
Secure Program Partitioning in
Dynamic Networks

Dan Søndergaard

Kongens Lyngby 2006

IMM-M.Sc-2006-92

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Abstract

A shortcoming of many systems dealing with sensitive data is that they do not
control the propagation of information in an appropriate way. This includes
both the denial of access for unauthorized principals, and the control of the
data’s integrity. Previous work has shown that security-typed programs can
successfully address this shortcoming.

Security-typed programs can safely be distributed and executed in a network,
as shown by Zdanewic et al. The distributed programs obey, by construction,
all annotations with respect to access rights. The approach does not, however,
support dynamic changes to the network or the trust model.

In this thesis, the original framework for distribution of security-typed programs
has been extended to also consider dynamic systems. The main contribution is
the development of a trust model with support for dynamic systems. Moving
to a dynamic setting introduces new problems, e.g., the choice between sev-
eral feasible distributions of a program. To address this, a metric is developed
which can be used to find the most trustworthy distribution based on a user’s
preferences.

The proposed concepts have been proven to work through the implementation
of a prototype.

Keywords: Information Flow, Distributed Systems, Trust, Program
Partitioning

ii

Resumé

En svaghed i mange IT systemer er, at man ikke kontrollerer, hvordan infor-
mationer bliver videredistribueret. Dette inkluderer b̊ade manglende kontrol af
hvem der læser informationerne, s̊avel som at opretholde informationernes in-
tegritet. Det er blevet p̊avist, at programmer med sikkerhedstyper indbygget i
sproget kan adressere denne svaghed.

Zdanewic et al. har vist hvordan programmer med indbygget sikkerhed kan dis-
tribueres og eksekveres i et netværk. De distribuerede programmer vil overholde
programmets sikkerhedskrav. Denne metode understøtter dog ikke ændringer i
netværket.

I dette projekt er det originale framework, til at distribuere programmer med,
blevet udvidet til ogs̊a at kunne understøtte dynamiske netværk. Hovedformålet
har været at udvikle en trust model, der understøtter dynamiske netværk. I et
dynamisk netværk optræder der nye udfordringer, s̊asom at vælge mellem flere
gyldige distributioner af et program. Denne udfordring er blevet h̊andteret ved
at udvikle en metric, der kan bruges til at finde den mest troværdige distribution
fra en brugers synspunkt.

Der er blevet udviklet en prototype, der demonstrerer, at det udviklede koncept
virker.

Nøgleord: Information Flow, Distribuerede Systemer, Trust, Pro-
gram Partitioning

iv Resumé

Preface

This Master’s thesis was carried out at the Department of Informatics and
Mathematical Modelling at the Technical University of Denmark. The work
was carried under supervision of Assistant Professor Christian W. Probst. The
project ran from March to October, 2006.

Part of the work presented in this thesis has also been published in the article
Program partitioning using dynamic trust [SPJH06]. The article was accepted
at the Formal Aspects of Secuirty and Trust 2006 workshop (FAST2006) held
in Hamilton, Canada.

I would like to thank Christian W. Probst for his support and guidance through-
out the project. I would also like thank the co-authors of the FAST2006 article,
Christian D. Jensen, René R. Hansen, and again Christian W. Probst. Finally,
My thanks also go to friends and family for their support. Special thanks to
Maja L. Strang and Kristian S. Knudsen for reading and commenting on the
thesis.

Dan Søndergaard
Kongens Lyngby, October 2006

vi Preface

Contents

Abstract i

Resumé iii

Preface v

1 Introduction 1

1.1 Structure of this Thesis . 4

2 Information Flow 5

2.1 Non-interference . 6

2.2 Secure Information Flow . 6

2.3 Type systems . 11

viii CONTENTS

2.4 Decentralized Label Model . 12

2.5 Covert Channels . 19

3 Secure Program Partitioning 21

3.1 Partitioning programs . 22

3.2 Optimal split . 26

3.3 Run-Time Interface . 27

3.4 Trust relation . 28

4 The sflow Language 31

4.1 Grammar . 32

4.2 Operational semantics . 32

4.3 Type system . 33

5 Extending SPP to Dynamic Networks 37

5.1 Dynamic Splitter . 38

5.2 Trust Model . 41

5.3 Static Trust . 43

5.4 Dynamic Trust . 43

5.5 Recommended Trust . 44

5.6 Confidentiality and Integrity . 48

CONTENTS ix

5.7 Probabilistic Trust . 49

5.8 Quality of a Partitioning . 58

5.9 Erasure Policies . 63

5.10 Decentralized Splitting . 65

6 Design 67

6.1 Requirement Specification . 68

6.2 Assumptions . 70

6.3 Decentralized Label Model . 71

6.4 Abstract Syntax . 72

6.5 Parser . 76

6.6 Verifier . 78

6.7 Splitter . 80

6.8 Trust Model . 81

6.9 Optimal Split . 86

6.10 System Manager . 88

6.11 Erasure Policies . 90

7 Implementation 91

7.1 Collection Framework . 92

7.2 Parser . 93

x CONTENTS

7.3 User Interface . 93

7.4 Generic Design . 95

8 Evaluation 97

8.1 Test Strategy . 98

8.2 Unit Testing . 98

8.3 Functional Testing . 99

8.4 Performance . 100

8.5 Security . 101

8.6 Case Study: Insurance Quotes . 102

8.7 Case Study: Oblivious Transfer 108

9 Future Work 119

9.1 Execution Platform and Real Networking 119

9.2 Erasure Policies . 120

9.3 Compatibility with JIF . 120

9.4 The Future of Secure Dynamic Program Partitioning 120

10 Conclusion 123

A Definition of Terms 127

CONTENTS xi

B The sdpp Package 129

B.1 Basic Classes . 129

B.2 Decentralized Label Model Package 130

B.3 Abstract syntax . 133

B.4 Parser . 138

B.5 Code verifier . 140

B.6 Splitter . 140

B.7 Basic Trust Classes . 142

B.8 DLMTrust . 144

B.9 ProbabilisticTrust . 146

B.10 Optimizers . 150

B.11 System Manager . 152

C Test Scheme 153

C.1 Functional Test . 153

C.2 Unit Tests . 155

xii CONTENTS

Chapter 1

Introduction

Security is always excessive until it’s not enough.
– Robbie Sinclair, Head of Security, Country Energy

The increased use of distributed systems together with added complexity, leaves
many modern computing systems vulnerable to a wide range of attacks. The
importance of these systems is hard to over-estimate, so the consequences of
these systems being compromised are wide-reaching. The aim of this thesis is
to contribute to the ongoing research of making modern distributed systems
safer.

Information flow policies have been proposed to increase the security of com-
puting systems. Information flow policies are a low-level approach to security,
where all information is annotated with a security policy stating how the in-
formation must be used. The advantage of this approach is that it not only
restricts data-access, but also propagation. This means that even when the in-
formation is released to another person, process or server, it can only be used
in the way the policy states. This is a lot more secure than current approaches,
where all control is lost when the information once released.

Denning and Denning [Den76] introduced static validation of information flow,

2 Introduction

called Secure Information Flow. This is a language-based technique which can
check the security of programs at compile time. Zdanewic et al. [ZZNM01]
proposed a framework, Secure Program Partitioning which apply Secure Infor-
mation Flow to distributed systems. Throughout this thesis, the term distributed
system will be used as in ([ZZNM01]) to refer to a system, which uses multi-
ple hosts divided by a network during execution. In this definition distributed
systems are not necessarily executed in parallel. The Secure Program Parti-
tioning framework takes security-typed programs and distributes the execution
onto multiple hosts. The framework, however, has several shortcomings:

• The Secure Program Partitioning framework only considers static net-
works. This is a very limiting short-coming, as most distributed systems
have a dynamic user base.

• The trust model used in the framework is too simple and unrealistic for
most applications. Additionally, due to it only considers static networks,
at least it has to be replaced with a dynamic model, when moving to a
dynamic setting.

The first short-coming was addressed by Hansen and Probst in [HP05]. They
proposed an extension of the framework, which considers dynamic networks.
This thesis aims to develop further on this framework.

The second shortcoming is the main focus of this thesis. A more realistic trust
model will be developed, which is better able to respond to the challenges of
dynamic, distributed systems. Introducing partial and recommended trust will
allow users to express trust more accurately, as well as allow trust to be prop-
agated in a sound manner. These improvements will increase the usability and
security of Secure Program Partitioning. Additionally, extending Secure Pro-
gram Partitioning to dynamic networks allows for new interesting applications,
grid systems, online transactions, etc. The work on trust models, has also been
published as an article [SPJH06] at the Formal Aspects of Security and Trust
2006 workshop in Hamilton, Canada.

The developed framework will be customizable and extendable. This flexibility
makes the framework better suited for practical use, as the individual appli-
cations can customize the framework for their individual use. The flexibility
will be achieved by supplying the trust model and optimization criteria as pa-

3

Trust Model

Optimizer

Framework

����������
��
�
�
�

�
�
	
	
	

Figure 1.1: The proposed framework allows new trust models and optimizations
to be plugged in.

rameters. Allowing applications to use their own trust model means that the
framework can be incorporated into an already existing trust infrastructure, or
a new custom trust model, which suit the application’s specific purpose can be
made.

Secure Program Partitioning, as mentioned, distributes program execution onto
multiple hosts. Often, several valid splits exist. This allows for optimizations.
By introducing the optimization criteria as a parameter, the individual appli-
cation can introduce its own optimizations.

• Security – All the possible splits are guaranteed to be valid under the
requirements of Secure Program Partitioning. However, an application
might have its individual security optimizations.

• Performance – Applications might want to optimize performance, for
instance by minimizing network traffic or schedule hard computations to
strong hosts.

4 Introduction

Figure 1.1 illustrates how new trust models and optimization criteria can be
plugged in to the framework.

The improvements mentioned above will make Secure Program Partitioning
more secure and better suited for realistic applications. To demonstrate the
capabilities and soundness of the proposed improvements a prototype will be
developed as part of this thesis.

1.1 Structure of this Thesis

This thesis is structured as follows. The next chapters are a thorough presenta-
tion of Secure Information Flow (Chapter 2) and Secure Program Partitioning
(Chapter 3).

In Chapter 4 the sflow language is introduced. Hereafter, Secure Program Par-
titioning is extended to dynamic networks in Chapter 5. The design of the
prototype system is presented in Chapter 6, followed by a chapter on imple-
mentation of this design (Chapter 7).

The framework and implementation is evaluated in Chapter 8. A discussion on
future work can be found in Chapter 9. Finally, a general conclusion is presented
in Chapter 10.

The thesis also contains a few appendices that can be consulted, if additional
details are needed on the testing and implementation of the prototype.

In addition to this thesis a CD-ROM is enclosed. It contains the developed
program, and the source code. The examples used in this thesis can also be
found on the CD-ROM.

Chapter 2

Information Flow

Information wants to be free... Or does it?
– Anonymous Coward, Slashdot.org,

October 8, 2005

The traditional, and still predominant approach to information security is to
(only) restrict access to data. Access is restricted using methods like access
control and encryption. Even though it is the standard in modern information
systems, it has some critical shortcomings. One of these is the lack of control of
data after it has been released. Once released to another principal data might
be leaked to a third party, intentionally or by mistake.

Secure Information Flow is an end-to-end security policy, where not only data
access is restricted but also the use of data. This allows for specifying much
stronger security policies than the traditional approach.

This chapter introduces Secure Information Flow by looking at several dif-
ferent approaches. First, Denning’s approach [Den76] is considered (Section
2.2). Secondly, type systems are examined by looking at Volpano’s approach
[VSI96] (Section 2.3). Finally, the Decentralized Label Model will be investi-
gated [ML97] (Section 2.4).

6 Information Flow

The motivation for these approaches is to maintain non-interference. Before
Denning’s approach is dealt with, non-interference is introduced.

2.1 Non-interference

Non-interference is a security property, which guarantees that no data is ever
leaked to a lower security class. By upholding this the propagation of data can
be controlled at all times.

[GM82] defines non-interference as:

Definition 2.1 (Non-interference) A program preserve non-interference, iff
all low level output is independent of all high level input.

The property of non-interference is a very strong security guarantee, but in
many cases it is also too restrictive. In later sections, a sensible method for
circumventing the non-interference requirement will be introduced.

2.2 Secure Information Flow

Secure Information Flow was introduced by Denning in 1976 [Den76]. It intro-
duces a security model consisting of information receptacles (N) (for instance
variables in a program). A security class is assigned to each receptacle (SC).
Additionally, operators exist for combining security classes (t) and checking
whether information flow between two classes is allowed (v):

FM = 〈N,SC,t,v〉

Denning arranges the security classes in a lattice model, partially ordered by the
v-operator.

• Flow of information into a target object is only allowed if the data assigned
has a lower or equal security level:

SC1 v SC2

2.2 Secure Information Flow 7

Eric

Alice

Charlie

Diana

Bob

Figure 2.1: Simple lattice model

I.e. data with security class SC1 can flow to SC2.

• When objects are combined (e.g. arithmetic operation on two variables),
the resulting security class is the Least Upper Bound (or LUB) of the two
objects’ security classes:

SC1 t SC2

The least upper bound is the lowest security class, where

SC1 v SC1 t SC2 ∧ SC2 v SC1 t SC2

• The lattice also has an operator for Greatest Lower Bound (or GLB).

SC1 u SC2

The greatest lower bound is the highest security class, where

SC1 u SC2 v SC1 ∧ SC1 u SC2 v SC2

8 Information Flow

var H : bool

var L : bool

i f H then

L := true

else

L := fa l se

Listing 2.1: Implicit flow example

Example 2.1 (A simple lattice model) In Figure 2.1 a simple lattice model
is depicted. The persons in the graph could for instance be users on a computer
(administrators, super-users, users, etc.) or security clearances in a company
(managers, accountants, secretaries etc.). These cases have a hierarchical struc-
ture which can be reflected using a lattice model.

If data owned by Bob is combined with data owned by Charlie, only Alice is
able to read the resulting data:

Bob t Charlie 6v Bob

Bob t Charlie v Alice

Data owned by Diana or Eric is not accessible to Charlie, as they only trust
Bob (and consequently Alice).

Diana 6v Charlie

The greatest lower bound are derived in a similar matter. For instance:

Bob u Charlie = ⊥

�

2.2.1 Implicit flow

In languages containing conditions (e.g. if and while) the problem of Implicit
Flow arises. Implicit flow is best illustrated with an example. In Listing 2.1
the program has two boolean variables L and H (Low and High). H belongs to

2.2 Secure Information Flow 9

a higher security class, L v H and L 6= H , so the assignment L := H is not
allowed. Nevertheless, using an if-condition the equivalent of an assignment can
be achieved without using a direct assignment, as the program shows.

This small example illustrates how an implicit flow occurs when conditional
statements are used. To prevent this kind of information leak, the security class
of the condition statement must be considered as well. Secure Information Flow
can be achieved by assigning a block label to each basic block. This label is then
combined with the label in any assignment using the t-operator.

If this approach is applied to the program in Listing 2.1, the program will be
considered insecure as the block label in the if-then-else statement will be H .
The assignment will fail because H 6v L.

2.2.2 Enforcing security using static analysis

Secure information flow can be ensured using static analysis. Every flow of
information must be checked in the program. If no explicit or implicit leaks
occur, the program is considered secure, and is allowed to be run. The check of
an assignment is shown in Figure 2.2.

The fact that secure information flow can be checked statically, allow programs
to be verified at compile time. Compared to run-time security checks this offers:

• Increase of performance. The security check is only done when the pro-
gram is compiled. Afterward it can run indefinitely without any further
security verification needed.

• The program is validated before being run. i.e. the compiler assists the
programmer in writing secure programs. In fact it will not compile if it is
not secure.

• Implicit flow is hard to monitor at run-time. Branching in the program is
easier to analyze statically [Pob04].

While Denning used abstract syntax trees to verify Secure Information Flow,

10 Information Flow

Figure 2.2: Example of how an abstract syntax tree can be used to check infor-
mation flow. SC is used to find the security class of a variable. The assignment
is allowed if SC(a) t SC(b) v SC(c).

2.3 Type systems 11

Γ, bl ` val :⊥

Γ(x) = l

Γ, bl ` x : l

Γ, bl ` e1 : l1 Γ, bl ` e2 : l2
Γ, bl ` e1 op e2 : l1 t l2

Γ, bl ` e : l l t bl v Γ(x)

Γ, bl ` x := e

Γ, bl ` e : l Γ, l t bl ` c1 Γ, l t bl ` c2
Γ, bl ` if e then c1 else c2

Figure 2.3: Typing rules for secure information flow

Volpano used type systems instead. Volpano’s approach is introduced in the
next section.

2.3 Type systems

Volpano et al. took a different approach to secure information flow [VSI96].
Instead of using static analysis like Denning, they use a type system which
ensures Secure Information Flow. While still being static it incorporates the
secure information flow model into a type system. The type system of Volpano
will only be described briefly here. Type systems will be dealt with in more
detail, when the sflow-language is introduced in Chapter 4.

In Figure 2.3 an example of typing rules for secure information flow is shown.
The environment consists of a security class store:

Γ : VAR ⇀ SC

and the block label bl.

Incorporating Secure Information Flow into the type system has clear advan-
tages from a compilation perspective. Also from a theoretical view, using a
type system is a more elegant solution. In fact one of the main contributions of
Volpano’s article is the soundness argument, and the proof of non-interference.

12 Information Flow

SuperUser1

Admin

SuperUser2

User2 User3User1

Figure 2.4: Example of principal hierarchy

2.4 Decentralized Label Model

The information flow model used in this thesis is the Decentralized Label Model
(DLM) introduced by Myers and Liskov [ML97, ML00]. In this model, infor-
mation is owned or read by principals. A principal can be:

• A user

• A group of users

• A process

Basically anyone or anything that has a relation to the information.

Principals can be ordered into hierarchies. The term act for is used when a
principal is allowed to act for another principal. If principal p is allowed to
act for q, we write q � p. In Figure 2.4 an example of a principal hierarchy is
depicted. The hierarchy reflects the security clearances on a computer system.
For instance SuperUser1 can act for User1 and User2, but not for User3. Admin
can act for all principals in the hierarchy.

A label consists of owners and readers. Each owner specifies the principals who
are allowed to read the data:

{o : r1, ..., rn}

2.4 Decentralized Label Model 13

A label can have multiple owners, which each have a set of readers:

{

o1 : R1; . . . ; on : Rn

}

(2.1)

where Ri denotes the set of readers allowed by owner oi.

When information has multiple owners, it contains multiple policies, one for
each owner. When accessing the data, all the policies must be obeyed. This
means that a principal must be present as a reader in all policies, if he is to
be allowed to read the data. The function readers is used to find the allowed
readers:

readers(
{

o1 : R1; . . . ; on : Rn

}

) =
⋂

i=1..n

(

{oi} ∪ Ri

)

(2.2)

As this function shows, owner are implicit readers of their own policies.

Readers for a specific owner can also be extracted:

readers(
{

o1 : R1; . . . ; on : Rn

}

, ok) = Rk , 1 ≤ k ≤ n (2.3)

Finally, the function owners returns the owners of a label:

owners(
{

o1 : R1; . . . ; on : Rn

}

) = {o1, . . . , on} (2.4)

Example 2.2 (Owners and Readers) The three functions applied to the la-
bel {A : C ; B : A,C} results in the following labels:

readers({A : C ; B : A,C}) = {A,C}

readers({A : C ; B : A,C} , A) = {C}

owners({A : C ; B : A,C}) = {A,B}

2.4.1 Lattice Model

Labels in the Decentralized Label Model can be ordered in a lattice, ordering
according to restrictiveness of the labels.

• Each added owner makes the label more restrictive.

14 Information Flow

• Each added reader makes the label less restrictive.

This means the ordering of two labels can be expressed as:

Definition 2.2 (Less restrictive) Label L1 is less restrictive than L2, L1 v
L2, iff

(owners(L1) ⊆ owners(L2)) ∧

(∀p ∈ owners(L1) : readers(L2, p) ⊆ readers(L1, p)) (2.5)

This states that all owners in L2 must be present in L1. And for all owners in
the less restrictive L1, all readers of L2 must be included in L1.

When two labels are combined the least upper bound (LUB) operator is used.

Definition 2.3 (Least upper bound) The least upper bound of two labels
L1 and L2 is

L1 t L2 = {ok : Rk | ok ∈ owners(L1) ∪ owners(L2) ∧

Rk = ϕcr(L1, L2, ok)} (2.6)

where,

ϕcr(L1, L2, o) =

readers(L1, o) if o 6∈ owners(L2)
readers(L2, o) if o 6∈ owners(L1)
readers(L1, o) ∩ readers(L2, o) if o ∈ owners(L1)

∧ o ∈ owners(L2)

i.e. in the least upper bound all policies must be included, and if two labels share
a policy, then the intersection of the two reader-sets is the resulting reader-set.

2.4.2 Relabeling Rules

In the Decentralized Label Model a relabeling (replacing one label with another)
is considered legal when:

L1 → L2, if L1 v L2 (2.7)

2.4 Decentralized Label Model 15

Intuitively this means you can always add owners and remove readers.

The non-interference-requirement has proved to be too restrictive for most prac-
tical applications. The Decentralized Label Model introduces the notion of
non-interference until declassification. A principal is allowed to weaken its own
policies, if this is done using the declassify expression. Declassify takes an ex-
pression e and changes its label to L.

To relax a policy of an owner o, the authority of o is of course needed. In the
following the predicate authority will be used to check if the the operation has
the authority of the principal. E.g.:

{o1 :; o2 : r1}
declassify

−→ {o1 : r1; o2 : r1}, if authority(o1)

o1 can also remove his policy all together:

{o1 :; o2 : r1}
declassify

−→ {o2 : r1}, if authority(o1)

Example 2.3 (A Bank) In this example some of the processes in a bank will
be modeled using the Decentralized Label Model. A bank has sensitive informa-
tion, to which several principals need access: customers, bank employees, tax
officials, etc.

For instance the label of an account balance can be modelled as:

Balance : {Bank : Cust; Cust : Bank}

The bank and customer co-own the account balance data, which means that
it cannot be released to a third party, without both the bank and customer’s
permission.

We now introduce a function ATM, which is used when a customer withdraw
money from an ATM.

function ATM(AmountWithdrawn : {Cust : Bank})
Balance := Balance − AmountWithdrawn

The validity of the assignment can be resolved using the following type inference
rule:

16 Information Flow

InsuranceQuote : { Ins : Cust}

function InsuranceQuote ()
i f Balance > 10000 then

InsuranceQuote := 1000
else

InsuranceQuote := 2000

Listing 2.2: Illegal Insurance quote program

Balance : {Bank : Cust; Cust : Bank}

AmountWithdrawn : {Cust : Bank}

{Bank : Cust; Cust : Bank} t {Cust : Bank} v {Bank : Cust; Cust : Bank}

Balance := Balance − AmountWithdrawn

The assignment is valid as the type-check is succesful.

Assume the bank has a strategic alliance with an insurance company Ins. If the
customer gives his or her permission, the account balance will be shared with
the insurance company. Based on the balance, the insurance company will give
the customer a quote.

In Listing 2.2 a program which performs this task is listed. However, this
program contains an illegal implicit flow. The block label for the if-then-else
statement is bl = {Bank : Cust; Cust : Bank}. The check done by the type
system (see Figure 2.3) fails:

1000 : ⊥

⊥t {Bank : Cust; Cust : Bank} v {Ins : Cust}

InsuranceQuote := 1000

Because the label check {Bank : Cust; Cust : Bank} 6v {Ins : Cust} fails.

The program, however, can be corrected using a declassify statement. The
program in Listing 2.3 does exactly this. Notice that the method needs the
authority of both Cust and Bank, as their policies are made less restrictive (in
fact they are removed all together).

2.4 Decentralized Label Model 17

InsuranceQuote : { Ins : Cust}
QuoteTemp : {Bank : Cust ; Cust : Bank ; Ins : Cust}

function InsuranceQuote () authority ({Bank , Cust })
i f Balance > 10000 then

QuoteTemp := 1000
else

QuoteTemp := 2000

InsuranceQuote := declassi fy (QuoteTemp ,{ Ins : Cust })

Listing 2.3: Correct Insurance quote program

The new program will reveal information about the account balance to the
insurance company, but only whether the balance is over or under 10000. From
the customer’s perspective this is a better solution, than having to disclose his
account balance to the insurance company. �

2.4.3 Integrity

The information flow model used in this thesis also supports integrity. Integrity
policies are the dual of privacy/confidentiality policies. Where privacy policies
ensure that data is read properly, integrity policies make sure data is written
properly. Integrity labels keep track of who has influenced the data. Using this
information a principal can specify a policy, where he only allows principals he
trusts to affect the data.

Unlike confidentiality labels, the integrity label does not have an owner (the ?-
character is used to indicate an integrity label), it simply specifies who trusts the
integrity of the data. Whenever two integrity labels are combined, the resulting
integrity is the intersection of the two.

Definition 2.4 (Integrity – Least upper bound) The least upper bound
of two integrity labels is defined by:

{? : P1} t {? : P2} = {? : P1 ∩ P2} (2.8)

18 Information Flow

Intuitively, a principal needs to have trust in the integrity of the originating
data in order to have trust in the resulting data.

Similarly, the lattice ordering operator, v, is also the dual of its confidentiality
counterpart.

Definition 2.5 (Integrity – Less restrictive) The less restrictive predicate
of two integrity labels is:

{? : P1} v {? : P2} ≡ P2 ⊆ P1 (2.9)

The labels used in this thesis will support both confidentiality and integrity.
The following notation is used:

{o1 : R1; . . . ; on : Rn; ? : P}

The ordering (v) and meet (t) can be extended to the combined label in a
straightforward manner:

L1 v L2 ≡ C(L1) v C(L2) ∧ I(L1) v I(L2) (2.10)

L1 t L2 = (C(L1) t C(L2)) ∪ (I(L1) t I(L2)) (2.11)

Where C and I extract the confidentiality label and integrity label, respectively.

Confidentiality policies can be made less restrictive using the declassify function.
Similarly, integrity policies can be loosened using the endorse function. Endorse
has to be used when principals are added to the integrity policy.

Example 2.4 (A Bank with Integriy) We now return to the bank example.
Now the bank and customer wish to ensure the integrity of the balance. So an
integrity label is added.

Balance : {Bank : Cust; Cust : Bank; ? : Bank,Cust}

This, however, will result in the ATM -function, from the previous example,
becoming invalid.

Balance : {Bank : Cust; Cust : Bank; ? : Bank, Cust}

AmountWithdrawn : {Cust : Bank}

{Bank : Cust; Cust : Bank; ? : Bank, Cust} t {Cust : Bank}

v {Bank : Cust; Cust : Bank; ? : Bank, Cust}

Balance := Balance − AmountWithdrawn

2.5 Covert Channels 19

The label check will fail, because

{Bank : Cust; Cust : Bank; ? : Bank,Cust} t {Cust : Bank} =

{Bank : Cust; Cust : Bank}

and

{Bank : Cust; Cust : Bank} 6v {Bank : Cust; Cust : Bank; ? : Bank,Cust}

Nevertheless, this can be taken care of by both the bank and customer endorsing
the amount to be withdrawn. The authority of the two principals is needed to
do this. The corrected function becomes:

function ATM(AmountWithdrawn : {Cust : Bank})
authority ({Bank , Cust })

Balance := Balance −
endorse (AmountWithdrawn , { ? : Bank , Cust }\})

This resembles how an ATM works in practice. The bank through its trust in
the ATM, the credit card, and the integrity of the PIN, endorse the withdrawal.
The customer endorses the withdrawal by using his credit card and PIN code.
As they both have trust in the integrity of the process, they will have trust in
the integrity of the resulting balance.

Confidentiality ensured that the account balance would never be leaked to any
third party. The introduction of integrity will give the bank and principal
assurance that the balance is always correct. �

2.5 Covert Channels

Covert channels is a term for all indirect data flow. If any information is leaked
in anyway, this is considered a covert channel. We have already seen the example
of implicit flow. In this section other types of covert channels will be discussed
briefly.

Timing channel The execution time is monitored. An example of this is the
older implementation of OpenSSL, where the time of response changed,

20 Information Flow

if a correct user name was typed. Additionally, for the password, each
correct character would result in the response time changing. This is of
course a serious flaw, which allow people to break the OpenSSL without
any prior knowledge [Ope].

Network traffic The communication over the network is monitored, and based
on the communications, branching in the program can be monitored.

Power monitoring Power consumption goes up when hard calculations are
being performed, e.g. while-loops. It can also be monitored if a principal
is active, by looking at its power consumption.

Storage monitoring The storage used can change during the execution. Thus
the used storage, reveals information about the program.

Etc. Only imagination sets the limit for clever attacks using covert channels,
therefore this list is not in any way complete.

Covert channels, besides implicit flow, will not be dealt with in our design. We
assume perfect communication channels, where no eavesdropping is possible. It
is also impossible to retrieve any information during execution on the individual
hosts.

Now that Secure Information Flow and the Decentralized Label Model have
been introduced, we look at how this can be used in distributed systems.

Chapter 3

Secure Program Partitioning

A leak? You call what’s going on here a leak? Last time
we had leak like like this, Noah built himself a boat!

– James A. Wells, from the movie ’Absence of Malice’

Secure Program Partitioning is a language based approach for protecting confi-
dential data in distributed systems. The approach is based on Secure Informa-
tion Flow and the Decentralized Label Model [ZZNM01].

In this approach a program, annotated with constraints for information flow, is
distributed over the network. A unique feature of this approach is that it allows
programs to be executed even in a scenario with mutual distrust.

When we move into a distributed setting, several new issues have to be handled:

• Trust between principals and hosts becomes very important, as the prin-
cipals will only allow their data to be stored and manipulated by hosts
they trust.

• Communication between hosts. How to make sure that the data trans-
ferred on the network is not intercepted by a third party.

22 Secure Program Partitioning

• Synchronization is important. The program needs to be executed in the
right order, and the synchronization mechanisms must be sufficiently ro-
bust not to allow any interference with the execution.

Secure Program Partitioning, like most current information flow systems, does
not support multiple threads. This is still an open research area [SM03, SV98,
RS06]. Hence, this approach does not support parallel execution on multiple
hosts. Hopefully, future research will solve this issue, and thereby be better at
utilizing the capabilities of distributed systems.

The original approach [ZZNM01] only deal with static networks. This thesis
extends Secure Program Partitioning to dynamic networks, where hosts are
allowed to leave and enter the network. This raises some important questions:

• Handling changes in the network. When principals leave the network, the
program might need to be re-split. When principals join the network, a
more optimal split might be possible.

• A trust model with support for dynamic behavior must be implemented.

• Handling data stored on a host who is leaving the network.

But before these questions are addressed, Secure Program Partitioning will be
described.

3.1 Partitioning programs

Before any partitioning of a program takes place, the program needs to be
verified. i.e. the program maintain non-interference until declassification (cf.
section 2.4). This task is performed by a compiler with Secure Information
Flow support, e.g. the JIF compiler [Mye99].

Once the program has been verified, the partitioning can take place. The splitter
takes a program and a trust relation, and produces a split (if possible).

3.1 Partitioning programs 23

���������
���������
�������
������������

�����
�����
�����

�������
�������
�������

�������
�������
�������

���
���
	�	
	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����
�����

��
��
��
��
��

host Alice

host Bob

host Charlie

verifier
compiler

splitter

(1)

Alice

Charlie

Bob

(3)(2)

Figure 3.1: The splitting framework. Each principal has a local set of trust
declarations. The splitter combines these into a global trust graph (1), and
uses this to generate a split (2). Finally, the program is distributed across the
network (3).

In the split program, each field and statement has been assigned to a host. In
Figure 3.1 a general overview of the splitting process is depicted.

3.1.1 Assigning fields

The following security constraints must be satisfied for a field f to be assigned
to a host h:

C(Lf) v Ch and Ih v I(Lf) (3.1)

It states that the host h has at least as much confidentiality as the field f .
Additionally, the host must have at least as much integrity as the field.

Example 3.1 (Assigning Fields) Consider a field x with the label L = {A :
B;B :; ? : A,B}. For the field to be assigned to a host h, the following require-

24 Secure Program Partitioning

i f h then

x := a
else

x := 0

Listing 3.1: Read channels

ments must be met:

{A : B;B :} v Ch and Ih v {? : A,B}

This states that h must have the confidentiality and integrity of both A and B.
For instance if h has:

Ch = {A :;B :} and Ih = {? : A,B}

The requirements are met as Ch is more restrictive than C(L), and Ih is less
restrictive than I(L).

Note that the Distributed Label Model was used to express the trust relation of
h and the principals A and B. The trust model of Secure Program Partitioning
will later be dealt with more thoroughly.

Requirement (3.1) is not sufficient if we want to prevent read channels. The
host to whom the field is assigned to, can reason about the location of the
program counter. Suppose the field a in the program in Listing 3.1 is assigned
to a principal p. If the program is being executed on another host, information
about h is implicitly leaked to principal p, based on the read request. �

To avoid read channels the requirements are extended. The confidentiality of the
block label (cf. Section 2.2.1) in each use of the variable must be less restrictive
than the confidentiality of the host. Combined with the previous constraint this
becomes:

C(Lf) t Locf v Ch (3.2)

Locf is the least upper bound of all block labels where f is read.

Locf = C(bl(u1) t bl(u2) t · · · t bl(un))

where, u1, u2, . . . , un are locations of uses of f , and the function bl extracts the
block label at a particular location.

3.1 Partitioning programs 25

a : int {Al i c e : ; ? : A l i c e }
b : int {Bob : ; ? :Bob}
sum : int {Al i c e : ; Bob : ; ? :}

sum := a + b ;

Listing 3.2: Assigning statements

3.1.2 Assigning statements

A statement S can be assigned to a host h if the host has at least the confi-
dentiality of all values used in the statement. Additionally the host must have
the integrity of all values defined. To ensure this, two constraint labels are
introduced

Lin =
⊔

v∈U(S)

Lv and Lout =
l

l∈D(S)

Ll

where, U(S) denotes all values used in S, and D(S) denotes all definitions in S.

For a host h to be able to execute S, the following constraints must be satisfied:

C(Lin) v Ch and Ih v I(Lout) (3.3)

Example 3.2 (Example: Assigning statements) The small program in List-
ing 3.2 will now be looked at. In the program two values have to be added, Bob
and Alice do not trust the host of each other. However, both of them trust host
T.

LA = {Alice : ; ? : Alice}

LB = {Bob : ; ? : Bob}

LT = {Alice : ; Bob : ; ? : Alice}

The two labels Lin and Lout are now generated for the sum statement.

Lin = {Alice : ; ? : Alice} t {Bob : ; ? : Bob} = {Alice : ; Bob : ; ? :}

Lout = {Alice : ; Bob : ; ? :}

26 Secure Program Partitioning

Only host T is able to execute the statement.

C(Lin) = {Alice : ; Bob :} v C(LT)

I(LT) v {? :} = I(Lout)

�

3.1.3 Declassification

A special case arises when declassification is performed. All the principals whose
authority is needed to declassify a label, need to be sure that the program arrived
at the declassification properly.

The block label contains the information about the principals who trust the
integrity of the program execution at a particular point. In order to perform a
declassification, we make sure that all principals P , whose authority is needed,
trust the execution.

I(bl) v IP (3.4)

where IP is the label {? : P}.

3.2 Optimal split

Splitting programs might produce multiple solutions. To minimize execution
time, some sort of optimization algorithm can be employed. The main focus
is to minimize the remote control transfers and field accesses. In [ZZNM01]
dynamic programming and a weighted control graph (e.g. statement in loops
are weighted higher) is used to perform optimizations.

In Chapter 5, optimizations with regard to security will be investigated, as
partial trust is introduced.

3.3 Run-Time Interface 27

g e tF i e l d : Host × Fie ld Id → val

s e tF i e l d : Host × Fie ld Id → val

forward : Host × VarId × val → void

rgoto : Host × PC × Token → void

l g o t o : Token → void

sync : Host × PC × token → Token

Token : { Host × PC × HashVal × Nonce } [kh]

Listing 3.3: Run-time interface

3.3 Run-Time Interface

Once the program has been partitioned, the Secure Program Partitioning frame-
work adds synchronization statements to allow data exchange, and to ensure the
integrity of the program execution. The run-time interface in listing 3.3 consists
of:

getField Get value of a field from a remote principal.

setField Set value of a field on a remote host.

forward A field and its value is forwarded to another host.

rgoto Regular goto. The code at PC is invoked on a remote host. The host
doing the rgoto must have a combined integrity as high as the code being
invoked.

lgoto Linear goto. Transfers control from one code segment, to one with higher
integrity. The host transferring control must present a capability token (see
below), in order to perform the operation.

sync Synchronize execution. Generates the needed capability token for entering
the following code segment.

The capability tokens are used to verify that the principal is allowed to invoke
the code segment. All principals share an integrity control stack, where the

28 Secure Program Partitioning

Figure 3.2: Control Flow Graph

principal being invoked can check the token sent to it. The stack must then be
popped in the right order, in order for the program to be executed.

In Figure 3.2 (Taken from [ZZNM01]) a control flow graph can be seen.

The run-time interface does not change when moving to the dynamic setting.
Therefore, it will not be investigated further.

3.4 Trust relation

In [ZZNM01] a very simple trust model is used. Trust is between principals and
hosts, and divided into integrity and confidentiality. The principals who trust
a host h are expressed as:

Ch = {p1 :; ...; pn :} and Ih = {q1 :; ...; qn :} (3.5)

3.4 Trust relation 29

p1, ..., pn trust h to protect the confidentiality of their data, while q1, ..., qn trust
h to protect the integrity of their data. The advantage of this trust model is its
simplicity, as it uses labels of the Distributed Label Model to denote trust.

The disadvantage of this model is that it is static and too simple for many
applications. For a dynamic distributed system a dynamic model is needed. In
Chapter 5 a more suiting and dynamic model is presented.

The trust model only deals with trust between principals and hosts. This is
an unrealistic model, and unnecessarily complicated. In realistic scenarios you
express your trust in principals, like

• User: If a principal trust a user, he implicitly trusts the user’s host (or
hosts).

• Server process: A principal can have trust in a process running on a server.

The division between hosts and principals is even superfluous, as hosts can
be viewed as principals. In this thesis only trust between principals will be
considered.

30 Secure Program Partitioning

Chapter 4

The sflow Language

A language that doesn’t have everything is
actually easier to program in than some that do.

– Dennis M. Ritchie

In this chapter a simple language with Decentralized Label Model support is
presented. The language must support the dynamic extensions proposed in
the next chapter. The language is a small, simple, customized language. It is
inspired by the While language from [NNH99], but has been extended to support
the Decentralized Label Model. It is kept small, so the verifier and splitter can
be developed without having to consider the details of a complex language with
information flow support, such as JIF [Mye99].

The lightweight sflow (short for simple flow language) can be used to exhibit
all the important properties of Secure Program Partitioning .

32 The sflow Language

4.1 Grammar

The language is defined by the grammar in Figure 4.1. In the figure security
labels are denoted with l. Labels consist of a confidentiality (cl) and an integrity
(il) part.

e ::= n | x | e1 op e2 | declassify(e, cl) | endorse(e, il)

c ::= skip | int l x | x := e | c1; c2

| if e then c1 else c2 | while e do c

Figure 4.1: Grammar for the sflow language

The grammar does not contain methods or classes, as these are not needed to
experiment with the framework. A simple, sequential language is sufficient.

4.2 Operational semantics

The semantics for the language can be seen in Figure 4.2. The ψ function in
the figure evaluates arithmetic expressions.

〈M,x := e〉 ⇒ 〈M [x 7→ ψ(e)], skip〉

〈M, skip; c〉 ⇒ 〈M, c〉

〈M, c1; c2〉 ⇒ 〈M ′, c′1; c2〉 (if 〈M, c1〉 ⇒ 〈M ′, c′1〉)

〈M, if e then c1 else c2〉 ⇒ 〈M, c1〉 (if ψ(e) 6= 0)

〈M, if e then c1 else c2〉 ⇒ 〈M, c2〉 (if ψ(e) = 0)

〈M, while e do c〉 ⇒ 〈M, c; while e′ do c〉 (if ψ(e) 6= 0)

〈M, while e do c〉 ⇒ 〈M, skip〉 (if ψ(e) = 0)

Figure 4.2: Operational semantics for the sflow language

4.3 Type system 33

Γ, bl ` n :⊥

Γ(x) = l

Γ, bl ` x : l

Γ, bl ` e1 : l1 Γ, bl ` e2 : l2
Γ, bl ` e1 op e2 : l1 t l2

I(bl) ⊆ {? : Pdeclassify} authority(Pdeclassify)

Γ, bl ` declassify(e, l)

I(bl) ⊆ {? : Pendorse} authority(Pendorse)

Γ, bl ` endorse(e, l)

Figure 4.3: Typing rules for expressions.

When variables are declared, the security environment Γ is updated.

〈M,Γ, int l x〉 ⇒ 〈M [x 7→ 0],Γ[x 7→ l], skip〉

The operational semantics define how the language will be interpreted. The type
system presented in the coming section, will ensure secure information flow.

4.3 Type system

The type system ensures that no illegal information flow occurs. The type
system is inspired by [VSI96, MSZ04].

The type rules for expressions can be seen in Figure 4.3. The sets Pdeclassify and
Pendorse denote the principals, whose authority (i.e. owners of the policies) is
needed to downgrade the policy. The predicate authority checks if the principal
performing the downgrade has the authority needed. In our case this will be
determined by the trust model.

The other premise, I(bl) ⊆ {? : Pdeclassify}, ensures the owners that the pro-
gram arrived at the downgrade statement correctly, i.e. they have trust in the
integrity of the program execution (cf. Section 3.1.3).

34 The sflow Language

Γ, bl ` skip

Γ, bl ` e : l l t bl v Γ(x)

Γ, bl ` x := e

Γ, bl ` c1 Γ, bl ` c2
Γ, bl ` c1; c2

Γ, bl ` e : l Γ, l t bl ` c

Γ, bl ` while e do c

Γ, bl ` e : l Γ, l t bl ` c1 Γ, l t bl ` c2
Γ, bl ` if e then c1 else c2

Figure 4.4: Typing rules for statements.

The typing rules for statements are listed in Figure 4.4. The assignment typing
rule will ensure that no illegal flow occurs. By taking the least upper bound of
the expression label and block label, we ensure that no direct or implicit flow
occurs. The block label is updated in the conditional statements (if and while).

Listing 4.1 contains a valid sflow program. The program will be discussed later,
but is included here to illustrate the syntax of sflow programs.

This concludes the chapter on the sflow language. The next chapter presents a
design that uses this languages to perform Secure Dynamic Program Partition-
ing.

4.3 Type system 35

int{Al i c e : ; ? : A l i c e } m1;
int{Al i c e : ; ? : A l i c e } m2;
int{Al i c e : ; ? : A l i c e } i sAcce s s ed ;
int{Bob :} n ;
int{Al i c e : ; Bob : ; ? : A l i c e } val ;
int{Bob :} r e tu rn va l ;

i f i sAcce s s ed then {
val := 0 ;

}
else {

i sAcce s s ed := 1 ;
i f endorse (n , { ? : A l i c e }) = 1 then {

val := m1;
}
else {

val := m2;
} ;

} ;
r e t u rn va l := declassi fy (val ,{Bob : }) ;

Listing 4.1: Oblivious Transfer in sflow

36 The sflow Language

Chapter 5

Extending SPP to Dynamic

Networks

Security is an attempt to try to make
the universe static so that we feel safe.

– Anne Wilson Schaef

In this chapter the Secure Program Partitioning framework is extended to also
deal with dynamic networks. Moving to the dynamic setting will introduce a
set of new challenges which must be addressed.

When principals are allowed to enter and leave the network, the split might no
longer be valid or optimal. Hence, the splitter must be able to respond to the
changing network.

Furthermore, in dynamic distributed systems, the static trust model described
in Section 3.4 is insufficient. Complete trust and inability to propagate trust
make the model unsuitable for most realistic trust scenarios. Additionally, the
inability to handle dynamic networks makes the static trust model insufficient
for dynamic distributed systems.

In order to make the Secure Program Partitioning applicable to more realistic

38 Extending SPP to Dynamic Networks

scenaros, we extend the trust model to accept changes in the network. The issue
of trust propagation will be handled by introducing recommended trust. Finally
the model will be extended to support partial trust. A probabilistic approach
will be used to model this.

The last part of this chapter will address how to handle data when a principal
leaves the network. The problem arises when data is stored on, but not owned
by the leaving principal. In that case the data should become unavailable for
the leaving principal.

5.1 Dynamic Splitter

In the dynamic scenario the set of available principals and the trust graph are
no longer static. Principals are allowed to join and leave the network. Hereby
partitioning becomes a dynamic process, where the splitter continuously must
make sure that the split is valid.

5.1.1 Joining the Network

When a principal p joins the network it is added to the set of active principals
Pactive. It is obvious that any previous partitioning is still valid. The splitter,
however, might want to repartition the program, if a more optimal split exists.
The splitter will base its decision on two criteria :

• Security: A more secure split exists.

• Performance: Lower execution time under an alternative split.

The first criteria requires a measure of security. In the coming sections such
a measure will be introduced. Figure 5.1 illustrates the process of a principal
joining the network.

Performance is not the focus of this thesis, so it will not be dealt with in detail.
Nevertheless, a performance measure could be introduced by evaluating the

5.1 Dynamic Splitter 39

performance of each host, the network latency and bandwidth. Using this,
as well as an analysis of remote calls in the split program, an approximation of
execution time could be introduced. By minimizing the approximated execution
time, the performance could be improved significantly in many cases.

���������
���������
���������

�������
�������
�������

���
���
���
���
���

���
���
���
���
���

�������
�������
�������
�������

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�

�

���
��������

�����
��
��

���
���
���
���

Diana

verifier
compiler

splitter

host Diana

host Alice

host Bob

host Charlie Charlie

Bob

Alice

(3)(2)

(1)

Figure 5.1: Principal Diana joins the network. The trust graph is updated (1),
the program is re-split (2), and redistributed across the network (3). Compared
to figure 3.1, a part of Alice’s subprogram is scheduled to run Diana’s host.

When a principal joins the network the splitter has to decide if the program
should be resplit. In the case where program execution has already begun, sev-
eral options exist. The execution could simply just continue until it is done.
In many distributed systems, however, executions are continuous. In that case
the execution could be halted, the variables and statement can be rescheduled,
and then the program execution could be resumed. Its important that the vari-
ables are not altered or corrupted during the rescheduling, so some verification
mechanism should be employed by the splitter.

40 Extending SPP to Dynamic Networks

The work presented in [ZCMZ03] uses hashing to ensure the integrity of the data.
While only one principal has the real data, several principals can maintain hash
values of the data, and thereby ensure that no corruption of the data has taken
place. This could be applied to the case of rescheduling an already running
program.

5.1.2 Leaving the Network

When a principal p leaves the network, p is removed from the set of active
principals Pactive. If the principal is part of the split, p ∈ Psplit, all data and
statements needs to be reassigned to other principals. If using the principals in
Pactive can not produce a valid partitioning, execution is halted. The process
of leaving the network is illustrated in Figure 5.2.

If execution already has begun and the principal is part of the partitioning,
it might be possible to recover the state. First of all, we make a distinction
between clean exiting, and dirty exiting.

Clean exiting means that the principal is leaving the network intentionally. It
notifies the splitter, and the splitter can thereafter take corresponding action,
and repartition any statements or variables to other hosts.

A dirty exit is where a principal suddenly becomes unavailable (network con-
nection is lost, computer shuts down, etc.). In this case, a repartitioning of data
cannot be achieved. The data stored on the principal is forever lost. Instead of
starting all over, one could roll-back to a state, where the data of the leaving
principal has not been modified yet. This is only possible if the splitter stores
intermediate states.

Storing intermediate states would hurt performance. Execution would have to
be halted, and the splitter would have to probe each principal for its data and
program counter. Nevertheless, in scenarios where a program is running for a
long time, this could be a necessary precautionary step. Examples are large
clusters and grid systems working on a computational intensive problem, where
calculations take several days. It would be unsatisfactory to have to start over,
each time a host breaks down.

5.2 Trust Model 41

�������
�������
�������
�������
�������
�������

���
���
���
���

���
���
���
���

������

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�

�

���
���

�����
�����
��
��
���������
���������
�������
������� ���

���
���
���

Diana

host Bob

verifier
compiler

splitter

host Diana

host Alice

Charliehost Charlie

Bob

Alice

(2)

(1)

(3)

Figure 5.2: Principal Bob leaves the network. The splitter is notified (1), the
program is re-split (2), and redistributed across the network (3). Compared to
figure 5.1, Bob’s subprogram is scheduled to run on Diana’s host.

These issues are left to future work, and will not be dealt with further. The
focus will instead be on finding a fitting trust model for the Secure Dynamic
Program Partitioning.

5.2 Trust Model

In the coming sections, different trust models are investigated. We start with
the simple model used by [ZZNM01], and then continue by making a series of
motivated modifications to the model, to make it better suited for the dynamic
scenario.

42 Extending SPP to Dynamic Networks

First, some basic concepts and assumptions are introduced.

5.2.1 Basics of Trust

Trust is belief in a principal’s ability to perform a particular action correctly.
Key properties of trust are [ARH97]:

• Trust is subjective.

• Trust affects those actions, which cannot be monitored.

• Trust is non-transitive.

In this thesis the focus will be on the propagation of trust in a distributed
system. Fundamental to trust is that it is non-transitive (e.g. [Jøs96]), i.e. if
Alice trusts Bob, and Bob trusts Charlie, then Alice does not automatically
trust Charlie. This is due to the fact that trust is subjective. Alice needs to
have a relation to Charlie, in order for her to trust him.

Lots of systems in use (especially authentication protocols) make the erroneous
assumption that trust is transitive. This is a convenient assumption, but in
direct violation with the basic concept of trust.

In this thesis trust is always:

• Between two principals.

• Non-symmetrical.

• Non-transitive.

In later sections, recommended trust will be introduced to allow propagation of
trust through the network without violating the property of non-transitivity.

5.3 Static Trust 43

5.3 Static Trust

In [ZZNM01] trust is complete and direct. Direct because no trust propaga-
tion exists, and complete because a principal either trusts another principal
completely or not at all.

Trust is divided into confidentiality and integrity. To recap, maintaining con-
fidentiality is not to leak data, while integrity is a principals ability to handle
data correctly as specified in the program.

We have already seen that this trust model can be expressed using the Decen-
tralized Label Model.

Cp = {p1 :; . . . ; pn :} and Ip = {q1 :; . . . ; qn :} (5.1)

where p1, . . . , pn have trust in p’s confidentiality, and q1, . . . , qn trust that p will
maintain integrity of their data.

5.4 Dynamic Trust

In the dynamic trust model principals are allowed to update their trust decla-
rations, thus the trust graph is no longer static. Joining principals must also
inform the splitter of their trust relations.

A trust declaration consists of two sets of principals.

TCp = {p1, . . . , pn} and TIp = {q1, . . . , qn} (5.2)

TCp is the set of principals who p trusts with regards to confidentiality, and
TIp is the set of principals whose integrity p trusts.

Using these trust declarations, the trust labels in the global trust graph are
updated by the splitter.

Example 5.1 (Joining) Principal C joins the network. C has the following
trust declarations:

TCC = {A,B} and TIC = {A}

44 Extending SPP to Dynamic Networks

The trust labels in the global trust relation are updated:

CA := CA ∪ {C :}, CB := CB ∪ {C :}, IA := IA ∪ {C :}

�

In this model a principal p is responsible for maintaining his own local trust
graph/relations. No one else can modify p’s trust relations. This is an important
improvement, as trust is not a static notion. Trust will change based on the
information and experience a principal receives, so it is important that the
principal is able to update his or her trust relations.

5.5 Recommended Trust

Recommendations are fundamental to most trust scenarios in our society. Trust
is being propagated between people by recommendation.

The way we deal with organizations is an example of this. Because it is not
possibly to know all the people we are dealing with, trust is instead put in
organizations (banks, governmental institutions, etc.). We are allowing organi-
zations to recommend individuals to handle our data, money, cases, etc. The
trustworthiness of an organization is directly dependent on the trustworthiness
of its individuals.

We gain trust in an organization by recommendations from others (e.g. people
or other organizations). Also previous actions of the organization will have
direct impact on our trust in the organization.

Building trust between principals in the real world is complex, dynamic, sub-
jective, and not fully understood. Consequently, it is impossible to model it
precisely. A model that allows propagation through recommendation can be
achieved, though. Such a model will be better at handling dynamic distributed
systems, than the simple, static model proposed in [ZZNM01].

Some previous work has been done in this area. [BBK94, YKB93] work with
recommended trust in distributed systems, while [Mau96] works with propaga-
tion of certificates in Public-Key Infrastructures (PKIs) using recommendations.

5.5 Recommended Trust 45

This work is used as inspiration, to develop a model that supports recommen-
dations.

In the recommended trust model, a principal A can allow another principal B
to recommend principals. Recommendations are also annotated with a distance
n ≥ 1, which states how many edges away from B a recommended principal
can be. If n = 1, only principals directly trusted by B (neighbors in the trust
graph) can be recommended.

A recommendation is a statement of the form:

RecA,B,dist

Expressing that A trust B to recommend principals with a maximum distance
of dist from B. Trust can be declared using a similar notation:

TrustA,B

Meaning A trusts B directly.

Trust graphs can be constructed as sets of these two components.

Definition 5.1 (Trust Graph) In a network with a set of principals P , a
trust graph TG can be constructed from a set of statements

Trustp,q and Recr,s,dist (5.3)

where, p, q, r, s ∈ P and dist ∈ N.

Only one recommendation edge is allowed in TG for each pair of principals p, q.
�

A principal trusts another principal, if trust between two principals can be
derived by traversing recommendation edges in the trust graph. Following def-
inition states how trust can be derived.

Definition 5.2 (Recommended Trust) A principal p1 trusts another prin-
cipal pn, iff

46 Extending SPP to Dynamic Networks

p1 has direct trust in pn:

TPp1,pn
= 〈Trustp1,pn

〉 (5.4)

Or, one or more recommendation paths exist

TPp1,pn
= 〈Recp1,p2,d1

, Recp2,p3,d2
, . . . , Recpn−2,pn−1,dn−2

, T rustpn−1,pn
〉 (5.5)

Where, all distances di ≥ n− i− 1. �

This definition states that trust can be derived, if a path of recommendations ex-
ists to a neighboring principal of the destination principal. Additionally, all the
recommendation statements in the path must have sufficient recommendation
distance. This is experienced in:

Corollary 5.3 Trust to principal pn can be derived from all principals in a
trust path pi, i ∈ {1, . . . , n− 1}.

Before discussing this definition of trust, an example is presented to illustrate
how the model works in a concrete scenario.

1

22

Fred

Charlie

Alice Bob

Diana

Eddie

Gary

Figure 5.3: Trust graph with recommended trust. Solid lines are trust, while
dashed lines are recommended trust. The numbers denote recommendation
distance.

5.5 Recommended Trust 47

Example 5.2 (Recommended Trust) In Figure 5.3 a trust graph with rec-
ommended trust is depicted. Using Definition 5.1 the trust graph can be ex-
pressed as (only the first letter of the principal id is used):

TG = {TrustA,C, T rustA,D, T rustB,C , RecB,C,1, T rustC,D, T rustC,F ,

T rustD,G, T rustE,A, RecE,A,2, T rustE,B, RecE,B,2}

Trust paths can be derived for this trust graph, for instance:

TPE,F = 〈RecE,B,2, RecB,C,1, T rustC,F 〉

Eddie trusts all principals in the graph except Gary. We write TPE,G = ∅ to
express lack of trust.

Several trust paths might exist to the same principal, for instance from Eddie
to Diana:

TPE,D = {〈RecE,A,2, T rustA,D〉, 〈RecE,B,2, RecB,C,1, T rustC,D〉}

�

5.5.1 Discussion of the Recommended Trust Model

The model proposed introduces recommendation annotated with an upper limit
for the distance to the recommended principal. Two alternative approaches
could be considered:

• A system-wide distance n, which all recommendation paths must obey.
The central splitter would be the obvious choice for selecting n. For
instance the splitter could only allow neighbors to be recommended by
setting n = 1.

• Another approach is to have no restriction of the length of recommendation
paths (n = ∞).

The first option seems like a reasonable choice. We choose, however, the individ-
ually specified recommendation distances, as this allows principals to manage

48 Extending SPP to Dynamic Networks

their own level of trust. A principal might have different levels of trust in other
principals ability to recommend principals, hence, the distances should be spec-
ified for each principal.

The second approach has some obvious shortcomings. When the paths become
too long, the chance of the principal actually being trustworthy becomes signif-
icantly smaller. It only takes one bad recommendation edge, and a multitude of
bad principals might have been recommended. The approach propagates trust
too loosely, and is therefore unsuited for larger distributed systems.

These choices reflect the fundamental property that trust is individual (cf. Sec-
tion 5.2.1). As a general design principle, trust should be individually specified.

It is important to realize that the principal of non-transitivity has not been
violated. The propagation of trust is completely controlled by the individual
principal, as he explicitly declares who he trusts to recommend principals, as
well as the allowed distance. Thereby he is indirectly declaring trust to the
recommended principals.

5.6 Confidentiality and Integrity

In the Decentralized Label Model there are two types of security properties,
confidentiality and integrity. Secure Program Partitioning keeps this distinction
by incorporating it into its trust model.

Our trust model also supports this two-dimensional notion of trust. The two
trust types are independent, thus the trust graph will contain both confidential-
ity and integrity edges. Recommendation edges are also divided into confiden-
tiality and integrity. Hence, the combined trust graph consists of two indepen-
dent trust graphs, one specifying confidentiality and one specifying integrity.

As we continue developing the trust model, trust will still be dealt with as
one-dimensional, as there is no difference in the way we derive trust for confi-
dentiality and integrity.

5.7 Probabilistic Trust 49

5.7 Probabilistic Trust

The introduction of recommended trust addresses some of the challenges faced
for a trust model in a dynamic distributed system. However, it still operates
with complete trust. Complete trust is, however, not well-suited for real world
scenarios. In the real world no one is completely trustworthy [Zim95], and
different levels of trust exist.

To trust someone is a subjective choice, based on known information (has he
or she been trustworthy in the past, recommendations, etc.) and risk (what
are the consequences of being wrong). The higher the risk, the more trust is
needed.

To model this behavior, we introduce probabilistic trust. Each trust declaration
is annotated with a probability (as usual in the range from 0 to 1), which is an
assessment of the probability that the trust statement holds. Both direct trust
and recommendations have probabilities.

Our model has been inspired by the probabilistic model introduced in [Mau96].
Maurer deals with certifying certificates in public key infrastructures, while our
model deals with trust in a distributed system. Thus the two models differ in a
few important aspects. These differences will be discussed after the model has
been introduced.

The probabilistic model extends the recommended trust model. Each edge/
statement now also has a probability φ.

Definition 5.4 (Probabilstic Trust Graph) In a network with a set of prin-
cipals P , a trust graph TG can be constructed from a set of statements

Trusta,b and Recc,d,dist (5.6)

where a, b, c, d ∈ P , dist ∈ N. Each statement S has a probability:

p(S) = φ (5.7)

where φ ∈ [0, 1].

Only one trust edge is allowed in TG for each principal pair a, b. TG can
contain several recommendation edges for a principal pair a, b, one for each

50 Extending SPP to Dynamic Networks

recommendation distance dist. If Reca,b,dist is valid, so is Reca,b,dist′ , dist
′ <

dist. �

Trust paths have the same structure as in the deterministic model. They can
either represent direct trust

TPp1,pn
= 〈Trustp1,pn

〉

or a recommendation path:

TPp1,pn
= 〈Recp1,p2,d1

, Recp2,p3,d2
, . . . , Recpn−2,pn−1,dn−2

, T rustpn−1,pn
〉

where all distances di ≥ n− i− 1.

The probability of a path being valid is the probability of all statements in
the path being valid. As the statements are disjoint, the probability can be
calculated as:

P (TPp1,pn
⊆ TG) =

∏

S∈TPp1,pn

p(S) (5.8)

Several paths can exist between two principals, pa, pb. Intuitively each extra
path should increase the probability of pa trusting pb. However, some paths
are subset of other paths, and in that case only the shortest of the two paths
is included. If several recommendation distances exists between two nodes, the
shortest recommendation distance is selected.

2: .80

.90.90

1: .80
3: .40

Alice CharlieBob

Figure 5.4: Probabilistic trust graph with multiple recommendations.

Example 5.3 (Minimal paths) In Figure 5.4 a trust graph is depicted. Sev-
eral trust paths exist between Alice and Charlie:

{ 〈RecA,B,1, T rustB,C〉, 〈RecA,B,3, T rustB,C〉,

〈RecA,B,3, RecB,A,2, RecA,B,1, T rustB,C〉 }

5.7 Probabilistic Trust 51

However, only one of these paths is considered minimal.

The first two paths are identical except for the recommendation distance. As
stated in Definition 5.4, RecA,B,3 implies RecA,B,1. So it is clear that they
should not both be included. We write:

〈RecA,B,1, T rustB,C〉 ⊂ 〈RecA,B,3, T rustB,C〉

Even more obvious is that:

〈RecA,B,1, T rustB,C〉 ⊂ 〈RecA,B,3, RecB,A,2, RecA,B,1, T rustB,C〉

So only the path 〈RecA,B,1, T rustB,C〉 is minimal.

According to (5.8) the probability of this path is:

P (TPA,C ⊆ TG) =
∏

S∈TPA,C

p(S) = p(RecA,B,1) · p(TrustB,C) = 0.72

�

Based on the previous example, a minimal trust path will be defined as:

Definition 5.5 (Minimal Trust Path) Consider two principals pa, pb in a
trust graph TG. Then ν = TPpa,pb

⊆ TG is considered a minimal path, iff

@TPpa,pb
⊆ TG : TPpa,pb

⊂ ν (5.9)

�

When calculating confidence, only minimal trust paths will be included. How-
ever, it has still not been addressed what to do when several minimal trust paths
exist between two principals.

The confidence will be calculated as the probability that one of the trust paths
is valid. This can be achieved by applying probability logic.

Definition 5.6 (Confidence) Let ν1, . . . , νk denote all minimal paths in the
trust graph TG from which Trustpa,pb

can be derived. Then the confidence in

52 Extending SPP to Dynamic Networks

a trust statement TrustA,B is given by:

conf(Trustpa,pb
) = P (

k
∨

i=1

(νi ⊆ TG)) (5.10)

�

In probability logic the probability that at least one of two events will occur,
can according to [Hai84] be calculated as :

P (A ∨ B) = P (A) + P (B) − P (A ∧ B) (5.11)

= P (A) + P (B) − P (B|A)

For whole series of k events, the inclusion-exclusion principle can be applied
[Mau96]. This is equivalent to expanding (5.11) for all k events. The confidence
in the validity of one of the paths can be calculated from the sum of probabilities
of the k events, subtracting the

(

k
2

)

events from intersecting 2 paths, adding the
(

k
3

)

events from intersecting 3 paths, etc. This can be written as:

conf (TrustA,B) =

k
∑

i=1

P (νi ⊆ TG) (5.12)

−
∑

1≤i1<i2≤k

P ((νi1 ∪ νi2) ⊆ TG)

+
∑

1≤i1<i2<i3≤k

P ((νi1 ∪ νi2 ∪ νi3) ⊆ TG)

− · · ·

The complexity of calculating the confidence for a statement Trustpa,pb
is of

the order 2k, where k is the number of minimal paths. So for large graphs with
many trust paths, the calculation becomes infeasible. In that case sensitivity
analysis should be applied, to find paths which have only marginal influence on
the final confidence value, and discard them. Doing this is safe as it can never
increase the confidence.

In the probabilistic model, trust becomes a confidence value. So instead of
being binary (trust or no trust), it becomes a continuous scale. To determine a
sufficient confidence value, each user must specify the minimum confidence level.
For instance a user might require a confidence level of 0.95 to trust someone.

5.7 Probabilistic Trust 53

.9

.9.9

.9

.9

.9

1: .8

2: .752: .8
.95

.95

Fred

Charlie

Alice

Gary

Diana

Eddie

Bob

Figure 5.5: Probabilistic trust graph.

Allowing each user to specify his or her own trust level follows the design prin-
ciple of individually specified trust (cf. Section 5.5.1). We require all principals
in the trust graph to have a threshold of confidence. The confidence thresholds
will be represented as a mapping,

[p1 7→ τ1, p2 7→ τ2, . . . , pn 7→ τn] (5.13)

where {p1, p2, ..., pn} = P (i.e. all principals are included).

It is assumed a function threshold exists, which finds the threshold mapping
for a principal.

threshold(p) = τ (5.14)

For a principal pa to trust a principal pb, then

conf(Truspa,pb
) ≥ threshold(pa) (5.15)

Example 5.4 (Probabilistic Trust) We now return to the example with rec-
ommended trust. Trust probabilities have been added to the edges, as seen in
Figure 5.5.

First, Eddie’s confidence in Fred is calculated. As in Example 5.2 only one path
is identified:

〈RecE,B,2, RecB,C,1, T rustC,F 〉

54 Extending SPP to Dynamic Networks

As only path exists, the confidence becomes the probability of this path being
valid:

conf (TrustE,F) = p(RecE,B,2) · p(RecB,C,1) · p(TrustC,F) = .75 · .8 · .9 = 0.54

More interesting is to find the confidence value from Eddie to Charlie.

ν1 = 〈RecE,A,2, T rustA,C〉 , ν2 = 〈RecE,B,2, T rustB,C〉

The probabilities of the two paths are:

P (ν1 ⊆ TG) = p(RecE,A,2) · p(TrustA,C) = .8 · .9 = .72

and
P (ν2 ⊆ TG) = p(RecE,B,2) · p(TrustB,C) = .75 · .95 = .7125

The intersection1 of the two events is:

p((ν1 ∪ ν2) ⊆ TG) = p(RecE,A,2) · p(TrustA,C) · p(RecE,B,2) · p(TrustB,C)

= .72 · .7125 = .513

Using formula (5.12), the confidence is calculated:

conf(TrustE,C) = P (ν1 ⊆ TG) + P (ν2 ⊆ TG) − p((ν1 ∪ ν2) ⊆ TG)

= .9195

Finally, confidence in TrustE,D will be calculated. The following minimal paths
are identified:

ν1 = 〈RecE,A,2, T rustA,D〉 , ν2 = 〈RecE,B,2, RecB,C,1, T rustC,D〉

Resulting in:

conf(TrustE,D) = P (ν1 ⊆ TG) + P (ν2 ⊆ TG) − p((ν1 ∪ ν2) ⊆ TG)

= 0.8712

As a result, if Eddie has a minimal confidence threshold of 0.9, the following
trust statements can be derived:

{TrustE,A, T rustE,B, T rustE,C}

�

5.7 Probabilistic Trust 55

0.8

1: .9

1: .85
2: .7

1: .7

0.7
0.9

0.8

0.9

DianaAlice

Charlie

Bob

Figure 5.6: Probabilistic trust graph.

Example 5.5 (Overlapping Paths) In this example the trust graph in Fig-
ure 5.6 is considered. The confidence in TrustA,D will be calculated. However, it
is slightly more advanced than the previous example, as there are three minimal
trust paths, and the paths overlap each other:

ν1 = 〈RecA,B,1, T rustB,D〉

ν2 = 〈RecA,C,1, T rustC,D〉

ν3 = 〈RecA,C,2, RecC,B,1, T rustB,D〉

Using (5.12) the confidentiality is calculated as:

conf(TrustA,D) = P (ν1 ⊆ TG) + P (ν2 ⊆ TG) + P (ν3 ⊆ TG)

−P ((ν1 ∪ ν2) ⊆ TG) − P ((ν1 ∪ ν3) ⊆ TG)

−P ((ν2 ∪ ν3) ⊆ TG) + P ((ν1 ∪ ν2 ∪ ν3) ⊆ TG)

As ν2 ∪ ν3 = 〈RecA,B,1, RecA,C,2, RecC,B,1, T rustB,D〉, we get

P ((ν1 ∪ ν3) ⊆ TG) = p(RecA,B,1) · p(RecA,C,2) · p(RecC,B,1) · p(TrustB,D)

= .7 · .7 · .9 · .8 = .3528

The rest of the calculations are done in a similar manner as before. The confi-
dence becomes:

conf(TrustA,D) = .932132

�

1 We use the union of two paths, two find the probability of the probability that both

events occur

56 Extending SPP to Dynamic Networks

Level Probability
Full 1.00
Very high 0.95
High 0.90
Medium 0.80
Low 0.40
None 0.00

Table 5.1: Example of trust levels

5.7.1 Discussion of the Probabilistic Model

The probabilistic trust model introduces several concepts intended to make the
trust model more realistic. Outside the boundaries of distributed systems, trust
is often gained by recommendations from other principals. The model incor-
porates this by introducing recommendation edges, where a principal explicitly
can declare trust in another principal’s ability to recommend principals.

As discussed in the previous model (cf. Section 5.5.1), an upper limit for the
recommendation distance is introduced to limit the propagation of trust in the
trust network.

In the real world trust is almost never complete. However, most trust models
do not reflect this. In our model, partial trust is modeled using probabilities
like in [Mau96]. Alternatives are for example Fuzzy Logic [JS97], or Network
Flow from Graph Theory [BM76]. However, probability was chosen because it
better resembles the way we approach trust. Trust is always an assessment, and
probabilities are a precise way of defining how likely it is that your assessment
is correct. Probabilistic trust also allows an elegant and mathematical founded
way of propagating trust through the network.

From a user’s perspective, assigning probabilities to other principals is not an
easy task. Instead trust levels should be defined, where each trust level has a
probability. An example of a set of trust levels can be seen in Table 5.1.

Our model differs significantly from the model presented in [Mau96]. Maurer
deals with certificates, while we deal with trust with regards to confidentiality

5.7 Probabilistic Trust 57

and integrity. Certificates have to be issued by an authority. In order for a
principal to have trust in a certificate, the principal must have trust in both the
issuing principal, and the certificate holder.

In our model the recommended principal can be trustworthy, even though the
recommender is not. So the dependency that exists for certificates, does not exist
in our scenario. In practice this means only recommended paths are traversed
when recommendation paths are constructed. E.g. a trust path

〈RecA,B,1,TrustB,C〉

would be calculated by taking

conf(TrustA,C) = p(RecA,B,1) · p(TrustB,C)

In the case of certificates, the principal B also needs to be trustworthy, so the
confidentiality in all intermediate principals should be calculated:

conf(TrustA,C) = conf(TrustA,B) · p(RecA,B,1) · p(TrustB,C)

Propagation of trust in our model is less sensitive to malicious principals. One
malicious principal in Maurer’s model means that all certificates issued by this
principal is invalid. In our model, principals are not automatically considered
untrustworthy when they are recommended by an untrustworthy principal.

There are several possible extensions to this model. A few are discussed below.
These extensions are orthogonal to our approach, and could be added to the
framework, without making any changes to the original framework.

In a running version of Secure Dynamic Program Partitioning, it would be
practical to use a Public Key Infrastructure as the underlying structure for
identifying principals. However, this will be left as future work, but the design
must support such an extension.

As mentioned, in our approach trust is explicitly declared either as direct trust
edges or recommendation edges. However, you could introduce automated trust
negotiation [WSJ00, WYS+02]. In this approach trust is negotiated automati-
cally between principals. A common approach is to use credentials. A principal’s
credentials might contain information about the principals identity, who trusts
the principal, and the digital rights the principal has. Based on this, trust can
be inferred.

58 Extending SPP to Dynamic Networks

The trust models in this thesis only deal with confidentiality and integrity.
However, there is another aspect to trust, availability. Availability is the chance
that a principal or host is available [ZH99]. In our framework the splitter always
has full overview of the availability of the principals, so the aspect of availability
has been left out. But in more realistic scenarios it might be beneficial to
introduce availability. In our model this can easily be modeled as edges with
probabilities.

5.8 Quality of a Partitioning

Often programs have several valid partitionings. These partitionings obey all
security policies in the program, by construction. However, they do not have
identical properties, so the splitter must decide which partitioning that best
fits the applications purpose. This can be viewed as a matter of optimization.
Several possibilities for what to optimize exist:

• Minimal network communication as proposed in [ZZNM01].

• Optimal performance by scheduling hard computations to strong princi-
pals.

• Spread sensitive data on multiple principals, to limit consequences of a
principal being compromised.

Applications have different preferences of what to optimize. The framework
should be parameterized with an optimization component, so the individual
application can specify his or her own optimization method.

In this thesis two optimization methods that utilize the probabilistic model will
be implemented, namely:

• Highest confidence.

• An individual metric for judging the split.

The two methods will be introduced in the coming sections.

5.8 Quality of a Partitioning 59

5.8.1 Highest Confidence

The highest confidence method is fairly simple. For a statement or a field, the
principal that all the owners can best agree on is selected.

Suppose O is the set of principals that owns the statement S (owner of data
being read or written). The statement can be assigned to principals in the set A.
The optimal assignment is the one where the lowest confidence of any principal
in O, is the highest. This can be expressed as:

optimal (A,O) = max∀q∈A(min∀p∈O(conf (Trustp,q)) (5.16)

This optimization method is simple and efficient. It uses the already computed
confidence value to find the principal which the principals best agree on. How-
ever, another optimization method that considers the interdependencies of a
data leak has been conceived.

5.8.2 The Metric

This section introduces a metric to judge the quality of a partitioning from the
view point of a principal A. The idea is to judge the risk of a set of principals
violating the confidentiality of data that is owned by A and has been partitioned
to B. This work was presented first time in [SPJH06].

Assume that a piece of data or some code owned by principal A should be
scheduled to B. How would A evaluate whether or not B is well-suited to host
A’s data. Again there are two components to this question. First of all, A will
want to inspect which other principals might allow the splitter to partition their
code to B. Any other code running on the host might result in an increased risk
of A’s data being leaked. Another principal might find a way to tamper with
the execution platform, and hereby leak the data owned by A.

Tthe execution platform is considered part of the trusted code base (TCB), it
is difficult to guard against all attacks. For instance if you have full access to a
computer, you can circumvent the execution platform by reading directly from
memory (cf. Section 2.5 on covert channels). Preferably, a principal would

60 Extending SPP to Dynamic Networks

schedule its data and code to a principal it trusts fully, and no other principals
will schedule their code or data to the same principal.

The confidence that principal A has in a principal B not leaking his data, is the
confidence value:

conf (TrustA,B)

This can be computed by applying equation (5.12). Obviously, the risk that B
leaks the data is the inverse of the confidence value, namely 1−conf (TrustA,B).

In computing the probability that any of the principals who trust B will leak
A’s data, we face the problem that these events are certainly not independent,
so that it is hard to compute the probability for the case that this happens.
However, the metric just needs to compare different scenarios, but does not
need to be a probability. So the first part of the metric is to find the average of
the inverse of all conf values as defined above

leak (A,B) =

∑

p∈TB
(1 − conf (TrustA,p))

N
(5.17)

where TB is the principals who can schedule their data and statements to B,
and N is the cardinality of the set TB .

The higher the value of leak (A,B), the less confidence A has in other principals
that might schedule data and statements to B.

The second component is the confidence that principal A has in principal B, a
measure for how likely it is that B leaks data owned by A.

The metric we suggest is defined as the quotient of these two numbers:

M(A,B) =
leak (A,B)

conf (TrustA,B)
(5.18)

The higher the metric, the higher A judges the likelihood that B will leak its
data if stored on B, thus preferably the metric should be low. As a principal
always have full trust in him- or herself, the metric M(A,A) is 0.

5.8 Quality of a Partitioning 61

5.8.3 Applying the Metric

The metric can be calculated for both confidentiality and integrity. However,
which of the two to choose depends on the situation. Principals whose data is
read, want the confidentiality metric to be high, while principals whose data is
defined, would like the integrity to be high (similar to the constraints in Secure
Program Partitioning, see Section 3.1). So the metric is calculated, based on
whether data is being defined or used.

When assigning fields, both the metric for integrity and confidentiality will be
calculated for all owners of the field.

The metric is an individual measurement of another principal’s trust worthiness,
based on the probabilities. However, as data can have multiple owners, it has to
be considered which principal to choose when the owners do not have the same
preference.

Several options exist for selecting the principal:

• The average metric should be as low as possible.

• The highest metric of any of the principals is kept as low as possible.

• Weighing for instance, confidentiality higher than integrity.

• Weighing principals differently.

However, we want to maintain fairness, meaning no principal is considered more
important than any other. This is best satisfied by the second option, as no
principal (or group of principals) has precedence over another.

If A is the set of principals the statement can be assigned to, and O is the set
of owners of the data, then the optimal metric becomes

optimal (A,O) = min∀p∈A(max∀q∈O(M(q, p))) (5.19)

For each of the possible assignments, the highest metric is computed. The
statement will be assigned to the principal who has the lowest of the highest
metrics.

62 Extending SPP to Dynamic Networks

Example 5.6 (Calculating the Metric) Consider the following program:

int{A:} a ; int{B:} b ;
a := b ;

The program shall be split under the trust graph in Figure 5.7. Both Alice and
Bob have a trust threshold of 0.80 (the minimal trust probability they accept).

.9/.95 .9/.9

.4/.3

.2/.2

.9/.9.8/.9

.9/.9

Alice

Charlie

Bob

Diana

Figure 5.7: Trust graph for the metric example. Each edge is annotated with
both confidentiality and integrity (C/I).

It is fairly obvious that the statement a := b must be assigned to either Charlie
or Diana. However, to decide which one to choose the metrics is calculated for
both Alice and Bob. From Alice to Charlie the leak is calculated from:

leak (A,C) =

∑

p∈TC
(1 − conf (TrustIA,p))

N

TrustI denotes trust in the integrity.

Bob and Diana might also schedule their data to Charlie, thus TC is {B,D}.
So the leak becomes:

leak (A,C) =
(1 − 0.3) + (1 − 0.95)

2
= 0.375

To find the metric, we divide with Alice’s confidence (integrity) in Charlie,

M(A,C) =
0.375

0.9
= 0.417

5.9 Erasure Policies 63

Finding the metric for Diana is easier, as only Bob trusts her, besides from
Alice.

M(A,D) =
0.7

0.95
= 0.737

Alice prefers Charlie, because M(A,C) < M(A,D). But before the statement
is assigned, we also need to find the metrics for Bob.

M(B,C) =
((1 − 0.2) + (1 − 0.9))/2

0.9
= 0.5

M(B,D) =
1 − 0.2

0.9
= 0.889

The highest metric for the two possibilities is compared. The lowest of the two
is selected. If assigned to Charlie the value becomes 0.5, while for Diana it is
0.889. The statement is assigned to Charlie. �

5.9 Erasure Policies

Another important issue to consider when moving to a dynamic setting, is how to
handle data on unavailable hosts, what happens to data when it gets rescheduled
to another principal.

The motivation is that data should only be available on one principal, and
become unavailable when principals leave the network. Otherwise a principal
might find a way to access data, which is not intended for him. To make this
less likely, data will only be available at a principal, when it is strictly necessary.
Data should be made unavailable, when

• Data is rescheduled.

• Principal leaves the network.

• Program execution ends.

As proposed in [HP05], Erasure Policies [CM05] could be employed to control
availability of data. Erasure policies have the form:

l1 c↗l2 (5.20)

64 Extending SPP to Dynamic Networks

where l1 and l2 are security labels, l1 v l2 and l1 6= l2. When condition c is
fulfilled, the policy l2 applies, and otherwise l1.

The article [CM05] introduces a type system, which has support for these dy-
namic policies. The SDPP framework should be extended to support these
policies, as this would allow us to make data unavailable when principals leave,
and when data is rescheduled.

Data which is scheduled to a principal p, but not solely owned by p, must be
made unavailable when the principal is not available any longer. To achieve this
the framework must support the two predicates:

• active(p) – Checks if the principal p is currently active in the network.

• scheduledTo(var, p) – Checks if the variable var is scheduled to the prin-
cipal p.

The following Erasure Policy will make sure that the data can only be accessed
as long as the principal is active on the network.

var : l ¬active(p)↗ > (5.21)

Relabeling the data to the top element > is in effect equivalent to making the
data unavailable, as it cannot be read by any principal.

Similarly, the data should be made unavailable, when data is rescheduled to
another principal.

var : l ¬scheduledTo(var,p)↗ > (5.22)

The splitter will during partitioning add erasure policies to the variables. If
the principal is not the sole owner of the data scheduled to him or her, erasure
policies are added.

Example 5.7 (Adding erasure policies) A variable n is owned by both A
and B. It is scheduled to A, but the splitter adds an erasure policy, if A becomes
unavailable, or if the variable is rescheduled.

int {A: ; B:}c↗ > n ;

5.10 Decentralized Splitting 65

where c = ¬active(A) ∨ ¬scheduledTo(n,A). �

For the erasure policies to work they have to be build into the middle ware
(trusted code base). The middle ware must perform checks of the two predicates,
each time the data is read or written to. These run-time checks are necessary
as the availablity of a principal can never be guaranteed.

5.10 Decentralized Splitting

In the framework proposed so far, it has been assumed that a central splitter,
which all principals have complete trust in, exists. However, this might not
always be the case. If not, decentralized splitting can be applied.

Decentralized splitting means that every principal participating has a splitter.
They can then verify any split suggested by any other principal using this split-
ter. The trust graph is also decentralized and every principal can access it. This
can be achieved by each principal maintaining the global trust graph. The trust
graph must be synchronized, so every principal has the same trust graph at all
times.

Example 5.8 (Decentralized Splitting) Consider two principals, an online
store and a customer. The customer does not trust the store, and vice versa.
Using decentralized splitting they are still able to make a transaction.

The store has a program, which transfers money from the customer’s account
to the store’s account. This program is split by the store. The customer now
uses his or her own splitter to check if the split is valid. If the split is valid,
the customer knows that his personal information will be kept safe, as the split
program will obey the policies imposed on the information. The transaction can
then be carried out.

Compared to current scenarios for online trade, this allow you to engage in trans-
actions, with stores you do not trust to protect your information. A significant
improvement to the uncertainty of todays online transactions. �

66 Extending SPP to Dynamic Networks

This concludes the theoretical description of the Secure Dynamic Program Par-
titioning framework. In the next chapter, a design for a prototype is presented,
which implements the concepts from this chapter.

Chapter 6

Design

Never put off till run-time what you can do at compile-time.
– D. Gries

Based on the theoretical concepts presented in previous chapters, a design will
be developed, which shows how Secure Dynamic Program Partitioning can work
in practice.

The design is a prototype, and is intended for experimenting with the concepts.
The design should, however, be kept as generic as possible, so it allows for future
improvements and extensions.

The design will not be specific to any language. Modeling of the design, however,
will follow the functional paradigm. Functional modeling is concise, precise, easy
to understand, and can fairly easy be extended to imperative and object-oriented
languages.

Before the design is specified, the design requirements will be listed.

68 Design

6.1 Requirement Specification

In this section the requirements for our design are listed. The requirements are
high level, and they leave room for design issues to be dealt with later on. Some
of the terms and concepts are not explained when they are introduced. They
will, however, be explained when the design is presented.

6.1.1 Information flow

An independent library with support for the Decentralized Label Model must
be developed.

• Labels consist of a confidentiality and an integrity part.

• The operators lowest upper bound (t), greatest lower bound (u), and less
restrictive (v) must be supported.

• Labels must always be minimal, i.e. no superfluous policies exist.

• Principal identification must be extend-able. I.e. new id types can be
introduced: number, certificate, etc.

6.1.2 Parser

• The parser must be able to parse sflow programs. Only well-typed sflow
programs will be accepted.

• The parser produces an abstract syntax tree (AST) and symbol table.

• The symbol table contains: type, label, and a Definition-Use chain.

6.1.3 Verifier and Splitter

• The verifier can detect illegal data flow, both explicit and implicit.

6.1 Requirement Specification 69

• The splitter splits programs based on the AST, symbol table, trust model,
and the principals currently active in the system.

• The trust model must be parameterized, i.e., different trust models can
be used.

• If more than one possible split exist, the splitter must find the optimal
split. The optimization component is also parameterized.

6.1.4 Trust model

• The trust model must support both confidentiality and integrity.

• The simple trust model from [ZZNM01] (cf. Section 5.3) and the proba-
bilistic trust model from [SPJH06] (cf. Section 5.7) must be implemented.

6.1.5 Optimizer

• The optimizer must determine the optimal split, when multiple possible
splits exist.

• Each optimizer component defines what is optimal.

• Specifically, optimization based on the metric from section 5.8.2 must be
implemented.

6.1.6 System manager

A system manager tool will be developed, which is able to respond to changes
in the network. Additionally, it must provide an interface for interaction with
the user.

• Principals should be able to join and leave the network. When joining the
trust graph must be updated. If necessary the program is re-split using
the Splitter.

70 Design

• Programs can be submitted either by principals, or loaded from a file.

• For testing purposes, it should be possible to load trust graphs from files.

• It should be possible to change trust model and optimizer.

6.1.7 Erasure policies

• The splitter must have the ability to add erasure policies to data.

• The middleware must support the two predicates active and assignedTo.

• Erasure policies must be added to data that is not assigned to its owner
(only owner).

Based on these requirements, the system will be designed.

6.2 Assumptions

The design is intended as a prototype, and its purpose is to illustrate the con-
cepts of Secure Dynamic Program Partitioning. To limit the implementation
work required, the following assumptions are made about the principals and the
middleware:

• All principals have complete trust in the splitter.

• All principals have the same middleware, which is used when executing the
program. The middleware ensures that no leaks occur, and the program is
run under the constraints of the decentralized label model. The middleware
is part of the Trusted Code Base (TCB).

• Network communication is done using secure channels, where no data is
leaked.

Based on these assumptions, the design will be developed.

6.3 Decentralized Label Model 71

CLabel : P r i n c i pa l × Pr inc ipa l−set

ConfLabel : CLabel−set

I n t e g r i t yLabe l : Pr inc ipa l−set

Secur i tyLabe l : ConfLabel × I n t e g r i t yLabe l

Listing 6.1: Decentralized Label Model: Data types

lub : Secur i tyLabe l × Secur i tyLabe l → Secur i tyLabe l
g lb : Secur i tyLabe l × Secur i tyLabe l → Secur i tyLabe l

l e s s R e s t r i c t i v e : Secur i tyLabe l × Secur i tyLabe l → bool

s imp l i f y : Secur i tyLabe l → Secur i tyLabe l

Listing 6.2: Decentralized Label Model: Functions

6.3 Decentralized Label Model

Labels in the decentralized label model can be represented using the data types
in Listing 6.1. The data types assume that the data type Principal exists, which
uniquely identifies a principal. Additionally, it is assumed that a set data type
exists.

Note that a confidence label is made up from multiple policies, each with an
owner and a set of readers ({o1 : r1, ..., on : rn}).

The integrity label has no owner, so it can be represented simply as a principal
set.

The basic operations in the decentralized label model are shown in Listing 6.2.
Below the operations are described briefly. Refer to Section 2.2 for the theoret-
ical background.

• lub – Least upper bound, t, of two labels.

72 Design

AST : Node
Node : NodeId × Type × Node∗ × Leaf ∗

Leaf : Type × LeafData

FlowGraph : (NodeId × NodeId)−set

SymbolTable : Var
m
→ Type × Secur i tyLabe l × DUChain

DUChain : (NodeId × NodeId−set)−set

Listing 6.3: Abstract syntax

• glb – Greatest lower bound, u, of two labels.

• lessRestrictive – Check if the first label is less or as restrictive, v, as
the second label.

• simplify – Simplifies a label. If a label contains multiple policies with the
same owner, the label can be simplified. E.g.:

{Alice : Bob, Charlie;Alice : Charlie} ≡ {Alice : Charlie}

The last property can also be used as an invariant for all labels, to ensure a
label never contains multiple policies with the same owner.

In practice this can be achieved by applying simplify each time the label is
modified.

6.4 Abstract Syntax

Listing 6.3 shows the internal/abstract representation of programs. The differ-
ent data structures are explained below.

6.4 Abstract Syntax 73

6.4.1 Abstract syntax tree

Parsing the program produces an abstract syntax tree (AST) [ASU86]. The AST
is made up from nodes, which have an id, a type, sub-nodes and leafs. The node
id uniquely identifies each node.

The types are used to classify nodes. Two nodes with the same type have the
same structure, i.e., same number of sub-nodes and leafs, and same order.

The following node types will be used (cf. Chapter 4):

• Statement – Top-most node type. Used to construct the tree.

• Var declaration – Declares variable, including label.

• Assignment – Expression is assigned to variable.

• If-then-else – Conditional statement based on an expression.

• While – Conditional statement based on an expression.

• Expression – Evaluates to a value.

• Declassify – Declassifies an expression.

• Endorse – Endorses an expression.

Each node is made up from a list of sub-nodes and leafs. While the nodes are
used to reflect the structure of the program, the leafs contain the actual program
components, i.e. values, variable names, variable types, labels and operators.

In Figure 2.2 an example of an abstract tree can be seen.

6.4.2 Flow graph

The flow graph reflects the possible execution flows of a program [ASU86]. The
flow graph can be constructed by examining the AST, as the AST reflects the

74 Design

branching of the program. The flow graph is constructed from the function:

flowgraph : AST → FlowGraph

The flowgraph-function uses the following function to find the flow of any node
in the AST [NNH99]:

flow : Node → FlowGraph

flow([type x]l) = ∅

flow([x := a]l) = ∅

flow([skip]l) = ∅

flow(S1;S2) = flow(S1) ∪ flow(S2) ∪

{(l, init(S2))|l ∈ final(S1)}

flow(if [e]l then S1 else S2) = flow(S1) ∪ flow(S2) ∪

{(l, init(S1)), (l, init(S2))}

flow(while [e]l do S) = flow(S) ∪ {(l, init(S))} ∪

{(l′, l)|l′ ∈ final(S)}

The l ’s are unique identifiers of nodes.

The auxiliary function init finds the first statement in any node.

init : Node → NodeId

init([type x]l) = l

init([x := a]l) = l

init([skip]l) = l

init(S1;S2) = init(S1)

init(if [e]l then S1 else S2) = l

init(while [e]l do S) = l

And, final retrieves the last statements of any node (note that an if-then-else
node produces two final nodes):

final : Node → NodeId − set

6.4 Abstract Syntax 75

int{Al i c e :} n ;
int {} a ;

i f a then

n := n + 3 ;
else

n := n + 2 ;

while n > 10 do

n := n − 1 ;

a := 0 ;

int{Alice:} n

int{} a

a

n := n + 3 n := n + 2

a := 0

n := n − 1

n > 10

Figure 6.1: Example of a flowgraph

final([type x]l) = {l}

final([x := a]l) = {l}

final([skip]l) = {l}

final(S1;S2) = final(S2)

final(if [e]l then S1 else S2) = final(S1) ∪ final(S2)

final(while [e]l do S) = {l}

Figure 6.1 depicts a small program and its flow graph

6.4.3 Symbol table

The symbol table is used to store data for variables type, value, etc. [ASU86].
In our analysis type, security label, and Definition-Use chain are needed for each
variable.

So the symbol table becomes a mapping from variables to these values. The
symbol table will be created during parsing.

76 Design

1 int{Al i c e :} n ;
2 int {} a ;
3 a := 3 ;
4 n := 2 ;
5 i f a then

6 n := 3 + a ;
7 else

8 a := 3 + n ;
9 a := a + n ;

a : (def : 3, uses : 5, 6, 9),

(def : 8, uses : 9),

(def : 9, uses :)

n : (def : 4, uses : 8, 9),

(def : 6, uses : 9)

Figure 6.2: Example of Definition-Use chains

6.4.4 Definition-Use chains

With Definition-Use (or just DU) chains all locations where a variable is written
and read can be represented. The function duChain finds the DU-chains for a
variable by examining the flow graph.

duChain : Var × FlowGraph → DUChain

Listing 6.3 specifies the DUChain data type

For a variable x the DU chain is generated by traversing the flow graph. Each
time a definition (e.g. assignment) is encountered, a new chain is created. From
this definition all possible uses, without x being redefined, are found. This will
normally result in several chains. [ASU86, NNH99] has algorithms for finding
DUChains.

Figure 6.2 shows an example of DU chains.

6.5 Parser

The parser translates a file, containing sflow code, into the abstract syntax.

parse : File → AST × SymbolTable

6.5 Parser 77

prog : := vardec l c

vardec l : := var ” ; ” vardec l | var ” ; ”

var : := ID ”{” s e c l a b e l ”}” ID

c : := s ” ;” c | s ” ; ”

s : := ID ”:=” e
| ” i f ” e ”then” ”{” c ”}” ” else” ”{” c ”}”
| ”while” e ”do” ”{” c ”}”

e : := VAL | ID | e OP e
| ”declassi fy” ”(” e ” ,” ”{ c l ”}” ”)”
| ”endorse” ”(” e ” ,” ”{ i l ”}” ”)”

s e c l a b e l : ε | c l i l | c l | i l

c l : := ID ” :” ” ; ” | ID ” :” ” ; ” c l
| ID ” :” i d l i s t ” ; ” | ID ” :” i d l i s t ” ; ” c l

i l : := ”?” ” :” i d l i s t

i d l i s t : ID | ID ” ,” i d l i s t

Listing 6.4: BNF grammar for the sflow language

The parser will be generated using a parser generator. The most common
approach is to use a LALR parser generator[ASU86]. Widely used LALR
parser generators include Berkeley Yacc [BYA06], GNU Bison [BIS06], and CUP
[CUP06].

Common for these LALR parsers is that they accept context-free grammars,
most often in Backus-Naur form. They accept ambiguities, and will deal with
them according to precedence rules. However, in general ambiguities should be
avoided.

In Listing 6.4 the BNF grammar for the sflow language is shown. The grammar
contains no ambiguities.

78 Design

To make validation more simple, all variables must be declared initially. This
small change does not change the typing rules, as the grammar still accepts only
valid sflow programs (it is a subset of the original sflow grammar).

Using this grammar, programs can be parsed. As mentioned, parsing should
produce both an abstract syntax tree and a symbol table.

After the program has been parsed, the program must be checked for illegal
information flow.

6.6 Verifier

As mentioned checking can be done both using typing rules and static checking
of the abstract syntax tree. In general typing rules is the better choice, but due
to our simple language, the checking can be done relatively simple by statically
checking the AST.

In Listing 6.5 the verifier is shown. Not all functions used are defined explicitly,
but their names should reveal their purpose.

• analyze – Checks the AST for illegal flow. It applies the checkNode

function to the root node. If illegal flow exists a DLMException is thrown.

• checkNode – Checks current node, and all its subnodes for illegal flow.
Every assignment is checked. Conditional statements (if and while) will
result in the block label being updated for all subnodes.

• exprLabel – Overloaded function, which finds the label for the expression.

If no exception occurs when processing the AST, the program is secure from a
information flow perspective.

Compared to implementing a type system for the language, this is a quicker
solution, and makes the same guarantees as the typing rules would. However, if
the system is used for a more complex language, for instance containing methods
and objects, implementing a type system is recommended.

6.6 Verifier 79

analyze : AST × SymbolTable → void

throws DLMException
analyze (AST ast , SymbolTable s t) =

checkNode(roo t (a s t) ,⊥ , s t)

checkNode : Node × Secur i tyLabe l → void

throws DLMException
checkNode(Node n , Secur i tyLabe l bl , SymbolTable s t) =

case type (n) of

STMT:
f o ra l l n ’ ∈ subnodes (n) do checkNode (n ’ , bl , s t)

ASSIGN:
l et l 1 = as s i gnLabe l (n) ,

l 2 = lub (exprLabel (getExpr (n) , s t) , b l) in

i f not l e s s R e s t r i c t i v e (l2 , l 1) then

throw DLMException
IF ∨ WHILE:

l et l = exprLabel (getExpr (n) , s t) in

fora l l n ’∈ subnodes (n) do checkNode(n ’ , lub (l , b l) , s t)

exprLabel : Node × SymbolTable → Secur i tyLabe l
exprLabel (Node n , SymbolTable s t) =

case type (n) of

OP:
l et subnodes = subnodes (n) in

lub (subnodes [1] , subnodes [2])
DECLASSIFY:

l et l = exprLabel (getExpr (n) , s t) in

setConfLabe l (l , d e c l a s s i f yL ab e l (n))
ENDORSE:

l et l = exprLabel (getExpr (n) , s t) in

s e t I n t e g rLabe l (l , endorseLabe l (n))

exprLabel : Leaf × SymbolTable → Secur i tyLabe l
exprLabel (Leaf l , SymbolTable s t) =

case type (l) of

VAL: ⊥
VAR: getLabe l (st , getVarName (l))

Listing 6.5: Verifier

80 Design

s p l i t : AST × SymbolTable × TrustModel × OptimalSpl i t ×
Pr inc ipa l−set → SplitAST × Spl itSymbolTable

SplitAST : Spl itNode
Spl itNode : NodeId × Type × Spl itNode ∗ × Leaf ∗ × Pr in c i pa l

Spl itSymbolTable : Var
m
→ Type × Secur i tyLabe l × DUChain ×

Pr in c i pa l

/∗ Aux i l i a r y f unc t i on s used by the s p l i t f unc t i on ∗/
a s s i gnF i e l d : Var × SymbolTable × TrustModel →

Pr inc ipa l−set

ass ignStatement : Node × SymbolTable × TrustModel →
Pr inc ipa l−set

Listing 6.6: Splitter

6.7 Splitter

The splitter partitions verified sflow programs. Each field and statement will
be assigned to a principal, based on the trust graph. The splitter also needs to
know which principals are currently active in the system, as sub-programs can
only be scheduled on active principals.

Additionally, the splitter has an optimization component, which is used to find
the optimal split, when more than one solution exists. This will be dealt with
later.

Both the trust model and the optimization component are supplied as parame-
ters. This means the splitter can be set up with any trust model or optimization
component, just as long as they have the correct interface. This will be dealt
with further as the individual components are introduced in the coming sections.

The split function uses two auxiliary functions, one for assigning fields and one
for asssigning statements.

6.8 Trust Model 81

• assignField – As described in section 3.1.1, the requirement for a field f
to be assigned to a principal p is:

C(Lf) t Locf v Cp and Ip v I(Lf) (6.1)

Locf is the least upper bound of all block labels where f is read.

Locf = C(bl(u1) t bl(u2) t · · · t bl(un))

These constraints will result in a set of principals, to which the field can
be assigned. This set is the result of the function. If the set is empty, the
program can not be split.

• assignStatement – For a statement S to be assigned to a principal p, p
must have at least the confidentiality of all values used in the statement.
Additionally p must have the integrity of all values defined (cf. section
3.1.2.

C(Lin) v Cp and Ip v I(Lout) (6.2)

Where,

Lin =
⊔

v∈U(S)

Lv and Lout =
l

l∈D(S)

Ll

U(S) denotes all values used in S, and D(S) denotes all definitions in S.
The assignStatement function also return a set of principals, which the
statement can be assigned to.

Using these two auxiliary functions, the splitter finds all the principals, which
each field and statement can be assigned to. The optimal split is then found,
using the optimization component.

The splitter only deals with how to perform the actual split. Keeping track of
active principals and updating the trust graph is done by the system manager,
and will be described later.

6.8 Trust Model

The trust model is a central component in the partitioning. It contains all trust
declarations of the principals. Using these trust declarations trust between
principals can be derived.

82 Design

type : TrustModel → int

t ru s t sCon f : TrustModel × Pr in c i pa l × Pr in c i pa l → bool

t r u s t s I n t e g r : TrustModel × Pr in c i pa l × Pr in c i pa l → bool

updateTrustModel : TrustModel × TrustDecl → TrustModel

t r u s tLabe l s : TrustModel → TrustLabel−set

TrustLabel : P r i n c i pa l × Secur i tyLabe l

p r i n c i p a l s : TrustModel → Pr inc ipa l−set

Listing 6.7: Trust model interface

The basic framework is shown in Listing 6.7.

The trust model from [ZZNM01] can be implemented as a set of trust labels:

TrustModel : TrustLabel−set

The probabilistic trust model will be designed using a graph approach. Each
edge in the graph has a probability, and the minimal trust paths are found by
traversing the trust graph.

The design is shown in listing 6.8.

• pathProb – Calculate probability of a single path:

P (TPA,B ⊆ TG) =
∏

S∈TPA,B

p(S)

• confTrust – Calculate the confidence principal A has in another principal
B with regards to confidentiality. This is done by first finding all minimal
confidentiality paths, then finding all the combinations, and finally the

6.8 Trust Model 83

accumulated trust:

conf (TrustA,B) =

k
∑

i=1

P (νi ⊆ TG)

−
∑

1≤i1<i2≤k

P ((νi1 ∪ νi2) ⊆ TG)

+
∑

1≤i1<i2<i3≤k

P ((νi1 ∪ νi2 ∪ νi3) ⊆ TG)

− · · ·

• integrTrust – Like confTrust, except that it finds minimal paths with
regards to integrity.

• calculateConfidences – Find all confidence values, for all combinations
of principals. This results in two mappings, one for confidentiality and
one for integrity. Using this and the thresholds, the trust labels can be
derived. If the threshold is lower or equal to the confidence, the principal
trusts the principal sufficiently.

Storing the calculated confidences has some obvious performance advantages.
Otherwise the paths and probabilities would have to be found, each time trust
between two principals has to be found.

The minimal trust paths can be found by taking all direct trust edges from the
starting node. If a direct edge to the destination principal exists, it is added to
the minimal trust paths.

Hereafter all the recommended edges are checked by investigating if a recom-
mendation path exists from that node. Each time a recommendation edge is
taken, the recommendation distance is decremented. The algorithm can be seen
in Listing 6.9. The ’@’-operator appends an element to the list.

When several recommendation edges exist between two principals, the minimal
trust path will always be the one with the lowest recommendation distance
where the recommendation path is still valid.

This concludes the description of the trust model framework, and the two trust
models, which will be implemented.

84 Design

TrustModel : TrustEdge−set × Thresholds

Thresholds : P r i n c i pa l
m
→ Probab i l i t y

TrustEdge : ConfTrustEdge | IntegrTrustEdge
| RecConfEdge | RecIntegrEdge

Probab i l i t y : real ∈ [0 , 1]

ConfTrustEdge : P r i n c i pa l × Pr in c i pa l × Probab i l i t y
IntegrTrustEdge : P r i n c i pa l × Pr in c i pa l × Probab i l i t y

RecConfEdge : P r i n c i pa l × Pr in c i pa l × Probab i l i t y ×
Distance

RecIntegrfEdge : P r i n c i pa l × Pr in c i pa l × Probab i l i t y ×
Distance

/∗ Pro b a b i l i t y o f a path ∗/
pathProb : TrustEdge−set → Probab i l i t y

/∗ Calcu la t e con f idence between two p r i n c i p a l s ∗/
confTrust : TrustModel × Pr in c i pa l × Pr in c i pa l →

Probab i l i t y
confTrust (TrustModel tm , P r i n c i pa l from , P r i n c i pa l to) =

t ru s t (minTrustPathsConf (tm , from , to))

in t eg rTrus t : TrustModel × Pr in c i pa l × Pr in c i pa l →
Probab i l i t y

in t eg rTrus t (TrustModel tm , P r i n c i pa l from , P r i n c i pa l to) =
t ru s t (minTrustPathsIntegr (tm , from , to))

/∗ Calcu la t e the con f idence from the minimal paths ∗/
t r u s t : (TrustEdge−set)∗ → Probab i l i t y

/∗ Minimal t r u s t paths ∗/
minTrustPathsConf : TrustModel × Pr in c i pa l × Pr in c i pa l →

(TrustEdge−set)∗
minTrustPathsIntegr : TrustModel × Pr in c i pa l × Pr in c i pa l →

(TrustEdge−set)∗

/∗ Find a l l con f i dences ∗/
c a l cu l a t eCon f i d en c e s : TrustModel →

((P r i n c i pa l × Pr in c i pa l)
m
→ Probab i l i t y) ×

((P r i n c i pa l × Pr in c i pa l)
m
→ Probab i l i t y)

Listing 6.8: Probabilistic Trust Model

6.8 Trust Model 85

minTrustPaths (TrustModel tm ,
P r i n c i pa l at ,
P r i n c i pa l dest ,
Pr inc ipa l−set vis i tedNodes ,
TrustEdge−set t raversedEdges ,
int r e c d i s t) =

i f (at∈vis i tedNode ∨ r e c d i s t = 0)
∅

else

d i r e c tT ru s t (tm , at , dest , t raversedEdges) @
recTrust (tm , at , dest , v i s i tedNodes , t raversedEdges , r e c d i s t)

d i r e c tT ru s t (TrustModel tm ,
P r i n c i pa l at ,
P r i n c i pa l dest ,
TrustEdge−set t raversedEdges) =

i f (d i r e c tT ru s tEx i s t s (tm , at , dest))
traversedEdges ∪ getDirectEdge (at , dest)

recTrust (TrustModel tm ,
P r i n c i pa l at ,
P r i n c i pa l dest ,
Pr inc ipa l−set vis i tedNodes ,
TrustEdge−set t raversedEdges ,
int r e c d i s t) =

f o ra l l recedge = recommendationEdges (tm , at)
minTrustPath (tm , dest (recedge) , dest , v i s i t edNodes ∪ at ,

t raversedEdges ∪ recedge ,
min(r e c d i s t − 1 , r e cD i s t (recedge))

Listing 6.9: Minimal trust paths

86 Design

6.9 Optimal Split

In many cases several valid splits exist. This leaves room for optimizations.
However, what to optimize might differ from one user to the next. Several
scenarios exist:

• Minimal network traffic.

• Optimal performance by scheduling hard computations to strong princi-
pals.

• Spread sensitive data on multiple principals in order to limit consequences
in case of a bad principal.

To support this, a framework for optimizers is developed. Based on the abstract
syntax tree, symbol table, trust model and the possible assignments, it finds the
optimal split.

f i ndOpt ima lSp l i t : AST × SymbolTable × TrustModel ×

(Node
m
→ Pr inc ipa l−set) → SplitAST

Three optimizers will be developed. A very simple one, which takes the first
Principal in the set of possible principals. Secondly, optimization of confidence
in the probabilistic trust graph (Section 5.8.1). The third is based on the metric
from Section 5.8.2.

6.9.1 Highest Confidence

Optimization of confidence is fairly simple. For each statement all possibilities
are considered. The statement will be scheduled to the principal, in which all
the owners of the data used in the statement has most confidence in.

As already discussed in Section 5.8.1, the statement is assigned to the principal
where the lowest confidence is as high as possible.

optimal (A,O) = max∀q∈A(min∀p∈O(conf (Trustp,q))

6.9 Optimal Split 87

metricConf : Probab i l i s t i cTrus tMode l × Pr in c i pa l ×
Pr in c i pa l → real

met r i c I n t e g r : Probab i l i s t i cTrus tMode l × Pr in c i pa l ×
Pr in c i pa l → real

leakConf : Probab i l i s t i cTrus tMode l × Pr in c i pa l ×
Pr in c i pa l → real

l e ak In t e g r : Probab i l i s t i cTrus tMode l × Pr in c i pa l ×
Pr in c i pa l → real

Listing 6.10: Optimizer using the Metric

where A is the principals the statement can be assigned to, and O is the set of
owners of the statement.

6.9.2 The Metric

The metric is somewhat similar to the highest confidence. For each statement
the metric is calculated from all owners to all the principals for which the state-
ment can be assigned. A principal is considered an owner if data he owns is
included in the statement.

For owners of defined variables, the integrity metric is calculated. The confi-
dentiality metric is used for owners of used variables. If a principal owns both
defined and used variables, both metrics will be calculated.

The node will be assigned to the principal, where the highest metric for any of
the owners is the lowest.

optimal (A,O) = min∀p∈A(max∀q∈O(M(q, p)))

where A is the principals the statement can be assigned to, and O is the set of
owners of the statement.

The functions that are used to find the metric are shown in Listing 6.10.

88 Design

State : SplitAST × Spl itSymbolTable × TrustModel ×
OptimalSpl i t × Pr inc ipa l−set // a c t i v e p r i n c i p a l s

p r i n c i p a l J o i n : P r i n c i pa l × TrustDecl × State → State
pr inc ipa lLeave : P r i n c i pa l × State → State

loadProgram : F i l e × State → State

loadTrustGraph : F i l e × State → State

submitProgram : Program × State → State
Program : St r ing

s p l i t : State → State

r e s p l i t : State → bool

Listing 6.11: System manager

6.10 System Manager

The system manager is the central component in Secure Dynamic Program
Partitioning. Using this component, principals can join or leave the network.
They can update their trust graph, and the trust model and optimization model
can be selected.

Additionally, the system manager can load programs and principals can submit
programs, which will then be partitioned. Listing 6.11 contains the functions
that makes up the system manager.

The system manager is the front end for Secure Dynamic Program Partitioning.
Its interface must support all aspects of the framework. It is designed to be
extendable by any user interface; graphical, terminal-based, web-based, etc.

The design is based on the state of the system manager. The functions will then
manipulate that state. Each function is described below:

• principalJoin – Principal is added to the list of active principals. The

6.10 System Manager 89

trust graph is updated with the trust declarations of the principal joining.
The program is resplit, if a better split exists.

• principalLeave – The principal is removed from the list of active princi-
pals. If the principal is part of the current split, the program is resplit.

• loadProgram – Program is loaded from file and parsed. Program is not
split straight away.

• loadTrustGraph – Trust graph loaded from file.

• submitProgram – A program is submitted, parsed, and split across the
network.

• split – The program is split using the Splitter.

• resplit – Predicate to decide if a program should be resplit.

Deciding whether a program should be resplit is a rather complicated task. If
a principal leaves the network and it is not in the current split, the program
should of course not be resplit. If it is in the current split, the program must
be repartitioned.

However, when a principal joins, several possibilities exist. If a better split exists
according to the optimizer, the program should be resplit. If execution already
started, it should not be resplit (cf. Section 5.1).

6.10.1 Trust Declarations

When a principal joins it has a trust declaration. A trust declaration is a list of
principals it trusts. Trust declarations differ from one trust model to another.
In the simple trust model, the principal lists the principals it trust with regards
to confidentiality, and the ones it trust with regard to integrity.

In the probabilistic model, recommendations also exist, and each statement has
to be annotated with a probability.

Each trust model must also define a syntax for loading trust graphs from files.
For the simple trust model the following syntax is used:

90 Design

[[C | I] [a−zA−Z]+ [a−zA−Z]+]∗

//Example
C Al i c e Bob

And the probabilistic model:

[[C | I |RC| RI] [a−zA−Z]+ [a−zA−Z]+ [0 | 1] . [0 − 9] ∗]∗

//Example
RC Al i c e Bob 0 .90

Loading trust graphs is only used for testing, as it has some obvious security
flaws. Normally trust graphs should only be generated by assembling the indi-
vidual trust graphs of the principals.

6.11 Erasure Policies

For the erasure policies to work, they must be built into the middleware, and
thereby be part of the trusted code base. Additionally, the middleware must
contain the two predicates:

• active(p) – Decides if principal p is active in the distributed system.

• scheduledTo(var,p) – Checks if the variable var is scheduled on p.

The predicates always produce the correct result. If a principal suddenly exits
the network, the predicates automatically become false.

Each time the variable is read or written, the condition c = ¬active(A) ∨
¬scheduledTo(n,A) has to be checked by the type system during run-time. If
the condition becomes true, the variable becomes unavailable on the principal.

This concludes the description of the design. In the next chapter the implemen-
tation of the design will be presented.

Chapter 7

Implementation

Paranoia is the only sane approach. In this
business, you would be crazy not to be paranoid.

– Unknown

In this chapter the implementation of the design is presented. The chapter will
not cover details about all implementation aspects, only non-trivial extensions
from our design will be dealt with. For more extensive documentation, refer to
the source code and JavaDoc on the enclosed CD-ROM, and the description of
the program library in Appendix B.

The design has been implemented in Java. Java is an object-oriented, imperative
programming language. Java has a large collection of programming libraries (or
API), which provides a lot of the functionality needed for our framework.

Compared to a functional implementation (like ML and Haskell), an imperative,
object-oriented implementation makes it easier for others to benefit from this
work. This is mainly due to its more wide-spread use.

Java has been chosen over other object-oriented languages because of its plat-
form independence, its large API, and its wide-spread use. Additionally, JIF

92 Implementation

extends Java, so this allows for easier integration of the developed libraries at a
later stage.

Going from a functional specification to an imperative implementation is fairly
straightforward. Data types can be implemented as objects, and functions can
be declared as static methods. Nevertheless to better utilize the object design
in Java, the methods will most of the time not be static. Instead they will
manipulate already instantiated objects.

Erasure Policies (see Section 5.9) have not been included in the prototype, due
to the limited amount of time available. Implementing Erasure Policies is left
as future work.

7.1 Collection Framework

As the design specification states in the last section, data types which represent
sets and maps are needed. The collection framework in the java.util-package
has support for this. The following classes are used:

TreeSet Tree set is an ordered set, where the elements are sorted according to
a comparator. The comparator is used to decide where in the tree to put
an added element.

HashSet The hash set is essentially a HashMap. Elements are identified using
their hash value. The HashSet is faster than the TreeSet due to its simple
nature. However, in the case where element are constantly being manip-
ulated and compared (as the case is with labels), the hash value can no
longer be used.

TreeMap Similarly to the TreeSet, it uses a comparator. The keys are sorted
in a tree according to the comparator. The values can be any object.

HashMap For each hash value an object can be stored. Similarly to the Hash-
Set, the HashMap is faster, but will only be used in simple cases.

Vector In many cases, vectors will be used instead of arrays. This is because
they are dynamic (size changes when elements are added), and part of the
Collection framework, so conversion is easy, for instance to a set.

7.2 Parser 93

The collection framework is fast and versatile, so it is an obvious choice when
implementing the before mentioned data types.

Additionally, since of Java 2, SE 5.0 support generics are supported, where the
classes can now be instantiated with a type. E.g.

Vector<Pr inc ipa l > p r i n c i p a l s = new Vector<Pr inc ipa l > () ;

This eliminates the need for type casting, which in earlier versions resulted in
inelegant code and a large risk of type cast errors.

7.2 Parser

Parsing is done by using the JFlex 1.4.1 lexical analyzer to scan the file, and
the BYACC/J 1.13 parser generator (Berkeley YACC 1.8 with Java support).
The grammar from Section 6.5 is written, and using this grammar the abstract
syntax tree is constructed. This is fairly straight-forward, and will not be dealt
with further.

The two components, the lexer and the parser, are compiled into a Java class,
which can then be called when parsing sflow programs.

7.3 User Interface

The system manager class provides an abstract interface, which can be used
by any concrete interface: command prompt, web based, or traditional window
GUI.

A simple graphical user interface (or GUI) was made as part of the implementa-
tion work in this thesis. The GUI can be seen in Figure 7.1. The GUI consists
of:

94 Implementation

Figure 7.1: Graphical user interface

7.4 Generic Design 95

• Program text area – Here the program is listed, and when split, prin-
cipal ids are added before each statement (as seen in Figure 7.1).

• Optimization method – A radio group, where one of the three different
optimization methods in this thesis can be selected.

• Trust graph text area – Here the trust relations are listed. In the case
of the probabilistic model, the calculated confidences are also listed.

• Active principals text area – List of active principals.

• Load program and trust graph – Get program and trust graph from
file.

• Add principal – Open dialog where the principal id and the trust dec-
larations can be written.

• Remove principal – Open dialog where one of the active principals can
be selected.

• Split – Split the program based on trust graph, optimizer and active
principals.

• Status line – In the bottom of the window, where error and status mes-
sages will be displayed.

The interface is the front-end for the implemented prototype. It can be used
to demonstrate the splitting process for various programs, trust models, and
optimizations methods. Additionally, it allows users to update the network
(add or remove principals) through a simple interface.

7.4 Generic Design

In the design specification, the splitter is parameterized with the trust model
and optimization component. This is achieved by declaring interfaces, which
the trust models and optimization components must use. The interfaces have
the same form as presented in the Design chapter (Sections 6.8 and 6.9).

96 Implementation

Chapter 8

Evaluation

Building technical systems involves a lot of hard work
and specialized knowledge: languages and protocols,

coding and debugging, testing and refactoring.
– Jesse J. Garrett

In this chapter the implemented system is evaluated. In the first part, the cor-
rectness of the implementation is tested. In the second part, the capabilities
of the system are discussed, specifically performance and security. In the third
part, the system is evaluated in two case studies. The cases are realistic scenar-
ios which intend to show how Secure Dynamic Program Partitioning works in
practice. The cases are:

• Insurance quotes

• Oblivious transfer

The focus will be on how the added support for dynamic networks provides
new possibilities. Additionally, differences from the original Secure Program
Partitioning will be discussed.

98 Evaluation

8.1 Test Strategy

The developed system will be thoroughly tested to ensure its quality. The test
strategy has the following objectives.

• Ensuring the integrity of the developed system, hereby, also ensuring the
integrity of the results arrived at.

• To make any future work easier, the central libraries developed should be
thoroughly tested.

If these objectives are met, the quality of the system will be considered suffi-
ciently high. To achieve this quality level, testing should test individual compo-
nents, as well as ensure the quality on a larger scale. The following test methods
will ensure this:

• High-level functional test. The system will be tested on the examples
from this thesis. Additionally, some special cases will be constructed to
test specific parts of the program.

• Unit testing all non-trivial classes. This will make it easier to work on the
code in future work. Unit testing will be discussed further in the coming
section.

This test strategy implies that non-essential modules, like the parser and user
interface, will not be tested as thoroughly as the core modules, like the splitter
and trust graphs.

The quality of the program will be considered sufficiently high, if none of the
test cases fail.

8.2 Unit Testing

During development, unit test classes were constructed to test the implemented
functionality. Whenever a key class was developed, a unit test class was created

8.3 Functional Testing 99

to test the functionality. For more information on unit testing see Appendix C.

The unit test approach achieved several things:

• The code is tested as soon as it is created (preferably at least). Testing is
easier when the development process is still fresh in memory. Additionally,
the code will to be more complete, as you are forced to conceive test cases,
and hereby you realize where problems might occur at an earlier stage.

• Unit testing is modular, which means each module is tested individually
before being put into the larger context. This results in fewer bugs, as the
functionality of each module has been verified.

• The unit test can be run each time a change is made. So when future
development creates bugs in the old code, this can quickly be identified
and corrected.

• Unit tests serve as documentation. Future developers can look at the unit
tests, to see how the system works.

In this thesis unit testing has been carried out by using the JUnit framework
[JUn06a, JUn06b]. For a list of test cases see Appendix C.

8.3 Functional Testing

Functional testing is carried out by testing the System Manager. Both the
abstract interface and the concrete interface (graphical interface) is tested. As
the modules have been tested individually, these tests show that the program
works at the top level.

Some of the test cases are:

• Several examples have been tested if they are split correctly, including the
examples in this thesis.

• How the system responds, when the trust model is incompatible with the
optimization method.

100 Evaluation

• Try splitting a program containing illegal flow.

• Try splitting a program which contains undefined variables.

• Trust model with illegal probabilities, i.e. not in the range [0, 1].

• Principal leaving and joining the network.

For a complete list of test cases see Appendix C.

As neither the unit tests nor the functional tests have shown any errors, we
conclude that the objectives from the test strategy (cf. Section 8.1) have been
achieved, and the system fulfills our quality requirements.

8.4 Performance

A matter that is not directly related to the correctness of the program, is its
performance. As mentioned earlier performance was not the main concern of
this design. This section, however, will briefly discuss performance as it certainly
has relevance for any future implementation work.

The performance of the compilation/verification phase can be done in quadratic
execution time, O(n2), where n is lines of code. This is because the definition-
use chains need to be constructed.

Calculating the confidence in the probabilistic trust graph takes exponential
time (see Section 5.7)., Because of this, any implementation of a distributed
system with a large trust graph, have to consider this. In our implementation,
all confidences are recalculated each time the trust graph is modified. Future
implementations might consider:

• Reusing those already calculated confidences, which are not affected by
the change in the graph.

• Sensitivity analysis of paths, so paths with only marginal influence could
be left out.

8.5 Security 101

The optimization of splits (e.g. using the metric) can be done fairly quickly.
For a statement, the number of owners and the possible principals it can be
scheduled to, tends to be low. If the confidences have already been calculated,
the splitting process is not a time consuming process.

Therefore, performance optimizations of the framework should focus on calcu-
lating the confidences in the probabilistic trust graph. However, it should be
pointed out, that the examples in this thesis are not affected by this, as they
contain a maximum of 3-4 minimal paths.

Another issue worth considering is network traffic. The main focus of the thesis
has been security. But for computation intensive problems, the splitter might
take factors like latency and bandwidth into account when partitioning the pro-
gram. The original Secure Program Partitioning framework employs optimiza-
tion methods to keep network traffic low. Our framework has support for these
optimizations, as it allows users to introduce new optimization parameters.

8.5 Security

Security is, of course, a central issue in the framework. In this thesis the main
concerns were information flow in the system and the trustworthiness of the
principals. This was enabled by a few assumptions about the infrastructure:

• Secure channels – Network communication between two principals can-
not be intercepted by any third party.

• Principal identification – Each principal is uniquely identified, and it
is not possible to impersonate another principal.

• Central splitter – Every principal has trust in the splitter, and the
integrity of the splitter can never be compromised.

These assumptions, however, do not hold in the real world. Using encryption
the actual data can be protected sufficiently, but the network traffic might
be monitored. This would leak information about the program execution (cf.
Section 2.5 on covert channels).

102 Evaluation

Certificates and an underlying public key infrastructure (PKI) would provide a
way of identifying principals. This, however, introduces a whole series of new
security issues. An obvious approach would be to combine the trust graph in
our framework with certificates and a PKI.

If a central splitter was employed in a running implementation, this would need
to have a high level of security. The consequences of a compromised splitter are
far reaching, as the data of all principals are essentially compromised. Alterna-
tively a decentralized splitter could be used as described in Section 5.10.

Introducing realistic network infrastructure, certificates, and decentralized split-
ting is orthogonal to this work, and is left as future work.

8.6 Case Study: Insurance Quotes

Security is a central issue when using the Internet. Often users are asked to
submit sensitive data. The users, however, have no control over how the data is
used. The proposed framework allows users to annotate their data with security
policies, which make sure that the data is not mistreated. The users want to
make sure that the host they submit their data to will obey their policies and
not try to access their private data (e.g. using covert channels).

This example will show, how our improved trust model allows users to choose
which online services to use, so their data remains as safe as possible.

Assume two web services, S1 and S2, which if provided some personal details,
find the cheapest insurance quote from a number of insurance companies. How-
ever, customers using this service want their personal information to be safe,
as this is highly sensitive data, for instance medical history, yearly income, or
current insurance premium.

The two services are equally good, hence customers will choose the one they
consider most secure. The two services use the same database, which they
co-own.

The program that makes up the web service is shown in Listing 8.1. Principal

8.6 Case Study: Insurance Quotes 103

InsuranceDB {S1 : S2 ; S2 : S1 ; ? : S1 , S2} db ;
PersData {x : ; ? : x} data ;

Quote {x : ; S1 : ; S2 :} quoteTemp ;
Quote {x : ; } quote ;

quoteTemp := findCheapestQuote (db , data) ;
quote := declassi fy (quoteTemp ,{ x : }) ;

Listing 8.1: Program which find the cheapest quote.

Bob

S1

Alice

S2

Charlie

Figure 8.1: Simple trust graph for the insurance quote example

x can be any principal. For the web service to work, x must trust either S1
or S2. The sflow language does not contain any methods, so the purpose of
the findCheapestQuote method is simply to illustrate the functionality of the
program. The program will find the cheapest quote based on the data. The
label of the resulting data will be the least upper bound of the data and the
data base, as this, from an information flow perspective, is the same as:

quoteTemp := db op data ;

Using this small rewriting, the program can be split by the implemented system.
We will now investigate how the program is split using the different trust models.

104 Evaluation

[S1] InsuranceDB {S1 : S2 ; S2 : S1 ; ? : S1 , S2} db ;
[Bob] PersData {B : ; ? : B} data ;

[S1] Quote {B : ; S1 : ; S2 :} quoteTemp ;
[Bob] Quote {B: ; } quote ;

[S1] quoteTemp := findCheapestQuote (db , data) ;
[S1] quote := declassi fy (quoteTemp ,{B: }) ;

Listing 8.2: Split program under the trust model in Figure 8.1.

8.6.1 The Simple Trust Model

In Figure 8.1 the initial trust graph is shown. It contains the two web servers
providing the service, S1 and S2, and three potential customers, Alice, Bob,
and Charlie. In the graph there is no distinction between confidentiality and
integrity. If an edge exists, the principal trusts the other principal with regards
to both confidentiality and integrity.

If Bob wants to use the insurance quote service, several possibilities exist for
splitting the program. Data owned by only Bob, can be scheduled to any prin-
cipal, while data owned by S1 and S2 must be scheduled to one of the two
servers. A possible split can be seen in Listing 8.2.

8.6.2 The Probabilistic Model

The trust model is extended to support probabilities and recommendations.
The adjusted trust graph is depicted in Figure 8.2.

The confidences can now be derived using the algorithm presented in Section
6.8. This has been done using the implemented system. The results are shown
in Table 8.1.

As presented in Section 5.8.2 several possibilities exist when finding the opti-
mal split. Two will be looked at here, the highest confidence and the metric
optimization method.

8.6 Case Study: Insurance Quotes 105

.95 .95

.80

.80 .80

.80

.95

.95

.90

1: .50

1: .50

.80 .80

1: .50

.90

1: .50

Alice Bob Charlie

S1 S2

Figure 8.2: Probabilistic trust graph for the insurance quote example

Trust edge Confidence
A-B 0.80
A-C 0.40
A-S1 0.97
A-S2 0.89
B-A 0.80
B-C 0.80
B-S1 0.97
B-S2 0.96
C-A 0.40
C-B 0.80
C-S1 0.97
C-S2 0.89

Table 8.1: Confidence table

106 Evaluation

[S1] InsuranceDB {S1 : S2 ; S2 : S1 ; ? : S1 , S2} db ;
[Bob] PersData {B : ; ? : B} data ;

[S1] Quote {B : ; S1 : ; S2 :} quoteTemp ;
[Bob] Quote {B: ; } quote ;

[S1] quoteTemp := findCheapestQuote (db , data) ;
[S1] quote := declassi fy (quoteTemp ,{B: }) ;

Listing 8.3: Split program using the highest confidence optimization method.

If the highest confidence method is used, Bob will prefer his data being scheduled
on S1, and of course, if possible, at himself (cf. Table 8.1). The split is shown
in Listing 8.3.

However, if we optimize with regard to the metric, we expect a different outcome.
Now Bob considers the other principals Alice and Charlie, who may schedule
their data on the server S1, but not on S2 (all trust thresholds are 0.90). Bob
would prefer to schedule his data on a server, where none of the two principals
Alice and Charlie will schedule their data, as he only trust them marginally.

Recall that the metric is defined as (cf. Section 5.8.2):

leak (A,B) =

∑

p∈TB
(1 − conf (TrustA,p))

N

M(A,B) =
leak(A,B)

confidence(A,B)

Here, TB is the set of principals who trusts B, and N is the cardinality of this
set.

8.6 Case Study: Insurance Quotes 107

[S1] InsuranceDB {S1 : S2 ; S2 : S1 ; ? : S1 , S2} db ;
[Bob] PersData {B : ; ? : B} data ;

[S2] Quote {B : ; S1 : ; S2 :} quoteTemp ;
[Bob] Quote {B: ; } quote ;

[S2] quoteTemp := findCheapestQuote (db , data) ;
[S2] quote := declassi fy (quoteTemp ,{B: }) ;

Listing 8.4: Split program using the metric optimization method.

The metric for the two possibilities from Bob’s perspective are calculated as:

M(B,S1) =
(conf (TrustB ,A) + conf (TrustB ,C) + conf (TrustB ,S2))/3

conf (TrustB ,S1)

=
(0.20 + 0.20 + 0.04)/3

0.97
= 0.15

M(B,S2) =
0.03

0.96
= 0.03

From M(B,S2) < M(B,S1) we get that Bob prefers his data to be scheduled
on S2 (if not himself). Because the other owners S1 and S2, have no preference,
the data should be scheduled on S2. The split is shown in Listing 8.4.

This case shows the significant difference between the two optimization methods.

• The highest confidence method, the service which the principal has the
highest confidence in will be chosen.

• The metric, on the other hand, considers who else can schedule their
data and statements at the service. The metric judges the likelihood
that your data will be leaked to the other principals using the service by
accumulating your distrust in the other principals and dividing this by
your trust in the service. A principal would prefer to schedule its data
to a service, which it fully trusts, as well as all other principal who can
schedule their data to it.

It is hard to directly compare the two measures of splits, as their strength and

108 Evaluation

weaknesses depend on the threat scenario. If it is realistic that other principals
can gain access to your data by scheduling their programs to the service, then the
metric is the better choice. However, if the other principals cannot interfere with
the execution on the service, the service which you have the highest confidence
in is preferable, because it is only the trustworthiness of the service that matters.

This small discussion illustrates the benefit of having the optimization com-
ponent as a plugin. Threat scenarios are specific to the applications, thus the
ability to customize the optimization parameters is a significant advantage. You
could even imagine each principal in the system to have his or her own opti-
mization requirements, and thereby be directly involved in how his or her data
is scheduled.

8.7 Case Study: Oblivious Transfer

The second case considered is the Oblivious Transfer example [Rab81]. This
example was also used in the original Secure Program Partitioning [ZZNM01].
It has been included to illustrate the added capabilities of Secure Dynamic
Program Partitioning.

In the oblivious transfer example there are two principals, Alice and Bob, who
do not trust each other. However, Alice will give up exactly one of two values
to Bob, but will only do it once. Bob, on the other side, does not want Alice
to know which of the two values he has requested. It is a well-established result
that this can only be achieved if a trusted third party exist [DKS98].

Listing 8.5 contains the code for the Oblivious Transfer program. Alice has two
integers m1 and m2, where one of them will be transfered to Bob. The value
isAccessed tells if Bob already received a value. n is either 1 or 2, depending
on which value Bob is requesting. val is a temporary variable used to store
the requested value, until it is declassified and returned to Bob (last line of the
program).

It is important to notice that Alice needs to have trust in the integrity of the
temporary value val, as she wants to make sure that the correct value is being
declassified. This means that n has to be endorsed in the if-condition. This is

8.7 Case Study: Oblivious Transfer 109

int{Al i c e : ; ? : A l i c e } m1;
int{Al i c e : ; ? : A l i c e } m2;
int{Al i c e : ; ? : A l i c e } i sAcce s s ed ;
int{Bob :} n ;
int{Al i c e : ; Bob : ; ? : A l i c e } val ;
int{Bob :} r e tu rn va l ;

i f i sAcce s s ed then {
val := 0 ;

}
else {

i sAcce s s ed := 1 ;
i f endorse (n , { ? : A l i c e }) = 1 then {

val := m1;
}
else {

val := m2;
} ;

} ;
r e t u rn va l := declassi fy (val ,{Bob : }) ;

Listing 8.5: Oblivious Transfer in sflow

110 Evaluation

experienced by:

L(endorse(n, {? : Alice})) t L(m1) = {Alice : ; Bob : ; ? : Alice}

8.7.1 Splitting under the Simple Trust Model

In the first part of the case study, the program is split using the simple trust
model from [ZZNM01].

First we try to split the program when no third party exists. Alice and Bob
only trust themselves:

LAlice = {Alice : ; ? : Alice}

LBob = {Bob : ; ? : Bob}

This program is not splittable under the constraints in equations (3.2) and (3.3).
For instance, the field val cannot be assigned, as no label exists which is more
restrictive than:

{Alice : ; Bob :}

So no valid split can be found by the Splitter.

However, suppose a principal Tom joins the network. Alice and Bob immediately
declare their trust in Tom:

LTom = {Alice : ; Bob : ; ? : Alice, Bob}

The splitter will now try to split the program based on the new conditions, and
this time a split exists. The split can be seen in Listing 8.6 (same resulting split
as in [ZZNM01]). Alice is allowed to assign values to the common temporary
value val, as she has as much integrity as the variable (variable has the integrity
of Alice, and Alice trusts her own integrity).

However, endorsing n for Alice needs to be done by Tom, as she needs to have
trust in the integrity of the principal downgrading the security.

Finally, Tom must store and declassify val, as this is the only way both Alice
and Bob have trust in the declassification.

8.7 Case Study: Oblivious Transfer 111

[A l i c e] int{Al i c e : ; ? : A l i c e } m1;
[A l i c e] int{Al i c e : ; ? : A l i c e } m2;
[A l i c e] int{Al i c e : ; ? : A l i c e } i sAcce s s ed ;
[Bob] int{Bob :} n ;
[Tom] int{Al i c e : ; Bob : ; ? : A l i c e } val ;
[Bob] int{Bob :} r e tu rn va l ;

[A l i c e] i f i sAcce s s ed then {
[A l i c e] va l := 0 ;

}
else {

[A l i c e] i sAcce s s ed := 1 ;
[Tom] i f endorse (n , { ? : A l i c e }) = 1 then {
[A l i c e] va l := m1;

}
else {

[A l i c e] va l := m2;
} ;

} ;
[Tom] r e tu rn va l := declassi fy (val ,{Bob : }) ;

Listing 8.6: Split of Oblivious Transfer program

112 Evaluation

.9/.9

.9/.9

.9/.95

.95/.9

.95/.9

.9/.9

BobAlice

Sara Tom

Figure 8.3: Trust graph for Oblivious Transfer. Trust edges are annotated with
probabilities of the form confidentiality/integrity.

If Tom leaves the network, the split is no longer valid. As mentioned, our system
does not support erasure policies yet, so the data stored on Tom’s host will not
automatically be deleted. This might result in a security breach, if Tom finds a
way to circumvent the information flow policies.

The proposed Secure Dynamic Program Partitioning framework includes erasure
policies. Applying erasure policies would, as mentioned in Section 5.9, address
the issue of stored data on leaving principals. Due to time constraints this was,
however, not included in the prototype.

8.7.2 Splitting under the Probabilistic Model

In this part of the case study, the probabilistic trust model is applied to the
Oblivious Transfer example. The principal Sara has been added, which both
Alice and Bob trust. Additionally, Sara and Tom trust each other. The proba-
bilities can be seen in Figure 8.3.

We can now apply the two optimization methods Highest Confidence, and the
Metric. As there are no recommendation paths, the confidences are the proba-
bility of the direct edge.

The values will here be calculated only for the statements which can not be
assigned to either Alice or Bob. The others are trivial, and they will be scheduled
as in Listing 8.6. The statements are:

8.7 Case Study: Oblivious Transfer 113

int{Al i c e : ; Bob : ; ? : A l i c e } val

endorse (n , { ? : A l i c e }) = 1
r e tu rn va l := declassi fy (val ,{Bob : })

Principals storing the field val need the confidentiality of Alice and Bob, and
also the integrity of Alice. Both Sara and Tom fulfill this criteria.

The endorse statement need the confidentiality of Bob, as his value is being used.
Additionally, the integrity of Alice is needed as her policy is being downgraded.

The declassify needs both the confidentiality of Alice and Bob. The integrity of
Alice is needed because her policy is being downgraded, and since Bob’s field
return val is being defined, his integrity is needed too.

Based on this, the metric and highest confidence can be calculated.

Applying the Highest Confidence optimization method

First, the confidence values are calculated. As only direct trust exists, this is
very simple. For Sara the confidences are:

conf (TrustCA,S) = 0.90

conf (TrustCB,S) = 0.90

conf (TrustIA,S) = 0.95

conf (TrustIB,S) = 0.90

Similarly, for Tom, the confidences become:

conf (TrustCA,T) = 0.95

conf (TrustCB,T) = 0.93

conf (TrustIA,T) = 0.90

conf (TrustIB,T) = 0.90

If we first look at the field val. The field can be assigned to either Sara or Tom.

114 Evaluation

Statement Trust statements Assigned to

int{Alice:;Bob:;?:Alice} val TrustCA,x, T rustCB,x, Tom
TrustIA,x

endorse(n,?:Alice) = 1 TrustCB,x, T rustIA,x Sara

return val = declassify(val,Bob:) TrustCA,x, T rustCB,x, Tom
TrustIA,x, T rustIB,x

Table 8.2: The table contains an overview of the critical statements in the
Oblivious Transfer program. The table lists the statement, the trust statements,
which influence assignment, and finally the principal, which it will be assigned
too. (x refers to either Sara or Bob).

The trust statements which will determine, who it is assigned to are, for Sara

TrustCA,S, T rustCB,S , T rustIA,S

and, for Tom

TrustCA,T , T rustCB,T , T rustIA,T

As the lowest confidence is 0.90 in both cases, the highest average value will
consider who will host the data. Thus, the field is assigned to Tom.

Table 8.2 lists all the statements, which need to be assigned to either Sara and
Tom. The table also lists the trust statements, which will determine who will
host the statement. Finally the principal which the statement is assigned to is
listed.

The endorse statement is assigned to Sara, while Tom will host the declassify
statement. In both cases it is determined by the principal with the highest
average probability for the trust statements.

Applying the Metric Optimization Method

Recall, the definition of the Metric:

leak (A,B) =

∑

p∈TB
(1 − conf (TrustA,p))

N

M(A,B) =
leak(A,B)

confidence(A,B)

8.7 Case Study: Oblivious Transfer 115

[A l i c e] int{Al i c e : ; ? : A l i c e } m1;
[A l i c e] int{Al i c e : ; ? : A l i c e } m2;
[A l i c e] int{Al i c e : ; ? : A l i c e } i sAcce s s ed ;
[Bob] int{Bob :} n ;
[Tom] int{Al i c e : ; Bob : ; ? : A l i c e } val ;
[Bob] int{Bob :} r e tu rn va l ;

[A l i c e] i f i sAcce s s ed then {
[A l i c e] va l := 0 ;

}
else {

[A l i c e] i sAcce s s ed := 1 ;
[Sara] i f endorse (n , { ? : A l i c e }) = 1 then {
[A l i c e] va l := m1;

}
else {

[A l i c e] va l := m2;
} ;

} ;
[Tom] r e tu rn va l := declassi fy (val ,{Bob : }) ;

Listing 8.7: Split of Oblivious Transfer program using Highest Confidence opti-
mization

116 Evaluation

We will calculate the metrics from Alice and Bob to Sara and Tom. First we cal-
culate the metric from Alice to Sara. The principals Alice, Bob, and Tom might
schedule their data and statements to Sara. So the metric for confidentiality
from Alice to Sara becomes.

leakC(A,S) =
(1 − conf(TrustCA,B)) + (1 − conf(TrustCA,T))

2

MC(A,S) =
leak(A,S)

conf(TrustCA,S)

=
((1 − 0) + (1 − 0.95))/2

0.90
= 0.583

Here the C refers to confidentiality. I will be used to denote integrity.

All the values for the metric are listed below:

MI(A,S) = 0.579

MC(B,S) = 0.594

MI(B,S) = 0.611

MC(A, T) = 0.579

MI(A, T) = 0.583

MC(B, T) = 0.591

MI(B, T) = 0.611

Based on these values the statements are assigned. The field val is, as before,
stored at Tom, since the highest metric for Tom is 0.591, while for Sara the
value is 0.594.

The endorse statement will be assigned to Tom, as this again gives the lowest
metric. This is different from the Highest Probability method.

Finally, the declassify is also assigned to Tom. In this case the highest metric
is the same in both cases, 0.611. But Tom will be used, because this will result
in the lowest average:

0, 583 + 0.579 + 0.594 + 0.611

4
>

0, 579 + 0.583 + 0.591 + 0.611

4

The full split is listed in 8.8.

8.7 Case Study: Oblivious Transfer 117

[A l i c e] int{Al i c e : ; ? : A l i c e } m1;
[A l i c e] int{Al i c e : ; ? : A l i c e } m2;
[A l i c e] int{Al i c e : ; ? : A l i c e } i sAcce s s ed ;
[Bob] int{Bob :} n ;
[Tom] int{Al i c e : ; Bob : ; ? : A l i c e } val ;
[Bob] int{Bob :} r e tu rn va l ;

[A l i c e] i f i sAcce s s ed then {
[A l i c e] va l := 0 ;

}
else {

[A l i c e] i sAcce s s ed := 1 ;
[Tom] i f endorse (n , { ? : A l i c e }) = 1 then {
[A l i c e] va l := m1;

}
else {

[A l i c e] va l := m2;
} ;
} ;

[Tom] r e tu rn va l := declassi fy (val ,{Bob : }) ;

Listing 8.8: Split of Oblivious Transfer program using the Metric optimization

118 Evaluation

In this example we have seen that it is possible for two principals to engage in
a transaction, even when they do not trust each other. The security policies
guarantee that no information, other than the strictly necessary, is leaked to
the distrusted principal.

The case has been included to illustrate how information flow policies work in
a distributed system. The example was also included in the original Secure
Program Partitioning article [ZZNM01]..

Chapter 9

Future Work

The future belongs to those who see
possibilities before they become obvious.

– John Sculley

In this chapter, suggestions for future work are discussed. As in any project, the
limited time available made it necessary to prioritize some areas over others. In
the coming sections, useful and interesting extensions of the work in this thesis
will be presented.

9.1 Execution Platform and Real Networking

The first extension that will be considered, is creating an execution platform
where sflow programs can be executed. For distributed systems, the synchro-
nization mechanisms presented in Section 3.3 should also be added when split-
ting the program. Finally, this should be tested when having several hosts
connected by a network.

120 Future Work

In this realistic setting, the security could be evaluated further. Requirements
for the execution platform and network communication could be investigated.
Eliminating covert channels would be an interesting research area.

9.2 Erasure Policies

Implementing Erasure Policies is an obvious extension of this work. Section
5.9 introduces Erasure Policies as part of our framework, while Section 6.11
presents a possible design, which would provide the functionality needed.

However, due to the limited time available, the implementation was not in-
cluded. Especially if an execution platform was implemented, this would be
interesting to investigate further.

9.3 Compatibility with JIF

Another useful extension would be to move from the simple sflow (cf. Chapter
4) to the fully-featured object-oriented JIF [Mye99]. JIF extends Java (except
multiple threads) with information flow support. Moving to JIF would make it
possible to test the framework on more realistic applications.

Moving to JIF would require that the splitter was updated to handle JIF code.
The optimizer and trust model components are independent of the chosen lan-
guage, so they could be used without any major modifications.

9.4 The Future of Secure Dynamic Program Par-

titioning

In this section we engage in a small discussion of where information flow has to
go, to enter commercial use.

9.4 The Future of Secure Dynamic Program Partitioning 121

In recent years the National Security Agency has developed a version of the
operating system Linux with mandatory access control [BL73] support. This
is called SELinux (Security Enhance Linux). This shows that there is a rising
trend to improve the inherently flawed execution platforms, which are currently
in use. By the introduction of SELinux, the IT community has shown a will
to rethink operating system design by introducing security primitives, in this
case Mandatory Access Control. The next important step could be to make
a version of Linux where the kernel supports information flow policies, like
the Decentralized Label Model. Alternatively, a virtual machine, like the Java
Virtual Machine, with information flow support could be constructed [vm06].
If such systems were developed, it would be a fundamental change to how we
approach security.

Introducing secure information flow in distributed systems would be another
milestone. This would finally achieve the objective of protecting people’s sensi-
tive data online.

It is clear that many obstacles still remain, but current security approaches suffer
from more and more flaws, as complexity is increased [LSM+98]. So maybe we
need a fundamental change in the way we address security. Taking a low-level
approach, like Secure Information Flow, could be the answer.

122 Future Work

Chapter 10

Conclusion

At the end of the day, the goals are simple: safety and security.
– Jodi Rell

Applying Secure Information Flow to distributed systems has some promising
perspectives. Information flow policies will allow users to better protect their
data in distributed systems as these policies let users control access, integrity,
and propagation.

The foundation of this work is Secure Program Partitioning [ZZNM01], which
is a technique for distributing security-typed programs on the network, while
obeying the information flow policies of the data, and the trust relation of the
principals. Secure Program Partitioning, however, does not consider dynamic
networks, and has a simple trust model that is not adequately suited for the
complex trust relations of many distributed system.

Hansen and Probst addressed the first issue in [HP05]. This work has been build
on further, by developing a full functioning framework for handling a dynamic
network. The second issue, that is developing a suiting trust model, was the
main focus of this thesis. By introducing recommended and partial (that is
probabilistic) trust, we are better able to protect the users and express realistic

124 Conclusion

trust scenarios in a dynamic network.

Another central issue in this thesis have been to resolve the ambiguity of splits.
In most cases several splits exist for a given program and trust model. In the
framework, the optimization component selects the split that will be used. Two
optimization components have been presented in this thesis, both utilizing the
probabilistic trust model.

• Assign data or statement to the principal in which the stakeholders have
the highest confidence.

• The other method involves calculating a metric that captures the depen-
dencies and nature of a data leak. The program parts are then assigned
to the principals, which gives the optimal value for the metric.

These two methods purely consider the security of the split. Alternatively, a
user might introduce his or her own optimization method, which would optimize
performance.

The framework is parameterized with both the trust model and the optimization
component. Compared to the original framework (Zdanewic et al.’s Secure
Program Partitioning), this gives a higher level of flexibility. In our framework,
applications can apply their own custom trust models and optimization criteria,
and can thereby respond to the needs of the applications specific domain. In
our view, this is a key factor if the Secure Program Partitioning approach are
to be successful.

The proposed concepts have been proved to work through the implementation
of a prototype. By using the prototype we are able to illustrate the capabilities
of our framework.

In this thesis, a few examples have been investigated:

• Protecting credit card data, when shopping online.

• Protecting personal data, when using an insurance quote web-service.

• Securely transferring data in a scenario of mutual distrust.

125

These cases illustrate how the proposed framework, while supporting the original
functionality, is able to handle dynamic networks. Additionally, the examples
have shown how the framework is able to handle different trust models and
optimization algorithms.

126 Conclusion

Appendix A

Definition of Terms

Confidence In probability theory, the conditional probability that a certain
event, or series of events will happen.

Confidentiality Used in connection with trust. Having trust in a persons
confidentiality, is having trust in his or her ability to protect your confident
data.

Distributed System Decentralized system which uses multiple hosts connected
by a network to perform computations. Distributed systems does in this
definition not necessarily use parallel computation.

Erasure Policies Technique for automatically making data inaccessible, when
certain conditions are fulfilled. See Section 5.9.

Integrity Used in connection with trust. Having trust in a persons integrity is
having trust in his or her ability not to corrupt the data.

Metric Refers to a specific metric for evaluating program assignments. See
Section 5.8.2.

Principal Entity in the trust graph. Includes persons, a group of users, and
processes.

SDPP Secure Dynamic Program Partitioning.

128 Definition of Terms

sflow Simple, sequential language with information flow support. Will be used
throughout this thesis. See Chapter 4.

SPP Secure Program Partitioning.

Trust Graph Data structure which contains all trust relations.

Appendix B

The sdpp Package

This appendix contains a description of the Java packages included in the frame-
work. The appendix is intended to give a quick overview of the functionality of
each class, and by using UML diagrams, we illutrate how each class fit into the
context.

B.1 Basic Classes

Principal

Principal can be a user, process, etc. Anyone who uses data. Each principal has
a unique PrincipalId. If new properties are needed for principals, extend this
class.

130 The sdpp Package

PrincipalId

Unique identification of the principal. In this implementation the principal id
is a string. Could also be integer, certificate, etc.

PrincipalSet

Set of principals. Extends BasicSet.

PrincipalComparator

Compare two principals. Implements the comparator interface, which allow it
to be the ordering class of a TreeSet.

BasicSet

Basic set class. Super class of all sets in the sdpp package. Extends the TreeSet
class. Tree sets are ordered sets, where each element is placed by applying the
comparator interface.

B.2 Decentralized Label Model Package

An overview of the structure of the package is given in Figure B.1.

BasicLabel

Basic two component label consisting of a principal and a principal set: (p, {p1, p2, ..., pn})
This label type can be used for confidence label, trust relation, and declaring

B.2 Decentralized Label Model Package 131

Figure B.1: UML diagram of the decentralized label model

132 The sdpp Package

ownership of hosts. Class can not be instantiated, declared abstract.

BasicLabelComparator

Class implementing the Comparator interface. Used to order BasicLabels in a
BasicLabelSet.

BasicLabelSet

Set of BasicLabels. Extends BasicSet. It uses a generic type, however elements
in set must extend BasicLabel. Elements are ordered using the BasicLabelCom-
parator class.

Class cannot be instantiated; declared abstract.

CLabel

Confidence label component: {o : r1, ..., rn}, extends basic label.

ConfLabel

Confidence label. Is a set of CLabels:

{o1 : r11, .., r1n; o2 : r21, ..., r2n; ...; on : rn1, ..., rnn}

Extends BasicLabelSet.

IntegrityLabel

Integrity label: {? : r1, ..., rn}. Extends principal set. Integrity label contains
the readers who trust the data. Everytime interference with other data occurs,

B.3 Abstract syntax 133

the intersection of the two integrity labels are the resulting integrity. E.g. {? :
r1, r2} t {? : r2, r3} = {? : r2} Meaning only reader r2 trust the resulting data.

SecurityLabel

Security label contains both an confidence labels and an integrity label:

{o1 : r11, ..., r1n; ...; om : rm1, ..., rml; ? : ri1, ..., rik}

It is the the central class to the package, as it will be this object, which will be
used to represents labels. It also contains methods for performing the operations:

• Least upper bound

• Greatest lower bound

• Less restrictive

B.3 Abstract syntax

This package contains classes for representing sflow programs. UML diagram
for the package is depicted in Figure B.2.

AbstractSyntaxTree

Abstract syntax tree for sflow program. Contains reference to the top most
node in the AST. Figure B.3 shows the abstract syntax tree for a while s A
distinction are made between elements which has subnodes, Node, and those
who has not, Leaf. Both extends the abstract class TreeElement.

Flow graph can also be retrieved using this class.

134 The sdpp Package

Figure B.2: UML diagram of the abstract syntax

while n do {

n := n - 1;

}

while

/ \

expr S

/ |

n assign

/ \

n expr

|

op

/ | \

n - 1

Figure B.3: Abstract syntax tree for a while statement

B.3 Abstract syntax 135

TreeElement

Super class for elements in the AST.

B.3.1 Node

Nodes are elements in the AST which can have both leafs and subnodes.

Node types:

STATEMENT Most basic node, has no leafs

ASSIGNMENT Expression (node) and variable (leaf)

EXPR Expression, can be a value, a var leafs.

OP 2 sub expr, and a leaf defining the operator (+,-,/,...).

DECLASSIFY expr node and label leaf.

ENDORSE expr node and label leaf.

Nodes can be assigned to principal, and contains block label. These are set by
the splitter.

Leaf

Element in the AST. Leafs have no subnodes, but contain data. Types of leafs:

• Variable, e.g. ’x’

• Value, e.g. ’3’

• Type, e.g. ’int’

• Confidentiality label, e.g. ’A:B,C; B:A’

136 The sdpp Package

• Integrity label, e.g. ’?:A,B’

• Operator, e.g. ’+’

NodeType

Node and leaf types in the AST.

NodePair

Two nodes, used in the flow graph.

SymbolTable

Contains information about the variables in the program.

Symbol table stores following data for each variable:

V arId
m
→Type× Label×DUChain×AssignedTo

Type Is variable type, e.g. int.

Label SecurityLabel for variable

DUchain Definition-Use chain for variable

AssignedTo Used by the Splitter to assign variables to principals

The data is stored in VarData object for each variable.

VarData

Object which contains data for variables. Used by the SymbolTable

B.3 Abstract syntax 137

int{Al i c e :} n ;
int {} a ;

i f a then

n := n + 3 ;
else

n := n + 2 ;

while n > 10 do

n := n − 1 ;

a := 0 ;

int{Alice:} n

int{} a

a

n := n + 3 n := n + 2

a := 0

n := n − 1

n > 10

Figure B.4: Example of a flowgraph

FlowGraph

Construct directed graph of the program flow. An example of the flow graph
can be seen in Figure B.4.

DU

Single definition and all its possible uses:

(l, {l1, ..., ln})

l is location (node) where variable is defined, and l1, ..., ln are places where the
variable might be used after this definition. Note a new definition will result in
a new DU.

138 The sdpp Package

1 int{Al i c e :} n ;
2 int {} a ;
3 a := 3 ;
4 n := 2 ;
5 i f a then

6 n := 3 + a ;
7 else

8 a := 3 + n ;
9 a := a + n ;

a : (def : 3, uses : 5, 6, 9),

(def : 8, uses : 9),

(def : 9, uses :)

n : (def : 4, uses : 8, 9),

(def : 6, uses : 9)

Figure B.5: Example of Definition-Use chains

DUChain

DUChains for a variable: { [L1: { L11,...,L1m }], ... , [Ln: { Ln1,...,Lno }] }
L1, ..., Ln are locations where the variable is defined. E.g. var := e;

Example of DUChains for a program is shown in Figure B.5.

DUChainAnalyzer

Find all definiton-use chains for a variable, based on the flow graph for the
program.

B.4 Parser

The parser is generated using JFlex 1.4.1 lexical analyzer to scan the file, and
the BYACC/J 1.13 parser generator (Berkeley YACC 1.8 with Java support).

The grammar is show in Listing B.1.

Processing this grammar, will create a Java class Parser. The parser can parse
files, strings, and java.io.Reader objects.

B.4 Parser 139

prog : := vardec l c

vardec l : := var ” ; ” vardec l | var ” ; ”

var : := ID ”{” s e c l a b e l ”}” ID

c : := s ” ;” c | s ” ; ”

s : := ID ”:=” e
| ” i f ” e ”then” ”{” c ”}” ” else” ”{” c ”}”
| ”while” e ”do” ”{” c ”}”

e : := VAL | ID | e OP e
| ”declassi fy” ”(” e ” ,” ”{ c l ”}” ”)”
| ”endorse” ”(” e ” ,” ”{ i l ”}” ”)”

s e c l a b e l : ε | c l i l | c l | i l

c l : := ID ” :” ” ; ” | ID ” :” ” ; ” c l
| ID ” :” i d l i s t ” ; ” | ID ” :” i d l i s t ” ; ” c l

i l : := ”?” ” :” i d l i s t

i d l i s t : ID | ID ” ,” i d l i s t

Listing B.1: BNF grammar for the sflow language

140 The sdpp Package

ParseException

Excpetion used when a parse error occurs.

B.5 Code verifier

The code verification is done by the sdpp.code.CodeVerifier class. It verifies
parsed sflow code. The code must satisfy the property of non-interference until
declassification. I.e. no high level data can flow to low level data.

B.6 Splitter

The splitter splits the program (consists of AST and SymbolTable) under the
trust model. The trust model has to implement the TrustModel interface.

The split function uses two auxiliary methods, one for assigning fields, and one
for asssigning statements.

• assignField –The requirement for a field f to be assigned to a principal
p is:

C(Lf) t Locf v Cp and Ip v I(Lf) (B.1)

Locf is the least upper bound of all block labels where f is read.

Locf = C(bl(u1) t bl(u2) t · · · t bl(un))

• assignStatement – For a statement S to be assigned to a principal p, p
must have at least the confidentiality of all values used in the statement.
Additionally p must have the integrity of all values defined.

C(Lin) v Cp and Ip v I(Lout) (B.2)

Where,

Lin =
⊔

v∈U(S)

Lv and Lout =
l

l∈D(S)

Ll

B.6 Splitter 141

Figure B.6: UML diagram of the splitter

142 The sdpp Package

U(S) denotes all values used in S, and D(S) denotes all definitions in S.
The assignStatement function also return a set of principals, which the
statement can be assigned to.

These constraints will result in a set of principals, which the field can be assigned
to. This set is the result of the function. If the set is empty, the program can
not be split.

When several possibilities exists for assigning a node to a host, the optimizer
component is used to determined the optimal assignment. Optimizer must ex-
tend the abstract OptimalSplit class.

The splitter and the classes it depend on are depicted in Figure B.6.

SplitException

Exception which occurs when splitter cannot split the program.

B.7 Basic Trust Classes

Here follows a description of the basic classes which all trust model use.

TrustModel

Interface which all trust models must implement. Table B.1 lists the methods
of the interface.

Here follows a description of each method in the interface.

principals All principals in the trust model.

trustLabels Convert trust derivations into trust labels.

B.7 Basic Trust Classes 143

Return type Method header
PrincipalSet principals()
TrustLabelSet trustLabels()
boolean trustsConf(Principal p1, Principal p2)
boolean trustsIntegr(Principal p1, Principal p2)
int type()
void updateTrustModel(TrustDecl trustdecl)

Table B.1: Interface for TrustModel

trustConf Check if p1 trusts p2 with regards to confidentiality.

trustIntegr Check if p1 trusts p2 with regards to integrity.

type Type of trust model, e.g. DLM or PROBABILISTIC

updateTrustModel Update the trust model with trust declarations from a
principal.

TrustDecl

Interface for trust declarations. Contains only two methods:

• owner – Principal who is declaring trust

• type – Type of trust declaration. Directly corresponds to the chosen trust
model.

TrustLabel

Trust label is a security label with no readers. Additionally it has a owner which
all the listed principals trust.

TL(O) = {A :;B :; ? : A}

A trust O with regards to confidentiality and integrity, while B trust O to
maintain confidentiality.

144 The sdpp Package

TrustLabelSet

Set of trust labels. Extends BasicSet. Only one trust label can exist for each
principal (owner). Uses the TrustLabelComparator to order trust labels.

BasicEdge

Basic edge in a trust graph. Contains an originating principal, destination and
type.

ParseTrustGraph

Class for parsing trust graphs. Used for testing.

TrustException

Exception to be thrown when error is occured during trust computations.

B.8 DLMTrust

The DLM trust model is a simple trust model, which consists of a set of trust-
labels. The UML diagram for the trust model is shown in Figure B.7.

DLMTrustModel

DLM trust model consists of a set of trust labels.

B.8 DLMTrust 145

Figure B.7: UML diagram of the DLM trust model

If we have following trust labels,

TL1(Alice) = {Bob :; ? : Charlie}TL2(Bob) = {Charlie :}TL3(Charlie) = {}

A trust model could be

{TL1, TL2, TL3}

Meaning Bob trusts Alice with regards to confidentiality, and Charlie trusts
Alice when it comes to integrity, and Bob with confidentiality. No one trusts
Charlie.

The class contains methods for updating the trust model, as well as parsing a
trust model.

DLMTrustDecl

Trust declarations for the DLM trust model.

Contains the principal which is declaring trust, and all the principals it trusts
with regards to confidentiality and integrity.

146 The sdpp Package

B.9 ProbabilisticTrust

Figure B.8 has an overview of the probabilistic trust model.

TrustEdge

TrustEdge vector containing confidence trust, integrity trust and recommended
trust. Used to specify trust from one principal to another (one-way). It has a
probability which states how likely it is the trust declaration is correct.

The class is abstract.

ConfTrustEdge

Edge in the trust graph. States that a principal has trust in another principal’s
confidentiality, with probability p.

IntegrTrustEdge

Edge in the trust graph. States that a principal has trust in another principal’s
integrity, with probability p.

RecEdge

Recommendation edge. Abstract, used by ConfRecEdge og IntegrRecEdge.

ConfRecEdge

Confidentiality recommendation edge. Has probability and distance.

B.9 ProbabilisticTrust 147

Figure B.8: UML diagram of the probabilistic trust model

148 The sdpp Package

IntegrRecEdge

Integrity recommendation edge. Has probability and distance.

ProbabilisticTrustGraph

The probabilistic trust graph is a set of trust edges. Using these trust edges
confidence can be derived.

It first finds all the minimal path between the two principals, which trust will be
derived for. This is done by the minTrustPathsmethod, which will find minimal
paths from the current principal to the destination principal. If it encounters
already visited nodes it will terminate, or if no nodes from the principal exists.

By storing the traversed edges, the full set of minimal paths can be constructed
in the end.

Using these minimal trust paths, the confidence is calculated using the following
formula:

conf (TrustA,B) =
k

∑

i=1

P (νi ⊆ TG)

−
∑

1≤i1<i2≤k

P ((νi1 ∪ νi2) ⊆ TG)

+
∑

1≤i1<i2<i3≤k

P ((νi1 ∪ νi2 ∪ νi3) ⊆ TG)

− · · ·

The calculated confidence will be stored in a ConfidenceTable (one for integrity
and one for confidentiality) for each principal set, to allow for quickly generating
the trust labels which will be used by the splitter. Trust is inferred if the
calculated confidence is higher than the threshold.

B.9 ProbabilisticTrust 149

ConfidenceTable

Table containing confidences. It maps a trust edge to a probability E.g.

Alice−Bob→ 0.90

Meaning that Alice has 0.90 confidence in Bob. The table can be either a
confidentiality or an integrity table.

ThresholdMap

Table of confidence thresholds. The required confidence a principal need to have
to trust somebody. E.g

[Alice→ 0.8, Bob→ 0.9, ...]

ProbabilisticTrustDecl

Probabilistic trust declaration. Contains the principal who owns them, its
threshold and a collection of trust edges which originate from the owner. Also
contains a method for parsing trust declarations from strings.

MinTrustPath

Minimal trust path between to principals.

Combos

Returns all possible combinations of n elements of an ArrayList. Original de-
veloped by David Ripton: http://sourceforge.net/projects/colossus Has been
modified to support parameters.

150 The sdpp Package

TrustException

Exception to be thrown when error is occured during trust computations.

B.10 Optimizers

Next, the optimizers will be presented.

OptimalSplit

Abstract class which all optimizers must extend. Optimizer must decide based
on AST, symbol table, trust model, and the possible assignments found by the
spliiter.

SimpleSplit

A simple optimizer. Takes the first of the possible principal (organized lexio-
graphically), which the statement can be assigned to.

OptimalProbability

Optimize with regards to probability. Statement will be assigned to the princi-
pal, which the owners of the data can best agree on. This means the one were
the lowest probability of any of the principals is the highest.

B.10 Optimizers 151

OptimalProbMetric

Each node is assigned, according to the metric. The owners of defined variables
wants the integrity metric to be low (low is better!), cause they want to make
sure that the variable is defined correctly.

The owners of used variables, wants the confidentiality metric to be low, as they
want to make sure that their data is not leaked.

The principals are treated equally, no metric has higher priority than others.
This means we look for the principal, where the highest metric (both integrity
and confidentiality) is the lowest. E.g.

int{A:} a; int{B:} b; int{C:} c;

a := b + c;

Possible assignments: D,E

metricIntegr(A,D) = 1.2,metricIntegr(A,E) = 0.4

metricConf(B,D) = 1.1,metricConf(B,E) = 0.6

metricConf(C,D) = 1.3,metricConf(C,E) = 2.0

Even though the average is lower if assigned to E, D will be chosen, as 1.3 < 2.0.
So the max metric will be kept as low as possible.

MetricTable

Table for storing metrics, when calculating metrics in the metric optimization
method.

152 The sdpp Package

B.11 System Manager

The system manager is the interface where user will interact with the splitter.
It keeps track of the program, trust model, optimizer

SysManGUI

Graphical User Interface for the system manager.

Appendix C

Test Scheme

This appendix contains a description of the test scheme that has been used
to verify the correctness of the implementation. The appendix consists of two
parts. First, all the high level functional test is described, hereafter the unit
test cases are listed.

C.1 Functional Test

The functional test scheme consists of a list of high level tests, which will be
carried out from both the graphical user interface, as well as from the abstract
user interface.

The test will try out many possible errors, and ensure the program responds
correctly. All examples from this thesis is tested as well, on both trust models,
and the three optimizers.

The following test cases has been identified:

1. Loading program with bad syntax.

154 Test Scheme

2. Loading program with illegal information flow.

3. Loading program with undefined variables.

4. Loading legal program.

5. Loading bad trust graph.

6. Loading legal trust graph.

7. Splitting with no program.

8. Splitting with no trust model.

9. Splitting with no optimizer.

10. Splitting when trust model is incompatible with optimizer.

11. Splitting Oblivious Transfer example with all trust models and optimizer.

12. Splitting Insurance Quote example with all trust models and optimizer.

13. Splitting Online Store example with all trust models and optimizer.

14. Splitting Hospital example (see Listing C.3) with all trust models and
optimizer.

15. Principal joining, resulting in a new split.

16. Principal joining, resulting in no change.

17. Principal leaving, resulting in a new split.

18. Principal leaving, resulting in no valid split exists

19. Principal leaving, resulting in the same split.

All tests produces the correct result, so this test scheme has shown no errors in
the implemented program.

C.2 Unit Tests 155

C.2 Unit Tests

During development, unit test classes were constructed to test the implemented
functionality. Whenever a key class was developed, a unit test class was created
to test the functionality. A test class consists of:

• Setup – The data needed will be constructed, e.g. parsing programs,
constructing the trust graph, etc.

• Test cases – Each method is tested individually with a set of test cases.

• Teardown – The constructed data is deleted before the next method is
tested. Hereby it is ensured that the data is always correct before each
test case is run.

In Listing C.1 a simple example illustrates how unit testing is done in practice.
The class Example contains two methods, sum and product, which need to be
tested. In the setup method two Example-objects are created and used in order
to test both methods.

Worth noting is the use of the static method assertEquals inherited from the
TestCase-class. This method checks if the two integer values match. If not,
an error is reported. The teardown method is unnecessary, as the objects are
reinitialized each time. It is simply included to illustrate its purpose.

The unit test approach achieved several things:

• The code is tested as soon as it is created. Testing is easier when the
development process is still fresh in memory. Additionally, the code will
to be more complete, as you are forced to conceive test cases, and thereby
you realize where problems might occur at an earlier stage.

• Unit testing is modular, which means each module is tested individually
before being put into the larger context. This results in fewer bugs, as the
functionality of each module has been verified.

• The unit test can be run each time a change is made. So when future
development creates bugs in the old code, this can quickly be identified
and corrected.

156 Test Scheme

public class Example {
private int [] numbers ;

public Example (int [] numbers) {
t h i s . numbers = numbers ;

}
public int sum() {

int sum = 0 ;
for (int i = 0 ; i < numbers . l ength ; i++)

sum += numbers [i] ;
return sum ;

}
public int product () {

int product = 1 ;
for (int i = 0 ; i < numbers . l ength ; i++)

product ∗= numbers [i] ;
return product ;

}
}

public class ExampleTest extends TestCase {
Example ex1 , ex2 ;

protected void setUp () throws Exception {
super . setUp () ;
int [] numbers1 = {1 ,2 , 3} ;
int [] numbers2 = {1 ,2 , 3 , 4} ;
ex1 = new Example (numbers1) ;
ex2 = new Example (numbers2) ;

}
protected void tearDown () throws Exception {

super . tearDown () ;
ex1 = null ;
ex2 = null ;

}
public void testSum () {

as s e r tEqua l s (”sum case 1” ,6 , ex1 . sum ()) ;
a s s e r tEqua l s (”sum case 2” ,10 , ex2 . sum ()) ;

}
public void testProduct () {

as s e r tEqua l s (” product case 1” ,6 , ex1 . product ()) ;
a s s e r tEqua l s (” product case 2” ,24 , ex2 . product ()) ;

}
}

Listing C.1: Example of unit testing

C.2 Unit Tests 157

Figure C.1: Running JUnit test cases in Eclipse

• Unit tests serve as documentation. Future developers can look at the unit
tests, to see how the system works.

Unit testing has been carried out by using the JUnit framework [JUn06a,
JUn06b].

Figure C.1 shows the result of executing the JUnit test cases in Eclipse.

Below all the test cases are listed and described.

158 Test Scheme

C.2.1 Basic classes

BasicSet

Class tested on integer lists. Test cases:

• union

• intersection

• subsetOf

• complement

The operations should leave the original sets unchanged, so after each test, the
original sets are tested, to see they have not changed.

Principal

Two methods are tested on the principal class:

• compare

• equals

It uses the PrincipalComparator class.

PrincipalComparator

The comparator is tested to check if it orders principal correctly.

• compare

C.2 Unit Tests 159

C.2.2 Decentralized Label Model

SecurityLabel

Tests the operations on security labels.

• glb

• lub

• lessRestrictive

C.2.3 Abstract Syntax

FlowGraph

The flowgraph is constructed from the abstract syntax tree. The method ab-
stractSyntaxTree2FlowGraph is tested on three programs in listings C.2, C.3,
and C.4.

In all three cases the correct flowgraph is generated, thus the class is considered
correct.

DUChainAnalyzer

The DUChainAnalyzer class is tested on the program in Listing C.2

If the resulting DUChain matches the expected ones, the class is considered
correct.

160 Test Scheme

int{Al i c e : ; } n ;
int{Al i c e : ; } t ;
int{Al i c e : ; } v ;
;
n := 4 ;
t := 3 ;

i f n then {
t := 1 ;
while n 6= 0 do {

t := t ∗ n ;
n := n − 1 ;

} ;
}
else {

t := 0 ;
} ;

v := t ;

Listing C.2: FlowTest program

C.2 Unit Tests 161

//HOSPITAL − Calcu la t e insurance

int{ user : ins company ;} s a l a r y ;
int{ ins company : user , h o s p i t a l ; user : ins company ;} i n surance ;
int{ ho s p i t a l : doctor , user ; user : h o s p i t a l ;} medh i s t ;
;
i f s a l a r y > 1000000 then {

i n surance := sa l a r y ∗ 3/4 ;
}
else {

i n surance := sa l a r y ∗ 1/2 ;
} ;

i f medh i s t 6= 0 then {
i n surance := insurance ∗ 10 ;

}
else {

i n surance := insurance ∗ 2 ;
} ;

Listing C.3: Hospital program

162 Test Scheme

int{Al i c e : ; ? : A l i c e } m1;
int{Al i c e : ; ? : A l i c e } m2;
int{Al i c e : ; ? : A l i c e } i sAcce s s ed ;
int{Bob : ; } n ;
int{Al i c e : ; Bob : ; ? : A l i c e } val ;
int{Bob : ; } r e tu rn va l ;
;

i f i sAcce s s ed then {
val := 0 ;

}
else {

i sAcce s s ed := 1 ;
i f endorse (n , { ? : A l i c e }) = 1 then {

val := m1;
}
else {

val := m2;
} ;

} ;
r e t u rn va l := declassi fy (val ,{Bob : ; }) ;

Listing C.4: ObliviousTransfer program

C.2 Unit Tests 163

int{Al i c e : ; } a ;
int{Bob : ; } b ;
;
b := a ;

Listing C.5: DLMError program

CodeVerifier

The CodeVerifier is tested on the three programs in listings C.3, C.4 and C.5.
The first and the last will result in an illegal flow exception (DLMException),
while the oblivious transfer program contains no illegal flow.

C.2.4 Splitter

The splitter is tested by checking the individual methods in the class. The
assignment methods are tested by checking different statement and field types,
and seing they are assigned correctly.

Methods tested:

• assignField

• assignStatement

• def

• uses

• split

164 Test Scheme

C.2.5 Trust

ParseTrustGraph

The class is tested by parsing trust graphs.

DLMTrustModel

The trust model is tested by adding a principal to the trust graph.

C.2.5.1 CombosTest

Test generating combos.

C.2.5.2 MinTrustPathTest

Test the pathIncludedIn method.

C.2.5.3 OptimalSplitProbMetric

Test the assignNodes method for the probabilistic model.

C.2.5.4 ProbabilisticTrustGraph

The following methods are tested:

• minTrustPathsConf

• minTrustPathsIntegr

C.2 Unit Tests 165

• confTrust

• integrTrust

• trustsConf

• trustsIntegr

• trustLabels

166 Test Scheme

Bibliography

[ARH97] Alfarez Abdul-Rahman and Stephen Hailes. Using recommenda-
tions for managing trust in distributed systems. In IEEE Malaysia
International Conference on Communication, November 1997.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-
ciples, techniques, and tools. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1986.

[BBK94] T. Beth, M. Borcherding, and B. Klein. Valuation of trust in open
networks. In Proc. 3rd European Symposium on Research in Com-
puter Security – ESORICS ’94, pages 3–18, 1994.

[BIS06] http://www.gnu.org/software/bison/, October 2006.

[BL73] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathe-
matical foundations. Technical Report MTR-2547, Vol. 1, MITRE
Corp., Bedford, MA, 1973.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
MacMillan, London and Basingstoke, 1976.

[BYA06] http://dickey.his.com/byacc/byacc.html, October 2006.

http://www.gnu.org/software/bison/
http://dickey.his.com/byacc/byacc.html

168 BIBLIOGRAPHY

[CM05] Stephen Chong and Andrew C. Myers. Language-based information
erasure. In CSFW ’05: Proceedings of the 18th IEEE Computer
Security Foundations Workshop (CSFW’05), pages 241–254, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[CUP06] http://www.cs.princeton.edu/~appel/modern/java/CUP/, Oc-
tober 2006.

[Den76] Dorothy E. Denning. A lattice model of secure information flow. In
Communications of the ACM, Vol. 19, No. 5, 1976.

[DKS98] Ivan B. Damg̊ard, Joe Kilian, and Louis Salvail. On the
(im)possibility of basing oblivious transfer and bit commitment on
weakened security assumptions, 1998.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models.
Proceedings of the Symposium on Security and Privacy, pages 11–20,
1982.

[Hai84] Theodore Hailperin. Probability logic. Notre Dame Journal of For-
mal Logic 25, 1984.

[HP05] René Rydhof Hansen and Christian W. Probst. Secure dynamic
program partitioning. In Proceedings of Nordic Workshop on Secure
IT-Systems (NordSec’05), Tartu, Estonia, October 2005.

[JS97] Jyh-Shing Roger Jang and Chuen-Tsai Sun. Neuro-fuzzy and soft
computing: a computational approach to learning and machine in-
telligence. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

[JUn06a] http://www.junit.org, October 2006.

[JUn06b] http://www.clarkware.com/articles/JUnitPrimer.html, Octo-
ber 2006.

[Jøs96] A. Jøsang. The right type of trust for distributed systems. In Proc.
of the 1996 New Security Paradigms Workshop. ACM, 1996.

[LSM+98] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C. Taylor,
S. J. Turner, and J. F. Farrell. The inevitability of failure: The
flawed assumption of security in modern computing environments.
In Proceedings of the 21st National Information Systems Security
Conference,, pages 303–314, October 1998.

http://www.cs.princeton.edu/~appel/modern/java/CUP/
http://www.junit.org
http://www.clarkware.com/articles/JUnitPrimer.html

BIBLIOGRAPHY 169

[Mau96] Ueli Maurer. Modelling a public-key infrastructure. In ESORICS:
European Symposium on Research in Computer Security. LNCS,
Springer-Verlag, 1996.

[ML97] Andrew C. Myers and Barbara Liskov. A decentralized model for
information flow control. In Symposium on Operating Systems Prin-
ciples, pages 129–142, 1997.

[ML00] Andrew C. Myers and Barbara Liskov. Protecting privacy using the
decentralized label model. ACM Transactions on Software Engi-
neering and Methodology, 9(4):410–442, 2000.

[MSZ04] A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declas-
sification, 2004.

[Mye99] Andrew C. Myers. JFlow: Practical mostly-static information flow
control. In POPL, pages 228–241, 1999.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles
of Program Analysis. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1999.

[Ope] http://www.openssl.org/news/secadv_20030219.txt.

[Pob04] Eric Poblenz. Language-based approaches to secure information
flow. Departement of Computer Science, University of California,
Santa Cruz, 2004.

[Rab81] M. Rabin. How to exchange secrets by oblivious transfer. Aiken
Computation Laboratory, Harvard U., 1981.

[RS06] A. Russo and A. Sabelfeld. Securing interaction between threads
and the scheduler. In Proceedings of IEEE CSFW’06, 2006.

[SM03] A. Sabelfeld and A. Myers. Language-based information-flow secu-
rity, 2003.

[SPJH06] Dan Søndergaard, Christian W. Probst, Christian Damsgaard
Jensen, and Rene Rydhof Hansen. Program partitioning using dy-
namic trust. In Proceeding of the Formal Aspect of Security and
Trust workshop 2006, 2006.

http://www.openssl.org/news/secadv_20030219.txt

170 BIBLIOGRAPHY

[SV98] Geoffrey Smith and Dennis Volpano. Secure information flow in a
multi-threaded imperative language. In Conference Record of POPL
98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Diego, California, pages 355–364,
New York, NY, 1998.

[vm06] Moving Trust Out of Application Programs: A Software Architecture
Based on Multi-Level Security Virtual Machines, 2006.

[VSI96] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound
type system for secure flow analysis. Journal of Computer Secu-
rity, 4(3):167–187, 1996.

[WSJ00] W. Winsborough, K. Seamons, and V. Jones. Automated trust ne-
gotiation. Technical Report TR-2000-05, Department of Computer
Science, North Carolina State University, April 24 2000. Mon, 24
Apr 2000 17:07:47 GMT.

[WYS+02] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis,
B. Smith, and L. Yu. The trustbuilder architecture for trust negoti-
ation. IEEE Internet Computing, volume 6, number 6, pages pages
30–37, 2002.

[YKB93] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure
systems–A distributed authentication perspective. In RSP: IEEE
Computer Society Symposium on Research in Security and Privacy,
1993.

[ZCMZ03] L. Zheng, S. Chong, A. Myers, and S. Zdancewic. Using replication
and partitioning to build secure distributed systems, 2003.

[ZH99] Lidong Zhou and Zygmunt J. Haas. Securing ad hoc networks. IEEE
Network, 13(6):24–30, 1999.

[Zim95] Philip R. Zimmermann. The official PGP user’s guide. MIT Press,
Cambridge, MA, USA, 1995.

[ZZNM01] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Untrusted hosts
and confidentiality: Secure program partitioning. In Symposium on
Operating Systems Principles, pages 1–14, 2001.

	Abstract
	Resumé
	Preface
	1 Introduction
	1.1 Structure of this Thesis

	2 Information Flow
	2.1 Non-interference
	2.2 Secure Information Flow
	2.3 Type systems
	2.4 Decentralized Label Model
	2.5 Covert Channels

	3 Secure Program Partitioning
	3.1 Partitioning programs
	3.2 Optimal split
	3.3 Run-Time Interface
	3.4 Trust relation

	4 The sflow Language
	4.1 Grammar
	4.2 Operational semantics
	4.3 Type system

	5 Extending SPP to Dynamic Networks
	5.1 Dynamic Splitter
	5.2 Trust Model
	5.3 Static Trust
	5.4 Dynamic Trust
	5.5 Recommended Trust
	5.6 Confidentiality and Integrity
	5.7 Probabilistic Trust
	5.8 Quality of a Partitioning
	5.9 Erasure Policies
	5.10 Decentralized Splitting

	6 Design
	6.1 Requirement Specification
	6.2 Assumptions
	6.3 Decentralized Label Model
	6.4 Abstract Syntax
	6.5 Parser
	6.6 Verifier
	6.7 Splitter
	6.8 Trust Model
	6.9 Optimal Split
	6.10 System Manager
	6.11 Erasure Policies

	7 Implementation
	7.1 Collection Framework
	7.2 Parser
	7.3 User Interface
	7.4 Generic Design

	8 Evaluation
	8.1 Test Strategy
	8.2 Unit Testing
	8.3 Functional Testing
	8.4 Performance
	8.5 Security
	8.6 Case Study: Insurance Quotes
	8.7 Case Study: Oblivious Transfer

	9 Future Work
	9.1 Execution Platform and Real Networking
	9.2 Erasure Policies
	9.3 Compatibility with JIF
	9.4 The Future of Secure Dynamic Program Partitioning

	10 Conclusion
	A Definition of Terms
	B The sdpp Package
	B.1 Basic Classes
	B.2 Decentralized Label Model Package
	B.3 Abstract syntax
	B.4 Parser
	B.5 Code verifier
	B.6 Splitter
	B.7 Basic Trust Classes
	B.8 DLMTrust
	B.9 ProbabilisticTrust
	B.10 Optimizers
	B.11 System Manager

	C Test Scheme
	C.1 Functional Test
	C.2 Unit Tests

