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Process configurations : 2 inj. / 1 cool zone
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Large flexibility in injection points and cooling zones.

More actuators lead to better performance, but more
expensive and complex process.

Four control variables: uT f eed , uTcool , uB1 and uB2
PDE model is discretized to a system of ODEs
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Process configurations : 3 inj. / 2 cool zones
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Process configurations : 5 inj. / 5 cool zone
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Large flexibility: 18 input varibles available for control !
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Process design choices
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5 injection points

5 cooling zones
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Start-up objectives & challenges

Bring the process safely from initial cold state to optimal
operating point with full heat release

Minimize minimize off-spec product, amount of outflowing
unreacted chemicals or minimize start-up time

Highly nonlinear dynamics with multiple steady states

Limiting actuator dynamics

Process uncertainties
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Motivating examples
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Motivating examples cont’d
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Safety conditions for ignition and conversion

Avoid regions in the state-space, where there are fast and
dangerous dynamics

1 The reactor temperature should be driven to a required
initial temperature at which reactant B can be fed into the
reactor safely

2 Before the next downstream injection starts, it is necessary
to check that almost all reactants injected upstream has
converted
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Nonlinear Model Predictive Control

Components in the controller
Nonlinear model is available, derived from first principles
(120 states), PDEs discretized to a system of ODEs.

Dynamic optimization by a single-shooting, using ESDIRK
methods for integration and sensitivity computation

Extended Kalman filter

NMPC needed primarily for start-up, but also for
optimization of productivity, finding operating points for
parallel reactions...
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Details of the NMPC implementation

Cost function
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and s(⋅) is a soft constraint penalty function
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Details of the NMPC implementation

Objective function

ψ =ψ ({uk}
N−1
k=0 ) = {φ : ẋ(t) = f (x(t),u(t),d(t)), x(t0) = x0}

(3)

The optimization problem is then

min
{uk}

N−1
k=0

ψ =ψ ({uk}
N−1
k=0 ) (4)

Computeψ by integrating forward, given guess on

{uk}
N−1
k=0

Compute∇ukψ by integrating backwards

Compute new control trajectories by solving NLP

Staffan Haugwitz et al Control of a plate reactor



The Alfa Laval plate reactor
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