in

t
N
=

8
;

14 15
cl

a
ss

a
rb

it
e

r
:

p
u

b
li

c
sc

_
co

re
::

sc
_m

od
ul

e
,

p
u

b
li

c
a

rb
it

e
r_

if
{

16 17
p

u
b

li
c

:
18

/∗
P

o
rt

s
∗
/

19
sc

_
co

re
::

sc
_

p
o

rt
<

n
o

d
e

_
a

rb
it

e
r_

if
>

nd
e

;
20 21

/∗
In

h
e

ri
te

d
(

v
ir

tu
a

l
)

fu
n

c
ti

o
n

s
∗
/

22
vo

id
a

rb
it

ra
te

(
fl

it
∗

,
in

t)
;

23 24
SC

_H
A

S_
PR

O
C

ES
S

(
a

rb
it

e
r

)
;

25 26
a

rb
it

e
r

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
,

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
lc

t
,

co
n

st
d

ir
e

c
ti

o
n

d
ir

)
;

A.4 APPENDIX A SOURCE CODE

27 28
p

ri
va

te
:

29
vo

id
d

o
_

a
rb

it
ra

te
()

;
30

b
oo

l
tr

a
n

sm
it

()
;

31 32
co

n
st

sc
_

co
re

::
sc

_
ti

m
e

_
li

n
k

_
cy

cl
e_

ti
m

e
;

33 34
/∗

A
d

m
is

si
o

n
c

o
n

tr
o

l
an

d
st

a
ti

c
p

ri
o

ri
ty

q
u

eu
e
∗
/

35
fl

it
∗

_
h

o
ld

_
q

[N
];

36
fl

it
∗

_s
p

q
[N

];
37

b
oo

l
_

h
o

ld
_

q
_

v
al

id
[N

];
38

b
oo

l
_

sp
q

_
v

al
id

[N
];

39 40
/∗

B
us

y
in

d
ic

a
ti

o
n

,
w

a
it

si
g

n
a

ls
fo

r
a

d
m

is
si

o
n

c
o

n
tr

o
l

an
d

ti
m

e
o

u
t

ev
en

t
∗
/

41
b

oo
l

_b
us

y
;

42
b

oo
l

_
w

ai
t[

N
][

N
];

43
sc

_
co

re
::

sc
_

ev
en

t
_

ti
m

e_
o

u
t;

44 45
co

n
st

d
ir

e
c

ti
o

n
_

d
ir

;
46 47

}
;

48 49
#

en
d

if

A
.2

.2
ar

bi
te

r.c
pp

1
/∗

2
A

rb
it

e
r

im
p

le
m

en
ti

n
g

AL
G

3
∗
/

4 5
#

in
cl

u
d

e
"

a
rb

it
e

r
.h

"
6 7

vo
id

a
rb

it
e

r
::

a
rb

it
ra

te
(

fl
it
∗

f
,

in
t

vc
)

{
8

_
h

o
ld

_
q

[v
c

]
=

f
;

9
_

h
o

ld
_

q
_

v
al

id
[v

c
]
=

tr
u

e
;

10
if

(!
_b

us
y

)
{

11
d

o
_

a
rb

it
ra

te
()

;
12

}
13

}
14 15

vo
id

a
rb

it
e

r
::

d
o

_
a

rb
it

ra
te

()
{

16
b

oo
l

v
c_

w
ai

t
=

tr
u

e
;

17
b

oo
l

g
ra

d
u

at
ed
=

fa
ls

e
;

18 19
/∗

A
tt

em
p

t
tr

a
n

sm
it
∗
/

20
b

oo
l

tx
=

tr
a

n
sm

it
()

;
21 22

/∗
G

ra
d

u
a

te
fr

o
m

h
o

ld
q

u
eu

e
to

sp
q
∗
/

23
fo

r
(

in
t

i
=

0
;

i
<

N
;
+
+

i)
{

24
if

(
_

h
o

ld
_

q
_

v
al

id
[

i
])

{
25

if
(

i
<

7
)

{
26

v
c_

w
ai

t
=

tr
u

e
;

27
}

el
se

{
28

v
c_

w
ai

t
=

fa
ls

e
;

29
}

30
fo

r
(

in
t

j
=

i+
1;

j
<

N
;
+
+

j)
{

31
v

c_
w

ai
t
=

v
c_

w
ai

t
&

_
w

ai
t[

i
][

j
];

32
}

33
if

(!
v

c_
w

ai
t)

{
34

_s
pq

[
i]
=

_
h

o
ld

_
q

[
i

];
35

_
sp

q
_

v
al

id
[

i]
=

tr
u

e
;

36
_

h
o

ld
_

q
_

v
al

id
[

i]
=

fa
ls

e
;

37
/∗

A
rb

it
e

r
re

a
d

y
fo

r
ne

w
in

p
u

t
∗
/

38
nd

e−
>

ar
b

_
re

ad
y

(i
,

_
d

ir
)

;
39

}
40

g
ra

d
u

at
ed
=

tr
u

e
;

41
}

42
}

43 44
/∗

T
ra

n
sm

it
h

ig
h

e
st

p
ri

o
ri

ty
in

sp
q

,
if

fi
r

s
t

tr
a

n
sm

it
fa

il
e

d
∗
/

45
if

(!
tx

&
&

g
ra

d
u

at
ed

)
{

46
tr

a
n

sm
it

()
;

47
}

48
}

49 50
b

oo
l

a
rb

it
e

r
::

tr
a

n
sm

it
()

{
51

fo
r

(
in

t
i
=

0
;

i
<

N
;
+
+

i)
{

52
if

(
_

sp
q

_
v

al
id

[
i

])
{

53
_

sp
q

_
v

al
id

[
i]
=

fa
ls

e
;

54
nd

e−
>

ar
b

_
se

n
d

(_
sp

q
[

i]
,

_
d

ir
)

;
55

_b
us

y
=

tr
u

e
;

56
_

ti
m

e_
o

u
t.

n
o

ti
fy

(
_

li
n

k
_

cy
cl

e_
ti

m
e

)
;

57 58
/∗

VC
i

m
u

st
no

w
w

a
it

fo
r

v
a

li
d

lo
w

er
p

ri
o

ri
ti

e
s

in
sp

q
∗
/

59
fo

r
(

in
t

j
=

i+
1;

j
<

N
;
+
+

j)
{

60
_

w
ai

t[
i

][
j]
=

_
sp

q
_

v
al

id
[

j
];

61
}

62

COMPONENTS A.5
63

/∗
V

C
s

0
..

i−
1

m
u

st
no

lo
n

g
er

w
a

it
fo

r
VC

i
∗
/

64
fo

r
(

in
t

j
=

0
;

j
<

i;
+
+

j)
{

65
_

w
ai

t[
j

][
i]
=

fa
ls

e
;

66
}

67 68
/∗

A
fl

it
w

as
tr

a
n

sm
it

te
d
∗
/

69
re

tu
rn

tr
u

e
;

70
}

71
}

72
/∗

N
o

fl
it

tr
a

n
sm

it
te

d
∗
/

73
_b

us
y
=

fa
ls

e
;

74
re

tu
rn

fa
ls

e
;

75
}

76 77
a

rb
it

e
r

::
a

rb
it

e
r

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
,

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
lc

t
,

co
n

st
d

ir
e

c
ti

o
n

d
ir

)
:

sc
_

co
re

::
sc

_
m

o
d

u
le

(n
)

,
_

li
n

k
_

cy
cl

e_
ti

m
e

(
sc

_
co

re
::

sc
_

ti
m

e
(5

,
sc

_
co

re
::

SC
_N

S
))

,
_

d
ir

(
d

ir
)

{
78

_b
us

y
=

fa
ls

e
;

79
fo

r
(

in
t

i
=

0
;

i
<

N
;
+
+

i)
{

80
_

h
o

ld
_

q
_

v
al

id
[

i]
=

fa
ls

e
;

81
_

sp
q

_
v

al
id

[
i]
=

fa
ls

e
;

82
fo

r
(

in
t

j
=

0
;

j
<

N
;
+
+

j)
{

83
_

w
ai

t[
i

][
j]
=

fa
ls

e
;

84
}

85
}

86
SC

_M
ET

H
O

D
(

d
o

_
a

rb
it

ra
te

)
;

87
se

n
si

ti
v

e
<
<

_
ti

m
e_

o
u

t;
88

d
o

n
t_

in
it

ia
li

z
e

()
;

89
} A

.2
.3

lin
k.

h

1
/∗

2
A

li
n

k
,

im
p

le
m

en
te

d
a

s
a

st
d

::
q

u
eu

e
w

it
h

c
o

n
st

a
n

t
d

el
a

ys
3

∗
/

4 5
#

if
n

d
ef

_L
IN

K
_H

6
#

d
ef

in
e

_L
IN

K
_H

7 8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
<

qu
eu

e>
10

#
in

cl
u

d
e

"
..
/

ty
p

es
.h

"
11

#
in

cl
u

d
e

"
..
/

in
te

rf
a

c
e

s
.h

"

12 13
cl

a
ss

m
an

g
o

_
li

n
k

:
p

u
b

li
c

li
n

k
_

tr
a

n
sm

it
te

r_
if

,
p

u
b

li
c

li
n

k
_

re
c

e
iv

e
r_

if
,

p
u

b
li

c
sc

_
co

re
::

sc
_

m
o

d
u

le
{

14 15
p

u
b

li
c

:
16

/∗
P

o
rt

s
∗
/

17
sc

_
co

re
::

sc
_

p
o

rt
<

n
o

d
e

_
tr

a
n

sm
it

te
r_

if
>

tr
a

n
sm

it
te

r
;

18
sc

_
co

re
::

sc
_

p
o

rt
<

n
o

d
e_

re
ce

iv
er

_
if
>

re
c

e
iv

e
r

;
19 20

/∗
In

h
e

ri
te

d
(

v
ir

tu
a

l
)

fu
n

c
ti

o
n

s
∗
/

21
vo

id
u

n
lo

ck
_

g
s

(
in

t
i)

;
22

vo
id

c
re

d
it

_
b

e
(

in
t

i)
;

23
vo

id
se

n
d

(
fl

it
∗

f)
;

24 25
SC

_H
A

S_
PR

O
C

ES
S

(m
an

g
o

_
li

n
k

)
;

26 27
/∗

C
o

n
st

ru
ct

o
r
∗
/

28
m

an
g

o
_

li
n

k
(

sc
_

co
re

::
sc

_m
od

ul
e_

na
m

e
n

,
co

n
st

d
ir

e
c

ti
o

n
d

ir
,

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
se

n
d

_
d

el
ay

,
co

n
st

sc
_

co
re

::
sc

_
ti

m
e&

u
n

lo
ck

_
g

s_
d

el
ay

,
co

n
st

sc
_

co
re

::
sc

_
ti

m
e&

c
re

d
it

_
b

e
_

d
e

la
y

)
;

29 30
p

ri
va

te
:

31
/∗

T
im

e−
o

u
t

fu
n

c
ti

o
n

s
∗
/

32
vo

id
d

o
_

u
n

lo
ck

_
g

s
()

;
33

vo
id

d
o

_
cr

ed
it

_
b

e
()

;
34

vo
id

d
o

_
se

n
d

()
;

35 36
/∗

D
ir

e
c

ti
o

n
o

f
li

n
k
∗
/

37
co

n
st

d
ir

e
c

ti
o

n
_

d
ir

;
38 39

/∗
D

el
a

ys
∗
/

40
co

n
st

sc
_

co
re

::
sc

_
ti

m
e&

_
se

n
d

_
d

el
ay

;
41

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
_

u
n

lo
ck

_
g

s_
d

el
ay

;
42

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
_

c
re

d
it

_
b

e
_

d
e

la
y

;
43 44

/∗
Q

ue
ue

s
∗
/

45
st

d
::

qu
eu

e<
st

d
::

p
ai

r<
fl

it
∗

,
sc

_
co

re
::

sc
_

ti
m

e
>
>

_
se

n
d

_
fi

fo
;

46
st

d
::

qu
eu

e<
st

d
::

p
ai

r<
in

t
,

sc
_

co
re

::
sc

_
ti

m
e
>
>

_
u

n
lo

ck
_

g
s_

fi
fo

;
47

st
d

::
qu

eu
e<

st
d

::
p

ai
r<

in
t

,
sc

_
co

re
::

sc
_

ti
m

e
>
>

_
c

re
d

it
_

b
e

_
fi

fo
;

48 49
/∗

T
im

e−
o

u
t

e
v

e
n

ts
∗
/

50
sc

_
co

re
::

sc
_

ev
en

t
_

e_
se

n
d

;
51

sc
_

co
re

::
sc

_
ev

en
t

_
e_

u
n

lo
ck

_
g

s
;

52
sc

_
co

re
::

sc
_

ev
en

t
_

e_
cr

ed
it

_
b

e
;

53

A.6 APPENDIX A SOURCE CODE

54
}

;
55 56

#
en

d
if

A
.2

.4
lin

k.
cp

p

1
/∗

2
A

li
n

k
w

it
h

c
o

n
st

a
n

t
d

el
a

ys
3

∗
/

4 5
#

in
cl

u
d

e
"

li
n

k
.h

"
6 7

vo
id

m
an

g
o

_
li

n
k

::
u

n
lo

ck
_

g
s

(
in

t
i)

{
8

_
u

n
lo

ck
_

g
s_

fi
fo

.p
us

h
(

st
d

::
m

ak
e_

p
ai

r<
in

t
,

sc
_

co
re

::
sc

_
ti

m
e
>

(i
,

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
+

_
u

n
lo

ck
_

g
s_

d
el

ay
))

;
9

if
(

_
u

n
lo

ck
_

g
s_

fi
fo

.s
iz

e
()
=
=

1
)

{
10

_
e_

u
n

lo
ck

_
g

s
.n

o
ti

fy
(

_
u

n
lo

ck
_

g
s_

d
el

ay
)

;
11

}
12

}
13 14

vo
id

m
an

g
o

_
li

n
k

::
c

re
d

it
_

b
e

(
in

t
i)

{
15

_
c

re
d

it
_

b
e

_
fi

fo
.p

us
h

(
st

d
::

m
ak

e_
p

ai
r<

in
t

,
sc

_
co

re
::

sc
_

ti
m

e
>

(i
,

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
+

_
c

re
d

it
_

b
e

_
d

e
la

y
))

;
16

if
(

_
c

re
d

it
_

b
e

_
fi

fo
.s

iz
e

()
=
=

1
)

{
17

_
e_

cr
ed

it
_

b
e

.n
o

ti
fy

(
_

c
re

d
it

_
b

e
_

d
e

la
y

)
;

18
}

19
}

20 21
vo

id
m

an
g

o
_

li
n

k
::

se
n

d
(

fl
it
∗

f)
{

22
_

se
n

d
_

fi
fo

.p
us

h
(

st
d

::
m

ak
e_

p
ai

r<
fl

it
∗

,
sc

_
co

re
::

sc
_

ti
m

e
>

(f
,

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
+

_
se

n
d

_
d

el
ay

))
;

23
if

(
_

se
n

d
_

fi
fo

.s
iz

e
()
=
=

1
)

{
24

_
e_

se
n

d
.n

o
ti

fy
(_

se
n

d
_

d
el

ay
)

;
25

}
26

}
27 28

/∗
A

c
ti

v
a

te
d

w
he

n
u

n
lo

ck
a

rr
iv

e
s
∗
/

29
vo

id
m

an
g

o
_

li
n

k
::

d
o

_
u

n
lo

ck
_

g
s

()
{

30
tr

a
n

sm
it

te
r
−
>

u
n

lo
ck

_
g

s
(

_
u

n
lo

ck
_

g
s_

fi
fo

.f
ro

n
t

()
.

fi
rs

t
,

_
d

ir
)

;
31

_
u

n
lo

ck
_

g
s_

fi
fo

.p
op

()
;

32
if

(
_

u
n

lo
ck

_
g

s_
fi

fo
.s

iz
e

()
>

0
)

{
33

_
e_

u
n

lo
ck

_
g

s
.n

o
ti

fy
(

_
u

n
lo

ck
_

g
s_

fi
fo

.f
ro

n
t

()
.s

ec
o

n
d
−

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
)

;
34

}

35
}

36 37
/∗

A
c

ti
v

a
te

d
w

he
n

c
re

d
it

a
rr

iv
e

s
∗
/

38
vo

id
m

an
g

o
_

li
n

k
::

d
o

_
cr

ed
it

_
b

e
()

{
39

tr
a

n
sm

it
te

r
−
>

c
re

d
it

_
b

e
(

_
c

re
d

it
_

b
e

_
fi

fo
.f

ro
n

t
()

.
fi

rs
t

,
_

d
ir

)
;

40
_

c
re

d
it

_
b

e
_

fi
fo

.p
op

()
;

41
if

(
_

c
re

d
it

_
b

e
_

fi
fo

.s
iz

e
()
>

0
)

{
42

_
e_

cr
ed

it
_

b
e

.n
o

ti
fy

(
_

c
re

d
it

_
b

e
_

fi
fo

.f
ro

n
t

()
.s

ec
o

n
d
−

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
)

;
43

}
44

}
45 46

/∗
A

c
ti

v
a

te
d

w
he

n
fl

it
a

rr
iv

e
s
∗
/

47
vo

id
m

an
g

o
_

li
n

k
::

d
o

_
se

n
d

()
{

48
re

ce
iv

er
−
>

se
n

d
(

_
se

n
d

_
fi

fo
.f

ro
n

t
()

.
fi

rs
t

)
;

49
_

se
n

d
_

fi
fo

.p
op

()
;

50
if

(
_

se
n

d
_

fi
fo

.s
iz

e
()
>

0
)

{
51

_
e_

se
n

d
.n

o
ti

fy
(

_
se

n
d

_
fi

fo
.f

ro
n

t
()

.s
ec

o
n

d
−

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
)

;
52

}
53

}
54 55

m
an

g
o

_
li

n
k

::
m

an
g

o
_

li
n

k
(

sc
_

co
re

::
sc

_m
od

ul
e_

na
m

e
n

,
co

n
st

d
ir

e
c

ti
o

n
d

ir
,

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
se

n
d

_
d

el
ay

,
co

n
st

sc
_

co
re

::
sc

_
ti

m
e&

u
n

lo
ck

_
g

s_
d

el
ay

,
co

n
st

sc
_

co
re

::
sc

_
ti

m
e&

c
re

d
it

_
b

e
_

d
e

la
y

)
:

sc
_

co
re

::
sc

_
m

o
d

u
le

(n
)

,
_

d
ir

(
d

ir
)

,
_

se
n

d
_

d
el

ay
(

se
n

d
_

d
el

ay
)

,
_

u
n

lo
ck

_
g

s_
d

el
ay

(
u

n
lo

ck
_

g
s_

d
el

ay
)

,
_

c
re

d
it

_
b

e
_

d
e

la
y

(
c

re
d

it
_

b
e

_
d

e
la

y
)

{
56

SC
_M

ET
H

O
D

(d
o

_
se

n
d

)
;

57
d

o
n

t_
in

it
ia

li
z

e
()

;
58

se
n

si
ti

v
e
<
<

_
e_

se
n

d
;

59
SC

_M
ET

H
O

D
(d

o
_

u
n

lo
ck

_
g

s
)

;
60

d
o

n
t_

in
it

ia
li

z
e

()
;

61
se

n
si

ti
v

e
<
<

_
e_

u
n

lo
ck

_
g

s
;

62
SC

_M
ET

H
O

D
(

d
o

_
cr

ed
it

_
b

e
)

;
63

d
o

n
t_

in
it

ia
li

z
e

()
;

64
se

n
si

ti
v

e
<
<

_
e_

cr
ed

it
_

b
e

;
65

} A
.2

.5
vc

.h

1
/∗

2
V

ir
tu

a
l

ch
a

n
n

el
s

3
∗
/

COMPONENTS A.7
4 5

#
if

n
d

ef
_V

C
_H

6
#

d
ef

in
e

_V
C

_H
7 8

#
in

cl
u

d
e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
<

qu
eu

e>
10 11

#
in

cl
u

d
e

"
..
/

in
te

rf
a

c
e

s
.h

"
12

#
in

cl
u

d
e

"
..
/

ty
p

es
.h

"
13 14

/∗
G

en
er

a
l

VC
,

n
o

t
to

be
in

st
a

n
ti

a
te

d
∗
/

15
cl

a
ss

vc
:

p
u

b
li

c
sc

_
co

re
::

sc
_m

od
ul

e
,

p
u

b
li

c
v

c
_

tr
a

n
sm

it
te

r_
if

,
p

u
b

li
c

v
c

_
re

c
e

iv
e

r_
if

{
16 17

p
u

b
li

c
:

18
vc

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

)
;

19 20
}

;
21 22

/∗
G

u
a

ra
n

te
ed

S
e

rv
ic

e
VC

∗
/

23
cl

a
ss

g
s_

v
c

:
p

u
b

li
c

vc
{

24 25
p

u
b

li
c

:
26

sc
_

co
re

::
sc

_
p

o
rt
<

a
rb

it
e

r_
if
>

ar
b

;
27

sc
_

co
re

::
sc

_
p

o
rt
<

n
o

d
e

_
in

te
rn

a
l_

if
>

nd
e

;
28 29

/∗
In

h
e

ri
te

d
fu

n
c

ti
o

n
s
∗
/

30
vo

id
se

n
d

(
fl

it
∗

)
;

31
vo

id
u

n
lo

ck
()

;
32 33

/∗
C

o
n

st
ru

ct
o

r
∗
/

34
g

s_
v

c
(

sc
_

co
re

::
sc

_m
od

ul
e_

na
m

e
,

co
n

st
in

t
id

,
co

n
st

d
ir

e
c

ti
o

n
d

ir
)

;
35 36

p
ri

va
te

:
37

/∗
ID

an
d

d
ir

e
c

ti
o

n
∗
/

38
co

n
st

in
t

_
id

;
39

co
n

st
d

ir
e

c
ti

o
n

_
d

ir
;

40 41
/∗

L
a

tc
h

es
an

d
in

d
ic

a
ti

o
n

s
o

f
v

a
li

d
it

y
∗
/

42
fl

it
∗

_
lo

ck
_

b
o

x
;

43
b

oo
l

_
lo

ck
_

b
o

x
_

v
al

id
;

44 45
fl

it
∗

_
u

n
lo

ck
_

b
o

x
;

46
b

oo
l

_
u

n
lo

ck
_

b
o

x
_

v
al

id
;

47 48
fl

it
∗

_
b

u
ff

er
;

49
b

oo
l

_
b

u
ff

e
r_

v
a

li
d

;
50 51

}
;

52 53
#

en
d

if

A
.2

.6
vc

.c
pp

1
#

in
cl

u
d

e
"v

c
.h

"
2 3

/∗

4
G

en
er

a
l

a
b

st
ra

c
t
/

v
ir

tu
a

l
VC

b
u

ff
fe

r
5

∗
/

6 7
vc

::
vc

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
)

:
sc

_
co

re
::

sc
_

m
o

d
u

le
(n

)
{

8 9
}

10 11
/∗

12
G

u
a

ra
te

ed
S

e
rv

ic
e

VC
B

u
ff

e
r

13
∗
/

14 15
vo

id
g

s_
v

c
::

se
n

d
(

fl
it
∗

f)
{

16
if

(!
_

b
u

ff
e

r_
v

a
li

d
)

{
17

if
(!

_
lo

ck
_

b
o

x
_

v
al

id
)

{
18

/∗
P

ro
g

re
ss

d
ir

e
c

tl
y

to
a

rb
it

e
r
∗
/

19
_

lo
ck

_
b

o
x
=

f
;

20
_

lo
ck

_
b

o
x

_
v

al
id
=

tr
u

e
;

21
ar

b
−
>

a
rb

it
ra

te
(_

lo
ck

_
b

o
x

,
_

id
)

;
22

}
el

se
{

23
/∗

P
ro

g
re

ss
d

ir
e

c
tl

y
to

b
u

ff
e

r
∗
/

24
_

b
u

ff
er
=

f
;

25
_

b
u

ff
e

r_
v

a
li

d
=

tr
u

e
;

26
}

27
/∗

F
li

t
le

ft
u

n
lo

ck
b

o
x
∗
/

28
nd

e−
>

u
n

lo
ck

(_
id

,
_

d
ir

)
;

29
}

el
se

{
30

/∗
W

a
it

in
u

n
lo

ck
b

o
x
∗
/

31
_

u
n

lo
ck

_
b

o
x
=

f
;

32
_

u
n

lo
ck

_
b

o
x

_
v

al
id
=

tr
u

e
;

33
}

34
}

A.8 APPENDIX A SOURCE CODE

35 36
vo

id
g

s_
v

c
::

u
n

lo
ck

()
{

37
if

(
_

b
u

ff
e

r_
v

a
li

d
)

{
38

/∗
P

ro
p

a
g

a
te

fl
it

fr
o

m
b

u
ff

e
r
∗
/

39
_

lo
ck

_
b

o
x
=

_
b

u
ff

er
;

40
_

b
u

ff
e

r_
v

a
li

d
=

fa
ls

e
;

41
ar

b
−
>

a
rb

it
ra

te
(_

lo
ck

_
b

o
x

,
_

id
)

;
42 43

/∗
P

o
ss

ib
le

fl
it

in
u

n
lo

ck
_

b
o

x
m

ay
no

w
p

ro
p

a
g

a
te
∗
/

44
if

(
_

u
n

lo
ck

_
b

o
x

_
v

al
id

)
{

45
_

b
u

ff
er
=

_
u

n
lo

ck
_

b
o

x
;

46
_

b
u

ff
e

r_
v

a
li

d
=

tr
u

e
;

47
_

u
n

lo
ck

_
b

o
x

_
v

al
id
=

fa
ls

e
;

48
nd

e−
>

u
n

lo
ck

(_
id

,
_

d
ir

)
;

49
}

50
}

el
se

{
51

if
(

_
u

n
lo

ck
_

b
o

x
_

v
al

id
)

{
52

/∗
P

ro
p

a
g

a
te

fl
it

fr
o

m
u

n
lo

ck
b

o
x
∗
/

53
_

lo
ck

_
b

o
x
=

_
u

n
lo

ck
_

b
o

x
;

54
_

u
n

lo
ck

_
b

o
x

_
v

al
id
=

fa
ls

e
;

55
ar

b
−
>

a
rb

it
ra

te
(_

lo
ck

_
b

o
x

,
_

id
)

;
56

nd
e−
>

u
n

lo
ck

(_
id

,
_

d
ir

)
;

57
}

el
se

{
58

_
lo

ck
_

b
o

x
_

v
al

id
=

fa
ls

e
;

59
}

60
}

61
}

62 63
g

s_
v

c
::

g
s_

v
c

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
,

co
n

st
in

t
id

,
co

n
st

d
ir

e
c

ti
o

n
d

ir
)

:
vc

(n
)

,
_

id
(

id
)

,
_

d
ir

(
d

ir
)

{
64

_
lo

ck
_

b
o

x
_

v
al

id
=

fa
ls

e
;

65
_

b
u

ff
e

r_
v

a
li

d
=

fa
ls

e
;

66
_

u
n

lo
ck

_
b

o
x

_
v

al
id
=

fa
ls

e
;

67
} A

.2
.7

no
de

.h

1
#

if
n

d
ef

_N
O

D
E_

H
2

#
d

ef
in

e
_N

O
D

E_
H

3 4
#

in
cl

u
d

e
<

sy
st

em
c
>

5
#

in
cl

u
d

e
"

..
/

ty
p

es
.h

"
6

#
in

cl
u

d
e

"
..
/

in
te

rf
a

c
e

s
.h

"
7

#
in

cl
u

d
e

"
a

rb
it

e
r

.h
"

8
#

in
cl

u
d

e
"v

c
.h

"
9 10

cl
a

ss
no

de
:

p
u

b
li

c
sc

_
co

re
::

sc
_m

od
ul

e
,

p
u

b
li

c
n

o
d

e
_

tr
a

n
sm

it
te

r_
if

,
p

u
b

li
c

n
o

d
e_

re
ce

iv
er

_
if

,
p

u
b

li
c

n
o

d
e

_
in

te
rn

a
l_

if
,

p
u

b
li

c
n

o
d

e
_

a
rb

it
e

r_
if

,
p

u
b

li
c

n
o

d
e

_
n

a
_

tr
a

n
sm

it
te

r_
if

,
p

u
b

li
c

n
o

d
e

_
n

a
_

re
c

e
iv

e
r_

if
{

11 12
p

u
b

li
c

:
13

sc
_

co
re

::
sc

_
p

o
rt
<

li
n

k
_

tr
a

n
sm

it
te

r_
if
>

ln
k

_
tx

[4
];

14
sc

_
co

re
::

sc
_

p
o

rt
<

li
n

k
_

re
c

e
iv

e
r_

if
>

ln
k

_
rx

[4
];

15
sc

_
co

re
::

sc
_

p
o

rt
<

n
a_

if
>

n
et

_
ad

ap
;

16 17
/∗

Se
nd

(
re

c
e

iv
e

)
∗
/

18
vo

id
se

n
d

(
fl

it
∗

)
;

19 20
/∗

A
rb

it
e

r
∗
/

21
vo

id
ar

b
_

se
n

d
(

fl
it
∗

,
co

n
st

d
ir

e
c

ti
o

n
)

;
22

vo
id

ar
b

_
re

ad
y

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)
;

23 24
/∗

E
xt

er
n

a
l

u
n

lo
ck

s
∗
/

25
vo

id
u

n
lo

ck
_

g
s

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)
;

26
vo

id
c

re
d

it
_

b
e

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)
;

27 28
/∗

In
te

rn
a

l
u

n
lo

ck
s

fr
o

m
V

C
s
∗
/

29
vo

id
u

n
lo

ck
(c

on
st

in
t

,
co

n
st

d
ir

e
c

ti
o

n
)

;
30

vo
id

c
re

d
it

(c
on

st
in

t
,

co
n

st
d

ir
e

c
ti

o
n

)
;

31 32
/∗

N
et

w
o

rk
A

d
a

p
te

r
∗
/

33
vo

id
n

a_
se

n
d

(
fl

it
∗

)
;

34
vo

id
n

a_
u

n
lo

ck
_

g
s

(c
on

st
in

t)
;

35 36
/∗

In
it

ia
li

s
e

ta
b

le
s
∗
/

37
vo

id
se

t_
ro

u
ti

n
g

_
ta

b
le

(
d

ir
e

c
ti

o
n
∗

,
in

t∗
)

;
38

vo
id

se
t_

st
e

e
r_

ta
b

le
(

d
ir

e
c

ti
o

n
∗

,
in

t∗
)

;
39 40

no
de

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

,
co

n
st

sc
_

co
re

::
sc

_
ti

m
e

&
);

41
~

no
de

()
;

42 43
p

ri
va

te
:

44
/∗

A
rb

it
e

r
an

d
v

ir
tu

a
l

ch
a

n
n

el
s
∗
/

45
a

rb
it

e
r∗

_
ar

b
[4

];
46

vc
∗

_
v

cs
[4

][
8

];
47 48

/∗
R

o
u

ti
n

g
ta

b
le

s
∗
/

49
d

ir
e

c
ti

o
n

_
ro

u
ti

n
g

_
d

ir
[5

][
8

];

COMPONENTS A.9
50

in
t

_
ro

u
ti

n
g

_
v

c
[5

][
8

];
51 52

/∗
S

te
e

r
ta

b
le
∗
/

53
d

ir
e

c
ti

o
n

_
st

e
e

r_
d

ir
[5

][
8

];
54

in
t

_
st

ee
r_

v
c

[5
][

8
];

55 56
}

;
57 58

#
en

d
if

A
.2

.8
no

de
.c

pp

1
#

in
cl

u
d

e
"n

od
e

.h
"

2 3
vo

id
no

de
::

se
n

d
(

fl
it
∗

f)
{

4
d

ir
e

c
ti

o
n

d
f
=

f−
>

g
e

t_
d

ir
e

c
ti

o
n

()
;

5
in

t
v

f
=

f−
>

g
et

_
v

c
()

;
6

/∗
L

oo
k

up
an

d
se

t
ne

w
d

e
st

in
a

ti
o

n
∗
/

7
d

ir
e

c
ti

o
n

d
=

_
ro

u
ti

n
g

_
d

ir
[(

f−
>

g
e

t_
d

ir
e

c
ti

o
n

()
+

2)
%

4]
[f
−
>

g
et

_
v

c
()

];
8

in
t

v
=

_
ro

u
ti

n
g

_
v

c
[(

f−
>

g
e

t_
d

ir
e

c
ti

o
n

()
+

2)
%

4]
[f
−
>

g
et

_
v

c
()

];
9

f−
>

se
t_

d
ir

e
c

ti
o

n
(d

)
;

10
f−
>

se
t_

v
c

(v
)

;
11

/∗
Se

nd
fl

it
to

it
s

d
e

st
in

a
ti

o
n
∗
/

12
if

(d
=
=

d
ir

_
lo

c
a

l)
{

13
n

et
_

ad
ap
−
>

se
n

d
(f

)
;

14
}

el
se

{
15

if
(d
>

d
ir

_
lo

c
a

l)
{

16
}

el
se

{
17

_
v

cs
[f
−
>

g
e

t_
d

ir
e

c
ti

o
n

()
][

f−
>

g
et

_
v

c
()

]−
>

se
n

d
(f

)
;

18
}

19
}

20
}

21 22
vo

id
no

de
::

ar
b

_
re

ad
y

(c
on

st
in

t
i

,
co

n
st

d
ir

e
c

ti
o

n
d

)
{

23
_

v
cs

[d
][

i]
−
>

ar
b

_
re

ad
y

()
;

24
}

25 26
vo

id
no

de
::

ar
b

_
se

n
d

(
fl

it
∗

f
,

co
n

st
d

ir
e

c
ti

o
n

d
)

{
27

ln
k

_
tx

[d
]−
>

se
n

d
(f

)
;

28
}

29 30
/∗

In
te

rn
a

l
,

fr
o

m
VC

∗
/

31
vo

id
no

de
::

c
re

d
it

(c
on

st
in

t
i

,
co

n
st

d
ir

e
c

ti
o

n
d

)
{

32 33
}

34 35
/∗

E
xt

er
n

a
l

,
fr

o
m

li
n

k
∗
/

36
vo

id
no

de
::

c
re

d
it

_
b

e
(c

on
st

in
t

i
,

co
n

st
d

ir
e

c
ti

o
n

d
)

{
37

_
v

cs
[d

][
i]
−
>

u
n

lo
ck

()
;

38
}

39 40
/∗

In
te

rn
a

l
,

fr
o

m
VC

∗
/

41
vo

id
no

de
::

u
n

lo
ck

(c
on

st
in

t
i

,
co

n
st

d
ir

e
c

ti
o

n
d

)
{

42
if

(
_

st
e

e
r_

d
ir

[d
][

i]
=
=

d
ir

_
lo

c
a

l)
{

43
n

et
_

ad
ap
−
>

u
n

lo
ck

(
_

st
ee

r_
v

c
[d

][
i

])
;

44
}

el
se

{
45

if
(

_
st

e
e

r_
d

ir
[d

][
i]
>

d
ir

_
lo

c
a

l
|
|

_
st

ee
r_

v
c

[d
][

i]
>

7
)

{
46

}
el

se
{

47
ln

k
_

rx
[

_
st

e
e

r_
d

ir
[d

][
i]

]−
>

u
n

lo
ck

_
g

s
(

_
st

ee
r_

v
c

[d
][

i
])

;
48

}
49

}
50

}
51 52

/∗
E

xt
er

n
a

l
,

fr
o

m
li

n
k
∗
/

53
vo

id
no

de
::

u
n

lo
ck

_
g

s
(c

on
st

in
t

i
,

co
n

st
d

ir
e

c
ti

o
n

d
)

{
54

/∗
(d
+

2)
%

4
c

a
lc

u
la

te
s

th
e

re
v

e
rs

e
d

ir
e

c
ti

o
n
∗
/

55
_

v
cs

[(
d
+

2)
%

4]
[i

]−
>

u
n

lo
ck

()
;

56
}

57 58
/∗

N
et

w
o

rk
A

d
a

p
te

r
∗
/

59
vo

id
no

de
::

n
a_

se
n

d
(

fl
it
∗

f)
{

60
/∗

L
oo

ku
p

an
d

se
t

d
e

st
in

a
ti

o
n
∗
/

61
d

ir
e

c
ti

o
n

d
=

_
ro

u
ti

n
g

_
d

ir
[

d
ir

_
lo

c
a

l
][

f−
>

g
et

_
v

c
()

];
62

in
t

v
=

_
ro

u
ti

n
g

_
v

c
[

d
ir

_
lo

c
a

l
][

f−
>

g
et

_
v

c
()

];
63

f−
>

se
t_

d
ir

e
c

ti
o

n
(d

)
;

64
f−
>

se
t_

v
c

(v
)

;
65

if
(d
>

d
ir

_
lo

c
a

l)
{

66
}

el
se

{
67

_
v

cs
[f
−
>

g
e

t_
d

ir
e

c
ti

o
n

()
][

f−
>

g
et

_
v

c
()

]−
>

se
n

d
(f

)
;

68
}

69
}

70 71
vo

id
no

de
::

n
a_

u
n

lo
ck

_
g

s
(c

on
st

in
t

i)
{

72
if

(
_

st
e

e
r_

d
ir

[
d

ir
_

lo
c

a
l

][
i]
>

d
ir

_
lo

c
a

l
|
|

_
st

ee
r_

v
c

[
d

ir
_

lo
c

a
l

][
i]
>

7
)

{
73

}
el

se
{

74
ln

k
_

rx
[

_
st

e
e

r_
d

ir
[

d
ir

_
lo

c
a

l
][

i]
]−
>

u
n

lo
ck

_
g

s
(

_
st

ee
r_

v
c

[
d

ir
_

lo
c

a
l

][
i

])
;

A.10 APPENDIX A SOURCE CODE

75
}

76
}

77 78
/∗

In
it

ia
li

s
a

ti
o

n
∗
/

79
vo

id
no

de
::

se
t_

ro
u

ti
n

g
_

ta
b

le
(

d
ir

e
c

ti
o

n
∗

d
ir

,
in

t∗
vc

)
{

80
fo

r
(

in
t

i
=

0
;

i
<

5
;
+
+

i)
{

81
fo

r
(

in
t

j
=

0
;

j
<

8
;
+
+

j
,
+
+

d
ir

,
+
+

vc
)

{
82

_
ro

u
ti

n
g

_
d

ir
[

i
][

j]
=
∗

d
ir

;
83

_
ro

u
ti

n
g

_
v

c
[

i
][

j]
=
∗

vc
;

84
}

85
}

86
}

87 88
vo

id
no

de
::

se
t_

st
e

e
r_

ta
b

le
(

d
ir

e
c

ti
o

n
∗

d
ir

,
in

t∗
vc

)
{

89
fo

r
(

in
t

i
=

0
;

i
<

5
;
+
+

i)
{

90
fo

r
(

in
t

j
=

0
;

j
<

8
;
+
+

j
,
+
+

d
ir

,
+
+

vc
)

{
91

_
st

e
e

r_
d

ir
[

i
][

j]
=
∗

d
ir

;
92

_
st

ee
r_

v
c

[
i

][
j]
=
∗

vc
;

93
}

94
}

95
}

96 97
no

de
::

no
de

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
,

co
n

st
sc

_
co

re
::

sc
_

ti
m

e&
lc

t
)

:
sc

_
co

re
::

sc
_

m
o

d
u

le
(n

)
{

98
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

99
_

ar
b

[
i]
=

ne
w

a
rb

it
e

r
(g

en
_

u
n

iq
u

e_
n

am
e

("
A

R
B

"
,

tr
u

e
)

,
lc

t
,

i)
;

10
0

_
ar

b
[

i]
−
>

nd
e

(∗
th

is
)

;
10

1
fo

r
(

in
t

j
=

0
;

j
<

8
;
+
+

j)
{

10
2

_
v

cs
[

i
][

j]
=

ne
w

g
s_

v
c

(g
en

_
u

n
iq

u
e_

n
am

e
("

V
C

"
,

tr
u

e
)

,
j

,
i)

;
10

3
_

ro
u

ti
n

g
_

d
ir

[
i

][
j]
=

(
i+

2)
%

4;
10

4
_

ro
u

ti
n

g
_

v
c

[
i

][
j]
=

j;
10

5
_

st
e

e
r_

d
ir

[
i

][
j]
=

(
i+

2)
%

4;
10

6
_

st
ee

r_
v

c
[

i
][

j]
=

j;
10

7
((

g
s_

v
c
∗

)
_

v
cs

[
i

][
j

])
−
>

nd
e

(∗
th

is
)

;
10

8
((

g
s_

v
c
∗

)
_

v
cs

[
i

][
j

])
−
>

ar
b

(∗
(

_
ar

b
[

i
])

)
;

10
9

}
11

0
}

11
1

}
11

2
11

3
no

de
::

~
no

de
()

{
11

4
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

11
5

d
el

et
e

_
ar

b
[

i
];

11
6

fo
r

(
in

t
j
=

0
;

j
<

8
;
+
+

j)
{

11
7

d
el

et
e

_
v

cs
[

i
][

j
];

11
8

}

11
9

}
12

0
} A

.3
Te

st
Fi

le
s

A
.3

.1
m

an
go

_t
he

si
s_

m
od

el
.h

T
hi

s
is

th
e

to
p-

le
ve

l
Sy

st
em

C
fil

e,
w

hi
ch

co
nt

ai
ns

th
e

ne
tw

or
k

an
d

th
e

co
nv

er
si

on
m

od
ul

es
to

th
e

ne
tw

or
k

ad
ap

te
rs

.
1

/∗

2
T

op
−

le
v

e
l

d
es

ig
n

fi
le

fo
r

m
od

el
n

et
w

o
rk

o
f

te
st

sy
st

em
3

∗
/

4 5
#

if
n

d
ef

_M
A

N
G

O
_T

H
ES

IS
_M

O
D

EL
_H

6
#

d
ef

in
e

_M
A

N
G

O
_T

H
ES

IS
_M

O
D

EL
_H

7 8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
"

na
_c

on
v

.h
"

10
#

in
cl

u
d

e
"

li
n

k
_

si
n

k
.h

"
11

#
in

cl
u

d
e

"
..
/

co
m

p
o

n
en

ts
/

no
de

.h
"

12
#

in
cl

u
d

e
"

..
/

co
m

p
o

n
en

ts
/

li
n

k
.h

"
13 14

cl
a

ss
m

an
g

o
_

th
es

is
_

m
o

d
el

:
p

u
b

li
c

sc
_

co
re

::
sc

_
m

o
d

u
le

{
15 16

p
u

b
li

c
:

17
/∗

In
it

ia
to

r
∗
/

18
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

4>
>

R
xR

eq
_1

;
19

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

4>
>

R
xA

ck
_1

;
20

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

15
6>
>

R
xD

at
a_

1
;

21
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

4>
>

T
xA

ck
_1

;
22

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

4>
>

T
xR

eq
_1

;
23

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

15
6>
>

T
xD

at
a_

1
;

24 25
/∗

T
a

rg
et
∗
/

26
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

4>
>

R
xR

eq
_2

;
27

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

4>
>

R
xA

ck
_2

;
28

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

15
6>
>

R
xD

at
a_

2
;

29
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

4>
>

T
xA

ck
_2

;
30

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

4>
>

T
xR

eq
_2

;
31

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

15
6>
>

T
xD

at
a_

2
;

32

TEST FILES A.11
33

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

re
se

t
;

34 35
SC

_H
A

S_
PR

O
C

ES
S

(m
an

g
o

_
th

es
is

_
m

o
d

el
)

;
36 37

m
an

g
o

_
th

es
is

_
m

o
d

el
(

sc
_

co
re

::
sc

_m
od

ul
e_

na
m

e
n

)
:

38
sc

_
co

re
::

sc
_

m
o

d
u

le
(n

)
,

39
na

1
("

N
A

1"
)

,
na

2
("

N
A

2"
)

,
lc

t
(2

.6
,

sc
_

co
re

::
SC

_N
S

)
,

sd
(1

0
.5

,
sc

_
co

re
::

SC
_N

S
)

,
ud

(3
.

,
sc

_
co

re
::

SC
_N

S
)

,
40

ls
1

n
("

L
S1

N
"

)
,

ls
1

w
("

LS
1W

"
)

,
ls

1
s

("
L

S1
S

"
)

,
ls

2
n

("
L

S2
N

"
)

,
ls

2
e

("
L

S2
E

"
)

,
ls

3w
("

LS
3W

"
)

,
ls

3
s

("
L

S3
S

"
)

,
ls

3
e

("
L

S3
E

"
)

{
41 42

/∗
N

od
es
∗
/

43
nd

1
=

ne
w

no
de

("
N

D
1"

,
lc

t
)

;
44

nd
2
=

ne
w

no
de

("
N

D
2"

,
lc

t
)

;
45

nd
3
=

ne
w

no
de

("
N

D
3"

,
lc

t
)

;
46 47

/∗
L

in
ks
∗
/

48
lk

1
2
=

ne
w

m
an

g
o

_
li

n
k

("
L

K
12

"
,

d
ir

_
w

es
t

,
sd

,
ud

,
ud

)
;

49
lk

2
1
=

ne
w

m
an

g
o

_
li

n
k

("
L

K
21

"
,

d
ir

_
e

a
st

,
sd

,
ud

,
ud

)
;

50
lk

2
3
=

ne
w

m
an

g
o

_
li

n
k

("
L

K
23

"
,

d
ir

_
n

o
rt

h
,

sd
,

ud
,

ud
)

;
51

lk
3

2
=

ne
w

m
an

g
o

_
li

n
k

("
L

K
32

"
,

d
ir

_
so

u
th

,
sd

,
ud

,
ud

)
;

52 53
/∗

D
ea

d
en

d
li

n
k

s
∗
/

54
ls

1
n

.n
d

e_
tx

(∗
nd

1
)

;
ls

1
n

.n
d

e_
rx

(∗
nd

1
)

;
55

ls
1w

.n
d

e_
tx

(∗
nd

1
)

;
ls

1w
.n

d
e_

rx
(∗

nd
1

)
;

56
ls

1
s

.n
d

e_
tx

(∗
nd

1
)

;
ls

1
s

.n
d

e_
rx

(∗
nd

1
)

;
57

ls
2

n
.n

d
e_

tx
(∗

nd
2

)
;

ls
2

n
.n

d
e_

rx
(∗

nd
2

)
;

58
ls

2
e

.n
d

e_
tx

(∗
nd

2
)

;
ls

2
e

.n
d

e_
rx

(∗
nd

2
)

;
59

ls
3w

.n
d

e_
tx

(∗
nd

3
)

;
ls

3w
.n

d
e_

rx
(∗

nd
3

)
;

60
ls

3
s

.n
d

e_
tx

(∗
nd

3
)

;
ls

3
s

.n
d

e_
rx

(∗
nd

3
)

;
61

ls
3

e
.n

d
e_

tx
(∗

nd
3

)
;

ls
3

e
.n

d
e_

rx
(∗

nd
3

)
;

62 63
/∗

C
o

n
n

ec
t

in
it

ia
to

r
∗
/

64
na

1
.R

xA
ck

(R
xA

ck
_1

)
;

65
na

1
.R

xR
eq

(R
xR

eq
_1

)
;

66
na

1
.R

xD
at

a
(R

xD
at

a_
1

)
;

67
na

1
.T

xA
ck

(T
xA

ck
_1

)
;

68
na

1
.T

xR
eq

(T
xR

eq
_1

)
;

69
na

1
.T

xD
at

a
(T

xD
at

a_
1

)
;

70
na

1
.n

d
e_

tx
(∗

nd
1

)
;

71
na

1
.n

d
e_

rx
(∗

nd
1

)
;

72 73
/∗

C
o

n
n

ec
t

ta
rg

e
t
∗
/

74
na

2
.R

xA
ck

(R
xA

ck
_2

)
;

75
na

2
.R

xR
eq

(R
xR

eq
_2

)
;

76
na

2
.R

xD
at

a
(R

xD
at

a_
2

)
;

77
na

2
.T

xA
ck

(T
xA

ck
_2

)
;

78
na

2
.T

xR
eq

(T
xR

eq
_2

)
;

79
na

2
.T

xD
at

a
(T

xD
at

a_
2

)
;

80
na

2
.n

d
e_

tx
(∗

nd
3

)
;

81
na

2
.n

d
e_

rx
(∗

nd
3

)
;

82 83
/∗

C
o

n
n

ec
t

n
o

d
es
∗
/

84
nd

1−
>

ln
k

_
tx

[
d

ir
_

n
o

rt
h

](
ls

1
n

)
;

85
nd

1−
>

ln
k

_
rx

[
d

ir
_

n
o

rt
h

](
ls

1
n

)
;

86
nd

1−
>

ln
k

_
tx

[
d

ir
_

w
es

t
](

ls
1w

)
;

87
nd

1−
>

ln
k

_
rx

[
d

ir
_

w
es

t
](

ls
1

w
)

;
88

nd
1−
>

ln
k

_
tx

[
d

ir
_

so
u

th
](

ls
1

s
)

;
89

nd
1−
>

ln
k

_
rx

[
d

ir
_

so
u

th
](

ls
1

s
)

;
90

nd
1−
>

ln
k

_
tx

[
d

ir
_

e
a

st
](
∗

lk
1

2
)

;
91

nd
1−
>

ln
k

_
rx

[
d

ir
_

e
a

st
](
∗

lk
2

1
)

;
92

nd
1−
>

n
et

_
ad

ap
(n

a1
)

;
93 94

nd
2−
>

ln
k

_
tx

[
d

ir
_

n
o

rt
h

](
ls

2
n

)
;

95
nd

2−
>

ln
k

_
rx

[
d

ir
_

n
o

rt
h

](
ls

2
n

)
;

96
nd

2−
>

ln
k

_
tx

[
d

ir
_

e
a

st
](

ls
2

e
)

;
97

nd
2−
>

ln
k

_
rx

[
d

ir
_

e
a

st
](

ls
2

e
)

;
98

nd
2−
>

ln
k

_
tx

[
d

ir
_

w
es

t]
(∗

lk
2

1
)

;
99

nd
2−
>

ln
k

_
rx

[
d

ir
_

w
es

t]
(∗

lk
1

2
)

;
10

0
nd

2−
>

ln
k

_
tx

[
d

ir
_

so
u

th
](
∗

lk
2

3
)

;
10

1
nd

2−
>

ln
k

_
rx

[
d

ir
_

so
u

th
](
∗

lk
3

2
)

;
10

2
nd

2−
>

n
et

_
ad

ap
(n

a1
)

;
10

3
10

4
nd

3−
>

ln
k

_
tx

[
d

ir
_

n
o

rt
h

](
∗

lk
3

2
)

;
10

5
nd

3−
>

ln
k

_
rx

[
d

ir
_

n
o

rt
h

](
∗

lk
2

3
)

;
10

6
nd

3−
>

ln
k

_
tx

[
d

ir
_

e
a

st
](

ls
3

e
)

;
10

7
nd

3−
>

ln
k

_
rx

[
d

ir
_

e
a

st
](

ls
3

e
)

;
10

8
nd

3−
>

ln
k

_
tx

[
d

ir
_

so
u

th
](

ls
3

s
)

;
10

9
nd

3−
>

ln
k

_
rx

[
d

ir
_

so
u

th
](

ls
3

s
)

;
11

0
nd

3−
>

ln
k

_
tx

[
d

ir
_

w
es

t
](

ls
3w

)
;

11
1

nd
3−
>

ln
k

_
rx

[
d

ir
_

w
es

t
](

ls
3

w
)

;
11

2
nd

3−
>

n
et

_
ad

ap
(n

a2
)

;
11

3
11

4
/∗

C
o

n
n

ec
t

li
n

k
s
∗
/

11
5

lk
1

2
−
>

tr
a

n
sm

it
te

r
(∗

nd
1

)
;

11
6

lk
1

2
−
>

re
c

e
iv

e
r

(∗
nd

2
)

;
11

7
11

8
lk

2
1
−
>

tr
a

n
sm

it
te

r
(∗

nd
2

)
;

11
9

lk
2

1
−
>

re
c

e
iv

e
r

(∗
nd

1
)

;
12

0

A.12 APPENDIX A SOURCE CODE

12
1

lk
2

3
−
>

tr
a

n
sm

it
te

r
(∗

nd
2

)
;

12
2

lk
2

3
−
>

re
c

e
iv

e
r

(∗
nd

3
)

;
12

3
12

4
lk

3
2
−
>

tr
a

n
sm

it
te

r
(∗

nd
3

)
;

12
5

lk
3

2
−
>

re
c

e
iv

e
r

(∗
nd

2
)

;
12

6
12

7
/∗

S
et

u
p

in
it

ia
to

r
N

A
ro

u
ti

n
g

ta
b

le
s
∗
/

12
8

d
ir

e
c

ti
o

n
n

a1
d

ir
[4

];
12

9
n

a1
d

ir
[0

]
=

d
ir

_
lo

c
a

l
;

13
0

n
a1

d
ir

[1
]
=

d
ir

_
lo

c
a

l
;

13
1

n
a1

d
ir

[2
]
=

d
ir

_
lo

c
a

l
;

13
2

13
3

in
t

na
1v

c
[4

];
13

4
na

1v
c

[0
]=

0
;

13
5

na
1v

c
[1

]=
1

;
13

6
na

1v
c

[2
]=

2
;

13
7

13
8

na
1

.
se

t_
d

ir
(

n
a1

d
ir

)
;

13
9

na
1

.s
et

_
v

c
(n

a1
vc

)
;

14
0

14
1

/∗
S

et
u

p
ta

rg
e

t
N

A
ro

u
ti

n
g

ta
b

le
s
∗
/

14
2

d
ir

e
c

ti
o

n
n

a2
d

ir
[4

];
14

3
n

a2
d

ir
[0

]
=

d
ir

_
lo

c
a

l
;

14
4

n
a2

d
ir

[3
]
=

d
ir

_
lo

c
a

l
;

14
5

14
6

in
t

na
2v

c
[4

];
14

7
na

2v
c

[0
]
=

0
;

14
8

na
2v

c
[3

]
=

3
;

14
9

15
0

na
2

.
se

t_
d

ir
(

n
a2

d
ir

)
;

15
1

na
2

.s
et

_
v

c
(n

a2
vc

)
;

15
2

15
3

/∗
S

et
u

p
no

de
1

ro
u

ti
n

g
ta

b
le

s
∗
/

15
4

d
ir

e
c

ti
o

n
n

d
1

d
ir

[5
][

8
];

15
5

n
d

1
d

ir
[

d
ir

_
lo

c
a

l
][

0
]
=

d
ir

_
e

a
st

;
15

6
n

d
1

d
ir

[
d

ir
_

lo
c

a
l

][
1

]
=

d
ir

_
e

a
st

;
15

7
n

d
1

d
ir

[
d

ir
_

lo
c

a
l

][
2

]
=

d
ir

_
e

a
st

;
15

8
n

d
1

d
ir

[
d

ir
_

e
a

st
][

0
]
=

d
ir

_
lo

c
a

l
;

15
9

n
d

1
d

ir
[

d
ir

_
e

a
st

][
7

]
=

d
ir

_
lo

c
a

l
;

16
0

16
1

in
t

nd
1v

c
[5

][
8

];
16

2
nd

1v
c

[
d

ir
_

lo
c

a
l

][
0

]
=

7
;

16
3

nd
1v

c
[

d
ir

_
lo

c
a

l
][

1
]
=

0
;

16
4

nd
1v

c
[

d
ir

_
lo

c
a

l
][

2
]
=

3
;

16
5

nd
1v

c
[

d
ir

_
e

a
st

][
0

]
=

1
;

16
6

nd
1v

c
[

d
ir

_
e

a
st

][
7

]
=

0
;

16
7

16
8

/∗
S

et
u

p
no

de
1

st
e

e
r

ta
b

le
s
∗
/

16
9

d
ir

e
c

ti
o

n
n

d
1

sd
ir

[5
][

8
];

17
0

n
d

1
sd

ir
[

d
ir

_
lo

c
a

l
][

0
]
=

d
ir

_
e

a
st

;
17

1
n

d
1

sd
ir

[
d

ir
_

lo
c

a
l

][
1

]
=

d
ir

_
e

a
st

;
17

2
n

d
1

sd
ir

[
d

ir
_

lo
c

a
l

][
2

]
=

d
ir

_
e

a
st

;
17

3
n

d
1

sd
ir

[
d

ir
_

lo
c

a
l

][
3

]
=

d
ir

_
e

a
st

;
17

4
n

d
1

sd
ir

[
d

ir
_

e
a

st
][

0
]
=

d
ir

_
lo

c
a

l
;

17
5

n
d

1
sd

ir
[

d
ir

_
e

a
st

][
7

]
=

d
ir

_
lo

c
a

l
;

17
6

17
7

in
t

n
d

1
sv

c
[5

][
8

];
17

8
n

d
1

sv
c

[
d

ir
_

lo
c

a
l

][
0

]
=

7
;

17
9

n
d

1
sv

c
[

d
ir

_
lo

c
a

l
][

1
]
=

0
;

18
0

n
d

1
sv

c
[

d
ir

_
lo

c
a

l
][

2
]
=

1
;

18
1

n
d

1
sv

c
[

d
ir

_
lo

c
a

l
][

3
]
=

1
;

18
2

n
d

1
sv

c
[

d
ir

_
e

a
st

][
0

]
=

1
;

18
3

n
d

1
sv

c
[

d
ir

_
e

a
st

][
7

]
=

0
;

18
4

18
5

nd
1−
>

se
t_

ro
u

ti
n

g
_

ta
b

le
(&

(n
d

1
d

ir
[0

][
0

])
,

&
(n

d1
vc

[0
][

0
])

)
;

18
6

nd
1−
>

se
t_

st
e

e
r_

ta
b

le
(&

(n
d

1
sd

ir
[0

][
0

])
,

&
(n

d
1

sv
c

[0
][

0
])

)
;

18
7

18
8

/∗
S

et
u

p
no

de
2

ro
u

ti
n

g
ta

b
le

s
∗
/

18
9

d
ir

e
c

ti
o

n
n

d
2

d
ir

[5
][

8
];

19
0

n
d

2
d

ir
[

d
ir

_
w

es
t

][
7

]
=

d
ir

_
so

u
th

;
19

1
n

d
2

d
ir

[
d

ir
_

w
es

t
][

3
]
=

d
ir

_
so

u
th

;
19

2
n

d
2

d
ir

[
d

ir
_

w
es

t
][

0
]
=

d
ir

_
so

u
th

;
19

3
n

d
2

d
ir

[
d

ir
_

so
u

th
][

7
]
=

d
ir

_
w

es
t;

19
4

n
d

2
d

ir
[

d
ir

_
so

u
th

][
2

]
=

d
ir

_
w

es
t;

19
5

19
6

in
t

nd
2v

c
[5

][
8

];
19

7
nd

2v
c

[
d

ir
_

w
es

t
][

7
]
=

7
;

19
8

nd
2v

c
[

d
ir

_
w

es
t

][
3

]
=

5
;

19
9

nd
2v

c
[

d
ir

_
w

es
t

][
0

]
=

0
;

20
0

nd
2v

c
[

d
ir

_
so

u
th

][
7

]
=

7
;

20
1

nd
2v

c
[

d
ir

_
so

u
th

][
2

]
=

0
;

20
2

20
3

/∗
S

et
u

p
no

de
2

st
e

e
r

ta
b

le
s
∗
/

20
4

d
ir

e
c

ti
o

n
n

d
2

sd
ir

[5
][

8
];

20
5

n
d

2
sd

ir
[

d
ir

_
so

u
th

][
7

]
=

d
ir

_
w

es
t;

20
6

n
d

2
sd

ir
[

d
ir

_
so

u
th

][
5

]
=

d
ir

_
w

es
t;

20
7

n
d

2
sd

ir
[

d
ir

_
so

u
th

][
0

]
=

d
ir

_
w

es
t;

20
8

n
d

2
sd

ir
[

d
ir

_
w

es
t

][
7

]
=

d
ir

_
so

u
th

;
20

9
n

d
2

sd
ir

[
d

ir
_

w
es

t
][

0
]
=

d
ir

_
so

u
th

;
21

0

TEST FILES A.13
21

1
in

t
n

d
2

sv
c

[5
][

8
];

21
2

n
d

2
sv

c
[

d
ir

_
so

u
th

][
7

]
=

7
;

21
3

n
d

2
sv

c
[

d
ir

_
so

u
th

][
5

]
=

3
;

21
4

n
d

2
sv

c
[

d
ir

_
so

u
th

][
0

]
=

0
;

21
5

n
d

2
sv

c
[

d
ir

_
w

es
t

][
7

]
=

7
;

21
6

n
d

2
sv

c
[

d
ir

_
w

es
t

][
0

]
=

2
;

21
7

21
8

nd
2−
>

se
t_

ro
u

ti
n

g
_

ta
b

le
(&

(n
d

2
d

ir
[0

][
0

])
,

&
(n

d2
vc

[0
][

0
])

)
;

21
9

nd
2−
>

se
t_

st
e

e
r_

ta
b

le
(&

(n
d

2
sd

ir
[0

][
0

])
,

&
(n

d
2

sv
c

[0
][

0
])

)
;

22
0

22
1

/∗
S

et
u

p
no

de
3

ro
u

ti
n

g
ta

b
le

s
∗
/

22
2

d
ir

e
c

ti
o

n
n

d
3

d
ir

[5
][

8
];

22
3

n
d

3
d

ir
[

d
ir

_
n

o
rt

h
][

7
]
=

d
ir

_
lo

c
a

l
;

22
4

n
d

3
d

ir
[

d
ir

_
n

o
rt

h
][

5
]
=

d
ir

_
lo

c
a

l
;

22
5

n
d

3
d

ir
[

d
ir

_
n

o
rt

h
][

0
]
=

d
ir

_
lo

c
a

l
;

22
6

n
d

3
d

ir
[

d
ir

_
lo

c
a

l
][

3
]
=

d
ir

_
n

o
rt

h
;

22
7

n
d

3
d

ir
[

d
ir

_
lo

c
a

l
][

0
]
=

d
ir

_
n

o
rt

h
;

22
8

22
9

in
t

nd
3v

c
[5

][
8

];
23

0
nd

3v
c

[
d

ir
_

n
o

rt
h

][
7

]
=

0
;

23
1

nd
3v

c
[

d
ir

_
n

o
rt

h
][

5
]
=

2
;

23
2

nd
3v

c
[

d
ir

_
n

o
rt

h
][

0
]
=

1
;

23
3

nd
3v

c
[

d
ir

_
lo

c
a

l
][

0
]
=

7
;

23
4

nd
3v

c
[

d
ir

_
lo

c
a

l
][

3
]
=

2
;

23
5

23
6

/∗
S

et
u

p
no

de
3

st
e

e
r

ta
b

le
s
∗
/

23
7

d
ir

e
c

ti
o

n
n

d
3

sd
ir

[5
][

8
];

23
8

n
d

3
sd

ir
[

d
ir

_
lo

c
a

l
][

0
]
=

d
ir

_
n

o
rt

h
;

23
9

n
d

3
sd

ir
[

d
ir

_
lo

c
a

l
][

2
]
=

d
ir

_
n

o
rt

h
;

24
0

n
d

3
sd

ir
[

d
ir

_
lo

c
a

l
][

1
]
=

d
ir

_
n

o
rt

h
;

24
1

n
d

3
sd

ir
[

d
ir

_
lo

c
a

l
][

3
]
=

d
ir

_
n

o
rt

h
;

24
2

n
d

3
sd

ir
[

d
ir

_
n

o
rt

h
][

7
]
=

d
ir

_
lo

c
a

l
;

24
3

n
d

3
sd

ir
[

d
ir

_
n

o
rt

h
][

2
]
=

d
ir

_
lo

c
a

l
;

24
4

24
5

in
t

n
d

3
sv

c
[5

][
8

];
24

6
n

d
3

sv
c

[
d

ir
_

lo
c

a
l

][
0

]
=

7
;

24
7

n
d

3
sv

c
[

d
ir

_
lo

c
a

l
][

2
]
=

5
;

24
8

n
d

3
sv

c
[

d
ir

_
lo

c
a

l
][

1
]
=

0
;

24
9

n
d

3
sv

c
[

d
ir

_
lo

c
a

l
][

3
]
=

6
;

25
0

n
d

3
sv

c
[

d
ir

_
n

o
rt

h
][

7
]
=

0
;

25
1

n
d

3
sv

c
[

d
ir

_
n

o
rt

h
][

2
]
=

3
;

25
2

25
3

nd
3−
>

se
t_

ro
u

ti
n

g
_

ta
b

le
(&

(n
d

3
d

ir
[0

][
0

])
,

&
(n

d3
vc

[0
][

0
])

)
;

25
4

nd
3−
>

se
t_

st
e

e
r_

ta
b

le
(&

(n
d

3
sd

ir
[0

][
0

])
,

&
(n

d
3

sv
c

[0
][

0
])

)
;

25
5

25
6

}
25

7
25

8
~

m
an

g
o

_
th

es
is

_
m

o
d

el
()

{
25

9
d

el
et

e
nd

1
,

nd
2

,
nd

3
,

lk
1

2
,

lk
2

1
,

lk
2

3
,

lk
3

2
;

26
0

}
26

1
26

2
p

ri
va

te
:

26
3

no
de
∗

nd
1

;
26

4
no

de
∗

nd
2

;
26

5
no

de
∗

nd
3

;
26

6
m

an
g

o
_

li
n

k
∗

lk
1

2
;

26
7

m
an

g
o

_
li

n
k
∗

lk
2

1
;

26
8

m
an

g
o

_
li

n
k
∗

lk
2

3
;

26
9

m
an

g
o

_
li

n
k
∗

lk
3

2
;

27
0

na
_c

on
v

na
1

,
na

2
;

27
1

li
n

k
_

si
n

k
ls

1
n

,
ls

1w
,

ls
1

s
,

ls
2

n
,

ls
2

e
,

ls
3w

,
ls

3
s

,
ls

3
e

;
27

2
sc

_
co

re
::

sc
_

ti
m

e
lc

t
,

sd
,

ud
;

27
3

27
4

}
;

27
5

27
6

#
en

d
if

A
.3

.2
m

an
go

_t
he

si
s_

m
od

el
.c

pp

1
#

in
cl

u
d

e
"

m
an

g
o

_
th

es
is

_
m

o
d

el
.h

"
2 3

#
in

cl
u

d
e
<

sy
st

em
c

.h
>

4 5
SC

_M
O

D
U

LE
_E

X
PO

R
T

(m
an

g
o

_
th

es
is

_
m

o
d

el
)

;

A
.3

.3
na

_c
on

v.
h

T
hi

s
fil

e
co

nt
ai

ns
th

e
co

nv
er

si
on

m
od

ul
e

to
th

e
ne

tw
or

k
ad

ap
te

rs
.

1
/∗

2
C

o
n

ve
rs

io
n

m
od

ul
e

fo
r

n
et

w
o

rk
a

d
a

p
te

rs
to

m
od

el
3

∗
/

4 5
#

if
n

d
ef

_N
A

_C
O

N
V

_H
6

#
d

ef
in

e
_N

A
_C

O
N

V
_H

7

A.14 APPENDIX A SOURCE CODE

8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
"

..
/

in
te

rf
a

c
e

s
.h

"
10

#
in

cl
u

d
e

"
..
/

ty
p

es
.h

"
11 12

cl
a

ss
na

_c
on

v
:

p
u

b
li

c
sc

_
co

re
::

sc
_m

od
ul

e
,

p
u

b
li

c
n

a_
if

{
13 14

p
u

b
li

c
:

15
/∗

P
o

rt
s
∗
/

16
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

4>
>

R
xR

eq
;

17
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

4>
>

R
xA

ck
;

18
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

15
6>
>

R
xD

at
a

;
19

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

4>
>

T
xA

ck
;

20
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

4>
>

T
xR

eq
;

21
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

15
6>
>

T
xD

at
a

;
22 23

/∗
S

ig
n

a
ls
∗
/

24
sc

_
co

re
::

sc
_

si
g

n
al
<

sc
_

d
t

::
sc

_
lo

g
ic
>

s_
R

xR
eq

[4
]

,
s_

R
xA

ck
[4

]
,

s_
T

xA
ck

[4
]

,
s_

T
xR

eq
[4

];
25

sc
_

co
re

::
sc

_
si

g
n

al
<

sc
_

d
t

::
sc

_
lv
<

39
>
>

s_
R

xD
at

a
[4

]
,

s_
T

xD
at

a
[4

];
26 27

sc
_

co
re

::
sc

_
p

o
rt
<

n
o

d
e

_
n

a
_

tr
a

n
sm

it
te

r_
if
>

n
d

e_
tx

;
28

sc
_

co
re

::
sc

_
p

o
rt
<

n
o

d
e_

n
a_

re
ce

iv
er

_
if
>

n
d

e_
rx

;
29 30

SC
_H

A
S_

PR
O

C
ES

S
(n

a_
co

nv
)

;
31 32

/∗
O

n
T

xR
eq

o
r

R
xA

ck
∗
/

33
vo

id
d

o
_

in
p

u
t(

)
{

34
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

35
s_

T
xD

at
a

[
i]
=

T
xD

at
a

.r
ea

d
()

.r
an

g
e

(3
9
∗

(
i+

1)
−

1
,

39
∗

i)
;

36
s_

R
xA

ck
[

i]
=

R
xA

ck
.r

ea
d

()
.

g
e

t_
b

it
(

i)
;

37
s_

T
xR

eq
[

i]
=

T
xR

eq
.r

ea
d

()
.

g
e

t_
b

it
(

i)
;

38
}

39
}

40 41
/∗

O
n

T
xA

ck
,

R
xD

at
a
∗
/

42
vo

id
d

o
_

o
u

tp
u

t(
)

{
43

sc
_

d
t

::
sc

_
lv
<

15
6>

v_
R

xD
at

a
;

44
sc

_
d

t
::

sc
_

lv
<

4>
v_

T
xA

ck
;

45
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

46
fo

r
(

in
t

j
=

0
;

j
<

3
9

;
+
+

j)
{

47
v_

R
xD

at
a

.
se

t_
b

it
(3

9
∗

i+
j

,
s_

R
xD

at
a

[
i

].
re

ad
()

.
g

e
t_

b
it

(
j)

)
;

48
}

49
v_

T
xA

ck
.

se
t_

b
it

(i
,

s_
T

xA
ck

[
i

].
re

ad
()

.v
al

u
e

()
)

;
50

}
51

R
xD

at
a

.w
ri

te
(v

_R
xD

at
a

)
;

52
T

xA
ck

.w
ri

te
(v

_T
xA

ck
)

;
53

_e
.n

o
ti

fy
(1

.5
,

sc
_

co
re

::
SC

_N
S

)
;

54
}

55 56
/∗

O
n

R
xR

eq
∗
/

57
vo

id
d

o
_

d
el

ay
ed

_
o

u
tp

u
t(

)
{

58
sc

_
d

t
::

sc
_

lv
<

4>
v_

R
xR

eq
;

59
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

60
v_

R
xR

eq
.

se
t_

b
it

(i
,

s_
R

xR
eq

[
i

].
re

ad
()

.v
al

u
e

()
)

;
61

}
62

R
xR

eq
.w

ri
te

(v
_R

xR
eq

)
;

63
}

64 65
/∗

O
n

T
xR

eq
0

,
B

E
∗
/

66
vo

id
do

_T
xR

eq
_0

()
{

67
if

(s
_T

xR
eq

[0
].

p
o

se
d

g
e

()
)

{
68

if
(!

fi
rs

t_
B

E
_

fl
it

)
{

69
/∗

N
ot

fi
r

s
t

B
E

fl
it
∗
/

70
T

xR
eq

Q
[0

]
=

(
fl

it
∗

)
(n

ew
fl

it
_

d
a

ta
<

sc
_

d
t

::
sc

_
lv
<

39
>
>

(
T

xD
at

a
.r

ea
d

()
.r

an
g

e
(3

8
,

0
)

,
fa

ls
e

))
;

71
T

xR
eq

Q
[0

]−
>

se
t_

d
ir

e
c

ti
o

n
(

_
d

ir
[0

])
;

72
T

xR
eq

Q
[0

]−
>

se
t_

v
c

(_
vc

[0
])

;
73

nd
e_

rx
−
>

n
a_

se
n

d
(T

xR
eq

Q
[0

])
;

74
}

el
se

{
75

/∗
F

ir
st

B
E

fl
it
∗
/

76
sc

_
d

t
::

sc
_

lv
<

38
>

s_
te

m
p
=

T
xD

at
a

.r
ea

d
()

.r
an

g
e

(3
7

,
0

)
;

77
s_

te
m

p
.

lr
o

ta
te

(1
0

)
;

78
sc

_
d

t
::

sc
_

lv
<

39
>

s_
te

m
p2

;
79

s_
te

m
p2

.
se

t_
b

it
(3

8
,

T
xD

at
a

.r
ea

d
()

.
g

e
t_

b
it

(3
8

)
)

;
80

fo
r

(
in

t
i
=

0
;

i
<

3
8

;
+
+

i)
{

81
s_

te
m

p2
.

se
t_

b
it

(i
,

s_
te

m
p

.
g

e
t_

b
it

(
i)

)
;

82
}

83
s_

te
m

p
.

se
t_

b
it

(3
8

,
T

xD
at

a
.r

ea
d

()
.

g
e

t_
b

it
(3

8
)

)
;

84
T

xR
eq

Q
[0

]
=

(
fl

it
∗

)
(n

ew
fl

it
_

d
a

ta
<

sc
_

d
t

::
sc

_
lv
<

39
>
>

(
s_

te
m

p
,

fa
ls

e
))

;
85

T
xR

eq
Q

[0
]−
>

se
t_

d
ir

e
c

ti
o

n
(

_
d

ir
[0

])
;

86
T

xR
eq

Q
[0

]−
>

se
t_

v
c

(_
vc

[0
])

;
87

nd
e_

rx
−
>

n
a_

se
n

d
(T

xR
eq

Q
[0

])
;

88
}

89
/∗

U
pd

at
e

fi
rs

t_
B

E
_

fl
it
∗
/

90
if

(T
xD

at
a

.r
ea

d
()

.g
e

t_
b

it
(3

8
)
=
=

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
{

91
fi

rs
t_

B
E

_
fl

it
=

tr
u

e
;

92
}

el
se

{
93

fi
rs

t_
B

E
_

fl
it
=

fa
ls

e
;

94
}

TEST FILES A.15
95

}
el

se
if

(s
_T

xR
eq

[0
].

n
eg

ed
g

e
()

)
{

96
/∗

D
el

a
y

fo
r

T
xA

ck
d

e
a

ss
e

rt
∗
/

97
n

e
x

t_
tr

ig
g

e
r

(0
.4

,
sc

_
co

re
::

SC
_N

S
)

;
98

}
el

se
{

99
/∗

D
ea

ss
er

t
T

xA
ck
∗
/

10
0

s_
T

xA
ck

[0
].

w
ri

te
(s

_T
xR

eq
[0

].
re

ad
()

)
;

10
1

}
10

2
}

10
3

10
4

/∗
O

n
T

xR
eq

1
,

G
S

1
∗
/

10
5

vo
id

do
_T

xR
eq

_1
()

{
10

6
if

(s
_T

xR
eq

[1
].

p
o

se
d

g
e

()
)

{
10

7
/∗

R
eq

u
es

t
∗
/

10
8

T
xR

eq
Q

[1
]
=

(
fl

it
∗

)
(n

ew
fl

it
_

d
a

ta
<

sc
_

d
t

::
sc

_
lv
<

39
>
>

(T
xD

at
a

.
re

ad
()

.r
an

g
e

(7
7

,
3

9
)

,
fa

ls
e

))
;

10
9

T
xR

eq
Q

[1
]−
>

se
t_

d
ir

e
c

ti
o

n
(

_
d

ir
[1

])
;

11
0

T
xR

eq
Q

[1
]−
>

se
t_

v
c

(_
vc

[1
])

;
11

1
nd

e_
rx
−
>

n
a_

se
n

d
(T

xR
eq

Q
[1

])
;

11
2

}
el

se
if

(s
_T

xR
eq

[1
].

n
eg

ed
g

e
()

)
{

11
3

/∗
T

xR
eq

d
ea

ss
er

te
d

,
d

el
a

y
fo

r
T

xA
ck
∗
/

11
4

n
e

x
t_

tr
ig

g
e

r
(0

.4
,

sc
_

co
re

::
SC

_N
S

)
;

11
5

}
el

se
{

11
6

/∗
D

ea
ss

er
T

xA
ck
∗
/

11
7

s_
T

xA
ck

[1
].

w
ri

te
(s

_T
xR

eq
[1

].
re

ad
()

)
;

11
8

}
11

9
}

12
0

12
1

/∗
O

n
T

xR
eq

2
,

G
S

2
∗
/

12
2

vo
id

do
_T

xR
eq

_2
()

{
12

3
if

(s
_T

xR
eq

[2
].

p
o

se
d

g
e

()
)

{
12

4
T

xR
eq

Q
[2

]
=

(
fl

it
∗

)
(n

ew
fl

it
_

d
a

ta
<

sc
_

d
t

::
sc

_
lv
<

39
>
>

(T
xD

at
a

.
re

ad
()

.r
an

g
e

(1
1

6
,

7
8

)
,

fa
ls

e
))

;
12

5
T

xR
eq

Q
[2

]−
>

se
t_

d
ir

e
c

ti
o

n
(

_
d

ir
[2

])
;

12
6

T
xR

eq
Q

[2
]−
>

se
t_

v
c

(_
vc

[2
])

;
12

7
nd

e_
rx
−
>

n
a_

se
n

d
(T

xR
eq

Q
[2

])
;

12
8

}
el

se
if

(s
_T

xR
eq

[2
].

n
eg

ed
g

e
()

)
{

12
9

n
e

x
t_

tr
ig

g
e

r
(0

.4
,

sc
_

co
re

::
SC

_N
S

)
;

13
0

}
el

se
{

13
1

s_
T

xA
ck

[2
].

w
ri

te
(s

_T
xR

eq
[2

].
re

ad
()

)
;

13
2

}
13

3
}

13
4

13
5

/∗
O

n
T

xR
eq

3
,

G
S

3
∗
/

13
6

vo
id

do
_T

xR
eq

_3
()

{
13

7
if

(s
_T

xR
eq

[3
].

p
o

se
d

g
e

()
)

{

13
8

T
xR

eq
Q

[3
]
=

(
fl

it
∗

)
(n

ew
fl

it
_

d
a

ta
<

sc
_

d
t

::
sc

_
lv
<

39
>
>

(T
xD

at
a

.
re

ad
()

.r
an

g
e

(1
5

5
,

1
1

7
)

,
fa

ls
e

))
;

13
9

T
xR

eq
Q

[3
]−
>

se
t_

d
ir

e
c

ti
o

n
(

_
d

ir
[3

])
;

14
0

T
xR

eq
Q

[3
]−
>

se
t_

v
c

(_
vc

[3
])

;
14

1
nd

e_
rx
−
>

n
a_

se
n

d
(T

xR
eq

Q
[3

])
;

14
2

}
el

se
if

(s
_T

xR
eq

[3
].

n
eg

ed
g

e
()

)
{

14
3

n
e

x
t_

tr
ig

g
e

r
(0

.4
,

sc
_

co
re

::
SC

_N
S

)
;

14
4

}
el

se
{

14
5

s_
T

xA
ck

[3
].

w
ri

te
(s

_T
xR

eq
[3

].
re

ad
()

)
;

14
6

}
14

7
}

14
8

14
9

/∗
O

n
R

xA
ck

0
,

B
E
∗
/

15
0

vo
id

do
_R

xA
ck

_0
()

{
15

1
if

(s
_R

xA
ck

[0
].

p
o

se
d

g
e

()
)

{
15

2
n

e
x

t_
tr

ig
g

e
r

(3
.6

,
sc

_
co

re
::

SC
_N

S
)

;
15

3
}

el
se

if
(s

_R
xA

ck
[0

].
n

eg
ed

g
e

()
)

{
15

4
n

d
e_

tx
−
>

n
a_

u
n

lo
ck

_
g

s
(0

)
;

15
5

}
el

se
{

15
6

s_
R

xR
eq

[0
].

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

15
7

}
15

8
}

15
9

16
0

/∗
O

n
R

xA
ck

1
,

G
S

1
∗
/

16
1

vo
id

do
_R

xA
ck

_1
()

{
16

2
if

(s
_R

xA
ck

[1
].

p
o

se
d

g
e

()
)

{
16

3
n

e
x

t_
tr

ig
g

e
r

(0
.7

,
sc

_
co

re
::

SC
_N

S
)

;
16

4
}

el
se

if
(s

_R
xA

ck
[1

].
n

eg
ed

g
e

()
)

{
16

5
n

d
e_

tx
−
>

n
a_

u
n

lo
ck

_
g

s
(1

)
;

16
6

}
el

se
{

16
7

s_
R

xR
eq

[1
].

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

16
8

}
16

9
}

17
0

17
1

/∗
O

n
R

xA
ck

1
,

G
S

2
∗
/

17
2

vo
id

do
_R

xA
ck

_2
()

{
17

3
if

(s
_R

xA
ck

[2
].

p
o

se
d

g
e

()
)

{
17

4
n

e
x

t_
tr

ig
g

e
r

(0
.7

,
sc

_
co

re
::

SC
_N

S
)

;
17

5
}

el
se

if
(s

_R
xA

ck
[2

].
n

eg
ed

g
e

()
)

{
17

6
n

d
e_

tx
−
>

n
a_

u
n

lo
ck

_
g

s
(2

)
;

17
7

}
el

se
{

17
8

s_
R

xR
eq

[2
].

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

17
9

}
18

0
}

18
1

A.16 APPENDIX A SOURCE CODE

18
2

/∗
O

n
R

xA
ck

1
,

G
S

3
∗
/

18
3

vo
id

do
_R

xA
ck

_3
()

{
18

4
if

(s
_R

xA
ck

[3
].

p
o

se
d

g
e

()
)

{
18

5
n

e
x

t_
tr

ig
g

e
r

(0
.7

,
sc

_
co

re
::

SC
_N

S
)

;
18

6
}

el
se

if
(s

_R
xA

ck
[3

].
n

eg
ed

g
e

()
)

{
18

7
n

d
e_

tx
−
>

n
a_

u
n

lo
ck

_
g

s
(3

)
;

18
8

}
el

se
{

18
9

s_
R

xR
eq

[3
].

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

19
0

}
19

1
}

19
2

19
3

/∗
F

li
t

a
rr

iv
e

s
fr

o
m

no
de
∗
/

19
4

vo
id

se
n

d
(

fl
it
∗

f)
{

19
5

fl
it

_
d

a
ta
<

sc
_

d
t

::
sc

_
lv
<

39
>
>
∗

fd
=

(
fl

it
_

d
a

ta
<

sc
_

d
t

::
sc

_
lv
<

39
>

>
∗

)
f

;
19

6
s_

R
xD

at
a

[f
d
−
>

g
et

_
v

c
()

].
w

ri
te

(f
d
−
>

g
et

_
d

at
a

()
)

;
19

7
s_

R
xR

eq
[f

d
−
>

g
et

_
v

c
()

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

;
19

8
d

el
et

e
f

;
19

9
}

20
0

20
1

/∗
In

it
ta

b
le

s
∗
/

20
2

vo
id

se
t_

d
ir

(
d

ir
e

c
ti

o
n
∗

d
)

{
20

3
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

20
4

_
d

ir
[

i]
=
∗

(d
+

i)
;

20
5

}
20

6
}

20
7

20
8

vo
id

se
t_

v
c

(
in

t∗
d

)
{

20
9

fo
r

(
in

t
i
=

0
;

i
<

4
;
+
+

i)
{

21
0

_v
c

[
i]
=
∗

(d
+

i)
;

21
1

}
21

2
}

21
3

21
4

/∗
U

n
lo

ck
ch

a
n

n
el

i
∗
/

21
5

vo
id

u
n

lo
ck

(c
on

st
in

t
i)

{
21

6
_e

2
[

i
].

n
o

ti
fy

(5
.1

,
sc

_
co

re
::

SC
_N

S
)

;
21

7
}

21
8

21
9

vo
id

d
o

_
u

n
lo

ck
0

()
{

22
0

s_
T

xA
ck

[0
].

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

22
1

}
22

2
22

3
vo

id
d

o
_

u
n

lo
ck

1
()

{
22

4
s_

T
xA

ck
[1

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

;
22

5
}

22
6

22
7

vo
id

d
o

_
u

n
lo

ck
2

()
{

22
8

s_
T

xA
ck

[2
].

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

22
9

}
23

0
23

1
vo

id
d

o
_

u
n

lo
ck

3
()

{
23

2
s_

T
xA

ck
[3

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

;
23

3
}

23
4

23
5

na
_c

on
v

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

)
{

23
6

SC
_M

ET
H

O
D

(
d

o
_

in
p

u
t)

;
23

7
se

n
si

ti
v

e
<
<

R
xA

ck
<
<

T
xR

eq
;

23
8

d
o

n
t_

in
it

ia
li

z
e

()
;

23
9

SC
_M

ET
H

O
D

(d
o

_
o

u
tp

u
t)

;
24

0
fo

r
(

in
t

i
=

0
;

i
<

4
;
+
+

i)
{

24
1

se
n

si
ti

v
e
<
<

s_
R

xR
eq

[
i]
<
<

s_
T

xA
ck

[
i]
<
<

s_
R

xD
at

a
[

i
];

24
2

}
24

3
d

o
n

t_
in

it
ia

li
z

e
()

;
24

4
SC

_M
ET

H
O

D
(d

o_
T

xR
eq

_0
)

;
24

5
se

n
si

ti
v

e
<
<

s_
T

xR
eq

[0
];

24
6

d
o

n
t_

in
it

ia
li

z
e

()
;

24
7

SC
_M

ET
H

O
D

(d
o_

T
xR

eq
_1

)
;

24
8

se
n

si
ti

v
e
<
<

s_
T

xR
eq

[1
];

24
9

d
o

n
t_

in
it

ia
li

z
e

()
;

25
0

SC
_M

ET
H

O
D

(d
o_

T
xR

eq
_2

)
;

25
1

se
n

si
ti

v
e
<
<

s_
T

xR
eq

[2
];

25
2

d
o

n
t_

in
it

ia
li

z
e

()
;

25
3

SC
_M

ET
H

O
D

(d
o_

T
xR

eq
_3

)
;

25
4

se
n

si
ti

v
e
<
<

s_
T

xR
eq

[3
];

25
5

d
o

n
t_

in
it

ia
li

z
e

()
;

25
6

SC
_M

ET
H

O
D

(d
o_

R
xA

ck
_0

)
;

25
7

se
n

si
ti

v
e
<
<

s_
R

xA
ck

[0
];

25
8

d
o

n
t_

in
it

ia
li

z
e

()
;

25
9

SC
_M

ET
H

O
D

(d
o_

R
xA

ck
_1

)
;

26
0

se
n

si
ti

v
e
<
<

s_
R

xA
ck

[1
];

26
1

d
o

n
t_

in
it

ia
li

z
e

()
;

26
2

SC
_M

ET
H

O
D

(d
o_

R
xA

ck
_2

)
;

26
3

se
n

si
ti

v
e
<
<

s_
R

xA
ck

[2
];

26
4

d
o

n
t_

in
it

ia
li

z
e

()
;

26
5

SC
_M

ET
H

O
D

(d
o_

R
xA

ck
_3

)
;

26
6

se
n

si
ti

v
e
<
<

s_
R

xA
ck

[3
];

26
7

d
o

n
t_

in
it

ia
li

z
e

()
;

26
8

SC
_M

ET
H

O
D

(
d

o
_

d
el

ay
ed

_
o

u
tp

u
t)

;
26

9
se

n
si

ti
v

e
<
<

_e
;

27
0

d
o

n
t_

in
it

ia
li

z
e

()
;

TEST FILES A.17
27

1
SC

_M
ET

H
O

D
(d

o
_

u
n

lo
ck

0
)

;
27

2
se

n
si

ti
v

e
<
<

_e
2

[0
];

27
3

d
o

n
t_

in
it

ia
li

z
e

()
;

27
4

SC
_M

ET
H

O
D

(d
o

_
u

n
lo

ck
1

)
;

27
5

se
n

si
ti

v
e
<
<

_e
2

[1
];

27
6

d
o

n
t_

in
it

ia
li

z
e

()
;

27
7

SC
_M

ET
H

O
D

(d
o

_
u

n
lo

ck
2

)
;

27
8

se
n

si
ti

v
e
<
<

_e
2

[2
];

27
9

d
o

n
t_

in
it

ia
li

z
e

()
;

28
0

SC
_M

ET
H

O
D

(d
o

_
u

n
lo

ck
3

)
;

28
1

se
n

si
ti

v
e
<
<

_e
2

[3
];

28
2

d
o

n
t_

in
it

ia
li

z
e

()
;

28
3

s_
R

xD
at

a
[0

].
w

ri
te

(
sc

_
d

t
::

sc
_

lv
<

39
>

(0
))

;
28

4
s_

R
xD

at
a

[1
].

w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

39
>

(0
))

;
28

5
s_

R
xD

at
a

[2
].

w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

39
>

(0
))

;
28

6
s_

R
xD

at
a

[3
].

w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

39
>

(0
))

;
28

7
s_

R
xR

eq
[0

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
28

8
s_

R
xR

eq
[1

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
28

9
s_

R
xR

eq
[2

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
29

0
s_

R
xR

eq
[3

].
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
29

1
29

2
fi

rs
t_

B
E

_
fl

it
=

tr
u

e
;

29
3

}
29

4
29

5
p

ri
va

te
:

29
6

fl
it
∗

T
xR

eq
Q

[4
];

29
7

d
ir

e
c

ti
o

n
_

d
ir

[4
];

29
8

in
t

_v
c

[4
];

29
9

sc
_

co
re

::
sc

_
ev

en
t

_e
,

_e
2

[4
];

30
0

b
oo

l
fi

rs
t_

B
E

_
fl

it
;

30
1

30
2

}
;

30
3

30
4

#
en

d
if

A
.3

.4
lin

k_
si

nk
.h

T
hi

s
fil

e
co

nt
ai

ns
a

m
od

ul
e

w
hi

ch
si

ts
on

th
e

un
co

nn
ec

te
d

no
de

ou
tp

ut
s.

It
pr

od
uc

es
a

w
ar

ni
ng

if
it

re
ce

iv
es

a
fli

to
ra

n
un

lo
ck

.
1

/∗

2
S

in
k

fo
r

de
ad

en
d

o
u

tp
u

ts
fr

o
m

n
o

d
es

3
∗
/

4 5
#

if
n

d
ef

_L
IN

K
_S

IN
K

_H
6

#
d

ef
in

e
_L

IN
K

_S
IN

K
_H

7 8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
"

..
/

in
te

rf
a

c
e

s
.h

"
10

#
in

cl
u

d
e
<

io
s
>

11 12
cl

a
ss

li
n

k
_

si
n

k
:

p
u

b
li

c
sc

_
co

re
::

sc
_m

od
ul

e
,

p
u

b
li

c
li

n
k

_
tr

a
n

sm
it

te
r_

if
,

p
u

b
li

c
li

n
k

_
re

c
e

iv
e

r_
if

{
13 14

p
u

b
li

c
:

15
/∗

P
o

rt
s
∗
/

16
sc

_
co

re
::

sc
_

p
o

rt
<

n
o

d
e

_
tr

a
n

sm
it

te
r_

if
>

n
d

e_
tx

;
17

sc
_

co
re

::
sc

_
p

o
rt
<

n
o

d
e_

re
ce

iv
er

_
if
>

n
d

e_
rx

;
18 19

/∗
P

ro
d

u
ce

w
a

rn
in

g
s

if
a

cc
es

se
d
∗
/

20
vo

id
u

n
lo

ck
_

g
s

(
in

t
i)

{
21

st
d

::
c

e
rr
<
<

"U
nl

oc
k
�

se
n

t�
to
�

si
n

k
\
n

"
;

22
}

23 24
vo

id
c

re
d

it
_

b
e

(
in

t
i)

{
25

st
d

::
c

e
rr
<
<

"
C

re
d

it
�

se
n

t�
to
�

si
n

k
\
n

"
;

26
}

27 28
vo

id
se

n
d

(
fl

it
∗

f)
{

29
st

d
::

c
e

rr
<
<

"
F

li
t�

se
n

t�
to
�

si
n

k
\
n

"
;

30
}

31 32
li

n
k

_
si

n
k

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
)

:
sc

_
co

re
::

sc
_

m
o

d
u

le
(n

)
{}

33 34
}

;
35 36

#
en

d
if

A
.3

.5
O

C
P_

co
re

s.h

1
/∗

2
O

C
P

co
re

s
u

se
d

fo
r

te
st

sy
st

em
3

∗
/

4

A.18 APPENDIX A SOURCE CODE

5
#

if
n

d
ef

_O
C

P_
C

O
R

ES
_H

6
#

d
ef

in
e

_O
C

P_
C

O
R

ES
_H

7 8
#

in
cl

u
d

e
<

sy
st

em
c
>

9
#

in
cl

u
d

e
<

io
st

re
am
>

10 11
/∗

O
C

P
M

a
st

er
C

om
m

an
ds
∗
/

12
co

n
st

sc
_

d
t

::
sc

_
lv
<

3>
M

C
m

d_
id

le
(0

)
;

13
co

n
st

sc
_

d
t

::
sc

_
lv
<

3>
M

C
m

d_
w

ri
te

(1
)

;
14

co
n

st
sc

_
d

t
::

sc
_

lv
<

3>
M

C
m

d_
re

ad
(2

)
;

15 16
cl

a
ss

O
C

P
_c

or
es

:
p

u
b

li
c

sc
_

co
re

::
sc

_
m

o
d

u
le

{
17 18

p
u

b
li

c
:

19
/
/

M
a

st
er

p
o

rt
s

20
sc

_
co

re
::

sc
_

o
u

t<
bo

ol
>

M
_O

C
PC

lk
;

21
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

M
_R

es
et

_n
;

22
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

3>
>

M
_O

CP
M

Cm
d;

23
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

M
_O

C
PS

C
m

dA
cc

ep
t;

24
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

32
>
>

M
_O

C
PM

A
dd

r;
25

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

32
>
>

M
_O

C
PM

D
at

a;
26

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

8>
>

M
_O

C
P

M
B

ur
st

L
en

gt
h

;
27

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

3>
>

M
_O

C
PM

B
ur

st
Se

q
;

28
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

M
_O

C
P

M
B

ur
st

S
in

gl
eR

eq
;

29
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

M
_O

C
P

M
B

ur
st

P
re

ci
se

;
30

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lo

g
ic
>

M
_O

C
PM

R
eq

L
as

t;
31

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lo

g
ic
>

M
_O

C
PM

D
at

aL
as

t;
32

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

2>
>

M
_O

C
PM

C
on

nI
D

;
33

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

3>
>

M
_O

C
PM

T
hr

ea
dI

D
;

34
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

M
_O

C
PM

D
at

aV
al

id
;

35
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

M
_O

C
P

S
D

at
aA

cc
ep

t;
36

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

2>
>

M
_O

C
PS

R
es

p
;

37
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

M
_O

C
PM

R
es

pA
cc

ep
t;

38
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

32
>
>

M
_O

C
PS

D
at

a
;

39
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

M
_O

C
P

S
R

es
pL

as
t;

40
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

3>
>

M
_O

C
PS

T
hr

ea
dI

D
;

41
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

3>
>

M
_O

C
PM

D
at

aT
hr

ea
dI

D
;

42
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

M
_O

C
P

S
In

te
rr

up
t;

43 44
/
/

S
la

ve
p

o
rt

s
45

sc
_

co
re

::
sc

_
o

u
t<

bo
ol
>

S_
O

C
PC

lk
;

46
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

S
_

R
es

et
_

n
;

47 48
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

3>
>

S_
O

C
PM

C
m

d
;

49
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lo
g

ic
>

S_
O

C
PS

C
m

dA
cc

ep
t;

50
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

32
>
>

S_
O

C
PM

A
dd

r;
51

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

32
>
>

S_
O

C
PM

D
at

a
;

52
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

M
D

at
aV

al
id

;
53

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

S
D

at
aA

cc
ep

t;
54

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

8>
>

S
_O

C
P

M
B

ur
st

L
en

gt
h

;
55

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lv
<

3>
>

S
_O

C
P

M
B

ur
st

S
eq

;
56

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

M
B

ur
st

S
in

gl
eR

eq
;

57
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

M
B

ur
st

P
re

ci
se

;
58

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

S_
O

C
PM

R
eq

L
as

t;
59

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

M
D

at
aL

as
t;

60
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

2>
>

S_
O

C
PM

T
hr

ea
dI

D
;

61
sc

_
co

re
::

sc
_

in
<

sc
_

d
t

::
sc

_
lv
<

2>
>

S
_O

C
P

M
D

at
aT

hr
ea

dI
D

;
62

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

S
R

es
pL

as
t;

63
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

2>
>

S
_O

C
P

S
T

hr
ea

dI
D

;
64

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lv
<

2>
>

S_
O

C
PS

R
es

p
;

65
sc

_
co

re
::

sc
_

o
u

t<
sc

_
d

t
::

sc
_

lv
<

32
>
>

S
_O

C
P

S
D

at
a

;
66

sc
_

co
re

::
sc

_
in
<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_O

C
P

M
R

es
pA

cc
ep

t;
67

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lo

g
ic
>

S_
O

C
PR

es
pD

on
e

;
68

sc
_

co
re

::
sc

_
o

u
t<

sc
_

d
t

::
sc

_
lo

g
ic
>

S
_

O
C

P
S

In
te

rr
u

p
t;

69 70
vo

id
o

cp
_

m
as

te
r

()
;

71
vo

id
o

cp
_

sl
av

e
()

;
72

vo
id

w
r_

m
_c

lo
ck

()
;

73
vo

id
w

r_
s_

cl
o

ck
()

;
74 75

SC
_H

A
S_

PR
O

C
ES

S
(O

C
P

_c
or

es
)

;
76 77

O
C

P
_c

or
es

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

)
;

78 79
/∗

C
lo

ck
s
∗
/

80
b

oo
l

m
_c

lo
ck

;
81

b
oo

l
s_

cl
o

ck
;

82 83
/∗

S
m

a
ll

d
el

a
y
∗
/

84
sc

_
co

re
::

sc
_

ti
m

e
ch

0
in

_
sp

ee
d

;
85 86

p
ri

va
te

:
87

vo
id

re
a

d
_

v
e

c
to

rs
(c

on
st

ch
ar
∗

,
st

d
::

v
ec

to
r<

sc
_

d
t

::
sc

_
lv
<

76
>
>

&
);

88
vo

id
d

o
_

o
cp

_
m

as
te

r(
sc

_
d

t
::

sc
_

lv
<

76
>

,
b

oo
l)

;
89

vo
id

d
o

_
p

ri
n

t
()

;
90 91

/∗
T

es
t

v
e

c
to

rs
∗
/

92
st

d
::

v
ec

to
r<

sc
_

d
t

::
sc

_
lv
<

76
>
>

p
ro

g
_

v
ec

s
;

93
st

d
::

v
ec

to
r<

sc
_

d
t

::
sc

_
lv
<

76
>
>

te
st

_
v

e
c

s
;

94

TEST FILES A.19
95

/∗
L

o
g

g
in

g
o

f
tr

a
n

sm
is

si
o

n
an

d
re

c
e

p
ti

o
n

ti
m

es
∗
/

96
st

d
::

v
ec

to
r<

do
ub

le
>

tm
_

ti
m

e
;

97
st

d
::

v
ec

to
r<

do
ub

le
>

rs
_

ti
m

e
;

98
st

d
::

v
ec

to
r<

do
ub

le
>

ts
_

ti
m

e
;

99
st

d
::

v
ec

to
r<

do
ub

le
>

rm
_t

im
e

;
10

0
sc

_
d

t
::

sc
_

lv
<

76
>

id
le

_
v

ec
;

10
1

b
oo

l
in

t_
d

o
n

e
;

10
2

sc
_

co
re

::
sc

_
ti

m
e

in
t_

ti
m

e
;

10
3

10
4

/∗
D

is
a

b
le

c
lo

c
k

s
to

st
o

p
si

m
u

la
ti

o
n
∗
/

10
5

b
oo

l
cl

k
_

en
ab

le
;

10
6

}
;

10
7

10
8

#
en

d
if

A
.3

.6
O

C
P_

co
re

s.c
pp

1
#

in
cl

u
d

e
"O

C
P

_c
or

es
.h

"
2 3

/∗
O

C
P

M
a

st
er
∗
/

4
vo

id
O

C
P

_c
or

es
::

o
cp

_
m

as
te

r
()

{
5

st
d

::
v

ec
to

r<
sc

_
d

t
::

sc
_

lv
<

76
>
>

::
it

e
ra

to
r

it
e

r
;

6 7
/∗

In
it

ia
li

s
e

p
o

rt
va

lu
es
∗
/

8
M

_O
CP

M
Cm

d.
w

ri
te

(M
C

m
d_

id
le

)
;

9
M

_O
C

PM
A

dd
r.

w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

32
>

(0
))

;
10

M
_O

C
PM

D
at

a
.w

ri
te

(
sc

_
d

t
::

sc
_

lv
<

32
>

(0
))

;
11

M
_O

C
P

M
B

ur
st

L
en

gt
h

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

8
>

(1
))

;
12

M
_O

C
PM

B
ur

st
Se

q
.w

ri
te

(
sc

_
d

t
::

sc
_

lv
<

3
>

(0
))

;
13

M
_O

C
P

M
B

ur
st

S
in

gl
eR

eq
.w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
14

M
_O

C
P

M
B

ur
st

P
re

ci
se

.w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

15
M

_O
C

PM
R

eq
L

as
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

16
M

_O
C

PM
D

at
aL

as
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

17
M

_O
C

PM
T

hr
ea

dI
D

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

3
>

(0
))

;
18

M
_O

C
PM

D
at

aV
al

id
.w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
19

M
_O

C
PM

C
on

nI
D

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

2
>

(0
))

;
20

M
_O

C
PM

R
es

pA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

21
M

_O
C

PM
D

at
aT

hr
ea

dI
D

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

3
>

(0
))

;
22 23

M
_R

es
et

_n
.w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

;
24

w
ai

t(
)

;
w

ai
t(

)
;

25
w

ai
t(

)
;

w
ai

t(
)

;
26

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

27

28
/∗

R
es

et
∗
/

29
M

_R
es

et
_n

.w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

30 31
/∗

W
a

it
so

m
e

ti
m

e
∗
/

32
w

ai
t(

)
;

w
ai

t(
)

;
33

w
ai

t(
)

;
w

ai
t(

)
;

34
w

ai
t(

)
;

w
ai

t(
)

;
35

w
ai

t(
)

;
w

ai
t(

)
;

36
w

ai
t(

)
;

w
ai

t(
)

;
37

w
ai

t(
)

;
w

ai
t(

)
;

38
w

ai
t(

)
;

w
ai

t(
)

;
39

w
ai

t(
)

;
w

ai
t(

)
;

40
w

ai
t(

)
;

w
ai

t(
)

;
41

w
ai

t(
)

;
w

ai
t(

)
;

42
w

ai
t(

)
;

w
ai

t(
)

;
43

w
ai

t(
)

;
w

ai
t(

)
;

44 45
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
46 47

/∗
D

on
e

re
se

t
∗
/

48
M

_R
es

et
_n

.w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

49 50
w

ai
t(

)
;

w
ai

t(
)

;
51

w
ai

t(
)

;
w

ai
t(

)
;

52
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
53 54

/
/

P
ro

gr
am

m
in

g
p

h
a

se
55

fo
r

(
it

e
r
=

p
ro

g
_

v
ec

s
.b

eg
in

()
;

it
e

r
!=

p
ro

g
_

v
ec

s
.e

nd
()

;
+
+

it
e

r
)

{
56

d
o

_
o

cp
_

m
as

te
r(
∗

it
e

r
,

fa
ls

e
)

;
57

}
58 59

/
/

W
a

it
p

h
a

se
60

d
o

_
o

cp
_

m
as

te
r(

id
le

_
v

ec
,

fa
ls

e
)

;
61

fo
r

(
in

t
i
=

0
;

i
<

1
0

0
;
+
+

i)
{

62
w

ai
t(

)
;

w
ai

t(
)

;
63

}
64 65

/
/

D
at

a
p

h
a

se
66

st
d

::
co

u
t
<
<

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
<
<

"�
:�

N
et

w
or

k
�

pr
og

ra
m

m
ed

..
.�

A
c

ti
v

it
y
\
n

"
;

67
in

t
n

r
;

68
fo

r
(n

r
=

0
,

it
e

r
=

te
st

_
v

e
c

s
.b

eg
in

()
;

it
e

r
!=

te
st

_
v

e
c

s
.e

nd
()

;
+
+

it
e

r
,
+
+

n
r)

{
69

if
(n

r
%

10
00
=
=

0
)

{
70

st
d

::
co

u
t
<
<

"
."

;

A.20 APPENDIX A SOURCE CODE

71
}

72
d

o
_

o
cp

_
m

as
te

r(
∗

it
e

r
,

tr
u

e
)

;
73

}
74

st
d

::
co

u
t
<
<

"
\
n

"
;

75 76
/∗

O
u

tp
u

t
lo

g
to

fi
le

s
∗
/

77
d

o
_

p
ri

n
t

()
;

78 79
/∗

S
to

p
si

m
u

la
ti

o
n
∗
/

80
cl

k
_

en
ab

le
=

fa
ls

e
;

81
st

d
::

co
u

t
<
<

"
S

im
u

la
ti

o
n
�

do
ne

..
.�

st
o

p
in

g
\
n

"
;

82
}

83 84
/∗

D
o

on
e

O
C

P
tr

a
n

sa
c

ti
o

n
∗
/

85
vo

id
O

C
P

_c
or

es
::

d
o

_
o

cp
_

m
as

te
r(

sc
_

d
t

::
sc

_
lv
<

76
>

ve
c

,
b

oo
l

re
co

rd
)

{
86

/∗
W

ri
te

M
a

st
er

C
om

m
an

d
∗
/

87
M

_O
CP

M
Cm

d.
w

ri
te

(v
ec

.r
an

g
e

(7
5

,
7

3
))

;
88 89

if
(v

ec
.r

an
g

e
(7

5
,

7
3

)
=
=

M
C

m
d_

id
le

)
{

90
w

ai
t(

)
;

w
ai

t(
)

;
91

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

92
}

el
se

if
(v

ec
.r

an
g

e
(7

5
,

7
3

)
=
=

M
C

m
d_

w
ri

te
)

{
93

M
_O

C
PM

C
on

nI
D

.w
ri

te
(v

ec
.r

an
g

e
(7

1
,

7
0

))
;

94
M

_O
C

PM
T

hr
ea

dI
D

.w
ri

te
(v

ec
.r

an
g

e
(6

8
,6

6
)

)
;

95
M

_O
C

PM
A

dd
r.

w
ri

te
(v

ec
.r

an
g

e
(6

4
,

3
3

))
;

96
M

_O
C

PM
D

at
a

.w
ri

te
(v

ec
.r

an
g

e
(3

1
,

0
))

;
97

if
(

re
co

rd
)

{
98

tm
_

ti
m

e
.p

u
sh

_
b

ac
k

(
si

m
co

n
te

x
t

()
−
>

ti
m

e_
st

am
p

()
.t

o
_

d
o

u
b

le
()

)
;

99
}

10
0

w
ai

t(
)

;
w

ai
t(

)
;

10
1

w
h

il
e

(M
_O

C
PS

C
m

dA
cc

ep
t.

re
ad

()
!=

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
{

10
2

w
ai

t(
)

;
w

ai
t(

)
;

10
3

}
10

4
10

5
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
10

6
}

el
se

if
(v

ec
.r

an
g

e
(7

5
,

7
3

)
=
=

M
C

m
d_

re
ad

)
{

10
7

M
_O

C
PM

C
on

nI
D

.w
ri

te
(v

ec
.r

an
g

e
(7

1
,

7
0

))
;

10
8

M
_O

C
PM

T
hr

ea
dI

D
.w

ri
te

(v
ec

.r
an

g
e

(6
8

,6
6

)
)

;
10

9
M

_O
C

PM
A

dd
r.

w
ri

te
(v

ec
.r

an
g

e
(6

4
,

3
3

))
;

11
0

M
_O

C
PM

D
at

a
.w

ri
te

(v
ec

.r
an

g
e

(3
1

,
0

))
;

11
1

if
(

re
co

rd
)

{
11

2
tm

_
ti

m
e

.p
u

sh
_

b
ac

k
(

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
.t

o
_

d
o

u
b

le
()

)
;

11
3

}
11

4
w

ai
t(

)
;

w
ai

t(
)

;
11

5
w

h
il

e
(M

_O
C

PS
C

m
dA

cc
ep

t.
re

ad
()

!=
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

{

11
6

w
ai

t(
)

;
w

ai
t(

)
;

11
7

}
11

8
11

9
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
12

0
M

_O
CP

M
Cm

d.
w

ri
te

(M
C

m
d_

id
le

)
;

12
1

12
2

/
/

W
a

it
fo

r
re

sp
o

n
se

12
3

w
h

il
e

(M
_O

C
PS

R
es

p
.r

ea
d

()
=
=

sc
_

d
t

::
sc

_
lv
<

2
>

(0
))

{
12

4
w

ai
t(

)
;

w
ai

t(
)

;
12

5
}

12
6

if
(

re
co

rd
)

{
12

7
rm

_t
im

e
.p

u
sh

_
b

ac
k

(
si

m
co

n
te

x
t

()
−
>

ti
m

e_
st

am
p

()
.t

o
_

d
o

u
b

le
()

)
;

12
8

}
12

9
M

_O
C

PM
R

es
pA

cc
ep

t.
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

;
13

0
13

1
/∗

S
to

p
if

re
q

u
e

st
fa

il
e

d
∗
/

13
2

if
(M

_O
C

PS
R

es
p

.r
ea

d
()
=
=

sc
_

d
t

::
sc

_
lv
<

2
>

(3
))

{
13

3
sc

_
co

re
::

sc
_

st
o

p
()

;
13

4
}

el
se

if
(M

_O
C

PS
R

es
p

.r
ea

d
()
=
=

sc
_

d
t

::
sc

_
lv
<

2
>

(2
))

{
13

5
sc

_
co

re
::

sc
_

st
o

p
()

;
13

6
}

13
7

w
h

il
e

(M
_O

C
PS

R
es

p
.r

ea
d

()
!=

sc
_

d
t

::
sc

_
lv
<

2
>

(0
))

{
13

8
w

ai
t(

M
_O

C
PS

R
es

p
.d

e
fa

u
lt

_
e

v
e

n
t

()
)

;
13

9
}

14
0

M
_O

C
PM

R
es

pA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

14
1

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

14
2

}
14

3
}

14
4

14
5

14
6

/∗
O

C
P

S
la

ve
C

or
e
∗
/

14
7

vo
id

O
C

P
_c

or
es

::
o

cp
_

sl
av

e
()

{
14

8
/∗

In
it

ia
li

s
e

p
o

rt
va

lu
es
∗
/

14
9

S_
O

C
PS

C
m

dA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

15
0

S
_O

C
P

S
D

at
aA

cc
ep

t.
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
15

1
S

_O
C

P
S

R
es

pL
as

t.
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
15

2
S

_O
C

P
S

T
hr

ea
dI

D
.w

ri
te

(
sc

_
d

t
::

sc
_

lv
<

2
>

(0
))

;
15

3
S_

O
C

PS
R

es
p

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

2
>

(0
))

;
15

4
S

_O
C

P
S

D
at

a
.w

ri
te

(
sc

_
d

t
::

sc
_

lv
<

32
>

(0
))

;
15

5
S_

O
C

PR
es

pD
on

e
.w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
15

6
S

_
O

C
P

S
In

te
rr

u
p

t.
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
15

7
15

8
S

_
R

es
et

_
n

.w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

15
9

16
0

w
ai

t(
)

;
w

ai
t(

)
;

TEST FILES A.21
16

1
w

ai
t(

)
;

w
ai

t(
)

;
16

2
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
16

3
16

4
/∗

R
es

et
∗
/

16
5

S
_

R
es

et
_

n
.w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
16

6
16

7
w

ai
t(

)
;

w
ai

t(
)

;
16

8
w

ai
t(

)
;

w
ai

t(
)

;
16

9
w

ai
t(

)
;

w
ai

t(
)

;
17

0
w

ai
t(

)
;

w
ai

t(
)

;
17

1
w

ai
t(

)
;

w
ai

t(
)

;
17

2
w

ai
t(

)
;

w
ai

t(
)

;
17

3
w

ai
t(

)
;

w
ai

t(
)

;
17

4
w

ai
t(

)
;

w
ai

t(
)

;
17

5
w

ai
t(

)
;

w
ai

t(
)

;
17

6
17

7
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
17

8
17

9
S

_
R

es
et

_
n

.w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

18
0

/∗
R

es
et

do
ne
∗
/

18
1

18
2

w
ai

t(
)

;
w

ai
t(

)
;

18
3

w
ai

t(
)

;
w

ai
t(

)
;

18
4

18
5

/∗
W

a
it

fo
r

tr
a

n
sa

c
ti

o
n
∗
/

18
6

w
h

il
e

(t
ru

e
)

{
18

7
w

ai
t(

S_
O

C
PM

C
m

d
.d

e
fa

u
lt

_
e

v
e

n
t

()
)

;
18

8
if

(S
_O

C
PM

C
m

d
.r

ea
d

()
=
=

M
C

m
d_

id
le

)
{

18
9

}
el

se
if

(S
_O

C
PM

C
m

d
.r

ea
d

()
=
=

M
C

m
d_

w
ri

te
)

{
19

0
rs

_
ti

m
e

.p
u

sh
_

b
ac

k
(

si
m

co
n

te
x

t
()
−
>

ti
m

e_
st

am
p

()
.t

o
_

d
o

u
b

le
()

)
;

19
1

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

19
2

S_
O

C
PS

C
m

dA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

19
3

S
_O

C
P

S
T

hr
ea

dI
D

.w
ri

te
(S

_O
C

PM
T

hr
ea

dI
D

.r
ea

d
()

)
;

19
4

w
ai

t(
)

;
w

ai
t(

)
;

19
5

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

19
6

S_
O

C
PS

C
m

dA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

19
7

}
el

se
if

(S
_O

C
PM

C
m

d
.r

ea
d

()
=
=

M
C

m
d_

re
ad

)
{

19
8

rs
_

ti
m

e
.p

u
sh

_
b

ac
k

(
si

m
co

n
te

x
t

()
−
>

ti
m

e_
st

am
p

()
.t

o
_

d
o

u
b

le
()

)
;

19
9

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

20
0

S_
O

C
PS

C
m

dA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
;

20
1

S
_O

C
P

S
T

hr
ea

dI
D

.w
ri

te
(S

_O
C

PM
T

hr
ea

dI
D

.r
ea

d
()

.
to

_
in

t
()

)
;

20
2

w
ai

t(
)

;
w

ai
t(

)
;

20
3

ts
_

ti
m

e
.p

u
sh

_
b

ac
k

(
si

m
co

n
te

x
t

()
−
>

ti
m

e_
st

am
p

()
.t

o
_

d
o

u
b

le
()

)
;

20
4

w
ai

t(
ch

0
in

_
sp

ee
d

)
;

20
5

S_
O

C
PS

C
m

dA
cc

ep
t.

w
ri

te
(

sc
_

d
t

::
sc

_
lo

g
ic

(0
)

)
;

20
6

S
_O

C
P

S
D

at
a

.w
ri

te
(S

_O
C

PM
A

dd
r.

re
ad

()
)

;
20

7
S_

O
C

PS
R

es
p

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

2
>

(1
))

;
20

8
S

_O
C

P
S

R
es

pL
as

t.
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
)

;
20

9
w

h
il

e
(S

_O
C

P
M

R
es

pA
cc

ep
t.

re
ad

()
!=

sc
_

d
t

::
sc

_
lo

g
ic

(1
)

)
{

21
0

w
ai

t(
)

;
w

ai
t(

)
;

21
1

}
21

2
w

ai
t(

ch
0

in
_

sp
ee

d
)

;
21

3
S

_O
C

P
S

D
at

a
.w

ri
te

(
sc

_
d

t
::

sc
_

lv
<

32
>

(0
))

;
21

4
S_

O
C

PS
R

es
p

.w
ri

te
(

sc
_

d
t

::
sc

_
lv
<

2
>

(0
))

;
21

5
S

_O
C

P
S

R
es

pL
as

t.
w

ri
te

(
sc

_
d

t
::

sc
_

lo
g

ic
(0

)
)

;
21

6
}

el
se

{
21

7
/∗

U
nk

no
w

n
co

m
m

an
d
∗
/

21
8

}
21

9
22

0
}

22
1

}
22

2
22

3
/∗

O
C

P
M

a
st

er
cl

o
ck

,
p

er
io

d
4

n
s
∗
/

22
4

vo
id

O
C

P
_c

or
es

::
w

r_
m

_c
lo

ck
()

{
22

5
m

_c
lo

ck
=

!m
_c

lo
ck

;
22

6
M

_O
C

PC
lk

.w
ri

te
(m

_c
lo

ck
)

;
22

7
if

(
cl

k
_

en
ab

le
)

{
22

8
n

e
x

t_
tr

ig
g

e
r

(2
.

,
sc

_
co

re
::

SC
_N

S
)

;
22

9
}

23
0

}
23

1
23

2
/∗

O
C

P
S

la
ve

cl
o

ck
,

p
er

io
d

3
n

s
∗
/

23
3

vo
id

O
C

P
_c

or
es

::
w

r_
s_

cl
o

ck
()

{
23

4
s_

cl
o

ck
=

!
s_

cl
o

ck
;

23
5

S_
O

C
PC

lk
.w

ri
te

(
s_

cl
o

ck
)

;
23

6
if

(
cl

k
_

en
ab

le
)

{
23

7
n

e
x

t_
tr

ig
g

e
r

(1
.5

,
sc

_
co

re
::

SC
_N

S
)

;
23

8
}

23
9

}
24

0
24

1
O

C
P

_c
or

es
::

O
C

P
_c

or
es

(
sc

_
co

re
::

sc
_m

od
ul

e_
na

m
e

n
)

:
sc

_
co

re
::

sc
_

m
o

d
u

le
(n

)
,

ch
0

in
_

sp
ee

d
(0

.4
,

sc
_

co
re

::
SC

_N
S

)
,

id
le

_
v

ec
(0

)
,

in
t_

ti
m

e
(2

0
0

0
,

sc
_

co
re

::
SC

_N
S

)
,

in
t_

d
o

n
e

(
fa

ls
e

)
{

24
2

/∗
In

it
ia

li
s

e
va

lu
es
∗
/

24
3

cl
k

_
en

ab
le
=

tr
u

e
;

24
4

m
_c

lo
ck
=

fa
ls

e
;

24
5

s_
cl

o
ck
=

fa
ls

e
;

24
6

24
7

/∗
R

ea
d

pr
og

ra
m

m
in

g
an

d
te

st
v

e
c

to
rs
∗
/

24
8

re
a

d
_

v
e

c
to

rs
("

p
ro

g
_

v
ec

s
.i

n
"

,
p

ro
g

_
v

ec
s

)
;

A.22 APPENDIX A SOURCE CODE

24
9

re
a

d
_

v
e

c
to

rs
("

te
st

_
v

e
c

s
.i

n
"

,
te

st
_

v
e

c
s

)
;

25
0

25
1

/∗
S

et
u

p
id

le
v

e
c

to
r
∗
/

25
2

id
le

_
v

ec
.

se
t_

b
it

(7
2

,
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
.v

al
u

e
()

)
;

25
3

id
le

_
v

ec
.

se
t_

b
it

(6
9

,
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
.v

al
u

e
()

)
;

25
4

id
le

_
v

ec
.

se
t_

b
it

(6
5

,
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
.v

al
u

e
()

)
;

25
5

id
le

_
v

ec
.

se
t_

b
it

(3
2

,
sc

_
d

t
::

sc
_

lo
g

ic
(1

)
.v

al
u

e
()

)
;

25
6

25
7

SC
_T

H
R

EA
D

(o
cp

_
m

as
te

r)
;

25
8

se
n

si
ti

v
e
<
<

M
_O

C
PC

lk
;

25
9

SC
_T

H
R

EA
D

(
o

cp
_

sl
av

e
)

;
26

0
se

n
si

ti
v

e
<
<

S_
O

C
PC

lk
;

26
1

SC
_M

ET
H

O
D

(w
r_

m
_c

lo
ck

)
;

26
2

SC
_M

ET
H

O
D

(w
r_

s_
cl

o
ck

)
;

26
3

}
26

4
26

5
/∗

O
u

tp
u

t
lo

g
g

ed
ti

m
es

to
fi

le
s
∗
/

26
6

vo
id

O
C

P
_c

or
es

::
d

o
_

p
ri

n
t

()
{

26
7

st
d

::
o

fs
tr

ea
m

re
q

("
re

q
_

ti
m

es
.o

u
t"

)
;

26
8

st
d

::
o

fs
tr

ea
m

re
sp

("
re

sp
_

ti
m

es
.o

u
t"

)
;

26
9

st
d

::
v

ec
to

r<
do

ub
le
>

::
c

o
n

st
_

it
e

ra
to

r
it

e
r1

,
it

e
r2

;
27

0
27

1
27

2
if

(!
re

q
.i

s_
o

p
en

()
)

{
27

3
/∗

E
rr

o
r

o
p

en
in

g
fi

le
∗
/

27
4

}
27

5
fo

r
(

it
e

r1
=

tm
_

ti
m

e
.b

eg
in

()
,

it
e

r2
=

rs
_

ti
m

e
.b

eg
in

()
;

it
e

r1
!=

tm
_

ti
m

e
.e

nd
()

&
&

it
e

r2
!=

rs
_

ti
m

e
.e

nd
()

;
+
+

it
e

r1
,
+
+

it
e

r2
)

{
27

6
re

q
<
<

(
in

t)
∗

it
e

r1
<
<

"�
"
<
<

(
in

t)
∗

it
e

r2
<
<

"
\
n

"
;

27
7

}
27

8
re

q
.c

lo
se

()
;

27
9

28
0

28
1

if
(!

re
sp

.i
s_

o
p

en
()

)
{

28
2

/∗
E

rr
o

r
o

p
en

in
g

fi
le
∗
/

28
3

}
28

4
fo

r
(

it
e

r1
=

ts
_

ti
m

e
.b

eg
in

()
,

it
e

r2
=

rm
_t

im
e

.b
eg

in
()

;
it

e
r1

!=
ts

_
ti

m
e

.e
nd

()
&

&
it

e
r2

!=
rm

_t
im

e
.e

nd
()

;
+
+

it
e

r1
,
+
+

it
e

r2
)

{
28

5
re

sp
<
<

(
in

t)
∗

it
e

r1
<
<

"�
"
<
<

(
in

t)
∗

it
e

r2
<
<

"
\
n

"
;

28
6

}
28

7
re

sp
.c

lo
se

()
;

28
8

28
9

}
29

0
29

1
/∗

R
ea

d
v

e
c

to
rs

in
to

v
∗
/

29
2

vo
id

O
C

P
_c

or
es

::
re

a
d

_
v

e
c

to
rs

(c
on

st
ch

ar
∗

fn
am

e
,

st
d

::
v

ec
to

r<
sc

_
d

t
::

sc
_

lv
<

76
>
>

&
v

)
{

29
3

ch
ar

c
;

29
4

in
t

n
r
=

0
;

29
5

29
6

st
d

::
if

st
re

a
m

f(
fn

am
e

)
;

29
7

if
(!

f
.i

s_
o

p
en

()
)

{
29

8
st

d
::

co
u

t
<
<

"
E

rr
o

r�
o

p
en

in
g
�

v
ec

to
r�

fi
le
�

"
<
<

f
<
<

"
..

.�
st

o
p

in
g

.\
n

"
;

29
9

sc
_

co
re

::
sc

_
st

o
p

()
;

30
0

re
tu

rn
;

30
1

}
30

2
st

d
::

co
u

t
<
<

"
R

ea
d

in
g
�

fi
le
�

"
<
<

fn
am

e
<
<

"
..

.�
"

;
30

3
w

h
il

e
(!

f
.e

o
f

()
)

{
30

4
sc

_
d

t
::

sc
_

lv
<

76
>

tm
p

(0
)

;
30

5
fo

r
(

in
t

i
=

7
5

;
i
>
=

0
;
−
−

i)
{

30
6

if
(!

(
f
>
>

c
))

{
30

7
f

.c
lo

se
()

;
30

8
st

d
::

co
u

t
<
<

n
r
<
<

"�
e

n
tr

ie
s
�

fo
u

n
d
\
n

"
;

30
9

re
tu

rn
;

31
0

}
31

1
tm

p
.

se
t_

b
it

(i
,

sc
_

d
t

::
sc

_
lo

g
ic

(c
)

.v
al

u
e

()
)

;
31

2
}

31
3

v
.p

u
sh

_
b

ac
k

(t
m

p
)

;
31

4
+
+

n
r

;
31

5
}

31
6

f
.c

lo
se

()
;

31
7

st
d

::
co

u
t
<
<

n
r
<
<

"�
e

n
tr

ie
s
�

fo
u

n
d
\
n

"
;

31
8

}
31

9
32

0
#

in
cl

u
d

e
<

sy
st

em
c

.h
>

32
1

SC
_M

O
D

U
LE

_E
X

PO
R

T
(O

C
P

_c
or

es
)

;

A
.3

.7
ge

n_
te

st
_v

ec
s.c

pp

1
/∗

2
S

m
a

ll
pr

og
ra

m
to

g
en

er
a

te
ra

nd
om

te
st

v
e

c
to

rs
3

∗
/

4 5
#

in
cl

u
d

e
<

fs
tr

ea
m
>

6
#

in
cl

u
d

e
<

io
st

re
am
>

7
#

in
cl

u
d

e
<

st
ri

n
g
>

8 9
co

n
st

in
t

w
0
=

0
;

TEST FILES A.23
10

co
n

st
in

t
r0
=

0
;

11
co

n
st

in
t

w
1
=

1
0

0
0

0
;

12
co

n
st

in
t

r1
=

5
0

0
0

;
13

co
n

st
in

t
w

2
=

0
;

14
co

n
st

in
t

r2
=

0
;

15 16
co

n
st

d
ou

b
le

id
le

_
ch

an
ce
=

0
.8

;
17 18

co
n

st
st

d
::

st
ri

n
g

id
le

("
00

01
00

10
00

1
"

19
"0

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
01

"
20

"
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
\n

"
)

;
21 22

in
t

m
ai

n
(

in
t

ar
g

c
,

ch
ar
∗

ar
g

v
[]

)
{

23
u

n
si

gn
ed

in
t

r
;

24
st

d
::

co
u

t
<
<

RA
N

D
_M

A
X
<
<

"
\
n

"
;

25
st

d
::

o
fs

tr
ea

m
f(

"
te

st
_

v
e

c
s

.i
n

"
)

;
26

if
(!

f
.i

s_
o

p
en

()
)

;
27

/∗
W

ri
te

s
on

G
S1
∗
/

28
fo

r
(

in
t

i
=

0
;

i
<

w
1

;
+
+

i)
{

29
if

((
(

d
ou

b
le

)
ra

n
d

()
)
/

RA
N

D
_M

A
X
<

id
le

_
ch

an
ce

)
{

30
−
−

i;
31

f
<
<

id
le

;
32

}
el

se
{

33
f
<
<

"0
01

10
11

00
01

00
00

01
01

"
;

34
r
=

(u
n

si
gn

ed
in

t)
ra

n
d

()
;

35
fo

r
(

in
t

j
=

2
3

;
j
>
=

0
;
−
−

j)
{

36
f
<
<

((
r

&
(1
<
<

j)
)
>
>

j)
;

37
}

38
f
<
<

"1
"

;
39

r
=

(u
n

si
gn

ed
in

t)
ra

n
d

()
;

40
fo

r
(

in
t

j
=

3
1

;
j
>
=

0
;
−
−

j)
{

41
f
<
<

((
r

&
(1
<
<

j)
)
>
>

j)
;

42
}

43
f
<
<

"
\
n

"
;

44
}

45
}

46
/∗

R
ea

ds
on

G
S1
∗
/

47
fo

r
(

in
t

i
=

0
;

i
<

r1
;
+
+

i)
{

48
if

((
(

d
ou

b
le

)
ra

n
d

()
)
/

RA
N

D
_M

A
X
<

id
le

_
ch

an
ce

)
{

49
−
−

i;
50

f
<
<

id
le

;
51

}
el

se
{

52
f
<
<

"0
10

10
11

00
01

00
00

01
01

"
;

53
r
=

(u
n

si
gn

ed
in

t)
ra

n
d

()
;

54
fo

r
(

in
t

j
=

2
3

;
j
>
=

0
;
−
−

j)
{

55
f
<
<

((
r

&
(1
<
<

j)
)
>
>

j)
;

56
}

57
f
<
<

"1
"

;
58

r
=

(u
n

si
gn

ed
in

t)
ra

n
d

()
;

59
fo

r
(

in
t

j
=

3
1

;
j
>
=

0
;
−
−

j)
{

60
f
<
<

((
r

&
(1
<
<

j)
)
>
>

j)
;

61
}

62
f
<
<

"
\
n

"
;

63
}

64
}

65
/∗

W
ri

te
s

on
G

S2
∗
/

66
fo

r
(

in
t

i
=

0
;

i
<

w
2

;
+
+

i)
{

67
if

((
(

d
ou

b
le

)
ra

n
d

()
)
/

RA
N

D
_M

A
X
<

id
le

_
ch

an
ce

)
{

68
−
−

i;
69

f
<
<

id
le

;
70

}
el

se
{

71
f
<
<

"0
01

11
01

00
01

00
00

01
01

"
;

72
r
=

(u
n

si
gn

ed
in

t)
ra

n
d

()
;

73
fo

r
(

in
t

j
=

2
3

;
j
>
=

0
;
−
−

j)
{

74
f
<
<

((
r

&
(1
<
<

j)
)
>
>

j)
;

75
}

76
f
<
<

"1
"

;
77

r
=

(u
n

si
gn

ed
in

t)
ra

n
d

()
;

78
fo

r
(

in
t

j
=

3
1

;
j
>
=

0
;
−
−

j)
{

79
f
<
<

((
r

&
(1
<
<

j)
)
>
>

j)
;

80
}

81
f
<
<

"
\
n

"
;

82
}

83
}

84
f

.c
lo

se
()

;
85

}

	Acknowledgements
	Contents
	List of Figures
	Introduction
	Network-on-Chip
	System Modeling
	Asynchronous Circuits
	This Work

	Network-on-Chip
	Network-on-Chip Characteristica
	Transaction Transport
	Routing Schemes
	Service Levels
	Virtual Circuits

	Basic Components
	Node
	Link
	Network Adapter
	Intellectual Property Core

	Levels of Abstraction
	Application Level
	System Designer Level
	Network Designer Level

	The MANGO Clockless Network-on-Chip
	Node Architecture
	Node Overview
	Arbitration Scheme
	Preventing Blocking of Shared Areas

	Link Architecture

	Modeling Approaches
	Modeling System Communication
	Behavioural Model
	Structural Model

	Conclusions

	Asynchronous Circuits
	Introduction to Asynchronous Circuits
	Handshake Protocols
	Encodings
	Basic Building Blocks
	Pipeline Concepts

	Modeling Asynchronous Circuits
	Handshake Level Modeling
	Higher Level Modeling

	Conclusions

	Modeling MANGO
	Functionality
	Link
	Node

	Timing

	The Model
	Choice of Modeling Language
	Introduction to SystemC
	Simulation Performance

	Implementation Details
	Data Representation and Transport
	Components

	Network Adapter
	Introduction
	Interfacing Approaches
	Implementation Details

	Verification and Results
	Test System
	Topology
	Method of Testing

	Functionality
	Timing
	Simulation Performance

	Discussion
	Resolving Known Issues
	Application of Model
	Exploring Concepts of Network-on-Chip in MANGO
	System Modeling
	Abstracting Bus-Interfaces Away

	Future Work
	Parametrising the Model
	Estimating Power Consumption
	Handshake Level Model

	Conclusions
	Bibliography
	Source Code
	Top Level Files
	interfaces.h
	types.h

	Components
	arbiter.h
	arbiter.cpp
	link.h
	link.cpp
	vc.h
	vc.cpp
	node.h
	node.cpp

	Test Files
	mango_thesis_model.h
	mango_thesis_model.cpp
	na_conv.h
	link_sink.h
	OCP_cores.h
	OCP_cores.cpp
	gen_test_vecs.cpp

