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ABSTRACT

Toeplitz covariance matrix estimation has many uses in sta-
tistical signal processing due to the stationarity assumption
of many signals. For some applications, further constraints
may exist on the maximum lag at which the correlation func-
tion is non-zero and thereby giving rise to a band-Toeplitz co-
variance matrix. In this paper, an existing EM-algorithm for
Toeplitz estimation is generalized to the case of band-Toeplitz
estimation. In addition, the Cramer-Rao lower-bound for un-
biased band-Toeplitz covariance matrix estimation is derived
and through simulations it is shown that the proposed estima-
tor achieves the bound for medium and large sample-sizes.

Index Terms— Structured covariance matrix estimation,
banded Toeplitz, EM-algorithm, Cramer-Rao lower-bound.

1. INTRODUCTION

Estimation of Toeplitz covariance matrices is inherently con-
nected to signal processing of stationary processes and ap-
plications are numerous, e.g. communications and radar sys-
tems. However, the constraint of stationarity and its result-
ing requirement for a Toeplitz structure in the covariance ma-
trix, makes Maximum-Likelihood (ML) estimation challeng-
ing and no general closed-form solution is known [1, 2]. In
[1], an EM-algorithm for Toeplitz covariance matrix estima-
tion is constructed by exploiting a circulant extension of the
Toeplitz matrix and the idea is further generalized to Block-
Toeplitz in [3].

The contribution of this paper is to generalize the idea of
using an EM-algorithm based on a circulant extension to co-
variance matrices that are not only Toeplitz, but band-Toeplitz
with bandwidthB, i.e. having non-zero correlations only up
to and including lagB. Such estimates are important in many
practical applications as it is often reasonable to set an up-
per limit on the maximum lag of the estimate due to proper-
ties of the system considered. The proposed method therefore
bridges the gap in correlation estimation from simple power
estimation (B = 0) to full Toeplitz covariance matrix estima-
tion. A natural generalization to block-banded block-Toeplitz
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matrices exists following [3], but this is outside the scopeof
this paper.

Section 2 presents the system model and preliminaries and
in Section 3 the EM-algorithm for Toeplitz covariance matrix
estimation is outlined. Next, Section 4 modifies the existing
M-step of the EM-algorithm to allow for constrained band-
Toeplitz estimation. Section 5 derives the Cramer-Rao lower-
bound for band-Toeplitz estimation and Section 6 outlines a
traditional linear estimator used for comparison. Finally, Sec-
tion 7 presents a numerical example and conclusion.

In the following, bold letters such asx andX are respec-
tively column vectors and matrices withxi and[X]i,j being a
specific scalar element with the indices starting at zero. Fur-
ther,(·)T indicates matrix transpose,(·)∗ matrix conjugation,

(·)H
,
(
(·)∗
)T

Hermitian transpose andtr {·} the trace op-
erator. The notation| · | indicates the determinant of a matrix
or the absolute value of a scalar. Finally,diag (·) constructs
a diagonal matrix from a vector or, if operating on a matrix,
produces a vector from the diagonal elements of the matrix.

2. SYSTEM MODEL AND PRELIMINARIES

Let X , {xk}
K

k=1 be a collection of independent realiza-
tions of a zero-mean circular complex Gaussian distribution
xk ∼ CN (0,Σx) with xk ∈ CNx . The distribution of the
observations is therefore given by

−ln (p (X | Σx)) − Kln |πΣx| =

K∑

k=1

x
H
k Σ

−1
x xk

= Ktr
{
Σ

−1
x Sx

}

(1)

with Sx ∈ CNx×Nx being the sample covariance matrix

Sx ,
1

K

K∑

k=1

xkx
H
k (2)

Also definec ∈ CB+1 as the topB + 1 terms of the first
column inΣx and letr ∈ R

2B+1 be the stacking of the real
and imaginary part ofc with the real parts in the top of the
vector. The length ofr is only 2B + 1 as the imaginary part
of c0 must be zero.



Given the observationsX , the task is to provide the con-
strained ML estimate ofΣx. If no such constraints existed,
the ML solution is simply given bySx.

Let Σ̂
(k)

x ∈ CNx×Nx be an estimate ofΣx at iterationk

that obeys the Toeplitz constraint. Now, letΣ̂
(k)

y ∈ CNy×Ny

be a circularly extended version ofΣ̂
(k)

x whereNy ≥ 2Nx−1
makes a circulant extension possible. It is well-known thatthe
Discrete Fourier Transform (DFT) diagonalizes any circulant
matrix, i.e.

Σ̂
(k)

y = D
H
Λ̂

(k)
D (3)

with [D]i,j = N
− 1

2
y e

− 2π
√

−1
Ny

ij being the normalized DFT ma-

trix of size Ny. The diagonal matrix̂Λ(k) , diag
(

λ̂
(k)
)

holds the eigenvalues given by

λ̂
(k)

, N
1
2
y Dσ̂

(k)
y (4)

whereσ̂
(k)
y ,

[

Σ̂
(k)

y

]

:,0
is the first column of the circulant

matrix. The eigenvalues of (4) contain all the information
about the underlying Toeplitz matrix and we therefore have

Σ̂
(k)

x = D̃
H
Λ̂

(k)
D̃ (5)

with D̃ , D [INx
0]

T . If the desired covariance estimate
is of sizeM ≤ Nx, the result is given by the upper left sub-

matrix of Σ̂
(k)

x .

3. EM-ALGORITHM FOR TOEPLITZ ESTIMATION

Here, the EM-algorithm applied to the problem of Toeplitz
covariance matrix estimation is briefly outlined as described
in [1] with [2] providing an efficient implementation. The
E-step can be expressed as

E : ∆
(k) , Λ̂

(k)
D̃

(

W
(k)

SxW
(k) − W

(k)
)

D̃
H
Λ̂

(k)

(6)

with W
(k) ,

(

Σ̂
(k)

x

)−1

and∆
(k) being the unconstrained

update to the complete-data sample covariance matrixSy.
The M-step should now choose the complete-data ML co-
variance estimate fulfilling the structural constraints based on
the sufficient statisticSy. As the estimate is known to be
Toeplitz, meaning that the update must be a diagonal matrix,
it is straight-forward to show that the constrained ML update
is exactly the diagonal of∆(k), i.e.

M : Σ̂
(k+1)

x = D̃
Hdiag








λ̂
(k)

+ diag
(

∆
(k)
)

︸ ︷︷ ︸

λ̂
(k+1)








D̃ (7)

As the EM-algorithm is only guaranteed to converge to a local
maximum in the complete-data likelihood function, initializa-
tion is important. A reasonable choice of initialization, which

is used throughout this paper, iŝΣ
(0)

x = N−1
x tr {Sx} INx

.

4. A MODIFIED M-STEP FOR BAND-TOEPLITZ
ESTIMATION

Assuming it is known apriori that the covariance matrixΣx is
band-Toeplitz with bandwidthB, the idea is now to constrain

the covariance estimate by requiring a functional form ofλ̂
(k)

that guarantee this constraint. From (4) we have

σ̂
(k)
y = N

− 1
2

y D
H

λ̂
(k)

(8)

so a set of eigenvalueŝλ
(k)

BT fulfilling the structural constraint,
must decompose as

λ̂
(k)

BT = N
1
2
y

B∑

b=−B

ĉ
(k)
b db s.t. ĉ

(k)
b =

(

ĉ
(k)
−b

)∗

= N
1
2
y

(

ĉ
(k)
0 d0 + 2

B∑

b=1

Re
{

ĉ
(k)
b db

}
) (9)

wheredb = d
∗
−b , [D]:,mod(b,Ny) with mod (x, y) mean-

ing x moduloy. The functional form of the eigenvalues in
(9) effectively forces the covariance estimate to beĉ

(k) ,
[

ĉ
(k)
0 , . . . , ĉ

(k)
B

]T

for the non-zero band and zero elsewhere.

However, as the eigenvalues must be real-valued and there
are onlyNb , 2B + 1 real-valued degrees-of-freedom in the
decomposition, we choose to reformulate the constraint as a
real-valued decomposition, i.e.

λ̂
(k)

BT = Tr̂
(k) (10)

Herer̂
(k) ∈ RNb are the unknowns andT , [t0, . . . , tNb−1]

is defined by

tb ,







N
1
2
y Re {db} , b = 0

2N
1
2
y Re {db} , 1 ≤ b ≤ B

−2N
1
2
y Im {db−B} , B < b < Nb

(11)

The upperB + 1 coefficients of̂r(k) will therefore hold the
real part of̂c(k) while the lowerB coefficients are the imag-
inary part. In the case of real-valued covariance estimation,
havingNb , B + 1 is therefore sufficient to parameterize the
constrained estimate.

The reader should now be familiar with the overall struc-
ture of the EM-algorithm for band-Toeplitz estimation and the
iteration index is therefore dropped for notational ease inthe
following. The challenge is now, given the current ML es-
timate over the space of circulant matricesλ̂, to minimize



some distance measuref
(

λ̂, r̂
)

between the Toeplitz and

the band-Toeplitz estimate subject to the constraint that the
resulting eigenvalues must all be non-negative, i.e.Tr ≥ 0.
As the EM-algorithm proceeds, this will result in a successive
tightening of the lower-bound on the marginal log-likelihood
determined in the E-step.

4.1. ML Estimation

Using the complete-data negative log-likelihood as a distance
measure, we maximize the lower-bound over the space of
valid band-Toeplitz matrices. Letting

[
t̃0, . . . , t̃Ny−1

]
, T

T ,
the desired distance measure can be written as

f
(

λ̂, r̂
)

=

Ny−1
∑

i=0

ln
(
t̃
T
i r̂
)

+
(
t̃
T
i r̂
)−1

λ̂i (12)

As the distance measure consists of a sum of a concave and
a convex term in the unknowns, the overall function is non-
convex and thereby making global minimization unfeasible.
Instead, the first- and second-order derivatives

∂f
(

λ̂, r̂
)

∂r̂
=

Ny−1
∑

i=0

1

t̃T
i r̂

(

1 −
λ̂i

t̃T
i r̂

)

t̃i (13)

∂2f
(

λ̂, r̂
)

∂r̂∂r̂T
= −

Ny−1
∑

i=0

1
(
t̃T
i r̂
)2

(

1 −
2λ̂i

t̃T
i r̂

)

t̃it̃
T
i (14)

can be used in any favorite optimization scheme to determine
a local minimum of the distance measure. As the distance
measure may have multiple minima, the search should be
started at the previous value ofr̂ to make sure that the update
cannot increase the distance measure.

4.2. Other Distance Measures

Instead of minimizing the negative log-likelihood function di-
rectly other criterions can also be used. However, for the EM-
algorithm to converge an update must not increase (12), but
it is not required to minimize it either. In this manner, it is
possible to formulate an entire family of Generalized EM-
algorithms for band-Toeplitz covariance estimation. An ex-
ample of this strategy would be to not minimize (12), but only
find an update that lowers it and thereby trade convergence
speed for reduced computational complexity in the M-step.

5. LOWER-BOUND FOR BAND-TOEPLITZ
COVARIANCE ESTIMATION

The Cramer-Rao Lower-Bound (CRLB) provides the lowest
possible error variance of any estimator and is therefore a nat-
ural performance benchmark. Determining the bound for a
biased estimator involves computing the bias-function of the

estimator, which in general appears unfeasible. Instead, the
Unbiased CRLB (U-CRLB) is derived and used for compar-
ison, as it is well-known that the ML estimate is asymptoti-
cally unbiased.

Following the derivation in [4] and modifying it to include
the complex-valued observations, the Fisher information ma-
trix J ∈ RNb×Nb for the constrained covariance estimate can
be found to be

[J]i,j = Ktr

{

Σ
−1
x

∂Σx

∂ri

Σ
−1
x

∂Σx

∂rj

}

(15)

and using (5) and (10) we readily get

∂Σx

∂ri

= D̃
Hdiag (ti) D̃ (16)

As the focus is on the U-CRLB, the desired lower-bound is

E
[

|ri − r̂i|
2
]

≥
[
J
−1
]

i,i
(17)

6. WEIGHTED PROJECTED COVARIANCE
ESTIMATION

This section outlines a simple method of performing Toeplitz
covariance matrix estimation based on the idea of [5] in or-
der to better understand the EM-based approach and provide
a benchmark. The idea is to simply average along the diago-
nals of the sample covariance to estimate the correlations for
the desired lags. However, to guarantee a positive definite
matrix, the lagm correlation estimate is weighted byNx−m

Nx

with m ≥ 0. A valid Toeplitz covariance matrix of sizeM
can now be constructed from the weighted correlation coeffi-
cients[ĉ0, . . . , ĉM−1]

T resulting in a bias given by

E [cm − ĉm] =
m

Nx

cm (18)

The Mean-Squared Error (MSE) of the correlation estimates
can be found by expressing fourth-ordermoments of the Gaus-
sian observations by their second-order moments as

E
[

|cm − ĉm|2
]

=

m2

N2
x

|cm|2 +
1

KN2
x

B∑

b=−B

(Nx − m − |b|) |c|b||
2

(19)

The result of (19) is only valid for the complex-valued do-
main, but a similar result can be obtained for the real-valued
domain by following the same principle. However, the proof
of (19) and its real-valued equivalent are left out due to lack
of space.

Although this sub-optimal method of covariance estima-
tion can only provide full Toeplitz matrix estimates, it is re-
lated to band-Toeplitz estimation in the sense that one can
chooseM = B + 1 to produce an estimate of the non-zero
correlation coefficients. Using the resulting estimate to pro-
duce a larger band-Toeplitz matrix, e.g. of sizeNx, is how-
ever not guaranteed to be positive definite.
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Fig. 1. Example of band-Toeplitz covariance matrix estimation asa function of the sample-sizeNx for B = 1, K = 1.

7. NUMERICAL EXAMPLE AND CONCLUSION

To demonstrate the proposed method, complex-valued zero-
mean white Gaussian noise with unit power is filtered by a

first-order FIR filter having coefficients
[

1√
2
, 1+

√
−1

2

]T

. This

results in a band-Toeplitz covariance matrix(B = 1) having

the first column specified byr =
[

1, 1√
8
, 1√

8

]T

. In figure

1, the bias and MSE of the Weighted Projected (WP) estima-
tor and the proposed EM-based method (EM) is depicted as
a function of the sample-sizeNx. For WP, both exact results
found by (19) and simulations are shown. The lower part of
the figure depicts the MSE of the estimates and the U-CRLB
is also shown for reference. It can be seen that a significant
reduction in MSE is achievable by incurring a moderate bias
increase with the exception of lag zero where WP is unbi-
ased. Furthermore, as the sample-size increases, the proposed
estimator becomes unbiased and tends to the U-CRLB. In
conclusion, the proposed EM-based estimator provides near-
optimal performance with a reasonable complexity due to its
effective implementation exploiting the band-Toeplitz struc-
ture [2]. These properties make the proposed method an inter-
esting candidate for many applications where accurate band-
Toeplitz covariance matrix estimation is of great importance.
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