
Virtual Circuits in
Network-on-Chip

Master of Science thesis nr.: 87

Technical University of Denmark
Informatics and Mathematical Modelling

Computer Science and Engineering

Lyngby, 18th of September 2006

Supervised by Jens Sparsø
Co-Supervised by Mikkel Stensgaard

s011493 - Christian Place Pedersen

i

Abstract

This project investigates virtual circuits circuits in Network-on-Chip, specially how vir-
tual circuits can be used to give guarantees on bandwidth and latency requirements. The
project is in two parts: A study, which investigates guaranteed service in NoC implementa-
tions and an extension of the virtual circuit support in MANGO.

The study conducted in this project examines seven different NoC implementations -
both academic and industrious. The main focus of the study is to investigate the different
approaches to guaranteed service.

The second part of this project describes the implementation of reconfigurable virtual cir-
cuits in MANGO, an asynchronous NoC developed in the PhD thesis by Tobias Bjerregaard,
at IMM, DTU. The implementation presented here offers flexible programming of virtual
circuits as well as reuse of virtual channels.

Acknowledgements

This Master of Science thesis has been carried out at the Computer Science and
Engineering division of Informatics and Mathematical Modelling department at the
Technical University of Denmark, during 2006.

I would like to thank my supervisor Jens Sparsø for his guidance, discussions
and support during the course of this project. I would also like to thank co-supervisor
Mikkel Stensgaard for his most valuable inputs, ideas and support. Thanks to Tobias
Bjerregaard for providing insight in MANGO and to Matthias Stuart for the discus-
sions on MANGO and NoC implementations.

iii

Contents

1 Introduction 1
1.1 Previous Work . 2
1.2 Project Description . 2
1.3 Report Structure . 3

2 Domain Introduction 5
2.1 Network-on-Chip . 5
2.2 Quality of Service . 13
2.3 Use Cases . 14
2.4 Asynchronous Circuits . 17

3 A Network-on-Chip Study 21
3.1 Hermes . 22
3.2 QNoC . 22
3.3 Octagon . 24
3.4 NOSTRUM . 25
3.5 Æthereal . 28
3.6 SoCBUS . 30
3.7 MANGO . 32

4 Guaranteed Service with Virtual Circuits 35
4.1 Abstraction of Virtual Circuits . 36
4.2 Programming Model . 37
4.3 Distribution of the Use Cases . 38
4.4 Network State . 40

5 The MANGO Network-on-Chip 41
5.1 Setting Up Virtual Circuits in MANGO 41
5.2 The MANGO Network Adapter 43
5.3 Best-Effort Routing . 44

6 Reconfigurable Virtual Ciruits in MANGO 47
6.1 Specification . 47
6.2 Reusable Virtual Channels . 48

iv

v CONTENTS

6.3 Programming the Network Adapters 52
6.4 Determine the State of the NoC . 54
6.5 Controlling the Setup Time . 54
6.6 Acknowledgment Configuration 55
6.7 Routing Schemes . 58

7 Testing 63
7.1 Test Example . 66

8 Discussion 67
8.1 NoC Status . 67
8.2 The Status of MANGO . 68
8.3 Future Work . 69

9 Conclusion 71

Bibliography 73

A Implementations 77
A.1 Handshake Conversion . 77
A.2 NA Programming . 78
A.3 Acknowledgement . 78
A.4 Best-Effort Router . 79

B Tests 81
B.1 The Mangofy Script . 81
B.2 Wave traces . 82
B.3 Configuring BE Paths Remotely 82
B.4 Reuse of a VC and remote circuit setup 83

C Source Code 87
C.1 key.v . 87
C.2 lut_arb.vhd . 88
C.3 gen_acknowledge_39.v . 90
C.4 BE_behav.v . 92
C.5 The Test Net . 104
C.6 The Test Bench . 116
C.7 OCP Master . 121
C.8 OCP Slave . 125

List of Figures

2.1 Communication structures . 6
2.2 Basic NoC elements . 7
2.3 Interfaces in NoC . 8
2.4 NoC topologies . 9
2.5 Deadlock . 11
2.6 A Virtual Channel . 12
2.7 Network abstraction layers . 12
2.8 An use case example . 15
2.9 A use case example with a set-top box 16
2.10 Asynchronous Protocols . 18
2.11 The Muller C-element . 19
2.12 A handshake latch . 19
2.13 Data flow in asynchronous circuits . 19

3.1 Basic Octagon Configuration . 25
3.2 Temporally Disjoint Networks . 26
3.3 The Æthereal configurationprocess . 29
3.4 Transactions in the SoCBUS network 31
3.5 A complete ALG link. 32
3.6 Overlapping VC handshakes. 33

4.1 Two virtual circuit using virtual channels 35

5.1 GS Setup in MANGO . 42
5.2 The MANGO NA . 44
5.3 Basic NoC elements . 44

6.1 A Virtual Channel in MANGO . 49
6.2 Virtual Channel implementation in a MANGO router 49
6.3 New location of the key. 51
6.4 The Gated Merge . 52
6.5 The configuration register inside the NA 53
6.6 Configuration through NI . 53
6.7 Acknowledge in the BE router . 57
6.8 XY-routing in a mesh net . 59

vi

vii List of Figures

6.9 Relative and absolute routing . 59
6.10 The new BE router . 60

7.1 The test setup . 63
7.2 A test example . 66

A.1 Gate level diagram of the key. 77

CHAPTER 1

Introduction

A System-on-Chip (SoC) is as the name suggests, a system made up of smaller sub-
systems on the same chip. These subsystems can be anything from general process-
ing units over application specific units to memory modules and interfaces. Because
the subsystems can be tailored to a specific application or be very general and broad,
SoCs can cover a great range of applications and products, from small, low power
embedded systems that have very thight constrains on area and power to large general
systems that can handle a broad range of applications. By introducing subsystems
into the design process, individual components can be designed and verified which
makes the process of designing and verifying the entire system easier. In addition,
the SoC approach allows for reuse of subsystems, which enables the creation of in-
tellectual property cores (IP cores) that can be designed and used in several SoCs.
This allows for a large amount of reuse which greatly decreases the time it takes to
construct even large and complex SoCs.

The SoC approach to system design allows the system designer to plug IP cores
toghether, through a common interface via an interconnect. In many cases, this inter-
connect is a bus structure or point-to-point links. As CMOS technology has scaled
down, the cost of wires - i.e. communication - can no longer be neglected. To cope
with the increased capacitance on a bus as more IP cores are connected, segmented
busses are being used, but at the cost of increased latency and lower bandwidth for
each IP core. To maintain and even increase the performance of the communcation
infrastructure in very large SoCs, alternative communication infrastructure are being
investigated.

In recent years Network-on-Chip (NoC) has received increasing interest as an ap-
proach to handle the on-chip communication of large scale SoC. A network is char-
acterised by having segmented links connected through intermediate points that route
information incoming on one link to another of the connected links. NoC addresses
many of the challenges that rise from scaling busses and point-to-point links to facil-
itate the increasing number of IP cores. Many of the solution can be adopted from
research already done within the field of large scale networks, such as the Internet.

1

PREVIOUS WORK 2

New challenges and possibilities arises from NoC, such as guaranteeing bandwidth
and latency between IP cores.

As all IP cores are connected to the network, NoC enables logical point-to-point
links between all IP cores. This increases the flexibilty of the SoC, which can be used
by introducing use cases. A use case is a way to describe the use of the network. The
SoC can thus handle different applications with the same hardware, which gives the
chip a larger market.

1.1 Previous Work
Due to the rise in NoC research, several implementations of the NoC concept have
been proposed and described both in the academic world and in the industry. The
implementations investigate different aspects of the design spectrum within NoC.

The following networks are developed and described in the academic world.
×pipes [4] is a library of network components that can be put togheter using a
designated compiler, [19], that allows different network architectures. CHAIN [1]
and SPIN investigate different tree-topologies, but differ greatly as CHAIN is an
asynchronous implementation where SPIN is synchronous. QNoC [10] is another
synchronous network that uses virtual channels to give statistical guarantees on con-
nections in the network. SoCBUS establishes an end-to-end connection for all data
transfers across the network. MANGO [5] is a feature rich asynchronous NoC that
offers among other things hard guarantees on bandwidth and latency between the
connected IP cores.

In the industry, the NoC adoption has been sparse, but academic implementa-
tions have resulted in spin offs as fx. CHAIN [2] which is now developed by Silis-
tix [18]. Philips Research has also implemented and described a synchronous NoC
called Æthereal [16] that offers both best effort traffic and guaranteed service con-
nections. The guaranteed service connections divides the time to multiplex the links
in the network. In addition, Æthereal can be reconfigured to support different appli-
cation requirements at runtime. Lastly IBM, Sony and Toshiba’s Cell processor [20]
uses a so called Element Interconnect Bus which bears great resemblance to the NoC
concept.

1.2 Project Description
This project will build upon MANGO inorder to investigate how more flexibility
can be added to the guaranteed service connections used by MANGO to provide
hard guarantees on bandwidth and latency. Allowing for more dynamic uses of the
MANGO NoC.

The MANGO NoC has been designed at IMM DTU, by Tobias Bjerregaard in his
PhD thesis [5]. MANGO is a novel implementation of the NoC concept and is char-
acterised by being asynchronous and providing hard guarantees on both bandwidth

3 CHAPTER 1 - INTRODUCTION

and latency. This is accomplished by introducing guaranteed service connections
based on virtual channels on the intermediate links inside the network, creating end-
to-end virtual circuits. MANGO’s virtual circuits can be setup - at runtime - between
any two IP cores, i.e. the virtual circuits can be tailored to meet the requirements of
a wide range of applications on the same hardware.

Furthermore this project will take a look on the state of current NoC implemen-
tations, with focus on the guaranteed services approaches taken.

The main challenge in this project is to determine and in turn implement the
extra feature that is needed to allow for dynamic reconfiguration of connections in
the MANGO NoC. The solution will aim to provide a flexible approach to how the
virtual circuits can be used and created.

1.3 Report Structure
The report is in two major parts. Part one, consisting of chapter 2, 3 and 4, is an
introduction to the NoC domain. Chapter 2 describes general NoC concepts and
introduces Quality-of-Service as it is used in this project, furtheremore use cases as
a general way of describing traffic patterns in SoC design is described. Lastly, the
chapter introduces asynchronous circuits. In chapter 3, a study of different NoCs and
their take on Quality-of-Service is described. Chapter 4 discusses virtual channel
specific topics.

Chapters 5, 6 and 7 make up part two about MANGO and the modifications and
extensions that are done in this project. Chapter 5 thoroughly describes the MANGO
NoC, with focus on the parts that must be taken into consideration when guaranteeing
service. The extensions and modifications conducted in this project are described and
discussed in chapter 6. Chapter 7 describes the test, which have been conducted as
part of this project. Finally chapter 8 and 9 holds the discussion and conclusion
respectively.

CHAPTER 2

Domain Introduction

This chapter introduces the basic concepts built upon in this project. First, an intro-
duction to Network-on-Chip is given, followed by a description of which services
can be offered by a communication structure. The term use case is then introduced
and described in the context of NoCs. Lastly, a short introduction to asynchronous
circuits is given.

2.1 Network-on-Chip
The NoC concept shares many concepts and features with large scale network, such
as those created between computers in fx. the Internet. One of the great differences
is that a NoC is static in contrast to most large scale networks that have to cope with
ever-changing routes and number of connected users. This affects the design choices
such as the transmission protocol and flow control. In addition, because a NoC is
a closely coupled environment, data loss and corruption can be neglected in most
cases.

In this section, basic concepts, distinctive features and terms of Network-on-Chip
(NoC) will be described and discussed. Then more advanced topics within NoC are
described. These topics include interfaces, topology, protocols and flow control.
Lastly, different abstraction levels of the NoC and their effect on the overall SoC
design process will be discussed.

This section is based on the terms and concepts introduced in [9], where a survey
of the current state of NoC research and practises can be found.

2.1.1 Basic Concepts
As the CMOS technology develops, transistors shrink in size, causing the wire re-
sources to make up a larger part of the overall system. Therefore, the on-chip com-
munication structure also takes up more of the overall ressources in a SoC. In addi-

5

NETWORK-ON-CHIP 6

tion, the most commonly used types of communication structures in SoC - bus (figure
2.1(a)) and point-to-point (figure 2.1(b)) links, scale poorly when more subsystems
or IP cores are added to the system. NoC-based systems as the one seen in figure
2.1(c) try to cope with the problems that arise when scaling a bus and point-to-point
links.

I/O

CPU
Memory

Memory I/ODSP

Bus

(a) A bus.

I/O

CPU

Memory

DSP

I/O

Memory

(b) Point-to-point
links.

DSPMemory

MemoryCPU
I/O

I/O

(c) An on-chip net-
work.

Figure 2.1: Examples of communication structures: 2.1(a): a bus, commonly used
in SoC; 2.1(b): point-to-point links, used for high performance links and 2.1(c):
network, segmented links connected by routers.

Figure 2.2 shows the basic elements of a NoC in SoC. These basic elements can
also be thought of as abstraction levels which will be detailed in section 2.1.7. The
basic elements of a NoC are:

IP Cores are not part of the NoC, but are shortly described here. They are connected
to the network interfaces and make use of the services provided by the network
to gain access to another resource in the system. A core can typically either
initiate requests, be the target of these requests or have both capabilities. The
cores have different roles ranging from general processing units over signal
processors and I/O controllers to storage such as RAM.

Network Adapters (NA) provide the interface to the IP core through which the net-
work services can be accessed. The NA encapsulates the data provided on the
core interface into packets, which are again spilt into flow control units (flits)
before they are sent into the network through the NAs network interface. Flits
are used in order to minimise the need for buffers and wires in the network.

Routers or switches routes data on the links in accordance with a chosen routing
protocol. The router routes the data flits from one point in the network to
another. The routers are arranged in a topology and they handle forwarding
and flow control of data between the network adapters. The routers generally
connect a number of links and one or more network adapters.

Links are a group of bundled parallel wires that run from one point to another point
on the chip. The data width of the links depends on the number of wires
bundled together, and how many control signals that are used. On the links,

7 CHAPTER 2 - DOMAIN INTRODUCTION

data is transmitted one flit at the time. Links connect routers to other routers
and to network adapters.

IP core IP core IP core

IP core IP core IP core

IP core IP core IP core

Link

Router

Network Adapter

Figure 2.2: A 3x3 2 dimensional NoC. The basic elements of a NoC include: Net-
work adapters, routers and links. Connected to the network adapters are IP cores,
such as computational units, memory and I/O.

2.1.2 Interface
Because a NoC is just another implementation of a communication structure suited
for SoC, each communication structure should present the same interface to the core.
By using a common interface or socket, the system designers can choose different
communication structures and other IP cores that suite their specific needs. An ex-
ample of such a common interface is the Open Core Protocol (OCP) [30] interface
which provides a master and a slave interface for initiating and receiving request re-
spectively. To make use of some special services that are provided specifically by a
communication structure, the system must be aware of these services. In the case of
NoC an IP core is said to be network aware and can therefore make use of the extra
features and services. A NoC can for example offer guaranteed bandwidth between
any two of its interfaces in the network, an IP core must be aware of this feature in
order for it to setup connections.

2.1.3 Network Adapter
The network adapter (NA) communicates with the IP cores through what is called the
core interface (CI) in this report. The NA transforms the request from the core into
a request that can be transmitted by the network, through the network interface (NI).
Figure 2.3 shows the interfaces and how they are used to make the network trans-
parent for the IP cores. This allows for the network to be clocked by another clock

NETWORK-ON-CHIP 8

Master

IP core

In
iti
at

or
 N

A

Network Interface

Core Interface

Slave

IP core

Tar
ge

t N
A

Network

Core Interface

Network Interface

Figure 2.3: The NA translates between a core interface presented to the cores and a
network interface presented to the network.

or no clock at all, allowing Globally Asynchronous Locally Synchronous (GALS)
systems. The NA then handles the synchronisation between the different domains,
further allowing each IP core to be clocked individually.

The figure also shows how the terms regarding master-slave interface are used in
this report. A master IP core initiates request to a target slave IP core. Therefore,
the master IP core is connected to a slave port on the network and a slave core is
connected to a master port on the network. To avoid confusion, the term initiator NA
is used in this report when describing the NA connected to a master IP core and the
slave IP core is connected to the target NA. This means that requests are transmitted
from the initiator to the target, while responses are transmitted from the target to the
initiator. It should be noted that a target NA is always the target of requests and is
thus the NA that receives a request and generates a response if needed.

2.1.4 Topology
The network topology defines how the routers in the network are connected. A col-
lection of network topologies that are used in NoCs are shown in figure 2.4. Topolo-
gies can be grouped in several ways: direct networks and indirect networks; homo-
geneous and inhomogeneous.

In direct networks, each router has at least one IP core directly connected, whereas
in the indirect networks some routers are only connected to other routers and only
designated routers are connected to IP cores. A mesh network, figure 2.4(a), is a
typical example of a direct network and tree structured networks, figure 2.4(d) and
2.4(d), are examples of indirect networks where only the leafs of the tree are IP cores.
However, an indirect mesh network can be created by only connecting IP cores at the
edges of mesh and the trees can be made direct by adding IP cores to all nodes in a
tree.

9 CHAPTER 2 - DOMAIN INTRODUCTION

(a) Mesh (b) Torus (c) Ring

(d) Binary tree (e) Fat tree (f) Irregular

Figure 2.4: Different NoC topologies.

A homogeneous network is a network that scales in a predictable way, such as
mesh, ring (figure 2.4(c)) and balanced trees do. Inhomogeneous networks such as
the irregular network shown in figure 2.4(f) are arranged to suit the needs of a spe-
cific application in order to optimise the overall system, i.e. area, power or speed.
Optimising the network by clustering IP cores that have a high amount of commu-
nication with each other decreases latency and switching activity resulting in better
performance and a lower power consumption. Clustering can be done by creating
irregular topologies or by mixing topologies to form a more optimised topology for
that specific application. The cost however is that the flexibility of the system is low-
ered because while the system might perform very good when running that particular
application, it may not be a viable solution for other applications.

Figure 2.4(b) shows a torus network that differentiates itself from the mesh net-
work by connecting opposite edges and by usually having unidirectional links, where
most other topologies favour bidirectional links. The torus network performs poorly
on applications with high amounts of local traffic, but comes at a relative low cost
in area due to having unidirectional links. Ring networks 2.4(c) are not common in
NoC, but as shall be seen in 3.3 they can make for an interesting topology.

2.1.5 Protocol

A protocol describes how data is transferred from one point in the network to another
point. In line with [9] switching is used here as transport of data, while routing
determines the path the data takes.

NETWORK-ON-CHIP 10

Most NoCs today employ packet switching where packets are forwarded through
the network in flits. The most commonly used forwarding strategies are store-and-
forward and wormhole. In a store-and-forward routing based network the router re-
ceives and stores the entire packets, i.e. it buffers multiple flits, and then forwards the
packet based on the routing information held within the packet. Store-and-forward is
the strategy most commonly used in macro networks, but can also be found in some
NoC implementations. Wormhole routing is chosen in most NoC implementation,
because it tries to minimise packet latency. The routing decisions in the routers are
made on basis of the first flit in the packet and all the subsequent flits are forwarded
as they arrive, thus also minimising the need for deep buffers in the routers. The
downside of wormhole routing is that a large part of the network can be stalled if a
worm of data is stalled itself, thus spanning several routers and blocking for yet other
worms of data. There are however techniques to avoid this, one of which is called
virtual channels, which will be described in greater detail later in this report.

Opposite packet switching is circuit switching, where a circuit is set up from
source to destination and data is then transported on the circuit. Circuits may be
dynamically setup and torn down as they are used or they may be statically created
in the network prior to execution.

Connection-oriented mechanisms are dedicated or logical connection paths setup
from sender to receiver before data is transmitted, which are torn down after use.
Hence a circuit switched network is always connection-oriented. Connection-less
networks do not setup connections, rather the sender transmits the data onto the net-
work which then forwards it to the receiver. Packet switched networks can be either
connection-oriented or connection-less, and as in the case of Æthereal both can be
available in packet switched networks. Æthereal is examined in more detail in sec-
tion 3.5. A very interesting example of a connection-oriented packet switched NoC
is SoCBUS which will be described further in section 3.6.

When using a deterministic routing algorithm the path followed in the network
is only based on the source of the packet and its destination. Source routing is a
deterministic routing algorithm where the path through the network is decided by
the source alone, whereas in XY-routing (mesh and torus networks) which is also
a deterministic algorithm, the packet is routed fully along one axis and then fully
along the other axis to arrive at its destination. In adaptive routing schemes the
routing decisions are taken dynamically on a per-hop basis, and the decision can be
based on congestion in the surroundings. NOSTRUM uses an extra wire between
routers to signal congestion and then routes packets around the congested links. A
more thorough investigation of NOSTRUM is conducted in section 3.4.

Minimal routing always follows the shortest path between sender and receiver.
If the shortest path is not taken it is said to be non-minimal. The HERMES NoC
employs a minimal routing algorithm and will be looked further into in section 3.1.

11 CHAPTER 2 - DOMAIN INTRODUCTION

2.1.6 Flow Control
Flow control is the mechanisms that controls the flow of packets through the network,
on both a global and a local scale. It ensures that the operation of the network is
correct, such as avoiding deadlocks. Flow control can be extended to control the
utilisation of the network resources, which can be used to improve the performance
and give guarantees on data transfers. Here, flow control issues and the concept of
virtual channels is briefly described.

As mentioned above, flow control is about ensuring the correct operation of the
network, which means that it must avoid deadlocks. A deadlock is when network re-
sources are waiting for each other to be released. A classical example of a deadlock
is shown in figure 2.5. Deadlocks can be avoided by breaking cyclic dependencies
in the resource dependency graph. A closely related problem in networks is live-
lock. Livelock is less common than deadlocks and occurs when resources constantly
change state without getting anywhere.

Figure 2.5: Four streams of data wait for each other to release the occupied network
resources, resulting in a deadlock.

In every network, macro network as well as NoCs, buffers play an important role.
They provide decoupling on the segmented links in the network. In NoC design,
buffers account for a very large part of the overall router area, and it is therefore a
concern to minimise the size of the buffers. Two things contribute to the buffer size,
the data width and the depth of the buffers. It has been shown that deeper buffers
do not solve congesting problems but rather delay it. However, deeper buffers do
smooth out burst traffic. Buffer placement is another topic within NoC design. Fx.
placing buffers at the input results in packets being blocked behind a packet that is
unable to leave through its designated output port.

Several independent buffers can be used to share a physical link. This is called
virtual channels (VC). A physical link is typically shared between 2 to 16 VCs which
involves a matching number of buffers and an arbitration mechanism. Figure 2.6
shows an example of four VCs across a link. VC implementations therefore intro-
duce a power and area overhead, because of the extra buffers in the routers. The
advantage of VCs is that they can be used to break dependencies within the network,
thus avoiding deadlocks. Wire utilisation can be optimised, performance can be im-
proved due to fewer stalls in the network and VCs can be used to offer differentiated
quality of service by reserving a certain priority in the VCs along a path to form vir-

NETWORK-ON-CHIP 12

Link BuffersBuffers Arbitration Multiplexing

Figure 2.6: A link with four buffers and the arbitration mechanism.

tual circuits. A more in depth discussion of VC and virtual circuits is presented in
chapter 4.

2.1.7 Network Abstraction

When designing a SoC, the communication structure can be abstracted at different
levels. The most common model used to abstract networks is the OSI model which
consist of 7 layers. In NoC some of the OSI layers are redundant due to the inherent
differences between macro networks and NoCs. Due to these differences, a collapsed
model is introduced in [9] that matches NoC usage. The collapsed model which is
shown in figure 2.7 will be used in this project. The figure shows the collapsed model
and the corresponding OSI layers, as well as communication directives between the
different layers.

IP core

SinkSource

IP core
Application/

Presentation

Session/

Transport

Network

Link/Data Link

Network

Network

Adapter

System

flits

OSI layers NoC layers

messages/

packets/

transactions

streams

TargetInitiator

Figure 2.7: OSI layers and the adapted NoC abstraction layers.

The four different layers shown in the above figure also represents different ab-
stractions of the NoC. A high level abstraction model plays an important role in the
SoC design process, as it allows greater complexity to be captured. However, the
lower levels are also an important part of the design process, as the awareness in the
system of the lower levels can lead to better performance. In the following, the four
layers depicted in figure 2.7 will be described.

13 CHAPTER 2 - DOMAIN INTRODUCTION

System
The highest layer in the NoC model consists of processes and system architecture.
The network details are mostly hidden at this level. At this level, the system only
considers a generic communication structure and most SoC research applies at this
level. The different processes of the system are communicating by passing messages
back and forth between each other. In the process, the communication can be thought
of as high level send and receive statements. In a CSP like language the sender would
have a send statement, send(message, receiver), and the receiving process would then
wait for the message with a receiving statement, receive(message, sender).

Network Adapter
The job of the network adapter is as mentioned earlier to decouple the IP cores from
the network, as well as handle end-to-end flow control. As an abstraction layer this
is the first layer that adds network awareness, in such a way that packets and streams
are distinguished. Messages from the system level above are broken into either pack-
ets or streams. Packets contain information on their destinations placement in the
network, whereas the streams follow pre-configured routes to their destination that
has been set up prior to the transmission. A packet would be send in a more spe-
cific way than the messages above, code for transmitting a packet would look like
send_packet(packet, destination_address) and a stream would be transmitted with
stream_data(data, circuit).

Network
At the network layer, the network is described in terms of routers and links, thus
the topology of the network can be described at this level. Routing and transport
protocols are considered as well as the flow control in between the routers.

Link
This is the lowest layer in the NoC abstraction model and at this level the atomic
units of a transmission, the flits are considered. Data encoding and synchronisation
is considered at this level.

2.2 Quality of Service
A network can provide Quality of Service (QoS) to the cores connected to it. Differ-
ent levels of service can be offered to the cores, thus QoS is defined as a quantification
of the service level.

Services such as low latency, high through-put and controlled jitter, are interest-
ing for real time applications and other applications that require guarantees on the
transmission services. Services of increasing quality are offered in the different lay-
ers of the network abstraction model described in section 2.1.7. Services which can
be characterised as high level services are offered in the high abstractions layers and
build upon services from the lower layers. Examples of services that build upon each
other from the bottom and up are given in the following.

USE CASES 14

Lossless service guarantees that data transmitted arrives and is received as it was
sent, i.e. no error is introduced in the data delivered by the service. Together with
in order delivery, that ensures that a data packet B, transmitted after a data packet A,
will never be delivered before A, this provides the basis for guaranteed service (GS).

GS provides guarantees on transmission specific parameters such as through-put
and latency. Guaranteed through-put enables streamed data to arrive at a constant
rate and guaranteed latency ensures that the latency on data transmissions such as
read and write operations have a maximum latency.

The guarantees are offered differently in different NoC implementations. The
asynchronous MANGO NoC, described in more detail in section 3.7 and in chapter
5, offers hard guarantees whereas QNoC offers statistical guarantees. More on QNoC
and the concept of statistical guarantees in section 3.2.

2.3 Use Cases
A use case is a way to describe the communication requirements of a system. In
[26] use cases are used as input to the mapping tool used to generate a NoC - more
specifically the Æthereal NoC. This section will give an introduction to use cases,
their use in NoC design and how multiple use cases can be exploited to optimise
NoCs.

A use case describes the traffic pattern i.e. which cores need to communicate,
the bandwidth and latency requirements and the traffic types. The use case can be
used to plan the traffic. By planning the traffic, power consumption can be lowered
as well as optimising overall performance in the network. By distributing the traffic
equally over the network, congestion points in the network can be avoided to a large
extent. General network layouts can be tailored to meet specific requirements of
an application, thus allowing the network and in turn the entire system to handle a
wide range of applications. In NOSTRUM, circuits are setup at run time, but the
allocation of bandwidth to each circuit can be configured during run time allowing
the same fabricated chip to meet bandwidth requirements of several applications.

The application domain of SoCs ranges from digital hearing aids over multi-
media phones to set-top boxes, all of which are applications that handle several tasks
simultaneously. An example of a use scenario involving a multi-media phone is
shown in figure 2.8. If the roaming and GSM specific traffic is discarded the figure
shows four different typical phone tasks; voice call, general application usage, music
playback and video call. Each of the four tasks presents different requirements to
the system. In addition some of the tasks are executing in parallel creating yet more
constraints and requirements for the system.

Playing back or streaming audio requires a low jitter and a constant bandwidth
connection between a signal processing unit and the audio output. In addition the
audio stream can either be stored locally requiring access to off-chip storage, or the
audio stream can be acquired across the GSM net requiring access to the RF device.
Video calling requires a low and constant latency between IP cores in the system

15 CHAPTER 2 - DOMAIN INTRODUCTION

along with some high bandwidth connections to support the video de- and encoding.
General application usage such as text messaging, playing games or browsing the
Internet generally has lower requirements and can in many cases be handled by best-
effort type services. Voice calls requires, as the video call low latency and jitter
free connections between RF devices, signal processors and audio input and output
devices.

The figure can be segmented into several parts in different ways. Each of the
four tasks has requirements that could be described by a use case. However from
a system point of view the segmentation shown along the time axis, A to E, into
use cases makes more sense. Such a view can be obtained by creating use cases that
encapsulate all the tasks that run in parallel. Such a use case completely describes the
use of the system in that time interval. As mentioned earlier, the general applications
of SoC involves multiple tasks, some of which can execute in parallel. Therefore
the use of a system can rarely be described by one use case which leads to having
multiple use cases describing the requirements at different times, even more use cases
than there are tasks. Use cases can be used to make an application run on a specific
SoC, by specifying circuits, routes and services to setup. Use cases can also be used
as input to a mapping tool laying out the system to meet the requirements of a specific
application.

2.3.1 Multiple Use Cases and Mapping
When considering multiple use cases, the requirements to the communication struc-
ture become more complex, as the requirements are now distributed between multiple
use cases. In the following, only NoC is considered, but some of the discussion here

Video call

Voice call

B C D E

Roaming

Playback music

Application usage

Time

Playback music

A

Figure 2.8: An example of how a mobile multi-media phone could be utilised. From
A to B the user of the phone listens to some music, from B to C a video call is re-
ceived, followed by the user interacting with some build in applications while playing
more music from C to D. Lastly the user is making to different times. a voice call
D to E, during the entire use the phone is handling roaming and other GSM network
specific operations.

USE CASES 16

also applies to other communication structures such as configurable crossbars. One
method used in NoC research to handle the problem of how to find the requirement
of each connection, when the information is segmented between several use case is
to construct a worst case use case. This approach is taken in [26], which uses the
worst case use case to map the Æthereal NoC. The NoC mapped from the worst case
use case is however most often over engineered, which leads to a bigger design and
a higher power consumption. The same group of authors has since described another
method to solve this problem that leads to less overhead, by keeping track of re-
quirements during the mapping process. They also introduce the concept of smooth
switching, and that approach will be described later in this section.

The Viper [14] is a multiprocessor SoC (MPSoC) developed by Philips Research
and is designed for use in set-top boxes. Viper features two general processors (a
MIPS CPU and a TriMedia CPU), along with several dedicated processors and I/O
interfaces. A set-top box such as the Viper is a prime example of a MPSoC and the
need for multiple use cases. Figure 2.9 illustrates a possible use case scenario for
a set-top box such as the Viper. The figure shows examples of four use cases, dis-
playing a broadcast, recording a broadcast while viewing another, playing a recorded
video while recording a broadcast and only playing a recorded video. When creating
use cases, all possible interleavings of system tasks must be considered and placed
into several different use cases, creating a large amount of use cases. The important
thing is that not all interleavings are possible, fx. a set-top box will not at any time
playback a recorded video, while at the same time viewing a broadcast. The excep-
tion being picture-in-picture, where several video streams or broadcasts are shown
on the screen in smaller partitioned areas, which again could be described by a use
case.

View broadcast

Record broadcast

Playback recorded video

UC2UC1 UC3

View broadcast

UC5UC4

Figure 2.9: A use case example with a set-top box.

The authors of the above mentioned worst case use case has described another
approach of mapping multiple use cases to a NoC in [27]. In addition, they intro-
duce the concept of smooth switching. Smooth switching is an important feature as
switching between use cases involves reconfiguration of the NoC, which might cause
interruptions or delays in ongoing communication. Such a delay or interrupt would
not be acceptable in many multi-media applications, and smooth switching addresses
just that problem. In addition to specifying use cases, the authors also specify which
use cases that should be able to smoothly switch to another use case without inter-
rupting tasks that survives the switch. The communication of these tasks can then

17 CHAPTER 2 - DOMAIN INTRODUCTION

be mapped in the network to avoid interruption when other tasks are stopping and
starting. This is done by creating use cases that can handle all the tasks of the use
cases that can smooth switch in between each other. It should also be noted that not
all switches has be smooth, one example being the switch between UC4 and UC5 in
figure 2.9.

To avoid creating the very large amount of use cases by hand, [27] presents the
approach of creating use cases for all the tasks of the system and then grouping use
cases that run in parallel together in compounds. In addition, they specify which use
cases should be able to handle smooth switching in between them. All this informa-
tion is then fed into a mapping tool that creates all the different use cases and maps
the requirements to a NoC. They avoid the overhead of their previous approach where
they used worst case to construct the network, by considering the overall constraints
when mapping each individual use case.

2.4 Asynchronous Circuits

Asynchronous circuits are clockless circuits, which as opposed to synchronous ci-
cuits do not have a global synchronisation. Instead, asynchronous circuits make use
of local handshakes. This chapter gives an introduction to asynchronous circuits and
especially the concepts used in this report. A comprehensive introduction to asyn-
chronous circuits can be found in [32].

Asynchronous circuits are interesting to explore, due to some of the inherent
properties, such as lower power consumption; high operating speed; less emission
of electro-magnetic noise; robustness towards enviroment variations; better compos-
ability; and no clock distribution problems. Of course, these advantages come at a
cost and just like synchronous implementations there are trade-offs to be made. One
of the disadvantages with asynchronous circuits is the lack of design and test tools,
which makes implementation and verification a tedious job. In NoC, asynchronous
circuits are especially interesting due to their composability and the fact that no clock
has to be distributed over the entire chip. Where in synchronous circuits the entire
system is limited by the slowest path in the system, asynchronous circuits do not
have this global dependency and therefore does not suffer from this dependency. The
behaviour of asynchronous circuits depends on the data, which makes them hard to
predict and depending on the implementation style this can affect the execution time
and power consumption.

Asynchronous circuits inherently support the Globally Asynchronous Locally
Synchronous (GALS) scheme, which makes them very suitable for NoC implemen-
tations. The main themes when designing asynchronous circuits are handshake pro-
tocols, data encoding, handshake blocks and combinatorial logic blocks. This section
is divided into a section on handshake protocols, followed by a description of basic
building blocks and how timing is matched through the circuit.

ASYNCHRONOUS CIRCUITS 18

2.4.1 Handshake Protocols

A handshake protocol is a series of events that occur in a specific order. A general
handshake occurs as follows: A request is initiated, as data is valid; an acknowledge
is raised by the target, as the data is accepted; the data no longer has to be valid.
In return-to-zero protocols the request is lowered followed by a lowered acknowl-
edge. This examples is a push channel handshake as data is pushed forward along
the request, as opposed to a pull channel where data is requested by the reciever and
delivered as part the acknowledge.

The request and acknowledge can be signaled on seperate wires to the data which
is called bundled data (figure 2.10(a)), where the dual-rail embeds the request in
the data wires (figure 2.10(b)). Dual-rail uses 2 wires per bit for a total of 2 ×
bit_width + 1, where in the bundled data the overhead only consists of 2 wires
(request and acknowledge). As mentioned, protocols also differ in whether they
return to the same state after a handshake (4 phase, figure 2.10(c)) or keep the state,
thus using the shift on the wire as part of the signalling (2 phase, figure 2.10(d)).

These 3 different aspects of a handshake protocol can be combined to create the
handshake protocol of choice, MANGO employs 2 phase push dual-rail and 4 phase
push bundled data.

2.4.2 Data Flow

Two types of building blocks create the fundament for asynchronous circuit design:
handshake blocks and functional blocks. Handshake blocks handles the flow control
such as, splitting, selecting or joining data channels or control. The function block
manipulate the data, without taking part in the handshakes.

Data

Acknowledge

Request

(a) Bundled data (pull)

Data/Request

Acknowledge

(b) Dual-rail (push)

Req

Data

Ack

ValidValid

(c) 4 phase

Req

Data

Ack

Valid Valid

(d) 2 phase

Figure 2.10: Asynchronous circuits can be implemented with different style of hand-
shake protocols.

19 CHAPTER 2 - DOMAIN INTRODUCTION

C-element
The basic element in asynchronous design is the Muller C-element, which is shown in
figure 2.11. The C-element only changes output value when all inputs are the same, it
is therefore suitable for the indication style circuit that is employed in asynchronous
design.

C Z

B

A

Z

B

A

Figure 2.11: The basic element of asynchronous design is the Muller C-element, the
output only changes when both inputs are the same.

Latch
The basic handshake latch is controlled by a C-element and in figure 2.12 a 4 phase
data latch is shown. The latch is operated by the EN signal that is generated by the
output acknowledge and the input request.

C

QD
EN

Req

Ack

Req

Ack

DataData

(a)

Data

Ack

ReqReq

Ack

Data

(b)

Figure 2.12: A hanshake latch is controlled by C-element (figure 2.12(a)). The sym-
bol used for handshake latches (figure 2.12(b)).

Functional Blocks
Several latches can be placed after each other to form a pipeline of latches. In be-
tween the latches, functional blocks can be placed. Because the functional blocks
do not affect the handshake, the request and acknowledge is exchanged between the
latches surrounding the functional block, as is depicted in figure 2.13. The figure

delay

Functional

Block

Figure 2.13: The functional block does not affect the actual handshake, but the arrival
of the request in the next latch must be matched with the data.

ASYNCHRONOUS CIRCUITS 20

also indicates a delay on the forward flowing request, which is needed to match the
arrival of the request with the arrival of data. The delay of data in the functional block
depends on the actual data and the request delay will therefore either be a function of
the data or a fixed worst case delay.

CHAPTER 3

A Network-on-Chip Study

In recent years, the academic interest in NoC [12] has increased and different research
groups have made publications on NoC concepts and implementations. Among aca-
demic implementations of NoC are the CHAIN network [1], SPIN [17] and ×PIPES
[4].

Industrial implementation of the NoC concept, has also picked up over the last
few years. Examples of these are the Element Interconnection Bus in the Cell pro-
cessor [20], most known for its use in the upcoming Play Station 3. Philips are also
researching in the NoC area with their Æthereal network [16], for use in the com-
pany’s multi-media products such as televisions [33] and set-top boxes [14].

This chapter is a study of NoC implementations with focus on how Quality-
of-Service features are implemented. The seven different NoCs in this study are
chosen because they represent different approaches to and different levels of QoS.
The first NoC described only provides BE routing and gives no guarantees on latency
and throughput. The study then looks at NoCs that provides increasing levels of
guarantees on latency and throughput.

Each of the NoCs is described in relation to what basic concepts the implement,
such as the interface they implement and the unique features that makes them stand
out. Their routing scheme are described, along with the components that they are
constructed with and what topologies they support. The different communication
structures are investigated with focus on what kind of service the NoCs offer. Es-
pecially how setup and configuration of service, such as guaranteed latency and
throughput are handled.

Most of the studied NoCs are developed in academic environments, but Æthereal
and Octagon are developed by Philips and STMicroelectronics respectively.

21

HERMES 22

3.1 Hermes
The HERMES NoC [25] is developed at Faculdade de Informática PUCRS, Brazil.
HERMES is designed to implement very small switches and be of immediate practi-
cal use. The routing scheme employed is XY routing between the switches arranged
in a 2d-mesh structure.

A HERMES switch consists of control logic, five bidirectional ports and buffers.
Four ports connect to neighbouring switches and the fifth port connects to the local
IP core. The buffers are placed at the input ports. HERMES implements wormhole
routing, for low memory and latency. The flit size is 8 bit and the two first flits in
a packet contains the header, which consists of the target address and the number of
flits in the packet.

The routing is a typical XY routing scheme where the packet is routed fully
in the X direction and when aligned properly on the X axis, it is routed in the Y
direction until it reaches its target, thus employing a minimal routing alghorithm.
When a packet has been granted access to an output port through its header flit the
connection between input and output port is reserved for that packet. The number of
flits is counted and compared to the flit number in the header until the entire packet
has propagated through the switch, at which point the connection is closed. The
connected ports inside the switch are stored in a switching table. Five simultaneously
connections can be operated at any one time. The arbitration scheme prioritises the
ports, based on which port last had a successful connection established to ensure that
no port gets starved.

HERMES employs input queues as mentioned earlier. The purpose of these
buffers is to reduce the number of switches affected by a blocked packet. The size of
the buffer is parametrisable, with a default size of eight flits.

HERMES is loss less and inorder, but does not provide any form of latency or
bandwidth guarantees. Because HERMES is connection-less no such guarantees can
be given.

3.2 QNoC
At the Electrical Engineering Department, Israel Institute of Technology, Quality-of-
Service NoC (QNoC) [10] has been developed and described. QNoC is a network of
multi-port switches connected to each other by links. A link is composed of paral-
lel point-to-point lines. The topology of QNoC is a mesh and it employs wormhole
packet forwarding with hop-by-hop credit-based back-pressure flow-control. Rout-
ing paths are static, shortest path and X-Y coordinate based. Traffic is divided into
four different classes of service: signaling, real-time, read/write and block-transfer,
with signaling having the highest priority and block-transfers the lowest priority. A
distinct feature of QNoC is that, unlike other wormhole based routing systems, packet
forwarding is interleaved according to the QoS rules. This means that a high priority
packet, such as a real-time packet, will preempt a low priority packet such as a read-

23 CHAPTER 3 - A NETWORK-ON-CHIP STUDY

/write packet. QNoC does not provide hard guarantees on the service, but instead
QNoC provides a statistical guarantee.

QNoC is loss less and it assumes that retransmission is never required. Packets
always travel the shortest route, which minimises power dissipation and maximises
the utilisation of the network. QNoC is unable to give hard guarantees because it has
been chosen not to implement circuit switching due to the high cost of managing and
establishing circuits. QNoC applies an irregular mesh topology to accommodate the
irregular structure of SoC floor plans.

An IP core or as they are called in QNoC, a system module is connected to a
router via a standard interface that is adapted to the communication needs of that
module. The inter-router links are similarly adjusted to meet the expected bandwidth
needs of that link. The expected communication needs and bandwidth requirements
are developed from an extensive simulator that has been built alongside QNoC. Rout-
ing is done over fixed shortest paths, using X-Y directions in a coordinate fashion,
thus packets are routed first all along X and then perpendicular or first along Y and
then along the perpendicular X axis.

In QNoC, four different types of traffic are considered. They are as mentioned
earlier, signaling, real-time, read/write and block-transfer. Signaling has the highest
priority and is used for urgent and very short messages, such as interrupts and con-
trol signals. The introduction of a signaling service removes the need for dedicated
single-use wires. The Real-Time service is used for streaming real-time applications,
such as streamed audio and video. As described earlier, QNoC does not use circuit
switching, thus the real-time service level is packet based like the remaining service
levels. A real-time link may be allocated a maximum bandwidth that should not be
exceeded. Read/Write is designed to provide bus-like semantics and supports short
memory and register access. Block-Transfer service level is used for transfers of long
messages and large blocks of data. These four service levels are prioritised, with
signaling given the highest priority and block-transfers lowest. More service levels
could easily be defined and included in this priority scheme. It would however, as
described later, require more buffers.

A packet in QNoC consists of three parts: target routing address, command and
payload. The routing address is required for routing, the command field identifies
payload format. The payload can be of arbitrary length and contains, along with
the payload, operation specific control information such as sender identification. A
packet is transmitted as multiple flits, and the flit transfer over the link is controlled
by handshaking. Three types of flits exist: full packet; end of packet; body. The full
packet is a packet that is only one flit long. The body flit is a flit that is not the last
flit of a packet. Flit type and service level is indicated on separate out-of-band wires.

A router in QNoC is connected to up to five links: four neighbouring routers and
one IP core. The router forwards packets between input and output ports, flit by flit.
Upon entering the router the flit gets stored in an input buffer. When the first flit of
a packet arrives at the router, the output port for that packet is determined. Every
flit arriving on that port and service level is then forwarded to the same output port.
Because QNoC uses direct buffer mapping, every service level has its own buffer at

OCTAGON 24

each input. The buffer is small and only capable of storing a few flits, but the buffer
size can be altered at design time. The buffers at each service level and input port
are managed by credits. When a flit passes from input to output, a credit is passed
back to the previous router on a separate wire. The actual transfer of data can be
done by different types of handshake interface, an asynchronous interface could be
used. Inside the router, each output port keeps tracks of available buffer space in
the connected router in a table for each service level. The output link is allocated
according to the available slots in the next routers buffers, the service level and a
round-robin scheme between the input ports.

3.3 Octagon
Octagon is an on-chip communication architecture designed to meet the performance
requirements of network processor SoCs, such as Internet router implementations.
The communication architecture is described in [21]. The authors present the fol-
lowing desirable properties of Octagon: two-hop communication between any pair
of nodes (depending on the number of nodes and configuration); higher aggregate
throughput than a shared bus or crossbar under certain implementation conditions;
simple, shortest-path routing algorithm; and less wiring than a crossbar interconnect.
Octagon can operate in two modes; packet- and circuit-switched. A node in Octagon
is associated with a processing unit and a memory module, this means that only
non-local memory request generates Octagon communication requests. According
to the authors of Octagon this is a very desirable feature when working with network
functions such as routing table look-up and Internet Protocol classification.

An example of a basic Octagon configuration that consists of eight nodes and
twelve bidirectional links is shown in figure 3.1. As can be seen from the figure, every
node can reach any other node with a maximum of two hops. When scaling Octagon
up this maximum length changes, but this will be discussed later. The complexity of
Octagons implementation increases linearly with the number of nodes that must be
connected through the network.

In circuit switched mode, a network arbiter allocates the path between the two
nodes that are to communicate. The path is reserved for a number of clock cycles
for that communication. The arbiter permits several pairs of nodes to communicate
with to each other at the same time, as long as the paths do not overlap, i.e. the
arbiter permits spatial reuse of resources in circuit switched mode. To optimize the
throughput when working in circuit switched mode, the authors of Octagon have
developed the best-fit algorithm to schedule connections in the Octagon network.
When working in packet switched mode the, nodes, routes the packets according to
a destination field in each packet. The node calculates a relative address based on the
destination address and the node’s own address, and the packet is then either routed
left, right, across or in to the node.

One of Octagon’s strong features is its ability to scale. In [21] two scaling strate-
gies are presented, low wiring complexity or high performance. As the naming of

25 CHAPTER 3 - A NETWORK-ON-CHIP STUDY

H

A

B

C

D

E

F

G

Figure 3.1: A basic Octagon configuration, with 8 nodes and 12 bidirectional links.

the strategies suggests Octagon can be optimised for both low area and high perfor-
mance. When scaling for low wiring the strategy is to connect several basic Octagon
configurations as the one shown in figure 3.1. Nodes that are members of two basic
Octagon loops function as bridges, and performs hierarchical routing. This allows
the standard nodes to be used without modifications, because only the bridge nodes
need to know about the other circles. An Octagon network with 22 nodes scaled for
low wiring complexity has a maximum distance of 6 hops while maintaining very
few wires when compared to a fully connected crossbar. The other scaling strat-
egy proposed has higher performance than the above mentioned low wiring scaling
strategy at the cost of more complex wiring. The high performance scaling strategy
allows 512 nodes to be connected with a maximum distance of 6 hops and 2,304 links
compared to a crossbar that would require 512 + · · ·+ 1 links. The reader is referred
to the above mentioned article for more on the interesting scaling strategies.

3.4 NOSTRUM
At the Laboratory of Electronic & Computer Systems, Royal Institute of Technology,
Stockholm, the Nostrum Network on Chip has been described in several articles, fx.
the protocol stack is described in [23] and the guaranteed bandwidth approach is de-
scribed in [24]. Nostrum takes the same approach as macro networks, ie. computer
networks, and emphasises the layered communication by using layered protocols.
Nostrum implements among other things switch load distribution, guaranteed band-
width and multicasting. Furthermore, a simulation environment is provided.

IP cores or resources as they are called in Nostrum, are organised in a two-
dimensional mesh, where each switch is connected to its switch neighbours and to
its resource. Other topologies are possible in Nostrum, but the outset of Nostrum
is a 2d-mesh. The routing scheme chosen is hot-potato or deflective routing [15],

NOSTRUM 26

which eliminates the need for buffers in the switch compared to traditional store-
and-forward routing schemes. Furthermore [28] describes how load distribution is
implemented in Nostrum. Each switch indicates its current load by sending a stress
value to its neighbours. This means that each switch has a picture of the load in its
surroundings. Incoming packets are sorted by the number of switch cycles the packet
has been travelling (in its current implementation). The packet with highest priority
chooses its output port first and then the remaining packets choose in descending pri-
ority. Because of the hot-potato scheme packets which find their desired output port
to be taken by a higher priority packet must choose another output port. Because the
routing decisions are made locally and on individual flits there is no guarantee that
flits let alone packets will arrive in order. Only best-effort traffic is handled by the
above described routing scheme. The guaranteed service traffic is described in the
following.

(a) Topology

...

(b) Bipartite graph

w
i

w
o b

i
b

o

(c) Buffers

Figure 3.2: Temporally Disjoint Networks due to topology (3.2(a) and 3.2(b)) and
buffers (3.2(c)).

As mentioned earlier, Nostrum provides Guaranteed Bandwidth as described in
[24]. The guaranteed bandwidth is accomplished by introducing looped containers.
A container, once created, is looping around on a predetermined path, a virtual cir-
cuit, and can either carry data or be marked as empty. As mentioned earlier Nostrum
employs hot-potato routing, but to avoid packets being deflected into the local port
when it was not meant for that resource, the insertion of new packets is only granted
when there is a free output port. To guarantee bandwidth, insertion of the data must
be ensured and because the container is already in the network the insertion of data is
guaranteed. The header of a container contains two bits, the first bit marks the packet
as a container the second bit marks it as empty or full, in addition to the normal
header of a Nostrum packet. A container is a special type of packet hence the extra

27 CHAPTER 3 - A NETWORK-ON-CHIP STUDY

marking. When a container arrives at an input port at the source of the virtual circuit
it will, because of the deflective routing scheme and lack of buffers in the switch,
be forced to leave on the next clock cycle. The virtual circuit will however not be
deflected away on another path, but will always follow the path of the virtual circuit.
The separation of the virtual circuits in each switch is done by Temporally Disjoint
Networks and will be explained later in this section. The source of the virtual circuit
will thus have one clock cycle to place data in the container, while the container re-
sides at the input port of the switch. Once the container has left the input port of the
switch it will follow the path with precedence over the normal BE traffic to the desti-
nation. Upon arriving at the destination the container will be unloaded and possibly
be filled with new data. It is obvious to introduce multicasting by simply having the
container loop around on a virtual circuit consisting of all the recipients of such a
multicast. This is described in [22], and only involves changes to the switch. The
granularity of the bandwidth allocation is determined by the maximum bandwidth
available divided by the round-trip delay on a virtual circuit and the amount of band-
width acquired by a virtual circuit depends on the amount of containers inserted on
the virtual circuit. There is an upper bound on the amount of containers that can be
inserted on the virtual circuit, which comes from the amount of buffer space along
the virtual circuit. Virtual circuits are semi-static, in the meaning that the virtual cir-
cuits and their paths can only be created at design time. The amount of containers
can however be adjusted at run time, by inserting and extracting containers.

As mentioned earlier, Nostrum uses the concept of Temporally Disjoint Networks
(TDN), to explain the time-division multiplexing in the network. TDNs arise from
the topology and the amount of buffers in the network. By colouring the nodes in the
network in a chess-board like fashion, figure 3.2(a), it can be realised that two flits
residing in different coloured nodes can never contest for the same resource, under
the assumption that a flit does not get stored in a node, as it is the case with hot-potato
routing employed by Nostrum. These two flits can then be tought of as being in dif-
ferent networks. Further a 2d-mesh network can be displayed as a bipartite graph,
figure 3.2(b), where the two networks are placed opposite to each other. From this,
it can be realised that a flit will always change network on each move, which leads
to figure 3.2(c) where the biparte graph is collapsed into one node for each network.
This is refered to as the topology factor. Introducing input and output buffers in each
node, wi, wo, bi, bo, gives more distinct networks. This can be realised, by looking
again at figure 3.2(c), it can be seen that a flit has to travel through at least four
buffers, and the four flits in each of the four buffers will never contest for resources.
These distinct networks is what Nostrum calls TDN. A virtual circuit can then be as-
signed to one or more specific TDNs and several virtual circuits will then be able to
use the same switch. This however puts an upper bound of the number of virtual cir-
cuits that can pass through a single switch. The upper bound scales with the amount
of buffer stages in each nodes as TDN = Topology factor × Buffer stages.

ÆTHEREAL 28

3.5 Æthereal
The Æthereal NoC is developed at Philips Research Laboratories, Eindhoven, The
Netherlands and is one of the few industry implementations. Æthereal has been
described in several articles such as [16], [31] and [13]. In addition, mapping ap-
proaches and tools have further been described in [26] and [27] amongst other. Æthe-
real is a synchronous NoC, which offers among other things both GS and BE traffic,
interfaces for standard sockets, monitoring and reconfiguration. In [3] and [33] an
Æthereal implementation of a digital video reciever and a high-end consumer TV-
system is compared to traditional interconnect solutions.

The Æthereal NoC offers a range of standard sockets (including OCP [30] and
AXI - The Advandced eXtensible Interface) through network interfaces. The term
network interface is used of the NA in Æthereal. The network interfaces handles the
conversion from messages to packets, thus being a NA as described in section 2.1.
The network interface is composed of a kernel and a shell, which will be described
later in this section. Connected to the network interface is a router, which are used to
provide contention-free source routing based on time-division multiplexing (TDM).

Æthereal uses a logical notion of synchronicity to create time slots for flits. A
circuit is created by reserving consecutive slots in consecutive routers. Source rout-
ing is used because it allows for topology independence, and the path is made from
a list of output ports on the route. As mentioned, two types of traffic service exist,
namely BE and GS. GS traffic gives guarantees on both throughput and latency. Due
to the nature of TDM the latency and throughput guarantees depend on each other.
BE traffic is moved through the network using spare slots not used by GS connections
and contesting BE packets are arbitrated using a round robin scheme. Interleaving
of BE packets are not possible. GS traffic can however interrupt in the middle of BE
traffic. Interleaving of GS connections are avoided by scheduling. A credit based
flow control scheme is used between the BE buffers to avoid loss of flits by overflow-
ing the buffers. The neighbouring routers keep track off each others buffer status by
exchanging credits as flits are forwarded.

GS traffic is scheduled by the network interfaces, and the flits are then forwarded
from their allocated slot to the next in the routers. Depending on the operating
scheme the slot reservations are either done in network interfaces and routers or
solely in the network interfaces. Æthereal operates with two ways of reserving slots:
Distributed and central. The distributed approach uses slot tables in the routers and
network interfaces, where the central approach only sets up the network interfaces.
A path is then applied like in the BE case. A slot table matches input and output ports
for each time slot. In both cases the network interface handles the insertion of data
by use of a similar slot table. Æthereal thus requires an extensive scheduling of the
traffic patterns in order to avoid congestion on links.

The authors of Æthereal argue that the distributed scheme is scalable, due to
the route being distributed in the routers where in the central scheme the length of
the routing path affects the flit size. The central scheme however has significantly
smaller routers due to not using slot tables. The central scheme therefore works very

29 CHAPTER 3 - A NETWORK-ON-CHIP STUDY

well in smaller NoCs, which in the near future seems to be most likely.
The Æthereal network interfaces are split into two major parts; a network ker-

nel that recieves and provides message to the network; and a network shell which
converts standard sockets into the message type handled by the kernel. The actual
message structure is irrelevant to the kernel, as it just handles the message as payload
in packets that must be transported across the NoC. The kernel and shell commu-
nicate through ports and each port allows for a peer-to-peer connection with a shell
and thus an IP core connected to another kernel. A network kernel can have several
shells attached, both master and slave shells thus connecting several IP cores to one
network kernel. Multiple connections are possible over each port, by using a con-
nection ID to signal different connections. Each port has a number of buffer pairs,
one pair for each connection that can be handled simultaneously, the pair is split in
a reciever and sender buffer part. The use of buffers allows IP cores and the NoC to
operate at different clock frequencies, and end to end flow control ensures that pack-
ets are only transmitted if the recieving end has buffer space to accept the packet. To
support protocol features such as narrowcast and multicast special modules can be
inserted between the shell and the kernel to enable these features. These modules are
optional and can be inserted at design time if required by the application.

Router

Network

C
o

n
fi
g

A
X

I
s
h

e
ll

O
C

P
 s

h
e

ll

C
o

n
fi
g

M
a

s
te

r

S
la

v
e

A
X

I
O

C
P

M
a

s
te

r

A
X

I
M

a
s
te

r
O

C
P

S
la

v
e

O
C

P
 s

h
e

ll

A
X

I
s
h

e
ll

1

2

3 4

5

Figure 3.3: The configuration master first sets up its own configuration port (step 1),
secondly it sends a configuration request to the remote network interface using the
network (step 2), which sets up a return path to the configuration port. In step 3 the
remote network interface is configured. Step 4 sets up the channels from the right to
the left network interface, step 5 sets up the paths the other way.

One major asset of Æthereal is the support for configuration during run time. A
special configuration shell is used to connect a configuration master to a network
kernel. This configuration shell is connected to a standard port on the network kernel
as well as to a special configuration port. The standard port is used to forward con-

SOCBUS 30

figuration requests to other parts of the network and the configuration port is used to
configure the other standard ports of the network kernel. The remote network kernel
connects a port to its own configuration port, allowing the configuration master to
access its ports. This means that the configuration is done using the network i.e. no
seperate configuration channels or network is needed. Figure 3.3 shows two network
kernels, one with a configuration shell; and one with a configuration loop. It also
shows the use of different shells for different sockets.

A major part of the (re)configuration of Æthereal comes from the associated use
case tools that were described in section 2.3. Because the use cases define the usage
of the network ressources, mapping of connections in the network is used to allow
use case switching. Scheduling is a very important aspect of Æthereal because it is
used to avoid congestion on GS traffic. The scheduling allows for very small buffers
in the GS part of the routers because a GS flit is never stalled in the network. This
requires a very extensive scheduling to ensure.

3.6 SoCBUS
In [34] the Linköping SocBUS is proposed and described as a bus replacement net-
work. It is developed at the Department of Electrical Engineering at Linköping Uni-
versity as part of Daniel Wiklunds PhD thesis. SoCBUS implements circuit switch-
ing only in a form they call packet connected circuit (PCC), which will be described
later in this section. By only making circuit switching available, avoiding deadlock
and guaranteeing in-order delivery becomes much simpler than in packet switched
networks.

IP cores are arranged in a 2 dimensional mesh, because the authors of SoCBUS
found the 2D mesh topology the most suitable for NoCs, due to an acceptable low
wire cost and reasonable high bandwidth. In addition, cores with a high amount
of communication between each other can be placed closer together to avoid large
amounts of long distance traffic. The switches are 5 port switches with four of the
ports connecting to neighbouring switches and one port connected to an IP core
through a wrapper. These wrappers handle the differences between the IP cores inter-
face and the interface used by SoCBUS, such as transaction style, port width, endian-
ness and clock frequency. As mentioned, SoCBUS only employs circuit switching,
but during setup of the circuits the switch has to route a request from the source of
the circuit to the end destination. The routing scheme used for this is a minimum
path length algorithm, where the routing decision is based on the destination address
of the request. This is possible and feasible due to the fact that a NoC is static, as
described in section 2.1.7.

Because SoCBUS only uses circuit switched connections between cores the con-
cept of packet connected circuit is introduced. Circuits in the network are set up by
performing the following transaction, see figure 3.4: (i) The source sends a request
that is routed towards its destination, as described above. When it passes a switch
the route through that switch is locked. (ia) If a switch is unable to route the request

31 CHAPTER 3 - A NETWORK-ON-CHIP STUDY

closer to its destination it returns a negative acknowledge to the source, which re-
leases all locks as it travels back along the route. (ib) The source retries by making
a new request. (ii) When the request reaches the destination of the circuit, the des-
tination returns an acknowledgement which permanently locks the route. (iii) When
the source node receives the acknowledgement it begins the actual data transfer, (iv)
which is ended by a cancel request that tears down the route by releasing all the locks
along the route. The switches can now allocate the route to another circuit when it
receives a new request. SoCBUS promotes the use of PCC because it is deadlock
free, uses simple routing hardware, buffering is only needed in the request phase,
connections have low latency as each switch only needs a single latch and there is no
constraints on the routing algorithms that can be used.

...

acknowledge

transfer

request

cancel

iii

ii

iv

i

recieversender

(a) No retry

i

recieversender

acknowledge

nack

request

ib

ii

...

transfer

cancel

iii

iv

ia

(b) Retry needed

Figure 3.4: There are six different transaction types, two are only used if the source
needs to retry the setup of the circuit. (a) shows a succesfull try, and in (b) a retry is
needed to complete the transmission.

As mentioned, a switch has five ports which all use the same physical interface.
The internal interface between switches in SoCBUS has eight wires for forward go-
ing data as well as the request packets used to set up circuits. The transmissions on
the data link are controlled by one forward going wire, carrying framing and timing
information and two backward going, that handle the acknowledgements. The port
that is connected to the local core interfaces thorugh a wrapper to the core. The wrap-
per handles everything that differs between the IP cores interfaces and the internal
interface used in SoCBUS.

To allow for wire delay and skew on the links between switches, SoCBUS uses
mesochronous clocking with signal retiming. A mesochronous system has the same
frequency but allows for an unknown phase. In addition, SoCBUS proposes to use
optimized drivers and transmission-style wires on the links in the network.

Even though SoCBUS offers guaranteed service connections, it is hard hard to
give guarantees with the approach taken by SoCBUS. SoCBUS has to establish a
connection every time data is to be transmitted and the setup of connections can take

MANGO 32

a very long time. It is impossible to know how long the setup is going to take, if the
connection is forced into trying to establish over and over again. When a connection
is established a high throughput and a low latency is offered by SoCBUS.

3.7 MANGO
MANGO is the an abbreviation of Message-passing Asynchronous Network provid-
ing Guaranteed services over OCP-interfaces and is described and implemented the
PhD thesis [5] by Tobias Bjerregaard at IMM, DTU. As the name indicates MANGO
is an asynchronous NoC, offering guaranteed service connections between IP cores
with OCP sockets.

MANGOs routers have four ports that can be connected to other routers and one
port which is used to connect to IP cores through an NA. MANGO offers in addition
to the GS indicitated by the name, also a full fledged BE network. The BE network
is source routed and the forward and return path can be different. It allows for great
flexibilty when routing packets, but limits the length of a BE path to 5 hops because
of the width of the flits. The interfaces matched the synchronous OCP standard, the
NAs handle the conversion to the asynchronous domain.

Connection-oriented end-to-end circuits can be setup which allows for GS com-
munication across the network. Connections are established as virtual circuits that
are formed from VCs between the routers. The guarantees offered is hard guarantees
on bandwidth and latency, due to the novel approach taken with the scheduling on
the shared links, bandwidth and latency guarantees are decoupled. This is in contrast
to most guaranteed service implementations, which are synchronous an which relies
on time-division multiplexing. The scheduling of the shared links are done using and
arbitration alghorithm called ALG. ALG or Asynchronous Latency Guarantee is pre-
sented as part of the MANGO PhD. Figure 3.5 shows an ALG link, which consists
of VC control part that surrounds an admission control, a static scheduler and the
shared link, with a merge and split.

The static scheduler schedules the channels in priority, thus a higher priority
channel will always be granted access over lower priorities. The admission controller

...

n

4

3

2

1

split
shared link

static queue

admission control

VC buffersVC buffers

VC control

merge

Figure 3.5: A complete ALG link.

33 CHAPTER 3 - A NETWORK-ON-CHIP STUDY

placed in front the scheduler ensure that no VC is starved. The admission controller
monitors the flits waiting at each of the schedulers channels and only admits higher
priority channels when none of the lower priority channels has been stalled due to
this particular channel. The admission controller takes a snapshot of the schedulers
queues every time a flit leaves the scheduler. If a new flit arives on that particular
VC it is stalled until all the flits that where in the schedulers queue at the time of the
snapshot has been granted access to the link. This ensures that no VC waits for more
than one flit at each higher priority channel. Each VC has a VC control wire asso-
ciated with it that handles flow control on the VCs. As can be seen from figure 3.6
each VC handshakes to ensure the flow, while the link utilisation is maximised using
a pipelined link. The long handshake for each VC is slow because of a long wire, but
several VCs can be performing such a handshakes because the link is pipelined.

The ALG has eight channels, where the lowest priority channel is used by the BE
router. The BE router uses credit based buffers to handle flow control. Credits are
exchanged as flits move between the routers ensuring that no buffer overflows. BE
packets are split into flits, where the first flits holds the routing path, which is rotated
as the flit moves from hop to hop. The following flits follow the header flit, which
reserves the path trough the router, until the last flit of the packet releases the path by
indicating end of packet.

As mentioned earlier the conversion between the synchronous domain of the IP
cores and the asynchronous network is handled by the NA. MANGO uses two differ-
ent network adapters, namely a target and an initator NA. These differ in the CI which
they offer, the target has a master interface which connects to a slave IP core and the
initiator is connected to a master through the NAs slave interface. The synchronisa-
tion between the clocked and the clock-less interfaces is handled by a synchroniser.
The OCP transactions on the CI is transformed into messages which is passed in the

link handshakes

VC handshake

VC handshake

Figure 3.6: Overlapping handshakes controls the flow while maximising perfor-
mance on the shared link.

MANGO 34

network. The NA converts the message into flits by serialising the message.
A table in each router dictates how VCs are connected to form a virtual circuit.

These tables are configured by writing to memory mapped addresses in the network.
All configuration is carried out using OCP writes, which is translated into BE traffic
if the configuration has to travel across the network to access the ressource. At the
local interface of the router three VCs can be accessed by the IP cores, in addition to
the BE network. The connection ID signal of the OCP interface is used to access the
circuits. The first flit in a transaction, both BE and GS indicates the return connection
port and type, which is used by the target NA to return the response if needed.

CHAPTER 4

Guaranteed Service with
Virtual Circuits

From the study of todays NoC, especially their approaches to QoS, it is obvious that
guaranteeing service can be done in a number of different ways. As described earlier,
this project investigates how MANGO can be extended to allow guaranteed service
connectons to be reconfigured at runtime. Therefore, this chapter discusses virtual
circuits, which is the way MANGO implements guaranteed service.

Figure 4.1: Two virtual circuits being used by two different streams. On the joint
link the dashed stream is using a higher priority VC than the solid stream.

As mentioned in section 2.1.6 virtual circuits are made up of a number of VCs. In
figure 4.1 two streams are shown following two seperate virtual circuits. The figure
has four VCs on each link and only one link is shown, in a bidirectional implemen-
tation a seperate set of links and buffers would be used for the reverse direction.
Another thing to note on the figure is the use of both output and input buffers. Us-

35

ABSTRACTION OF VIRTUAL CIRCUITS 36

ing only output or input buffers is a more common approach to minimise the buffer
overhead introduced.

An alternative to using VCs is time division multiplexing, which Æthereal em-
ploys and the technique was presented in section 3.5.

A great deal of the ideas and concepts discussed in this chapter can be applied
more generally to NoC connections and not just virtual circuits.

The following sections will describe different concepts regarding virtual circuits
and their use in managing QoS. In section 4.1 virtual circuits and abstraction layers
are discussed, following is section 4.2 that describes programming models that can
be used in conjunction with virtual circuits. Section 4.3 describes how use cases, as
described in section 2.3, can be used to store and setup virtual ciruits, followed by
a discussion of ways to distribute these use cases to the relevant parts of the NoC.
Lastly, section 4.4 discusses how the system can be given knowledge about the state
of the virtual circuits in the network.

4.1 Abstraction of Virtual Circuits
This section will describe how virtual circuits can be abstracted, using the model
introduced in section 2.1.7. However as described there, the system level offers little
to no insight in the connections created in the underlying communication structure
and is therefore omitted from the discussion in this section. This section is therefore
divided into three subsections that describe and discusses the impact on and of virtual
circuits at each abstraction level.

4.1.1 Network Adapter
Because the NA handles the transfer of information from the system level above
to the network level below, it recieves messages and creates packets and streams.
Streams are inherently connection oriented and all connections and thus also virtual
circuits originate from a NA and ends at another NA. The NA can be said to insert
information into the endpoint of a circuit, which then transports the information to
the circuit’s other endpoint where another NA unwraps the data and passes it as a
message to the system level above.

4.1.2 Network
At the network level the virtual circuit is partitioned into severel chained VCs. The
streams are split into flits that the routers transmit from one VC to the next. In circuit
switched implementation the routers need to be informed or configured in advance
of the stream arriving in order to connect incoming VCs to their respective outgoing
VCs. Thus when considering the network level, the route of the virtual circuit must
be considered, such as the topology and mapping of cores to network ports.

37 CHAPTER 4 - GUARANTEED SERVICE WITH VIRTUAL CIRCUITS

4.1.3 Link
At the link level, flow control of the flits is considered, i.e. movement of the flits from
buffer to buffer. The other logical channels sharing the physical link can be negleted
to be an extra delay on the flow control signals.

4.2 Programming Model
Three ways of controlling the setup will be described and discussed here. (i) Dis-
tributed programming: a network master interface request the setup of a virtual
channel. (ii) Central programming: the network controller sends setup packets to
each router that needs a new setup. (iii) Central request, distributed setup or hybrid:
the network controller sends request for virtual channels to the master network in-
terfaces, who then sends setup packets along the virtual circuit that is to be setup.
In the following, the three models will be discussed against each other followed by
individual discussions.

The central and the hybrid programming models confine the knowledge of the
system state to one part of the application by ensuring that one unit in the system
has all the knowledge of the current state of the virtual circuits at the network level.
This information is not available as such in the distributed programming model. It
is however implicitly available globally from the state of the application and thus
available at the system level. The central knowledge of the state offers more control
over the setup process, because only one master sets up the network. Having the
information distributed introduces synchronisation issues, fx. there is no inherent
way of synchronising the setup between multiple masters.

Between the hybrid model and the central model the main difference is in the
distribution of the setup information to the routers and NAs. The central model
is producing a large amount of packets from the same point in the network which
spreads to most of the network, where the hybrid model produces less traffic around
the controller. Depending on different aspects, such as the topology each model may
have an advantage.

The two models based on a central controller both needs to be able to program
every aspect of the network through network ports. This means that every router
aswell as NA must be able to accept setup requests of its internal data structures.

4.2.1 Distributed
A distributed programming model works by letting the master network interfaces at
the IP cores request the set up of virtual circuits. A master NI sends a setup packet
using BE towards the destination of the virtual circuit. Whenever the packet arrives
at a router it is setup to facilitate the virtual circuit and the setup packet moves on
towards the destination. If the setup packet at any point fails to setup the virtual
channel it reverses its path and tears down reservation that was done in previously

DISTRIBUTION OF THE USE CASES 38

visited routers. Upon arrival at the destination, the setup packet returns to the master
and the virtual circuit is setup. In a model as just described the global knowledge of
the state of the network is lost from a network point of view. Because of this, it can
be hard to determine the state of the network and guaranteeing a reliable setup and a
fixed time frame for the setup phase. Because the virtual circuits are requested from
the IP cores connected to the master NI the system must have a knowledge of which
virtual circuits are present at any one point.

4.2.2 Central
The central programming model has a central controller that handles the setup of the
network. When the controller sets up virtual channels it fetches a configuration file
from a memory which can be off chip. This configuration file is then split into a con-
figuration file for each router and distributed to the appropriate routers in the network.
When a router receives the appropriate configuration file it adopts the configuration
and sends an acknowledgement back to the network controller. In this way, there is
always a central controller that knows the exact state of the virtual circuits across the
entire chip.

4.2.3 Hybrid
The last programming model discussed here is a hybrid of the two that has already
been discussed here. The central controller from the central model is kept, but the
setting up of the routers is distributed as it is in the distributed model. The central
controller fetches a configuration file and sends a packet to the master NI of a virtual
circuit that needs to be set up. When the NI receives this packet it, much like the
distributed model, sends a packet towards the end point of the virtual circuit and sets
up all the virtual channels on the route. The NI sends an acknowledgement to the
central controller when the set up packet returns to the NI after having set up the
virtual circuit. Again, this as in the central model the controller has the knowledge
of all the virtual circuits.

4.3 Distribution of the Use Cases
In all three programming models discussed in section 4.2 there is a need for dis-
tributing configuration packets to routers and NAs. This section will discuss how
this configuration information can be distributed in the network as use cases. When
considering that the setup packets have to propagate through a large network, in
some cases all parts of the network has to recieve configuration information, the dis-
tribution can impact the performance of the NoC. The following will describe three
different types of NoCs, where the distribution of configuration information impacts
the NoCs differently.

39 CHAPTER 4 - GUARANTEED SERVICE WITH VIRTUAL CIRCUITS

NoCs that only setup connections during start-up, have no other traffic to contest
for the network ressources. Therefore these network can rely to a large extend on
waiting long enough for the configuration to finish. The setup time becomes low, due
to the low amount of traffic being distributed in the net, but the exact time it takes to
setup the network must be established through simulation.

The above NoCs can not change use case during operation, but for NoCs that have
the ability to reconfigure connections setup traffic will have to contest for the network
ressources. The setup time will therefore be less predictable and the setup time is hard
to establish through simulation. The setup can be done under the assumption that not
only does the network change state or use case, but so does the application, which
gives the NoC time in the order of miliseconds [26] to switch use case. Because
the application is also changing state, it may be possible to drop packets in order to
propagate the setup packets faster in the network.

As described in section 2.3 there are NoCs that allow for applications to maintain
connections through use case switching. In those types of NoCs dropping packets or
temporally interrupting streams are not an option and the exact state of the network
becomes important in determining when the network is done being reconfigured. The
state of the network will be discussed in the next section, here follows a discussion
of how the distribution is handled.

4.3.1 Distribution
There are several ways that use cases can be distributed: (i) using BE packets; (ii)
BE packets with priority; (iii) a virtual signaling net; (iv) introducing a physical net.
The following will describe each of these in more detail.

Ordinary Best Effort Traffic
Distributing setup packets as BE traffic is a relatively simple implementation. The
BE router examines all incoming BE packets to determine where they have to go, and
thus checking whether it is a setup packet is a trivial expansion. Because the packets
are distributed on BE the setup time might become very large.

Prioritised Best Effort Traffic
This gives rise to the idea of being able to flag the setup packets priority. This would
give the benefit of having the easy implementation of solution one, but introduces an
upper limit on the setup time.

Guaranteed Service Traffic
When introducing priority on the BE packages, an obvious extension of that concept
is to implement a virtual signalling net. A virtual signalling net could be implemented
as one of the virtual channels on each link. The virtual signalling net could also be
used for other types of signalling, ie. interrupts. This approach gives good guarantees
on the setup of the virtual circuits, and would be able to work in very highly utilised
networked. However, if the overall number of virtual channels in the network is low,
a virtual signaling net would be expensive in terms of resources used. Even network

NETWORK STATE 40

with many virtual circuits would see an impact of a signalling net because the level
of guaranteed service that a network could offer would be lower than if the virtual
signalling net was not there.

A Physical Network
Because of the impact on resources and performance a virtual signalling net has,
introducing a physical network for the setup distribution becomes an option. This
setup network could be implemented in several ways: direct wires from the controller
to every router and NA in the network, a network with same topology as the NoC
or a network with a different topology than the NoC. Using a physical network to
distribute the setup packages to the routers will give the benefit of guaranteeing the
setup time, without impacting the performance of the NoC. The price of another
physical net is an increase in area, depending on the actual implementation of the
physical net. The second net could arrange the routers in a ring topology and thereby
reducing the amount of extra wires used.

4.4 Network State
As discussed in the above section, the current state of connections becomes increas-
ingly important as use case switches become more complex. The state of the network
includes information on what virtual circuits are setup or being setup, what connec-
tions are in use and whether or not BE paths are setup if needed.

As described in section 4.2, the choice of programming model greatly affects the
traffic patterns of configuration traffic. It also affects how the progress of the config-
uration process can be monitored, as the state information in a distributed scheme is
spread in the entire network. The distributed scheme will most likely solve this prob-
lem at the system level, but knowing exactly when a circuit has been setup would
be very useful information. In the two central based programming models knowing
when the entire use case has been setup could be used to allow the application to use
the connections earlier thus minimising the delay caused by use case switches.

Acknowledgement on configuration packets can be used to keep track of the
configuration process, as every configuration step is acknowledged. Waiting for a
response from each configuration step however means that the configuration process
will stall and wait for the acknowledgement. One way to circumvent this is by thread-
ing the configuration process and allow for several configuration packets to originate
from the same controller. This however requires that the NA and IP core can handle
accounting transactions.

Reading configuration tables in the network ressources can be used to determine
the current state of the network. In all three programming models the current state
of the network is available in the network ressource, i.e. routers and NAs, because
the virtual circuits are setup in the actual router and NA. Reading the configuration
tables is simply an addition that is nice to have in a NoC, as it allows for any IP core
using the NoC to determine its state.

CHAPTER 5

The MANGO Network-on-Chip

Because the goal of this project is to make MANGO capable of reconfiguring virtual
circuits during execution.

MANGO has been built in a very modular fashion, which makes it very cus-
tomisable, i.e. the arbitration algorithm can be exchanged by another, a new routing
algorithm can be used, without changing the general flow control of the BE router.
Or another flow control implementation can be used, while maintaining the current
routing implementation. This fact makes MANGO a very desirable platform for ex-
ploring different aspects of NoC research on an asynchronous implementation. Be-
cause MANGO has been used as a proof-of-concept for an asynchronous NoC that
offers guaranteed service, it is implemented in a standard cell library. This limits the
implementations and features that can be explored easily due to the fact that standard
cell implementations take a long time to understand.

This chapter will describe how MANGO operates, specially concerning guaran-
teed service. During the presentation of features, challenges and problems in the cur-
rent implementation will be highlighted. The following chapter 6 summarises these
challanges in a specification and then presents an in-depth description and discussion
of the challenges and solutions hereof.

5.1 Setting Up Virtual Circuits in MANGO
Guaranteed service connections in MANGO are as mentioned based on virtual cir-
cuits. The virtual circuits are made up of VCs between the network ressources along
the corcuit. VCs are supported in MANGO between the routers, and the lowest prior-
ity channel is used for BE traffic. Between a router and its connected NA the number
of VCs are four, 3 GS and 1 BE. The VCs are linked together in the routers by point-
ers that are initiated during the setup phase, thus these pointers must be distributed to
the routers. Two types of pointers exist in MANGO, steer and select pointers, which
handle the forward and backward flow control respectively.

41

SETTING UP VIRTUAL CIRCUITS IN MANGO 42

The distribution of these pointers along with GS information to the target NA is
done using the BE network, presented by MANGOs BE router. The pointers are writ-
ten into memory mapped registers in the routers, which allows OCP transactions to
be translated to setup packages in the network. The BE network is source routed and
therefore the NAs must be able to translate global addresses into BE paths. MANGO
takes a very flexible approach that allows each NA to present its own view of the
address space, meaning that one location in the global memory can be adressed by
different addresses depending on the NAs view. Even more flexibility is added to
the topology as the BE paths are a list of output ports in the routers, and the forward
and reverse paths are uniquely defined in the flit header. The translations from global
adresses to BE paths are written by the master core to its NA. The top 8 bits of the
global adress is used to identify the BE paths. A maximum of 16 BE paths can be in
the NA [29], but the master core can replace specific entries if needed.

Master Initiator NA Router 1 Router n Target NA Slave...

...

Write BE paths

...

Return GS or BE setup information

Write Steer and Select pointers

U
s
e
 P

h
a
s
e

W
a
it
 P

h
a
s
e

S
e
tu

p
 P

h
a
s
e

Figure 5.1: Using MANGO GS connections can be split up into a setup phase and
a use phase. In the setup phase setup information is distributed to the network
ressources, and in the use phase the GS connections are used to transport data be-
tween master and slave. In between is a wait phase which ensures that the virtual
circuits are fully setup before they are used.

As mentioned, the GS connections are setup by distributing the pointers to the
routers and target NAs. Figure 5.1 shows a typical setup phase in a MANGO. As can
be seen from the figure no confirmation is sent back to the master and the order in
which the routers are set up does not matter because the setup requests have no affect
on each other. One could choose to interleave the different parts of the setup phase,
write BE path to router 2; setup router 2; write BE to router 1; setup router 1; etc.
It should also be noted that nothing dictates that new circuits cannot be setup during
run time, but as will be explained in section 6.2 a VC can be left in a wrong state if
the pointers are reconfigured during run time.

As can be seen from the figure it is hard to predict when the setup of the ressources

43 CHAPTER 5 - THE MANGO NETWORK-ON-CHIP

has finished. The current approach is to wait long enough in the wait phase before
using the virtual circuts. This has a few complications, first off reconfiguring the net-
work is not feasible due to the unknown time frame for the setup packages, thus the
delay between stopping one use case and starting another could become very long.
Secondly, the uncertainty also means that the setup could have failed, but the system
will never know. This can be handled by implementing acknowledgements on setup
request. This should of course be in both NAs and routers.

When virtual circuits have been setup the only knowledge about them being avail-
able is at the master who set up the circuit. Other masters have no knowledge of this,
which could in some cases be very interesting. One could imagine an adaptive cre-
ation of virtual circuits, i.e. virtual circuits are created as needed by a master. The
master could then probe the network ressources along a path to the slave core and
either set up a virtual circuit if there is room for another circuit in the routers. In the
case where the circuit can not be setup or the required guarantees can not be met this
could be reported to the application. To determine the state of the routers and NAs in
terms of available virtual channels an OCP read of configuration registers should be
available to the master cores.

5.2 The MANGO Network Adapter

The MANGO NA is actually two different NAs, an initiator and a target NA. The
initiator sends requests to the target which in turn sends a response if needed. Both
NAs are split in two ways, asynchronous vs. synchronous; and request flow vs. re-
sponse flow. MANGO is an asynchronous network with synchronous OCP interface.
There is thus an obvious need for converting between the clocked domain of the OCP
cores and the clockless domain in MANGO. The request flow is the forward going
flow of data from an OCP master to an OCP slave, which means the request flow in
the initiator sends data and the request flow in the target recieves data. The response
flow is invoked when a request requires a response, the target NA sends the response
through the response flow and the initiator recieves through it. Figure 5.2 shows the
clock and clockless domains and the direction of flows in the two NAs. The reader
is reminded of the defininitions concerning the NA in section 2.1.3, especially figure
2.3 on page 8.

The OCP master core writes the BE paths and GS information to the initiator
NA through its CI. This means that each master core must know that it is connected
to a particular network. A central controller of the network handles all the setup in
the network is therefore not possible. If an initiator NA could handle configuration
request through its NI, MANGO would be able to support a central programming
model in addition to the distributed model currently used.

BEST-EFFORT ROUTING 44

Response Flow

Transmit Recieve

Request Flow

Network Interface

OCP Slave Interface

(a) Initiator NA

Response Flow

Transmit Recieve

Request Flow

Network Interface

OCP Master Interface

(b) Target NA

Figure 5.2: The MANGO NA handles the conversion between the synchronous OCP
interface and asynchronous (grey) network. The end-to-end flow between IP cores is
handled by the request and response flow.

5.3 Best-Effort Routing
BE routing plays a major role in the configuration of MANGO and an implementation
of a reconfigurable MANGO would also rely on the BE network. MANGO uses an
XY-routing alghorithm to avoid deadlocks, in line with the proof in [11], which guar-
antees that if all packets are routed fully in X and then Y deadlocks can be avoided.
MANGO is source routed so any routing path could in principle be choosen. The
routing alghorithm is implemented by merging the five input ports, latching the flit
and then demultiplexing the flits in the right direction. The merge and the demulti-
plexer are sticky, meaning that once the first flit of a packet is detected the rest of the
packet is handled before all other flits. Once the end of packet (eop) is detected, the
merge and multiplexer is released. Because of the single storage element as can be

BE core

0

1

4

.

.

.

Router program

un
cr

ed
itb

ox
es

cr
ed

itb
ox

es

1

4

.

.

.

0

Figure 5.3: The BE part of the MANGO router, the core is embedded in between
the credit handling. The BE core consists of a sticky merge, a latch and a sticky
multiplexer.

45 CHAPTER 5 - THE MANGO NETWORK-ON-CHIP

seen in figure 5.3 unresolved deadlocks exist in the current implementation.
The performance of the BE network has a large impact on the setup time, es-

pecially if ordinary traffic is allowed during a reconfiguring phase. Therefore, the
discussion in section 4.3 is very relevant for a reconfigurable MANGO. In addi-
tion, a new BE router and routing scheme is needed to guarantee that deadlocks are
avoided. The current router can be seen in figure 5.3 and in line with the before men-
tioned modular approach of MANGO the router core handles the routing alghorithm
and the credit boxes surrounding the core handle the flow control. The split on the
output of port 0 splits flits to either the local port or to a programming interface on
the GS router.

CHAPTER 6

Reconfigurable Virtual Ciruits
in MANGO

Based on the discussion of virtual circuits and guaranteed service in chapter 4 it is ob-
vious that creating reconfigurable circuits can be done in many ways and the overall
network and system must be taken into consideration. The current state of MANGO
allows for virtual circuits as it is, but as described in chapter 5, there are several ar-
eas in which MANGO’s support for virtual circuits needs to be improved to allow
reconfiguring. The following section holds a specification for a modified version of
MANGO that can be reconfigured. The sections following the specification discusses
implementation and design ideas and considerations.

6.1 Specification
The following specification is based on the discussion in chapter 5.

• Unused virtual channels are reusable for new connections.

• Any initiator network adapter can program any other network adapter.

• Enable the configuration state in the network ressources to be determined.

• Use prioritised BE traffic to distribute configuration of virtual circuits and
other important BE traffic.

• New configurations are acknowledged by receiving unit.

• A new routing alghorithms for BE routing, is needed.

The following sections describe solutions to each of the six items in the above
specification. The only thing that really stops MANGO from reconfiguring its VCs

47

REUSABLE VIRTUAL CHANNELS 48

to form new virtual circuits is the fact that VCs can be left in different states and
can therefore not be connected to form new circuits. Solutions to this problem are
discussed in section 6.2.

The introduction of a central controller of the network is a major feature and the
current initiator NAs do not allow for that. This is the topic of section 6.3.

A nice to have feature, which could lead to adaptive creation of virtual circuits,
is the ability to determine which VCs and BE paths that are currently setup in the
network. Solutions to this are described in section 6.4.

Section 4.3 highlighted the trouble of distributing setup packets while the net-
work is being used. This can lead to a large, maybe too large, setup time, and section
6.5 discusses this within the scope of MANGO.

As mentioned earlier, MANGO just distributes the configuration and then waits
long enough. This is not a viable solution and the introduction of acknowledgement
is described in section 6.6.

The current routing scheme used in MANGO makes the BE router very small,
but it can not be guaranteed that deadlocks will not occur. Section 6.7 therefore
introduces alternative routing solutions.

6.2 Reusable Virtual Channels
A virtual circuit in MANGO consists, as described earlier, of one or more virtual
channels connecting an initiator NA to a target NA. A virtual channel is implemented
across a shared media, from one router’s output port to the neighbouring router’s
input port. This section will first provide insight in the problems with the current
implementation of connecting VCs in regard to reconfiguration. Then a solution to
the problem will be described and discussed.

Virtual Channel implementation in MANGO
In MANGO a virtual channel consists of, in addition to the shared link, a lock, a
key, and an unlock wire, figure 6.1 shows how these elements interact. The actual
implementation of the virtual channel separates itself from the figure in where the
key box and buffer is placed inside the router. This implementation is done due to
the fact that MANGO is output buffered, so for the key to have information regarding
actual buffer space on a link it must be placed near the buffer.

The lock and key boxes are both placed at the output port of the router as illus-
trated in figure 6.2. The unlock wire is routed through a switch controlled by the
steer and select pointers mentioned earlier. The switch is a fully connected crossbar
composed of multiplexers. Looking again at figure 6.1 the unlock wire can thus be
connected to all the outputs of all the neighbouring routers. The key toggles the un-
lock wire when a falling edge on the acknowledge is detected. An even amount of
toggles indicates that an even number of flits have passed through the VC, leaving
the unlock wire in its initial state. If an uneven number of flits has passed the VC

49 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

UnlockboxLockbox

latch

key

ack

req

data

Shared Media

lockack

req

data

unlock wire

Figure 6.1: The virtual channel and the lock unlock boxes which MANGO uses as
flow control on inter router links. [7].

the unlock wire will not be in the inital state, and if switched to another lock it could
toggle the input of the lock causing a false signal in the lock. This would create a
false handshake which has dire consequences for an asynchronous system.

The key and lock converts between the 2 phase protocol on the shared link and
the 4 phase protocol used within the routers. Because the lock and unlock are placed
inside the output port the unlock wire is 2 phase inside the unlock switch. This lowers
the switching activity, but it also causes the problem with switching the unlock wires
to other ports.

In the following, three solutions to reconfiguring the NoC is presented, (i) flush-
ing of the VCs to ensure initial conditions; (ii) moving the handshake conversion
in order to isolate the unlock wire to one VC and; (iii) implementing a merge like
component that enables event-based unlocking.

The assumption used in the following is that the decision to reconfigure is done
at application level, which means that no conflicting configurations will be initiated

unlock

switch

configuration

register

unlockboxlockbox latch

datadata

unlock wire unlock wire

to ports from ports

unlock wireunlock wire

portport

select steer

Figure 6.2: The lock and key box that controls the virtual channels are placed very
close in the output part of the router.

REUSABLE VIRTUAL CHANNELS 50

at the same time and that tearing down of connections only happens on connections
that are not being used.

Flush to an Even Number of Flits
As proposed in [8] the unlock wire can be brought back to its initial state by ensuring
that an even number of flits have passed on the VC. To ensure that a virtual circuit
has seen an even amount of flits when being torn down, the master NA would count
the number of flits transmitted on each virtual circuit. When a virtual circuit is no
longer in use the master NA would then transmit a tear down packet to close down
the virtual circuit. The number of flits in the tear down packet is dependant on the
amount flits already transmitted on the virtual circuit.

The NA only needs to know if the number of flits transmitted on a given virtual
circuit is even or uneven. The counter can therefore be implemented as a simple
toggle flip-flop. As a master NA, in the current implementation of MANGO, offers
three GS connection and one BE connection to the IP core, only three of these toggle
flip-flops are needed. The tear down packet must be transmitted along the virtual
circuit when the application indicates that it is done using the virtual circuit. If the
packet were returned to the initiator NA, when the tear down of a virtual circuit is
completed, the state of the virtual circuits could be tracked in this way. Virtual cir-
cuits consist of a forward path, from master to slave, and a backward path, from slave
to master. A mechanism for flushing the virtual channels must therefore be available
in the target NA. In the MANGO NA the synchronous part of the NA handles packets
and conversion to flits [6]. Therefore the flit count should obviously be done in the
synchronous part.

The NA will increase in size due to the extra counters and the delay on setting
up new virtual circuits might increase as old ones will have to be flushed. This
delay could be hidden if some or all virtual circuits can be flushed prior to use case
switches.

Move the Handshake Conversion
This solution extends on the phase conversion discussed briefly above, by moving the
handshake conversion to the edge of the router. By moving the key to the physical
link it unlocks, the 4 phase to 2 phase conversion is moved till after the unlock wire
switch. In the current implementation, one key can be connected to every single VC
on the other 4 ports of the router. Moving the key effectively ties the key, unlock
wire and lock together, thus avoiding to switch different keys and locks toghether.
The unlock wire switch will now experience full 4-phase handshake and the unlock
wire will still be 2-phase. The input to the key always returns to the same state after
each handshake, and key and lock pairs will never be in different state.

By moving the handshake conversion, the router will be all 4-phase and the link
will be 2-phase. The unlock wire switch will see more switching activity since the

51 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

signals it routes are now 4-phase instead of 2-phase, thus increasing power consump-
tion. The area overhead is minimal if at all.

This is the solutions choosen and the modifications to MANGO can be seen in
appendix A.1. Figure 6.3 shows the new placement of the key.

unlock

switch

to ports from ports

unlock wireunlock wire

portport

lo
c
k

u
n

lo
c
k

k
e

y

Figure 6.3: New location of the key.

A Gated Merge
The unlock wire switch must enable any unlockbox to be connected to any lockbox in
the neighbouring routers, and is therefore implemented as a full crossbar. The cross-
bar is controlled by the steer and select pointer, and the crossbar itself is composed
of large multiplexer trees, which connects a VC input to all the VCs at the output,
including the local port. This results in a 24 port crossbar, three from the local port
and seven from each of the other three ports on the router. Only three ports because
it is no possible to route GS connections back to the port they came from.

When reconfiguring the crossbar, false handshakes can be generated as described
above. Therefore the solution presented here is to decouple the input and output of
the unlock wire switch. In this way, the unlock wire switch will only propagate events
from its selected input ports to the output ports. If mutual exclusion on the inputs of
each multiplexer tree can be guaranteed, this can be accomplished by replacing the
multiplexers with a 2-phase merge. Because only one signal is routed through the
unlock wire switch and no handshaking is done, the merge can be implemented as
XOR gates. However mutual exclusion is in no way guaranteed, as several VCs in
one router will be operational at the same time and every tree sees the events of the
other VCs. A controlled arbitration mechanism is therefore used to avoid that the
merge sees the events from the other VCs. This will be called a gated merge and
its principle is illustrated in figure 6.4. The decoupling of in- and output is done in
the gates. Only when the gate is open does an event on the input of the gate trigger
an event on the output of the gate. Mutual exclusion is guaranteed by an address
decoder that at any one time at most has one gate open. The gates can be operated
by the steer and select pointer if properly decoded. The XOR shown in the figure is
a tree of XOR gates like the current multiplexer tree.

Any extra latency that might be introduced through the unlock wire switch is
in the reverse latency path and should therefore not have an impact on the overall

PROGRAMMING THE NETWORK ADAPTERS 52

.

.

.

gate

gate

input output

Figure 6.4: The gate propagates events through when the gate is open and thereby
ensure mutual exclusion on the XOR gate. The XOR gate is implemented as a tree
of 2 input XOR gates.

performance of the link. It would change the requirements for the VCs, due to the
way links are pipelined in MANGO, as described in the study of MANGO in section
3.7.

6.3 Programming the Network Adapters
To provide the flexibility needed for the different programming models discussed in
4.2, any NA should be programmable from any master core. The following will de-
scribe solutions that allow for this. Only changes are needed in the initiator, because
the target is inherently capable of supporting configuration through the network.

Two solutions are proposed here, enable both the NI and CI to write to the con-
figuration register and write configuration through the NI only.

Write Through Both Core and Network Interface
As mentioned earlier, the initiator’s configuration register is placed inside the request
flow and the network port can not access the register. The register only has one write
port, but this can be easily modified either by adding another write port to the register
or inserting a multiplexing mechanism in front of the register to emulate two write
ports. Multiplexing between writes from the CI or NI requires that they do not try to
write at the same time. Handling two writes at the same time would require a more
complex multiplexing mechanism or two write ports on the register. There might be
constraints on the addresses that can be written at the same time. However two writes
at the same might not be needed. If a central unit controls the routing paths, they will
only be written through the NI and in a distribute scheme only the CI will write to the
register. In the hybrid scheme also described in section 4.2 the central controller will
notify the master core, which in turn will setup its own routing paths as it is done in
the distributed model. Figure 6.5 depicts the layout of the initiator NA in which the
register can be accessed from both the CI and NI.

The response flow of an initiator NA can handle two types of packet formats in
the current implementation, namely responses and interrupts. If it is assumed that the
only requests an initiator will see from the network are configuration requests, then

53 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

configuration

register

OCPOCP

Request Response

synchronous

asynchronous

controller controller

Figure 6.5: The configuration register is moved so it can be accessed by both flows
in the initiator NA.

single writes can be used to program the NA. Requests can be distinguished from
responses and interrupts in that they have a different package format.

Setup Through the Network Interface
As observed above, only one of the interfaces will write to the configuration register
at any one time, thus one write port should be sufficient. To allow any master core
to write, the NI is an obvious choice as the only interface that can write. This im-
plementation is similar to the implementation in the target NA. For a master core to
write to its own initiator NA, it must thus send the request throug the locally con-
nected router as shown in figure 6.6. Special care must be taken to ensure that a NA
can forward a configuration request to it self through the local router without any
routing information set up.

configuration

register

from local master

router

NA

Figure 6.6: Only the NI can write to the configuration register, therefore the local
master core must write through the locally connected router.

The implementation choosen, is to move the register so that is can be accessed by

DETERMINE THE STATE OF THE NOC 54

both the request and the response flow. No changes to the functionality of the request
flow has been done. The response flow however has been changed to allow requests
to be handled as setup packets. The changes and additions to implement this solution
are indicated in appendix A.2.

6.4 Determine the State of the NoC
The state of the the NoC is composed by information present in the network ressources.
In a central scheme, this information is available both in the network ressources as
well as in the central controller. For the central controller to have a complete picture
of the NoC, it must be the only one accessing the configuration ressources in the
network. For processes running in the system to gain a view of the state, either the
entire system state or part of it, the process must contact the central controller to gain
this information.

If the configuration is handled by several processes, the knowledge of the system
state is spread and several ressources must be inquired to gain a view of the system.
Furthermore, the system state can change during the inquiry leaving the requesting
process with an imprecise picture of the state.

As mentioned, the system state is available both in the processes that controls
the setup, be it one or more, and in the network ressources. Again, inquiring all
the network ressources may result in an imprecise picture of the state. Network
ressources in MANGO do not support reading the state of network ressources.

Because a precise picture of the system is hard to give, one must be aware of
what such a picture of the state is used for. It has been mentioned earlier in this
report that determining which ressources are available could be used to create an
adaptive configuration of virtual circuits. It would be possible to create a system
where the NoC is hidden from the application in such a way that connections are
created as needed. Thus the application would just request a stream or data from an
address and the NoC would then ensure that connections are set up to accomedate
this.

It has been chosen not to implement any means of determining the state from the
configuration in the network ressources. The only way to determine the state is to
know which circuits have been setup by one or more master cores.

6.5 Controlling the Setup Time
In section 2.3 use cases and the desire to switch smoothly between use cases is high-
lighted. Section 4.3 discusses ways to distribute the setup packets in the network,
one thing to notice is that switching use cases usually takes time at the system level,
given the NoC time in order of milliseconds to switch its use case.

MANGO uses the BE network to distribute the setup packets, this approach
works well in the current MANGO implementation. Configuration is only done once

55 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

during initialisation where no other process uses the network. It is therefore safe to
assume that the setup time will be low and waiting for the setup to finish is a feasible
approach. When allowing use case switches at run time and smooth switching, the
assumption that BE traffic will arrive fast must be reconsidered. Packets transmitted
as BE is not provided with any form of guaranteed minimum arrival time, however
in MANGO the BE router accesses the shared links as a VC, but with lowest priority.
This means that the BE router will get a packet across the link fairly often due to
the way ALG operates, as described in section 3.7. This does not affect the overall
guarantee on the BE as individual BE packets must still contest for the link with other
BE packets. The following will discuss the distribution schemes of section 4.3 in the
context of MANGO.

Ordinary Best Effort Traffic is the approach used now and has the advantage of
being relative simple, but having the downside of being very unreliable. Intro-
ducing a new BE router in which output ports does not block each other, will
decrease the average time it takes to distribute the configuration packets. If the
amount of traffic in the network is high, it might not be possible to setup the
network within miliseconds.

Prioritised Best Effort Traffic allows BE packets with priority to overtake other
packets. Depending on the implementation a packet with priority can overtake
packets incoming on the same or overtake packets leaving on the same port.
The ideas from QNoC (section 3.2) can be used to create a priority scheme,
the cost is area and more complex arbitration in the BE router.

Guaranteed Service Traffic can give hard guarantees on the configuration phase.
It would however require extensive changes in the way MANGO routers are
implemented, as GS is not examined at all, just routed according to the steer
and select pointers. It is not a feasible solution for this project.

A Physical Network also offers great control over the distribution of configuraton
information as in the GS above. The area and complexity overhead of such an
implementation is probably not going to be feasible in NoCs.

It has been choosen to keep the configuration traffic in the BE network and not
priotise it. This togheter with the changes to the routing alghorithm discussed in
section 6.7 has lead to the BE router implemented in this project. Appendix A.4
describes the implementation of the new BE router.

6.6 Acknowledgment Configuration
The approach of MANGO for ensuring that the configuration is done is to wait long
enough, which is an unknown period of time. As mentioned earlier this is not a viable
approach if the configuration of the virtual circuits is to be changed. Let alone is it a
good approach if setup is only allowed during initialisation, it introduces uncertainty

ACKNOWLEDGMENT CONFIGURATION 56

in the system that should be avoided. This section describes ways of implementet-
ing acknowledgement from the network ressources. The router, target and initiator
NA implementations of acknowledge is discussed after a general discussion of how
acknowledgements will the affect the overall configuration phase.

MANGO uses OCP writes to configure the network, therefore the obvious solu-
tions is to ensure that the OCP master waits for acknowledge on writes. By expanding
the subset of OCP commands to include the Write Non-Posted [30] command, the
master will recieve the added information that the configuration has been completed.
It is possible to add any erros that might have occured in the response acknowledge-
ment. In this implementation it has been choosen to do just this and expanding the
OCP command set, an alternative solution is to handle the acknowledgement at NA
level. This removes the information the acknowledgement was suppose to add to
the system namely a status on the configuration state and is therefore not a viable
solution.

In extension of the discussion regarding setup times in section 6.5, it should be
noted that the impact of high traffic is even larger when adding acknowledgement.
This is due to the acknowledgement having to return to the sender using the BE net.
Furthermore the master core can not initiate a new OCP commands in the current
implementation of the NA, if the NA could handle several pending request, different
threads could be exploited to minimise the delay.

Router
When setting up virtual circuits the routers recieve a configuration to setup the steer
and select pointer this needs to be acknowledged. The current router implementation
is shown in figure 5.3 on page 44. A configuration request can be distinguished from
ordinary request because they are destined to the local port of the router and has a
router programming bit set. The split seen on output port 0 of the router forwards
the configuration request to the programming interface. For the acknowledgement
to indicate succes in addition to arrival of the configuration, the acknowledgement
must be generated near the programming interface. The acknowledgment should
not be generated inside the core of the router for this reason aswell as making the
acknowledgement independent of the routing scheme.

Another important aspect is how the acknowledgement is inserted in the network,
as it can affect the operation of the network. The obvious way is to add an extra input
port to the router where the acknowledgement can be inserted. The implementation
choosen is to add a merge in front of input port 0 (the local port), as can be seen in
figure 6.7. It effectively creates six input port in addition to the six output ports that
is created by the programming split, this is important as it affects the routing scheme
discussion in the following section 6.7.

The latches added on the acknowledge path is added to ensure that the flits can
move towards the merge without stalling the local port. Two are needed when a
master configures its locally connected router. In the implementation described in
appendix A.3 the acknowledgement is generated when the programming interface is

57 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

programming

interfacerouter core

port 0

acknowledge path

latch latch

port 0

Figure 6.7: An acknowledge path is added to the local port of the router, in addtion
to a acknowledgement generation block and a merge.

requested and then construct the acknowledgement. It can therefore only assume that
the acknowledgement succeeded, when issuing the acknowledge.

Target Network Adapter
When a configuration requests arrives at the target data is setup on the configuration
register and a write is executed. This is all handled in the synchronous part of the
request flow. Two existing features of the NA is used to create the acknowledgement,
namely the storing of return paths and the interrupt. The NA stores the return path in
a register which is inserted in the response packet. The interrupt is triggered via an
input port in the response controller which then generates the interrupts and transmits
it across the network to its destination.

A target NA is only capable of handling one request at the time, the return path
register can therefore be used to create the acknowledgement. The request controller
sets up an acknowledge signal to the response flow which treats it like a interrupt,
but uses the stored return path to create the response. It should be noted that the
acknowledge is not generated until the configuration register signals that the write is
done. Appendix A.3 describes the changes done to implement this.

Initiator Network Adapter
Because of the modifications done in section 6.3 the inititator can be programmed
through both interfaces. For configuration arriving at the NI, the acknowledgement
should be send to the the master core that requested the configuration. In the case
of configuration from the local master the acknowledgements should be returned to
the master through the CI. For configuration requests on the CI to the local NA the
write to the registers is done at once. Therefore implementing acknowledgement on
local configuration is just increasing the overhead. In the case of a central controller
it is very likely that the BE paths in the local NA is going to be exhanged quite
frequently, as it must address a large number of ressources in the network. Therefore
adding extra overhead and maybe extra delay as the acknowledge is completed is not

ROUTING SCHEMES 58

the right choice, thus no extra acknowledgement between the CI and the local master
has been implemented.

Turning to the NI, the desired behaviour is very similar to the one in the target
NA described above. The same approach can however not be used because the initia-
tor NA does not store the incoming BE paths for use as the return path. The initiator
NA have no used for a return path in other cases and the first flit holding the path is
therefore discarded when recieved. To circumvent this problem an alternative solu-
tion has been explored, the return path could be added to the list of BE paths in the
configuration register. If the return path was added with a fixed address this could
be used to select it when returning the acknowledge. To access a specific BE path
a 8 bit address is given to the configuration register, but in the implementation of
the initiator NA this 8 bit address is taken from the CI and thus not accessible from
within the router.

Another difference to the target is when the acknowledge can be handled, inter-
rupting the request flow to transmit the acknowledge can have consequences for the
given guarantees and should therefore be avoided. An alternative is to buffer the ac-
knowledge and transmit it during idle stages, this could however cause for very long
delays on the acknowledgement and slowing down the configuration phase consider-
ablythe .

Several problems with implementing acknowledgement on NI configuration re-
quests have been highlighted above. Some challenges can be overcomed with reason-
able modification, but all in all the best solution would be to implement more inter-
action between the two control flows which would require extensive modifications of
the initiator. This is well beyond the scope of this project and no implementation of
acknowledgement in the initiator has been done. The discussion in chapter 8 further
elaborates on this.

6.7 Routing Schemes
In the previous sections topics regarding the number of in- and output ports and
throughput in the BE router has been highlighted. In this section routing schemes
will be analysed and an implementation of the new BE router in MANGO will be
described. The BE network of MANGO is currently implemented by a BE router
where the flow control is handled by credit exchanged and the routing alghorithm is
handled by a very small BE router as described in section 5.3. The added port and
the acknowledgement generation in the router increases the risk of deadlocking the
current router. The following will analyse new routing implementations for the core
part of the BE router.

It is choosen to only investigate deterministic source routed alghorithms, because
the main goal of implementing a new BE router is to avoid the possible deadlock
situations in the old router. Source routing is how it is currently done in MANGO
and it is choosen not to change this, distributed routing schemes is more complex and
the routers must know the topology of the network.

59 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

response

request

Figure 6.8: The response and the request follows to different paths to comply with
the XY routing alghorithm.

Two of the most used deterministic routing alghorithms are XY-routing and BE
with seperate channels for request and response.

An XY-routing alghorithm routes fully along the X-axis and then along the Y axis
to reach its destination. This means that the request and the response might follow
different paths, depending on the topology and the location of the communicating
nodes. In a mesh net this can easily be obtained as figure 6.8 illustrates, in irregular
topologies extra care must be taken to ensure proper operation.

Responses and request can be seperated by using two sets of buffers, one for
requests and one for responses. This effectively creates two networks and cyclic
dependencies can be avoided, if the requests and responses can be decoupled at the
end point. This is generally the case, but it is important to ensure. The path of the
request and response need not be the same, but in many cases it is which simplifies
the routing decisions and avoids topology dependencies.

00

01 10

11

(a) Relative

local port

00

01

10

11

(b) Absolute

Figure 6.9: In an relative scheme the local port can not be distinguished from the
generic ports, where in the absolute scheme routing backwards indicate the local
port should be selected.

A path is a list of either directions or ports the packet must follow from its source
to the destination. Directions are used in relative routing schemes where the output
ports are numbered relative to the input ports. The alternative is to give the output
ports absolute values. With five ports the hop can be indicated with two bits, because

ROUTING SCHEMES 60

it rarely makes sense to send the incoming packets out the same way it entered. As
note erlier the acknowledgement and the programming port on the MANGO routers
effectively creates six ports, which means that MANGO must use at least three bits
for each hop. Figure 6.9 shows how ports can be numbered in a relative and in an
absolute scheme. The figure depicts two routers that use two bits to address the
output ports.

The forward path is used for requests and the reverse path is used for responses,
in its current form MANGO uses a two part BE path, which holds both the forward
and the reverse path. This makes it very flexible as the two paths can be completly
independently created, it is also needed because of the way the current router is con-
structed. It further limits the amount of hops on a path, by constructing the reverse
path from the forward path more hops can be reach, the cost is more complex logic
in the routers and NAs.

6.7.1 The New Best-Effort Router
It has been choosen to implement a fully connected crossbar as BE router to increase
the input ports that can be served at once. This has been choosen to avoid dependen-
cies between the input ports that could result in a deadlock. Figure 6.10 shows the
new router which is build of five splitters, five merges and five latches, one for each
of the ports one the BE core. Interleaving of packets is avoided at the merge which
only selects a new input port after it has seen the end of packet. The organisation of
the splits followed by the merge ensures that the split will always operate on com-
plete packets which means that only the merge has to avoid interleaving of packets.
The split selects and output based on the BE path, which is then rotated and inverted
to create a reverse path.

......

split merge (sticky) latch

Figure 6.10: The new BE router is a fully connected crossbar with latches on the
outputs.

The router implements an absolute XY-routing mechanism. This is choosen over
the alternatives because it is relative simple to implement and allows for constructing

61 CHAPTER 6 - RECONFIGURABLE VIRTUAL CIRUITS IN MANGO

a reverse path from the forward path. The principle of figure 6.9(b) is used here,
where opposite port numbers are each others complements. This choice implies the
topology, which has to be a regular mesh, which is the downside of this implementa-
tion. The implementation is documented in appendix A.4 and is a behavioural model.
It has been implemented as a behavioural model because it lifts the abstraction level
away from a standard cell implementation and shows that asynchronous timing can
easily be modeled and simulated toghether with components implemented in stan-
dard cells.

CHAPTER 7

Testing

The implementations have been tested to ensure that the system works as specified.
This chapter describes the test enviroment create for this project, which is depicted
in figure 7.1. A description of how tests have been carried out and how the test traces
should be intepreted is also described in the following.

R43 1

4

2

R33 1

4

2

S1

R23 1

4

2

R13 1

4

2

M1 M2

ta
rg

et
 N

A

initiator N
A

in
iti
at

or
 N

A

Figure 7.1: The test setup consists of four routers connected in a 2×2 mesh net, two
initiator and one target NA, and three IP cores 2 master and one slave.

The test enviroment consists of three IP cores, two masters and one slave and
the source code for the network and the system can be found in appendix C.5 and

63

64

C.6 respectively. The IP cores are connected through the appropriate NA to three
network ports, the source code for the cores can be found in appendix C.7 and C.8.
The network consist of four routers with pipelined links in between them, it should
be noted that router 4 is connected directly to the neighbouring routers. It is possible
to have any number of pipeline pairs, where a pipeline pair consists of two pipeline
stages which are have opposite inverted inputs and outputs.

The test vectors are applied from through the master IP cores, which reads in a
test file, which consists of OCP commands [30] in the following format:

MCmd MConnID MThreadID MAddr MData

The test file is generated by mangofy, which is a script for MANGO that cre-
ates OCP commands from a specification of the configuration. The format of the
specification is described in [8]. The format has been extended to support remote
configuration and acknowledgements as it has been implemented in this project, the
new mangofy commands is summarised in B.1. BE paths, virtual circuits incl. end-
points and general OCP commands can be specified with mangofy.

Below here is two tests described, the first shows one master programming BE
routes in another master’s NA. The second test shows a master that configures a
GS connection for another master, reconfigures the network whereby a specific VC
is reused. The wave traces from these two tests can be found in appendix B The
following section 7.1 examplifies how the wave traces should be read. In addition to
these tests a test bench have been created for the BE router which can be found in the
description of the BE router implementation in appendix A.4.

Configuring BE Paths Remotely
• Master 2 writes BE paths to master 1’s NA.

• Master 1 issues read and write commands to the slave.

The wave trace can be found in appendix B.3.

Reuse of a VC and remote circuit setup
• Master 2 configures a GS connection from master 1 to the slave on a path over

router 2.

• Master 1 issues reads and writes on the GS connection, which leaves the VC
ctrl wire at different state than after it has been initialised.

• Master 2 reconfigures the netowrk by creating a connection from itself to the
slave reusing the link from router 2 to router 3.

• Master 2 sets up a connection from master 1 to the slave over router 4.

65 CHAPTER 7 - TESTING

• Master 2 writes on the GS connection.

• Master 1 writes on the GS connection

Wave traces resulting from the test can be found in appendix B.4.

TEST EXAMPLE 66

7.1 Test Example
Wave traces of signals can be extracted from simulation tools such as Modelsim from
Mentor Graphics, figure 7.2 shows such a wave trace. The figure has has some points
in time marked which are of interest. Following is a description of these points.

FEDCBA

Figure 7.2: A demonstration of the test output.

A After the initiale reset a BE path is written to the NA. A BE path is written
using two writes, one for the actual path and one for the lookup address. It
is followed by a write to the slave and the NA lowers SCmdAccept while it
transmits the flits.

B SCmdAccept is raised as the previous write has been transmitted. The master
then initialises a read targetted for the slave. The master idles as it waits for
the response.

C The read arrives at the slave core and the response is generated as SResp is set
to 01 (Data Valid). The slave waits for the flits to be transmitted.

D The MRespAccept is set high by the target NA as the flits are transmitted.

E A new read is initiated as the SResp and SData indicates that the response cycle
is completed.

CHAPTER 8

Discussion

In this chapter there is a discussion of the general status in NoC design, especially
regarding connection-oriented solutions. Followed by a discussion of the current
status of MANGO and in which directions MANGO and this project could be taken.

8.1 NoC Status
NoC design and research have seen a increasing interest, well illustrated by the NoCs
that are included in the study and the many more that has been omitted. Few NoC
articles concern the use of NoCs in real world applications. Æthereal has been doc-
umented in apllications [3] [33], in both articles the cost of the system is higher in
terms of power and area. It has proven diffucult to find suitable applications where
the NoC approach is a better aproach than the old implementation. Replacing exist-
ing interconnects with a NoC does not make use of the added features and flexibility
offer by NoC, therefore suitable platforms and applications where the added flexibilty
can be used are needed.

One application area where the added flexibilty can be taken advantage of might
be general DSP implementations. A MPSoC with multiple programmable DSPs con-
nected by a NoC would offer a very large degree of flexibility that could be used in
DSP applications such as hearing aids and mobile phones.

Future guaranteed service connections in NoCs should focuse on one of two di-
rections: Apply use cases to schedule connections to maximise performance and
minimise network ressources or adaptive creation of connections based on request
from the application. The two approaches differs greatly, where the scheduling ap-
proach is fully deterministic the adaptive approach creates connections as needed.

In systems where the applications traffic patterns can be determined at design
time, using use cases to map the connections in the network is a very good solu-
tion. Because everything can be scheduled synchronous NoCs that employ time di-
vision multiplexing can minimise buffers to keep the router area low. In a NoC like

67

THE STATUS OF MANGO 68

MANGO it is harder to control the exact flow in all the routers, because the global
synchronisation is not available. For small systems where the input is regular - sam-
pled - traffic patterns can be easily determined and multiple use cases can be used to
capture different system modes.

In systems where the input can not be determined fully the system must have
more intelligence to cope with a non-deterministic behaviour. The contrast to the
above mentioned scheduling approach is an adaptive approach where - in the extreme
case - the NoC is completly hidden from the application which then just requests a
connection to a ressource. To elaborate, the application does not know what kind
of intercconect the system employs but simply request a connection and the NoC
then creates the connections as needed and where there are available ressources. It is
obvious that - as with SoCBUS - giving hard guarantees can be diffucult because it
can not be ensured that the connection can be established.

The two approaches differ greatly especially from an application point-of-view,
where the use case approach requires complex scheduling, the adaptive approach
raises the abstraction level that the application designer can work on. The NoC design
will also vary as the adaptive approach requires complex network ressources that can
create connections ad-hoc, where the use case approach can be implemented with
simple routers that just route. It is obvious that two such different approaces will be
suitable for very different systems, which shows how flexible the NoC approach is in
solving the interconnect challenge.

8.2 The Status of MANGO

As stated earlier MANGO offers a very flexible platform for testing implementations
of NoC research. The modular approach taken with MANGO makes it possible to
change approaches to core functionality such as it has been illustrated with the BE
router. MANGO could therefore prove to be platform for testing NoC research topics
in an asynchronou enviroment. To make full use of the possibilities in MANGO the
implementation details should abstracted allowing for a faster exploration of different
solutions.

The standard cell implementation plays an important role as it proves that a core
concept, such as given hard guarantees in an asynchronous enviroment is possible.
Because of this it is possible to build upon MANGO and reliably explore advanced
NoC research topics.

The implementation done in this project consists of several parts: Reusable VCs,
remote NA programming, acknowledge on configuration, a new BE router and gen-
eration of configuration files.

Moving the key component in the VC control is the best way to solve the problem
of reusing the VCs. It takes away the need for tearing down connections, however as
it will be discussed in the following section on future work, more signaling including
tearing down should be implemented.

69 CHAPTER 8 - DISCUSSION

Allowing any initiator to program any NA - target and initiator alike - adds great
flexibility to the overall solution and enables different configuration approaches to be
taken, such as central and distributed configurations.

Adding acknowledgements to the configuration reguest increases the information
available, but it also increases the setup time. The implementation of acknowledge-
ment in the target NA is done so that it is not returned until the configuration has been
done, where in the router the acknowledge is generated just prior to the configuration
being committed.

The BE router implements an XY-routing scheme where the return path is gener-
ated from the forward path, this makes the router dependent on a mesh topology.

8.3 Future Work
This project has moved MANGO further, but many areas can still be investigated on,
both areas touched in this project aswell as in the original MANGO implementation.
Tobias Bjerregaard has suggested improvements in [8], and the reader is directed
there for the specific topics. This section will only concern future work based on this
work.

Signaling, both during setup and tear down is needed to enhance the information
about the state of the NoC. A signal - maybe in form of an interrupt - is needed
to notify processes in the system of conclusion of a configuration phase or a
succesfull configuration of a specific connection. Tearing down connection is
needed to have a view of available connections in the network.

The Network Adapters, must be rethinked to add more flexibility to the system.
It should be considered to create a generic router design, which would allow
similar features to be added in the initiator and target NA. Currently cores that
needs both a master and a slave interface must connect to two different NAs
which again connects to two different routers. Creating an NA where both
master and slave features could be implemented would enable a more flexible
approach.

The new BE router is too limiting because it adds an unnecessary constraint on the
system, namely requiring a mesh topology. A different implementation of the
BE router core should make use of a different routing scheme, creating two
virtual networks for response and request could be an option. It has not been
implemented in this project as a matter of choice.

CHAPTER 9

Conclusion

This work has presented an implementation of reconfigurable guaranteed service
connections within the MANGO NoC, furthermore a study of current NoC designs
has been documented.

The virtual circuits used by MANGO to implement guaranteed services has been
investigated and a solution that allows for reconfiguration of end-to-end circuits and
reuse of shared ressources has been developed. The implementation consists of a
number of parts which together applies an increased flexibility to the virtual cir-
cuit implementation adopted by MANGO. The main parts of the solution is shortly
presented here, allowing reuse of the VCs, programming NAs, acknowledgement
on setup and a crossbar based BE router. The generation of setup files have been
upgraded to support all the added features, which makes using and testing MANGO
much easier. The solution presented succesfully solves the goal of this project namely
to provide the MANGO NOC with features to allow reconfiguration and reuse of vir-
tual circuits.

It has been the aim to provide a flexible solution that allows for a multitude of
mechanisms to setup and reconfigure the virtual circuits. It is therefore possible to
use diffenerent programming approaches, such as a distributed configuration and a
centrally controlled configuration scheme. The flexibility could be increased further
if signalling was implemented to notify the processes of a succesfull completion of
the configuration phase.

The study that has been conducted in this project has shown a great variety in
the approaches to provide guaranteed service in SoC interconnects. Increasing the
service level tends to increase the complexity which affects the cost of the intercon-
nect, it is therefore important to choose the right level of service for the application
to maximise performance.

71

Bibliography

[1] J. Bainbridge and S. Furber. Chain: a delay-insensitive chip area interconnect.
IEEE Micro, 22(5):16–23, 2002.

[2] W. J. Bainbridge, A. Bardsley, and R. W. McGuffin. System-on-chip design
using self-time networks-on-chip.

[3] Chris Bartels, Jos Huisken, Kees Goossens, Patrick Groeneveld, and Jef van
Meerbergen. Comparison of an Æthereal network on chip and a traditional
interconnect for a multi-processor DVB-T system on chip. In Proc. IFIP Int’l
Conference on Very Large Scale Integration (VLSI-SoC), October 2006.

[4] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture for gigascale
systems-on-chip. Circuits and Systems Magazine, IEEE, 4(2):18–31, 2004.

[5] T. Bjerregaard. The MANGO clockless network-on-chip: Concepts and im-
plementation. PhD thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, 2005. Supervised by Assoc. Prof. Jens Sparsø, IMM.

[6] T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sparsø. An OCP compli-
ant network adapter for GALS-based soc design using the MANGO network-
on-chip. In Proceedings of the International Symposium on System-on-Chip
(SoC’05), pages 171–174. IEEE, nov 2005.

[7] T. Bjerregaard and J. Sparsø. Implementation of guaranteed services in the
MANGO clockless network-on-chip. IEE Proceedings: Computing and Digital
Techniques, 2006. Accepted for publication.

[8] Tobias Bjerregaard. Do you MANGO?, 2006. Internal technical document.

[9] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices
of network-on-chip. ACM Comput. Surv., 38(1):1, 2006.

[10] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. Qnoc: Qos architecture and
design process for network on chip. Journal of Systems Architecture, 50(2-
3):105–128, 2004.

73

BIBLIOGRAPHY 74

[11] David Culler, J. P. Singh, and Anoop Gupta. Parallel Computer Architecture, A
Hardware/Software Approach. Morgan Kaufmann, 1999.

[12] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection
networks. Design Automation Conference, 2001. Proceedings, pages 684–689,
2001.

[13] John Dielissen, Andrei Rădulescu, Kees Goossens, and Edwin Rijpkema. Con-
cepts and implementation of the Philips network-on-chip. In IP-Based SOC
Design, November 2003.

[14] S. Dutta, R. Jensen, and A. Rieckmann. Viper: a multiprocessor soc for ad-
vanced set-top box and digital tv systems. IEEE Design & Test of Computers,
18(5):21–31, 2001.

[15] U. Feige and P. Raghavan. Exact analysis of hot-potato routing. Foundations of
Computer Science, 1992. Proceedings., 33rd Annual Symposium on, pages 553
–562, 1992.

[16] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal network
on chip: Concepts, architectures, and implementations. IEEE Design and Test
of Computers, 22(5), Sept-Oct 2005.

[17] P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched
interconnections. Design, Automation and Test in Europe Conference and Ex-
hibition 2000. Proceedings, pages 250 –256, 2000.

[18] Silistix http://www.silistix.com/, 2006.

[19] Antoine Jalabert, Srinivasan Murali, Luca Benini, and Giovanni De Micheli.
Xpipescompiler: A tool for instantiating application specific networks on chip.
Proceedings - Design, Automation and Test in Europe Conference and Exhi-
bition, DATE 04 and Proceedings - Design, Automation and Test in Europe
Conference and Exhibition, 2:884–889, 2004.

[20] James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns,
Theodore R. Maeurer, and David Shippy. Introduction to the cell multipro-
cessor. IBM Journal of Research and Development, 49(4):589–604, 2005.

[21] F. Karim, Anh Nguyen, and S. Dey. An interconnect architecture for networking
systems on chips. IEEE Micro, 22(5):36–45, 2002.

[22] Zhonghai Lu, Bei Yin, and A. Jantsch. Connection-oriented multicasting in
wormhole-switched networks on chip. Emerging VLSI Technologies and Archi-
tectures, 2006. IEEE Computer Society Annual Symposium on, 00:205–2110,
2006.

[23] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. The nostrum
backbone - a communication protocol stack for networks on chip.

75 BIBLIOGRAPHY

[24] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guaranteed
bandwidth using looped containers in temporally disjoint networks within the
nostrum network on chip. Proceedings - Design, Automation and Test in Europe
Conference and Exhibition, DATE 04 and Proceedings - Design, Automation
and Test in Europe Conference and Exhibition, 2:890–895, 2004.

[25] F. Moraes, N. Calazans, A. Mello, L. Moller, and L. Ost. Hermes: an infras-
tructure for low area overhead packet-switching networks on chip. Integration,
the VLSI Journal, 38(1):69–93, 2004.

[26] Srinivasan Murali, Martijn Coenen, Andrei Rădulescu, Kees Goossens, and
Giovanni De Micheli. Mapping and configuration methods for multi-use-case
networks on chips. In Proc. Design Automation Conference. Asia and South
Pacific (ASP-DAC), January 2006.

[27] Srinivasan Murali, Martijn Coenen, Andrei Rădulescu, Kees Goossens, and
Giovanni De Micheli. A methodology for mapping multiple use-cases on to
networks on chip. In Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), March 2006.

[28] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch. Load distribution with the
proximity congestion awareness in a network on chip. Design, Automation and
Test in Europe Conference and Exhibition, 2003, pages 1126–1127, 2003.

[29] R. G. Olsen. OCP based adapter for network-on-chip. Master’s thesis, Infor-
matics and Mathematical Modelling, Technical University of Denmark, DTU,
Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2005. Super-
vised by assoc. prof. Jens Sparsø, IMM.

[30] Release 2.0 Open Core Protocol (OCP) Specification, 2003.

[31] Andrei Rădulescu, John Dielissen, Santiago González Pestana, Om Prakash
Gangwal, Edwin Rijpkema, Paul Wielage, and Kees Goossens. An efficient on-
chip network interface offering guaranteed services, shared-memory abstrac-
tion, and flexible network programming. IEEE Transactions on CAD of Inte-
grated Circuits and Systems, 24(1):4–17, January 2005.

[32] J. Sparsø and S. Furber. Principles of Asynchronous Circuit Design - A Systems
Perspective. Kluwer Academic Publishers, dec 2001.

[33] Frits Steenhof, Harry Duque, Björn Nilsson, Kees Goossens, and Rafael Pe-
set Llopis. Networks on chips for high-end consumer-electronics tv system
architectures. In Proc. Design, Automation and Test in Europe Conference and
Exhibition (DATE), pages 148–153, March 2006.

[34] D. Wiklund and Dake Liu. Socbus: switched network on chip for hard real time
embedded systems. Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, page 8 pp., 2003.

APPENDIX A

Implementations

The following describes where modifications has been done to implement the solu-
tions described in chapter 6.

A.1 Handshake Conversion
The handshake conversion between the 4 phase unlock signal inside the router to the
4 phase across the link is handled by a an edge triggered flip-flop with a feed back
link. A gate diagram of the conversion block called key here is shown in figure A.1.
The Verilog source code is shown in appendix C.1. The flip-flop changes state every
time a handshake is completed on the virtual channel.

FF out

in

Figure A.1: Gate level diagram of the key.

The key has been moved from the unlock to the output of the ports both the local
port and the port to neighbouring routers.

The following files have been modified in connection with the moving the key:

io_port_39bits_8vcs_sidechain.v - The key has been inserted before the output of
each VC control wire.

77

NA PROGRAMMING 78

local_io_port_39bits_4chs.v - The key has been inserted before the lock boxes in
the local port.

unshace_ctrl_input_decoupled.v - The funcionality of the key has been removed
and implemented in the key.

A.2 NA Programming
Allowing the response flow to write into the configuration register which is imple-
mented as a Look-Up table (LUT), has required the implementation af an arbiter that
allows either the response or the request flow to write into the LUT. The arbiter code
is written in VHDL and the code can be found in C.2. In addition the following files
have had modifactions done as part of the implementation.

initiator_req.vhd - The LUT has been moved out of the response flow, thus ports
and signals have been adjusted accordingly with the move.

initiator_sync.vhd - The LUT and its associated arbiter has been moved to this file.

initiator_resp.vhd - Ports to allow the response controller to write to the LUT has
been added

initiator_resp_ctrl.vhd - A write function similar to the one in the request flow has
been implemented.

A.3 Acknowledgement
Acknowldgement on the configuration requests have been implemented. The OCP
command used is the Write Non Posted (WRNP), which resembles a read. The
initiator NA has therefore had WRNP added to the commands that it can handle.

The following describes the implementation of the acknowledgement in the target
NA and router respectively.

A.3.1 Target NA
Acknowledgement from the target are generated in the response path (target_resp_control.vhd),
when signaled from request flow. The signal is asserted when the LUT signals that
the write configuration has been completed. It is the request flow controller (tar-
get_req_control.vhd) that handles the write and therefore asserts the acknowledge
signal to the response flow.

The acknowledge is generated in a similar fashion to the interrupt handling. Be-
cause the target only handles one request at the time the configuration acknowledge
does not affect the overall guarantees. It is further ensured that the overall flow is not
affected, by ensuring that the request flow still handles requests in one clock cycle.

79 CHAPTER A - IMPLEMENTATIONS

A.3.2 Router
As shown in the figure 6.7 on page 57 a acknowledge generator, two latches and a
merge has been added. The acknowledge generator is implemented behavioural and
the source code is shown in appendix C.3. It has two inputs, an input which is the
request signal and the data from the program split to the programming blocks. When
a request is sampled the BE path is captured from the data stream and the first flit is
emitted on the acknowledge path, on the second request the response flit is generated
with a data valid flag set. The last flit of the configuration request is sampled to
capture the eop field.

The latches and the merge is the same as is used in the BE router and the source
code for those can be found in appendix C.4. All the modules and extra signals have
been added to the BE router (BE_XYrouter_39bits.v).

A.4 Best-Effort Router
The BE router has been implemented as a behvioural model and the source code can
be found in appendix C.4. As described in section 6.7 the BE rouer is a fully con-
nected crossbar, with latches on the output port. The router is build from 3 different
modules, split, merge and the latch, which has been instanced and connected in the
BE_5x5_39_behav module.

The split (be_behav_demux) is a demultiplexer that selects one of its output ports
depending on the path in the first flit. It further rotates and and inverts the BE path.

The merge is build from 2 input merges that keeps their input choice until an eop
field has been seen.

APPENDIX B

Tests

B.1 The Mangofy Script
The mangofy script has been updated, the following two commands has been changed:

BE_PATH{ name, BE_lut_tag, global_addr, routing_path, [remote_NA]}

The remote_NA tag is used if the BE path is to be programmed in a remote NA.
The script will then ensure that the configuration requests are sent to that NA. It is
required that a BE path to the NA has been defined prior.

SETUP_SERVICE{ type, connection_ID, response_connection_ID,
response_port/path, master_na, target_na}

The master_na tag has been added so that remote endpoints can be added. local
should be used if the master in the connection is the present core otherwise the BE
path name should be used.

In addition some checks have been removed to allow OCP commands to use BE
paths that has not been declared in the scope of the core. It is therefore required that
the user is aware that everything has been declared properly.

81

WAVE TRACES 82

B.2 Wave traces

B.3 Configuring BE Paths Remotely

83 CHAPTER B - TESTS

B.4 Reuse of a VC and remote circuit setup

REUSE OF A VC AND REMOTE CIRCUIT SETUP 84

85 CHAPTER B - TESTS

APPENDIX C

Source Code

C.1 key.v
1 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / V e r i l o g n e t l i s t f o r t h e key .

/ / The key i s a c t u a l l y a 4ph t o 2ph c o n v e r t e r , c o n s i s t i n g o f a
/ / f l i p−f l o p w i t h an i n v e r t e r on t h e c l o c k , so t h a t we r e g i s t e r t h e

6 / / downgoing t r a n s i s t i o n s i n t h e 4−phase communica t ion . And t h e r e ’ s a f e e d b a c k
/ / l oop on t h e f l i p−f l o p .

/ / C h r i s t i a n Place Pedersen 2006
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

11 ‘ t i m e s c a l e 1 ns / 1 ps
module key (

r e s e t ,
ack_out ,
g_ack_ou t

16) ;

input r e s e t , a c k _ o u t ;
output g_ack_ou t ;

21 IVHS i n v _ r s t (. Z (n _ r e s e t) , .A(r e s e t)) ;

FD4QHS g_box (.Q(g_ack_ou t) , .D(f e e d b a c k _ g _ a c k) , . CP(n_ack_ou t) , . SD(n _ r e s e t)) ;
IVHS f e e d b a c k _ i n v _ k e y (. Z (f e e d b a c k _ g _ a c k) , .A(g_ack_ou t)) ;
IVHS c p_ i nv (. Z (n_ack_ou t) , .A(a c k _ o u t)) ;

26
endmodule

87

LUT_ARB.VHD 88

C.2 lut_arb.vhd
−−−
−− T i t l e : LUT dua l w r i t e p o r t s
−− P r o j e c t :
−−−

5 −− F i l e : l u t _ a r b . vhd
−− Author : C h r i s t i a n Place Pedersen
−− Company : T e c h n i c a l U n i v e r s i t y o f Denmark − IMM/ CSE
−− Crea ted : 2005−08−28
−− L a s t u pda t e : 2 0 0 6 / 0 8 / 3 0

10 −− P l a t f o r m :
−− S t a n da r d : VHDL’93
−−−
−− D e s c r i p t i o n :
−−−

15 −− C o p y r i g h t (c) 2006
−−−
−− R e v i s i o n s :
−− Date V e r s i o n Author D e s c r i p t i o n
−− 2006−08−28 1 . 0 CPP Crea ted

20 −−−
l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;

e n t i t y l u t _ a r b i s
25

g e n e r i c (
l o c a l _ a d d r _ w d t h : i n t e g e r := 2 4 ;
da t a_wd th : i n t e g e r := 3 2) ;

30 port (
r e s e t _ n : in s t d _ l o g i c ;
w r i t e 0 _ i : in s t d _ l o g i c ;
d a t a 0 _ i : in s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;
a d d r 0 _ i : in s t d _ l o g i c _ v e c t o r (l o c a l _ a d d r _ w d t h−1 downto 0) ;

35 done0_o : out s t d _ l o g i c ;
w r i t e 1 _ i : in s t d _ l o g i c ;
d a t a 1 _ i : in s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;
a d d r 1 _ i : in s t d _ l o g i c _ v e c t o r (l o c a l _ a d d r _ w d t h−1 downto 0) ;
done1_o : out s t d _ l o g i c ;

40 w r i t e _ o : out s t d _ l o g i c ;
d a t a _ o : out s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;
addr_o : out s t d _ l o g i c _ v e c t o r (l o c a l _ a d d r _ w d t h−1 downto 0) ;
do ne _ i : in s t d _ l o g i c
) ;

45
end l u t _ a r b ;

a r c h i t e c t u r e behav of l u t _ a r b i s

50 s i g n a l l a s t : s t d _ l o g i c ;

begin −− behav

p r o c e s s (r e s e t _ n , w r i t e 0 _ i , d a t a 0 _ i , a d d r 0 _ i , w r i t e 1 _ i ,
55 d a t a 1 _ i , a d d r 1 _ i , done_i , l a s t)

begin −− p r o c e s s
i f r e s e t _ n = ’0 ’ then

l a s t <= ’ 1 ’ ;
e l s e

60 i f l a s t = ’0 ’ then
i f w r i t e 1 _ i = ’1 ’ then

w r i t e _ o <= w r i t e 1 _ i ;
d a t a _ o <= d a t a 1 _ i ;
addr_o <= a d d r 1 _ i ;

65 done1_o <= do ne _ i ;
l a s t <= ’ 1 ’ ;

e l s e
w r i t e _ o <= w r i t e 0 _ i ;
d a t a _ o <= d a t a 0 _ i ;

70 addr_o <= a d d r 0 _ i ;
done0_o <= do ne _ i ;

89 CHAPTER C - SOURCE CODE

l a s t <= ’ 0 ’ ;
end i f ;

e l s e
75 i f w r i t e 0 _ i = ’1 ’ then

w r i t e _ o <= w r i t e 0 _ i ;
d a t a _ o <= d a t a 0 _ i ;
addr_o <= a d d r 0 _ i ;
done1_o <= do ne _ i ;

80 l a s t <= ’ 0 ’ ;
e l s e

w r i t e _ o <= w r i t e 1 _ i ;
d a t a _ o <= d a t a 1 _ i ;
addr_o <= a d d r 1 _ i ;

85 done1_o <= do ne _ i ;
l a s t <= ’ 1 ’ ;

end i f ;
end i f ;

end i f ;
90 end p r o c e s s ;

end behav ;

GEN_ACKNOWLEDGE_39.V 90

C.3 gen_acknowledge_39.v

module gen_acknowledge_39 (
r e q _ i n ,

3 d a t a _ i n ,
r e q _ o u t ,
ack_out ,
d a t a _ o u t ,
r e s e t

8) ;

input r e q _ i n ;
input [3 8 : 0] d a t a _ i n ;
output r e q _ o u t ;

13 input a c k _ o u t ;
output [3 8 : 0] d a t a _ o u t ;
input r e s e t ;

reg r e q _ o u t ;
18 reg [3 8 : 0] d a t a _ o u t ;

reg eop , gen ;

parameter DLY = 0 . 4 ;

23 not (n _ r e s e t , r e s e t) ;

always @(n _ r e s e t) begin
i f (n _ r e s e t == 1 ’ b1) begin

r e q _ o u t <= 1 ’ b0 ;
28 d a t a _ o u t <= 38 ’ b0 ;

eop <= 1 ’ b1 ;
gen <= 1 ’ b0 ;

end
end

33
always begin

wai t (r e q _ i n == 1 ’ b1) ;
i f (eop) begin

d a t a _ o u t = { d a t a _ i n [3 8] , d a t a _ i n [5] , d a t a _ i n [6] ,
38 d a t a _ i n [7] , d a t a _ i n [8] , d a t a _ i n [9] , d a t a _ i n [1 0] ,

d a t a _ i n [1 1] , d a t a _ i n [1 2] , d a t a _ i n [1 2] , d a t a _ i n [1 4] ,
d a t a _ i n [1 5] , d a t a _ i n [1 6] , d a t a _ i n [1 7] , d a t a _ i n [1 8] ,
d a t a _ i n [1 9] , d a t a _ i n [2 0] , d a t a _ i n [2 1] , d a t a _ i n [2 2] ,
d a t a _ i n [2 3] , d a t a _ i n [2 4] , d a t a _ i n [2 5] , d a t a _ i n [2 6] ,

43 d a t a _ i n [2 7] , d a t a _ i n [2 8] , d a t a _ i n [2 9] , d a t a _ i n [3 0] ,
d a t a _ i n [3 1] , d a t a _ i n [3 2] , d a t a _ i n [3 3] , d a t a _ i n [3 4] ,
8 ’ b00000000 } ;

gen = 1 ;
#DLY;

48 r e q _ o u t = 1 ’ b1 ;
wait (a c k _ o u t == 1 ’ b1) ;
#DLY;
r e q _ o u t = 1 ’ b0 ;
wait (a c k _ o u t == 1 ’ b0) ;

53 end
e l s e i f (gen) begin

d a t a _ o u t = {2 ’ b10 , d a t a _ i n [3 3 : 3 1] , 2 ’ b01 , 3 2 ’ b0 } ; / / da ta v a l i d r e s p o n s e
gen = 0 ;
#DLY;

58 r e q _ o u t = 1 ’ b1 ;
wait (a c k _ o u t == 1 ’ b1) ;
#DLY;
r e q _ o u t = 1 ’ b0 ;
wait (a c k _ o u t == 1 ’ b0) ;

63 end
wai t (r e q _ i n == 1 ’ b0) ;

end

always begin
68 wait (r e q _ i n == 1 ’ b1) ;

wait (r e q _ i n == 1 ’ b0) ;
eop = d a t a _ i n [3 8] ;

91 CHAPTER C - SOURCE CODE

end
endmodule

BE_BEHAV.V 92

C.4 BE_behav.v
/ / CPP
‘ t i m e s c a l e 1 ns / 1 ps

3 module BE_5x5_39_behav (
r e q _ i n ,
ack_ in ,
d a t a _ i n 4 ,
d a t a _ i n 3 ,

8 d a t a _ i n 2 ,
d a t a _ i n 1 ,
d a t a _ i n 0 ,
r e q _ o u t ,
ack_out ,

13 d a t a _ o u t 4 ,
d a t a _ o u t 3 ,
d a t a _ o u t 2 ,
d a t a _ o u t 1 ,
d a t a _ o u t 0 ,

18 r s t
) ;

/ / p o r t s
23 input r s t ;

input [4 : 0] r e q _ i n ;
output [4 : 0] a c k _ i n ;
input [3 8 : 0] d a t a _ i n 0 ;

28 input [3 8 : 0] d a t a _ i n 1 ;
input [3 8 : 0] d a t a _ i n 2 ;
input [3 8 : 0] d a t a _ i n 3 ;
input [3 8 : 0] d a t a _ i n 4 ;
output [4 : 0] r e q _ o u t ;

33 input [4 : 0] a c k _ o u t ;
output [3 8 : 0] d a t a _ o u t 0 ;
output [3 8 : 0] d a t a _ o u t 1 ;
output [3 8 : 0] d a t a _ o u t 2 ;
output [3 8 : 0] d a t a _ o u t 3 ;

38 output [3 8 : 0] d a t a _ o u t 4 ;

wire [4 : 0] req_dmux0 , req_dmux1 , req_dmux2 , req_dmux3 , req_dmux4 ;
wire req_merge0 , req_merge1 , req_merge2 , req_merge3 , req_merge4 ;
wire [4 : 0] s e l e c t 0 , s e l e c t 1 , s e l e c t 2 , s e l e c t 3 , s e l e c t 4 ;

43 wire [4 : 0] ack_dmux0 , ack_dmux1 , ack_dmux2 , ack_dmux3 , ack_dmux4 ;
wire ack_merge0 , ack_merge1 , ack_merge2 , ack_merge3 , ack_merge4 ;
wire [3 8 : 0] data_dmux00 , data_dmux01 , data_dmux02 , data_dmux03 , data_dmux04 ,

data_dmux10 , data_dmux11 , data_dmux12 , data_dmux13 , data_dmux14 ,
data_dmux20 , data_dmux21 , data_dmux22 , data_dmux23 , data_dmux24 ,

48 data_dmux30 , data_dmux31 , data_dmux32 , data_dmux33 , data_dmux34 ,
data_dmux40 , data_dmux41 , data_dmux42 , data_dmux43 , data_dmux44 ;

wire [3 8 : 0] da ta_merge0 , da ta_merge1 , da ta_merge2 , da ta_merge3 , da ta_merge4 ;
/ / w i r e [3 8 : 0] d a t a _ l a t c h 0 , d a t a _ l a t c h 1 , d a t a _ l a t c h 2 , d a t a _ l a t c h 3 , d a t a _ l a t c h 4 ;

53
/ / a s s i g n d a t a _ o u t 0 = d a t a _ l a t c h 0 ;
/ / a s s i g n d a t a _ o u t 1 = d a t a _ l a t c h 1 ;
/ / a s s i g n d a t a _ o u t 2 = d a t a _ l a t c h 2 ;
/ / a s s i g n d a t a _ o u t 3 = d a t a _ l a t c h 3 ;

58 / / a s s i g n d a t a _ o u t 4 = d a t a _ l a t c h 4 ;

/ / Demux
/ / i n p u t p o r t 0
BE_behav_demux i n p u t 0 (

63 . r e q _ i n (r e q _ i n [0]) ,
. a c k _ i n (a c k _ i n [0]) ,
. d a t a _ i n (d a t a _ i n 0) ,
. r e q _ o u t (req_dmux0) ,
. a c k _ o u t (ack_dmux0) ,

68 . d a t a _ o u t 0 (data_dmux00) ,
. d a t a _ o u t 1 (data_dmux01) ,
. d a t a _ o u t 2 (data_dmux02) ,
. d a t a _ o u t 3 (data_dmux03) ,

93 CHAPTER C - SOURCE CODE

. d a t a _ o u t 4 (data_dmux04) ,
73 . r s t (r s t)

) ;
/ / i n p u t p o r t 1
BE_behav_demux i n p u t 1 (

. r e q _ i n (r e q _ i n [1]) ,
78 . a c k _ i n (a c k _ i n [1]) ,

. d a t a _ i n (d a t a _ i n 1) ,

. r e q _ o u t (req_dmux1) ,

. a c k _ o u t (ack_dmux1) ,

. d a t a _ o u t 0 (data_dmux10) ,
83 . d a t a _ o u t 1 (data_dmux11) ,

. d a t a _ o u t 2 (data_dmux12) ,

. d a t a _ o u t 3 (data_dmux13) ,

. d a t a _ o u t 4 (data_dmux14) ,

. r s t (r s t)
88) ;

/ / i n p u t p o r t 2
BE_behav_demux i n p u t 2 (

. r e q _ i n (r e q _ i n [2]) ,

. a c k _ i n (a c k _ i n [2]) ,
93 . d a t a _ i n (d a t a _ i n 2) ,

. r e q _ o u t (req_dmux2) ,

. a c k _ o u t (ack_dmux2) ,

. d a t a _ o u t 0 (data_dmux20) ,

. d a t a _ o u t 1 (data_dmux21) ,
98 . d a t a _ o u t 2 (data_dmux22) ,

. d a t a _ o u t 3 (data_dmux23) ,

. d a t a _ o u t 4 (data_dmux24) ,

. r s t (r s t)
) ;

103 / / i n p u t p o r t 3
BE_behav_demux i n p u t 3 (

. r e q _ i n (r e q _ i n [3]) ,

. a c k _ i n (a c k _ i n [3]) ,

. d a t a _ i n (d a t a _ i n 3) ,
108 . r e q _ o u t (req_dmux3) ,

. a c k _ o u t (ack_dmux3) ,

. d a t a _ o u t 0 (data_dmux30) ,

. d a t a _ o u t 1 (data_dmux31) ,

. d a t a _ o u t 2 (data_dmux32) ,
113 . d a t a _ o u t 3 (data_dmux33) ,

. d a t a _ o u t 4 (data_dmux34) ,

. r s t (r s t)
) ;
/ / i n p u t p o r t 4

118 BE_behav_demux i n p u t 4 (
. r e q _ i n (r e q _ i n [4]) ,
. a c k _ i n (a c k _ i n [4]) ,
. d a t a _ i n (d a t a _ i n 4) ,
. r e q _ o u t (req_dmux4) ,

123 . a c k _ o u t (ack_dmux4) ,
. d a t a _ o u t 0 (data_dmux40) ,
. d a t a _ o u t 1 (data_dmux41) ,
. d a t a _ o u t 2 (data_dmux42) ,
. d a t a _ o u t 3 (data_dmux43) ,

128 . d a t a _ o u t 4 (data_dmux44) ,
. r s t (r s t)

) ;

/ / Merge
133 / / o u t p u t p o r t 0

BE_behav_merge merge0 (
. r e q _ i n ({ req_dmux4 [0] , req_dmux3 [0] , req_dmux2 [0] , req_dmux1 [0] , req_dmux0 [0] }) ,
. a c k _ i n ({ ack_dmux4 [0] , ack_dmux3 [0] , ack_dmux2 [0] , ack_dmux1 [0] , ack_dmux0 [0] }) ,
. d a t a _ i n 0 (data_dmux00) ,

138 . d a t a _ i n 1 (data_dmux10) ,
. d a t a _ i n 2 (data_dmux20) ,
. d a t a _ i n 3 (data_dmux30) ,
. d a t a _ i n 4 (data_dmux40) ,
. r e q _ o u t (req_merge0) ,

143 . a c k _ o u t (ack_merge0) ,
. d a t a _ o u t (da ta_merge0) ,
. r s t (r s t)

BE_BEHAV.V 94

) ;
/ / o u t p u t p o r t 1

148 BE_behav_merge merge1 (
. r e q _ i n ({ req_dmux4 [1] , req_dmux3 [1] , req_dmux2 [1] , req_dmux1 [1] , req_dmux0 [1] }) ,
. a c k _ i n ({ ack_dmux4 [1] , ack_dmux3 [1] , ack_dmux2 [1] , ack_dmux1 [1] , ack_dmux0 [1] }) ,
. d a t a _ i n 0 (data_dmux01) ,
. d a t a _ i n 1 (data_dmux11) ,

153 . d a t a _ i n 2 (data_dmux21) ,
. d a t a _ i n 3 (data_dmux31) ,
. d a t a _ i n 4 (data_dmux41) ,
. r e q _ o u t (req_merge1) ,
. a c k _ o u t (ack_merge1) ,

158 . d a t a _ o u t (da ta_merge1) ,
. r s t (r s t)

) ;
/ / o u t p u t p o r t 2
BE_behav_merge merge2 (

163 . r e q _ i n ({ req_dmux4 [2] , req_dmux3 [2] , req_dmux2 [2] , req_dmux1 [2] , req_dmux0 [2] }) ,
. a c k _ i n ({ ack_dmux4 [2] , ack_dmux3 [2] , ack_dmux2 [2] , ack_dmux1 [2] , ack_dmux0 [2] }) ,
. d a t a _ i n 0 (data_dmux02) ,
. d a t a _ i n 1 (data_dmux12) ,
. d a t a _ i n 2 (data_dmux22) ,

168 . d a t a _ i n 3 (data_dmux32) ,
. d a t a _ i n 4 (data_dmux42) ,
. r e q _ o u t (req_merge2) ,
. a c k _ o u t (ack_merge2) ,
. d a t a _ o u t (da ta_merge2) ,

173 . r s t (r s t)
) ;
/ / o u t p u t p o r t 3
BE_behav_merge merge3 (

. r e q _ i n ({ req_dmux4 [3] , req_dmux3 [3] , req_dmux2 [3] , req_dmux1 [3] , req_dmux0 [3] }) ,
178 . a c k _ i n ({ ack_dmux4 [3] , ack_dmux3 [3] , ack_dmux2 [3] , ack_dmux1 [3] , ack_dmux0 [3] }) ,

. d a t a _ i n 0 (data_dmux03) ,

. d a t a _ i n 1 (data_dmux13) ,

. d a t a _ i n 2 (data_dmux23) ,

. d a t a _ i n 3 (data_dmux33) ,
183 . d a t a _ i n 4 (data_dmux43) ,

. r e q _ o u t (req_merge3) ,

. a c k _ o u t (ack_merge3) ,

. d a t a _ o u t (da ta_merge3) ,

. r s t (r s t)
188) ;

/ / o u t p u t p o r t 4
BE_behav_merge merge4 (

. r e q _ i n ({ req_dmux4 [4] , req_dmux3 [4] , req_dmux2 [4] , req_dmux1 [4] , req_dmux0 [4] }) ,

. a c k _ i n ({ ack_dmux4 [4] , ack_dmux3 [4] , ack_dmux2 [4] , ack_dmux1 [4] , ack_dmux0 [4] }) ,
193 . d a t a _ i n 0 (data_dmux04) ,

. d a t a _ i n 1 (data_dmux14) ,

. d a t a _ i n 2 (data_dmux24) ,

. d a t a _ i n 3 (data_dmux34) ,

. d a t a _ i n 4 (data_dmux44) ,
198 . r e q _ o u t (req_merge4) ,

. a c k _ o u t (ack_merge4) ,

. d a t a _ o u t (da ta_merge4) ,

. r s t (r s t)
) ;

203
/ / La tch
/ / o u t p u t p o r t 0
BE_behav_ la t ch l a t c h 0 (

. r e q _ i n (req_merge0) ,
208 . a c k _ i n (ack_merge0) ,

. d a t a _ i n (da ta_merge0) ,

. r e q _ o u t (r e q _ o u t [0]) ,

. a c k _ o u t (a c k _ o u t [0]) ,

. d a t a _ o u t (d a t a _ o u t 0) ,
213 . r s t (r s t)

) ;
/ / o u t p u t p o r t 1
BE_behav_ la t ch l a t c h 1 (

. r e q _ i n (req_merge1) ,
218 . a c k _ i n (ack_merge1) ,

. d a t a _ i n (da ta_merge1) ,

95 CHAPTER C - SOURCE CODE

. r e q _ o u t (r e q _ o u t [1]) ,

. a c k _ o u t (a c k _ o u t [1]) ,

. d a t a _ o u t (d a t a _ o u t 1) ,
223 . r s t (r s t)

) ;
/ / o u t p u t p o r t 2
BE_behav_ la t ch l a t c h 2 (

. r e q _ i n (req_merge2) ,
228 . a c k _ i n (ack_merge2) ,

. d a t a _ i n (da ta_merge2) ,

. r e q _ o u t (r e q _ o u t [2]) ,

. a c k _ o u t (a c k _ o u t [2]) ,

. d a t a _ o u t (d a t a _ o u t 2) ,
233 . r s t (r s t)

) ;
/ / o u t p u t p o r t 3
BE_behav_ la t ch l a t c h 3 (

. r e q _ i n (req_merge3) ,
238 . a c k _ i n (ack_merge3) ,

. d a t a _ i n (da ta_merge3) ,

. r e q _ o u t (r e q _ o u t [3]) ,

. a c k _ o u t (a c k _ o u t [3]) ,

. d a t a _ o u t (d a t a _ o u t 3) ,
243 . r s t (r s t)

) ;
/ / o u t p u t p o r t 4
BE_behav_ la t ch l a t c h 4 (

. r e q _ i n (req_merge4) ,
248 . a c k _ i n (ack_merge4) ,

. d a t a _ i n (da ta_merge4) ,

. r e q _ o u t (r e q _ o u t [4]) ,

. a c k _ o u t (a c k _ o u t [4]) ,

. d a t a _ o u t (d a t a _ o u t 4) ,
253 . r s t (r s t)

) ;

endmodule

258
/ / 2 i n p u t (data , req and ack) merge
module BE_behav_2merge (

r e q _ i n ,
ack_ in ,

263 d a t a _ i n 0 ,
d a t a _ i n 1 ,
r e q _ o u t ,
ack_out ,
d a t a _ o u t ,

268 r s t
) ;

input [1 : 0] r e q _ i n ;
output [1 : 0] a c k _ i n ;

273 input [3 8 : 0] d a t a _ i n 0 ;
input [3 8 : 0] d a t a _ i n 1 ;
output r e q _ o u t ;
input a c k _ o u t ;
output [3 8 : 0] d a t a _ o u t ;

278 input r s t ;

parameter DLY = 0 . 4 ;

reg [3 8 : 0] d a t a _ o u t ;
283 reg [1 : 0] a c k _ i n ;

reg r e q _ o u t , i n t _ r e q _ o u t ;
reg l a s t ;
reg eop ;
wire e v_ re q ;

288
always @(r s t) begin

i f (r s t == 1 ’ b1) begin
l a s t <= 1 ’ b0 ;
eop <= 1 ’ b1 ;

293 a c k _ i n <= 1 ’ b0 ;

BE_BEHAV.V 96

end
end

or (ev_req , r e q _ i n [0] , r e q _ i n [1]) ;
298

always begin
wai t (e v_ re q == 1 ’ b1) ;
i f (eop == 1 ’ b1) begin

i f (l a s t) begin / / r e q _ i n [1] was s e l e c t e d l a s t
303 i f (r e q _ i n [0] == 1 ’ b1) begin

l a s t <= 1 ’ b0 ;
end
e l s e i f (r e q _ i n [1] == 1 ’ b1) begin

l a s t <= 1 ’ b1 ;
308 end

end
e l s e begin

i f (r e q _ i n [1] == 1 ’ b1) begin
l a s t <= 1 ’ b1 ;

313 end
e l s e i f (r e q _ i n [0] == 1 ’ b1) begin

l a s t <= 1 ’ b0 ;
end

end
318 end

wai t (a c k _ o u t == 1 ’ b1) ;
eop = (l a s t ? d a t a _ i n 1 [3 8] : d a t a _ i n 0 [3 8]) ;
#DLY;
i f (l a s t) begin

323 a c k _ i n = 2 ’ b10 ;
wait (r e q _ i n [1] == 1 ’ b0) ;

end
e l s e begin

a c k _ i n = 2 ’ b01 ;
328 wait (r e q _ i n [0] == 1 ’ b0) ;

end
wai t (a c k _ o u t == 1 ’ b0) ;
a c k _ i n <= 2 ’ b00 ;
end

333
always @(d a t a _ i n 0 or d a t a _ i n 1 or l a s t or r e q _ i n) begin

i f (l a s t) begin
d a t a _ o u t <= d a t a _ i n 1 ;
r e q _ o u t <= r e q _ i n [1] ;

338 end
e l s e begin

d a t a _ o u t <= d a t a _ i n 0 ;
r e q _ o u t <= r e q _ i n [0] ;

end
343 end

/ / a lways @(i n t _ r e q _ o u t) b e g i n / / d e l a y r e q _ o u t . needed f o r t h e p g m _ s p l i t
/ / r e q _ o u t = #1 i n t _ r e q _ o u t ;
/ / end

348
endmodule

/ / S e l e c t s based on b i t 37:35 o f d a t a _ i n .
/ / r o t a t e s and i n v e r t s , t o form t h e r e t u r n pa th

353 module BE_behav_demux (
r e q _ i n ,
ack_ in ,
d a t a _ i n ,
r e q _ o u t ,

358 ack_out ,
d a t a _ o u t 0 ,
d a t a _ o u t 1 ,
d a t a _ o u t 2 ,
d a t a _ o u t 3 ,

363 d a t a _ o u t 4 ,
r s t

) ;

input r e q _ i n ;

97 CHAPTER C - SOURCE CODE

368 output a c k _ i n ;
input [3 8 : 0] d a t a _ i n ;
output [4 : 0] r e q _ o u t ;
input [4 : 0] a c k _ o u t ;
output [3 8 : 0] d a t a _ o u t 0 ;

373 output [3 8 : 0] d a t a _ o u t 1 ;
output [3 8 : 0] d a t a _ o u t 2 ;
output [3 8 : 0] d a t a _ o u t 3 ;
output [3 8 : 0] d a t a _ o u t 4 ;
input r s t ;

378
parameter DLY = 0 . 2 ;

reg [3 8 : 0] d a t a _ o u t 0 , d a t a _ o u t 1 , d a t a _ o u t 2 , d a t a _ o u t 3 , d a t a _ o u t 4 , d a t a ;
reg [4 : 0] r e q _ o u t ;

383 reg ack_ in , i n t _ r e q _ o u t ;
wire ev_ack ;
reg [2 : 0] s e l ;
reg eop ;
reg [3 : 0] c o u n t ;

388
always @(r s t) begin

i f (r s t == 1 ’ b1) begin
i n t _ r e q _ o u t <= 1 ’ b0 ;
r e q _ o u t <= 5 ’ b0000 ;

393 a c k _ i n <= 1 ’ b0 ;
s e l <= 3 ’ b000 ;
eop <= 1 ’ b1 ;
c o u n t <= 4 ’ b0 ;

end
398 end

or (ev_ack , a c k _ o u t [0] , a c k _ o u t [1] , a c k _ o u t [2] , a c k _ o u t [3] , a c k _ o u t [4]) ;

always begin
403 wait (r e q _ i n == 1 ’ b1) ;

i f (eop == 1 ’ b1) begin
s e l <= d a t a _ i n [3 7 : 3 5] ;
c o u n t <= d a t a _ i n [3 : 0] ; / / hop c o u n t

end
408 #DLY;

i n t _ r e q _ o u t <= 1 ’ b1 ;
wait (ev_ack == 1 ’ b1) ;
#DLY;
i n t _ r e q _ o u t <= 1 ’ b0 ;

413 eop <= d a t a _ i n [3 8] ;
wait (ev_ack == 1 ’ b0) ;
a c k _ i n <= 1 ’ b1 ;
wait (r e q _ i n == 1 ’ b0) ;
a c k _ i n <= 1 ’ b0 ;

418
end

always @(eop or d a t a _ i n or c o u n t) begin
i f (eop == 1 ’ b1) begin

423 d a t a [3 8] <= d a t a _ i n [3 8] ;
d a t a [3 : 0] <= d a t a _ i n [3 : 0] + 1 ;
case (c o u n t)
0 : begin

d a t a [3 7 : 7] <= d a t a _ i n [3 4 : 4] ;
428 d a t a [6 : 4] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

end
1 : begin

d a t a [3 7 : 1 0] <= d a t a _ i n [3 4 : 7] ;
d a t a [9 : 7] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

433 d a t a [6 : 4] <= d a t a _ i n [6 : 4] ;
end
2 : begin

d a t a [3 7 : 1 3] <= d a t a _ i n [3 4 : 1 0] ;
d a t a [1 2 : 1 0] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

438 d a t a [9 : 4] <= d a t a _ i n [9 : 4] ;
end
3 : begin

d a t a [3 7 : 1 6] <= d a t a _ i n [3 4 : 1 3] ;

BE_BEHAV.V 98

d a t a [1 5 : 1 3] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;
443 d a t a [1 2 : 4] <= d a t a _ i n [1 2 : 4] ;

end
4 : begin

d a t a [3 7 : 1 9] <= d a t a _ i n [3 4 : 1 6] ;
d a t a [1 8 : 1 6] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

448 d a t a [1 5 : 4] <= d a t a _ i n [1 5 : 4] ;
end
5 : begin

d a t a [3 7 : 2 2] <= d a t a _ i n [3 4 : 1 9] ;
d a t a [2 1 : 1 9] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

453 d a t a [1 8 : 4] <= d a t a _ i n [1 8 : 4] ;
end
6 : begin

d a t a [3 7 : 2 5] <= d a t a _ i n [3 4 : 2 2] ;
d a t a [2 4 : 2 2] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

458 d a t a [2 1 : 4] <= d a t a _ i n [2 1 : 4] ;
end
7 : begin

d a t a [3 7 : 2 8] <= d a t a _ i n [3 4 : 2 5] ;
d a t a [2 7 : 2 5] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

463 d a t a [2 4 : 4] <= d a t a _ i n [2 4 : 4] ;
end
8 : begin

d a t a [3 7 : 3 1] <= d a t a _ i n [3 4 : 2 8] ;
d a t a [3 0 : 2 8] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

468 d a t a [2 7 : 4] <= d a t a _ i n [2 7 : 4] ;
end
9 : begin

d a t a [3 7 : 3 4] <= d a t a _ i n [3 4 : 3 1] ;
d a t a [3 3 : 3 1] <= ~{ d a t a _ i n [3 5] , d a t a _ i n [3 6] , d a t a _ i n [3 7] } ;

473 d a t a [3 0 : 4] <= d a t a _ i n [3 0 : 4] ;
end
d e f a u l t : begin

d a t a <= d a t a _ i n ;
end

478 endcase
end
e l s e begin

d a t a <= d a t a _ i n ;
end

483 end

always @(s e l , i n t _ r e q _ o u t , d a t a) begin
case (s e l)
5 ’ b001 :

488 begin
d a t a _ o u t 1 <= d a t a ;
r e q _ o u t [1] <= i n t _ r e q _ o u t ;

end
5 ’ b010 :

493 begin
d a t a _ o u t 2 <= d a t a ;
r e q _ o u t [2] <= i n t _ r e q _ o u t ;

end
5 ’ b110 :

498 begin
d a t a _ o u t 3 <= d a t a ;
r e q _ o u t [3] <= i n t _ r e q _ o u t ;

end
5 ’ b101 :

503 begin
d a t a _ o u t 4 <= d a t a ;
r e q _ o u t [4] <= i n t _ r e q _ o u t ;

end
d e f a u l t :

508 begin
d a t a _ o u t 0 <= d a t a ;
r e q _ o u t [0] <= i n t _ r e q _ o u t ;

end
endcase

513 end
endmodule

99 CHAPTER C - SOURCE CODE

module BE_behav_merge (
r e q _ i n ,

518 ack_ in ,
d a t a _ i n 0 ,
d a t a _ i n 1 ,
d a t a _ i n 2 ,
d a t a _ i n 3 ,

523 d a t a _ i n 4 ,
r e q _ o u t ,
ack_out ,
d a t a _ o u t ,
r s t

528) ;

input [4 : 0] r e q _ i n ;
output [4 : 0] a c k _ i n ;
input [3 8 : 0] d a t a _ i n 0 ;

533 input [3 8 : 0] d a t a _ i n 1 ;
input [3 8 : 0] d a t a _ i n 2 ;
input [3 8 : 0] d a t a _ i n 3 ;
input [3 8 : 0] d a t a _ i n 4 ;
output r e q _ o u t ;

538 input a c k _ o u t ;
output [3 8 : 0] d a t a _ o u t ;
input r s t ;

wire req0_0 , req0_1 , req1_0 ;
543 wire [3 8 : 0] da ta0_0 , da ta0_1 , d a t a 1 _ 0 ;

wire ack0_0 , ack0_1 , ack1_0 ;

BE_behav_2merge merge0_0 (
. r e q _ i n (r e q _ i n [1 : 0]) ,

548 . a c k _ i n (a c k _ i n [1 : 0]) ,
. d a t a _ i n 0 (d a t a _ i n 0) ,
. d a t a _ i n 1 (d a t a _ i n 1) ,
. r e q _ o u t (req0_0) ,
. a c k _ o u t (ack0_0) ,

553 . d a t a _ o u t (d a t a 0 _ 0) ,
. r s t (r s t)

) ;
BE_behav_2merge merge0_1 (

. r e q _ i n (r e q _ i n [3 : 2]) ,
558 . a c k _ i n (a c k _ i n [3 : 2]) ,

. d a t a _ i n 0 (d a t a _ i n 2) ,

. d a t a _ i n 1 (d a t a _ i n 3) ,

. r e q _ o u t (req0_1) ,

. a c k _ o u t (ack0_1) ,
563 . d a t a _ o u t (d a t a 0 _ 1) ,

. r s t (r s t)
) ;
BE_behav_2merge merge1_0 (

. r e q _ i n ({ req0_1 , r e q _ i n [4] }) ,
568 . a c k _ i n ({ ack0_1 , a c k _ i n [4] }) ,

. d a t a _ i n 0 (d a t a _ i n 4) ,

. d a t a _ i n 1 (d a t a 0 _ 1) ,

. r e q _ o u t (req1_0) ,

. a c k _ o u t (ack1_0) ,
573 . d a t a _ o u t (d a t a 1 _ 0) ,

. r s t (r s t)
) ;
BE_behav_2merge merge2_0 (

. r e q _ i n ({ req1_0 , req0_0 }) ,
578 . a c k _ i n ({ ack1_0 , ack0_0 }) ,

. d a t a _ i n 0 (d a t a 0 _ 0) ,

. d a t a _ i n 1 (d a t a 1 _ 0) ,

. r e q _ o u t (r e q _ o u t) ,

. a c k _ o u t (a c k _ o u t) ,
583 . d a t a _ o u t (d a t a _ o u t) ,

. r s t (r s t)
) ;

endmodule
588

module BE_behav_ la t ch (

BE_BEHAV.V 100

r e q _ i n ,
ack_ in ,
d a t a _ i n ,

593 r e q _ o u t ,
ack_out ,
d a t a _ o u t ,
r s t

) ;
598

input r e q _ i n ;
output a c k _ i n ;
input [3 8 : 0] d a t a _ i n ;
output r e q _ o u t ;

603 input a c k _ o u t ;
output [3 8 : 0] d a t a _ o u t ;
input r s t ;

parameter DLY = 0 . 4 ;
608 reg en ;

reg r e q _ o u t ;
reg [3 8 : 0] d a t a _ o u t ;

a s s i g n a c k _ i n = en ;
613

always @(r s t) begin
i f (r s t == 1 ’ b1) begin

d a t a _ o u t <= 39 ’ b0 ;
en <= 1 ’ b0 ;

618 end
end

always begin
wai t (r e q _ i n == 1 ’ b1) ;

623 #DLY;
en = 1 ’ b1 ;
wait (a c k _ o u t == 1 ’ b1) ;
wait (r e q _ i n == 1 ’ b0) ;
#DLY;

628 en = 1 ’ b0 ;
wait (a c k _ o u t == 1 ’ b0) ;

end

always @(en) begin
633 r e q _ o u t <= #1 en ; / / d e l a y so p g m _ s p l i t works

i f (en == 1 ’ b1)
d a t a _ o u t <= d a t a _ i n ;

end

638 endmodule

module BE_behav_tb () ;

parameter DLY = 0 . 4 ;
643

reg [4 : 0] ack_out , r e q _ i n ;
reg [3 8 : 0] d a t a _ i n 0 , d a t a _ i n 1 , d a t a _ i n 2 , d a t a _ i n 3 , d a t a _ i n 4 ;
reg r s t ;
wire [4 : 0] ack_ in , r e q _ o u t ;

648
BE_5x5_39_behav d u t (

. r e q _ i n (r e q _ i n) ,

. a c k _ i n (a c k _ i n) ,

. d a t a _ i n 4 (d a t a _ i n 4) ,
653 . d a t a _ i n 3 (d a t a _ i n 3) ,

. d a t a _ i n 2 (d a t a _ i n 2) ,

. d a t a _ i n 1 (d a t a _ i n 1) ,

. d a t a _ i n 0 (d a t a _ i n 0) ,

. r e q _ o u t (r e q _ o u t) ,
658 . a c k _ o u t (a c k _ o u t) ,

. d a t a _ o u t 4 () ,

. d a t a _ o u t 3 () ,

. d a t a _ o u t 2 () ,

. d a t a _ o u t 1 () ,
663 . d a t a _ o u t 0 () ,

101 CHAPTER C - SOURCE CODE

. r s t (r s t)
) ;

i n i t i a l begin
668 / / R e s e t

r s t <= 1 ’ b0 ;
r s t <= #DLY 1 ’ b1 ;
r s t <= #10 1 ’ b0 ;

end
673

always begin / / p o r t 0
d a t a _ i n 0 <= 39 ’ b000000000000000000000000000000000000000 ;
r e q _ i n [0] <= 1 ’ b0 ;
wait (r s t == 1 ’ b1) ;

678 wait (r s t == 1 ’ b0) ;
#DLY;
whi le (1) begin

d a t a _ i n 0 <= 39 ’ b011111111111111111111111111111111111111 ;
r e q _ i n [0] <= #DLY 1 ’ b1 ;

683 wait (a c k _ i n [0] == 1 ’ b1) ;
r e q _ i n [0] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [0] == 1 ’ b0) ;
d a t a _ i n 0 <= 39 ’ b110101010101010101010101010101010101010 ;
r e q _ i n [0] <= #DLY 1 ’ b1 ;

688 wait (a c k _ i n [0] == 1 ’ b1) ;
r e q _ i n [0] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [0] == 1 ’ b0) ;
#DLY;
d a t a _ i n 0 <= 39 ’ b000111111111111111111111111111111111111 ;

693 r e q _ i n [0] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [0] == 1 ’ b1) ;
r e q _ i n [0] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [0] == 1 ’ b0) ;
d a t a _ i n 0 <= 39 ’ b110111111111111111111111111111111111111 ;

698 r e q _ i n [0] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [0] == 1 ’ b1) ;
r e q _ i n [0] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [0] == 1 ’ b0) ;
#DLY;

703 end
end

i n i t i a l begin / / p o r t 1
d a t a _ i n 1 <= 39 ’ b000000000000000000000000000000000000000 ;

708 r e q _ i n [1] <= 1 ’ b0 ;
wait (r s t == 1 ’ b1) ;
wait (r s t == 1 ’ b0) ;
#10 ;
whi le (1) begin

713 d a t a _ i n 1 <= 39 ’ b000100000000000000000000000000000000000 ;
r e q _ i n [1] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [1] == 1 ’ b1) ;
r e q _ i n [1] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [1] == 1 ’ b0) ;

718 d a t a _ i n 1 <= 39 ’ b100000000000000000000000000000000000000 ;
r e q _ i n [1] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [1] == 1 ’ b1) ;
r e q _ i n [1] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [1] == 1 ’ b0) ;

723 # 1 ;
end

end

i n i t i a l begin / / p o r t 2
728 d a t a _ i n 2 <= 39 ’ b000000000000000000000000000000000000000 ;

r e q _ i n [2] <= 1 ’ b0 ;
wait (r s t == 1 ’ b1) ;
wait (r s t == 1 ’ b0) ;
8 ;

733 whi le (1) begin
d a t a _ i n 2 <= 39 ’ b001000000000000000000000000000000000000 ;
r e q _ i n [2] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [2] == 1 ’ b1) ;
r e q _ i n [2] <= #DLY 1 ’ b0 ;

BE_BEHAV.V 102

738 wait (a c k _ i n [2] == 1 ’ b0) ;
d a t a _ i n 2 <= 39 ’ b100000000000000000000000000000000000000 ;
r e q _ i n [2] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [2] == 1 ’ b1) ;
r e q _ i n [2] <= #DLY 1 ’ b0 ;

743 wait (a c k _ i n [2] == 1 ’ b0) ;
#10 ;

end
end

748 i n i t i a l begin / / p o r t 3
d a t a _ i n 3 <= 39 ’ b000000000000000000000000000000000000000 ;
r e q _ i n [3] <= 1 ’ b0 ;
wait (r s t == 1 ’ b1) ;
wait (r s t == 1 ’ b0) ;

753 # 2 ;
whi le (1) begin

d a t a _ i n 3 <= 39 ’ b000100000000000000000000000000000000000 ;
r e q _ i n [3] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [3] == 1 ’ b1) ;

758 r e q _ i n [3] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [3] == 1 ’ b0) ;
d a t a _ i n 3 <= 39 ’ b111111111111111111100000000000000000000 ;
r e q _ i n [3] <= #DLY 1 ’ b1 ;
wait (a c k _ i n [3] == 1 ’ b1) ;

763 r e q _ i n [3] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [3] == 1 ’ b0) ;
6 ;

end
end

768
i n i t i a l begin / / p o r t 4

d a t a _ i n 4 <= 39 ’ b000000000000000000000000000000000000000 ;
r e q _ i n [4] <= 1 ’ b0 ;
wait (r s t == 1 ’ b1) ;

773 wait (r s t == 1 ’ b0) ;
5 ;
whi le (1) begin

d a t a _ i n 4 <= 39 ’ b011000000000000000000000000000000000000 ;
r e q _ i n [4] <= #DLY 1 ’ b1 ;

778 wait (a c k _ i n [4] == 1 ’ b1) ;
r e q _ i n [4] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [4] == 1 ’ b0) ;
d a t a _ i n 4 <= 39 ’ b100000000000000000000011111111111111111 ;
r e q _ i n [4] <= #DLY 1 ’ b1 ;

783 wait (a c k _ i n [4] == 1 ’ b1) ;
r e q _ i n [4] <= #DLY 1 ’ b0 ;
wait (a c k _ i n [4] == 1 ’ b0) ;
2 ;

end
788 end

always @(r e q _ o u t) begin
a c k _ o u t <= #DLY r e q _ o u t ;

end
793 endmodule

module merge_tb () ;

reg a c k _ o u t ;
798 reg [1 : 0] r e q _ i n ;

reg [3 8 : 0] d0 , d1 ;
reg r s t ;
wire [1 : 0] a c k _ i n ;
wire [3 8 : 0] d ;

803
parameter DLY = 0 . 4 ;

BE_behav_2merge d u t (
. r e q _ i n (r e q _ i n) ,

808 . a c k _ i n (a c k _ i n) ,
. d a t a _ i n 0 (d0) ,
. d a t a _ i n 1 (d1) ,
. r e q _ o u t (r e q _ o u t) ,

103 CHAPTER C - SOURCE CODE

. a c k _ o u t (a c k _ o u t) ,
813 . d a t a _ o u t (d) ,

. r s t (r s t)
) ;

i n i t i a l begin
818 / / R e s e t

r s t = 1 ’ b0 ;
r s t = #DLY 1 ’ b1 ;
r s t = #10 1 ’ b0 ;
2 ;

823 d0 = 39 ’ b011111111111111111111111111111111111111 ;
r e q _ i n = 2 ’ b01 ;
wait (a c k _ i n [0] == 1 ’ b1) ;
r e q _ i n = 2 ’ b00 ;
wait (a c k _ i n [0] == 1 ’ b0) ;

828 #DLY;
d1 = 39 ’ b000000000000000000000011111111111111111 ;
r e q _ i n = 2 ’ b10 ;
3 ;
d0 = 39 ’ b111111111111111111111100000000000000000 ;

833 r e q _ i n = #DLY 2 ’ b11 ;
wait (a c k _ i n [0] == 1 ’ b1) ;
r e q _ i n = #DLY 2 ’ b10 ;
wait (a c k _ i n [0] == 1 ’ b0) ;
wait (a c k _ i n [1] == 1 ’ b1) ;

838 r e q _ i n = #DLY 2 ’ b00 ;
wait (a c k _ i n [1] == 1 ’ b0) ;
3 ;
d1 = 39 ’ b101010101001010101010010101001010101010 ;

end
843

always @(r e q _ o u t) begin
a c k _ o u t <= # 0 . 4 r e q _ o u t ;

end
endmodule

THE TEST NET 104

C.5 The Test Net
/ / MANGO r o u t e r t e s t s e t u p

3 / / t h i s t e s t s e t u p p r o v i d e s two l o c a l p o r t s i n t o a t h r e e node network ,
/ / which i s l o ad ed by random t r a f f i c on a l l o t h e r p o r t s .
/ / one p o r t w i l l have an i n i t i a t o r NA a t t a c h e d , t h e o t h e r a t a r g e t NA

/ / s e t u p : (t h e numbers a t t h e l i n k s are t h e p o r t numbers o f t h e
8 / / a p p r o p r i a t e r o u t e r)

/ / : : an i n i t i a t o r NA can be c o n n e c t e d t o t h e l o c a l
/ / p o r t o f Rou te r1 and 2
/ / : : p o r t 1 o f Rou te r1 i s c o n n e c t e d t o p o r t 3 o f Rou te r2
/ / : : p o r t 4 o f Rou te r2 i s c o n n e c t e d t o p o r t 2 o f Rou te r3

13 / / : : p o r t 3 o f Rou te r3 i s c o n n e c t e d t o p o r t 1 o f Rou te r4
/ / : : p o r t 2 o f Rou te r4 i s c o n n e c t e d t o p o r t 4 o f Rou te r1
/ / : : t h e t a r g e t NA can be c o n n e c t e d t o t h e l o c a l p o r t o f Rou te r3
/ /
/ / +−−−−−−−+ +−−−−−−−+

18 / / | | 1 3 | |
/ / | Rou te r1|−−−−−−−−−−−−|Rou te r2 |
/ / | / | /
/ / +−−−−−+ +−−−−−+
/ / 4 | 4 |

23 / / | |
/ / | |
/ / 2 | 2 |
/ / +−−−−−−−+ +−−−−−−−+
/ / | | 1 3 | |

28 / / | Rou te r4|−−−−−−−−−−−−|Rou te r3 |
/ / | / | /
/ / +−−−−−+ +−−−−−+
/ /
/ /

33

‘ t i m e s c a l e 1 ns / 1 ps
38

module M A N G O _ r o u t e r _ t h e s i s _ t e s t _ 3 p o r t (
/ / t e s t p o r t 1

RxReq_1 ,
RxAck_1 ,

43 RxData_1 ,
TxAck_1 ,
TxReq_1 ,
TxData_1 ,

/ / t e s t p o r t 2
48 RxReq_2 ,

RxAck_2 ,
RxData_2 ,
TxAck_2 ,
TxReq_2 ,

53 TxData_2 ,
/ / t e s t p o r t 3

RxReq_3 ,
RxAck_3 ,
RxData_3 ,

58 TxAck_3 ,
TxReq_3 ,
TxData_3 ,
r e s e t

) ;
63

/ / p a r a m e t e r s
68 parameter RxPor t s = 4 ;

parameter T x P o r t s = 4 ;
parameter f l i t _ d a t a _ w d t h = 3 9 ;

105 CHAPTER C - SOURCE CODE

73 / / p o r t s
/ / p o r t 1

output [RxPor ts −1:0] RxReq_1 ;
input [RxPor ts −1:0] RxAck_1 ;
output [RxPor t s∗ f l i t _ d a t a _ w d t h −1:0] RxData_1 ;

78 output [TxPor t s −1:0] TxAck_1 ;
input [TxPor t s −1:0] TxReq_1 ;
input [T x P o r t s∗ f l i t _ d a t a _ w d t h −1:0] TxData_1 ;

/ / p o r t 2
83 output [RxPor ts −1:0] RxReq_2 ;

input [RxPor ts −1:0] RxAck_2 ;
output [RxPor t s∗ f l i t _ d a t a _ w d t h −1:0] RxData_2 ;
output [TxPor t s −1:0] TxAck_2 ;
input [TxPor t s −1:0] TxReq_2 ;

88 input [T x P o r t s∗ f l i t _ d a t a _ w d t h −1:0] TxData_2 ;

/ / p o r t 3
output [RxPor ts −1:0] RxReq_3 ;
input [RxPor ts −1:0] RxAck_3 ;

93 output [RxPor t s∗ f l i t _ d a t a _ w d t h −1:0] RxData_3 ;
output [TxPor t s −1:0] TxAck_3 ;
input [TxPor t s −1:0] TxReq_3 ;
input [T x P o r t s∗ f l i t _ d a t a _ w d t h −1:0] TxData_3 ;

98 input r e s e t ;

/ / w i r e s
wire [3 : 0] req_R1_GS ;
wire [3 : 0] ack_R1_GS ;

103 wire [3 8 : 0] data_R1_GS0 , data_R1_GS1 , data_R1_GS2 , data_R1_GS3 ;
wire req_R1_BE , ack_R1_BE ;
wire [3 8 : 0] data_R1_BE ;
wire [4 : 0] r e q _ c r e d i t _ R 1 ; / / o n l y f o r ne twork p o r t s , n o t f o r l o c a l p o r t
wire [4 : 0] a c k _ c r e d i t _ R 1 ;

108 wire [7 : 0] v c _ c t r l 1 _ R 1 , v c _ c t r l 2 _ R 1 , v c _ c t r l 3 _ R 1 , v c _ c t r l 4 _ R 1 ;
wire [4 4 : 0] l ink1_ou t0_R1 , l ink2_ou t0_R1 , l ink3_ou t0_R1 , l i n k 4 _ o u t 0 _ R 1 ;
wire [4 4 : 0] l ink1_ou t1_R1 , l ink2_ou t1_R1 , l ink3_ou t1_R1 , l i n k 4 _ o u t 1 _ R 1 ;
wire [4 4 : 0] p ipe11a_0 , n_pipe11b_0 , p ipe23a_0 , n_p ipe23b_0 ;
wire [4 4 : 0] p ipe11a_1 , n_pipe11b_1 , p ipe23a_1 , n_p ipe23b_1 ;

113 wire [4 4 : 0] p ipe24a_0 , n_pipe24b_0 , p ipe32a_0 , n_p ipe32b_0 ;
wire [4 4 : 0] p ipe24a_1 , n_pipe24b_1 , p ipe32a_1 , n_p ipe32b_1 ;
wire [4 4 : 0] p ipe33a_0 , n_pipe33b_0 , p ipe41a_0 , n_p ipe41b_0 ;
wire [4 4 : 0] p ipe33a_1 , n_pipe33b_1 , p ipe41a_1 , n_p ipe41b_1 ;
wire [4 4 : 0] p ipe14a_0 , n_pipe14b_0 , p ipe42a_0 , n_p ipe42b_0 ;

118 wire [4 4 : 0] p ipe14a_1 , n_pipe14b_1 , p ipe42a_1 , n_p ipe42b_1 ;
wire l ink1_ack_R1 , l ink2_ack_R1 , l ink3_ack_R1 , l i nk4_ack_R1 ;

wire [3 : 0] req_R2_GS ;
wire [3 : 0] ack_R2_GS ;

123 wire [3 8 : 0] data_R2_GS0 , data_R2_GS1 , data_R2_GS2 , data_R2_GS3 ;
wire req_R2_BE , ack_R2_BE ;
wire [3 8 : 0] data_R2_BE ;
wire [4 : 0] r e q _ c r e d i t _ R 2 ; / / o n l y f o r ne twork p o r t s , n o t f o r l o c a l p o r t
wire [4 : 0] a c k _ c r e d i t _ R 2 ;

128 wire [7 : 0] v c _ c t r l 1 _ R 2 , v c _ c t r l 2 _ R 2 , v c _ c t r l 3 _ R 2 , v c _ c t r l 4 _ R 2 ;
wire [4 4 : 0] l ink1_ou t0_R2 , l ink2_ou t0_R2 , l ink3_ou t0_R2 , l i n k 4 _ o u t 0 _ R 2 ;
wire [4 4 : 0] l ink1_ou t1_R2 , l ink2_ou t1_R2 , l ink3_ou t1_R2 , l i n k 4 _ o u t 1 _ R 2 ;
wire l ink1_ack_R2 , l ink2_ack_R2 , l ink3_ack_R2 , l i nk4_ack_R2 ;

133 wire [3 : 0] req_R3_GS ;
wire [3 : 0] ack_R3_GS ;
wire [3 8 : 0] data_R3_GS0 , data_R3_GS1 , data_R3_GS2 , data_R3_GS3 ;
wire req_R3_BE , ack_R3_BE ;
wire [3 8 : 0] data_R3_BE ;

138 wire [4 : 0] r e q _ c r e d i t _ R 3 ; / / o n l y f o r ne twork p o r t s , n o t f o r l o c a l p o r t
wire [4 : 0] a c k _ c r e d i t _ R 3 ;
wire [7 : 0] v c _ c t r l 1 _ R 3 , v c _ c t r l 2 _ R 3 , v c _ c t r l 3 _ R 3 , v c _ c t r l 4 _ R 3 ;
wire [4 4 : 0] l ink1_ou t0_R3 , l ink2_ou t0_R3 , l ink3_ou t0_R3 , l i n k 4 _ o u t 0 _ R 3 ;
wire [4 4 : 0] l ink1_ou t1_R3 , l ink2_ou t1_R3 , l ink3_ou t1_R3 , l i n k 4 _ o u t 1 _ R 3 ;

143 wire l ink1_ack_R3 , l ink2_ack_R3 , l ink3_ack_R3 , l i nk4_ack_R3 ;

wire [3 : 0] req_R4_GS ;

THE TEST NET 106

wire [3 : 0] ack_R4_GS ;
wire [3 8 : 0] data_R4_GS0 , data_R4_GS1 , data_R4_GS2 , data_R4_GS3 ;

148 wire req_R4_BE , ack_R4_BE ;
wire [3 8 : 0] data_R4_BE ;
wire [4 : 0] r e q _ c r e d i t _ R 4 ; / / o n l y f o r ne twork p o r t s , n o t f o r l o c a l p o r t
wire [4 : 0] a c k _ c r e d i t _ R 4 ;
wire [7 : 0] v c _ c t r l 1 _ R 4 , v c _ c t r l 2 _ R 4 , v c _ c t r l 3 _ R 4 , v c _ c t r l 4 _ R 4 ;

153 wire [4 4 : 0] l ink1_ou t0_R4 , l ink2_ou t0_R4 , l ink3_ou t0_R4 , l i n k 4 _ o u t 0 _ R 4 ;
wire [4 4 : 0] l ink1_ou t1_R4 , l ink2_ou t1_R4 , l ink3_ou t1_R4 , l i n k 4 _ o u t 1 _ R 4 ;
wire l ink1_ack_R4 , l ink2_ack_R4 , l ink3_ack_R4 , l i nk4_ack_R4 ;

wire [4 4 : 0] gen43_out0 , gen44_out0 ;
158 wire [4 4 : 0] gen43_out1 , gen44_out1 ;

wire [4 4 : 0] gen34_out0 , gen31_out0 ;
wire [4 4 : 0] gen34_out1 , gen31_out1 ;
wire [4 4 : 0] gen21_out0 , gen22_out0 ;
wire [4 4 : 0] gen21_out1 , gen22_out1 ;

163 wire [4 4 : 0] gen12_out0 , gen13_out0 ;
wire [4 4 : 0] gen12_out1 , gen13_out1 ;

/ / w i r e [3 : 0] s t e e r 3 _ 1 , s t e e r 2 _ 1 , s t e e r 1 _ 1 , s t e e r 0 _ 1 ;
/ / w i re [3 : 0] s t e e r 3 _ 2 , s t e e r 2 _ 2 , s t e e r 1 _ 2 , s t e e r 0 _ 2 ;

168
wire ack_s ink12 , a c k _ s i n k 1 3 ;
wire [7 : 0] v c _ c t r l _ s i n k 1 2 , v c _ c t r l _ s i n k 1 3 ;
wire ack_s ink21 , a c k _ s i n k 2 2 ;
wire [7 : 0] v c _ c t r l _ s i n k 2 1 , v c _ c t r l _ s i n k 2 2 ;

173 wire ack_s ink31 , a c k _ s i n k 3 4 ;
wire [7 : 0] v c _ c t r l _ s i n k 3 1 , v c _ c t r l _ s i n k 3 4 ;
wire ack_s ink43 , a c k _ s i n k 4 4 ;
wire [7 : 0] v c _ c t r l _ s i n k 4 3 , v c _ c t r l _ s i n k 4 4 ;

178 / / d e f i n e background t r a f f i c g e n e r a t o r s
/ / (. . . a l s o remember t o s e t up t h e c o n n e c t i o n s t h e y use , by programming t h e r o u t e r s . . .)
/ / ‘ i n c l u d e " . / DATA / g e n e r a t o r _ s e t u p . param . v "
‘ i n c l u d e " a u t o g e n _ s e t u p . param . v "

183 / / d e f i n e s i d e c h a i n usage (BE c h a n n e l s)
/ / . . . t h i s i s based on t h e t o p o l o g y o f t h e ne twork
defparam r o u t e r 1 . s i d e c h a i n 1 = 5 ’ b11100 ;
defparam r o u t e r 1 . s i d e c h a i n 2 = 5 ’ b00000 ;
defparam r o u t e r 1 . s i d e c h a i n 3 = 5 ’ b00000 ;

188 defparam r o u t e r 1 . s i d e c h a i n 4 = 5 ’ b10100 ;
defparam r o u t e r 2 . s i d e c h a i n 1 = 5 ’ b00000 ;
defparam r o u t e r 2 . s i d e c h a i n 2 = 5 ’ b00000 ;
defparam r o u t e r 2 . s i d e c h a i n 3 = 5 ’ b01100 ;
defparam r o u t e r 2 . s i d e c h a i n 4 = 5 ’ b10100 ;

193 defparam r o u t e r 3 . s i d e c h a i n 1 = 5 ’ b00000 ;
defparam r o u t e r 3 . s i d e c h a i n 2 = 5 ’ b00100 ;
defparam r o u t e r 3 . s i d e c h a i n 3 = 5 ’ b01100 ;
defparam r o u t e r 3 . s i d e c h a i n 4 = 5 ’ b00000 ;
defparam r o u t e r 4 . s i d e c h a i n 1 = 5 ’ b11100 ;

198 defparam r o u t e r 4 . s i d e c h a i n 2 = 5 ’ b00100 ;
defparam r o u t e r 4 . s i d e c h a i n 3 = 5 ’ b00000 ;
defparam r o u t e r 4 . s i d e c h a i n 4 = 5 ’ b00000 ;
/ / r o u t e r s coming up . . .

203 / / t e s t p o r t 1

a s s i g n RxReq_1 = { req_R1_GS [3 : 1] , req_R1_BE } ;
a s s i g n RxData_1 = { data_R1_GS3 , data_R1_GS2 , data_R1_GS1 , data_R1_BE } ;
a s s i g n TxAck_1 = { ack_R1_GS [3 : 1] , ack_R1_BE } ;

208
/∗ t h i s work around i s n o t needed anymore
a s s i g n s t e e r 3 _ 1 = 4 ’ b0000 ;
a s s i g n s t e e r 2 _ 1 = 4 ’ b0100 ; / / s t e e r c h a n n e l 2 t o p o r t 1 , VC 4
a s s i g n s t e e r 1 _ 1 = 4 ’ b0111 ; / / s t e e r c h a n n e l 1 t o p o r t 1 , VC 7

213 a s s i g n s t e e r 0 _ 1 = 4 ’ b0000 ;
∗ /

MANGO_router_5por t s_39bi t s r o u t e r 1 (
218 / / l o c a l p o r t (p o r t 0) , 4 GS chs + 1 BE ch

/ / GS

107 CHAPTER C - SOURCE CODE

. r e q 0 _ i n ({ TxReq_1 [3 : 1] , 1 ’ b0 }) ,

. a c k 0 _ i n (ack_R1_GS) ,

. d a t a 0 _ i n 0 (43 ’ b0) , / / i n c l u s i v e s t e e r i n g t o VC (4 b i t s . . . 1 o f 4 upper VCs on each o f t h e 4 o u t p u t p o r t s) . The s t e e r i n g i s a c o n s t a n t o f t h e GS c o n n e c t i o n , s e t by t h e NA .
223 . d a t a 0 _ i n 1 ({ 4 ’ b0000 , TxData_1 [2∗ f l i t _ d a t a _ w d t h −1: f l i t _ d a t a _ w d t h] }) , / / s t e e r 3 _ 1 . . s t e e r 0 _ 1 n o t used anymore . Now s t e e r i s done by t h e s e l e c t i n s i d e t h e GS r o u t e r

. d a t a 0 _ i n 2 ({ 4 ’ b0000 , TxData_1 [3∗ f l i t _ d a t a _ w d t h −1:2∗ f l i t _ d a t a _ w d t h] }) ,

. d a t a 0 _ i n 3 ({ 4 ’ b0000 , TxData_1 [4∗ f l i t _ d a t a _ w d t h −1:3∗ f l i t _ d a t a _ w d t h] }) ,
/∗

. d a t a 0 _ i n 1 ({ s t e e r 1 _ 1 , TxData_1 [2∗ f l i t _ d a t a _ w d t h −1: f l i t _ d a t a _ w d t h] }) , / / s t e e r 3 _ 1 . . s t e e r 0 _ 1 n o t used anymore . Now s t e e r i s done by t h e s e l e c t i n s i d e t h e GS r o u t e r
228 . d a t a 0 _ i n 2 ({ s t e e r 2 _ 1 , TxData_1 [3∗ f l i t _ d a t a _ w d t h −1:2∗ f l i t _ d a t a _ w d t h] }) ,

. d a t a 0 _ i n 3 ({ s t e e r 3 _ 1 , TxData_1 [4∗ f l i t _ d a t a _ w d t h −1:3∗ f l i t _ d a t a _ w d t h] }) ,
∗ /

. r e q 0 _ o u t (req_R1_GS) , / / r o u t e r 1 , p o r t yy

. a c k 0 _ o u t ({ RxAck_1 [3 : 1] , 1 ’ b0 }) ,
233 . d a t a 0 _ o u t 0 (data_R1_GS0) ,

. d a t a 0 _ o u t 1 (data_R1_GS1) ,

. d a t a 0 _ o u t 2 (data_R1_GS2) ,

. d a t a 0 _ o u t 3 (data_R1_GS3) ,
/ / BE

238 . req_BE_in (TxReq_1 [0]) ,
. ack_BE_in (ack_R1_BE) ,
. da ta_BE_in (TxData_1 [f l i t _ d a t a _ w d t h −1:0]) ,
. req_BE_out (req_R1_BE) ,
. ack_BE_out (RxAck_1 [0]) ,

243 . da ta_BE_out (data_R1_BE) ,

/ / DI ne twork p o r t s and VC c o n t r o l

/ / BE c r e d i t s
248 . r e q _ c r e d i t _ B E _ i n ({ r e q _ c r e d i t _ R 4 [2] , r e q _ c r e d i t _ s i n k 1 3 , r e q _ c r e d i t _ s i n k 1 2 , r e q _ c r e d i t _ R 2 [3] , 1 ’ b0 }) ,

. a c k _ c r e d i t _ B E _ i n (a c k _ c r e d i t _ R 1) ,

. r e q _ c r e d i t _ B E _ o u t (r e q _ c r e d i t _ R 1) ,

. a c k _ c r e d i t _ B E _ o u t ({ a c k _ c r e d i t _ R 4 [2] , a c k _ c r e d i t _ s i n k 1 3 , a c k _ c r e d i t _ s i n k 1 2 , a c k _ c r e d i t _ R 2 [3] , 1 ’ b0 }) ,
/∗

253 . r e q _ c r e d i t _ B E _ i n (r e q _ c r e d i t _ R 1) ,
. a c k _ c r e d i t _ B E _ i n ({ 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , a c k _ c r e d i t _ R 2 [3] , 1 ’ b0 }) ,
. r e q _ c r e d i t _ B E _ o u t ({ 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 }) ,
. a c k _ c r e d i t _ B E _ o u t (a c k _ c r e d i t _ R 1) ,

∗ /
258 / / p o r t 1

. n _ l i n k 1 _ i n 0 (n_pipe23b_0) ,

. n _ l i n k 1 _ i n 1 (n_pipe23b_1) ,

. l i n k 1 _ a c k _ i n (l i nk1_ack_R1) ,

. v c _ c t r l 1 _ i n (v c _ c t r l 1 _ R 1) , / / t h i s i s an o u t p u t (!)
263 . n _ l i n k 1 _ o u t 0 (l i n k 1 _ o u t 0 _ R 1) ,

. n _ l i n k 1 _ o u t 1 (l i n k 1 _ o u t 1 _ R 1) ,

. l i n k 1 _ a c k _ o u t (a c k _ p i p e 1 1 a _ i n) ,

. v c _ c t r l 1 _ o u t (v c _ c t r l 3 _ R 2) , / / t h i s i s an i n p u t (!)
/ / p o r t 2

268 . n _ l i n k 2 _ i n 0 (gen12_out0) ,
. n _ l i n k 2 _ i n 1 (gen12_out1) ,
. l i n k 2 _ a c k _ i n (l i nk2_ack_R1) ,
. v c _ c t r l 2 _ i n (v c _ c t r l 2 _ R 1) ,
. n _ l i n k 2 _ o u t 0 (l i n k 2 _ o u t 0 _ R 1) ,

273 . n _ l i n k 2 _ o u t 1 (l i n k 2 _ o u t 1 _ R 1) ,
. l i n k 2 _ a c k _ o u t (a c k _ s i n k 1 2) ,
. v c _ c t r l 2 _ o u t (v c _ c t r l _ s i n k 1 2) ,

/ / p o r t 3
. n _ l i n k 3 _ i n 0 (gen13_out0) ,

278 . n _ l i n k 3 _ i n 1 (gen13_out1) ,
. l i n k 3 _ a c k _ i n (l i nk3_ack_R1) ,
. v c _ c t r l 3 _ i n (v c _ c t r l 3 _ R 1) ,
. n _ l i n k 3 _ o u t 0 (l i n k 3 _ o u t 0 _ R 1) ,
. n _ l i n k 3 _ o u t 1 (l i n k 3 _ o u t 1 _ R 1) ,

283 . l i n k 3 _ a c k _ o u t (a c k _ s i n k 1 3) ,
. v c _ c t r l 3 _ o u t (v c _ c t r l _ s i n k 1 3) ,

/ / p o r t 4
. n _ l i n k 4 _ i n 0 (l i n k 2 _ o u t 0 _ R 4) , / / n_p ipe42b_0) ,
. n _ l i n k 4 _ i n 1 (l i n k 2 _ o u t 1 _ R 4) , / / n_p ipe42b_1) ,

288 . l i n k 4 _ a c k _ i n (l i nk4_ack_R1) ,
. v c _ c t r l 4 _ i n (v c _ c t r l 4 _ R 1) ,
. n _ l i n k 4 _ o u t 0 (l i n k 4 _ o u t 0 _ R 1) ,
. n _ l i n k 4 _ o u t 1 (l i n k 4 _ o u t 1 _ R 1) ,
. l i n k 4 _ a c k _ o u t (l i nk2_ack_R4) , / / a c k _ p i p e 1 4 a _ i n) ,

293 . v c _ c t r l 4 _ o u t (v c _ c t r l 2 _ R 4) ,

THE TEST NET 108

. r e s e t (r e s e t)
) ;

/ / l i n k s i n k s + g e n e r a t o r s
298 l i n k _ s i n k _ s i d e c h a i n s i n k 1 2 (

. n_ in0 (l i n k 2 _ o u t 0 _ R 1) ,

. n_ in1 (l i n k 2 _ o u t 1 _ R 1) ,

. ack (a c k _ s i n k 1 2) ,

. v c _ c t r l (v c _ c t r l _ s i n k 1 2) ,
303 . r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 1 2) ,

. a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 1 [2]) ,

. r e s e t (r e s e t)
) ;
l i n k _ g e n _ s i d e c h a i n gen12 (

308 . n_ou t0 (gen12_out0) ,
. n_ou t1 (gen12_out1) ,
. ack (l i nk2_ack_R1) ,
. v c _ c t r l (v c _ c t r l 2 _ R 1) ,
. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 1 [2]) ,

313 . a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 1 2) ,
. r e s e t (r e s e t)

) ;

l i n k _ s i n k _ s i d e c h a i n s i n k 1 3 (
318 . n_ in0 (l i n k 3 _ o u t 0 _ R 1) ,

. n_ in1 (l i n k 3 _ o u t 1 _ R 1) ,

. ack (a c k _ s i n k 1 3) ,

. v c _ c t r l (v c _ c t r l _ s i n k 1 3) ,

. r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 1 3) ,
323 . a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 1 [3]) ,

. r e s e t (r e s e t)
) ;
l i n k _ g e n _ s i d e c h a i n gen13 (

. n_ou t0 (gen13_out0) ,
328 . n_ou t1 (gen13_out1) ,

. ack (l i nk3_ack_R1) ,

. v c _ c t r l (v c _ c t r l 3 _ R 1) ,

. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 1 [3]) ,

. a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 1 3) ,
333 . r e s e t (r e s e t)

) ;

/ / p i p e l i n e s
r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p i p e 1 1 a (

338 . n _ i n _ t (l i n k 1 _ o u t 1 _ R 1) ,
. n _ i n _ f (l i n k 1 _ o u t 0 _ R 1) ,
. a c k _ i n (a c k _ p i p e 1 1 a _ i n) ,
. o u t _ t (p ipe11a_1) ,
. o u t _ f (p ipe11a_0) ,

343 . n_ack_ou t (n _ a c k _ p i p e 1 1 a _ o u t) ,
. r e s e t (r e s e t)

) ;
r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe11b (

. i n _ t (p ipe11a_1) ,
348 . i n _ f (p ipe11a_0) ,

. n _ a c k _ i n (n _ a c k _ p i p e 1 1 a _ o u t) ,

. n _ o u t _ t (n_p ipe11b_1) ,

. n _ o u t _ f (n_pipe11b_0) ,

. a c k _ o u t (l i nk3_ack_R2) ,
353 . r e s e t (r e s e t)

) ;
r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p i p e 2 3 a (

. n _ i n _ t (l i n k 3 _ o u t 1 _ R 2) ,

. n _ i n _ f (l i n k 3 _ o u t 0 _ R 2) ,
358 . a c k _ i n (a c k _ p i p e 2 3 a _ i n) ,

. o u t _ t (p ipe23a_1) ,

. o u t _ f (p ipe23a_0) ,

. n_ack_ou t (n _ a c k _ p i p e 2 3 a _ o u t) ,

. r e s e t (r e s e t)
363) ;

r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe23b (
. i n _ t (p ipe23a_1) ,
. i n _ f (p ipe23a_0) ,
. n _ a c k _ i n (n _ a c k _ p i p e 2 3 a _ o u t) ,

109 CHAPTER C - SOURCE CODE

368 . n _ o u t _ t (n_p ipe23b_1) ,
. n _ o u t _ f (n_pipe23b_0) ,
. a c k _ o u t (l i nk1_ack_R1) ,
. r e s e t (r e s e t)

) ;
373

/ / t e s t p o r t 2

a s s i g n RxReq_2 = { req_R2_GS [3 : 1] , req_R2_BE } ;
a s s i g n RxData_2 = { data_R2_GS3 , data_R2_GS2 , data_R2_GS1 , data_R2_BE } ;

378 a s s i g n TxAck_2 = { ack_R2_GS [3 : 1] , ack_R2_BE } ;

MANGO_router_5por t s_39bi t s r o u t e r 2 (
/ / l o c a l p o r t (p o r t 0) , 4 GS chs + 1 BE ch

/ / GS
383 . r e q 0 _ i n ({ TxReq_2 [3 : 1] , 1 ’ b0 }) ,

. a c k 0 _ i n (ack_R2_GS) ,

. d a t a 0 _ i n 0 (43 ’ b0) ,

. d a t a 0 _ i n 1 ({ 4 ’ b0000 , TxData_2 [2∗ f l i t _ d a t a _ w d t h −1: f l i t _ d a t a _ w d t h] }) ,

. d a t a 0 _ i n 2 ({ 4 ’ b0000 , TxData_2 [3∗ f l i t _ d a t a _ w d t h −1:2∗ f l i t _ d a t a _ w d t h] }) ,
388 . d a t a 0 _ i n 3 ({ 4 ’ b0000 , TxData_2 [4∗ f l i t _ d a t a _ w d t h −1:3∗ f l i t _ d a t a _ w d t h] }) ,

. r e q 0 _ o u t (req_R2_GS) , / / r o u t e r 1 , p o r t yy

. a c k 0 _ o u t ({ RxAck_2 [3 : 1] , 1 ’ b0 }) ,

. d a t a 0 _ o u t 0 (data_R2_GS0) ,

. d a t a 0 _ o u t 1 (data_R2_GS1) ,
393 . d a t a 0 _ o u t 2 (data_R2_GS2) ,

. d a t a 0 _ o u t 3 (data_R2_GS3) ,
/ / BE

. req_BE_in (TxReq_2 [0]) ,

. ack_BE_in (ack_R2_BE) ,
398 . da ta_BE_in (TxData_2 [f l i t _ d a t a _ w d t h −1:0]) ,

. req_BE_out (req_R2_BE) ,

. ack_BE_out (RxAck_2 [0]) ,

. da ta_BE_out (data_R2_BE) ,

403 / / DI ne twork p o r t s and VC c o n t r o l

/ / BE c r e d i t s
. r e q _ c r e d i t _ B E _ i n ({ r e q _ c r e d i t _ R 3 [2] , r e q _ c r e d i t _ R 1 [1] , r e q _ c r e d i t _ s i n k 2 2 , r e q _ c r e d i t _ s i n k 2 1 , 1 ’ b0 }) ,
. a c k _ c r e d i t _ B E _ i n (a c k _ c r e d i t _ R 2) ,

408 . r e q _ c r e d i t _ B E _ o u t (r e q _ c r e d i t _ R 2) ,
. a c k _ c r e d i t _ B E _ o u t ({ a c k _ c r e d i t _ R 3 [2] , a c k _ c r e d i t _ R 1 [1] , a c k _ c r e d i t _ s i n k 2 2 , a c k _ c r e d i t _ s i n k 2 1 , 1 ’ b0 }) ,

/∗
. r e q _ c r e d i t _ B E _ i n (r e q _ c r e d i t _ R 2) , / / t h i s i s an o u t p u t (!)
. a c k _ c r e d i t _ B E _ i n ({ a c k _ c r e d i t _ R 3 [2] , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 }) ,

413 . r e q _ c r e d i t _ B E _ o u t ({ 1 ’ b0 , r e q _ c r e d i t _ R 1 [1] , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 }) , / / t h i s i s an i n p u t (!)
. a c k _ c r e d i t _ B E _ o u t (a c k _ c r e d i t _ R 2) ,

∗ /
/ / p o r t 1

. n _ l i n k 1 _ i n 0 (gen21_out0) ,
418 . n _ l i n k 1 _ i n 1 (gen21_out1) ,

. l i n k 1 _ a c k _ i n (l i nk1_ack_R2) ,

. v c _ c t r l 1 _ i n (v c _ c t r l 1 _ R 2) , / / t h i s i s an o u t p u t (!)

. n _ l i n k 1 _ o u t 0 (l i n k 1 _ o u t 0 _ R 2) ,

. n _ l i n k 1 _ o u t 1 (l i n k 1 _ o u t 1 _ R 2) ,
423 . l i n k 1 _ a c k _ o u t (a c k _ s i n k 2 1) ,

. v c _ c t r l 1 _ o u t (v c _ c t r l _ s i n k 2 1) , / / t h i s i s an i n p u t (!)
/ / p o r t 2

. n _ l i n k 2 _ i n 0 (gen22_out0) ,

. n _ l i n k 2 _ i n 1 (gen22_out1) ,
428 . l i n k 2 _ a c k _ i n (l i nk2_ack_R2) ,

. v c _ c t r l 2 _ i n (v c _ c t r l 2 _ R 2) ,

. n _ l i n k 2 _ o u t 0 (l i n k 2 _ o u t 0 _ R 2) ,

. n _ l i n k 2 _ o u t 1 (l i n k 2 _ o u t 1 _ R 2) ,

. l i n k 2 _ a c k _ o u t (a c k _ s i n k 2 2) ,
433 . v c _ c t r l 2 _ o u t (v c _ c t r l _ s i n k 2 2) ,

/ / p o r t 3
. n _ l i n k 3 _ i n 0 (n_pipe11b_0) ,
. n _ l i n k 3 _ i n 1 (n_pipe11b_1) ,
. l i n k 3 _ a c k _ i n (l i nk3_ack_R2) ,

438 . v c _ c t r l 3 _ i n (v c _ c t r l 3 _ R 2) ,
. n _ l i n k 3 _ o u t 0 (l i n k 3 _ o u t 0 _ R 2) ,
. n _ l i n k 3 _ o u t 1 (l i n k 3 _ o u t 1 _ R 2) ,
. l i n k 3 _ a c k _ o u t (a c k _ p i p e 2 3 a _ i n) ,

THE TEST NET 110

. v c _ c t r l 3 _ o u t (v c _ c t r l 1 _ R 1) ,
443 / / p o r t 4

. n _ l i n k 4 _ i n 0 (n_pipe32b_0) ,

. n _ l i n k 4 _ i n 1 (n_pipe32b_1) ,

. l i n k 4 _ a c k _ i n (l i nk4_ack_R2) ,

. v c _ c t r l 4 _ i n (v c _ c t r l 4 _ R 2) ,
448 . n _ l i n k 4 _ o u t 0 (l i n k 4 _ o u t 0 _ R 2) ,

. n _ l i n k 4 _ o u t 1 (l i n k 4 _ o u t 1 _ R 2) ,

. l i n k 4 _ a c k _ o u t (a c k _ p i p e 2 4 a _ i n) ,

. v c _ c t r l 4 _ o u t (v c _ c t r l 2 _ R 3) ,

. r e s e t (r e s e t)
453) ;

/ / l i n k s i n k s
l i n k _ s i n k _ s i d e c h a i n s i n k 2 1 (

. n_ in0 (l i n k 1 _ o u t 0 _ R 2) ,
458 . n_ in1 (l i n k 1 _ o u t 1 _ R 2) ,

. ack (a c k _ s i n k 2 1) ,

. v c _ c t r l (v c _ c t r l _ s i n k 2 1) ,

. r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 2 1) ,

. a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 2 [1]) ,
463 . r e s e t (r e s e t)

) ;
l i n k _ g e n _ s i d e c h a i n gen21 (

. n_ou t0 (gen21_out0) ,

. n_ou t1 (gen21_out1) ,
468 . ack (l i nk1_ack_R2) ,

. v c _ c t r l (v c _ c t r l 1 _ R 2) ,

. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 2 [1]) ,

. a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 2 1) ,

. r e s e t (r e s e t)
473) ;

l i n k _ s i n k _ s i d e c h a i n s i n k 2 2 (
. n_ in0 (l i n k 2 _ o u t 0 _ R 2) ,
. n_ in1 (l i n k 2 _ o u t 1 _ R 2) ,

478 . ack (a c k _ s i n k 2 2) ,
. v c _ c t r l (v c _ c t r l _ s i n k 2 2) ,
. r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 2 2) ,
. a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 2 [2]) ,
. r e s e t (r e s e t)

483) ;
l i n k _ g e n _ s i d e c h a i n gen22 (

. n_ou t0 (gen22_out0) ,

. n_ou t1 (gen22_out1) ,

. ack (l i nk2_ack_R2) ,
488 . v c _ c t r l (v c _ c t r l 2 _ R 2) ,

. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 2 [2]) ,

. a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 2 2) ,

. r e s e t (r e s e t)
) ;

493
/ / p i p e l i n e s
r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p i p e 2 4 a (

. n _ i n _ t (l i n k 4 _ o u t 1 _ R 2) ,

. n _ i n _ f (l i n k 4 _ o u t 0 _ R 2) ,
498 . a c k _ i n (a c k _ p i p e 2 4 a _ i n) ,

. o u t _ t (p ipe24a_1) ,

. o u t _ f (p ipe24a_0) ,

. n_ack_ou t (n _ a c k _ p i p e 2 4 a _ o u t) ,

. r e s e t (r e s e t)
503) ;

r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe24b (
. i n _ t (p ipe24a_1) ,
. i n _ f (p ipe24a_0) ,
. n _ a c k _ i n (n _ a c k _ p i p e 2 4 a _ o u t) ,

508 . n _ o u t _ t (n_p ipe24b_1) ,
. n _ o u t _ f (n_pipe24b_0) ,
. a c k _ o u t (l i nk2_ack_R3) ,
. r e s e t (r e s e t)

) ;
513 r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p i p e 3 2 a (

. n _ i n _ t (l i n k 2 _ o u t 1 _ R 3) ,

. n _ i n _ f (l i n k 2 _ o u t 0 _ R 3) ,

111 CHAPTER C - SOURCE CODE

. a c k _ i n (a c k _ p i p e 3 2 a _ i n) ,

. o u t _ t (p ipe32a_1) ,
518 . o u t _ f (p ipe32a_0) ,

. n_ack_ou t (n _ a c k _ p i p e 3 2 a _ o u t) ,

. r e s e t (r e s e t)
) ;
r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe32b (

523 . i n _ t (p ipe32a_1) ,
. i n _ f (p ipe32a_0) ,
. n _ a c k _ i n (n _ a c k _ p i p e 3 2 a _ o u t) ,
. n _ o u t _ t (n_p ipe32b_1) ,
. n _ o u t _ f (n_pipe32b_0) ,

528 . a c k _ o u t (l i nk4_ack_R2) ,
. r e s e t (r e s e t)

) ;

533 / / t e s t p o r t 3

a s s i g n RxReq_3 = { req_R3_GS [3 : 1] , req_R3_BE } ;
a s s i g n RxData_3 = { data_R3_GS3 , data_R3_GS2 , data_R3_GS1 , data_R3_BE } ;
a s s i g n TxAck_3 = { ack_R3_GS [3 : 1] , ack_R3_BE } ;

538
/∗ t h i s work around i s n o t needed anymore
a s s i g n s t e e r 3 _ 2 = 4 ’ b0000 ;
a s s i g n s t e e r 2 _ 2 = 4 ’ b0101 ;
a s s i g n s t e e r 1 _ 2 = 4 ’ b0000 ;

543 a s s i g n s t e e r 0 _ 2 = 4 ’ b0000 ;
∗ /

MANGO_router_5por t s_39bi t s r o u t e r 3 (
/ / l o c a l p o r t (p o r t 0) , 4 GS chs + 1 BE ch

548 / / GS
. r e q 0 _ i n ({ TxReq_3 [3 : 1] , 1 ’ b0 }) ,
. a c k 0 _ i n (ack_R3_GS) ,
. d a t a 0 _ i n 0 (43 ’ b0) , / / i n c l u s i v e s t e e r i n g t o VC (4 b i t s . . . 1 o f 4 upper VCs on each o f t h e 4 o u t p u t p o r t s) . The s t e e r i n g i s a c o n s t a n t o f t h e GS c o n n e c t i o n , s e t by t h e NA .
. d a t a 0 _ i n 1 ({ 4 ’ b0000 , TxData_3 [2∗ f l i t _ d a t a _ w d t h −1: f l i t _ d a t a _ w d t h] }) ,

553 . d a t a 0 _ i n 2 ({ 4 ’ b0000 , TxData_3 [3∗ f l i t _ d a t a _ w d t h −1:2∗ f l i t _ d a t a _ w d t h] }) ,
. d a t a 0 _ i n 3 ({ 4 ’ b0000 , TxData_3 [4∗ f l i t _ d a t a _ w d t h −1:3∗ f l i t _ d a t a _ w d t h] }) ,

/∗
. d a t a 0 _ i n 1 ({ s t e e r 1 _ 2 , TxData_2 [2∗ f l i t _ d a t a _ w d t h −1: f l i t _ d a t a _ w d t h] }) ,
. d a t a 0 _ i n 2 ({ s t e e r 2 _ 2 , TxData_2 [3∗ f l i t _ d a t a _ w d t h −1:2∗ f l i t _ d a t a _ w d t h] }) ,

558 . d a t a 0 _ i n 3 ({ s t e e r 3 _ 2 , TxData_2 [4∗ f l i t _ d a t a _ w d t h −1:3∗ f l i t _ d a t a _ w d t h] }) ,
∗ /

. r e q 0 _ o u t (req_R3_GS) , / / r o u t e r 1 , p o r t yy

. a c k 0 _ o u t ({ RxAck_3 [3 : 1] , 1 ’ b0 }) ,

. d a t a 0 _ o u t 0 (data_R3_GS0) ,
563 . d a t a 0 _ o u t 1 (data_R3_GS1) ,

. d a t a 0 _ o u t 2 (data_R3_GS2) ,

. d a t a 0 _ o u t 3 (data_R3_GS3) ,
/ / BE

. req_BE_in (TxReq_3 [0]) ,
568 . ack_BE_in (ack_R3_BE) ,

. da ta_BE_in (TxData_3 [f l i t _ d a t a _ w d t h −1:0]) ,

. req_BE_out (req_R3_BE) ,

. ack_BE_out (RxAck_3 [0]) ,

. da ta_BE_out (data_R3_BE) ,
573

/ / DI ne twork p o r t s and VC c o n t r o l

/ / BE c r e d i t s
. r e q _ c r e d i t _ B E _ i n ({ r e q _ c r e d i t _ s i n k 3 4 , r e q _ c r e d i t _ R 4 [1] , r e q _ c r e d i t _ R 2 [4] , r e q _ c r e d i t _ s i n k 3 1 , 1 ’ b0 }) ,

578 . a c k _ c r e d i t _ B E _ i n (a c k _ c r e d i t _ R 3) ,
. r e q _ c r e d i t _ B E _ o u t (r e q _ c r e d i t _ R 3) ,
. a c k _ c r e d i t _ B E _ o u t ({ a c k _ c r e d i t _ s i n k 3 4 , a c k _ c r e d i t _ R 4 [1] , a c k _ c r e d i t _ R 2 [4] , a c k _ c r e d i t _ s i n k 3 1 , 1 ’ b0 }) ,

/∗
. r e q _ c r e d i t _ B E _ i n (r e q _ c r e d i t _ R 3) ,

583 . a c k _ c r e d i t _ B E _ i n ({ 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 }) ,
. r e q _ c r e d i t _ B E _ o u t ({ r e q _ c r e d i t _ s i n k 3 4 , r e q _ c r e d i t _ s i n k 3 3 , r e q _ c r e d i t _ R 2 [4] , r e q _ c r e d i t _ s i n k 3 1 , 1 ’ b0 }) ,
. a c k _ c r e d i t _ B E _ o u t (a c k _ c r e d i t _ R 3) ,

∗ /
/ / p o r t 1

588 . n _ l i n k 1 _ i n 0 (gen31_out0) ,
. n _ l i n k 1 _ i n 1 (gen31_out1) ,

THE TEST NET 112

. l i n k 1 _ a c k _ i n (l i nk1_ack_R3) ,

. v c _ c t r l 1 _ i n (v c _ c t r l 1 _ R 3) , / / t h i s i s an o u t p u t (!)

. n _ l i n k 1 _ o u t 0 (l i n k 1 _ o u t 0 _ R 3) ,
593 . n _ l i n k 1 _ o u t 1 (l i n k 1 _ o u t 1 _ R 3) ,

. l i n k 1 _ a c k _ o u t (a c k _ s i n k 3 1) ,

. v c _ c t r l 1 _ o u t (v c _ c t r l _ s i n k 3 1) , / / t h i s i s an i n p u t (!)
/ / p o r t 2

. n _ l i n k 2 _ i n 0 (n_pipe24b_0) ,
598 . n _ l i n k 2 _ i n 1 (n_p ipe24b_1) ,

. l i n k 2 _ a c k _ i n (l i nk2_ack_R3) ,

. v c _ c t r l 2 _ i n (v c _ c t r l 2 _ R 3) ,

. n _ l i n k 2 _ o u t 0 (l i n k 2 _ o u t 0 _ R 3) ,

. n _ l i n k 2 _ o u t 1 (l i n k 2 _ o u t 1 _ R 3) ,
603 . l i n k 2 _ a c k _ o u t (a c k _ p i p e 3 2 a _ i n) ,

. v c _ c t r l 2 _ o u t (v c _ c t r l 4 _ R 2) ,
/ / p o r t 3

. n _ l i n k 3 _ i n 0 (l i n k 1 _ o u t 0 _ R 4) , / / n_p ipe41b_0) ,

. n _ l i n k 3 _ i n 1 (l i n k 1 _ o u t 1 _ R 4) , / / n_p ipe41b_1) ,
608 . l i n k 3 _ a c k _ i n (l i nk3_ack_R3) ,

. v c _ c t r l 3 _ i n (v c _ c t r l 3 _ R 3) ,

. n _ l i n k 3 _ o u t 0 (l i n k 3 _ o u t 0 _ R 3) ,

. n _ l i n k 3 _ o u t 1 (l i n k 3 _ o u t 1 _ R 3) ,

. l i n k 3 _ a c k _ o u t (l i nk1_ack_R4) , / / a c k _ p i p e 3 3 a _ i n) ,
613 . v c _ c t r l 3 _ o u t (v c _ c t r l 1 _ R 4) ,

/ / p o r t 4
. n _ l i n k 4 _ i n 0 (gen34_out0) ,
. n _ l i n k 4 _ i n 1 (gen34_out1) ,
. l i n k 4 _ a c k _ i n (l i nk4_ack_R3) ,

618 . v c _ c t r l 4 _ i n (v c _ c t r l 4 _ R 3) ,
. n _ l i n k 4 _ o u t 0 (l i n k 4 _ o u t 0 _ R 3) ,
. n _ l i n k 4 _ o u t 1 (l i n k 4 _ o u t 1 _ R 3) ,
. l i n k 4 _ a c k _ o u t (a c k _ s i n k 3 4) ,
. v c _ c t r l 4 _ o u t (v c _ c t r l _ s i n k 3 4) ,

623 . r e s e t (r e s e t)
) ;

/ / l i n k s i n k s
l i n k _ s i n k _ s i d e c h a i n s i n k 3 1 (

628 . n_ in0 (l i n k 1 _ o u t 0 _ R 3) ,
. n_ in1 (l i n k 1 _ o u t 1 _ R 3) ,
. ack (a c k _ s i n k 3 1) ,
. v c _ c t r l (v c _ c t r l _ s i n k 3 1) ,
. r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 3 1) ,

633 . a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 3 [1]) ,
. r e s e t (r e s e t)

) ;
l i n k _ g e n _ s i d e c h a i n gen31 (

. n_ou t0 (gen31_out0) ,
638 . n_ou t1 (gen31_out1) ,

. ack (l i nk1_ack_R3) ,

. v c _ c t r l (v c _ c t r l 1 _ R 3) ,

. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 3 [1]) ,

. a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 3 1) ,
643 . r e s e t (r e s e t)

) ;

l i n k _ s i n k _ s i d e c h a i n s i n k 3 4 (
. n_ in0 (l i n k 4 _ o u t 0 _ R 3) ,

648 . n_ in1 (l i n k 4 _ o u t 1 _ R 3) ,
. ack (a c k _ s i n k 3 4) ,
. v c _ c t r l (v c _ c t r l _ s i n k 3 4) ,
. r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 3 4) ,
. a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 3 [4]) ,

653 . r e s e t (r e s e t)
) ;
l i n k _ g e n _ s i d e c h a i n gen34 (

. n_ou t0 (gen34_out0) ,

. n_ou t1 (gen34_out1) ,
658 . ack (l i nk4_ack_R3) ,

. v c _ c t r l (v c _ c t r l 4 _ R 3) ,

. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 3 [4]) ,

. a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 3 4) ,

. r e s e t (r e s e t)
663) ;

113 CHAPTER C - SOURCE CODE

/ / p i p e l i n e s
/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p ipe33a (
/ / . n _ i n _ t (l i n k 3 _ o u t 1 _ R 3) ,

668 / / . n _ i n _ f (l i n k 3 _ o u t 0 _ R 3) ,
/ / . a c k _ i n (a c k _ p i p e 3 3 a _ i n) ,
/ / . o u t _ t (p ipe33a_1) ,
/ / . o u t _ f (p ipe33a_0) ,
/ / . n_ack_ou t (n _ a c k _ p i p e 3 3 a _ o u t) ,

673 / / . r e s e t (r e s e t)
/ /) ;
/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe33b (
/ / . i n _ t (p ipe33a_1) ,
/ / . i n _ f (p ipe33a_0) ,

678 / / . n _ a c k _ i n (n _ a c k _ p i p e 3 3 a _ o u t) ,
/ / . n _ o u t _ t (n_p ipe33b_1) ,
/ / . n _ o u t _ f (n_p ipe33b_0) ,
/ / . a c k _ o u t (l i n k 1 _ a c k _ R 4) ,
/ / . r e s e t (r e s e t)

683 / /) ;
/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p ipe41a (
/ / . n _ i n _ t (l i n k 1 _ o u t 1 _ R 4) ,
/ / . n _ i n _ f (l i n k 1 _ o u t 0 _ R 4) ,
/ / . a c k _ i n (a c k _ p i p e 4 1 a _ i n) ,

688 / / . o u t _ t (p ipe41a_1) ,
/ / . o u t _ f (p ipe41a_0) ,
/ / . n_ack_ou t (n _ a c k _ p i p e 4 1 a _ o u t) ,
/ / . r e s e t (r e s e t)
/ /) ;

693 / / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe41b (
/ / . i n _ t (p ipe41a_1) ,
/ / . i n _ f (p ipe41a_0) ,
/ / . n _ a c k _ i n (n _ a c k _ p i p e 4 1 a _ o u t) ,
/ / . n _ o u t _ t (n_p ipe41b_1) ,

698 / / . n _ o u t _ f (n_p ipe41b_0) ,
/ / . a c k _ o u t (l i n k 1 _ a c k _ R 4) ,
/ / . r e s e t (r e s e t)
/ /) ;

703 MANGO_router_5por t s_39bi t s r o u t e r 4 (
/ / l o c a l p o r t (p o r t 0) , 4 GS chs + 1 BE ch

/ / GS
. r e q 0 _ i n ({ 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 }) ,
. a c k 0 _ i n (ack_R4_GS) ,

708 . d a t a 0 _ i n 0 (43 ’ b0) ,
. d a t a 0 _ i n 1 (43 ’ b0) ,
. d a t a 0 _ i n 2 (43 ’ b0) ,
. d a t a 0 _ i n 3 (43 ’ b0) ,
. r e q 0 _ o u t (req_R4_GS) , / / r o u t e r 1 , p o r t yy

713 . a c k 0 _ o u t ({ 1 ’ b0 , 1 ’ b0 , 1 ’ b0 , 1 ’ b0 }) ,
. d a t a 0 _ o u t 0 (data_R4_GS0) ,
. d a t a 0 _ o u t 1 (data_R4_GS1) ,
. d a t a 0 _ o u t 2 (data_R4_GS2) ,
. d a t a 0 _ o u t 3 (data_R4_GS3) ,

718 / / BE
. req_BE_in (1 ’ b0) ,
. ack_BE_in (ack_R4_BE) ,
. da ta_BE_in (39 ’ b0) ,
. req_BE_out (req_R4_BE) ,

723 . ack_BE_out (1 ’ b0) ,
. da ta_BE_out (data_R4_BE) ,

/ / DI ne twork p o r t s and VC c o n t r o l

728 / / BE c r e d i t s
. r e q _ c r e d i t _ B E _ i n ({ r e q _ c r e d i t _ s i n k 4 4 , r e q _ c r e d i t _ s i n k 4 3 , r e q _ c r e d i t _ R 1 [4] , r e q _ c r e d i t _ R 3 [3] , 1 ’ b0 }) ,
. a c k _ c r e d i t _ B E _ i n (a c k _ c r e d i t _ R 4) ,
. r e q _ c r e d i t _ B E _ o u t (r e q _ c r e d i t _ R 4) ,
. a c k _ c r e d i t _ B E _ o u t ({ a c k _ c r e d i t _ s i n k 4 4 , a c k _ c r e d i t _ s i n k 4 3 , a c k _ c r e d i t _ R 1 [4] , a c k _ c r e d i t _ R 3 [3] , 1 ’ b0 }) ,

733 / / p o r t 1
. n _ l i n k 1 _ i n 0 (l i n k 3 _ o u t 0 _ R 3) , / / n_p ipe33b_0) ,
. n _ l i n k 1 _ i n 1 (l i n k 3 _ o u t 1 _ R 3) , / / n_p ipe33b_1) ,
. l i n k 1 _ a c k _ i n (l i nk1_ack_R4) ,
. v c _ c t r l 1 _ i n (v c _ c t r l 1 _ R 4) , / / t h i s i s an o u t p u t (!)

THE TEST NET 114

738 . n _ l i n k 1 _ o u t 0 (l i n k 1 _ o u t 0 _ R 4) ,
. n _ l i n k 1 _ o u t 1 (l i n k 1 _ o u t 1 _ R 4) ,
. l i n k 1 _ a c k _ o u t (l i nk3_ack_R3) , / / a c k _ p i p e 4 1 a _ i n) ,
. v c _ c t r l 1 _ o u t (v c _ c t r l 3 _ R 3) , / / t h i s i s an i n p u t (!)

/ / p o r t 2
743 . n _ l i n k 2 _ i n 0 (l i n k 4 _ o u t 0 _ R 1) , / / n_p ipe14b_0) ,

. n _ l i n k 2 _ i n 1 (l i n k 4 _ o u t 1 _ R 1) , / / n_p ipe14b_1) ,

. l i n k 2 _ a c k _ i n (l i nk2_ack_R4) ,

. v c _ c t r l 2 _ i n (v c _ c t r l 2 _ R 4) ,

. n _ l i n k 2 _ o u t 0 (l i n k 2 _ o u t 0 _ R 4) ,
748 . n _ l i n k 2 _ o u t 1 (l i n k 2 _ o u t 1 _ R 4) ,

. l i n k 2 _ a c k _ o u t (l i nk4_ack_R1) , / / a c k _ p i p e 4 2 a _ i n) ,

. v c _ c t r l 2 _ o u t (v c _ c t r l 4 _ R 1) ,
/ / p o r t 3

. n _ l i n k 3 _ i n 0 (gen43_out0) ,
753 . n _ l i n k 3 _ i n 1 (gen43_out1) ,

. l i n k 3 _ a c k _ i n (l i nk3_ack_R4) ,

. v c _ c t r l 3 _ i n (v c _ c t r l 3 _ R 4) ,

. n _ l i n k 3 _ o u t 0 (l i n k 3 _ o u t 0 _ R 4) ,

. n _ l i n k 3 _ o u t 1 (l i n k 3 _ o u t 1 _ R 4) ,
758 . l i n k 3 _ a c k _ o u t (a c k _ s i n k 4 3) ,

. v c _ c t r l 3 _ o u t (v c _ c t r l _ s i n k 4 3) ,
/ / p o r t 4

. n _ l i n k 4 _ i n 0 (gen44_out0) ,

. n _ l i n k 4 _ i n 1 (gen44_out1) ,
763 . l i n k 4 _ a c k _ i n (l i nk4_ack_R4) ,

. v c _ c t r l 4 _ i n (v c _ c t r l 4 _ R 4) ,

. n _ l i n k 4 _ o u t 0 (l i n k 4 _ o u t 0 _ R 4) ,

. n _ l i n k 4 _ o u t 1 (l i n k 4 _ o u t 1 _ R 4) ,

. l i n k 4 _ a c k _ o u t (a c k _ s i n k 4 4) ,
768 . v c _ c t r l 4 _ o u t (v c _ c t r l _ s i n k 3 4) ,

. r e s e t (r e s e t)
) ;

/ / l i n k s i n k s
773 l i n k _ s i n k _ s i d e c h a i n s i n k 4 3 (

. n_ in0 (l i n k 3 _ o u t 0 _ R 4) ,

. n_ in1 (l i n k 3 _ o u t 1 _ R 4) ,

. ack (a c k _ s i n k 4 3) ,

. v c _ c t r l (v c _ c t r l _ s i n k 4 3) ,
778 . r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 4 3) ,

. a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 4 [3]) ,

. r e s e t (r e s e t)
) ;
l i n k _ g e n _ s i d e c h a i n gen43 (

783 . n_ou t0 (gen43_out0) ,
. n_ou t1 (gen43_out1) ,
. ack (l i nk3_ack_R4) ,
. v c _ c t r l (v c _ c t r l 1 _ R 4) ,
. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 4 [3]) ,

788 . a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 4 3) ,
. r e s e t (r e s e t)

) ;

l i n k _ s i n k _ s i d e c h a i n s i n k 4 4 (
793 . n_ in0 (l i n k 4 _ o u t 0 _ R 4) ,

. n_ in1 (l i n k 4 _ o u t 1 _ R 4) ,

. ack (a c k _ s i n k 4 4) ,

. v c _ c t r l (v c _ c t r l _ s i n k 4 4) ,

. r e q _ c r e d i t _ o u t (r e q _ c r e d i t _ s i n k 4 4) ,
798 . a c k _ c r e d i t _ o u t (a c k _ c r e d i t _ R 4 [4]) ,

. r e s e t (r e s e t)
) ;
l i n k _ g e n _ s i d e c h a i n gen44 (

. n_ou t0 (gen44_out0) ,
803 . n_ou t1 (gen44_out1) ,

. ack (l i nk4_ack_R4) ,

. v c _ c t r l (v c _ c t r l 4 _ R 4) ,

. r e q _ c r e d i t _ i n (r e q _ c r e d i t _ R 4 [4]) ,

. a c k _ c r e d i t _ i n (a c k _ c r e d i t _ s i n k 4 4) ,
808 . r e s e t (r e s e t)

) ;

/ / p i p e l i n e s

115 CHAPTER C - SOURCE CODE

/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p ipe42a (
813 / / . n _ i n _ t (l i n k 2 _ o u t 1 _ R 4) ,

/ / . n _ i n _ f (l i n k 2 _ o u t 0 _ R 4) ,
/ / . a c k _ i n (a c k _ p i p e 4 2 a _ i n) ,
/ / . o u t _ t (p ipe42a_1) ,
/ / . o u t _ f (p ipe42a_0) ,

818 / / . n_ack_ou t (n _ a c k _ p i p e 4 2 a _ o u t) ,
/ / . r e s e t (r e s e t)
/ /) ;
/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe42b (
/ / . i n _ t (p ipe42a_1) ,

823 / / . i n _ f (p ipe42a_0) ,
/ / . n _ a c k _ i n (n _ a c k _ p i p e 4 2 a _ o u t) ,
/ / . n _ o u t _ t (n_p ipe42b_1) ,
/ / . n _ o u t _ f (n_p ipe42b_0) ,
/ / . a c k _ o u t (l i n k 4 _ a c k _ R 1) ,

828 / / . r e s e t (r e s e t)
/ /) ;
/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 0 p ipe14a (
/ / . n _ i n _ t (l i n k 4 _ o u t 1 _ R 1) ,
/ / . n _ i n _ f (l i n k 4 _ o u t 0 _ R 1) ,

833 / / . a c k _ i n (a c k _ p i p e 1 4 a _ i n) ,
/ / . o u t _ t (p ipe14a_1) ,
/ / . o u t _ f (p ipe14a_0) ,
/ / . n_ack_ou t (n _ a c k _ p i p e 1 4 a _ o u t) ,
/ / . r e s e t (r e s e t)

838 / /) ;
/ / r e g 4 5 _ 2 p h _ d r _ i n v _ r s t 1 _ 1 p ipe14b (
/ / . i n _ t (p ipe14a_1) ,
/ / . i n _ f (p ipe14a_0) ,
/ / . n _ a c k _ i n (n _ a c k _ p i p e 1 4 a _ o u t) ,

843 / / . n _ o u t _ t (n_p ipe14b_1) ,
/ / . n _ o u t _ f (n_p ipe14b_0) ,
/ / . a c k _ o u t (l i n k 4 _ a c k _ R 1) ,
/ / . r e s e t (r e s e t)
/ /) ;

848
endmodule

THE TEST BENCH 116

C.6 The Test Bench

/ / MANGO OCP end2end t e s t m o d i f i e d by CPP
3

/ / t h i s t e s t s e t u p p r o v i d e s two OCP p o r t s , a m as t e r and a s l a v e ,
/ / i n t o a t h r e e node network , which i s l oad ed by random t r a f f i c on
/ / a l l o t h e r p o r t s .

8 / / s e t u p : (t h e numbers a t t h e l i n k s are t h e p o r t numbers o f t h e
/ / a p p r o p r i a t e r o u t e r)
/ / : : t h e i n i t i a t o r NA can be c o n n e c t e d t o t h e l o c a l
/ / p o r t o f Rou te r1
/ / : : p o r t 1 o f Rou te r1 i s c o n n e c t e d t o p o r t 3 o f Rou te r2

13 / / : : p o r t 4 o f Rou te r2 i s c o n n e c t e d t o p o r t 2 o f Rou te r3
/ / : : t h e t a r g e t NA can be c o n n e c t e d t o t h e l o c a l p o r t o f Rou te r3
/ /
/ / +−−−−−−−+ +−−−−−−−+
/ / | | 1 3 | |

18 / / | Rou te r1|−−−−−−−−−−−−|Rou te r2 |
/ / | / +−−−−−−−−+ | / +−−−−−−−−+
/ / +−−−−−+ / i n i t i a t o r | +−−−−−+ / i n i t i a t o r |
/ / 4 | | NA | 4 | | NA |
/ / | +−−−−−−−−−+ | +−−−−−−−−−+

23 / / | |
/ / 2 | 2 |
/ / +−−−−−−−+ +−−−−−−−+
/ / | | 1 3 | |
/ / | Rou te r4|−−−−−−−−−−−−|Rou te r3 |

28 / / | / | / +−−−−−−+
/ / +−−−−−+ +−−−−−+ / t a r g e t |
/ / | NA |
/ / +−−−−−−−+

33
‘ t i m e s c a l e 1 ns / 1 ps

module MANGO_OCP_e2e_test_VC (
38) ;

/ / p a r a m e t e r s
parameter RxPor t s = 4 ;

43 parameter T x P o r t s = 4 ;
parameter f l i t _ d a t a _ w d t h = 3 9 ;

/ / OCP p a r a m e t e r s
parameter addr_wdth = 3 2 ;

48 parameter da t a_wd th = 3 2 ;
parameter b u r s t l e n g t h _ w d t h = 8 ;
parameter Mthread id_wdth = 3 ;
parameter S t h r e a d i d _ w d t h = 2 ;
parameter connid_wdth = 2 ;

53

/ / w i r e s
/ / i n i t i a t o r 1

wire [RxPor ts −1:0] RxReq_1 ;
58 wire [RxPor ts −1:0] RxAck_1 ;

wire [RxPor t s∗ f l i t _ d a t a _ w d t h −1:0] RxData_1 ;
wire [TxPor t s −1:0] TxAck_1 ;
wire [TxPor t s −1:0] TxReq_1 ;
wire [T x P o r t s∗ f l i t _ d a t a _ w d t h −1:0] TxData_1 ;

63
/ / i n i t i a t o r 2

wire [RxPor ts −1:0] RxReq_2 ;
wire [RxPor ts −1:0] RxAck_2 ;
wire [RxPor t s∗ f l i t _ d a t a _ w d t h −1:0] RxData_2 ;

68 wire [TxPor t s −1:0] TxAck_2 ;
wire [TxPor t s −1:0] TxReq_2 ;
wire [T x P o r t s∗ f l i t _ d a t a _ w d t h −1:0] TxData_2 ;

117 CHAPTER C - SOURCE CODE

/ / i n i t i a t o r 3
73 wire [RxPor ts −1:0] RxReq_3 ;

wire [RxPor ts −1:0] RxAck_3 ;
wire [RxPor t s∗ f l i t _ d a t a _ w d t h −1:0] RxData_3 ;
wire [TxPor t s −1:0] TxAck_3 ;
wire [TxPor t s −1:0] TxReq_3 ;

78 wire [T x P o r t s∗ f l i t _ d a t a _ w d t h −1:0] TxData_3 ;

wire r s t ;

wire [2 : 0] M1_MCmd;
83 wire M1_SCmdAccept ;

wire [addr_wdth −1:0] M1_MAddr ;
wire [da ta_wdth −1:0] M1_MData , M1_SData ;
wire [b u r s t l e n g t h _ w d t h −1:0] M1_MBurstLength ;
wire [2 : 0] M1_MBurstSeq ;

88 wire [connid_wdth −1:0] M1_MConnID ;
wire [Mthreadid_wdth −1:0] M1_MThreadID , M1_STrheadID , M1_MDataThreadID ;
wire [1 : 0] M1_SResp ;

wire [2 : 0] M2_MCmd;
93 wire M2_SCmdAccept ;

wire [addr_wdth −1:0] M2_MAddr ;
wire [da ta_wdth −1:0] M2_MData , M2_SData ;
wire [b u r s t l e n g t h _ w d t h −1:0] M2_MBurstLength ;
wire [2 : 0] M2_MBurstSeq ;

98 wire [connid_wdth −1:0] M2_MConnID ;
wire [Mthreadid_wdth −1:0] M2_MThreadID , M2_STrheadID , M2_MDataThreadID ;
wire [1 : 0] M2_SResp ;

wire [2 : 0] S_MCmd;
103 wire [addr_wdth −1:0] S_MAddr ;

wire [da ta_wdth −1:0] S_MData , S_SData ;
wire [b u r s t l e n g t h _ w d t h −1:0] S_MBurstLength ;
wire [2 : 0] S_MBurstSeq ;
wire [S t h r e a d i d _ w d t h −1:0] S_MThreadID , S_MDataThreadID , S_SThreadID ;

108 wire [1 : 0] S_SResp ;

wire [da ta_wdth −1:0] yy ;
wire [Mthreadid_wdth −1:0] qq ;

113 OCP_Master # (
. d a t a _ f i l e (" . / DATA/ OCP_Master1 . i n ") ,
. i d (" m a s t e r 1 "))

Mas te r1 (
. OCPClk (c l k _ m a s t e r 1) ,

118 . Rese t_n (r s t _ m a s t e r 1) ,
.OCPMCmd(M1_MCmd) ,

/ / . M_OCPSReset_n (r s t _ m a s t e r) ,
. OCPSCmdAccept (M1_SCmdAccept) ,
. OCPMAddr (M1_MAddr) ,

123 . OCPMData (M1_MData) ,
. OCPMBurstLength (M1_MBurstLength) ,
. OCPMBurstSeq (M1_MBurstSeq) ,
. OCPMBurstSingleReq (M1_MBurstSingleReq) ,
. OCPMBurstPrecise (M1_MBurstPrecise) ,

128 . OCPMReqLast (M1_MReqLast) ,
. OCPMDataLast (M1_MDataLast) ,
. OCPMConnID (M1_MConnID) ,
. OCPMThreadID (M1_MThreadID) ,
. OCPMDataValid (M1_MDataValid) ,

133 . OCPSDataAccept (M1_SDataAccept) ,
. OCPSResp (M1_SResp) ,
. OCPMRespAccept (M1_MRespAccept) ,
. OCPSData (M1_SData) ,
. OCPSRespLast (M1_SRespLast) ,

138 . OCPSThreadID (M1_STrheadID) ,
. OCPMDataThreadID (M1_MDataThreadID) ,
. O C P S I n t e r r u p t (M 1 _ S I n t e r r u p t)

) ;

143 OCP_Master # (
. d a t a _ f i l e (" . / DATA/ OCP_Master2 . i n ") ,
. i d (" m a s t e r 2 "))

THE TEST BENCH 118

Maste r2 (
. OCPClk (c l k _ m a s t e r 2) ,

148 . Rese t_n (r s t _ m a s t e r 2) ,
.OCPMCmd(M2_MCmd) ,

/ / . M_OCPSReset_n (r s t _ m a s t e r) ,
. OCPSCmdAccept (M2_SCmdAccept) ,
. OCPMAddr (M2_MAddr) ,

153 . OCPMData (M2_MData) ,
. OCPMBurstLength (M2_MBurstLength) ,
. OCPMBurstSeq (M2_MBurstSeq) ,
. OCPMBurstSingleReq (M2_MBurstSingleReq) ,
. OCPMBurstPrecise (M2_MBurstPrecise) ,

158 . OCPMReqLast (M2_MReqLast) ,
. OCPMDataLast (M2_MDataLast) ,
. OCPMConnID (M2_MConnID) ,
. OCPMThreadID (M2_MThreadID) ,
. OCPMDataValid (M2_MDataValid) ,

163 . OCPSDataAccept (M2_SDataAccept) ,
. OCPSResp (M2_SResp) ,
. OCPMRespAccept (M2_MRespAccept) ,
. OCPSData (M2_SData) ,
. OCPSRespLast (M2_SRespLast) ,

168 . OCPSThreadID (M2_STrheadID) ,
. OCPMDataThreadID (M2_MDataThreadID) ,
. O C P S I n t e r r u p t (M 2 _ S I n t e r r u p t)

) ;

173 OCP_Slave # (
. i d (" S l a ve 1 "))

S l av e1 (
. OCPClk (c l k _ s l a v e) ,
. Rese t_n (r s t _ s l a v e) ,

178 .OCPMCmd(S_MCmd) ,
/ / . S_OCPMReset_n (S_MReset) ,

. OCPSCmdAccept (S_SCmdAccept) ,

. OCPMAddr (S_MAddr) ,

. OCPMData (S_MData) ,
183 . OCPMDataValid (S_MDataValid) ,

. OCPSDataAccept (S_SDataAccept) ,

. OCPMBurstLength (S_MBurstLength) ,

. OCPMBurstSeq (S_MBurstSeq) ,

. OCPMBurstSingleReq (S_MBurs tSingleReq) ,
188 . OCPMBurstPrecise (S_MBurs tP rec i s e) ,

. OCPMReqLast (S_MReqLast) ,

. OCPMDataLast (S_MDataLast) ,

. OCPMThreadID (S_MThreadID) ,

. OCPMDataThreadID (S_MDataThreadID) ,
193 . OCPSRespLast (S_SRespLast) ,

. OCPSThreadID (S_SThreadID) ,

. OCPSResp (S_SResp) ,

. OCPSData (S_SData) ,

. OCPMRespAccept (S_MRespAccept) ,
198 . OCPRespDone (S_RespDone) ,

. O C P S I n t e r r u p t (S _ S I n t e r r u p t)
) ;

i n i t i a t o r i n i t i a t o r _ N A 1 (
203 . OCPClk (c l k _ m a s t e r 1) ,

. Rese t_n (r s t _ m a s t e r 1) ,

/ / i n i t i a t o r r e q u e s t module i n t e r f a c e
. OCPMCmd_i (M1_MCmd) ,

208 . OCPSReset_no () , / / l e a v e t h i s hang ing . . i t s l o op ed back from R e s e t _ n . . .
. OCPSCmdAccept_o (M1_SCmdAccept) ,
. OCPMAddr_i (M1_MAddr) ,
. OCPMData_i (M1_MData) ,
. OCPMBurstLength_i (M1_MBurstLength) ,

213 . OCPMBurstSeq_i (M1_MBurstSeq) ,
. OCPMBurstSingleReq_i (M1_MBurstSingleReq) ,
. OCPMBurs tPrec i se_ i (M1_MBurstPrecise) ,
. OCPMReqLast_i (M1_MReqLast) ,
. OCPMDataLast_i (M1_MDataLast) ,

218 . OCPMConnID_i (M1_MConnID) ,
. OCPMThreadID_i (M1_MThreadID) ,

119 CHAPTER C - SOURCE CODE

. OCPMDataValid_i (M1_MDataValid) ,

. OCPSDataAccept_o (M1_SDataAccept) ,

223 / / i n i t i a t o r r e s p o n s e module i n t e r f a c e
. OCPSResp_o (M1_SResp) ,
. OCPMRespAccept_i (M1_MRespAccept) ,
. OCPSData_o (M1_SData) ,
. OCPSRespLast_o (M1_SRespLast) ,

228 . OCPSThreadID_o (M1_STrheadID) ,
. OCPSResp_i () , / / unwarran ted p o r t ! c l e a n i t up !
. OCPSData_i () , / / unwarran ted p o r t ! c l e a n i t up !
. OCPSRespLast_i () , / / unwarran ted p o r t ! c l e a n i t up !
. OCPSThreadID_i () , / / unwarran ted p o r t ! c l e a n i t up !

233 . OCPMDataThreadID_i (M1_MDataThreadID) ,
. OCPSIn t e r rup t_o (M 1 _ S I n t e r r u p t) ,

/ / i n i t i a t o r ne twork i n t e r f a c e
. RxReq_i (RxReq_1) ,

238 . RxAck_o (RxAck_1) ,
. RxData_i (RxData_1) ,
. TxAck_i (TxAck_1) ,
. TxReq_o (TxReq_1) ,
. TxData_o (TxData_1)

243) ;

i n i t i a t o r i n i t i a t o r _ N A 2 (
. OCPClk (c l k _ m a s t e r 2) ,
. Rese t_n (r s t _ m a s t e r 2) ,

248
/ / i n i t i a t o r r e q u e s t module i n t e r f a c e
. OCPMCmd_i (M2_MCmd) ,
. OCPSReset_no () , / / l e a v e t h i s hang ing . . i t s l o op ed back from R e s e t _ n . . .
. OCPSCmdAccept_o (M2_SCmdAccept) ,

253 . OCPMAddr_i (M2_MAddr) ,
. OCPMData_i (M2_MData) ,
. OCPMBurstLength_i (M2_MBurstLength) ,
. OCPMBurstSeq_i (M2_MBurstSeq) ,
. OCPMBurstSingleReq_i (M2_MBurstSingleReq) ,

258 . OCPMBurs tPrec i se_ i (M2_MBurstPrecise) ,
. OCPMReqLast_i (M2_MReqLast) ,
. OCPMDataLast_i (M2_MDataLast) ,
. OCPMConnID_i (M2_MConnID) ,
. OCPMThreadID_i (M2_MThreadID) ,

263 . OCPMDataValid_i (M2_MDataValid) ,
. OCPSDataAccept_o (M2_SDataAccept) ,

/ / i n i t i a t o r r e s p o n s e module i n t e r f a c e
. OCPSResp_o (M2_SResp) ,

268 . OCPMRespAccept_i (M2_MRespAccept) ,
. OCPSData_o (M2_SData) ,
. OCPSRespLast_o (M2_SRespLast) ,
. OCPSThreadID_o (M2_STrheadID) ,
. OCPSResp_i () , / / unwarran ted p o r t ! c l e a n i t up !

273 . OCPSData_i () , / / unwarran ted p o r t ! c l e a n i t up !
. OCPSRespLast_i () , / / unwarran ted p o r t ! c l e a n i t up !
. OCPSThreadID_i () , / / unwarran ted p o r t ! c l e a n i t up !
. OCPMDataThreadID_i (M2_MDataThreadID) ,
. OCPSIn t e r rup t_o (M 2 _ S I n t e r r u p t) ,

278
/ / i n i t i a t o r ne twork i n t e r f a c e
. RxReq_i (RxReq_2) ,
. RxAck_o (RxAck_2) ,
. RxData_i (RxData_2) ,

283 . TxAck_i (TxAck_2) ,
. TxReq_o (TxReq_2) ,
. TxData_o (TxData_2)

) ;

288
a s y n c _ r e s e t c t r l (

. r s t (r s t)
) ;

293 M A N G O _ r o u t e r _ t h e s i s _ t e s t _ 3 p o r t ne twork (

THE TEST BENCH 120

/ / t e s t p o r t 1
. RxReq_1 (RxReq_1) ,
. RxAck_1 (RxAck_1) ,
. RxData_1 (RxData_1) ,

298 . TxAck_1 (TxAck_1) ,
. TxReq_1 (TxReq_1) ,
. TxData_1 (TxData_1) ,

/ / t e s t p o r t 2
. RxReq_2 (RxReq_2) ,

303 . RxAck_2 (RxAck_2) ,
. RxData_2 (RxData_2) ,
. TxAck_2 (TxAck_2) ,
. TxReq_2 (TxReq_2) ,
. TxData_2 (TxData_2) ,

308 / / t e s t p o r t 3
. RxReq_3 (RxReq_3) ,
. RxAck_3 (RxAck_3) ,
. RxData_3 (RxData_3) ,
. TxAck_3 (TxAck_3) ,

313 . TxReq_3 (TxReq_3) ,
. TxData_3 (TxData_3) ,
. r e s e t (r s t)

) ;

318
t a r g e t t a rge t_NA (

. OCPClk (c l k _ s l a v e) ,

. Rese t_n (r s t _ s l a v e) ,

323 / / OCP i n t e r f a c e
. OCPMCmd_o(S_MCmd) ,
. OCPMReset_no (S_MReset) ,
. OCPSCmdAccept_i (S_SCmdAccept) ,
. OCPMAddr_o (S_MAddr) ,

328 . OCPMData_o (S_MData) ,
. OCPMDataValid_o (S_MDataValid) ,
. OCPSDataAccept_i (S_SDataAccept) ,
. OCPMBurstLength_o (S_MBurstLength) ,
. OCPMBurstSeq_o (S_MBurstSeq) ,

333 . OCPMBurstSingleReq_o (S_MBurs tSingleReq) ,
. OCPMBurstPrecise_o (S_MBurs tP rec i s e) ,
. OCPMReqLast_o (S_MReqLast) ,
. OCPMDataLast_o (S_MDataLast) ,
. OCPMThreadID_o (S_MThreadID) ,

338 . OCPMDataThreadID_o (S_MDataThreadID) ,
. OCPSRespLast_i (S_SRespLast) ,
. OCPSThreadID_i (S_SThreadID) ,
. OCPSResp_i (S_SResp) ,
. OCPSData_i (S_SData) ,

343 . OCPMRespAccept_o (S_MRespAccept) ,
. OCPRespDone_i (S_RespDone) ,
. O C P S I n t e r r u p t _ i (S _ S I n t e r r u p t) ,

/ / Network i n t e r f a c e
348 . RxReq_i (RxReq_3) ,

. RxAck_o (RxAck_3) ,

. RxData_i (RxData_3) ,

. TxAck_i (TxAck_3) ,

. TxReq_o (TxReq_3) ,
353 . TxData_o (TxData_3)

) ;

endmodule

121 CHAPTER C - SOURCE CODE

C.7 OCP Master
1 −−−
−− T i t l e : OCP Master e m u l a t o r
−− P r o j e c t : MANGO
−−−
−− F i l e : OCP_Master . vhd

6 −− Author : C h r i s t i a n Place Pedersen
−− h t t p : / / c h r i s t i a n p l a c e . dk
−− Company : T e c h n i c a l U n i v e r s i t y o f Denmark − IMM/ CSE
−− Crea ted : 2 0 0 6 / 0 8 / 2 1
−− L a s t u pda t e : 2 0 0 6 / 0 9 / 1 5

11 −− P l a t f o r m :
−− S t a n da r d : VHDL’93
−−−
−− D e s c r i p t i o n :
−−−

16 −− C o p y r i g h t (c) 2006
−−−
−− R e v i s i o n s :
−− Date V e r s i o n Author D e s c r i p t i o n
−− 2 0 0 5 / 0 8 / 2 1 1 . 0 CPP Crea ted

21 −−−
l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use IEEE . s t d _ l o g i c _ t e x t i o . a l l ;
−− use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;

26 use s t d . t e x t i o . a l l ;
use work . my_misc . a l l ;

e n t i t y OCP_Master i s

31 g e n e r i c (
addr_wdth : i n t e g e r := 3 2 ;
da t a_wd th : i n t e g e r := 3 2 ;
b u r s t l e n g t h _ w d t h : i n t e g e r := 8 ;
connid_wdth : i n t e g e r := 2 ;

36 t h r e a d i d _ w d t h : i n t e g e r := 3 ;
c l k _ p e r i o d : t ime := 4 ns ;
d a t a _ f i l e : s t r i n g := " . / DATA/ OCP_master1 . i n " ;
i d : s t r i n g := " Mas te r ") ;

41 port (
OCPClk : out s t d _ l o g i c ;
Rese t_n : out s t d _ l o g i c ;
OCPMCmd : out s t d _ l o g i c _ v e c t o r (2 downto 0) ;
−−OCPSReset_n : i n s t d _ l o g i c ;

46 OCPSCmdAccept : in s t d _ l o g i c ;
OCPMAddr : out s t d _ l o g i c _ v e c t o r (addr_wdth−1 downto 0) ;
OCPMData : out s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;
OCPMBurstLength : out s t d _ l o g i c _ v e c t o r (b u r s t l e n g t h _ w d t h−1 downto 0) ;
OCPMBurstSeq : out s t d _ l o g i c _ v e c t o r (2 downto 0) ;

51 OCPMBurstSingleReq : out s t d _ l o g i c ;
OCPMBurstPrecise : out s t d _ l o g i c ;
OCPMReqLast : out s t d _ l o g i c ;
OCPMDataLast : out s t d _ l o g i c ;
OCPMConnID : out s t d _ l o g i c _ v e c t o r (connid_wdth−1 downto 0) ;

56 OCPMThreadID : out s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;
OCPMDataValid : out s t d _ l o g i c ;
OCPSDataAccept : in s t d _ l o g i c ;
OCPSResp : in s t d _ l o g i c _ v e c t o r (1 downto 0) ;
OCPMRespAccept : out s t d _ l o g i c ;

61 OCPSData : in s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;
OCPSRespLast : in s t d _ l o g i c ;
OCPSThreadID : in s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;
OCPMDataThreadID : out s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;
O C P S I n t e r r u p t : in s t d _ l o g i c) ;

66

end OCP_Master ;

a r c h i t e c t u r e e m u l a t o r of OCP_Master i s
71

OCP MASTER 122

f i l e i n p u t : t e x t open read_mode i s d a t a _ f i l e ;
c o n s t a n t CH0IN_SPEED : t ime := 0 . 4 ns ;
c o n s t a n t CH0OUT_SPEED : t ime := 0 . 2 ns ;
c o n s t a n t CH0_ACTIVITY : t ime := 0 . 1 ns ;

76 s i g n a l c l k : s t d _ l o g i c ;

begin −− e m u l a t o r

−− purpose : Master c l o c k
81 p r o c e s s

begin −− p r o c e s s
loop

c l k <= ’ 1 ’ ;
wait f o r c l k _ p e r i o d ;

86 c l k <= ’ 0 ’ ;
wait f o r c l k _ p e r i o d ;

end loop ;
end p r o c e s s ;

91 OCPClk <= c l k ;

p r o c e s s −− T r a n s m i t t e r
v a r i a b l e l : l i n e ;
v a r i a b l e MCmd : s t d _ l o g i c _ v e c t o r (2 downto 0) ;

96 v a r i a b l e MConnID : s t d _ l o g i c _ v e c t o r (connid_wdth−1 downto 0) ;
v a r i a b l e MThreadID : s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;
v a r i a b l e MAddr : s t d _ l o g i c _ v e c t o r (addr_wdth−1 downto 0) ;
v a r i a b l e MData : s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;

begin −− p r o c e s s
101 wait f o r 3 ns ;

OCPMCmd <= (o t h e r s => ’ 0 ’) ;
OCPMAddr <= (o t h e r s => ’ 0 ’) ;
OCPMData <= (o t h e r s => ’ 0 ’) ;
OCPMBurstLength <= " 00000001 " ;

106 OCPMBurstSeq <= (o t h e r s => ’ 0 ’) ;
OCPMBurstSingleReq <= ’ 0 ’ ;
OCPMBurstPrecise <= ’ 0 ’ ;
OCPMReqLast <= ’ 0 ’ ;
OCPMDataLast <= ’ 0 ’ ;

111 OCPMConnID <= (o t h e r s => ’ 0 ’) ;
OCPMThreadID <= (o t h e r s => ’ 0 ’) ;
OCPMDataValid <= ’ 0 ’ ;
OCPMRespAccept <= ’ 0 ’ ;
OCPMDataThreadID <= (o t h e r s => ’ 0 ’) ;

116
−− I n i t i a t e r e s e t c y c l e
Rese t_n <= ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;

121 wait f o r CH0IN_SPEED ;
Rese t_n <= ’ 0 ’ ;
r ep or t ID & " A c t i v a t i n g R e s e t " s e v e r i t y NOTE;
−− Wait some c l k c y c l e s
wait u n t i l c l k = ’ 0 ’ ;

126 wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;

131 wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;

136 wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;

141 wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;

123 CHAPTER C - SOURCE CODE

146 wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait f o r CH0IN_SPEED ;
Rese t_n <= ’ 1 ’ ;

151 r ep or t ID & " D e a c t i v a t i n g R e s e t " s e v e r i t y NOTE;

wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;

156 wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait f o r CH0IN_SPEED ;

161
−− S t a r t t h e t e s t , read t h e i n p u t f i l e
whi le not e n d f i l e (i n p u t) loop

r e a d l i n e (i n p u t , l) ;
−− Each l i n e has t h e f o l l o w i n g f o r m a t (one w h i t e s p a c e as s e p e r a t o r) :

166 −− OCPMCmd OCPMConnID OCPMAddr OCPMData

r e a d (l ,MCmd) ; −− F i r s t we read t h e MCmd
−− And f i n d o u t i f we are IDLE (0 0 0) , WRITE (0 0 1) or READ(0 1 0)
−− S e t up s i g n a l s by r e a d i n g v a l u e s from t h e t e s t f i l e

171 r e a d (l , MConnID) ;
r e a d (l , MThreadID) ;
r e a d (l , MAddr) ;
r e a d (l , MData) ;
case MCmd i s

176 when " 000 " => −− IDLE
r ep or t ID & " i s IDLE" s e v e r i t y NOTE;
OCPMCmd <= " 000 " ;
wait u n t i l r i s i n g _ e d g e (c l k) ;
wait f o r CH0IN_SPEED ;

181 when " 001 " => −− WRITE
r ep or t ID & " : W r i t i n g "

& " ConnID : " & t o _ s t r i n g (MConnID)
& " ThreadID : " & t o _ s t r i n g (MThreadID)
& " MAddr : " & t o _ s t r i n g (MAddr)

186 & " MData : " & t o _ s t r i n g (MData)
s e v e r i t y NOTE;

OCPMCmd <= MCmd;
OCPMConnID <= MConnID ;
OCPMThreadID <= MThreadID ;

191 OCPMAddr <= MAddr ;
OCPMData <= MData ;
−− Handshake
r ep or t ID & " Wai t ing f o r SCmdAccept " s e v e r i t y NOTE;
wait u n t i l OCPSCmdAccept = ’1 ’ and r i s i n g _ e d g e (c l k) ;

196 r ep or t ID & " Got SCmdAccept go ing IDLE" s e v e r i t y NOTE;
wait f o r CH0IN_SPEED ;
OCPMCmd <= " 000 " ;

when " 010 " =>
r ep or t ID & " : Reading "

201 & " ConnID : " & t o _ s t r i n g (MConnID)
& " ThreadID : " & t o _ s t r i n g (MThreadID)
& " Address : " & t o _ s t r i n g (MAddr)
s e v e r i t y NOTE;

OCPMCmd <= MCmd;
206 OCPMConnID <= MConnID ;

OCPMThreadID <= MThreadID ;
OCPMAddr <= MAddr ;
−− Handshake
r ep or t ID & " Wai t ing f o r SCmdAccept " s e v e r i t y NOTE;

211 wait u n t i l OCPSCmdAccept = ’1 ’ and r i s i n g _ e d g e (c l k) ;
r ep or t ID & " Got SCmdAccept go ing IDLE" s e v e r i t y NOTE;
wait f o r CH0IN_SPEED ;
OCPMCmd <= " 000 " ; −−IDLE
r ep or t ID & " Wai t ing f o r SResp " s e v e r i t y NOTE;

216 wait u n t i l OCPSResp = " 01 " and r i s i n g _ e d g e (c l k) ;
r ep or t ID & " Got SResp " s e v e r i t y NOTE;
OCPMRespAccept <= ’ 1 ’ ;
−− We are assuming s i n g l e r e s p o n s e

OCP MASTER 124

r ep or t ID & " Rec ieved d a t a : " & t o _ s t r i n g (OCPSData) s e v e r i t y NOTE;
221 wait u n t i l OCPSResp = " 00 " and r i s i n g _ e d g e (c l k) ;

OCPMRespAccept <= ’ 0 ’ ;
when " 101 " =>

r ep or t ID & " : WRNP"
& " ConnID : " & t o _ s t r i n g (MConnID)

226 & " ThreadID : " & t o _ s t r i n g (MThreadID)
& " Address : " & t o _ s t r i n g (MAddr)
& " MData : " & t o _ s t r i n g (MData)
s e v e r i t y NOTE;

OCPMCmd <= MCmd;
231 OCPMConnID <= MConnID ;

OCPMThreadID <= MThreadID ;
OCPMAddr <= MAddr ;
OCPMData <= MData ;
−− Handshake

236 r ep or t ID & " Wai t ing f o r SCmdAccept " s e v e r i t y NOTE;
wait u n t i l OCPSCmdAccept = ’1 ’ and r i s i n g _ e d g e (c l k) ;
r ep or t ID & " Got SCmdAccept go ing IDLE" s e v e r i t y NOTE;
wait f o r CH0IN_SPEED ;
OCPMCmd <= " 000 " ; −−IDLE

241 r ep or t ID & " Wai t ing f o r SResp " s e v e r i t y NOTE;
wait u n t i l OCPSResp = " 01 " and r i s i n g _ e d g e (c l k) ;
r ep or t ID & " Got SResp " s e v e r i t y NOTE;
OCPMRespAccept <= ’ 1 ’ ;
wait u n t i l OCPSResp = " 00 " and r i s i n g _ e d g e (c l k) ;

246 OCPMRespAccept <= ’ 0 ’ ;
when o t h e r s => r ep or t ID & " BAD MCmd (end of f i l e p e r h a p s ?) "

s e v e r i t y NOTE;
r ep or t ID & " i s IDLE" s e v e r i t y NOTE;
OCPMCmd <= " 000 " ;

251 wait u n t i l r i s i n g _ e d g e (c l k) ;
wait f o r CH0IN_SPEED ;

end case ;
end loop ;
wait ;

256 r ep or t ID & " End of f i l e " s e v e r i t y FAILURE ;
loop

r ep or t ID & " i s IDLE" s e v e r i t y NOTE;
OCPMCmd <= " 000 " ;
wait u n t i l r i s i n g _ e d g e (c l k) ;

261 wait f o r CH0IN_SPEED ;
end loop ;

end p r o c e s s ;

end e m u l a t o r ;

125 CHAPTER C - SOURCE CODE

C.8 OCP Slave
−−−
−− T i t l e : OCP S l a v e e m u l a t o r
−− P r o j e c t : MANGO
−−−

5 −− F i l e : OCP_Slave . vhd
−− Author : C h r i s t i a n Place Pedersen
−− h t t p : / / c h r i s t i a n p l a c e . dk
−− Company : T e c h n i c a l U n i v e r s i t y o f Denmark − IMM/ CSE
−− Crea ted : 2 0 0 6 / 0 8 / 2 2

10 −− L a s t u pda t e : 2 0 0 6 / 0 9 / 1 6
−− P l a t f o r m :
−− S t a n da r d : VHDL’93
−−−
−− D e s c r i p t i o n :

15 −−−
−− C o p y r i g h t (c) 2006
−−−
−− R e v i s i o n s :
−− Date V e r s i o n Author D e s c r i p t i o n

20 −− 2 0 0 5 / 0 8 / 2 2 1 . 0 CPP Crea ted
−−−
l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use IEEE . s t d _ l o g i c _ t e x t i o . a l l ;

25 −− use i e e e . s t d _ l o g i c _ u n s i g n e d . a l l ;
use s t d . t e x t i o . a l l ;
use work . my_misc . a l l ;

e n t i t y OCP_Slave i s
30

g e n e r i c (
addr_wdth : i n t e g e r := 3 2 ;
da t a_wd th : i n t e g e r := 3 2 ;
ocp_da ta_wdth : i n t e g e r := 3 2 ;

35 b u r s t l e n g t h _ w d t h : i n t e g e r := 8 ;
t h r e a d i d _ w d t h : i n t e g e r := 2 ;
c l k _ p e r i o d : t ime := 7 ns ;
d a t a _ f i l e : s t r i n g := " OCP_Slave . i n " ;
i d : s t r i n g := "OCP S l a v e ") ;

40 port (
OCPClk : out s t d _ l o g i c ;
Rese t_n : out s t d _ l o g i c ;
OCPMCmd : in s t d _ l o g i c _ v e c t o r (2 downto 0) ;
−−OCPMReset_ni : i n s t d _ l o g i c ;

45 OCPSCmdAccept : out s t d _ l o g i c ;
OCPMAddr : in s t d _ l o g i c _ v e c t o r (addr_wdth−1 downto 0) ;
OCPMData : in s t d _ l o g i c _ v e c t o r (ocp_da ta_wdth−1 downto 0) ;
OCPMDataValid : in s t d _ l o g i c ;
OCPSDataAccept : out s t d _ l o g i c ;

50 OCPMBurstLength : in s t d _ l o g i c _ v e c t o r (b u r s t l e n g t h _ w d t h−1 downto 0) ;
OCPMBurstSeq : in s t d _ l o g i c _ v e c t o r (2 downto 0) ;
OCPMBurstSingleReq : in s t d _ l o g i c ;
OCPMBurstPrecise : in s t d _ l o g i c ;
OCPMReqLast : in s t d _ l o g i c ;

55 OCPMDataLast : in s t d _ l o g i c ;
OCPMThreadID : in s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;
OCPMDataThreadID : in s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;
OCPSRespLast : out s t d _ l o g i c ;
OCPSThreadID : out s t d _ l o g i c _ v e c t o r (t h r e a d i d _ w d t h−1 downto 0) ;

60 OCPSResp : out s t d _ l o g i c _ v e c t o r (1 downto 0) ;
OCPSData : out s t d _ l o g i c _ v e c t o r (ocp_da ta_wdth−1 downto 0) ;
OCPMRespAccept : in s t d _ l o g i c ;
OCPRespDone : out s t d _ l o g i c ;
O C P S I n t e r r u p t : out s t d _ l o g i c) ;

65
end OCP_Slave ;

a r c h i t e c t u r e e m u l a t o r of OCP_Slave i s

70 type STATE i s (s0 , s1) ;
s i g n a l C u r r e n t S t a t e , N e x t S t a t e : STATE ;

OCP SLAVE 126

c o n s t a n t CH0IN_SPEED : t ime := 0 . 4 ns ;
c o n s t a n t CH0OUT_SPEED : t ime := 0 . 2 ns ;
c o n s t a n t CH0_ACTIVITY : t ime := 0 . 1 ns ;

75 s i g n a l c lk , r e s e t : s t d _ l o g i c ;
s i g n a l r e a d _ d a t a : s t d _ l o g i c _ v e c t o r (da ta_wdth−1 downto 0) ;

begin −− e m u l a t o r

80 −− purpose : Master c l o c k
p r o c e s s
begin −− p r o c e s s

loop
c l k <= ’ 1 ’ ;

85 wait f o r c l k _ p e r i o d ;
c l k <= ’ 0 ’ ;
wait f o r c l k _ p e r i o d ;

end loop ;
end p r o c e s s ;

90
OCPClk <= c l k ;

−− r e s e t c y c l e
p r o c e s s

95 begin −− p r o c e s s
R e s e t <= ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait f o r CH0IN_SPEED ;

100 R e s e t <= ’ 0 ’ ;
r ep or t ID & " A c t i v a t i n g R e s e t " s e v e r i t y NOTE;
−− Wait some c l k c y c l e s
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;

105 wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait u n t i l c l k = ’ 0 ’ ;
wait u n t i l c l k = ’ 1 ’ ;
wait f o r CH0IN_SPEED ;

110 R e s e t <= ’ 1 ’ ;
r ep or t ID & " D e a c t i v a t i n g R e s e t " s e v e r i t y NOTE;
wait ;

end p r o c e s s ;

115 Rese t_n <= R e s e t ;

n e x t _ s t a t e : p r o c e s s (c lk , R e s e t)
begin −− p r o c e s s

i f R e s e t = ’0 ’ then −− a s y n c h r o n o u s r e s e t (a c t i v e low)
120 C u r r e n t S t a t e <= s0 ;

e l s i f c lk ’ e v e n t and c l k = ’1 ’ then −− r i s i n g c l o c k edge
C u r r e n t S t a t e <= N e x t S t a t e ;

end i f ;
end p r o c e s s ; −− n e x t _ s t a t e

125
f s m _ l o g i c : p r o c e s s (OCPMCmd, OCPMAddr , OCPMData ,

OCPMDataValid , OCPMBurstLength , OCPMBurstSeq ,
OCPMBurstSingleReq , OCPMBurstPrecise , OCPMReqLast ,
OCPMDataLast , OCPMThreadID , OCPMDataThreadID ,

130 OCPMRespAccept , C u r r e n t S t a t e)
begin −− p r o c e s s f s m _ l o g i c

case C u r r e n t S t a t e i s
when s0 => −− S i n g l e r e q u e s t

135 OCPSData <= (o t h e r s => ’ 0 ’) ;
OCPSRespLast <= ’ 0 ’ ;
OCPSResp <= (o t h e r s => ’ 0 ’) ;
case OCPMCmd i s

when " 000 " => −− I d l e
140 N e x t S t a t e <= s0 ;

OCPSCmdAccept <= ’ 0 ’ ;
OCPSDataAccept <= ’ 0 ’ ;
OCPRespDone <= ’ 0 ’ ;
O C P S I n t e r r u p t <= ’ 0 ’ ;

145 when " 001 " => −− W r i t e

127 CHAPTER C - SOURCE CODE

−− o n l y s i n g e r e q u e s t so f a r
OCPSCmdAccept <= ’ 1 ’ ;
OCPSDataAccept <= ’ 1 ’ ;
N e x t S t a t e <= s0 ;

150 r ep or t ID & " Wri t e t o "
& " Address : " & t o _ s t r i n g (OCPMAddr)
& " Data : " & t o _ s t r i n g (OCPMData)
s e v e r i t y NOTE;

when " 010 " => −− Read
155 OCPSThreadID <= OCPMThreadID ;

OCPSCmdAccept <= ’ 1 ’ ;
N e x t S t a t e <= s1 ;
r e a d _ d a t a <= OCPMAddr ;
r ep or t ID & " r e a d of "

160 & " a d d r e s s " & t o _ s t r i n g (OCPMAddr)
s e v e r i t y NOTE;

when o t h e r s => n u l l ;
end case ;

when s1 =>
165 OCPSCmdAccept <= ’ 1 ’ ;

−−OCPSDataAccept <= ’ 1 ’ ;
OCPSResp <= " 01 " ;
OCPSRespLast <= ’ 1 ’ ;
OCPSData <= r e a d _ d a t a ; −− r e t u r n t h e a d d r e s s as da ta

170 OCPSCmdAccept <= ’ 0 ’ ;
i f OCPMRespAccept = ’1 ’ then

N e x t S t a t e <= s0 ;
e l s e

N e x t S t a t e <= s1 ;
175 end i f ;

when o t h e r s =>
N e x t S t a t e <= s0 ;

end case ;
end p r o c e s s f s m _ l o g i c ;

180
end e m u l a t o r ;

	Introduction
	Previous Work
	Project Description
	Report Structure

	Domain Introduction
	Network-on-Chip
	Quality of Service
	Use Cases
	Asynchronous Circuits

	A Network-on-Chip Study
	Hermes
	QNoC
	Octagon
	NOSTRUM
	Æthereal
	SoCBUS
	MANGO

	Guaranteed Service with Virtual Circuits
	Abstraction of Virtual Circuits
	Programming Model
	Distribution of the Use Cases
	Network State

	The MANGO Network-on-Chip
	Setting Up Virtual Circuits in MANGO
	The MANGO Network Adapter
	Best-Effort Routing

	Reconfigurable Virtual Ciruits in MANGO
	Specification
	Reusable Virtual Channels
	Programming the Network Adapters
	Determine the State of the NoC
	Controlling the Setup Time
	Acknowledgment Configuration
	Routing Schemes

	Testing
	Test Example

	Discussion
	NoC Status
	The Status of MANGO
	Future Work

	Conclusion
	Bibliography
	Implementations
	Handshake Conversion
	NA Programming
	Acknowledgement
	Best-Effort Router

	Tests
	The Mangofy Script
	Wave traces
	Configuring BE Paths Remotely
	Reuse of a VC and remote circuit setup

	Source Code
	key.v
	lut_arb.vhd
	gen_acknowledge_39.v
	BE_behav.v
	The Test Net
	The Test Bench
	OCP Master
	OCP Slave

