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Abstract

Based on present technology, it is a challenging task to provide anonymous
communications in mobile ad hoc networks. There are several problems that
must be addressed properly. Security and performance concerns are the main
challenges. Chaum’s Mix method can effectively prevent an adversary’s attempt
of tracing packet routes and hide the source and/or destination of packets.
However, applying the Mix method in ad hoc networks may cause significant
performance degradation due to its non-adaptive Mix route selection algorithm.
The goal of this project is to develop a Mix route algorithm to find topology-
dependent Mix routes for anonymous connections. We have named the protocol
that will be implemented MixRoute. The protocol is implemented in ns-2 [27].
Test scripts are developed to make a simulation.
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Preface

This thesis was prepared at Informatics and Mathematical Modelling, the Tech-
nical University of Denmark in fulfillment of the requirements for acquiring the
M.Sc. degree in engineering.

The thesis deals with designing an anonymous communications protocol suitable
for Mobile Ad Hoc Networks. The protocol is later implemented, using C++
and OTcl, into the network simulator software ns-2.

The thesis consists of a report, source code for the protocol and scripts used to
test the protocol in ns-2.

Lyngby, September 2006
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Chapter 1

Introduction

A wireless mobile ad hoc network is formed by a group of mobile hosts that
communicate through radio transmissions, without support of fixed routing in-
frastructure. Due to its ease of deployment, it has a large amount of applications
in military as well as in civilian environments. However, wireless medium intro-
duces great opportunities for eavesdropping of wireless data communications.
Anyone with the appropriate wireless receiver can eavesdrop and this kind of
eavesdropping is virtually undetectable. So communication privacy is one of the
issues that a network designer must address with higher priority.
By definition, privacy means the protection of data from unauthorized parties.
Federrath et al. [10] discuss the communication privacy requirements in mobile
networks in terms of content, location and identity privacy. Content privacy,
i.e. protection of the contents of a message, can be provided by encryption
schemes (such as AES, DES and RSA). In the wireless ad hoc network following
is considered: node address itself does not contain location information, but
may disclose identity of mobile users. An adversary may learn user communica-
tion patterns such as who communicates with whom, when, how long, etc. from
traffic information. To prevent traffic analysis, it is desirable that user commu-
nications remain anonymous. How to provide anonymity support in wireless ad
hoc network is the topic of this project.
Achieving anonymity is a different problem than achieving data confidentiality.
While data can be protected by cryptographic means, the recipient node address
(and maybe the sender node address) of a packet can not be simply encrypted
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because they are needed by the network to route the packet. Most existing
anonymizing schemes are originated from Chaum’s Mix-net concept [6]. The
idea is that traffic sent from sender to destination should pass one or more Mix
nodes. A Mix node relays data from different end-to-end connections, and its
task is to reorder and re-encrypt the data such that incoming and outgoing data
cannot be related. This should prevent attempts of an outside eavesdropper to
follow an end-to-end connection. A Mix-net can protect against colluding Mix
nodes if not all Mix nodes involved in relaying an end-to-end connection collude
with the adversary. This is an important property because, in a hostile environ-
ment (e.g., battlefield), the probability that roaming nodes be captured cannot
be neglected. Generally, the more Mixes are involved in relaying an end-to-
end connection, the lower the probability that the connection be compromised.
However, relaying data traffic through too many Mixes would inevitably in-
crease the average data latency and decrease the average data delivery ratio.
So the number and sequence of Mixes in the path of an end-to-end connection
must be appropriately determined in order to reach a balance between the two
contradictory goals. This is the so-called Mix routing problem.
Mix routing has not received sufficient attention in the design of existing Mix-
based anonymizing systems. The reason behind this is that most existing sys-
tems are designed for operating over the Internet. One class of anonymizing
systems is represented by Onion Routing [30], where the Mix set is small, all
Mixes are administered by a central authority, and the Mix-net topology re-
mains stable during run time [27, 4]. Another class of anonymizing systems that
emerged recently is of peer-to-peer type [31, 11], where all participating nodes
are potential originators of traffic as well as potential relays. Since a peer-to-peer
anonymizing network has a very large node base, an adversary cannot observe
the entire network. A Mix route can be constructed as follows. The source node
of an end-to-end connection chooses the first Mix from its neighbor set, which
then chooses the second Mix similarly, and so on. The Mix route length can be
controlled by the source node [11], or by the last Mix based on a probability of
forwarding [31]. The biggest challenge of Mix routing in wireless ad hoc network
is the dynamic change of topology, which makes a static or random Mix route
inefficient.

1.1 Goals of the project

The goal in this project is to make improvements in Mix-net performance by
proposing a Mix route algorithm which adapts to topology change. To do this
we have to find the state of art in anonymous communications in mobile ad hoc
networks. Based on the state of art we will design an improved Mix route algo-
rithm which will be an enhancement to Chaum’s Mix method. After designing
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the algorithm, it will be implemented into a network protocol in ns-2. We will
also make a simulation model that can be used to test the implementation of
the network protocol.
The report is organized as follows. First ad hoc networking is introduced in
chapter 2 where we will look closer to the definition of ad hoc networks. There
will be presented example scenarios where an infrastructure is not available, and
where ad hoc networks are suitable. Thereafter known routing protocols for ad
hoc networks will be described. Finally, a summary will be given where the
most suitable choice of routing protocol for our project is presented.
State of art in anonymous communications in general is given in chapter 3. In
this chapter all recent anonymity designs are presented. They are divided into
three categories:

1. Proxy Services

2. Chaumian Mix-nets

3. Remailers: SMTP Mix-nets

Then there will be given a presentation of recent designs where Mix-nets are
used in wired networks. Lastly, a summary of the chapter is given.
In chapter 4 state of art in anonymous communications in ad hoc networks is
given. A summary will provide the pros and cons of the state of art in MANETS.
In chapter 5 the privacy requirements of the project is presented. A summary
will address the requirements for the design of MixRoute.
In chapter 6 the design of our protocol is provided, designed for ad hoc networks,
and then a qualitative cost and a security analysis is conducted.
We will present a short presentation of ns-2 in chapter 7.
After the presentation of ns-2, in chapter 8 the implementation of the protocol
is described in details.
After the implementation of the protocol a simulation model is designed to test
the protocol, which is provided chapter 9.
The evaluation of the protocol is described in chapter 10. In this chapter the test
scenario will be presented, and expectations of test results will also be provided.
Finally a conclusion is given in chapter 11. In this chapter a conclusion of the
report is given.
The source code of the protocol and test scripts are provided in the appendix.



4 Introduction



Chapter 2

Ad Hoc Networks

In this chapter the concept of ad hoc networks is introduced. The questions
of when this could be useful are also addressed even though it will not be
completely drained. There is a large potential in future applications to use it.
Furthermore the challenges in ad hoc networking are up for discussion together
with a short description of the commonly used algorithm for routing.

2.1 Definition of Ad Hoc Networks

Users of networked technology, which is an ever growing number of people and
machines, are getting more and more accustomed to constantly being able to
access different on-line services. It may be e-mail or on-line dictionary services,
ticket booking, or traveling information such as road maps and driving direc-
tions.
The networks for mobile phones are usually available in most inhabited areas.
As new technologies are developed even more services are available through
these networks. Even high capacity hot spots are being common practise in
densely populated cities, mostly at hotels and airports even though some gas
stations are getting hot-spots installed. This will of course continue to expand
to more areas.
Techniques used for wireless connection is still dependent on base stations to
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connect to. These base stations are in turn connected to an infrastructure.
To be able to expand the wireless services they depend on this infrastructure.
Problems arise when such infrastructure is not available. It can be costly to
build new links for which there is little profit for the service provider.
What we would like is the ability to connect to available services without the
need for an infrastructure. These spontaneous connections are, as the name
implies, the ad hoc part of the networking.
Solutions exist for mobile users to connect to each other through the Internet.
This can be accomplished using DHCP1 and Mobile IP. This does, however,
depend on the availability of servers that allow the users computers to connect.
Using Mobile IP (MIP) the information between two users in the same room
even gets routed and tunnelled through the Internet.
Throughout the history of ad hoc networks they have also been called network
on-demand or mesh networks. Although given these names they are of similar
operational ideas. The ad hoc networks have been on the research desk for a
long time but have recently gained more interest. The military applications of
such networks have seeded new interest into the research community. Initially
this type of networking was researched by the military.

2.2 Motivation of Ad Hoc Networks

There exists numerous occasions where an infrastructure is not available. This
section will present some of the example scenarios where ad hoc networks might
come in handy. The basic ideas are possible commercial usages [24].

2.2.1 Emergency Services

Anywhere when there is an emergency there is a need to co-ordinate the rescue
personnel. This is commonly solved using hand held or vehicle mounted radios.
However, what about the infrastructure that may have been damaged and is
no longer in operation? To quickly get things going again the use of ad hoc
networks can automatically fix this.
This might not be such a big problem in small fires or so, but when larger
areas are hit by a natural disaster it can be important to quickly be able to
communicate. By using ad hoc networks to set up a network infrastructure it is
simply a matter of placing out a couple of mobile routers which makes it easy
and fast.

1Dynamic Host Configuration Protocol, RFC 2131, March 1997
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2.2.2 Conferences

In many situations the need for connecting and exchanging information between
participants of a conference or some other meeting is clear. Usually there is a
great need for collaboration and since the home network environment is not
available there is a need for other solutions.
There are usually available networks for the participants to use but this might
imply very large round trips for the data using for example Mobile IP [24].

2.2.3 Home Networking

Given that the use of wireless computers and appliances keeps on growing in the
home environment the need for helping out administrating this is also expanding.
Using the techniques of ad hoc networks that configures themselves is truly
something that would be of great help.
Also, if the computers are used at more places than at home, at the office or
school maybe, there is still larger administrative burden that must be kept down.

2.2.4 Personal Area Networks

Many objects that are tightly coupled to a single person can take advantage of
being connected to each other forming a personal area network. The network
itself is most definitely mobile since people tend not to stay around for long in
one spot. This makes the use of ad hoc in personal area networks less needed.
However, when getting connected to another personal area network (PAN) the
connections between persons devices might be wanted. In this case there is
definitely a need for ad hoc networking support.

2.2.5 Embedded Systems

As more and more machines everywhere is in need for communicating different
things to the surroundings a need for ad hoc networking arises. One can think
of objects that can respond to changes in the environment and together with
other devices perform different scenarios depending on the current context.
It might be a toy with built in networking capabilities that can interact with
the home computer to lookup some data at the Internet or a connected phone
that can turn down the volume of the stereo and TV when there is an incoming
call.
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Some researchers are thinking about ubiquitous computing, where we will have
computers connected to each other performing tasks depending on changing
environment all around us. It is hard to see every possible use of this technology
at the current time, but new services and applications will surely benefit of
having ad hoc network support.

2.2.6 Sensors

Using tiny devices that are able to gather different information such as tem-
perature, concentrations of different chemicals and gasses, vibrations, and so on
can be of importance in accidents and emergency situations. Constructing these
sensors so that when turned on they form an ad hoc network and report back
to a well known data collecting node they can be of great importance.
For example in the case of a gas leak, instead of sending rescue personnel into
the dangerous area these sensors can be dropped from an air plane or helicopter.
The use of the gathered data can be helpful in devising a plan to take care of
the situation.
In the military field there can of course be a lot of applications for these kinds
of data collecting devices.

2.3 Routing

The routing of data packets in computer networks is the process of moving
information from a source to a given destination. The way to do this in the best
way possible is the concern of the routing algorithm used. In the case of wired
networks the main routing algorithms used are either distance vector routing or
link state routing.

2.3.1 General Routing Principles

Routing has been going on in large networks, as the Internet, for quite some
time and lots of different routing algorithms has been proposed and tested. The
main categories that have survived and have been in large use are those described
below. These are performing well in wired networks, but some problems still
exist.
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2.3.1.1 Distance Vector Routing

A distance vector routing algorithm is a distributed algorithm that is quite
simple to implement and has low computational demands. It basically means
that each router has a way of knowing about its neighbors. The router knows
the metric of each link to those neighbors. The metric can be of any type, for
example delay or similar.
Also, each router has a distance vector, that is, a table of distances, to each
destination available and which outgoing link to use. All the neighboring routers
exchange information between each other. Based on what they know about their
neighboring router it updates its own vector with the minimum distances. If
some values are changed the router in turn, sends out an update to all its
neighbors.
Distance vector routing is commonly known to have problems with changing
topology. Especially a problem known as the count-to-infinity problem which
makes the routers construct an ever growing path to a node that has gone down
or a link to that node being broken. The algorithm can also converge slowly on
changing topology, and while converging, create routing loops [35].

2.3.1.2 Link State Routing

Instead of depending on every neighbor to gradually give information about
how to get all the destinations the link state routing algorithm gets a complete
picture of the entire network and locally calculates the shortest path to every
destination. This means that for each router to get information about every
link all the routers must broadcast (flood) the information that they have to all
others.
When all the information needed is collected the process of finding the shortest
path can begin. This is accomplished using Dijkstra’s or Prim’s algorithm. To
be able to compute the shortest path all nodes need to have a complete view
of the network and then perform the computations locally. This makes these
kinds of algorithms global routing algorithms in comparison to the distributed
or decentralized distance vector algorithm.
As has been stated this kind of algorithm demands a complete view over the
network which makes the number of messages needed to be sent between all
routers relatively high. Also, the computations of the shortest path problems
using Dijkstra’s algorithm is in the order of O(n2) [19].
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2.3.1.3 Comparison

As was described above the distance vector routing algorithms are distributed,
relatively easy to implement, and does not need much processing power or mem-
ory. In the contrary, link state routing demands more bandwidth to distribute
all information between all routers, more memory to hold the complete topo-
logical graph, and more processing power to compute the final result.
However, the distance vector approach does have some problems with slow con-
vergence on changing topologies. There are of course some problems with the
link state variant also, for example how to know when all information has been
collected and whether all nodes are working with the same overview or are doing
their calculations on different topologies.
What is gained with the link state approach is robustness. If one router gets
the wrong idea of the network topology or calculates the wrong routes it can
damage some paths. But if a router using the distance vector algorithm gets
the wrong idea about some link status it is spread to all the other routers and
they have no idea what is right or wrong [19].

2.3.1.4 Scaling and the Hierarchical Approach

There is a problem with both mentioned algorithms, they scale relative poorly.
The algorithms described above need a distance to all possible destinations. On
large networks this is a big problem. But there are solutions.
By dividing the network into different areas and layers it is possible to route
the messages within each area separately. If a message needs to go to another
area it is forwarded to an area gateway which in turn routes messages between
the other area gateways and so on. Using this technique it is possible to cut
down the number of destinations each sub level router needs to know about thus
saving memory, bandwidth, and processing power.

2.3.2 Routing in Ad Hoc Networks

In the case of a mobile ad hoc network the topology is highly dynamic. This
leads to quickly changing link states. Some links get broken while other links are
created by other pairs of routers as is depicted in Figure 2.1. In this picture the
mobile host 1 (MH1) is moving from the vicinity of MH2. As it gets closer to
MH7 and MH8 new links are established to these hosts. These characteristics
are different from the one that appears in most wired networks. The routing
algorithms used in the wired case have problems with topology changes, and if
these happen often the problems are just getting worse.
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Figure 2.1: An ad hoc network of mobile nodes

Another problem that arises in wireless networks that is not as common in wired
routing is the asymmetrical links. That is, one node can reach another but the
return path is not the same. Some ad hoc routing algorithms described below
handles this and some do not.
The following sections describe different solutions and main ideas about rout-
ing in ad hoc networks that overcome, or at least damps, some of the routing
problems. This is a short introduction that emphasizes the different needs.

2.3.2.1 Destination-Sequenced Distance Vector Protocol

Destination-Sequenced Distance Vector (DSDV) is an ad hoc version of the
commonly known distance vector algorithm. To overcome the problems with
slow convergence in the ordinary distance vector algorithm and prevent routing
loops in highly dynamic topologies this algorithm adds a sequence number to
the routing table entries.
The sequence numbers are updated by the destination nodes when new links
to them are detected. Also, when a node detects a broken link it sends this
out together with an updated sequence number. The receiving nodes check for
higher or equal sequence numbers. If a route update packet is received with
lower sequence number it is discarded. In the case of a sequence number that is
equal to the one already held the metric is checked to see if it is better or worse.
To save bandwidth the protocol uses two types of route update messages. First
one is a full dump that a node sends to all its neighbors. These messages contain
the complete routing table. The other variant is an incremental update which
only updates the routes that has changed since the last full update. In this way
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it is possible to send only small packets, conserving bandwidth and transmission
time for most cases. When these incremental updates are getting too big the
node can send a full dump instead in hope to be able to send smaller packets
after that.
To get rid of the possibility of an oscillating system update messages are only
sent out after a delay. After this delay the routing information has stabilized
and is not that sensitive to oscillation. The delay is computed using a running,
weighted average over the most recent updates.
Since the topology might change the route update messages are sent out at
certain time intervals. However, there is no need for synchronizing the different
nodes as the update events are handled asynchronous. The use of these repeating
update messages keeps all the nodes busy when not in need for communication.
However, when the needs arrive all nodes are ready to forward the data directly.
The DSDV algorithm gets rid of the undesirable properties that the original
algorithm possesses. It propagates the bad news of broken links fast and keeps
the path updates stable. Also, using the sequence number rules for updating
distance vector values it guarantees loop-free paths to each destinations at all
times [23].

2.3.2.2 Dynamic Source Routing

The Dynamic Source Routing (DSR) protocol is completely demand based. It
does not need any kind of periodic updates or node announcement messages.
Instead, the protocol acquires the needed routing information on-demand.
The routing protocol is divided into two parts. The first is the route discovery
and the second is route maintenance. The discovery phase is initiated when
a node needs to send information to another node that is not available in its
current path cache. The node broadcasts a special discovery packet with the
destination and a unique identification number. The packet is received by all
nodes within the wireless transmission range. They, if they are not the desti-
nation, add their node address to the path in the packet header and retransmit
the discovery packet. A packet with the same identity as has already been seen
is discarded. Also, if the node itself is mentioned in the path header the packet
is discarded. This technique efficiently cuts down on duplicate packets in the
air.
When the packet finally finds its way to the destination, the destination node
returns a route reply. The reply is sent using the routing cache if present. Oth-
erwise a new route discovery is initiated but in this case with the route reply
piggy backed on the discovery packet. If this piggybacking is not allowed there
is a great risk of infinite looping of route discoveries. Another way is to reverse
the source path collected by the route discovery; however, this takes for granted
that all links are bidirectional which may not always be the case. A simple ex-
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ample of the broadcast of source route discovery packets is shown in Figure 2.2.
After a path has been discovered the second phase of the protocol is in use. This
is the maintenance phase. During this phase all communications are done using
the previously found paths. Each node on the path is responsible for resending
packets that are not acknowledged by the next hop node. After a maximum
limit number of retries a route error message is sent back to the source node
indicating that the path is broken.

Figure 2.2: DSR route discovery example

A number of different optimizations of the protocol are possible. For example,
each node on a path that is not actually originating a route discovery can cache
some part of the messages that they see go by. This can speed up route discov-
ery but may also place some overhead on the software and the processing time
of the processor [16].

2.3.2.3 Ad Hoc On-Demand Distance Vector Routing

In contrast to the DSDV, the Ad hoc On demand Distance Vector (AODV) is
an on-demand protocol. It borrows the idea of route discovery and maintenance
while still using a distance vector approach to the routing.
Each node keeps a distance vector for each known destination and its next hop
neighbor. If a destination that is needed is not in the list a route discovery is
initiated. By issuing a broadcast packet to its neighbor containing source and
destination addresses and a sequence number the node hopes to find a path to
the destination.
If a node, that is not the actual destination, receives a request it checks its own
routing table. If it can find the destination there it replies to the source node
with this information. If, however, this information is not in the node’s routing
table it adds the source as a destination in its own table using appropriate
hop count, increments the request packet’s hop count and rebroadcasts it to its
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neighbors.
This procedure is continued until the destination is reached and a route reply
packet is sent back to the source. After this all data traffic is routed using the
discovered path. If the nodes move and some links break a route error packet is
sent out to tell the nodes that the path is no longer available. If this happens
the source node initiates a new route request. An example of a route discovery
and path setup is shown in Figure 2.3.

Figure 2.3: Simplified route discovery example in AODV.

To eliminate the need of flooding a large network with route request packages
the time to live field is used to limit the number of hops a route request can
be sent. If a request fails this is gradually incremented until the destination is
reached. This approach is called expanding ring search.
The AODV protocol can only handle symmetrical links but has the ability to
also be used in multi cast groups. Additionally it supports a hello message,
a variant of the route request message, which is used to detect the one hop
neighbors. This may not be used if the lower layers already support this kind
of service [22].

2.3.2.4 Cluster-Based Networks

In some situations the network may be small, that is, consist of a small number
of nodes. In this case the above mentioned routing algorithms may be adequate.
However, if the network grows and the number of nodes are large there may be
unnecessary overhead and the network diameter, the number of hops, may be-
come too large to handle straight on.
In the case of wired networks area controllers are used to manage a limited set
of computers and routing between these are done using some backbone infras-
tructure. This makes the network manageable for each smaller cluster and the
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network diameter might become smaller using the backbone routers. However,
the setup of these area controllers is done by administrative personnel often dur-
ing the design of the network. This is clearly not something that can be done as
easily in mobile ad hoc networks. There are some ideas and techniques available
that manages to accomplish these goals automatically using distributed algo-
rithms and elections of cluster heads.
The idea of using clusters is beneficial in many ways. It can be used to group
nodes into clusters that are separated to nearby clusters by transmission fre-
quency or spread spectrum coding. This way the congestion can be lowered [32].

2.3.2.5 Zone Routing Protocol

A common approach in many fields is to take the best ideas and combine them.
This is one such idea. The zone routing protocol (ZRP) uses a proactive routing
variant within a limited zone defined by a small number of hops around each
node. Outside this zone a reactive protocol is used.
Proactive means that all the routes are known by all the nodes before any data
is needed to be sent. The link state and distance vector protocols are based on
these assumptions. This is useful in the ZRP because of the limited number
of nodes in each zone. These zones are locally defined by every node and thus
highly overlapping. Also, the idea is that there is more often communications
taking place within a relatively small geographical area than to distant nodes.
This may be true in some setups, for example military tactical units of emer-
gency rescue teams, while other applications might have different demands.
The mobility of nodes affects are only local since the routing between nodes are
done reactively or on-demand, like AODV or DSR. The routing to a distant
zone, therefore, is not affected by local link movements as much as for other
protocols.
The implementation of the two different routing protocols needed can be any
pair of protocols. The two variants are called Interzone Routing Protocol for the
routing between zones and Intrazone Routing Protocol for the routing within a
local zone [2].

2.4 Challenges in Ad Hoc Networking

As we have seen in the previous sections there are many different approaches
to the routing dilemma in fast changing topology networks as mobile ad hoc
networks. Even though there are a lot of different approaches to consider they
fit well into different needs.
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One thing that has not yet been surfaced is the need for addressing. The rout-
ing protocols are working with unique node addresses, for example IP number.
These addresses must, however, be handed out in some way. Also, the need for
gateways to wired networks needs to be considered in the addressing schema.
A big challenge is of course to keep the routing tables needed up to date with
a fast changing topology. Also, the problem of loop freedom and scarce band-
width available puts even higher demands on the routing algorithm. On top of
this the size of the networks can be from just a few nodes to over hundreds of
them making the routing algorithms sensible for some scaling problems.
On the commercial market the use of ad hoc networking techniques have only
started to be available in some networks. Most notably within the companions
own wireless networks or building to the building links. The use in more ev-
eryday products such as mobile phones have low commercial interest since the
operators of the networks probably will lose some of the traffic. Also, not every
one is happy with having their mobile phone forwarding traffic for someone else.
Not because of the traffic itself but because the battery power drain. The largest
possibility for the commercial breakthrough is probably within the wireless local
area networks where the standards already has support for some limited ad hoc
connections, or peer to peer support.
The use of multi hop wireless networks can help keeping the power consumption
down due to lowering the link length. However, the need to make the routing
protocols power aware and not waste too much power on control messages in-
stead of actual information traffic is essential. Also, multi hop networks are
dependent on the intermediate nodes being available even though that node
may not be in transceiver mode. The use of multiple available routes might be
a solution where some nodes can go down in power saving mode while others
peek up now and then to sense the communications.

2.5 Summary

In this thesis the focus will be on anonymity in mobile ad hoc networks based on
an underlying routing protocol. So we must not forget that the routing protocol
has to be suitable for anonymous communication. But in the case of choosing
the routing protocol our main goal is to use the most suitable for MANETS.
We have now studied the known routing protocols suitable for MANETS. The
first thing that has to be decided is if the protocol should be reactive or proactive.
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2.5.1 Proactive protocols

In the proactive protocols routes are set up based on continuous control traffic,
and all routes are maintained all the time. Here is listed the pros and cons of
proactive protocols:

• Constant overhead created by control traffic

• Too demanding on the power consumption

• Routes are always available

It is a high price to pay for constant availability of routes, when the power con-
sumption is high especially in large networks. In a MANET nodes use batteries
and it can be a demanding task if batteries have to be charged too often. There
is also another problem with an proactive protocol; when there is constant route
maintenance it is also easier to compromise the network and uncover the iden-
tity of nodes. In fact the anonymity will be compromised. For these reasons we
chose not to use a proactive protocol such as DSDV.

2.5.2 Reactive protocols

The reactive protocols do not take initiative for finding routes, and establish
routes on-demand by flooding a query. The pros and cons for reactive protocols
are listed below:

• Does not use bandwidth except when needed (when finding a route)

• Much network overhead in the flooding process when querying for routes

• Initial delay in traffic

For large networks it is a better approach to use a reactive protocol. The power
consumption is minimal and the energy level will not be drained as quickly as
in a proactive protocol. In the initial process when the network is flooded it is
easier to make traffic analysis, but this problem is going to be solved by using
Mix nodes. Based on these studies we chose to use a reactive protocol to keep
the power consumption minimal. In a network where the nodes move frequently
it is also optimal to use a reactive protocol, because we only flood the network
once (in the initial process) and therefore we don’t need to keep tracking the
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new positions of the nodes. For this reason we chose to use a reactive protocol
as our underlying routing protocol. Both AODV and DSR are good solutions.
The main difference between AODV and DSR is that in DSR a source routing
option is used; i.e. when a node wants to send something to a destination it
sets the whole route for that packet, indicating the addresses of the nodes it
has to pass through. In this sense all packets have a DSR header included, and
it is needed that all nodes within the ad hoc network know the whole network
topology. On the other hand, AODV does not perform source routing at all;
when a node wants to send something to a destination, it checks its routing
table, looking for the next hop towards that destination, and sends the packet
to it, and so on. In this sense, data packets ”travel” through the ad hoc network
without any AODV specific information. The problems with the AODV is that
it uses more, but smaller routing control packets → critical concerning wireless
medium properties (e.g. interference). This becomes worse for a higher load, as
neighbors have to be rediscovered (congestion causes link failures).
DSR has some problems concerning the cache usage: The advantage of multiple
routes becomes a disadvantage with high mobility. In bigger networks, the
source-routing principle can also become a problem.
Based on the knowledge of both AODV and DSR we chose to use DSR as the
underlying routing protocol because of the lesser use of control packets. The
compromise we have to make for using DSR is acceptable in our case.
In the next chapter the state of art in recent anonymity designs will be described,
and there will be given concrete examples.



Chapter 3

Recent Anonymity Designs

For anonymous routing we have to find an optimal routing technique. In chap-
ter 2 we investigated the existing routing methods in MANET’s which could be
applied to our design. To gain knowledge about the state of art in the area of
anonymous communications in general terms several areas have to be investi-
gated.
We review three main types of design: proxy-servers, mix-nets, and other anony-
mous communications channels.

3.1 Proxy Services

Proxy services provide one of the most basic forms of anonymity, inserting a
third party between the sender and recipient of a given message. Proxy services
are characterized as having only one centralized layer of separation between
message sender and recipient. The proxy serves as a ”trusted third party”, re-
sponsible for sufficiently stripping headers and other distinguishing information
from sender requests.
Proxies only provide unlinkability between sender and receiver, given that the
proxy itself remains uncompromised. This unlinkability does not have the
quality of perfect forward anonymity, as proxy users often connect from the
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same IP address. Therefore, any future information used to gain linkability be-
tween sender and receiver (i.e., intersection attacks, traffic analysis) can be used
against previously recorded communications.
Sender and receiver anonymity is lost to an adversary that may monitor incom-
ing traffic to the proxy. While the actual contents of the message might still be
computationally secure via encryption, the adversary can correlate the message
to a sender/receiver agent.
This loss of sender/receiver anonymity plagues all systems which include exter-
nal clients which interact through a separate communications channel - that is,
we can define some distinct edge of the channel. If an adversary can monitor
this edge link or the first-hop node within the channel, this observer gains agent-
message correlation. Obviously, the ability to monitor this link or node depends
on the adversary’s resources and the number of links and nodes which exist.
In a proxy system, this number is small. In a globally-distributed mixnet, this
number could be very large. The adversary’s ability also depends on her focus:
whether she is observing messages and agents at random, or if she is monitored
specific senders/receivers on purpose.

3.1.1 Anonymizer.com

The Anonymizer was one of the first examples of a form-based web proxy. Users
point their browsers at the Anonymizer page at www.anonymizer.com. Once
there, they enter their destination URL into a form displayed on that page. The
Anonymizer then acts as an http proxy for these users, stripping off all identify-
ing information from http requests and forwarding them on to the destination
URL.
The functionality is limited. Only http requests are proxied, and the Anonymizer
does not handle cgi scripts. In addition, unless the user chains several proxies
together, he or she may be vulnerable to an adversary which tries to correlate
incoming and outgoing http requests. Only the data stream is anonymized,
not the connection itself. Therefore, the proxy does not prevent traffic analysis
attacks like tracking data as it moves through the network [5].

3.1.2 Lucent’s Proxymate

Chaining multiple proxies together by hand is a tedious business, requiring many
preliminaries before the first web page is reached. Lucent’s Proxymate software
automates the process. The software looks like a proxy sitting on the user’s
computer. By setting software to use the Proxymate proxy, the user causes the
software’s requests and traffic to go to the software, which then automatically
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negotiates a chain of proxies for each connection [12].

3.1.3 Proxomitron

Another piece of software which helps manage many distinct proxies in a trans-
parent manner is Proxomitron. In addition to basic listing and chaining of
proxies, Proxomitron allows users to write filter scripts. These filters can then
be applied to incoming and outgoing traffic to do everything from detecting a
request for the user’s e-mail address by a web site to automatically changing
colors on incoming web pages [28].

3.2 Chaumian Mix-nets

The project of anonymity on the Internet was kicked off by David Chaum in
1981 with a paper in Communications of the ACM describing a system called a
”Mix-net”. This system uses a very simple technique to provide anonymity: a
sender and receiver are linked by a chain of servers called Mixes. Each Mix in the
chain strips off the identifying marks on incoming messages and then sends the
message to the next Mix, based on routing instructions which encrypted with
its public key. Comparatively simple to understand and implement, this Mix-
net (or ”mix-net” or ”mixnet”) design is used in almost all of today’s practical
anonymous channels.

3.2.1 Chaum’s Digital Mix

Chaum presents a solution to the traffic analysis problem that is based on public
key infrastructure. A message X is sealed with a public key K so that only the
holder of the private key K−1 can discover its content. If X is simply encrypted
with K, then anyone could verify a guess that Y = X by checking whether K(Y)
= K(X). This threat can be eliminated by attaching a large string of random bits
R to X before encrypting. The sealing of X with K is then denoted K(R,X).
The users of the cryptosystem will include not only the correspondents but a
computer called a mix that will process each item of mail before it is delivered.
A participant prepares a message M for delivery to a participant at address
A by sealing it with the addressee’s public key Ka, appending the address A,
and then sealing the result with the mix’s public key K1. The mix decrypts its
input with its private key, throws away the random string R1m and outputs the
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remainder. One might imagine a mechanism that forwards the sealed messages
Ka(R0,M) of the output to the addressees who then decrypt them with their
own private keys. The purpose of a mix is to hide the correspondences between
the items in its input and those in its output. The order of arrival is hidden by
outputting the uniformly sized items in lexicographically ordered batches.
Chaum also defines how senders apply a return address in the message field,
which only the destination can determine with its private key. The process of
sending a message from destination to source is the same as mentioned above [6].

3.2.2 ISDN Mixes

Chaum’s original Digital Mix was described in terms of a series of Mix nodes
which passed idealized messages over a network. The first proposal for the
practical application of mixes came from Pfitzmann et. al., who showed how
a mix-net could be used with ISDN lines to anonymize a telephone user’s real
location. Their motivation was to protect the privacy of the user in the face of
a telephone network owned by a state telephone monopoly.
Their paper introduced a distinction between explicit and implicit addresses. An
explicit address is something about a message which clearly and unambiguously
links it to a recipient and can be read by everyone, such as a To: header. An
implicit address is an attribute of a message which links it to a recipient and can
only be determined by that recipient. For example, being encrypted with the
recipient’s public key in a recipient-hiding public key is an implicit address [25].

3.3 Remailers: SMTP Mix-nets

In earlier days the anonymous remailer was a popular anonymous communica-
tion form. Remailers are divided into three categories Type 0, Type 1 and Type
2.

3.3.1 Type 0: anon.penet.fi

One of the first and most popular remailers was anon.penet.fi, run by Johan
Helsingius. This remailer was very simple to use. A user simply added an extra
header to e-mail indicating the final destination, which could be either an e-mail
address or a Usenet newsgroup. This e-mail was sent to the anon.penet.fi server,
which stripped off the return address and forwarded it along. In addition, the
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server provided for return addresses of the form “anXXXX@anon.penet.fi”; mail
sent to such an address would automatically be forwarded to another e-mail ad-
dress. These pseudonyms could be set up with a single e-mail to the remailer;
the machine simply sent back a reply with the user’s new pseudonym.
The anon.penet.fi remailer is referred to as a Type 0 remailer for two reasons.
First, it was the original “anonymous remailer.” More people used anon.penet.fi
than are known to have used any following type of remailer. Exact statistics
are hard to come by, but X number of accounts were registered at penet.fi, and
only Y are currently registered at nym.alias.net.
Second, anon.penet.fi did not provide some of the features which motivated the
development of “Type I” and “Type II” remailers. In particular, it provided a
single point of failure and the remailer administrator had access to each user’s
“real” e-mail address. In general, any remailer system which consists of a single
hop is considered Type 0.
This last feature proved to be the service’s undoing. The Church of Scientology,
a group founded by the science fiction writer L. Ron Hubbard, sued a penet.fi
pseudonym for distributing materials reserved for high initiates to a Usenet
newsgroup. Scientology claimed that the material was copyrighted “technol-
ogy.” The poster claimed it was a fraud used to extort money from gullible and
desperate fools. Scientology won a court judgment requiring the anon.penet.fi
remailer to give up the true name of the pseudonymous poster, which the op-
erator eventually did. This incident, plus several allegations of traffic in child
pornography, eventually convinced Johan Helsingius to close the service in 1995.
Services similar to Type 0 remailers now exist in the form of “free e-mail” ser-
vices such as Hotmail, Hushmail, and ZipLip, which allow anyone to set up an
account via a web form. Hushmail and ZipLip even keep e-mail in encrypted
form on their server. Unfortunately, these services are not sufficient by them-
selves, as an eavesdropping adversary can determine which account corresponds
to a user simply by watching him or her login.

3.3.2 Type 1: Cypherpunks Remailers

The drawbacks of anon.penet.fi spurred the development of “cypherpunks” or
“Type 1” remailers, so named because their design took place on the cypher-
punks mailing list. This generation of remailers addressed the two major prob-
lems with anon.penet.fi: first, the single point of failure, and second, the vast
amount of information about users of the service collected at that point of
failure. Several remailers exist; a current list can be found at the Electronic
Frontiers Georgia site or on the newsgroup alt.privacy.anon-server.
Each cypherpunk remailer has a public key and uses PGP for encryption. Mail
can be sent to each remailer encrypted with its key, preventing an eavesdropper
from seeing it in transit. A message sent to a remailer can consist of a request to
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remail to another remailer and a message encrypted with the second remailer’s
public key. In this way a chain of remailers can be built, such that the first
remailer in the chain knows the sender, the last remailer knows the recipient,
and the middle remailers know neither.
Cypherpunk remailers also allow for reply blocks. These consist of a series of
routing instructions for a chain of remailers which define a route through the
remailer net to an address. Reply blocks allow users to create and maintain
pseudonyms which receive e-mail. By prepending the reply block to a message
and sending the two together to the first remailer in the chain, a message can
be sent to a party without knowing his or her real e-mail address [8].

3.3.3 Type 2: Cottrell’s Mixmaster

This remailer addresses some of the problems with Type 1 remailers:

• Traffic Analysis: Cypherpunk remailers tend to send messages as soon
as they arrive, or after some specified amount of delay. The first option
makes it easy for an adversary to correlate messages across the mix-net.
It’s not clear how much delay helps protect against this attack.

• Does Not Hide Length: The length of messages is not hidden by the
encryption used by cypherpunk remailers. This allows an adversary to
track a message as it passes through the mixnet by looking for messages
of approximately the same length.

Instead of using PGP, Mixmaster uses its own client software (which is also
the server software), which understands a special Mixmaster packet format. All
packets are the same length. Every message is encrypted with a separate 3DES
key for each mix node in a chain between the sender and receiver; these 3DES
keys are in turn encrypted with the RSA public keys of each mix node. When
a message reaches a mix node, it decrypts the header, decrypts the body of
the message, and then places the message in a ”message pool”. Once enough
messages have been placed in the pool, the node picks a random message to
forward [21].

3.3.4 Nymserver and nym.alias.net

The reply blocks used by cypherpunks remailers are important for providing for
return traffic, but they must be sent to every correspondent individually. In
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addition, using a reply block requires that a correspondent be familiar with the
use of specialized software. This problem is addressed by nymservers, which act
as holding and processing centers for reply blocks.
To use a nymserver, a user simply registers an e-mail address of the form
”nym@nymserver.net” and associates a reply block with it. This association
can be carried out via anonymous e-mail. Then whenever a message is sent
to ”nym@nymserver.net”, the nymserver automatically prepends the associated
reply block, encrypts the aggregate, and sends it off to the appropriate anony-
mous remailer.
The most popular nymserver may be the one run at nym.alias.net, which is
hosted at MIT’s Lab for Computer Science. A recent report by Mazieres and
Kaashoek details the technical and social details of running the nymserver, in-
cluding problems of abuse [20].

3.3.5 Remailer User Interfaces

The major reason for the massive popularity of anon.penet.fi was that it was
extremely easy to use. Anyone who could type ”Request-Remailing-To:” at
the top of an e-mail message could send anonymous e-mail. With the advent
of remailers which required the use of PGP or the Mixmaster software, the
difficulty of using remailers increased. This difficulty was aggravated by the
fact that for years, both PGP and Mixmaster were only available as command-
line applications with a bewildering array of options.

3.4 Recent Mix-net Designs

3.4.1 Rewebber

Goldberg and Wagner applied Mixes to the task of designing an anonymous
publishing network called Rewebber. Rewebber uses URLs which contain the
name of a Rewebber server and a packet of encrypted information. When typed
into a web browser, the URL sends the browser to the Rewebber server, whch
decrypts the associated packet to find the address of either another Rewebber
server or a legitimate web site. In this way, web sites can publish content with-
out revealing their location.
Mapping between intelligible names and Rewebber URLs is performed by a name
server called the Temporary Autonomous Zone(TAZ), named after a novel by
Hakim Bey. The point of the “Temporary” in the name of the nameserver (and
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the novel) is that static structures are vulnerable to attack. Continually refresh-
ing the Rewebber URL makes it harder for an adversary to gain information
about the server to which it refers [13].

3.4.2 Babel

Contemporary with Cottrell’s Mixmaster is Babel, which uses a modified version
of PGP as its underlying encryption engine. This modified version does not
include normal headers, which would include the identity of the receiver, the
PGP version number, and other identifying information.
The Babel paper defines quantities called the ”gues factor” and the ”mix factor”
which model the ability of an adversary to match messages passing through the
mix with their original senders. Then several attacks are presented, including
the trickle and flooding attack, along with some countermeasures. The paper is
noteworthy in that it attempts to give an analysis of just how much the practice
of batching messages helps the untraceability of a mix-net node [14].

3.4.3 Stop And Go Mixes

The next step in probabilistic analysis for mix-nets comes in the work of Kesdo-
gan, Egner, and Buschkes, who proposed the ”Stop and Go Mix”. They divide
networks into two kinds: ”closed” networks, in which the number of users is
small, known in advance, and all users can be made distinct, and “open” net-
works like the Internet with extremely large numbers of users. They claim that
perfect anonymity cannot be achieved in these open networks, because there
is no guarantee that every single client of the mix node is not the same per-
son coming under different names. Instead, they define and consider a notion
of probabilistic anonymity: given that the adversary controls some percent-
age of the clients, some other set of mix servers, and is watching a Mix, can
the probability of correlating messages be quantified in terms of some security
parameter? They consider queueing theory as an inspiration for a statistical
model and manage to prove theorems about the adversary’s knowledge in this
model [17].

3.4.4 Variable Implicit Addresses

Later, Kesdogan et. al. applied Mixes to the GSM mobile telephone setting.
Here, the point is to allow for GSM roaming from cell to cell while still protecting
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the user’s real location from discovery by the phone company or an outside
intruder. This is done by the use of variable implicit addresses, which work as
follows : each roaming area has a publically known and static explicit address.
When the client GSM phone comes online or crosses the boundaries of a cell, it
queries the surrounding cells and downloads these addresses. Then it creates a
new address for itself which combines the addresses of its surrounding cells.
Then, instead of sending the entirety of the new address, the phone sends only
some characters, say log n, of the address to the network to identify itself. The
network then directs traffic intended for the phone to any cell which has those log
n characters in its address. A refinement process then takes place in which the
phone gives out slightly more information to the system to improve performance
by sending information to fewer cells, but not so much as to allow its location
to be restricted to only one cell.

3.4.5 Jacobsson’s Practical Mix

At EUROCRYPT ’98, Jakobsson proposed a mix-net which was both practical
and could be proved to mix correctly as long as less than 1/2 of the servers
were corrupted. The crucial idea is to treat the mixing as a secure multiparty
computation in which each party is collaborating to make the collective mix
look like a ”random enough” permutation on a batch of messages. Then tech-
niques of zero-knowledge proof are used by which each server can prove to all
other servers that they are in fact conforming to the mix protocol. Deviating
servers cannot produce valid proofs, and so can be caught and excluded from
future mixing. Jakobsson’s original protocol requires in the neighborhood of 160
modular exponentiations per message per server.
At PODC ’99, Jakobsson showed how the use of precomputation could reduce
the cost even further. This new ”flash mix” required only around 160 modular
multiplications per message per server. This level of efficiency makes flash mix-
ing competitive with the encryption used in anonymous remailers, and a serious
candidate for low-latency mixing.

3.4.6 Universally verifiable Mix-nets

With Jakobsson’s design, the correctness of a mix-net can only be verified by
the mix servers themselves. When more than a threshold of servers is corrupt,
the verification fails. Because a user of the mix-net may not be aware of the
corruption, this failure may be silent and therefore dangerous. One solution to
this problem is a universally verifiable mix-net - a mix-net whose correctness
can be verified by anyone, regardless of their status as server or user.
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The concept was introduced by Killian, and recently a design of this type was
proposed at EUROCRYPT ’98 by Abe. This design works along the similar
broad lines as the Jakobsson design; each mix server uses zero-knowledge proofs
to prove that it is acting in accordance with some protocol to randomly mix
messages. The difference here is that these proofs are posted publically by
the mix nodes instead of being multicast only to other mix nodes. The novel
feature of Abe’s design is that the work necessary to verify these proofs grows in
a fashion independent of the number of servers. Unfortunately, verifying these
proofs requires on the order of 1600 modular exponentiations per message.

3.4.7 Onion Routing

The Onion Routing system designed by Syverson, et. al. creates a mix-net
for TCP/IP connections. In the Onion Routing system, a mix-net packet, or
”onion”, is created by successively encrypting a packet with the public keys of
several mix servers, or ”onion” routers.
When a user places a message into the system, an “onion proxy” determines a
route through the anonymous network and onion encrypts the message accord-
ingly. Each onion router which receives the message peels the topmost layer,
as normal, then adds some key seed material to be used to generate keys for
the anonymous communication. As usual, the changing nature of the onion -
the “peeling” process - stops message coding attacks. Onions are numbered and
have expire times, to stop replay attacks. Onion routers maintain network topol-
ogy by communicating with neighbors, using this information to initially build
routes when messages are funneled into the system. By this process, routers
also establish shared DES keys for link encryption.
The routing is performed on the application layer of onion proxies, the path
between proxies dependent upon the underlying IP network. Therefore, this
type of system is comparable to loose source routing.
Onion Routing is mainly used for sender-anonymous communications with non-
anonymous receivers. Users may wish to Web browse, send email, or use appli-
cations such as rlogin. In most of these real-time applications, the user supplies
the destination hostname/port or IP address/port. Therefore, this system only
provides receiver-anonymity from a third-party, not from the sender.
Furthermore, Onion Routing makes no attempt to stop timing attacks using
traffic analysis at the network endpoints. They assume that the routing infras-
tructure is uniformly busy, thus making passive intra-network timing difficult.
However, the network might not be statistically uniformly busy, and attackers
can tell if two parties are communicating via increased traffic at their respec-
tive endpoints. This endpoint-linkable timing attack remains a difficulty for all
low-latency networks [34].
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3.4.8 Zero Knowledge Systems

Recently, the Canadian company Zero Knowledge Systems has begun the pro-
cess of building the first mix-net operated for profit, known as Freedom. They
have deployed two major systems, one for e-mail and another for TCP/IP. The
e-mail system is broadly similar to Mixmaster, and the TCP/IP system similar
to Onion Routing.
ZKS’s ”Freedom 1.0” application is designed to allow users to use a nym to
anonymously access web pages, use IRC, etc [1]. The anonymity comes from
two aspects: first of all, ZKS maintains what it calls the Freedom Network,
which is a series of nodes which route traffic amongst themselves in order to
hide the origin and destination of packets, using the normal layered encryption
mix-net mechanism. All packets are of the same size. The second aspect of
anonymity comes from the fact that clients purchase ”tokens” from ZKS, and
exchange these token for nyms - supposedly even ZKS isn’t able to correlate
identities with their use of their nyms.
The Freedom Network looks like it does a good job of actually demonstrating an
anonymous mix-net that functions in real-time. The system differs from Onion
Routing in several ways.
First of all, the system maintains Network Information Query and Status Servers,
which are databases which provide network topology, status, and ratings infor-
mation. Nodes also query the key servers every hour to maintain fresh public
keys for other nodes, then undergo authenticated Diffie-Hellman key exchange
to allow link encryption. This system differs from online inter-node querying
that occurs with Onion Routing. Combined with centralized nym servers, time
synchronization, and key update/query servers, the Freedom Network is not
fully decentralized.
Second, the system does not assume uniform traffic distribution, but instead uses
a basic ”heartbeat” function that limits the amount of inter-node communica-
tion. Link padding, cover traffic, and a more robust traffic-shaping algorithm
have been planned and discussed, but are currently disabled due to engineering
difficulty and load on the servers. ZKS recognizes that statistical traffic analysis
is possible.
Third, Freedom looses anonymity for the primary reason that it is a commercial
network operated for profit. Users must purchase the nyms used in pseudony-
mous communications. Purchasing is performed out-of-band via an online Web
store, through credit-card or cash payments. ZKS uses a protocol of issuing
serial numbers, which are reclaimed for nym tokens, which in turn are used
to anonymously purchase nyms. However, this system relies on “trusted third
party” security: the user must trust that ZKS is not logging IP information
or recording serial-token exchanges that would allow them to correlate nyms to
users. The future adoption of anonymous ecash purchasing should remove this
weakness, and allow truely anonymous nym issuing.
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3.4.9 Web Mixes

Another more recent effort to apply a mix network to web browsing is due to
Federrath et. al. who call their system, appropriately enough, ”Web Mixes”.
From Chaum’s mix model, similar to other real-time systems, they use: layered
public-key encryption, prevention of replay, constant message length within a
certain time period, and reordering outgoing messages. The Web Mixes system
incorporates several new concepts. First, they use an adaptive ”chop-and-slice”
algorithm that adjusts the length used for all messages between time periods
according to the amount of network traffic. Second, dummy messages are sent
from user clients as long as the clients are connected to the Mix network. This
cover traffic makes it harder for an adversary to perform traffic analysis and
determine when a user sends an anonymous message, although the adversary
can still tell when a client is connected to the mix-net. Third, Web Mixes at-
tempt to restrict insider and outsider flooding attacks by limited either available
bandwidth or the number of used time slices for each user. To do this, users are
issued a number of blind signature tickets for each time slice, which are spent
to send anonymous messages. Lastly, this effort includes an attempt to build a
statistical model which characterizes the knowledge of an adversary attempting
to perform traffic analysis [3].

3.5 Other Anonymous Channels

3.5.1 The Dining Cryptographers

The Dining Cryptographers protocol was introduced by David Chaum and later
improved by Pfitzmann and Waidner as a means of guaranteeing untraceabil-
ity for the sender and receiver of a message, even against a computationally
all-powerful adversary. The protocol converts any broadcast channel into an
anonymous broadcast channel. Though there are problems with the efficiency
of the protocol and the difficulty of correct implementation, which is why it is
not popular [7].

3.5.2 Crowds

The Crowds system was proposed and implemented by AT&T Research, named
for collections of users that are used to achieve partial anonymity for Web brows-
ing. A user initially joins some crowd and her system begins acting as a node, or
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anonymous jondo, within that crowd. In order to instantiate communications,
the user creates some path through the crowd by a random-walk of jondos, in
which each jondo has some small probability of sending the actual http request
to the end server. Once established, this path remains static as long as the user
remains a member of that crowd. The Crowds system does not use dynamic
path creation so that colluding crowd eavesdroppers are not able to probabilisti-
cally determine the initiator (i.e., the actual sender) of requests, given repeated
requests through a crowd. The jondos in a given path also share a secret path
key, such that local listeners, not part of the path, only see an encrypted end
server address until the request is finally sent off. The Crowds system also in-
cludes some optimizations to handle timing attacks against repeated requests,
as certain HTML tags cause browsers to automatically issue re-requests.
Similar to other real-time anonymous communication channels (Onion Routing,
the Freedom Network, Web Mixes), Crowds is used for senders to communicate
with a known destination. The system attempts to achieve sender-anonymity
from the receiver and a third-party adversary. Receiver-anonymity is only meant
to be kept from adversaries, not from the sender herself.
The Crowds system serves primarily to achieve sender and receiver anonymity
from an attacker, not provide unlinkability between the two agents. Due to
high availability of data - real-time access is faster than mix-nets as Crowds
does not use public key encryption - an adversary can more easily use traffic
analysis or timing attacks. However, Crowds differs from all other systems we
have discussed, as users are members of the communications channel, rather
than merely communicating through it. Sender-anonymity is still lost to a local
eavesdropper that can observe all communications to and from a node. How-
ever, other colluding jondos along the sender’s path - even the first-hop - cannot
expose the sender as originated the message. Reiter and Rubin show that as
the number of crowd members goes to infinity, the probable innocence of the
last-hop being the sender approaches one [31].

3.5.3 Ostrovsky’s Anonymous Broadcast via XOR-Trees

In CRYPTO ’97, Ostrovsky considered a slightly different model of anonymous
broadcast. In this model, there are n servers broadcasting into a shared broad-
cast channel. One of the servers is a special ”Command and Control” server;
the rest are broadcasting dummy traffic. Then there is an adversary who has
control of some of the servers and wants to know which server is the ”Command
and Control”. Ostrovsky shows how to use correlated pseudo-random number
generators whose output reveals a certain message when XORed together to
create a protocol which prevents the adversary from discovering which server is
the correct one, even if he can eavesdrop on all communications and corrupt up
to k servers, where k is a security parameter which affects the efficiency of the
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protocol [9].

3.6 Summary

Based on the study of state of art in anonymous communications we now know
that Proxies only provide unlinkability between the sender and the receiver,
given that the proxy is not compromised. It is an easy task to intersect attacks
and make traffic analysis if an adversary monitor traffic to the proxy.
In the Chaumian mix-nets a chain of mix-nets are used to provide anonymity.
Each mix in the chain strips off the identifying marks on incoming messages and
then sends the message to the next Mix, based on routing instructions which is
encrypted with its public key. The problem with this design is that it is based on
a static network. In a dynamic environment it is easy to make traffic analysis,
because of the easy identification of the Mixes. But the basic workings of a
Mix-net is useable for our project. We only need to develop a more dynamic
Mix selection technique, and design a more suitable method of routing between
Mix nodes for a highly dynamical environment.
In the next chapter the state of art protocols that are developed for MANETS
are presented. We will investigate pros and cons for the various protocols to
finally develop our own protocol.



Chapter 4

Recent Anonymity Designs in
MANET’s

In this chapter the start of art in anonymous communications in MANET’s is
presented. There are three papers which is being reviewed. There is given a
thorough presentation, which will later lead to the analysis and design of our
own protocol.

4.1 ANODR

The purpose of the paper of Hong and Kong [18] (called ANODR) is to develop
”untraceable” routes or packet flows in an on-demand routing environment. This
goal is very different from other related routing security problems such as resis-
tance to route disruption or prevention of ”denial-of-service” attacks. In fact, in
ANODR the enemy will avoid such aggressive schemes, in the attempt to be as
”invisible” as possible, until it traces, locates, and then physically destroys the
assets. They address the untraceable routing problem by a route pseudonymity
approach. In their design, the anonymous route discovery process establishes an
on-demand route between a source and its destination. Each hop on route is as-
sociated with a random route pseudonym. Since data forwarding in the network
is based on route pseudonyms with negligible overhead, local senders and re-
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ceivers need not reveal their identities in wireless transmission. In other words,
the route pseudonymity approach allows to ”unlink” (i.e., prevent interference
between) network member’s location and identity. For each route, they also
ensure unlinkability among its route pseudonyms. As a result, in each locality
eavesdroppers or any bystander other than the forwarding node can only detect
the transmission of wireless packets stamped with random route pseudonyms. It
is hard for them to trace how many nodes in the locality, who is the transmitter
or receiver, where a packet flow comes from and where it gores to (i.e., what are
the previous hops and the next hops on route), let alone the source sender and
the destination receiver of the flow. They further tackle the problem of node
intrusion within the same framework. In their design a strong adversary with
node intrusion capability must carry out a complete ”vertex cover” process to
trace each on-demand ad hoc route.
The design of route pseudonymity is based on a network security concept called
”broadcast with trapdoor information”. Multicast/broadcast is a network-based
mechanism that provides recipient anonymity support to their project. Trap-
door information is a security concept that has been widely used in encryption
and authentication schemes. ANODR is realized upon a hybrid form of these
two concepts.
Their contributions is to present an untraceable and intrusion tolerant routing
protocol for mobile ad hoc networks.

• Untraceability : ANODR dissociates ad hoc routing from the design of
network member’s identity/pseudonym. The enemy can neither link net-
work member’s identities with their locations, nor follow a packet flow to
its source and destination. Though the adversaries may detect the exis-
tence of local wireless transmissions, it is hard for them to infer a covert
mission’s number of participants, as well as the transmission pattern and
motion pattern of these participants.

• Intrusion tolerance: ANODR ensures there is no single point of compro-
mise in ad hoc routing. Node intrusion does not compromise location
privacy of other legitimate members, and an on demand ANODR route is
traceable only if all forwarding nodes on route are intruded.

In their paper they address the anonymous routing problem especially as Pfitz-
mann and Köhntopp [26] who define the concept of pseudonymity and the con-
cept of anonymity in terms of unlinkability or unobservability.
In a computer network, entities are identified by unique IDs. Network trans-
missions are treated as the Items Of Interest (IOIs). Pseudonym is an identifier
of subjects to be protected. It could be associated with a sender, a recipient,
or any entity demanding protection. The concept of pseudonymity is defined as
the use of pseudonyms as IDs. The concept of anonymity is defined in terms of
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either unlinkability or unobservability. The difference between unlinkability and
unobservability is whether security protection covers IOIs or not:

• Unlinkability : Anonymity in terms of unlinkability is defined as unlinka-
bility of an IOI and a pseudonym. An anonymous IOI is not linkable to
any pseudonym, and an anonymous pseudonym is not linkable to any IOI.
More specifically, sender anonymity means that a particular transmission
is not linkable to any sender’s pseudonym, and any transmission is not
linkable to a particular sender’s pseudonym. Recipient anonymity is sim-
ilarly defined.
A property weaker than these two cases is relationship anonymity where
two or more pseudonyms are unlinkable. In particular for senders and re-
cipients, it is not possible to trace who communicates with whom, though
it may be possible to trace who is the sender, or who is the recipient. In
other words, sender’s pseudonym and recipient’s pseudonym (or recipient’
pseudonyms in case of multicast) are unlinkable.

• Unobservability : Unobservability also protects IOIs from being exposed.
That is, the message transmission is not discernible from random noise.
More specifically, sender unobservability means that a could-be sender’s
transmission is not noticeable. Relationship observability means that it is
not noticeable whether anything is sent from a set of could-be senders to
a set of could-be recipients.

Throughout their paper, IOI means wireless transmission in mobile ad hoc net-
works. They use the term ”anonymity” as a synonym of ”anonymity in terms
of unlinkability”. In other words, they do not address how to make wireless
transmissions indistinguishable from random noises, thus unobservability is not
studied in their project. Instead, they address two closely-related unlinkability
problems for mobile ad hoc networks.
They study the route anonymity problem to implement an untraceable routing
scheme, where each route consists of a set of hops and each hop is identified
by a route pseudonym. For each mulit-hop route, they seek to realize relation-
ship anonymity among the corresponding set of route pseudonyms. The route
pseudonymity approach differentiates their work from earlier studies address-
ing identity pseudonymity (e.g., person pseudonymity, role pseudonymity, and
transaction pseudonymity).
The route pseudonymity approach enables location privacy support that realizes
unlinkability between a mobile node’s identity and its location. This is achieved
by anonymous wireless communications that hide the sender and receiver. This
part covers the traditional meaning of sender anonymity, recipient anonymity,
and relationship anonymity in a wireless neighborhood.
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4.1.1 Design of ANODR

ANODR divides the routing process into two parts: anonymous route discovery
and anonymous route maintenance. Besides, in anonymous data forwarding
data packets are routed anonymously from senders to receivers as usual. The
details of these parts are described below:

4.1.1.1 Anonymous route discovery

Anonymous route discovery is a critical procedure that establishes random route
pseudonyms for an on-demand route. A communication source initiates the
route discovery procedure by assembling an RREQ packet and locally broad-
casting it. The RREQ packet is of the format

< RREQ, seqnum, trdest, onion >

where (i) seqnum is a globally unique sequence number. (ii) trdest is a cryp-
tographic trapdoor that can only be opened by the destination. Depending on
the network’s cryptographic assumptions, how to realize the global trapdoor is
an implementation-defined cryptographic issue. (iii) onion is a cryptographic
onion that is critical for route pseudonym establishment.
Using cryptographic onion in RREQ network-wide flooding raises design valid-
ity concerns as well as performance concerns. There are presented three variants
to illustrate their design. The first one is a naive porting of mix-net to mobile
ad hoc networks. The last one features best anonymity guarantee and best per-
formance.
Like mix-net, the cryptographic onion is formed as a public key protected onion
(PO). The corresponding ANODR-PO protocol is described below.

1. RREQ phase: RREQ packets with previously seen sequence numbers are
discarded. Otherwise, as depicted in Figure 4.1, each RREQ forwarding
node X prepends the incoming hop to the PO structure, encrypts the
result with its own public key PKX , then broadcasts the RREQ locally.

2. RREP phase: When the destination receives an RREQ packet, the em-
bedded PO structure is a valid onion to establish an anonymous route
towards the source. The destination opens the trapdoor and assembles an
RREP packet of the format

< RREP, N, prdest, onion >

where onion is the same cryptographic onion in the received RREQ packet,
prdest is the proof of global trapdoor opening, and N is a locally unique
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random route pseudonym. The RREP packet is then transmitted by local
broadcast. Unlike RREQ phase when the as hoc route is determined, the
RREP phase is less time-critical and is implemented by reliable transmis-
sions. As depicted in Figure 4.1, any receiving node X decrypts the onion
using its own private key SKX . If its own identity pseudonym X does not
match the first field of the decrypted result, it then discards the packet.
Otherwise, the node is on the anonymous route. It selects a locally unique
nonce N ′, stores the correspondence between N  N ′ in its forwarding
table, peels off one layer of the onion, replaces N with N ′, then locally
broadcasts the modified RREP packet. The same actions will be repeated
until the source receives the onion it originally sent out.
Upon receiving different RREQ packets, the destination can initiate the
same RREP procedure to realize multiple anonymous paths between itself
and the source.

Figure 4.1: ANODR-PO: Anonymous route discovery using public key crypto-
graphic (A single path showed from source A to destination E)

Firstly, this ANODR-PO scheme has a significant drawback. As RREQ is a
network-wide flooding process, large processing overhead will exhaust compu-
tation resources at the entire network level.
The efficient anonymous route discovery protocol is depicted in Figure 4.2. In-
stead of relying on public key encrypted onions, the new scheme ANODR-BO
uses symmetric key based Boomerang Onions(BO).

1. When intermediate forwarding node X sees an RREQ packet, it prepends
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Figure 4.2: ANODR-BO: Anonymous route discovery using Boomerang Onion
(A single path showed from source A to destination E)

the incoming hop to the boomerang onion, encrypts the result with a
random symmetric key KX , then broadcasts the RREQ locally.

2. The boomerang onion will be bounced back by the destination. Like the
public key version, when node X sees an RREP packet, it strips a layer of
the boomerang onion and locally broadcasts the modified RREP packet.
Finally the source will receive the boomerang onion it originally sent out.

Compared to ANODR-PO, ANODR-BO ensures that no public key operation
is executed during RREQ flooding, hence the impact on processing latency is
acceptable because many symmetric key encryption schemes have good perfor-
mance even on low-end devices.
Secondly, ensuring identity anonymity for ad hoc network members is i critical
design goal. Figure 4.3 shows the case where anonymous route discovery de-
pends completely on local broadcast with trapdoor information. The depicted
ANODR-TBO only uses trapdoor boomerang onions (TBO).

1. When intermediate forwarding node X sees an RREQ packet, it embeds
a random nonce NX to the boomerang onion (this nonce is not a route
pseudonym nonce), encrypts the result with a random symmetric key KX ,
then broadcasts the RREQ locally. The trapdoor information consists of
NX and KX , and is only known to X.

2. The boomerang onion will be bounced back by the destination. After each
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Figure 4.3: ANODR-TBO: Anonymous route discovery using Trapdoor
Boomerang Onion (A single path showed from source A to destination E)

local RREP broadcast, only the next hop (i.e., the previous hop in RREQ
phase) can correctly open the trapdoor it made in the RREQ phase, hence
the result is equivalent to a wireless unicast. Then the node strips a layer
of the boomerang onion and locally broadcasts the modified RREP packet.

4.1.1.2 Anonymous data forwarding

For each end-to-end connection, the source wraps its data packets using the
outgoing route pseudonym in its forwarding table. A data packet is then broad-
cast locally without identifying the sender and the local receiver. The sender
does not bother to react to the packet it just sent out. All other local receiving
nodes must look up the route pseudonym in their forwarding tables. The node
discards the packet if no match is returned. Otherwise, it changes the route
pseudonym to the matched outgoing pseudonym, then broadcasts the changed
data packet locally. The procedure is then repeated until the data packet arrives
at the destination.

4.1.1.3 Anonymous route maintenance

Following the soft state design the routing table entries are recycled upon time-
out Twin. Moreover, when one or more hop is broken due to mobility or node
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failures nodes cannot forward packet via the broken hops. Upon anomaly de-
tection, a node looks up the corresponding entry in its forwarding table, finds
the other route pseudonym N ′ which is associated with the pseudonym N of the
broke hop, and assembles a route error packet of the format < RERR, N ′ >.
The node then recycles the table entry and locally broadcasts the RERR packet.
If multiple routes are using the broken hop, then each of them will be processed
and multiple RERR packets are broadcast locally.
A receiving node of the RERR packet looks up N ′ in its forwarding table. If
the lookup returns result, then the node is on the broken route. It should find
the matched N ′′ and follow the same procedure to notify its neighbors.

4.1.2 Summary

In the paper of ANODR they propose an anonymous on-demand routing proto-
col for mobile ad hoc networks. They addressed two close-related unlinkability
problems, namely route anonymity and location privacy. Based on a route
pseudonymity approach, ANODR prevents adversaries, such as node intruders
and omnipresent eavesdroppers, from exposing local wireless transmitters’ iden-
tities and tracing ad hoc network packet flows. The design of ANODR is based
on ”broadcast with trapdoor information”, a novel network security concept
with hybrid features merged from both network concept ”broadcast” and se-
curity concept ”trapdoor information”. This network security concept can be
applied to multicast communication as well.
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4.2 Mobility Changes Anonymity

The purpose of Hong and Kong’s paper [15] is to identify new anonymity re-
quirements for mobile wireless networks. Their study has two folds: (1) to show
that mobility has changed the underlying assumption of existing anonymity re-
search, thus mobile anonymity cannot be ensured by existing proposals designed
for fixed networks; (2) they study design principles of new countermeasures.
For mobile wireless networks, their study suggests that a hybrid approach of
identity-free routing and on-demand routing provides better anonymity support
than other approaches. The contributions of their study are listed below:

• They show that anonymity research in fixed networks does not address
the new threats that they identified. Since mobility dissociates node iden-
tities from a topological or physical location, now mobile nodes need more
anonymity supports to protect their location privacy and to hide their mo-
tion patterns. Various anonymity attacks studied in their paper effectively
break existing anonymity schemes designed for fixed networks.

• Given a reasonable assumption that adequate physical protection is not
feasible for all mobile nodes, they argue that identity-free routing is needed
to hide a node’s identity from its neighboring forwarders. In addition, since
mix-net and proactive routing approach are vulnerable to single point of
compromise if used in mobile wireless networks, they also show that on-
demand routing is a better approach to protect mobile wireless networks.

They study various new anonymity threats in mobile ad hoc networks. They
limit their research scope in network layer routing. In other words, anonymity
problems at the physical layer or the application layer are not studied in their
paper.

4.2.1 Differentiate identity anonymity and venue anonymity

Figure 4.4 illustrates an adversary’s network which is comprised of a number of
eavesdropping nodes. Each node corresponds to a vertex in an undirected graph
G =< V,E >, where adversarial eavesdropping nodes form a vertex/venue2 set
V , and topological links amongst the nodes form an edge set E. This grid struc-
ture demonstrates several possible attacks. On one hand, it characterizes the
capability of a collection of collaborative traffic analysts from multiple nodes.
On the other hand, it also characterizes the capability of a mobile traffic analyst
traveling along the grids to launch anonymity attacks anywhere and anytime.
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Figure 4.4: Underlying graph G =< V, E > (Traffic analysts are depicted as
solid black nodes. A sender in cell L1 is communicating with a recipient in cell
L2. Identified active routing cells are depicted in shade.)

They argue that in fixed networks, a sender (or recipient) and its venue are
synonyms, that is, identifying a sender’s (or recipient’s) venue implies the com-
promise of sender (or recipient) anonymity. But in mobile networks, a node’s
identity is dissociated from a specific venue. However, at each traffic analyst’s
vertex/venue, the adversarial analyst can correlate node identities with its own
exact location (e.g., obtained via a positioning system like GPS). In example 1,
2 and 3 Hong and Kong show that identity anonymity and venue anonymity are
different concepts in mobile networks. While identity anonymity is still an issue,
venue anonymity is a new problem that should be addressed separately. In par-
ticular, the new venue anonymity set is comprised of all vertexes/venues, and
the sender/recipient venue should not be identifiable within the new anonymity
set given all intercepted IOIs.

4.2.1.1 Example 1

(Sender or recipient identity anonymity attack in on-demand route
request flooding) Hong and Kong argue that in common on-demand ad hoc
routing schemes like DSR and AODV, identities of the source/sender and the
destination/recipient are explicitly embedded in route request (RREQ) pack-
ets. Any external adversary who has intercepted such a flooded packet can



4.2 Mobility Changes Anonymity 43

uniquely identify the sender’s and the recipient’s identities, but may not know
the venue/vertex of the sender or the recipient.

4.2.1.2 Example 2

(Per-hop encryption may not protect sender or recipient identity
anonymity against internal adversary) A seemingly-ideal cryptographic
protection is to apply pairwise key agreement on every single hop, so that a
single-hop transmission is protected by an ideal point-to-point secure channel
between the two ends of the hop. The secure channel also protects every packet
including the packet header. This solution prevents external adversary from un-
derstanding routing messages and network topology, but unfortunately does not
prevent any internal DSR/AODV network member from identifying the sender’s
and the recipient’s identities upon receiving a flooded RREQ packet.

4.2.1.3 Example 3

(Packet flow tracing attack) This attack reveals the relationship between a
sender’s venue and its recipient’s venue. On a (multi-hop) forwarding path,
timing correlation and content correlation analysis can be used to trace a packet
flow. (1) Timing correlation analysis: The adversary can use timing informa-
tion between successive transmission events to trace a victim message’s forward-
ing path. With no background traffic, a packet forwarded to node X at time t
and a packet forwarded from the same node at time (t + O) are very likely on
the same packet flow. (2) Content correlation analysis: A control/data flow can
be traced by content correlation (e.g., comparing data field contents and length
amongst local transmissions). In Figure 4.4, collaborative adversarial analysts
can trace an ongoing packet flow to the sender’s venue L1 and the recipient’s
venue L2, thus break sender (or recipient) venue anonymity. But they may not
be able to identify the sender’s (or recipient’s) identity. Hong and Kong say
that this is possible in ANODR [18] where routing is completely free of sender’s
and recipient’s identities.

4.2.2 Privacy of location and motion pattern

In fixed networks, a fixed node’s topological location and related physical loca-
tion are determined a priori. Besides, the motion pattern of a fixed node is not
a network security concern. In other words, there is no need to ensure privacy
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for a network node’s location and motion pattern. Therefore, in anonymity
solutions proposed for fixed networks, a network node is allowed to know its
neighborhood. For example, a Chaumian mix knows its immediate upstream
and downstream mixes, a jondo in Crowds knows its next jondo or the destina-
tion recipient. If directly ported from the fixed networks, these schemes do not
ensure location privacy near any internal adversary, which can launch attacks
described in Example 4.

4.2.2.1 Example 4

(One-hop location privacy attack) Given any cell L depicted in Figure 4.4,
the inside wireless traffic analyst may gather and quantify (approximate) infor-
mation about active mobile nodes, for example, (a) enumerate the set of cur-
rently active nodes in L; (b) related quantities such as the size of the set; (c)
traffic analysis against L, e.g., how many and what kind of connections in-and-
out the cell.
Ensuring privacy for mobile nodes motion pattern is a new expression. Example
5 gives a brief overview of the attack. If the network fails to ensure one-hop
location privacy, they have showed that a mobile node’s motion pattern privacy
can be compromised by a dense grid of traffic analysts, or even by a sparse set
of internal adversarial nodes under certain conditions, for example, when (1) a
node is capable of knowing neighbors’ relative positions (clockwise or counter-
clockwise), and (2) in DSR/AODV’s on demand route discovery, RREP traffic
of the same source/destination pair is correlatable.

4.2.2.2 Example 5

(Motion pattern inference attack) As implied by the name, the goal of this
passive attack is to infer (possibly imprecise) motion pattern of mobile nodes.
For example, collaborative adversaries can monitor wireless transmissions in
and out a specific mobile node, they can combine the intercepted data and trace
the motion pattern of the node. In some cases, a network mission may require
a set of legitimate nodes to move towards the same direction or a specific spot.
Motion pattern inference attack can effectively visualize the outline of the mis-
sion. In a network with dense adversarial analysts, motion pattern inference
attack can be trivially implemented on top of one-hop location privacy attack
using stored historical records.
Mobile networks could be deployed in severe environments, where nodes with
inadequate physical protection are susceptible to being captured and compro-
mised. Any node in such a network must be prepared to operate in a mode
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that allows no gullibility. In the network, the combination of infrastructureless
networking and location privacy presents a dilemma described in Example 6.

4.2.2.3 Example 6

(Location privacy dilemma in infrastructureless networks with inter-
nal adversary) In mobile routing schemes without infrastructure support, a
node must rely on at least one of its neighbors to forward its packets. When
anonymity service is concerned, a node is facing a dilemma. On one hand, it
must forward its packets to one of its neighbors, so that the neighbor(s) can fur-
ther forward the packets towards the destination. On the other hand, the node
does not know whether there is an adversarial node amongst its neighbors, and if
yes, which neighbor is adversarial. This dilemma calls for identity-free routing
that does not reveal a node’s identity information to its neighbors.

4.2.3 Privacy of ad hoc network topology

In a fixed network, network topology is physically determined a priori. Hence
there is no such difference (and associated privacy concerns). However, in mo-
bile networks network topology constantly changes due to mobility. Once the
adversary knows fresh network topology, it can break the network’s anonymity
protection given other out-of-band information like geographic positions and
physical boundaries of the underlying mobile network. Privacy of network topol-
ogy becomes a new anonymity aspect in mobile networks.
In fixed Internet, proactive routing schemes like BGP, OSPF and RIP are widely
used in inter-domain routing and intra-domain routing. Every router possesses
abundant knowledge about network topology if the underlying routing scheme
is hierarchical, or complete knowledge about the entire network topology if the
underlying routing scheme is flat. This is not a problem for the fixed Inter-
net. In proactive ad hoc routing protocols like DSDV, OLSR and TBRPF,
mobile nodes also constantly exchange routing messages, so that each sender
node knows enough network topological information to find any intended recip-
ient. In a typical network with pairwise end-to-end communication pattern, this
means at each moment every sender node knows abundant network topological
information about all other nodes. Thus a single adversarial sender can break
anonymity protection of the underlying mobile network. This remark is justified
in the following Example 7 and 8.
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4.2.3.1 Example 7

(A compromised sender tries to locate where a specific node is) An
anonymous routing protocol should prevent a sender from knowing a (multi-hop)
forwarding path towards any specific mobile node. Otherwise, a compromised
network member can simply function as a sender to trace any mobile node at its
convenience. This example shows that pre-computed routing schemes, in par-
ticular proactive routing schemes that accumulate a posteriori network topology
knowledge on each sender, directly conflicts with anonymity protection in mo-
bile networks. Any equivalence of proactive routing scheme, such as enforcing
requirement to let node send out unsolicited advertisements to other nodes so
that network topology can be well-known in the network, also directly conflicts
with mobile anonymity protection. The network topology knowledge collected on
mobile nodes can be used by the adversary to fight against the network. If node
compromise is feasible, such design indeed establishes a lot of single points of
compromise in the network.

4.2.3.2 Example 8

(Vulnerabilities of mix-net in mobile networks) In mix-net, the entire
forwarding path must be determined on the sender prior to anonymous data de-
livery. Proactive routing schemes may be used in mix-nets to let sender gather
the needed network topology knowledge, but this design choice is not resilient
to internal threats. If the Chaumian mix-net is directly ported into a mobile
network by treating all or some mobile nodes as Chaumian mix nodes, then any
adversarial sender knows the entire topology of the mix-net.

Compared to source routing, link state routing and distance vector routing,
virtual circuit based schemes only store information about next link ID for each
session. With appropriate design, it is not necessary to reveal a node’s identity
to neighbors. This identity-free routing strategy minimizes information leakage
in spite of node intrusions. On the other hand, compared to proactive schemes,
on-demand schemes are less vulnerable to internal threats since they do not
require mobile nodes to acquire fresh network topology knowledge. Based on
these observations, Hong and Kong believe that a hybrid of identity-free rout-
ing and on-demand routing provides better anonymity support in mobile ad hoc
networks.



4.2 Mobility Changes Anonymity 47

4.2.4 Simulation Study

ANODR is the first identity-free and purely on-demand ad hoc routing proto-
col proposed. In ANODR, node identities are never used in routing and thus
never revealed to adversary. Hong and Kong show how the adoption of various
cryptosystems has great impact on anonymous routing performance. They have
implemented the following ANODR variants.

1. ANODR, where pairwise key agreement between two consecutive RREP
forwarders is implemented by key exchanges using one-time public keys.

2. ANODR-KPS, where the needed key agreement is implemented by Key
Pre-distribution Schemes (KPS) instead of public key cryptography. In
particular, ANODR-BLOM-KPS uses Blom’s deterministic KPS and ANODR-
DU-KPS uses Du’s probabilistic KPS. In ANODR-DU-KPS, the proba-
bility of a successful key agreement per hop is 98%, which means during
RREP phase the probability of establishing the anonymous virtual circuit
per hop is 98%. With 2% at every hop, key agreement fails and new route
discovery procedure must be invoked.

Figure 4.5: Data Packet Delivery Fraction

Figure 4.5 gives the packet delivery fraction as a function of increasing mobil-
ity. The figure shows that ANODRKPS’s perform almost as good as optimized
AODV. This result can be justified by the following reasons: (1) The onion
and/or the key agreement material used in ANODR’s and/or ANODR-KPSs’
control packets, and the route pseudonym field used in data packets are not
big enough to incur noticeable impact to the packet delivery fraction. (2) The
0.02ms/1ms cryptographic computation overhead for the two schemes is too
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small to make a difference in route discovery. The latter reason also explains
why the performance of ANODR degrades faster than ANODR-KPSs - the long
encryption/decryption computation time of ANODR prolongs the route acqui-
sition delay, which reduces the accuracy of the newly discovered route, leading
to more packet losses. (3) The route optimization of AODV has less effect
when a network is at a medium size - 150 nodes. Further, the figure shows that
ANODR-DU-KPS has lower delivery ratio than ANODR-BLOM-KPS. The rea-
son for the degradation is the failed probabilistic key agreement along the RREP
path. The source only has 0:98k (k is the path length, here, the average is 4-5
hops) chances of receiving a RREP, which may be small for some paths. The
source has to initiate a new route discovery in the absence of an expected RREP,
resulting in higher control overhead and lower performance. Clearly, the figure
shows the tradeoff concern between the performance and the degree of protec-
tion.

Figure 4.6: End-to-end Data Packet Latency

Figure 4.6 shows the average end-to-end data packet latency when mobility in-
creases. ANODR-KPS’s and AODV exhibit very close end-to-end packet latency
as they require very small processing time. ANODR has much longer latency
than the aforementioned three due to additional public key processing delay
during RREP phase. ANODR-DUKPS has a little longer end-to-end packet
delay than the other two due to probabilistic failures. The delay trend of all
the protocols increases when mobility increases, leading to increasing buffering
time in waiting for a new route discovery.
Figure 4.7 gives the number of control bytes being sent in order to deliver a
single data byte. All ANODR variants send more control bytes than AODV,
because they use larger packets due to global trapdoors, cryptographic onions,
and KPS key agreement materials. In particular, either ANODR-KPS uses long
key agreement materials. When mobility increases, the lack of optimization in
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Figure 4.7: Normalized Control Bytes

ANODR variants demonstrates here a faster increasing trend as more recovery
are generated from sources.

4.2.5 Summary

In their paper Hong and Kong have studied unique anonymity threats in mobile
ad hoc networks. Unlike a fixed network, a mobile ad hoc network should pre-
vent its mobile network members from being traced by passive adversary. The
network needs more anonymity protections like (1) venue anonymity in addition
to conventional identity anonymity, (2) privacy of node’s location and motion
pattern, and (3) privacy of ad hoc network topology. Many anonymous schemes
designed so far have not considered at least one of these new threats. They
use ANODR and its KPS-based variants to show that the efficiency of anony-
mous routing is an open challenge. ANODR employs on-demand routing and
identity-free routing to provide anonymity protection for mobile nodes. Never-
theless, their simulation study shows that routing performance changes signif-
icantly when different cryptosystems are used to implement the same function
(i.e., pairwise key agreement perhop).



50 Recent Anonymity Designs in MANET’s

4.3 AD-MIX Protocol

In this section we describe the operations of AD-MIX [33]. Before describing the
protocol, some background information and an analogy to aid in understanding
the protocol are presented.

4.3.1 Background

The functioning of the AD-MIX protocol is similar in principle to the mix-net
approach. AD-MIX adapts the technique employed by mix-nets to encourage
participation in wireless ad hoc networks.
AD-MIX promotes participation through information hiding, i.e., none of the
nodes through which the packets pass are aware of the ultimate destination of
the packet. The destinations of the packets are obscured by using nodes, called
poles, whose function is similar to the mix servers of the mix-net protocol. Since
mixes are used to conceal the true destination of the packets, selfish nodes cannot
risk dropping a packet based on the packet’s destination address. By dropping
packets, they may miss packets potentially destined for them. Therefore, nodes
are encouraged to forward all packets passing through them.

4.3.2 Foundations of the AD-MIX Protocol

A node can be classified as a source, destination node, polar node or nonpolar
node. Polar nodes, also called poles, are synonymous to the mix servers of the
mix-net protocol. The operation of AD-MIX can be explained by describing its
operation at the source, non-polar and polar nodes.

4.3.2.1 Operation at the Source Node

When a node wants to transmit a packet, it chooses between 0 and 2 nodes
from the network through which the packets should pass. Poles can either be
randomly picked or chosen for best performance. The polar nodes chosen need
not be neighbors of the source node. They are referred to as poles, since they
are the extreme points or poles of the packets as the packets propagate towards
their destination. The packet to be transmitted is encrypted with the public
key of the destination, followed by the public keys of each of the poles in the
reverse order of selection. Any public key system such as RSA can be used for
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this purpose. The packet is then transmitted with the destination set to the
first polar node (or the ultimate destination, if no polar nodes were chosen).
In AD-MIX they impose the condition that no two consecutive poles can be
identical. Therefore, if a pole, on decrypting a packet, finds the next destina-
tion to be its own address, it will know that it is the ultimate destination of
the packet, and that the packet contents are unencrypted. An example is given:
Consider the sample network shown in Figure 4.8(a) where a packet is trans-
mitted from source S to destination D through poles M and U . The packet
is encrypted three times, first with the public key of D, followed by that of U ,
and finally with the public key of M . The packet transmitted by S has M as
its destination, with the contents of the packet encrypted with public key of M .
The packet is sent to M through L. Since the packet is signed with the public
key of M , no other intermediate node can interpret the packet contents.

Figure 4.8: The figure shows two scenarios that encourage (a) Non-Polar and
(b) Polar nodes to forward packets destined for other nodes. These scenarios
are called loopback, since the packet loops back to a node that had previously
forwarded it.
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4.3.2.2 Operation at the Non-Polar Nodes

A non-polar node does not perform any significant function apart from forward-
ing packets to its neighbor on route to the packet’s destination. The possibility
of the node being the ultimate destination of the packet provides incentive for
the node to forward the packet.
A scenario where a non-polar node forwarding the packet node is the ultimate
destination of the packet is depicted in Figure 4.8(a). In the figure, D is a
non-polar node that forwards the packet to U , which is merely a pole. The
packet, after passing through U , returns back to D. If D, behaving selfishly,
had dropped the packet, it would have lost packets destined for itself.

4.3.2.3 Operation at the Polar Nodes

The decrypted packet contains the address of the next pole/destination and
some data. If the address of the following pole is the same as the current node’s
address, then the data contains the unencrypted message to be delivered to this
node; this node is the ultimate destination of the packet. otherwise, the next
pole is either another pole or the ultimate destination of the packet, and the
data contains the packet to be transmitted, encrypted with the public key of
the next pole. This packet is transmitted to the next pole.
In the scenario in Figure 4.8(b), where a polar node forwarding the packet ends
up as the ultimate destination of the packet. After receiving the packet, polar
node D decrypts it with its private key and determines that the packet should
be forwarded to P . P , after receiving the packet, decrypts it to find that the
packet should be forwarded to D. This decrypted packet contains the packet
to be forwarded, encrypted with the public key of D. Finally, after node D
decrypts the packet, it discovers that it is the destination of the packet. If
D, behaving selfishly, had dropped the packet instead of forwarding it to P , it
would have lost its own packet.

4.3.2.4 Operation of AD-MIX

Figure 4.9 shows an example where a packet is transmitted by source S to
destination D, with poles M and P . At source S, a dummy header with D as
destination is appended to the message Mesg to be transmitted to D. This is
then encrypted with the public key of D, followed with the public key of M .
This is repressented by ’1’ in the legend of the figure. The packet transmitted
by the source has M as its destination. Non-polar node L, after receiving the
packet, forwards it to M . Since the packet is encrypted with the public key of
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Figure 4.9: Transmission of Mesg from node S to node D through poles M
and P . The rectangles above the node indicate the packet as seen by the node,
while the number below the node corresponds to the actual packet contents as
indicated in the legend.

M , L is unable to decrypt its contents. Polar node M , being the intermediate
destination of the packet, decrypts it with its public key to find the message to
be forwarded to P . The content of this decrypted message is depicted by ’2’ in
the legend. Since this message is encrypted with the public key of P , it cannot
be decrypted by M . Polar node M forwards this packet to P , via non-polar
node N . Polar node P , after receiving the packet, decrypts it and finds that the
packet has to be forwarded to D. The content of the decrypted packet is shown
by ’3’ in the legend. This packet, after being forwarded by non-polar nodes T
and U , reaches destination D. Node D, after decrypting the packet, finds the
next forwarding address (in the dummy header) to be D again. Hence, it knows
that it is the destination of the message.

4.3.3 Other Strategies Employed by AD-MIX

The basic strategy described above is sufficient to encourage participation. They
try to improve the efficiency of AD-MIX. These optimizations result in signifi-
cant improvements to the performance of the protocol.
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4.3.3.1 DSR as the Routing Protocol

For an ad hoc network with n nodes running AD-MIX, the worst case hop count
of a packet is 3 ∗ (n − 1). A packet traversing the worst case path will cause
a substantial increase in the delivery time if an on-demand routing protocol is
used. Also, choosing poles randomly results in a low probability of sources/poles
having a route to the next pole/destination. For reactive routing protocols like
AODV and DSR, this may result in up to two additional route discoveries per
packet to determine the route to the next pole, and possibly another route dis-
covery to determine the route from the final pole to the destination.
Thus the choice of polar nodes significantly affects the performance of the proto-
col. It is advantageous to choose poles along the route to the destination so that
there is no significant increase in path length. Choosing poles along the route
will also result in fewer route discoveries to find the route to the next pole/desti-
nation in reactive protocols. Hence, it is advantageous to employ source-routing
protocols like DSR or AODV-PA that maintain the complete route to destina-
tions.
Dynamic Source Routing (DSR) is a source routing protocol, and it maintains
a route cache that contains multiple, complete source routes to destinations.
Therefore, instead of choosing polar nodes randomly, the source node constructs
the set of all nodes along routes that pass through the destination or terminate
at the destination. This set is called the Polar Node Set.
Figure 4.10 shows the path traversed by packets corresponding to the poles
chosen. If node S wishes to transmit packets to node D, and at S the routes
that pass through or terminate at D are S → L → M → N → P → D and
S → L → M → Q → R → D → U → T , then the Polar Node Set corresponding
to D would be L,M, N,P, Q,D, R, U, T . Hence, poles would be chosen among
these nodes. Choosing M and P as the poles (Case (a)) will not cause an in-
crease in the path length, while choosing Q and U (Case (b)) as the poles will
result in a slight increase in path length. Notice that not choosing poles in the
direction of the destination will always result in a slight increase in the path
length. For example, in Figure 4.10(a), choosing pole P followed by M for a
packet, would result in a greater path length than choosing M followed by P .
The advantages of employing source-route based routing protocols such as DSR
are:

• The number of hops to reach the destination is close to optimum, since
poles be chosen along the path to the destination.

• Since the poles are chosen from DSR’s route cache, it is very likely that
routes to these nodes are already known. Thus, the number of new route
discoveries to the poles is minimal.
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Figure 4.10: Examples of sets of poles and the corresponding path of packets,
where node S is the source and node D the destination. The arrows denote the
path of the packets.

4.3.3.2 Caching and Pre-determining Poles

For a source and destination pair, the Polar Node Set remains fairly constant
over short time intervals. Also, communication between nodes is usually bursty
or continuous, rather than sporadic. Therefore, it is advantageous to cache the
Polar Node Set and update it at regular intervals, rather than reconstruct it
from the route cache poles for every packet transmitted.
A further improvement to this strategy is to cache a subset of possible poles for
each destination in a Pre-selected Polar Node Table (PPNT), as oppposed to
caching the entire Polar Node Set. The Polar Node Set to each destination is
constructed at the beginning of each interval. The entries of the PPNT are then
populated with 0,1 or 2 randomly chosen poles picked from the Polar Node Set.
The PPNT is constructed only once at the beginning of each interval. hence,
instead of choosing the polar nodes from the Polar Node Set for each packet, the
source node randomly picks an entry from the PPNT that contains the poles to
be used for the packet. An upper bound is imposed on the number of entries in
the PPNT to limit its size. The number of different routes that can be chosen
for a destination is limited by this bound. Table 4.1 shows a sample PPNT for
the network shown in Figure 4.10.
The main advantage of using the PPNT is that all packets to a destination
are sent through only a few routes dictated by the entries of the PPNT. This
results in fewer route discoveries, and consequently lower control overhead and
packet delivery time. Also, less time is spent on deciding the number of poles
and choosing polar nodes. Thus utilizing the PPNT further reduces the packet
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Table 4.1: Example Pre-selected Polar Node Table (PPNT) for node D at node
S

delivery time. In fact, if only the header of the packet is encrypted as opposed
to the entire packet, the encrypted header can be pre-calculated and stored in
the PPNT. This will result in significantly lower delay and processing overhead,
since the process of encrypting the packet header with the public key of each
pole is performed just once at the beginning of each interval, instead of for every
packet transmitted.
AD-MIX periodically refreshes the contents of the PPNT to accommodate changes
in the route cache due to dynamic changes in network topology. in order to ac-
commodate dynamic changes in network topology, it is beneficial to vary the
refresh rate with the mobility of the node and the number of RERRs received.

4.3.3.3 Forcing loopback

A selfish node is forced to forward packets that are not immediately destined
for itself because there is a possibility that it is the ultimate destination of these
packets; i.e., these packets can loop back to the node. If the possibility of packets
looping back is very small, then a selfish node may be tempted to risk dropping
packets not destined for it. To prevent this, AD-MIX can force a specified
percentage of packets that loop back. Increasing the percentage of packets that
loop back increases the probability of a selfish node dropping its own packets.
This results in increased cooperation in forwarding packets destined for other
nodes.
AD-MIX forces loopback by either choosing a node beyond the destination,
with the destination node along its path as a pole; or, if no such node is known,
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choosing the destination as the first pole and any node along the path as the
second pole.
Figure 4.11(a) illustrates how loopback is enforced when a node beyond the
destination is known to the source. If node S wants to communicate with D,
and it has a path to T containing D along it, then it can force loopback by
choosing T as the pole. If D is selfish and drops the packet after noticing that
the destination is T , it will drop its own packet. However, if S does not know

Figure 4.11: Two cases of forced loopback

any node beyond D, then it would not be able to employ the previous scheme.
In such a case, the source can send looped back packets with two poles. The
first pole is the destination itself, while the second pole could be any node along
the path. This is depicted in Figure 4.11(b), where U is chosen as the second
pole. here again, if the node behaves selfishly, it will drop packets destined for
itself.

4.3.4 Encouraging Participation using AD-MIX

In the previous sections we have presented the operation of the AD-MIX proto-
col. To show that AD-MIX encourages participation, it is sufficient to show that
it is impossible for any node to deduce the ultimate destination of any packet
passing through it. In their paper they try to prove that a minimum of two
poles is necessary to achieve this:

• Zero poles:
If the packets are not encrypted, or encrypted with just the public key
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of the destination, then a selfish node can determine whether it is the
intended destination of the packet by looking at the destination address.
It can drop the packet if it is not the destination.

• One pole:
If every packet is encrypted with the public key of one pole, then the non-
polar nodes would have no way of determining the true destination of the
packet, since the destination specified in the packet header may either be
the next pole or the destination. Since it is possible that the non-polar
node itself could be the destination, a selfish non-polar node is forced to
forward packets not destined for itself, or risk dropping its own packets.
However a polar node, after decrypting the packet, can determine that the
packet is not destined for it. Since only one polar node is used, the node
to which the polar node would forward the decrypted packet has to be the
packet’s ultimate destination. Hence, a selfish polar node could drop the
packet without the risk of losing messages sent to it.

• Two or more poles:
When two or more poles are used, it becomes impossible for event the
polar nodes to determine the ultimate destination of the packets they
receive. By padding the header with variable number of times a packet
is encrypted, since this information cannot be obtained from either the
size or the destination of the packet. Therefore, a polar node cannot be
sure, even after decrypting the packet, whether the next address of the
packet is the destination, unless it has information to suggest that it is
the second pole of the packet. Since no node possesses this information,
the destination of packets are successfully obscured.

Hence, in order to conceal the destination of the packet from both polar and
non-polar nodes, at least two poles must be chosen.
Nonetheless, using two or more poles for each packet will incur a considerable
control overhead and delay in mobile ad hoc networks. AD-MIX overcomes this
by choosing variable number of poles (between 0 and 2) for each packet. Hence,
even if no poles are chosen or if only one pole is chosen for an particular packet,
the intermediate nodes will be forced to propagate the packet since they cannot
deduce the number of poles chosen for the packet. A node cannot route out the
possibility of the packet looping back to it.
If both the poles chosen for a packet are identical, AD-MIX’s assumption that
the intermediate nodes do not have sufficient information to deduce the packet’s
ultimate destination is broken. If a pole decrypts a packet twice, it will know
that the node it should forward the packet to is the packet’s ultimate destination.
A selfish pole can therefore drop such packets. To prevent this, a route should
never use two identical poles.
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4.3.5 Security and Other Considerations

In this section we present attributes of AD-MIX that enable it to achieve more
than encouragement of participation. We also present circumstances under
which AD-MIX may not be able to achieve its objectives effectively.

4.3.5.1 Secure Communication

Since the source encrypts the contents of a packet up to three times before
transmitting it, at no instant along the route are the contents of the packets
available unencrypted. Only the final destination can decrypt the packet to view
its contents. The protocol design therefore provides information security as well
as prevents man-in-the-middle and replay attacks. Hence AD-MIX provides a
secure path for communication of messages from the source to the destination.

4.3.5.2 Desire to Communicate

AD-MIX assumes that all nodes in the network want to participate in network
communications. This is a reasonable assumption since the purpose of a node
joining an ad hoc network is to communicate with other nodes in the network.
However, if a particular node does not expect to receive any packet, then it can
drop all packets passing through it. Such nodes may be classified as malicious.

4.3.5.3 Colluding Nodes

If two nodes collude by agreeing not to use any poles to transmit data between
themselves, then the destination node can safely drop all packets not destined
to it, since it is sure that the source does not use any poles while transmitting
to it. Under such circumstances, the current design of AD-MIX will not work.
However, such colluding nodes can be handled in two ways:

• Use other mechanisms to detect nodes that do not forward packets on
behalf of other nodes in the network. The action taken against colluding
nodes may vary from merely reporting misbehavior to isolating them from
the network. The action taken should deter other nodes from colluding.

• Assume the presence of a ”tamper-proof” layer at each source node that
cannot be by-passed. All packets transmitted by the node are forced
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to pass through this layer. This layer decides the set of poles for each
transmitted packet. This prevents collusion since the choice of polar nodes
is no longer under the control of the user of the source node.

4.3.5.4 Discarding Control Packets

A node may decide to drop all control packets passing through it except route
request packets destined for itself. If this happens, no node in the network will
have any routes through this node; any route with the node’s address will be
a route route terminating at the node. This implies that if AD-MIX is not
used, then by dropping all control packets through the node, it can ensure that
no packet will ever be sent to it unless the packet is destined for it. A selfish
node can thereby save its resources. However, employing AD-MIX mitigates
this behavior since if the source node possesses a path to the selfish node, it can
use the selfish node as a pole to transmit packets to other nodes along the path.

4.3.5.5 Traffic Analysis and Anonymization

Since AD-MIX employs a model similar to the mix servers, packets traveling be-
tween a source and a destination do not follow the same path. Even if they follow
the same path, choosing different poles will make the packets appear dissimilar,
making it extremely difficult to gather information about on-going sessions by
traffic analysis. hence, AD-MIX also provides an effective mechanism to counter
attacks against privacy. Also, since the destination of the packet is hidden from
all nodes in the network, AD-MIX inherently promotes anonymization.

4.3.6 Summary

In the paper of AD-MIX, they addressed the issue of selfishness of nodes in
mobile ad hoc networks. They proposed a protocol to encourage participation.
By choosing polar nodes appropriately overhead caused by forced loopback can
be reduced.



Chapter 5

Privacy in Mobile Ad Hoc
Networks

In this chapter we will give a definition of the privacy requirements of our
protocol MixRoute based on Federrath et al. [10].

5.1 Requirements resulting from Data Protec-
tion

For mobile communication systems intended for broad use, the following re-
quirements resulting from data protection should be met:

• Protection of Confidentiality

1. Message contents should be kept confidential towards all parties ex-
cept the communication partners.

2. Sender and/or receiver of messages should stay anonymous to each
other, and third parties should be unable to observe their communi-
cation.

3. Neither potential communication partners nor third parties should
be able to locate other nodes.
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• Protection of Integrity

1. Forging message contents (including sender’s address) should be de-
tected.

2. The recipient of a message Y should be able to prove to third parties
that entity X has sent message Y .

3. The sender of a message should be able to prove the sending of a mes-
sage with correct contents, if possible, even that the receiver received
the message.

• Protection of Availability

1. The communication network enables communication between all par-
ties who wish to communicate.

Confidentiality requirements must be enforced by the prevention of the gathering
of personal data. There is no other way known to achieve privacy.
In the following, we will show how by technical means for data protection we
can provide security for the nodes in the network.

5.2 Realization of Data Protection Requirements

How and where is it possible to realize data protection requirements? The fact
of mobility makes it difficult to apply well known concepts in the same way as in
fixed networks. After outlining these basic concepts some ideas are given which
could point into the right direction.

5.2.1 Basic Concepts

Security problems may be solved by using methods such as end-to-end encryp-
tion and link-to-link encryption. The anonymity of participants can be protected
by using certain mix nodes.

5.2.2 Protection of User Data

Requirement of confidentiality of message content means, trusted communi-
cation between two participants of the same and of other networks must be
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possible. The same must be true for the integrity requirements. These can be
achieved by encryption, digital signatures and authentication codes. In fact,
confidentiality of message content can be accomplished by end-to-end encryp-
tion. Forging message content should be detected for example by, a hash-value
of a message is digitally signed. For a sender to prove that it is the actual
sender of a message a digital signature of the sender of the message is necessary.
Fulfillment of the requirement needs a signed receipt from the recipient.
Cryptography is only applicable if the following conditions are true:

• The different services and different network systems need to match corre-
sponding encryption methods and protocols. But this seems to be more a
legal (political) and economical than a technical problem.

• User channels must be bit-transparent, i.e. bit to be transmitted on the
signal path must not be changed or interfered with. The minor change
of bits could mean a loss of integrity on the signal path. Furthermore, a
change of only one bit would be followed by n increased rate of errors since
encryption systems usually produce a strong dependency between bits.

• Even bit-transparency is not implemented in every already realized and
standardized network. Considering these aspects the integration of net-
works and services must be planned carefully.

5.2.3 Protection of Data

The following concepts show the possibility of developing networks which fulfill
our data protection requirements.

5.2.3.1 Link-to-link Encryption

The contents of a message can be sufficiently hidden by end-to-end encryption
at the ISO layer 4. If protocols of the layers 1 to 3 also contain personal data
then it is also necessary to protect this information by link-to-link encryption.
This information could be the address of a node.

5.2.3.2 Recipient Anonymity by Broadcast Addressing Attributes

Receiving a message can be made completely anonymous to the network by
delivering the message (possibly end-to-end encrypted) to all nodes. If the
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message has an intended recipient, it has to contain an attribute by which he
and nobody else can recognize it as addressed to him. This attribute is called
an implicit address. it is meaningless and only understandable by the recipient
who can determine whether he is the intended node. in contrast, an explicit
address describes either a place in the network.
Implicit addresses can be distinguished according to their visibility, i.e. whether
they can be tested for equality or not. An implicit address is called invisible, if
it is only visible to its recipient and is called visible otherwise.
Invisible implicit addresses, unfortunately very costly, can be realized with a
public key cryptosystem. Visible implicit addresses can be realized much easier:
Users choose arbitrary names for themselves, which can then be prefixed to
messages.
Another criterion to distinguish implicit addresses is their distribution. An
implicit address is called public, if it is known to every node and private if
the sender received it secretly from the recipient as a return address or by a
generating algorithm the sender and the recipient agreed upon.
Public addresses should not be realized by visible implicit addresses to avoid
the linkability of the visible public address of a message and the addressed user.
Private addresses can be realized by visible addresses but then each of them
should be used only once.

5.2.3.3 Sender Anonymity by using mix-net

Unlinkability of sender and recipient can be realized by a special node called a
mix, which collects a number of messages of equal length from many distinct
senders, discards repeats, changes their encodings, and forwards the messages
to the recipient of a message from everybody but the mix and the sender of
the message. Change of encoding of a message can be implemented using a
public-key cryptosystem. Since decryption is a deterministic operation, repeats
of messages have to be discarded. Otherwise, the change of encoding does not
prevent tracing messages through mixes: Simply count the number of copies of
each message before and after the mix.
By using more than one mix to forward a message from the sender to the recip-
ient, the relation is hidden from all attackers in the network who do not control
all mixes which the message passed, nor have the cooperation of the sender.
Mixes should be independently designed and produced and should have inde-
pendent operators, otherwise a single party is able to control a communication.
One method for achieving sender anonymity i.e. of making unclear when a mes-
sage was sent, is dummy-traffic. That means each node sends among the real
message a number of meaningless messages.
Unfortunately the above described concepts are hardly feasible for the protec-
tion of the radio interface, e.g. dummy-traffic is not acceptable due to limited
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energy capacity and bandwidth.

5.3 Summary

This chapter described the privacy requirements for our protocol. In the next
chapter we will present the design of our protocol based on the requirements in
this chapter.
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Chapter 6

Design

Consider a wireless ad hoc network in which a subset of mobile nodes are mixes.
Mixes cooperate to provide anonymous connection service to any source/desti-
nation pairs, regardless of node type. In other words, anonymous connections
can be established between two non-mix nodes, one non-mix node and one mix,
and two mixes. For the ease of presentation, an assumption is made: The source
and destination of an anonymous connection are both non-mix nodes. The orig-
inal mix-net is based on public key cryptosystem. Assuming that each mix i
generates a pair of keys Ki and K−1

i , the public key Ki is made known to all
users and the private key K−1

i is never divulged. Chaum described a way of de-
livering message without disclosing sender/recipient relationship, as follows [6].
First, the sender S decides a mix route, which is a sequence of mixes. Second,
S ”seals” a message M for delivery by successively encrypting M with public
keys of the mixes in the route. Say the mix route is M1 → M2 → ... → Mk, and
the encryption of a message M with key KX is denoted KX(M). The sealed
message MS would be of the form

MS = K1(R1, K2(R2, ..., Kk(Rk,M)...))

where Ri is a random string attached to a message before each encryption. Only
the holder of the private key K−1

i can interpret a message encrypted with the
public key Ki. So the sealed message will be sent to M1, who can remove one
layer of encryption, throw away R1, and send the remainder of the message to
the next mix M2. Each mix in the route follows the same procedure, and the
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Figure 6.1: A mix-net example in a wireless ad hoc network

last mix Mk will finally deliver M to its recipient node. M can be encrypted
with the recipient’s key or plain text. Note that each mix knows only the pre-
vious and next mix, except that the first and last mix know the sender and
recipient of the message respectively. Hence, unless all mixes are compromised,
an adversary cannot determine both sender and recipient of the message.
The purpose of a mix is to hide the correspondences between the messages in
its input and those in its output. How well a mix achieves this goal depends on
a number of factors, such as the adversary’s ability, the mix flushing algorithm,
the mix input size (i.e., traffic load), etc. Assuming the same adversary and
attack model as in ANODR [18], i.e., a powerful adversary with unbounded
eavesdropping capability but bounded computing and node intrusion capabil-
ity, this means that (i) the adversary can eavesdrop transmissions on all wireless
links but cannot break public key or symmetric key crypto-systems to discover
the contents of the messages without acquiring the corresponding keys; (ii) the
adversary may capture and compromise mixes but cannot successfully compro-
mise more than K members during a time window T . In addition, intrusion
detection is not perfect. So a compromised mix exhibiting no malicious behav-
ior will stay in the network and participate in relaying traffic. This means that
the untraceability of an end-to-end connection can never be guaranteed.
An example of ad hoc mix-net is given in Figure 6.1, where mixes are indicated
by dark nodes. In this setting, each packet from node S to node D pass through
three mixes, M1, M2 and M3. Hence the mix route created for the source-
destination pair (S, D) is M1 → M2 → M3, as shown by the dashed-line. The
solid line draws the physical route that data packets actually take. Clearly, a
mix route is a logical route, not a physical route, and the mix-net is an overlay
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network.

6.1 Design of MixRoute

In this section, our enhanced mix route algorithm is presented which is called
MixRoute. The purpose of MixRoute is to find mix routes for an end-to-end
connection. Several design goals are set for the algorithm. First, connection
anonymity should not be violated during the mix route discovery process. Sec-
ond, the algorithm should find a short mix route based on the current network
topology. As the network topology changes, the algorithm should update the
mix route. Third, the algorithm should have low and bounded overhead.
First the algorithm is described, followed by a detailed discussion. MixRoute
consists of two independent processes: mix advertisement (using MADV mes-
sages), and mix route discovery and update (using DREG, RREQ and RUPD
messages). It should be emphasized that the ”mix route discovery” process runs
on top of any underlying routing protocol. In essence, the mix route discovery
process finds routes consisting of ”virtual links” between mix nodes - a virtual
link in the mix-net is a path in the physical network.

• The purpose of mix advertisements is for the mix nodes to announce their
presence to non-mix nodes. Each non-mix node tries to pick the closest
mix node as its first mix node on the route - the closest mix node serves
a function in anonymous routing as seen below.

• Due to node mobility, each non-mix node may dynamically change the mix
node chosen as its nearest mix node. To make each mix node aware of its
nearest mix node relationship with non-mix nodes, the non-mix nodes use
DREG messages to register at their nearest mix nodes.

• In this approach, when a node S needs to find an anonymous route
(through one or more mix nodes), it sends a RREQ message to the des-
tination D via a custom mix route formed by a set of randomly chosen
mixes or by S’s closest mix node. The custom mix route may not be the
right choice from performance perspective, therefore, the rest of the mix
route discovery process attempts to find a better mix route for the connec-
tion. For instance, if S chooses a mix M3 randomly, then the mix route
for the RREQ will be S → M3 → D. The RREQ packet is routed from S
to M3 using the underlying routing protocols (we have chosen DSR [16]),
and from M3 to D similarly. When D receives the RREQ, the destination
node realizes that it is an endpoint for an active connection. Therefore, it
registers with its closest mix node by sending a DREG message.
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• Any mix node that has a non-empty list of registered non-mix nodes pe-
riodically transmits a RUPD message as elaborated later. The purpose
of RUPD transmissions is to allow a source node to discover a mix route
regarding a particular destination node (A RUPD message contains a list
of all destination nodes currently registered at the mix node who creates
the message).

In the rest of this section there will be further elaborations on the above algo-
rithm.

6.1.1 Mix advertisement

In the following is introduced a low-cost mix advertisement algorithm for non-
mix nodes to find the closest mix:

1. Every mix periodically broadcasts mix advertisement (MADV) messages
to announce its presence to non-mix nodes in the neighborhood. The time
interval between two consecutive advertisements is ADVERTISE INTERVAL.
MADV from mix M has message format:

〈MADV, M → ALL, seqnum, radius〉

where (i) seqnum together with M ’s address uniquely identify a MADV
message. (ii) The radius value indicates how far the message has propa-
gated. When the message is created, it is set to 0.

2. A non-mix node learns mixes in its neighborhood from received MADV
messages and maintains the closest mix information, which is also the
node’s closest mix. As time passes, the node’s neighborhood may change.
Therefore, a non-mix node’s closest mix is not constant. It is also possible
that a non-mix node loses connectivity with its current closest mix. So if
a non-mix node does not receive MADV packets from the current closest
mix for a time interval of length 2 * ADVERTISEMENT INTERVAL it
switches to a new closest mix. A non-mix node only retransmits MADV
messages from its closest mix. Every time when a MADV message is
retransmitted, the radius value in it is incremented by 1.

3. A mix node discards MADV messages that it receives.

The described algorithm is unlike the conventional, network-wide flooding al-
gorithm. Each MADV message has a limited flooded area. Typically, it only
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Figure 6.2: Flooded area of mix advertisements

arrives at nodes that are closer to it than to any other mixes.
An example is used to illustrate this idea. In Figure 6.2, the border of two
mixes’ flooded area is shown by dashed line. A is the closest mix to D. So D
will retransmit A’s MADV messages. But E does not retransmit A’s MADV’s
it received from D because mix B is closer to it than A is. The validity of
this algorithm can be shown by considering a non-mix node that receives two
MADV messages, one from the closest mix M , another from a farther mix X.
The radius values in the two messages must satisfy radius(M) < radius(X).
Suppose that the node retransmits both messages: A neighboring node that re-
ceives the two messages will find that the above relationship still holds because
the radius values in both messages are increased by 1, respectively. In other
words, based on these two messages, X can never be closer to any downstream
nodes than M is. So it is unnecessary to forward the MADV messages from X.

6.1.2 Mix Route Discovery and Update

The mix route discovery process might be best described by an example. Fig-
ure 6.3 shows a mix-net of 6 mixes (marked as dark).
Node S wishes to find a mix route for an anonymous connection destined to
node D. The mix route discovery process can be divided into three phases:

1. RREQ phase: S assembles a RREQ message and sends it to D via a
custom mix route. As we mentioned, a custom mix route can be a random
route consisting of randomly chosen mixes, or be the closest mix of S
as in this example. The RREQ message is a unicast message. So S
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Figure 6.3: Mix Route Discovery Process

can encrypt the content of the message with D’s public key to prevent
tracing of the message by an attacker. The RREQ packet may be lost
during transmission. So a timeout-based retransmission mechanism must
be activated by S.

2. DREG phase: When D receives a RREQ message, it knows that it is
destination of a new end-to-end connection. If D did not yet register at
its closest mix (M5 in this example), it does so by sending a Destination
Registration (DREG) message to the mix. Let M be D’s closest mix. The
DREG message would have format

〈DREG, D → M, seqnum〉
D must send DREG messages periodically to maintain its association with
the mix. There are several reasons for this design. First, DREG messages
may be lost during transmission and never reaches the mix. Second, as
network topology changes, D may switch to a different closest mix. In this
case, D simply sends DREG messages to the new closest mix and increases
the seqnum in it. The old closest mix may learn this change from one of
two events. One is expiration of D’s registration record because there is no
new DREG message arriving from D. Let DREG INTERVAL be the time
interval between two consecutive DREG messages. The expiration time of
a destination node’s registration at mix is set as 2 * DREG INTERVAL in
the algorithm. Another is receiving RUPD messages from D’s new closest
mix (explained below).

3. RUPD phase: Every mix maintains a list of registered destination nodes.
If the list is not empty, it periodically broadcasts RUPD messages. The
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time interval between two consecutive broadcasts is RUPD- INTERVAL.
RUPD message from a mix M is of the format

〈RUPD, M → ALL, seqnum, l, path〉

where (i) seqnum together with M ’s address uniquely identify a RUPD
message. (ii) l is the list of destination nodes currently registered at M .
Each entry of the list includes node address and the latest DREG seqnum.
(iii) path records a mix route that the packet has traversed during flood-
ing. Initially, path contains M , the initiator of the message.
The flooding of a RUPD message proceeds as follows. The initiator mix
broadcasts the message locally. If a node X that receives the RUPD mes-
sage has pending data packets in its queue addressed to destination node(s)
in l, then it copies the mix route in path and uses the reverse mix route
in delivering those data packets1. If X is a mix, then it checks whether
any destination node in l carries a higher DREG seqnum and updates
its own list. When the above processing is completed, X retransmits the
RUPD message, and if X is a mix, it appends its ID to the path before
retransmitting. It is possible that X receives the same RUPD message
for multiple times. To ensure that a RUPD message is retransmitted only
once, X keeps a record of each RUPD message it retransmitted. How-
ever, from the multiple RUPD messages that arrive via different paths, X
may obtain multiple distinct mix routes to the same destination node. In
Figure 6.3, the retransmissions of RUPD message are indicated by double
arrows. It is shown that S will find a mix route M1 → M3 → M5 for its
connection to D.

From the above description, we know that the RUPD message is flooded along
the shortest path tree rooted at the initiator mix. For the same destination node,
different source nodes receive different mix routes and the minimum length of
each mix is 1. The idea is that each mix caches the mix routes it received and
broadcasts them along with MADV messages. The source node of a connection
will use the mix Route received from its closest mix node, which contains at
least two mixes.
The update of mix route for an anonymous connection is realized by periodically
RUPD broadcasts. If a node is not destination of any active connection, it
should stop sending DREG messages to its closest mix node. It is assumed that
an in-band protocol exists for the source node to inform the destination node of
connection termination.

1If the RUPD packet is received from an unidirectional link, it should be discarded because
there is no reverse link
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6.2 Security Analysis

In this section, an analysis of the security aspects of MixRoute is provided.
Raymond [29] presents a good survey of known attacks against mix-nets. So
the focus will be on new attacks that employ vulnerabilities in the mix route
algorithm to reveal source and destination of an anonymous connection.
During the mix route discovery process, an attacker may employ the correlation
between RREQ message and DREG message to reach its goal. For instance, if
the attacker observes that node S sends a RREQ message and node D sends
a DREG message shortly after, then it is very likely that S and D are two
end-points of a new anonymous connection. We have mentioned that RREQ
messages can be encrypted with destination node’s key so that only the des-
tination node can interpret the contents of the messages. However, message
encryption is not effective when there is no sufficient cover traffic. In this case,
S can send multiple dummy messages, i.e. to itself, before it sends real RREQ
messages.
During the mix route update process, a long-lived connection is subject to in-
tersection attack due to change of mix route. In a high-mobility network, it
is very likely that the source node of a connection receives multiple updates of
mix route during the connection lifetime. Assuming that the source node uses
the shortest mix route all the time, the attacker can perform attack as follows.
The attacker finds the shortest mix routes and the first mixes in the route to
a destination node changes and the new mix route has a different ”first mix”
than the old mix route had, the attacker can observe whether the source node
”shifts” data traffic from the connection to the old ”first mix” onto the connec-
tion to the new ”first mix”. The attacker has a better chance to succeed when
the source node has only a few connections. To prevent this attack, a perfect,
but very costly, solution is that the source node maintains constant traffic loads
to each mix by use of dummy traffic. A less costly solution is that the source
node splits the data traffic between multiple mix routes, which are learned from
RUPD messages. This should complicate traffic analysis and reduce dummy
traffic load as well. However, either solution decreases network performance.

6.3 Cost Analysis

In this section, an analyze of the control overhead of the proposed algorithm is
provided. The total number of control packets generated during a time window
T is counted. For broadcast control packet, retransmissions of the packet are
counted individually.
Let n be the total number network nodes, and m be the number of mixes. For



6.3 Cost Analysis 75

analysis purpose, it is assumed that c end-to-end connections (each with dif-
ferent destination node) are set up during the window T . In the algorithm,
MADV packets are generated and flooded by each mix at an interval of AD-
VERTISE INTERVAL. During each advertisement cycle, every non-mix node
retransmits MADV packet (from the closest mix node) only once. So the total
number of transmissions of MADV packets by all nodes is n. RREQ packets
are generated by the source node of each end-to-end connection. Assuming
that all RREQ packets are successfully delivered, the total number of RREQ
packets during the time window T must be c. The destination node of each

Packet Type Packet Count Asymptotic Upper Bound
MADV n T

ADV ERTISEMENT INTERV AL O(n)
RREQ c O(c)
DREG c T

DREG INTERV AL O(c)
RUPD m T

RUPD INTERV ALn O(mn)

Table 6.1: Analysis of Control Packet Load

end-to-end connection generates DREG packets periodically at an interval of
DREG INTERVAL. So the total number of DREG packets during the time
window T must be c T

DREG INTERV AL . In the worst case, all mixes need to
generate RUPD packets. Each RUPD packet is flooded to all nodes and each
node retransmits each RUPD packet only once. Hence, the total number of
transmissions of each RUPD packet amounts to n.
The above analysis is summarized in Table 6.1. It is shown that majority of
the control overhead is due to the periodical flooding of RUPD packets. In the
worst case, the overall control packet load is O(mn + c). But on the average,
the number of mixes that broadcast RUPD packets is expected to be less than
m.
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Chapter 7

Network Simulator version 2

The Network Simulator version 2 (ns-2) is a deterministic discrete event net-
work simulator, initiated at the Lawrence Berkeley National Laboratory (LBNL)
through the DARPA funded Virtual InterNetwork Testbed (VINT) project. The
VINT project is a collaboration between the Information Sciences Institute (ISI)
at the University of Southern California (USC), Xerox’s Palo Alto Research
Center (Xerox PARC), University of California at Berkeley (UCB) and LBNL.

7.1 ns-2

ns-2 was initially created in 1989 to be an alternative to the REAL Network
Simulator. Since then the uses and width of the ns project has grown signifi-
cantly. Although there are several different network simulators available today,
ns-2 is one of the most common. ns-2 differs from most of the others by being
an open source software, supplying the source code for free to anyone that wants
it. Whereas most commercial network simulators will offer support and a guar-
antee but keeping the money making source code for themselves. The release of
the source code helps users to create their own functions an subprograms, but
also makes it easier to implement them into the ns-2 environment. One of the
main benefits for the ns project group releasing the source code is that inde-
pendent researchers can help in the development of ns-2. It is fairly common
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that a researcher contributes with the code of an non-implemented protocol or
algorithm, after constructing it for his own studies.
It is worth noting that ns-2 is a research effort and not a commercial soft-
ware release. The difference is that there are very few people in the ns project
group compared to an ordinary software, leading to difficulties in supporting
all the users. That problem has lead to the solution of having a huge mail-
ing list (http://mailman.isi.edu/mailman/listinfo/ns-users) for anyone
interested, as well as a complete archive of all the mails ever been sent to this
mailing list. The mailing-list is based on the idea of user helping user, taking
the load of the ns project group. The mailing-list and the archives are a huge
help for all users of ns-2, no matter old or new, since usually someone else has
had the same problem before.
Another important thing to to remember is that ns-2 is an ongoing project and
hence not completed product. This being the reason why it is free and offers no
support except the mailing-lists. The people that are in charge of the project
heavily relies on the users to find bugs and faults and reporting these when
discovered. This also leaves the validating of results to the user, but the user is
not alone so help is just an email away.
The most common protocols are so well used and checked so the main worries
are the new implementations. New implementations usually start out as a re-
search assignment not linked to the ns project group. Since the project group
does not have a full company helping them in verification and implementation
they have no possibility to do everything themselves thus encouraging any help
they can get.

7.2 The ns-2 structure

ns-2 is made up of hundreds of smaller programs, separated to help the user
sort through and find what he or she is looking for. Every separate protocol, as
well as variations of the same, sometimes have separate files. Though some are
simple spinoffs, still dependent on the parental class. Considering the sheer size
of ns-2 it would be all but impossible to gain an understanding of the code if it
was just a few gigantic code files.

7.2.1 C++

C++ is the predominant programming language in ns-2. It is the language used
for all the small programs that make up the ns-2 hierarchy. C++, being one
of the most common programming languages and specially designed for object-
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oriented coding, was therefore a logical choice what language to be used. This
helps when the user wants to either understand the code or do some alterations
to the code. There are several books about C++ and hundreds, if not thousands,
of pages on the Internet about C++ simplifying the search for help or answers
concerning the ns-2 code.

7.2.2 OTcl

Object Tcl (OTcl) is object-oriented version of the command and syntax driven
programming language Tool Command Language (Tcl). This is the second of
the two programming languages that ns-2 uses. OTcl is used as an front-end
interpreter in ns-2. Linking the script type language of Tcl to the C++ backbone
of ns-2. Together these two different languages creates a script controlled C++
environment. This helps when creating a simulation, simply writing a script
that will be carried out when running the simulation. These scripts will be the
recipe for a simulation and is needed to set the specifications of the simulation
itself. Without a script properly defining a network topology as well as the
data-flows, both type and location, nothing will happen. For a more in depth
presentation of these scripts have a closer look at the introduction and related
chapters in the ns-2 manual.

7.3 Nodes

A node is exactly what is sounds like, a node in the network. A node can be
either an end connection or an intermediate point in the network. All agents
and links must be connected to a node to work. There are also different kinds
of nodes based on the kind of network that is to be simulated. The main types
are node and mobile node, where node is used in most wired networks and the
mobile node for wireless networks. There are several different commands for
setting the node protocols to be used, for instance what kind of routing is to
be used or if there is a desire to specify a route that differs from the shortest
one. Most commands for node and mobile node can be found in the ns manual.
Nodes and the closely connected link creating commands, like simplex link and
duplex link, could be considered to simulate the behavior of both the Link Layer.
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7.4 Agents

Agents is the collective name for most of the protocols you can find in the
transport layer. In the ns-2 manual they are defined as the endpoints where
packets are created and consumed. The agents in ns-2 are all connected to their
parent class, simply named Agent. This is where their general behavior is set
and the offspring classes are mostly based on some alterations to the inherent
functions in the parent class. The modified functions will overwrite the old
and thereby change the performance in order to simulate the wanted protocol.
Taking the TCP Tahoe agent, which is parent of all TCP implementations, as an
example, it inherits its base functions from the parent class Agent just adding the
necessary functions needed to gain TCP behavior. The TCP Reno agent then
inherits the behavior of TCP Tahoe, just substituting the functions that needs to
be modified to simulate the TCP Reno behavior instead of writing a whole new
program. Since ns-2 is based on the TCP/IP suite most of the implemented
agents are the protocols that can be found in the TCP/IP Transport layer.
There is, for example, the UDP protocol, the RTP protocol and several TCP
clones.

7.5 Applications

The applications in ns-2 are related to the Application Layer in the TCP/IP
suite. The hierarchy here works in the same fashion as the in the agents case.
The ns-2 applications are used to simulate some of the most important higher
functions in network communication. Since the purpose of ns-2 is not to simulate
software, the applications only represent some different aspects of the higher
functions. Only a few of the higher layer protocols has been implemented,
since some are quite similar when it comes to using the lower functions of the
TCP/IP stack. For instance there is no use adding both a SMTP and a HTTP
application since they both use TCP to transfer small amounts of data in a
similar way. The only applications incorporated in the release version of ns-2 is
a a number of different traffic generators for use with UDP and telnet and FTP
for using TCP. All the applications are script controlled and when concerning
the traffic generators, you set the interval and packet-size of the traffic. FTP
can be requested to send a data packet whenever the user wants to, or to start
a transfer of a file of an arbitrary size. If starting an FTP transmission and not
setting a file-size the transmission will go on until someone calls a stop.



7.6 NAM 81

7.6 NAM

The Network Animator NAM is a graphic tool to use with ns-2. It requires a
nam-trace file recorded during the simulation and will then show a visual rep-
resentation of the simulation. This will give the user the possibility to view the
traffic packet by packet as they move along the different links in the network.
NAM offers the possibility of tracing a single packet during its travel and the
possibility to move the nodes around for a user to draw up his network topol-
ogy according to his own wishes. Although since the simulation has already
been performed there is no possibility for the user to change the links or any
other aspect of the simulation except the representation. NAM is dependant
on the existence of an X-server in order to be able to open a graphical window.
Therefore there has to be a version of X running if NAM is to work.
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Chapter 8

Implementation

In this chapter we will describe the implementation of MixRoute. The protocol
is implemented partly in C++ and partly in OTcl. The protocol consists of
several files and some necessary changes in the ns-2 source files.
The C++ files for MixRoute are placed in a subfolder to ns-2 called /mix. This
folder contains the following files:

• mixagent.h

• mixagent.cc

• mix hdr.h

• mix hdr.cc

• mix routecache.h

• mix routecache.cc

The OTcl files for MixRoute including the test script are placed in the subfolder
ns-2/tcl/anonymity-test. The folder contains the following files:

• mixroute.tcl
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• mix.tcl

• mixroute.tr

• out.nam

• cbr-n50-mc10-r4

• scen-1000x1000-mix5

• scen-1000x1000-n50

In the following sections the implementation of MixRoute will be described.

8.1 Mix agent

Agents represent the endpoint where the network-layer packets are constructed
or consumed, and are used in the implementation of the protocol at various
layers. The class MixAgent is the implementation of the agent, which is partly
implemented in C++ and partly in OTcl. The implementation of the agent
works as an overlay protocol at the application level. The mix agent uses the
DSR agent DSRAgent as an underlying routing protocol. Most of the methods of
the DSRAgent are integrated in MixAgent slightly modified to be used to handle
packets in MixAgent. The files for the DSR implementation can be found in the
subfolder /dsr to ns-2. In the

8.2 Mix packet header

We have defined a specific header type to be used in packets. The structure
hdr mix defines the layout of the mix packet header. This structure definition
is only used by the compiler to compute byte offsets of fields; no objects of this
structure type are ever directly allocated. The structure also provides member
functions which in turn provide a layer of data hiding for objects wishing to read
or modify header fields of packets. The static class variable offset is used to
find the byte offset at which the mix header is located in an arbitrary packet.
Two methods are provided to utilize this variable to access this header in any
packet: offset() and access(). The latter is what we choose to access this
particular header in a packet; the former is used by the packet header manage-
ment class and is not used.
To access the mix packet header in a packet pointed by p, we simply say
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hdr mix::access(p). The actual binding of offset to the position of this
header in a packet is done by routines inside ns-packet.tcl and packet.cc.
The static object MIXHeaderClass is used to provide linkage to OTcl when
the mix header is enabled at configuration time. When the simulator executes,
this static object object calls the PacketHeaderClass constructor with argu-
ments PacketHeader/MIX and sizeof(hdr mix). This causes the size of the
mix header to be stored and made available to the packet header manager at
configuration time. The bind offset() must be called in the constructor of
this class, so that the packet header manager knows where to store the offset
for this particular packet header.
By default ns includes all packet headers of all protocols in ns in every packet
in the simulation. This is a lot of overhead. If the simulation is very packet-
intensive, this could be a huge overhead. For instance the size of all protocols
in ns is about 1.9KB; however, if we turn on only the needed headers we can
reduce the size to less than 100 bytes. This reduction of unused packet headers
can lead to major memory saving in large.scale traffic simulations.
To include only the packet headers that are used in the simulation, we type the
following:
remove-all-packet-headers
add-packet-header RTP IP SR LL ARP Mac MIX

8.3 Route cache

Each node implementing MixRoute must maintain a route cache, containing
routing information needed by the node. A node adds information to its route
cache as its learns of new links between mix nodes in the ad hoc network; for
example, a node may learn of new links when it receives a packet carrying a Mix
Route Request (RREQ) or Mix Route Reply (MREP). Likewise, a node removes
information from its route cache as it learns that existing links in the ad hoc
network have broken; for example a node may learn of a broken link when it
receives a packet carrying a Route Error or through the link-layer retransmission
mechanism reporting a failure in forwarding a packet to its next-hop destination.
Anytime a node adds new information to its route cache, the node checks each
packet in its own send buffer to determine whether a route to that packet’s
destination now exists in the node’s route cache. if so, the packet then is sent
using that route and removed from the send buffer.
The route cache support storing more than one route to each destination. In
searching the route cache for a route to some destination node, the route cache
is indexed by destination node address.
Each implementation of MixRoute at any node searches its route cache and
selects the best route to the destination from among those found. For example,
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a node chooses the shortest route to the destination (the shortest sequence of
hops).
The implementation of the route cache provide a fixed capacity for the cache.
The following property describes the management of available space within a
node’s route cache:
In the implementation of MixRoute a appropriate policy for managing the entries
in its route cache is used, such as when limited cache capacity requires a choice
of which entries to retain in the cache. For example, the node uses the ”least
recently used” (LRU) cache replacement policy, in which the entry last used
longest ago is discarded from the cache if a decision need to be made to allow
space in the cache for some new entry being added.
Each entry in the route cache has a timeout associated with it, to allow that
entry is deleted if not used within some time.
The implementation of the route cache consists of the class MixRouteCache
which represents the route cache functionality.
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Simulation Model

We use the ns-2 simulation package to simulate a wireless ad hoc network, and
implement MixRoute. At the physical layer, we simulate Lucent’s WaveLAN
card with a nominal bit rate of 2 Mbits/sec and a nominal transmission range
of 250 meters. At the MAC layer, we use the distributed coordination function
(DCF) of IEEE 802.11. At the network layer, the DSR routing protocol is used
in routing of data packets. In our experiments, we simulate the stop-and-go
Mix [17] where each Mix adds a random delay (uniformly distributed between
0 and 100 milliseconds) to each received packet before sending it out. At the
beginning of each simulation run, a given number of randomly chosen nodes are
designated as Mixes. The parameter values in our implementation of the Mix
route algorithm are listed in Table 9.1. The network field is 1000m x 1000m with

ADVERTISEMENT INTERVAL 3 secs
DREG INTERVAL 3 secs
RUPD INTERVAL 10 secs

Table 9.1: Parameter values in simulations

50 nodes initially uniformly distributed. Random Way-point mobility model [16]
is used to generate node movement scenario. According to this model, a node
travels to a random chosen location in a certain speed and stays for a while
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before going to another random location. In our simulation, the maximum node
speed varies from 0 to 20 m/sec, and the pause time is fixed to 30 seconds.
Constant Bit Rate (CBR) sessions are used to generate data traffic. For each
session, data packets of 512 bytes are generated in a rate of 4 packets per second.
The source-destination pairs are chosen randomly from all the nodes (including
Mixes). During 300 minutes simulation time, totally 25 sessions are scheduled
with start times uniformly distributed between 0 and 180 seconds, and each
session lasts for approximately 75 seconds.
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Evaluation

We want to evaluate the performance of the MixRoute algorithm in three as-
pects. First, we want to investigate the network performance of mix-net in
a wireless ad hoc network. Two metrics are used:(i) Packet delivery ratio -
the ratio between the number of data packets received and those originated by
the sources. (ii) Average end-to-end data packet latency - the time from when
the source generates the data packet to when the destination receives it. This
includes: latency for determining mix route, network routing latency, crypto-
graphic processing delays, queueing delay at the interface queue, retransmission
delay at the MAC, propagation and transfer times. Second, we measure the
average length of the mix route. When each mix has the same independent
probability of being compromised, the probability that all mixes in a mix route
be compromised decreases exponentially with the number of mixes. Third we
evaluate the control overhead of the proposed algorithm. The metric we use is
normalized control packet load, which is defined as the number of control packets
transmitted per data packet delivered.

10.1 Running the simulation script

The test script is placed in the folder ns-2.29/tcl/anonymity-mix
The following files are part of the test script with mixroute.tcl as the main
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file:

• mixroute.tcl

• mix.tcl

• cbr-n50-mc10-r4

• scen-1000x1000-mix5

• scen-1000x1000-n50

To run the tcl script the following command must be typed:
ns mixroute.tcl
The result of the typed command gives the following output to the terminal:

num nodes is set to 55
Creating mobile nodes...
INITIALIZE THE LIST xListHead
Creating mixes...
Loading connection pattern...
Loading node scenario file...
Loading mix scenario file...
Load complete...
Starting Simulation...
end simulation

After the simulation process has ended there are generated some new files which
can be found in the folder. These are out.nam and mixroute.tr. The file
out.nam is opened inside nam. These can be done from a terminal using the
command:
nam out.nam &
When nam has loaded the file the layout for the test is shown. This can be seen
in Figure 10.1.
Unfortunately there were problems in the implemented protocol. Analyzing the
tracefile mixroute.tr showed that specific nodes tried to send packets at the
application layer, but the packets was not send to their destination. Thus the
nodes would not communicate with each other. Due to lack of time the imple-
mented protocol was not functioning properly because of some bugs that could
not be detected.
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Figure 10.1: Screenshot from nam, showing the simulation with 55 nodes

10.2 Expected Simulation Results

The results should show that the proposed algorithm performs better than the
static mix route algorithm by achieving higher packet delivery ratio and lower
packet latency. These results should indicate that the proposed algorithm is
adaptive to network topology change and ensure that data packets are routed
along a short route in the physical network. In addition it should be shown
that network performance suffers as node mobility increases, due to frequent
change of mix route and large packet losses. We also wanted to show that both
the static mix route algorithm and the proposed algorithm have lower packet
latency in a high-mobility network than in the static network. The reason for
this is that when network topology changes, the physical route for the same
mix route is not constant and there is a good chance that some ”distances” are
short. We also wanted to show how the number of mixes in a network has effect
on network performance. We would expect that more mixes in a network means
shorter mix route and better network performance.
A plot of the average length of the proposed mix route as function of increasing
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mobility and number of mixes, respectively should have shown that there is a
linear correlation between the proposed mix route length and the number of
mixes in the network. This is because mixes are randomly selected from the
node set, and hence, uniformly distributed over the network area. We expect
that high degree of anonymity can be achieved if there is a sufficient number of
mixes in the network.
The overhead analysis of the proposed algorithm should be plotted with the
Y-axis representing the ratio between the number of control packets transmit-
ted and the number of data packets that are delivered, and the X-axis should
represent the maximum node speed. The expected result of this plot is that
the normalized control overhead is higher in a dynamic network than in a static
network. When the traffic load is low the control overhead of the algorithm
should be high. The reason is that, in our algorithm, mix advertisement pack-
ets are generated with no regard to data traffic load and set a lower bound for
control traffic load. As the number of connections increases, the number of de-
livered packets should increase as well, which then drops the normalized control
overhead.
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Conclusion

In this report, we have described new efforts in providing anonymous commu-
nication service in wireless ad hoc networks based on the mix-net scheme. We
developed an efficient algorithm for determining mix route for an end-to-end
connection. The design of the algorithm is based on two flooding processes:
mix advertisement, and mix route discovery and update. Much efforts have
been made to reduce transmission overhead in the two processes.
We have studied the problem of hiding source and destination information of
packets in wireless ad hoc network. The background of this problem is the
prevention of traffic analysis against the network. We argued that the existing
security methods and schemas cannot be applied in wireless networks without
degrading the network performance. To mitigate the performance degradation,
we developed MixRoute with which the source node of a packet can dynamically
determine the mix node to forward the packet. By executing a mix discovery
protocol, the source node can find the mix node closest to it through which the
route for the packet is the shortest one.
Unfortunately the implementation process of the protocol was very large and
due to lack of time there were some bugs in the implementation that could not be
found. The bugs were discovered during the evaluation of the implementation.
The test script was implemented successfully, but the output of the tracefile
showed that there were problems which was not solved. The nodes were not
able to send the packets to their destination.
Overall the design of the protocol is an improvement to the existing mix-net
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designs because of its dynamics, but it was not possible to show it through sim-
ulation results yet.
This project constitutes one of the first steps for providing anonymous communi-
cation in mobile ad hoc networks. In the future, the protocol could be debugged
and made functional. Simulation results should then be used to compare the
proposed algorithm to the static mix-net model to show the improvements.
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Source Code

A.1 mixagent.h

1 #ifndef MixAgent h
2 #define MixAgent h
3 #include ”mix routecache.h”
4
5 #define MIX BUFFER CHECK 0.03 // seconds between buffer checks
6 #define MIX SEND TIMEOUT 30.0 // # seconds a packet can live in

sendbuf
7 #define MIX SEND BUF SIZE 64
8
9 #define ADVERTISE INTERVAL 5.0

10 #define ROUTE ADVERTISE INTERVAL 15.0
11
12 struct MixSendBufEntry {
13 Time t; // insertion time
14 Packet∗ p;
15 };
16
17 class MixAgent;
18
19 class MixSendBufferTimer : public TimerHandler {
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20 public:
21 MixSendBufferTimer(MixAgent ∗a) : TimerHandler() { a = a;}
22 void expire(Event ∗e);
23 protected:
24 MixAgent ∗a ;
25 };
26
27 class AdvertiseTimer : public TimerHandler {
28 public:
29 AdvertiseTimer(MixAgent ∗a) : TimerHandler() { a = a;}
30 void expire(Event ∗e);
31 protected:
32 MixAgent ∗a ;
33 };
34
35 class RouteAdvertiseTimer : public TimerHandler {
36 public:
37 RouteAdvertiseTimer(MixAgent ∗a) : TimerHandler() { a = a;}
38 void expire(Event ∗e);
39 protected:
40 MixAgent ∗a ;
41 };
42
43 struct MixEntry {
44 ns addr t addr port ;
45 int seqno ;
46 int distance ;
47 int closest mix ;
48 double expire time ;
49 double changed at; // when the best MADV last changed
50 double new seqnum at; // when we last heard a new seq number
51 double wst; // running wst info
52 Event ∗reTx event; // event used to schedule timeout action
53 Packet ∗pkt; // MADV packet waiting to be sent
54 Event ∗exp event; // expire event
55 };
56
57 class MixAgentRetransmissionHandler : public Handler {
58 public:
59 MixAgentRetransmissionHandler(MixAgent ∗a ) { a = a ; }
60 virtual void handle(Event ∗e);
61 private:
62 MixAgent ∗a;
63 };
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64
65 class MixExpireHandler : public Handler {
66 public:
67 MixExpireHandler(MixAgent ∗a ) { a = a ; }
68 virtual void handle(Event ∗e);
69 private:
70 MixAgent ∗a;
71 };
72
73 struct b {
74 Path routes[MAX CACHE SIZE];
75 int seqno;
76 bool mixroute found;
77 };
78
79 class MixAgent: public Agent {
80 friend class MixSendBufferTimer;
81 friend class AdvertiseTimer;
82 friend class MixAgentRetransmissionHandler;
83 friend class RouteAdvertiseTimer;
84 friend class MixExpireHandler;
85 public:
86 MixAgent();
87 ˜MixAgent();
88 int command(int argc, const char∗const∗ argv);
89 void recv(Packet∗, Handler∗);
90 void handle(Event∗ e) { assert(target ) ; target −>recv((Packet∗)e); }
91 // this procedure handles delayed retransmission of

mix adv
92 void Terminate();
93 private:
94 int mix ;
95 char mix alg [32];
96 int use god ;
97 DSRAgent ∗dsr agent ; // used to install learned source route
98 MixEntry mix list [MAX MIX NUM];
99 int closest mix count ;

100 MixExpireHandler ∗mix expire handler;
101 MixAgentRetransmissionHandler ∗reTx handler;
102 RegEntry registration table [MAX NODE NUM];
103 int registration count ;
104 int min mixroute len ;
105 // struct b radv cache[MAX MIX NUM];
106 int dup check[MAX MIX NUM][MAX MIX NUM];



98 Source Code

107
108 /∗∗∗∗∗ Mix List management ∗∗∗∗∗∗∗∗∗/
109 MixEntry ∗findMix(Event ∗e);
110 void updateClosestMix();
111 int updateMixList(ns addr t a, int s, int d, double e);
112 ns addr t selectMix() ;
113
114 /∗∗∗∗∗ internal state of source ∗∗∗∗∗/
115 MixSendBufEntry send buf[MIX SEND BUF SIZE];
116 RequestTable request table;
117 MixSendBufferTimer send buf timer;
118 MixRouteCache route cache[50]; // mix route cache
119
120 /∗∗∗∗∗∗ internal state of mix ∗∗∗∗∗∗/
121 int mix advertise num;
122 AdvertiseTimer advertise timer;
123 int route advertise num;
124 RouteAdvertiseTimer route advertise timer;
125
126 /∗∗∗∗∗∗ internal helper functions ∗∗∗∗∗∗/
127 void stickPacketInSendBuffer(Packet∗ p);
128 void sendBufferCheck();
129 void sendOutPacketWithRoute(Packet ∗p, double delay);
130 int sendOutPacketWithoutRoute(Packet ∗p, bool retry);
131 void getRouteForPacket(Packet∗ p, bool retry);
132 void sendRouteRequest(nsaddr t target);
133 void sendRegistration();
134 void handleMixAdvertisement (Packet ∗p);
135 void handleRouteRequest(Packet ∗p);
136 void handleRegistration(Packet ∗p);
137 void handleRouteAdvertisement(Packet ∗p);
138 void acceptRoute(Path &reply route, nsaddr t dest, int NREG seqno, int

RADV seqno, double latency);
139 void broadcastMixAdvertisement();
140 void broadcastRouteAdvertisement();
141 bool ignoreRouteAdvertisement(Path& route, int seq);
142
143 int route request num;
144 int register ;
145 int registration number;
146 double last radv broadcast;
147 int last registration ;
148 };
149
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150 #endif
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A.2 mixagent.cc

1 #include <object.h>
2 #include <float.h>
3 #include <tcp.h>
4 #include <ip.h>
5 #include <agent.h>
6 #include <packet.h>
7 #include <random.h>
8 #include <cmu−trace.h>
9 #include <dsr/path.h>

10 #include <dsr/constants.h>
11 #include <dsr/requesttable.h>
12 #include <dsr/dsragent.h>
13 #include <mix/hdr mix.h>
14 #include <mix/mixagent.h>
15
16 #define MADV STARTUP JITTER 2.0 // secs to jitter start of periodic

MADV from
17 // when start−mix msg sent to agent
18
19 #define alpha 0.875
20 #define wst0 1.0
21
22 static bool register at all closest mix = false;
23
24 /∗==========================================================================
25 MixList management
26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
27 MixEntry ∗
28 MixAgent::findMix(Event ∗e)
29 {
30 int i ;
31 //MAX MIX NUM in hdr mix.h is set to 10
32 for(i = 0; i < MAX MIX NUM; i++) {
33 if ( mix list [ i ]. reTx event == e || mix list [ i ]. exp event == e)
34 break;
35 }
36 return (&mix list [i ]) ;
37 }
38
39 void
40 MixAgent::updateClosestMix()
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41 {
42 double now = Scheduler::instance().clock();
43 int min distance = 1000;
44 bool changed = false;
45
46 for(int i = 0; i < MAX MIX NUM; i++) {
47 if ( mix list [ i ]. expire time > now &&
48 mix list [ i ]. distance < min distance )
49 min distance = mix list [ i ]. distance ;
50 }
51
52 closest mix count = 0;
53 for(int i = 0; i < MAX MIX NUM; i++) {
54 if ( mix list [ i ]. expire time > now &&
55 mix list [ i ]. distance == min distance ) {
56
57 if ( mix list [ i ]. closest mix == 0)
58 changed = true;
59
60 mix list [ i ]. closest mix = 1;
61 closest mix count ++;
62 } else {
63 if ( mix list [ i ]. closest mix == 1)
64 changed = true;
65
66 mix list [ i ]. closest mix = 0;
67 }
68 }
69
70 if (changed && strcmp(mix alg , ”MIX Path”) == 0) {
71 if ( register == 1) {
72 int index = last registration − MAX NODE NUM;
73 if ( mix list [index ]. closest mix == 0) {
74 sendRegistration();
75 }
76 }
77 }
78 }
79
80 int
81 MixAgent::updateMixList(ns addr t a, int seq, int d, double e)
82 {
83 Scheduler & s = Scheduler::instance() ;
84 double now = s.clock();
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85 int index = a.addr − MAX NODE NUM;
86
87 if ( mix list [index ]. expire time > now) {
88
89 if ( mix list [index ]. seqno > seq) {
90 return −1;
91 }
92
93 if ( mix list [index ]. seqno == seq) {
94 if ( mix list [index ]. distance <= d) {
95 return −1;
96 }
97
98 // we’ve got a MADV without a new seq number
99 // this packet must have come along a different, but shorter , path

100 // than the previous one
101
102 mix list [index]. distance = d;
103 mix list [index]. expire time = e;
104 mix list [index]. changed at = now;
105
106 } else {
107 // we’ve got a new seq number, end the measurement period
108 // for wst over the course of the old sequence number
109 // and update wst with the difference between the last
110 // time we changed the route (which would be when the
111 // best route metric arrives) and the first time we heard
112 // the sequence number that started the measurement period
113
114 mix list [index].wst = alpha ∗ mix list [index ].wst +
115 (1.0 − alpha ) ∗ ( mix list [index ]. changed at −

mix list [index ].new seqnum at);
116
117 mix list [index]. seqno = seq;
118 mix list [index]. distance = d;
119 mix list [index]. expire time = e;
120 mix list [index]. changed at = now;
121 mix list [index].new seqnum at = now;
122 }
123 } else {
124 mix list [index ].addr port = a;
125 mix list [index ]. seqno = seq;
126 mix list [index ]. distance = d;
127 mix list [index ]. expire time = e;
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128 mix list [index ].changed at = now;
129 mix list [index ].new seqnum at = now;
130 mix list [index ].wst = wst0 ;
131 mix list [index ].pkt = 0;
132 mix list [index ]. reTx event = 0;
133 mix list [index ].exp event = 0;
134 }
135
136 if ( mix list [index]. exp event) {
137 s .cancel( mix list [index]. exp event);
138 } else {
139 mix list [index ].exp event = new Event;
140 }
141 s .schedule(mix expire handler, mix list [index ].exp event,

mix list [index ]. expire time −now);
142
143 updateClosestMix();
144
145 if ( mix list [index]. closest mix == 1)
146 return 0;
147 else
148 return −1;
149 }
150
151 void
152 MixExpireHandler::handle(Event ∗e)
153 {
154 Scheduler & s = Scheduler::instance() ;
155 MixEntry ∗m;
156
157 m = a−>findMix(e);
158 assert (m);
159
160 m−>seqno = −1;
161 m−>distance = 0;
162 m−>expire time = 0;
163 m−>changed at = 0;
164 m−>new seqnum at = 0;
165
166 if (m−>reTx event) {
167 s .cancel(m−>reTx event);
168 delete m−>reTx event;
169 m−>reTx event = 0;
170
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171 Packet:: free (m−>pkt);
172 m−>pkt = 0;
173 }
174
175 delete e;
176 m−>exp event = 0;
177
178 a−>updateClosestMix();
179 };
180
181
182 ns addr t
183 MixAgent::selectMix() // random
184 {
185 int index = Random::random() % closest mix count ;
186 int j = 0;
187
188 for(int i = 0; i < MAX MIX NUM; i++) {
189 if ( mix list [ i ]. expire time <= Scheduler::instance().clock())
190 continue;
191
192 if ( mix list [ i ]. closest mix == 1) {
193 if (j == index)
194 return mix list [ i ]. addr port ;
195 else
196 j++;
197 }
198 }
199 assert (0) ;
200 }
201
202 /∗
203 char∗
204 MixList::dump() const
205 {
206 static char buf [100];
207 MixEntry ∗p;
208 char ∗ptr = buf;
209
210 ∗ptr++ = ’[’;
211 p = head ;
212 while(p) {
213 ptr += sprintf(ptr, ”%d(%d) ”, p−>addr port .addr ,

p−>distance );
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214 p = p−>next ;
215 }
216 ∗ptr++ = ’]’;
217 ∗ptr++ = ’\0’;
218 return buf;
219 }
220 ∗/
221
222 /∗===========================================================================
223 SendBuf management and helpers
224 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
225 void
226 MixSendBufferTimer::expire(Event ∗)
227 {
228 a −>sendBufferCheck();
229 resched(MIX BUFFER CHECK + MIX BUFFER CHECK ∗

Random::uniform(1.0));
230 };
231
232 void
233 MixAgent::stickPacketInSendBuffer(Packet∗ p)
234 {
235 Time min = DBL MAX;
236 int min index = 0;
237 int c;
238
239 for (c = 0 ; c < MIX SEND BUF SIZE ; c ++)
240 if (send buf[c ]. p == 0)
241 {
242 send buf[c ]. t = Scheduler::instance() .clock() ;
243 send buf[c ]. p = p;
244 return;
245 }
246 else if (send buf[c ]. t < min)
247 {
248 min = send buf[c].t ;
249 min index = c;
250 }
251
252 // kill somebody
253 drop(send buf[min index].p, DROP PROXY NOMIX);
254 send buf[min index].t = Scheduler::instance() .clock() ;
255 send buf[min index].p = p;
256 }
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257
258 void
259 MixAgent::sendBufferCheck()
260 // see if any packets in send buffer need route requests sent out
261 // for them, or need to be expired
262 { // this is called about once a second. run everybody through the
263 // get route for pkt routine to see if it ’s time to do another
264 // route request or what not
265 int c;
266
267 for (c = 0 ; c < MIX SEND BUF SIZE ; c++) {
268 if (send buf[c ]. p == 0) continue;
269
270 if (Scheduler:: instance() .clock() − send buf[c]. t >

MIX SEND TIMEOUT) {
271 drop(send buf[c ].p, DROP PROXY NOMIX);
272 send buf[c ]. p = 0;
273 continue;
274 }
275
276 if (sendOutPacketWithoutRoute(send buf[c].p, true) == 0)
277 send buf[c ]. p = 0;
278 }
279 }
280
281 /∗==============================================================
282 Route Request backoff
283 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
284 static bool
285 BackOffTest(Entry ∗e, Time time)
286 // look at the entry and decide if we can send another route
287 // request or not. update entry as well
288 {
289 Time next = ((Time) (0x1 << (e−>rt reqs outstanding ∗ 2))) ∗

rt rq period;
290
291 if (next > rt rq max period)
292 next = rt rq max period;
293
294 if (next + e−>last rt req > time)
295 return false;
296
297 // don’t let rt reqs outstanding overflow next on the LogicalShiftsLeft ’s
298 if (e−>rt reqs outstanding < 15)
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299 e−>rt reqs outstanding++;
300
301 e−>last rt req = time;
302
303 return true;
304 }
305
306 /∗===========================================================================
307 Timer management and helpers
308 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
309 void
310 AdvertiseTimer::expire(Event ∗)
311 {
312 a −>broadcastMixAdvertisement();
313 resched(ADVERTISE INTERVAL ∗ Random::uniform(0.75, 1.25));
314 }
315
316 void MixAgent::broadcastMixAdvertisement()
317 {
318 Packet ∗p = allocpkt();
319 hdr ip ∗iph = hdr ip::access(p);
320 hdr mix ∗mixh = hdr mix::access(p);
321 hdr cmn ∗ch = hdr cmn::access(p);
322
323 mixh−>init();
324 mixh−>type = MADV;
325 mixh−>seqno = mix advertise num++;
326 mixh−>lifetime = 3 ∗ ADVERTISE INTERVAL;
327 mixh−>hop count = 1;
328
329 iph−>daddr() = IP BROADCAST;
330 iph−>dport() = here .port ;
331
332 ch−>size() = mixh−>size();
333 ch−>size() += IP HDR LEN; // dsragent will pass a broadcast packet

directly
334 // to the link layer without changing its

size
335 ch−>next hop = IP BROADCAST;
336 ch−>addr type = NS AF INET;
337 ch−>direction() = hdr cmn::DOWN;
338 Scheduler:: instance() .schedule(this, p, Random::uniform(0.01));
339 //God::instance()−>LogControl mix(MADV, ch−>size());
340 }
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341
342 void
343 MixAgentRetransmissionHandler::handle(Event ∗e)
344 {
345 MixEntry ∗m;
346
347 m = a−>findMix(e);
348 assert (m);
349
350 hdr cmn ∗ch = hdr cmn::access(m−>pkt);
351 hdr mix ∗mixh = hdr mix::access(m−>pkt);
352 mixh−>hop count ++;
353 ch−>direction() = hdr cmn::DOWN;
354 ch−>next hop() = IP BROADCAST;
355 ch−>addr type() = NS AF INET;
356 Scheduler:: instance() .schedule(a, m−>pkt, Random::uniform(0.01));
357 //God::instance()−>LogControl mix(MADV, ch−>size());
358
359 // free this event
360 m−>reTx event = 0;
361 m−>pkt = 0;
362 delete e;
363 };
364
365 void
366 RouteAdvertiseTimer::expire(Event ∗)
367 {
368 if (a −>registration count > 0) {
369 a −>broadcastRouteAdvertisement();
370 resched(ROUTE ADVERTISE INTERVAL ∗ Random::uniform(0.75,

1.25));
371 }
372 }
373
374 static double total interval = 0;
375 static int times = 0;
376
377 void
378 MixAgent::broadcastRouteAdvertisement()
379 {
380 Packet ∗p = allocpkt();
381 hdr ip ∗iph = hdr ip::access(p);
382 hdr mix ∗mixh = hdr mix::access(p);
383 hdr cmn ∗ch = hdr cmn::access(p);
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384
385 mixh−>init();
386 mixh−>type = RADV;
387 mixh−>seqno = route advertise num++;
388 mixh−>appendToMixRoute(here .addr );
389
390 bcopy( registration table , mixh−>registration table, sizeof(RegEntry) ∗

MAX NODE NUM);
391 mixh−>registration count = registration count;
392
393 iph−>daddr() = IP BROADCAST;
394 iph−>dport() = here .port ;
395
396 ch−>size() = mixh−>size();
397 ch−>size() += IP HDR LEN; // dsragent will pass a broadcast packet

directly
398 // to the link layer
399 ch−>next hop = IP BROADCAST;
400 ch−>addr type = NS AF INET;
401 ch−>direction() = hdr cmn::DOWN;
402 ch−>timestamp() = Scheduler::instance().clock();
403
404 // Path route;
405 // mixh−>copyOutMixRoute(route);
406 // ignoreRouteAdvertisement(route, mixh−>seqno );
407 int index = here .addr − MAX NODE NUM;
408 dup check[index][1] = mixh−>seqno ;
409 Scheduler:: instance() .schedule(this, p, Random::uniform(0.01));
410 //God::instance()−>LogControl mix(RADV, ch−>size());
411
412 if (last radv broadcast > 0) {
413 double interval = Scheduler::instance() .clock() − last radv broadcast;
414 total interval += interval;
415 times++;
416 }
417 last radv broadcast = Scheduler::instance() .clock() ;
418 }
419
420 /∗===========================================================================
421 MixAgent
422 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
423 static class MixAgentClass : public TclClass {
424 public:
425 MixAgentClass() : TclClass(”Agent/MixAgent”) {}
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426 TclObject∗ create(int, const char∗const∗) {
427 return (new MixAgent);
428 }
429 } class MixAgent;
430
431 MixAgent::MixAgent(): Agent(PT MIX), mix (0), request table(128),

send buf timer(this),
432 advertise timer(this), route advertise timer (this), min mixroute len (1)
433 {
434 route request num = 1;
435 mix advertise num = 1;
436 registration number = 1;
437 route advertise num = 1;
438 last radv broadcast = 0;
439 last registration = MAX NODE NUM;
440
441 reTx handler = new MixAgentRetransmissionHandler(this);
442 mix expire handler = new MixExpireHandler(this);
443 bzero(mix list , sizeof(MixEntry) ∗ MAX MIX NUM);
444 bzero( registration table , sizeof(RegEntry) ∗ MAX NODE NUM);
445 registration count = 0;
446 register = 0;
447 bzero(dup check, sizeof(int) ∗ MAX MIX NUM ∗ MAX MIX NUM);
448 /∗
449 for(int i = 0; i < MAX MIX NUM; i++) {
450 radv cache[ i ]. seqno = 0;
451 radv cache[ i ].mixroute found = false;
452 for(int n = 0; n < MAX CACHE SIZE; n++) {
453 radv cache[ i ]. routes [n]. reset () ;
454 }
455 }
456 ∗/
457 Tcl& tcl = Tcl::instance() ;
458 tcl . eval(”Simulator set mix alg ”);
459 strcpy(mix alg , tcl . result ()) ;
460 tcl . eval(”Simulator set min mixroute len ”);
461 min mixroute len = atoi(tcl . result ()) ;
462 assert (min mixroute len >= 1 && min mixroute len <=

MAX MIX NUM);
463
464 use god = 0;
465 tcl . eval(”Simulator set use−god”);
466 if (strcmp(tcl. result () , ”ON”) == 0) use god = 1;
467
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468 for (int c = 0 ; c < MIX SEND BUF SIZE ; c++)
469 send buf[c ]. p = 0;
470 }
471
472 MixAgent::˜MixAgent()
473 {
474 }
475
476 void MixAgent::Terminate()
477 {
478 int c;
479 for (c = 0 ; c < MIX SEND BUF SIZE ; c++) {
480 if (send buf[c ]. p) {
481 drop(send buf[c ].p, DROP END OF SIMULATION);
482 send buf[c ]. p = 0;
483 }
484 }
485
486 // if (here .addr == 0)
487 // printf (”radv interval %f\n”, total interval /times);
488 }
489
490 int MixAgent::command(int argc, const char∗const∗ argv)
491 {
492 TclObject ∗obj;
493
494 if (argc == 2)
495 {
496 if (strcasecmp(argv[1], ”reset”) == 0)
497 {
498 Terminate();
499 return Agent::command(argc, argv);
500 }
501 if (strcasecmp(argv[1], ”set−as−mix”) == 0)
502 {
503 mix = 1;
504 return TCL OK;
505 }
506 if (strcasecmp(argv[1], ”start”) == 0)
507 {
508 if (mix ) {
509 // there is no traffic originated from mix, so the send buf is
510 // not used in a mix
511
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512 if (!use god )
513 advertise timer .sched(Random::uniform(MADV STARTUP JITTER));
514 } else {
515 // if closest mix algorithm, it is not necessary to check

send buf
516 // because handleMixAdvertisement() will release the packets in

it
517
518 if (strcmp(mix alg , ”Closest MIX”) != 0) {
519 send buf timer.sched(MIX BUFFER CHECK
520 + MIX BUFFER CHECK ∗

Random::uniform(1.0));
521 }
522 }
523 return TCL OK;
524 }
525 }
526 else if (argc == 3)
527 {
528 if (strcasecmp(argv[1], ”dsr−agent”) == 0)
529 {
530 if ( (obj = TclObject::lookup(argv[2])) == 0) {
531 fprintf (stderr , ”MixAgent: %s lookup of %s failed\n”, argv[1],
532 argv [2]) ;
533 return TCL ERROR;
534 }
535 dsr agent = (DSRAgent∗) obj;
536 return TCL OK;
537 }
538 }
539 return Agent::command(argc, argv);
540 }
541
542 void MixAgent::recv(Packet∗ p, Handler∗)
543 {
544 hdr mix ∗mixh = hdr mix::access(p);
545 hdr ip ∗iph = hdr ip::access(p);
546 hdr cmn ∗ch = hdr cmn::access(p);
547
548 if (mixh−>valid != 1) {
549 // this must be a UDP packet
550 sendOutPacketWithoutRoute(p, false);
551 }
552 else if (mixh−>valid == 1) {
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553 if (mixh−>type == MADV)
554 handleMixAdvertisement(p);
555 else if (mixh−>type == RREG)
556 handleRegistration(p);
557 else if (mixh−>type == RADV)
558 handleRouteAdvertisement(p);
559 else {
560 if (mixh−>dst == here ) {
561 // compare a variable ns addr t from struct mix hdr, to the

variable from common/agent.cc here which is also type
ns addr t

562 // handle control packet receipt
563 assert (mixh−>type == RREQ);
564 handleRouteRequest(p);
565 } else {
566 // handle forwarding
567 assert (mix );
568 assert (mixh−>mix route .len > 0);
569 iph−>dst() = mixh−>get next dst(here .addr , here .port );
570 iph−>src() = here ;
571 ch−>size() −= IP HDR LEN;
572 target −>recv(p, (Handler∗) 0);
573 }
574 }
575 }
576 }
577
578 void
579 MixAgent::sendOutPacketWithRoute(Packet ∗p, double delay)
580 /∗ there must be a mix route in it ∗/
581 {
582 hdr mix ∗mixh = hdr mix::access(p);
583 hdr ip ∗iph = hdr ip::access(p);
584 hdr cmn ∗ch = hdr cmn::access(p);
585
586 mixh−>src = iph−>src();
587 mixh−>dst = iph−>dst();
588 iph−>dst() = mixh−>get next dst(here .addr , here .port );
589 Scheduler:: instance() .schedule(this, p, delay);
590 }
591
592 int
593 MixAgent::sendOutPacketWithoutRoute(Packet ∗p, bool retry)
594 /∗ obtain a mix route to p’s destination and send it off .



114 Source Code

595 this should be a retry if the packet is already in the sendbuffer ∗/
596 {
597 hdr ip ∗iph = hdr ip :: access(p);
598 hdr mix ∗mixh = hdr mix::access(p);
599 hdr cmn ∗ch = hdr cmn::access(p);
600 ns addr t mix;
601 Path route;
602 God ∗god ;
603
604 if (iph−>daddr() == here .addr ) {
605 // it doesn’t need a route, because it ’s for us
606 target −>recv(p, (Handler∗)0);
607 return 0;
608 }
609
610 if (strcmp(mix alg , ”Closest MIX”) == 0) {
611 if (closest mix count == 0) {
612 if (use god ) {
613 // use god info to build mix list
614 god = God::instance();
615 for(int i = MAX NODE NUM; i < god −>nodes(); i++) {
616 mix.addr = i;
617 mix.port = 250;
618 int d = god −>MinHops(here .addr , i);
619 updateMixList(mix, 1, d,

Scheduler::instance() .clock()+1000);
620 }
621 } else {
622 // I can only wait for MADV
623 if (! retry) {
624 stickPacketInSendBuffer(p);
625 }
626 return −1;
627 }
628 }
629
630 mix = selectMix();
631 mixh−>init();
632 mixh−>appendToMixRoute(mix.addr );
633
634 } else {
635 int dest = iph−>daddr();
636 if (! route cache[dest ]. findRoute(route)) {
637 getRouteForPacket(p, retry);
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638 return −1;
639 } else {
640 mixh−>init();
641 mixh−>installMixRoute(route);
642 }
643 }
644
645 assert (mixh−>mix route .len > 0);
646 ch−>size() += mixh−>mix route .len ∗ IP HDR LEN;
647 dsr agent −>trace(”%.9f %d −> %d MixRoute %s”,

Scheduler::instance().clock(),
648 iph−>saddr(), iph−>daddr(), route.dump());
649 sendOutPacketWithRoute(p, 0.0);
650 return 0;
651 }
652
653 void
654 MixAgent::getRouteForPacket(Packet∗ p, bool retry)
655 /∗ try to obtain a route for packet
656 pkt is freed or handed off as needed, unless retry == true
657 in which case it is not touched ∗/
658 {
659 hdr ip ∗iph = hdr ip::access(p);
660 Entry ∗e = request table.getEntry(ID(iph−>daddr(), ::IP));
661 Time time = Scheduler::instance().clock() ;
662
663 if (BackOffTest(e, time)) {
664 // it ’s time to start another route request cycle
665
666 if (closest mix count > 0) {
667 sendRouteRequest(iph−>daddr());
668 }
669 }
670
671 if (! retry) {
672 stickPacketInSendBuffer(p);
673 }
674 }
675
676 void
677 MixAgent::sendRouteRequest(nsaddr t target)
678 /∗ send a route request to ”target” node ∗/
679 {
680 if (closest mix count == 0)
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681 return;
682
683
684 Packet ∗rrq = allocpkt();
685 hdr ip ∗rriph = hdr ip::access(rrq) ;
686 hdr mix ∗rrmixh = hdr mix::access(rrq);
687 hdr cmn ∗rrcmh = hdr cmn::access(rrq);
688
689 rrmixh−>init();
690 rrmixh−>type = RREQ;
691 rrmixh−>seqno = route request num++;
692 ns addr t mix = selectMix();
693 rrmixh−>appendToMixRoute(mix.addr );
694 rriph−>daddr() = target;
695 rriph−>dport() = here .port ;
696 rrcmh−>size() = rrmixh−>size();
697 rrcmh−>timestamp() = Scheduler::instance().clock();
698 sendOutPacketWithRoute(rrq, 0.0);
699 //God::instance()−>LogControl mix(RREQ, rrcmh−>size());
700 }
701
702 void
703 MixAgent::handleMixAdvertisement (Packet ∗p)
704 {
705 Scheduler & s = Scheduler::instance() ;
706 hdr cmn ∗ch = hdr cmn::access(p);
707 hdr mix ∗mixh = hdr mix::access(p);
708 hdr ip ∗iph = hdr ip::access(p);
709 double now = Scheduler::instance().clock();
710 MixEntry ∗m;
711
712 if (mix ) {
713 Packet:: free (p);
714 return;
715 }
716
717 if (updateMixList(iph−>src(), mixh−>seqno ,
718 mixh−>hop count , mixh−>lifetime +now) < 0)
719 {
720 Packet:: free (p);
721 } else {
722 // retransmit after certain delay
723 // first delete unsent old MADVs in queue
724 Packet∗ r;
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725 while(r = dsr agent −>ifq−>prq get MADV(iph−>src(),
mixh−>seqno )) {

726 Packet:: free (r) ;
727 }
728
729 int index = iph−>src().addr − MAX NODE NUM;
730 if ( mix list [index ]. reTx event) {
731 s .cancel( mix list [index ]. reTx event);
732 Packet:: free ( mix list [index ].pkt);
733 } else {
734 mix list [index]. reTx event = new Event;
735 }
736
737 mix list [index].pkt = p;
738 s .schedule(reTx handler, mix list [index ]. reTx event,

mix list [index].wst ∗ 2);
739
740 if (strcmp(mix alg , ”Closest MIX”) == 0) {
741 // see if the finding of the closest mix allows us to send out
742 // any of the packets we have waiting
743 for (int c = 0; c < MIX SEND BUF SIZE; c++)
744 {
745 if (send buf[c ]. p == 0) continue;
746
747 mixh = hdr mix::access(send buf[c].p);
748 mixh−>init();
749 ns addr t mix = selectMix();
750 mixh−>appendToMixRoute(mix.addr );
751 ch = hdr cmn::access(send buf[c].p);
752 ch−>size() += IP HDR LEN; // via one mix
753 iph = hdr ip::access(send buf[c ]. p);
754 dsr agent −>trace(”MixRoute %d”, mix.addr );
755 dsr agent −>trace(”%.9f %d −> %d MixRoute %d”,

Scheduler::instance().clock(),
756 iph−>saddr(), iph−>daddr(),

mix.addr );
757 sendOutPacketWithRoute(send buf[c].p, 0.0);
758 send buf[c ]. p = 0;
759 }
760 }
761 }
762 }
763
764
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765 void
766 MixAgent::handleRouteRequest(Packet ∗p)
767 {
768 assert (!mix );
769
770 register = 1;
771
772 sendRegistration();
773
774 Packet:: free (p);
775 }
776
777 void
778 MixAgent::sendRegistration()
779 {
780 Packet ∗rrp;
781 hdr ip ∗rriph;
782 hdr mix ∗rrmixh;
783 hdr cmn ∗rrcmh;
784
785 if (closest mix count == 0)
786 return;
787
788 if ( register at all closest mix ) {
789 for(int i = 0; i < MAX MIX NUM; i++) {
790 if ( mix list [ i ]. closest mix == 1) {
791 rrp = allocpkt();
792 rriph = hdr ip::access(rrp) ;
793 rrmixh = hdr mix::access(rrp);
794 rrcmh = hdr cmn::access(rrp);
795
796 rrmixh−>init();
797 rrmixh−>type = RREG;
798 rrmixh−>seqno = registration number;
799 rriph−>dst() = mix list [i ]. addr port ;
800 rrcmh−>size() = rrmixh−>size();
801 rrcmh−>timestamp() = Scheduler::instance().clock();
802 sendOutPacketWithRoute(rrp, 0.0);
803 //God::instance()−>LogControl mix(RREG, rrcmh−>size());
804 }
805 }
806 registration number++;
807 } else {
808 rrp = allocpkt();
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809 rriph = hdr ip::access(rrp) ;
810 rrmixh = hdr mix::access(rrp);
811 rrcmh = hdr cmn::access(rrp);
812
813 rrmixh−>init();
814 rrmixh−>type = RREG;
815 rrmixh−>seqno = registration number++;
816
817 int index = last registration − MAX NODE NUM;
818 if ( mix list [index]. closest mix == 1) {
819 // use the old info
820 rriph−>daddr() = last registration;
821 rriph−>dport() = 250;
822 } else {
823 rriph−>dst() = selectMix();
824 last registration = rriph−>daddr();
825 }
826
827 rrcmh−>size() = rrmixh−>size();
828 rrcmh−>timestamp() = Scheduler::instance().clock();
829 sendOutPacketWithRoute(rrp, 0.0);
830 //God::instance()−>LogControl mix(RREG, rrcmh−>size());
831 }
832 }
833
834 void
835 MixAgent::handleRegistration(Packet ∗p)
836 {
837 hdr cmn ∗ch = hdr cmn::access(p);
838 hdr mix ∗mixh = hdr mix::access(p);
839 hdr ip ∗iph = hdr ip::access(p);
840 int n = iph−>saddr();
841 bool changed = false;
842
843 assert (mix );
844
845 if ( registration table [n ]. seqno < mixh−>seqno ) {
846 registration table [n ]. seqno = mixh−>seqno ;
847 registration count++;
848 changed = true;
849 }
850
851 if (changed) {
852 // if ( route advertise timer . status() != TIMER PENDING)
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853 route advertise timer .resched(0.0) ;
854 }
855
856 Packet:: free (p);
857 }
858
859 bool
860 MixAgent::ignoreRouteAdvertisement(Path& route, int seq)
861 {
862 /∗
863 int i ;
864 int l = route.length() ;
865 int index = route[0].addr − MAX NODE NUM;
866
867 if (radv cache[index ]. seqno > seq)
868 return true;
869
870 if (radv cache[index ]. seqno < seq) {
871 //delete all
872 for(i = 0; i < MAX CACHE SIZE; i++) {
873 if (radv cache[index ]. routes [ i ]. length() == 0)
874 break;
875
876 radv cache[index]. routes [ i ]. reset () ;
877 }
878 radv cache[index]. seqno = seq;
879 radv cache[index].mixroute found = false;
880 }
881
882 if ( l >= min mixroute len ) {
883 if (!radv cache[index].mixroute found) {
884 radv cache[index].mixroute found = true;
885 return false ;
886 } else
887 return true;
888 } else {
889 for(i = 0; i < MAX CACHE SIZE; i++) {
890 if (radv cache[index]. routes [ i ]. length() == 0)
891 break;
892
893 if (radv cache[index]. routes [ i ] == route) {
894 return true;
895 }
896 }
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897
898 assert(i < MAX CACHE SIZE);
899 radv cache[index ]. routes [ i ] = route;
900 return false ;
901 }
902 ∗/
903 }
904
905 void
906 MixAgent::handleRouteAdvertisement(Packet ∗p)
907 {
908 hdr cmn ∗ch = hdr cmn::access(p);
909 hdr mix ∗mixh = hdr mix::access(p);
910 hdr ip ∗iph = hdr ip::access(p);
911 int index = iph−>saddr() − MAX NODE NUM;
912 int l ;
913 double latency = Scheduler::instance().clock() − ch−>timestamp();
914 Path route;
915
916 // retrieve mix route
917 mixh−>copyOutMixRoute(route);
918 route.reverseInPlace() ;
919
920 if (!mix && route.length() >= min mixroute len ) {
921
922 for(int i = 1; i < route.length(); i++) {
923 if (route[ i ] == route[i−1])
924 printf (”%s \n”, route.dump());
925
926 assert (!( route[ i ] == route[i−1]));
927 }
928
929 for(int i = 0; i < MAX NODE NUM; i++) {
930 if (mixh−>registration table[i ].seqno > 0) {
931 acceptRoute(route, i , mixh−>registration table[i ].seqno,
932 mixh−>seqno , latency);
933 /∗
934 printf (”%.9f %d −> %d add Route %s dseq %d rseq %d lt %f\n”,
935 Scheduler:: instance() . clock() , here .addr , i , route.dump(),
936 mixh−>registration table[i ]. seqno, mixh−>seqno , latency);
937 ∗/
938 }
939 }
940 }



122 Source Code

941
942 /∗
943 mixh−>copyOutMixRoute(route);
944 if (ignoreRouteAdvertisement(route, mixh−>seqno )) {
945 Packet:: free (p);
946 return;
947 }
948 ∗/
949
950 l = mixh−>mix route .len ;
951 if ( l >= min mixroute len )
952 l = min mixroute len ;
953
954 if (dup check[index][ l ] < mixh−>seqno ) {
955 for(int j = 1; j <= l; j++) {
956 if (dup check[index][ j ] < mixh−>seqno )
957 dup check[index][ j ] = mixh−>seqno ;
958 }
959 } else {
960 Packet:: free (p);
961 return;
962 }
963
964 if (mix ) {
965 for(int i = 0; i < MAX NODE NUM; i++) {
966 if ( registration table [ i ]. seqno > 0 &&
967 registration table [ i ]. seqno <

mixh−>registration table[i].seqno) {
968 registration table [ i ]. seqno = 0;
969 registration count−−;
970 } else if (mixh−>registration table[i ].seqno > 0 &&
971 registration table [ i ]. seqno >

mixh−>registration table[i].seqno){
972 // intermediate MIX may modify RADV packet
973 mixh−>registration table[i ].seqno = 0;
974 }
975 }
976
977 mixh−>appendToMixRoute(here .addr );
978 if (++l >= min mixroute len )
979 l = min mixroute len ;
980 dup check[index][ l ] = mixh−>seqno ;
981
982 // mixh−>copyOutMixRoute(route);
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983 // ignoreRouteAdvertisement(route, mixh−>seqno );
984 }
985
986 // retransmit
987 ch−>direction() = hdr cmn::DOWN;
988 ch−>next hop() = IP BROADCAST;
989 ch−>addr type() = NS AF INET;
990 Scheduler:: instance() .schedule(this, p, Random::uniform(0.01));
991 //God::instance()−>LogControl mix(RADV, ch−>size());
992 }
993
994 void
995 MixAgent::acceptRoute(Path &reply route, nsaddr t dest, int RREG seqno,

int RADV seq,
996 double latency)
997 /∗ − enter the embedded mix route into our cache
998 − see if any packets are waiting to be sent out with this mix route
999 − free the pkt ∗/

1000 {
1001 // add the new route into our cache
1002 assert (reply route .length() > 0);
1003 int res = route cache[dest ]. addRoute(reply route, RREG seqno,

RADV seq, latency);
1004 if (res == −1)
1005 return;
1006
1007 // back down the route request counters
1008 Entry ∗e = request table.getEntry(ID(dest,::IP));
1009 e−>rt reqs outstanding = 0;
1010 e−>last rt req = 0.0;
1011
1012 // see if the addtion of this route allows us to send out
1013 // any of the packets we have waiting
1014 Time delay = 0.0;
1015 for (int c = 0; c < MIX SEND BUF SIZE; c++)
1016 {
1017 if (send buf[c ]. p == 0) continue;
1018
1019 hdr ip ∗iph = hdr ip::access(send buf[c ]. p);
1020 hdr mix ∗mixh = hdr mix::access(send buf[c].p);
1021 hdr cmn ∗ch = hdr cmn::access(send buf[c].p);
1022 if (iph−>daddr() == dest) {
1023 /∗ we need to spread out the rate at which we send packets
1024 in to the link layer to give ARP time to complete. ∗/
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1025
1026 mixh−>init();
1027 mixh−>installMixRoute(reply route);
1028 dsr agent −>trace(”%.9f %d −> %d MixRoute %s”,

Scheduler::instance().clock(),
1029 iph−>saddr(), iph−>daddr(), reply route.dump());
1030 ch−>size() += mixh−>mix route .len ∗ IP HDR LEN;
1031 sendOutPacketWithRoute(send buf[c].p, delay);
1032 delay += arp timeout;
1033 send buf[c ]. p = 0;
1034 }
1035 }
1036 }
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A.3 hdr mix.h

1 #ifndef HdrMix h
2 #define HdrMix h
3 #include <dsr/path.h>
4 #include <ip.h>
5
6 #define MIX HDR SZ 4 // the size of mix options header
7 #define MAX NODE NUM 50
8 #define MAX MIX NUM 10
9 #define DATA PACKET SIZE 512

10 #define MAX MR LEN 16
11
12 #define MADV 1 // mix advertisement
13 #define RREQ 2 // mix route request
14 #define RADV 3 // mix route advertisement
15 #define RREG 4 // node registration
16 #define MSOL 6 // mix solicitation
17 #define MREP 7 // mix reply
18
19 struct MixRoute {
20 nsaddr t addrs [MAX MR LEN];
21 int len ;
22 int cur index ;
23 };
24
25 struct RegEntry {
26 int node;
27 int seqno;
28 };
29
30 struct hdr mix {
31 int valid ; /∗ is this header actually in the packet?
32 and initialized ? ∗/
33
34 // the two fields used in data packet forwarding
35 ns addr t src ; // orginal source
36 ns addr t dst ; // saved packet destination
37 MixRoute mix route ;
38 int type ;
39 int seqno ;
40 double rq latency ;
41 int hop count ; // MADV
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42 Time lifetime ; // MADV
43 RegEntry registration table [MAX NODE NUM];
44 int registration count ;
45
46 static int offset ;
47 inline static int& offset () { return offset ; }
48 inline static hdr mix∗ access(const Packet∗ p) {
49 return (hdr mix∗) p−>access(offset );
50 }
51
52 inline void copyOutMixRoute(Path& p) {
53 p. reset () ;
54 p.setLength(mix route .len ) ;
55 for (int i = 0 ; i < mix route .len ; i++)
56 p[ i ] = ID(mix route .addrs [i ], :: IP);
57 }
58
59 inline void installMixRoute(const Path p) {
60 mix route . len = p.length();
61 mix route .cur index = 0;
62 for (int i = 0 ; i < p.length() ; i++)
63 mix route .addrs [ i ] = p[i ]. getNSAddr t();
64 }
65
66 inline char∗ dump path() {
67 static char buf[100];
68 char ∗ptr = buf;
69
70 if ( mix route . len > 0 ) {
71 ∗ptr++ = ’[’;
72 for (int i = 0 ; i < mix route .len ; i++)
73 ptr += sprintf(ptr, ”%d ”, mix route .addrs [i ]) ;
74 ∗ptr++ = ’]’;
75 ∗ptr++ = ’\0’;
76 return buf;
77 }
78 }
79
80 inline ns addr t get next dst(int my addr, int mixagent port) {
81 if (mix route .addrs [mix route .cur index ] == my addr)
82 mix route .cur index ++;
83
84 if (mix route .cur index == mix route .len ) {
85 // this is the last mix
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86 return dst ;
87 } else {
88 ns addr t tmp;
89 tmp.addr =

mix route .addrs [mix route .cur index ];
90 tmp.port = mixagent port;
91 return tmp;
92 }
93 }
94
95 inline void appendToMixRoute(const nsaddr t& a) {
96 assert (mix route . len < MAX MR LEN);
97 mix route .addrs [mix route . len ++] = a;
98 }
99

100 inline void init () {
101 valid = 1;
102 type = 0x0000;
103
104 mix route . len = 0;
105 mix route .cur index = 0;
106 bzero(mix route .addrs , sizeof(nsaddr t) ∗ MAX MR LEN);
107 bzero( registration table , sizeof(RegEntry) ∗

MAX NODE NUM);
108 registration count = 0;
109 }
110
111 inline int size () {
112 int sz ;
113
114 if (type == MADV || type == RREG || type == MSOL

|| type == MREP) {
115 sz = MIX HDR SZ + 4;
116 } if (type == RADV) { // variable size
117 sz = MIX HDR SZ + 4 + registration count ∗ 6;
118 } else { // RREQ
119 sz = DATA PACKET SIZE + mix route .len ∗

IP HDR LEN;
120 }
121
122 sz = ((sz+3)&(˜3)); // align ...
123 assert (sz >= 0);
124 return sz;
125 }
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126 };
127
128 #endif
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A.4 hdr mix.cc

1 #include <stdio.h>
2 #include ”hdr mix.h”
3
4 int hdr mix:: offset ;
5 static class MIXHeaderClass : public PacketHeaderClass
6 {
7 public:
8 MIXHeaderClass() :

PacketHeaderClass(”PacketHeader/MIX”,sizeof(hdr mix))
9 {

10 bind offset (&hdr mix::offset ) ;
11 }
12 } class mixhdr;
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A.5 mix routecache.h

1 #ifndef Mix RouteCache h
2 #define Mix RouteCache h
3 #include <dsr/path.h>
4 #include ”hdr mix.h”
5
6 #define MAX CACHE SIZE 50 // should be increased if you allow

multi−route
7
8 struct a {
9 Path ∗routes ;

10 int route seqno ;
11 double ∗latency ; // route acquisition latency
12 double ∗weight ;
13 };
14
15 class MixRouteCache {
16 public:
17 MixRouteCache();
18 ˜MixRouteCache();
19
20 int addRoute(const Path& route, int dest seqno, int route seqno, double

latency);
21 // add this route to the cache (presumably we did a route request
22 // to find this route and don’t want to lose it )
23
24 bool findRoute(Path& route);
25 // if there is a cached path from us to dest returns true and fills in
26 // the route accordingly . returns false otherwise
27
28 void deleteAll() ;
29
30 int seqno ;
31 int route count ;
32 private:
33 struct a cache [MAX MIX NUM];
34 double sum ; // sum of 1/latency [i ]
35 };
36
37 #endif
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A.6 mix routecache.cc

1 #include ”mix routecache.h”
2 #include ”random.h”
3
4 /∗===============================================================
5 Constructors
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
7 MixRouteCache::MixRouteCache()
8 {
9 for(int i = 0; i < MAX MIX NUM; i++) {

10 cache [ i ]. routes = 0;
11 cache [ i ]. latency = 0;
12 cache [ i ]. weight = 0;
13 cache [ i ]. route seqno = 0;
14 }
15
16 seqno = 0;
17 sum = 0.0;
18 route count = 0;
19 }
20
21 MixRouteCache::˜MixRouteCache()
22 {
23 for(int i = 0; i < MAX MIX NUM; i++) {
24 if (cache [ i ]. routes ) {
25 delete[] cache [ i ]. routes ;
26 delete[] cache [ i ]. latency ;
27 delete[] cache [ i ]. weight ;
28 }
29 }
30 }
31
32 int MixRouteCache::addRoute(const Path& route, int dest seqno, int
33 route seqno, double latency)
34 {
35 int i ;
36 int l = route.length();
37 int index = route[l−1].addr − MAX NODE NUM;
38
39 if (cache [index]. routes == 0) {
40 cache [index ]. routes = new Path[MAX CACHE SIZE];
41 cache [index ]. latency = new double[MAX CACHE SIZE];
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42 cache [index].weight = new double[MAX CACHE SIZE];
43
44 for (int n = 0; n < MAX CACHE SIZE ; n++) {
45 cache [index ]. routes [n ]. reset () ;
46 cache [index ]. latency [n] = 0;
47 cache [index ].weight [n] = 0;
48 }
49 }
50
51 if (dest seqno < seqno )
52 return −1;
53
54 if (dest seqno > seqno ) {
55 deleteAll () ;
56 seqno = dest seqno;
57 }
58
59 if (cache [index ]. route seqno > 0 && cache [index].route seqno <

route seqno) {
60 for(i = 0; i < MAX CACHE SIZE; i++) {
61 if (cache [index ]. routes [ i ]. length() == 0)
62 break;
63
64 cache [index ]. routes [ i ]. reset () ;
65 sum −= 1/cache [index].latency [i ];
66 cache [index ]. latency [ i ] = 0;
67 cache [index ].weight [ i ] = 0;
68 route count −−;
69 }
70 }
71
72 cache [index]. route seqno = route seqno;
73
74 // insert
75 for(i = 0; i < MAX CACHE SIZE; i++) {
76 if (cache [index ]. routes [ i ] == route)
77 return 0;
78 if (cache [index ]. routes [ i ]. length() == 0) {
79 CopyIntoPath(cache [index].routes [i ], route, 0,

route.length() − 1);
80 cache [index ]. latency [ i ] = latency;
81 sum += 1/cache [index].latency [i ];
82 route count ++;
83 break;
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84 }
85 }
86
87 assert ( i < MAX CACHE SIZE);
88
89 // calculate weight
90 for(int s = 0; s < MAX MIX NUM; s++) {
91 if (cache [s ]. route seqno == 0)
92 continue;
93
94 for(i = 0; i < MAX CACHE SIZE; i++) {
95 if (cache [s ]. latency [ i ] == 0)
96 break;
97
98 cache [s ]. weight [ i ] = (1/cache [s ]. latency [ i ])/sum ;
99 }

100 }
101 return 0;
102 }
103
104 bool MixRouteCache::findRoute(Path& route)
105 {
106 if (route count == 0) return false;
107
108 double dice = Random::uniform(1.0);
109 double l = 0.0;
110
111 for(int s = 0; s < MAX MIX NUM; s++) {
112 if (cache [s ]. route seqno == 0)
113 continue;
114
115 for (int n = 0 ; n < MAX CACHE SIZE; n++) {
116 if (cache [s ]. latency [n] == 0)
117 break;
118
119 if (dice <= l + cache [s].weight [n]) {
120 route = cache [s ]. routes [n ];
121 return true;
122 } else
123 l += cache [s].weight [n ];
124 }
125 }
126 return false;
127 }
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128
129 void MixRouteCache::deleteAll()
130 {
131 for(int s = 0; s < MAX MIX NUM; s++) {
132 if (cache [s ]. route seqno == 0)
133 continue;
134
135 for (int n = 0 ; n < MAX CACHE SIZE; n++) {
136 if (cache [s ]. latency [n] == 0)
137 break;
138
139 cache [s ]. routes [n ]. reset () ;
140 cache [s ]. latency [n] = 0;
141 cache [s ]. weight [n] = 0;
142 }
143 cache [s ]. route seqno = 0;
144 }
145
146 sum = 0;
147 route count = 0;
148 }
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Files for TCL script

B.1 mixroute.tcl

1 #default options
2 set opt(chan) Channel/WirelessChannel ;#channel type
3 set opt(prop) Propagation/TwoRayGround ;#radio−propagation

model
4 set opt(netif ) Phy/WirelessPhy ;#network interface

type
5 set opt(mac) Mac/802 11 ;#MAC type
6 set opt(ifq ) CMUPriQueue ;#interface queue type
7 set opt( ifqlen ) 50 ;#max packet in ifq
8 set opt( ll ) LL ;#link layer type
9 set opt(ant) Antenna/OmniAntenna ;#antenna model

10 set opt(energy) EnergyModel ;#energy model is a
node attribute. It initiates the node with an energy level.

11
12 set opt(x) 1000 ;#X dimension of

topography
13 set opt(y) 1000 ;#Y dimension of

topography
14 set opt(sc) ”scen−1000x1000−n50” ;#Node scenario file
15 set opt(ms) ”scen−1000x1000−mix5” ;#Mix scenario file
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16 set opt(cp) ”cbr−n50−mc10−r4”
17
18 set opt(nn) 50 ;# number of nodes
19 set opt(seed) 0.0 ;# generates a new random number

each time.
20 set opt(stop) 300 ;#300
21 set opt(tr) ”mixroute.tr”
22
23 # may be changed by command
24 set opt(nm) 5 ;# number of mixes
25 set opt(speed) 0 ;# speed of movement
26 set opt(mc) 10 ;# Max number of connections
27 set opt(run) 0 ;# run
28
29 #

======================================================================
30 #definition of variables
31
32 Simulator set AgentTrace ON
33 set RouterTrace OFF
34 Simulator set MacTrace OFF
35 Simulator set mixagent port 250
36 Simulator set mix alg ”MIX Path”
37 Simulator set min mixroute len 1
38 Simulator set use−god OFF
39
40 #datarates
41 Mac/802 11 set basicRate 2Mb
42 Mac/802 11 set dataRate 2Mb
43
44 #

======================================================================
45 proc usage { argv0 } {
46 puts ”Usage: $argv0 −nm mixes −speed speed −mc conns −run

run#”
47 }
48
49 proc getopt {argc argv} {
50 global opt
51 lappend optlist nm speed mc run
52
53 for {set i 0} {$i < $argc} {incr i} {
54 set arg [lindex $argv $i]
55 if {[string range $arg 0 0] != ”−”} continue



B.1 mixroute.tcl 137

56
57 set name [string range $arg 1 end]
58 set opt($name) [lindex $argv [expr $i+1]]
59 }
60 }
61
62 #

======================================================================
63 # Main Program
64 #

======================================================================
65 getopt $argc $argv
66 if { $opt(x) == 0 || $opt(y) == 0 } {
67 usage $argv0
68 exit 1
69 }
70
71 if {$opt(seed) > 0} {
72 puts ”Seeding Random number generator with $opt(seed)\n”
73 ns−random $opt(seed)
74 }
75
76 source mix.tcl
77
78 #Remove all packet headers and then add the necessary
79 remove−all−packet−headers
80 add−packet−header RTP IP SR LL ARP Mac MIX
81
82 #
83 # Initialize Global Variables
84 #
85 set ns [new Simulator]
86 set chan [new $opt(chan)]
87 set prop [new $opt(prop)]
88 set topo [new Topography]
89 set tracefd [open $opt(tr) w]
90 $ns trace−all $tracefd
91
92 #Open the NAM trace file
93 set namfile [open out.nam w]
94 $ns namtrace−all $namfile
95
96
97 $topo load flatgrid $opt(x) $opt(y)
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98
99 $prop topography $topo

100
101 #
102 # Create God
103 #
104
105 #nn+nm = 55
106 set god [create−god [expr $opt(nn)+$opt(nm)]]
107
108 #$god log−parameter $opt(run) $opt(mc) $opt(speed) $opt(nm) 4
109
110 # create mobile nodes
111 puts ”Creating mobile nodes...”
112 for {set i 0} {$i < $opt(nn) } {incr i} {
113 dsr−create−mobile−node $i
114 $god new node $node ($i)
115 $node ($i) attach−mix−agent
116 $ns at 0.0 ”$node ($i) start−mix”
117 }
118 puts ”Creating mixes...”
119 # create mixes
120 for {set i 0} { $i < $opt(nm) } {incr i} {
121 set m [expr $opt(nn) + $i]
122 dsr−create−mobile−node $m
123 $god new node $node ($m)
124 $node ($m) attach−mix−agent
125 $node ($m) set−as−mix
126 $ns at 0.0 ”$node ($m) start−mix”
127 set mixnode ($i) $node ($m)
128 }
129
130 #
131 # Source the Connection and Movement scripts
132 #
133 if { $opt(cp) == ”” } {
134 puts ”∗∗∗ NOTE: no connection pattern specified.”
135 set opt(cp) ”none”
136 } else {
137 puts ”Loading connection pattern...”
138 source $opt(cp)
139 }
140
141 if { $opt(sc) == ”” } {
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142 puts ”∗∗∗ NOTE: no node scenario file specified.”
143 set opt(sc) ”none”
144 } else {
145 puts ”Loading node scenario file...”
146 source $opt(sc)
147 }
148
149 if { $opt(nm) == 0 } {
150 puts ”∗∗∗ NOTE: no mix configured.”
151 set opt(ms) ”none”
152 } else {
153 puts ”Loading mix scenario file...”
154 source $opt(ms)
155 puts ”Load complete...”
156 }
157
158 #
159 # Tell all the nodes when the simulation ends
160 #
161 for {set i 0} {$i < [expr $opt(nn) + $opt(nm)] } {incr i} {
162 $ns at $opt(stop).000000001 ”$node ($i) reset−mix”;
163 $ns at $opt(stop).000000002 ”$node ($i) reset”;
164 }
165 #$ns at $opt(stop).00000001 ”puts \”NS EXITING...\” ; finish”
166 $ns at $opt(stop).00000001 ”finish”
167
168 proc finish {} {
169 puts ” finito... ”
170 global ns tracefd namfile opt god
171
172 $ns flush−trace
173 close $tracefd
174 close $namfile
175 exec nam out.nam &
176 $god show−stats−mix
177 $ns halt
178 }
179 #puts $tracefd ”M 0.0 nn $opt(nn) nm $opt(nm) x $opt(x) y $opt(y)”
180 #puts $tracefd ”M 0.0 sc $opt(sc) ms $opt(ms)”
181 #puts $tracefd ”M 0.0 cp $opt(cp) seed $opt(seed)”
182
183 if {[Simulator set use−god] == ”ON”} {
184 $god compute route
185 }
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186
187 puts ”Starting Simulation...”
188 $ns run
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B.2 mix.tcl

1 SRNode instproc attach−null−mix−agent {} {
2 $self instvar entry point mixagent
3
4 set mixagent [new Agent/NullMixAgent]
5 if { [Simulator set AgentTrace ] == ”ON” } {
6 # do not want send trace after mix agent
7 Simulator set AgentTrace OFF
8 $self attach $mixagent [Simulator set mixagent port ]
9 Simulator set AgentTrace ON

10 }
11 set entry point $mixagent
12 }
13
14 SRNode instproc mix−agent {} {
15 $self instvar mixagent
16 return $mixagent
17 }
18
19 SRNode instproc start−mix {} {
20 $self instvar mixagent
21 $mixagent start
22 }
23
24 SRNode instproc reset−mix {} {
25 $self instvar mixagent
26 $mixagent reset
27 }
28
29 SRNode instproc attach−closest−mix−agent {} {
30 global RouterTrace
31 $self instvar mixagent entry point dsr agent
32
33 set mixagent [new Agent/ClosestMixAgent]
34 if { [Simulator set AgentTrace ] == ”ON” } {
35 Simulator set AgentTrace OFF
36 $self attach $mixagent [Simulator set mixagent port ]
37 Simulator set AgentTrace ON
38 } else {
39 $self attach $mixagent [Simulator set mixagent port ]
40 }
41
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42 # dsragent will pass received MSOL’s directly to the ClosestMix agent
43 $dsr agent port−dmux $mixagent
44
45 $mixagent dsr−agent $dsr agent
46 set drpT [cmu−trace Drop ”MIX” $self]
47 $mixagent drop−target $drpT
48
49 set entry point $mixagent
50 }
51
52 SRNode instproc attach−mix−agent {} {
53 global RouterTrace
54 $self instvar mixagent entry point dsr agent
55
56 set mixagent [new Agent/MixAgent]
57 if { [Simulator set AgentTrace ] == ”ON” } {
58 Simulator set AgentTrace OFF
59 $self attach $mixagent [Simulator set mixagent port ]
60 Simulator set AgentTrace ON
61 } else {
62 $self attach $mixagent [Simulator set mixagent port ]
63 }
64
65 # dsragent will pass received MADV’s, RADV’s directly to the

MixAgent
66 $dsr agent port−dmux $mixagent
67
68 $mixagent dsr−agent $dsr agent
69 set drpT [cmu−trace Drop ”MIX” $self]
70 $mixagent drop−target $drpT
71
72 set entry point $mixagent
73 }
74
75 SRNode instproc set−as−mix {} {
76 $self instvar mixagent dsr agent
77 $mixagent set−as−mix
78 # $dsr agent no−rreq−forwarding
79 }
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B.3 cbr-n50-mc10-r4

1 #
2 # nodes: 50, max conn: 10, send rate: 0.25, seed: 426386
3 #
4 #
5 # 0 connecting to 1 at time 136.13853299810484
6 #
7 set source (0) [new Agent/UDP]
8 $ns attach−agent $node (0) $source (0)
9 set dest (0) [new Agent/UDP]

10 $ns attach−agent $node (1) $dest (0)
11 set cbr (0) [new Application/Traffic/CBR]
12 $cbr (0) set packetSize 512
13 $cbr (0) set interval 0.25
14 $cbr (0) set random 1
15 $cbr (0) set maxpkts 10000
16 $cbr (0) attach−agent $source (0)
17 $ns connect $source (0) $dest (0)
18 $ns at 136.13853299810484 ”$cbr (0) start”
19 #
20 # 2 connecting to 3 at time 171.17716538308989
21 #
22 set source (1) [new Agent/UDP]
23 $ns attach−agent $node (2) $source (1)
24 set dest (1) [new Agent/UDP]
25 $ns attach−agent $node (3) $dest (1)
26 set cbr (1) [new Application/Traffic/CBR]
27 $cbr (1) set packetSize 512
28 $cbr (1) set interval 0.25
29 $cbr (1) set random 1
30 $cbr (1) set maxpkts 10000
31 $cbr (1) attach−agent $source (1)
32 $ns connect $source (1) $dest (1)
33 $ns at 171.17716538308989 ”$cbr (1) start”
34 #
35 # 5 connecting to 6 at time 21.698187487990683
36 #
37 set source (2) [new Agent/UDP]
38 $ns attach−agent $node (5) $source (2)
39 set dest (2) [new Agent/UDP]
40 $ns attach−agent $node (6) $dest (2)
41 set cbr (2) [new Application/Traffic/CBR]
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42 $cbr (2) set packetSize 512
43 $cbr (2) set interval 0.25
44 $cbr (2) set random 1
45 $cbr (2) set maxpkts 10000
46 $cbr (2) attach−agent $source (2)
47 $ns connect $source (2) $dest (2)
48 $ns at 21.698187487990683 ”$cbr (2) start”
49 #
50 # 6 connecting to 7 at time 143.28203655000871
51 #
52 set source (3) [new Agent/UDP]
53 $ns attach−agent $node (6) $source (3)
54 set dest (3) [new Agent/UDP]
55 $ns attach−agent $node (7) $dest (3)
56 set cbr (3) [new Application/Traffic/CBR]
57 $cbr (3) set packetSize 512
58 $cbr (3) set interval 0.25
59 $cbr (3) set random 1
60 $cbr (3) set maxpkts 10000
61 $cbr (3) attach−agent $source (3)
62 $ns connect $source (3) $dest (3)
63 $ns at 143.28203655000871 ”$cbr (3) start”
64 #
65 # 6 connecting to 8 at time 91.706512613085351
66 #
67 set source (4) [new Agent/UDP]
68 $ns attach−agent $node (6) $source (4)
69 set dest (4) [new Agent/UDP]
70 $ns attach−agent $node (8) $dest (4)
71 set cbr (4) [new Application/Traffic/CBR]
72 $cbr (4) set packetSize 512
73 $cbr (4) set interval 0.25
74 $cbr (4) set random 1
75 $cbr (4) set maxpkts 10000
76 $cbr (4) attach−agent $source (4)
77 $ns connect $source (4) $dest (4)
78 $ns at 91.706512613085351 ”$cbr (4) start”
79 #
80 # 7 connecting to 8 at time 176.71679477985799
81 #
82 set source (5) [new Agent/UDP]
83 $ns attach−agent $node (7) $source (5)
84 set dest (5) [new Agent/UDP]
85 $ns attach−agent $node (8) $dest (5)
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86 set cbr (5) [new Application/Traffic/CBR]
87 $cbr (5) set packetSize 512
88 $cbr (5) set interval 0.25
89 $cbr (5) set random 1
90 $cbr (5) set maxpkts 10000
91 $cbr (5) attach−agent $source (5)
92 $ns connect $source (5) $dest (5)
93 $ns at 176.71679477985799 ”$cbr (5) start”
94 #
95 # 16 connecting to 17 at time 109.90308117582606
96 #
97 set source (6) [new Agent/UDP]
98 $ns attach−agent $node (16) $source (6)
99 set dest (6) [new Agent/UDP]

100 $ns attach−agent $node (17) $dest (6)
101 set cbr (6) [new Application/Traffic/CBR]
102 $cbr (6) set packetSize 512
103 $cbr (6) set interval 0.25
104 $cbr (6) set random 1
105 $cbr (6) set maxpkts 10000
106 $cbr (6) attach−agent $source (6)
107 $ns connect $source (6) $dest (6)
108 $ns at 109.90308117582606 ”$cbr (6) start”
109 #
110 # 19 connecting to 20 at time 165.99053170810944
111 #
112 set source (7) [new Agent/UDP]
113 $ns attach−agent $node (19) $source (7)
114 set dest (7) [new Agent/UDP]
115 $ns attach−agent $node (20) $dest (7)
116 set cbr (7) [new Application/Traffic/CBR]
117 $cbr (7) set packetSize 512
118 $cbr (7) set interval 0.25
119 $cbr (7) set random 1
120 $cbr (7) set maxpkts 10000
121 $cbr (7) attach−agent $source (7)
122 $ns connect $source (7) $dest (7)
123 $ns at 165.99053170810944 ”$cbr (7) start”
124 #
125 # 19 connecting to 21 at time 176.33500026368301
126 #
127 set source (8) [new Agent/UDP]
128 $ns attach−agent $node (19) $source (8)
129 set dest (8) [new Agent/UDP]
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130 $ns attach−agent $node (21) $dest (8)
131 set cbr (8) [new Application/Traffic/CBR]
132 $cbr (8) set packetSize 512
133 $cbr (8) set interval 0.25
134 $cbr (8) set random 1
135 $cbr (8) set maxpkts 10000
136 $cbr (8) attach−agent $source (8)
137 $ns connect $source (8) $dest (8)
138 $ns at 176.33500026368301 ”$cbr (8) start”
139 #
140 # 20 connecting to 21 at time 141.96586895825615
141 #
142 set source (9) [new Agent/UDP]
143 $ns attach−agent $node (20) $source (9)
144 set dest (9) [new Agent/UDP]
145 $ns attach−agent $node (21) $dest (9)
146 set cbr (9) [new Application/Traffic/CBR]
147 $cbr (9) set packetSize 512
148 $cbr (9) set interval 0.25
149 $cbr (9) set random 1
150 $cbr (9) set maxpkts 10000
151 $cbr (9) attach−agent $source (9)
152 $ns connect $source (9) $dest (9)
153 $ns at 141.96586895825615 ”$cbr (9) start”
154 #
155 #Total sources/connections: 8/10
156 #
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B.4 scen-1000x1000-n50

1 #
2 # nodes: 50, max x: 1000.00, max y: 1000.00
3 #
4 $node (0) set X 376.049994774721
5 $node (0) set Y 484.276860190925
6 $node (0) set Z 0.000000000000
7 $node (1) set X 569.037448232944
8 $node (1) set Y 42.088477582299
9 $node (1) set Z 0.000000000000

10 $node (2) set X 709.706070744168
11 $node (2) set Y 781.497091881790
12 $node (2) set Z 0.000000000000
13 $node (3) set X 560.909762203049
14 $node (3) set Y 453.739032702921
15 $node (3) set Z 0.000000000000
16 $node (4) set X 610.911764919210
17 $node (4) set Y 837.799351257799
18 $node (4) set Z 0.000000000000
19 $node (5) set X 73.390033856297
20 $node (5) set Y 939.924410661747
21 $node (5) set Z 0.000000000000
22 $node (6) set X 486.010539133612
23 $node (6) set Y 792.918200587618
24 $node (6) set Z 0.000000000000
25 $node (7) set X 231.395276992167
26 $node (7) set Y 388.912527797233
27 $node (7) set Z 0.000000000000
28 $node (8) set X 38.999865323299
29 $node (8) set Y 196.331301200416
30 $node (8) set Z 0.000000000000
31 $node (9) set X 307.392090311636
32 $node (9) set Y 456.774696709853
33 $node (9) set Z 0.000000000000
34 $node (10) set X 995.333030361047
35 $node (10) set Y 607.569922547448
36 $node (10) set Z 0.000000000000
37 $node (11) set X 375.474147754401
38 $node (11) set Y 938.651763889838
39 $node (11) set Z 0.000000000000
40 $node (12) set X 870.804638398663
41 $node (12) set Y 832.455659553124
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42 $node (12) set Z 0.000000000000
43 $node (13) set X 41.309215964823
44 $node (13) set Y 199.532856816155
45 $node (13) set Z 0.000000000000
46 $node (14) set X 35.099353944106
47 $node (14) set Y 666.949884436460
48 $node (14) set Z 0.000000000000
49 $node (15) set X 223.061395668604
50 $node (15) set Y 445.685728151033
51 $node (15) set Z 0.000000000000
52 $node (16) set X 766.803851699271
53 $node (16) set Y 901.717277140635
54 $node (16) set Z 0.000000000000
55 $node (17) set X 81.608006724730
56 $node (17) set Y 571.720533053826
57 $node (17) set Z 0.000000000000
58 $node (18) set X 309.499085269824
59 $node (18) set Y 993.136474297472
60 $node (18) set Z 0.000000000000
61 $node (19) set X 464.269705016189
62 $node (19) set Y 920.340705763285
63 $node (19) set Z 0.000000000000
64 $node (20) set X 343.135345581023
65 $node (20) set Y 877.095736431869
66 $node (20) set Z 0.000000000000
67 $node (21) set X 569.987307898086
68 $node (21) set Y 417.623913117166
69 $node (21) set Z 0.000000000000
70 $node (22) set X 99.639702524305
71 $node (22) set Y 757.396693001155
72 $node (22) set Z 0.000000000000
73 $node (23) set X 498.547421697961
74 $node (23) set Y 653.600248030585
75 $node (23) set Z 0.000000000000
76 $node (24) set X 968.489181354118
77 $node (24) set Y 70.585656604221
78 $node (24) set Z 0.000000000000
79 $node (25) set X 694.391625335780
80 $node (25) set Y 284.396593727752
81 $node (25) set Z 0.000000000000
82 $node (26) set X 896.700198881710
83 $node (26) set Y 786.646248917659
84 $node (26) set Z 0.000000000000
85 $node (27) set X 838.051255632812
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86 $node (27) set Y 752.672498942325
87 $node (27) set Z 0.000000000000
88 $node (28) set X 910.885346230155
89 $node (28) set Y 350.562431597380
90 $node (28) set Z 0.000000000000
91 $node (29) set X 996.523481159677
92 $node (29) set Y 385.900160592802
93 $node (29) set Z 0.000000000000
94 $node (30) set X 130.978451865613
95 $node (30) set Y 238.381671622253
96 $node (30) set Z 0.000000000000
97 $node (31) set X 207.528550216448
98 $node (31) set Y 50.846042012790
99 $node (31) set Z 0.000000000000

100 $node (32) set X 831.063104993926
101 $node (32) set Y 586.335105113150
102 $node (32) set Z 0.000000000000
103 $node (33) set X 265.888309177190
104 $node (33) set Y 232.964041283475
105 $node (33) set Z 0.000000000000
106 $node (34) set X 200.543970734148
107 $node (34) set Y 506.729631312136
108 $node (34) set Z 0.000000000000
109 $node (35) set X 978.120392525811
110 $node (35) set Y 90.175106599094
111 $node (35) set Z 0.000000000000
112 $node (36) set X 194.675591656129
113 $node (36) set Y 95.992971669542
114 $node (36) set Z 0.000000000000
115 $node (37) set X 784.599899825822
116 $node (37) set Y 345.331234584771
117 $node (37) set Z 0.000000000000
118 $node (38) set X 101.133219673231
119 $node (38) set Y 486.206004659377
120 $node (38) set Z 0.000000000000
121 $node (39) set X 468.247840505920
122 $node (39) set Y 0.866639469811
123 $node (39) set Z 0.000000000000
124 $node (40) set X 988.846072852608
125 $node (40) set Y 312.952664469870
126 $node (40) set Z 0.000000000000
127 $node (41) set X 710.782262460029
128 $node (41) set Y 922.318473887221
129 $node (41) set Z 0.000000000000
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130 $node (42) set X 271.527901868756
131 $node (42) set Y 19.533130820582
132 $node (42) set Z 0.000000000000
133 $node (43) set X 343.772543013256
134 $node (43) set Y 973.227533146582
135 $node (43) set Z 0.000000000000
136 $node (44) set X 160.165603112999
137 $node (44) set Y 105.201272266420
138 $node (44) set Z 0.000000000000
139 $node (45) set X 896.594692834582
140 $node (45) set Y 887.598395492059
141 $node (45) set Z 0.000000000000
142 $node (46) set X 665.224448630280
143 $node (46) set Y 818.958213865596
144 $node (46) set Z 0.000000000000
145 $node (47) set X 733.636201498176
146 $node (47) set Y 732.096602971687
147 $node (47) set Z 0.000000000000
148 $node (48) set X 617.707240507730
149 $node (48) set Y 975.761592844131
150 $node (48) set Z 0.000000000000
151 $node (49) set X 302.494517974290
152 $node (49) set Y 899.711589361543
153 $node (49) set Z 0.000000000000

B.5 scen-1000x1000-mix5

1 #
2 # mix nodes: 5, max x: 1000.00, max y: 1000.00
3 #
4 $node (50) set X 290.523726592989
5 $node (50) set Y 836.744627459646
6 $node (50) set Z 0.000000000000
7 $node (51) set X 210.612722627690
8 $node (51) set Y 804.680690256316
9 $node (51) set Z 0.000000000000

10 $node (52) set X 214.428505767400
11 $node (52) set Y 897.431510888449
12 $node (52) set Z 0.000000000000
13 $node (53) set X 336.203164637615
14 $node (53) set Y 550.521968982315
15 $node (53) set Z 0.000000000000
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16 $node (54) set X 149.289294623810
17 $node (54) set Y 28.121087665014
18 $node (54) set Z 0.000000000000
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