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ABSTRACT matrices exists following [3], but this is outside the scape
this paper.

Section 2 presents the system model and preliminaries and
in Section 3 the EM-algorithm for Toeplitz covariance matri
estimation is outlined. Next, Section 4 modifies the exgstin
M-step of the EM-algorithm to allow for constrained band-
Toeplitz estimation. Section 5 derives the Cramer-Rao tewe
bound for band-Toeplitz estimation and Section 6 outlines a
traditional linear estimator used for comparison. Finalgc-
tion 7 presents a numerical example and conclusion.

In the following, bold letters such asandX are respec-
ly column vectors and matrices with and[X], ; being a
speC|f|c scalar element with the indices startmg at zera- Fu

Index Terms— Structured covariance matrix estimation, ther,(-)” indicates matrix transposg)* matrix conjugation,
banded Toeplitz, EM-algorithm, Cramer-Rao lower-bound. (.)H L ((.)*)T Hermitian transpose and {-} the trace op-

erator. The notatioh- | indicates the determinant of a matrix
1. INTRODUCTION or the absolute value of a scalar. FinaHlyag (-) constructs
a diagonal matrix from a vector or, if operating on a matrix,

Estimation of Toeplitz covariance matrices is inherentp< produces a vector from the diagonal elements of the matrix.
nected to signal processing of stationary processes and ap-
plications are numerous, e.g. communications and radar sys 2. SYSTEM MODEL AND PRELIMINARIES
tems. However, the constraint of stationarity and its ttesul
ing requirement for a Toeplitz structure in the covarianee m Let X £ {x,},_, be a collection of independent realiza-
trix, makes Maximum-Likelihood (ML) estimation challeng- tions of a zero-mean circular complex Gaussian distrilputio
ing and no general closed-form solution is known [1, 2]. Inx; ~ CN (0,X,) with x;, € C"=. The distribution of the
[1], an EM-algorithm for Toeplitz covariance matrix estima observations is therefore given by
tion is constructed by exploiting a circulant extensionhad t X
Egg::g il;r:?;r]|.x and the idea is further generalized to Block —In(p(X | 22)) — Kin|7S,| = ZXEEka »
i . . . . k=1

The contribution of this paper is to generalize the idea of
using an EM-algorithm based on a circulant extension to co-
variance matrices that are not only Toeplitz, but band-Tiep
with bandwidthB, i.e. having non-zero correlations only up
to and including lag3. Such estimates are importantin many
practical applications as it is often reasonable to set an up R Zxkxk (2)
per limit on the maximum lag of the estimate due to proper-
ties of the system considered. The proposed method therefor
bridges the gap in correlation estimation from simple powe
estimation B = 0) to full Toeplitz covariance matrix estima-
tion. A natural generalization to block-banded block-Tigep

Toeplitz covariance matrix estimation has many uses in sta-
tistical signal processing due to the stationarity assionpt
of many signals. For some applications, further constsaint
may exist on the maximum lag at which the correlation func-
tion is non-zero and thereby giving rise to a band-Toepbtz ¢
variance matrix. In this paper, an existing EM-algorithm fo
Toeplitz estimation is generalized to the case of band-itzep
estimation. In addition, the Cramer-Rao lower-bound for un
biased band-Toeplitz covariance matrix estimation isveeri
and through simulations it is shown that the proposed estlmfﬁve
tor achieves the bound for medium and large sample-sizes.

=Ktr{¥;'S,}

with S, € CN+=*N= peing the sample covariance matrix

Iso definec € CP+! as the topB + 1 terms of the first
columninX, and letr € R25*! be the stacking of the real
and imaginary part oé with the real parts in the top of the
vector. The length of is only 2B + 1 as the imaginary part
The author would like to thank Nokia Denmark for funding of ¢g must be zero.




Given the observation®, the task is to provide the con-
strained ML estimate oE,. If no such constraints existed,
the ML solution is simply given bsg ...

~ (k . . .
Let 5% € CN=xNz= pe an estimate oE,, at iterationk

x

that obeys the Toeplitz constraint. Now, Stk) e CNyxNy

be a circularly extended version Eék) whereN, > 2N, —1
makes a circulant extension possible. It is well-known that
Discrete Fourier Transform (DFT) diagonalizes any ciratila
matrix, i.e.

o (k)

_PHA
3, =DYAMD (3)
. _1 _2nv/=Ts . .
with [D]; ; = Ny 2e ™ 7 being the normalized DFT ma-
trix of size N,,. The diagonal matrbA *) 2 diag (X(k))
holds the eigenvalues given by

=

S (k) .
A 2Ny DsM (4)

<

wheres (" is the first column of the circulant

: o))

,0
matrix. The eigenvalues of (4) contain all the information
about the underlying Toeplitz matrix and we therefore have

(k)

£ _ BHAMD (5)

with D £ D Iy,

matrix of £,

3. EM-ALGORITHM FOR TOEPLITZ ESTIMATION

As the EM-algorithm is only guaranteed to converge to a local
maximum in the complete-data likelihood function, iniiial-
tion is important. A reasonable choice of initializatiorhiah

is used throughout this paper,ﬁsio) =N 1tr {S,} In,.

4. A MODIFIED M-STEP FOR BAND-TOEPLITZ
ESTIMATION

Assuming it is known apriori that the covariance maflix is
band-Toeplitz with bandwidt, the idea is now to constrain

. . - . < (k
the covariance estimate by requiring a functional form%i?
that guarantee this constraint. From (4) we have

3 (F)

&%) = N, "D X

(8)

. <(k - .
so a set of e|genvaluéq(9; fulfilling the structural constraint,
must decompose as

(k)

B
- 1
Apr = Ny Z él(yk)db

b=—B

B
— N} <ag’“>d0 +23 " Re {ég’“db})

b=1

s.t. él()k) = (é(_kg)

9)

whered, = d*;, £ [D], 44 x,) With mod (z,y) mean-

O]T. If the desired covariance estimate ing z moduloy. The functional form of the eigenvalues in
is of sizeM < N,., the result is given by the upper left sub-

(9) effectively forces the covariance estimate todse =

NOINOIR
{co oo Cp for the non-zero band and zero elsewhere.

However, as the eigenvalues must be real-valued and there
are onlyN, £ 2B + 1 real-valued degrees-of-freedom in the
decomposition, we choose to reformulate the constraint as a

Here, the EM-algorithm applied to the problem of Toeplitz'€al-valued decomposition, i.e.

covariance matrix estimation is briefly outlined as deswtib
in [1] with [2] providing an efficient implementation. The
E-step can be expressed as

E:- A®2ABH (W(k)SwW(k) _ W(k)) DHA®
» (6)
with W) £ (Eik) and A®) being the unconstrained

update to the complete-data sample covariance maétyix

AW e (10)
Here#(®) ¢ R are the unknowns arii! 2 [to, ..., ty, 1]
is defined by
N7 Re{dy} b=0
1
t, = ¢ 2NZ Re {dy} 1<b<B (11)
1
—ON7ZIm{dy_p5} ,B<b<N,

The M-step should now choose the complete-data ML co-

variance estimate fulfilling the structural constraintsdéon e upperB + 1 coefficients oft® will therefore hold the
the sufficient statistiS,. As the estimate is known to be gz part ofé®) while the lowerB coefficients are the imag-
Toeplitz, meaning that the update must be a diagonal matrixnary part. In the case of real-valued covariance estimatio
it is straight-forward to show that the constrained ML ugdat havingN, 2 B + 1 is therefore sufficient to parameterize the
is exactly the diagonal A (¥ i.e. constrained estimate.

The reader should now be familiar with the overall struc-
ture of the EM-algorithm for band-Toeplitz estimation ahd t
iteration index is therefore dropped for notational easthén
following. The challenge is now, given the current ML es-
timate over the space of circulant matricksto minimize

o (k+1)

M 25V ZDHgiag | AY + diag (A(k)) D (7)

x

5‘(1@+1)



some distance measuye(j\,f) between the Toeplitz and estimator, which in general appears unfeasible. Instdweed, t

the band-Toeplitz estimate subject to the constraint that t Unbiased CRLB (U-CRLB) is derived and used for compar-
resulting eigenvalues must all be non-negative, Te.> 0.  1SON, as it is well-known that the ML estimate is asymptoti-

As the EM-algorithm proceeds, this will result in a sucoessi Cally unbiased.

tightening of the lower-bound on the marginal log-likelitb Following the derivation in [4] and modifying it to include
determined in the E-step. the complex-valued observations, the Fisher informatian m

trix J € RYN+*Ns for the constrained covariance estimate can

. . be found to be
4.1. ML Estimation

0x 0x
_ —1 T —1 x
Using the complete-data negative log-likelihood as a dista [J]i-,j = Ktr {Ew or; e ar; } (15)
measure, we maximize the lower-bound over the space of d using (5) and (10 il ¢
valid band-Toeplitz matrices. Lettindo, ..., tx,—1] = T7, and using (5) and (10) we readily ge
X . : s, - _
the desired distance measure can be written as 2 D diag (t;) D (16)
ri

N,—1
F (X’f-) =3 (F8) + (gin)‘l A (12)  Asthe focus is on the U-CRLB, the desired lower-bound is
=0

B [jri —#il] = [37] (17)

As the distance measure consists of a sum of a concave and 7
a convex term in the unknowns, the overall function is non- 6. WEIGHTED PROJECTED COVARIANCE
convex and thereby making global minimization unfeasible. ESTIMATION

Instead, the first- and second-order derivatives

R This section outlines a simple method of performing Toeplit
of ()\, f‘) Ny 2 1 N\ - covariance matrix estimation based on the idea of [5] in or-
Y T T ITh t; (13)  der to better understand the EM-based approach and provide

=0 ! a benchmark. The idea is to simply average along the diago-
0 r (3« N1 R nals of the sample covariance to estimate the correlatimms f
o f (A,r) < 1 20\ = =7 the desired lags. However, to guarantee a positive definite
T ororT Z (E-Tf)Q 1= Ty tit;  (14) matrix, the lagm correlation estimate is weighted B—"
=0 M ‘ with m > 0. A valid Toeplitz covariance matrix of Sizh(
can be used in any favorite optimization scheme to determingan now be constructed from the weighted correlation coeffi-

a local minimum of the distance measure. As the distanceiems[@O’ . @M_l]T resulting in a bias given by

measure may have multiple minima, the search should be m

started at the previous value dbfo make sure that the update Eley —tm] = N Cm (18)
x

cannot increase the distance measure. ] )
The Mean-Squared Error (MSE) of the correlation estimates

can be found by expressing fourth-order moments of the Gaus-

4.2. Other Distance Measures sian observations by their second-order moments as

Instead of minimizing the negative log-likelihood funetidi- L2

rectly other criterions can also be used. However, for the EM B “Cm = G } -

algorithm to converge an update must not increase (12), but m2 1 B (19)
it is not required to minimize it either. In this manner, it is mlcml2 + N2 Z (N —m — [b]) e
possible to formulate an entire family of Generalized EM- z T p=—B

algorithms .for band-Toeplitz covariancg gs?imation. AR €X The result of (19) is only valid for the complex-valued do-
ample of this strategy would be to not minimize (12), but onlymain, but a similar result can be obtained for the real-vdlue

find an update that lowers i'F and thereby _tra_de convergenGfmain by following the same principle. However, the proof
speed for reduced computational complexity in the M-step. of (19) and its real-valued equivalent are left out due td lac

of space.
5. LOWER-BOUND FOR BAND-TOEPLITZ Although this sub-optimal method of covariance estima-
COVARIANCE ESTIMATION tion can only provide full Toeplitz matrix estimates, it is-r

lated to band-Toeplitz estimation in the sense that one can
The Cramer-Rao Lower-Bound (CRLB) provides the lowestthooseM = B + 1 to produce an estimate of the non-zero
possible error variance of any estimator and is therefoa-a n correlation coefficients. Using the resulting estimate riw-p
ural performance benchmark. Determining the bound for @uce a larger band-Toeplitz matrix, e.g. of si¥g, is how-
biased estimator involves computing the bias-functiorhef t ever not guaranteed to be positive definite.
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Fig. 1. Example of band-Toeplitz covariance matrix estimatioa &snction of the sample-siz¥, for B =1, K = 1.

7. NUMERICAL EXAMPLE AND CONCLUSION
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