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Summary

In this thesis the fundamental dynamic behaviour of European two–axle railway
freight wagons is investigated with special attention to their unwanted hunting
motion on straight track. A model of a single two–axle freight wagon running
on a general curvilinear track is developed and described in detail. Essentially,
the model is a system of ordinary differential equations. The nonsmooth char-
acteristics of the interacting forces are challenging both in the modelling phase
as well as in the formulation of an appropriate numerical integration strategy
to extract the solution from the system of differential equations. The model is
appropriately divided into states, such that the nonsmoothness in the model is
defined by the switching boundaries between the states. These switching bound-
aries are located by the numerical integration procedure allowing one to find the
solution efficiently and accurately.

The model is analysed for different parameters (wheelbase, suspension pa-
rameters, rail inclination etc.). The solution space is shown to have several
attractors emphasising the intricate dynamic properties of these wagons. In
summary, if the wagon is running at high speed the wheelsets are attracted to a
flange–to–flange motion. This violent motion is not transferred to the carbody
if the lateral excitation frequency of the wheelsets is far from the yaw eigen-
frequency of the carbody. However, the two–axle freight wagon can experience
a resonance motion at either low, medium or high speed when the previously
mentioned frequencies coincide. Here, the wheelsets are not necessarily moving
from flange to flange but the carbody has a severe lateral and yaw motion.
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Resumé

I denne afhandling undersøges den grundlæggende dynamiske opførsel af eu-
ropæiske to–akslet godsvogne med fokus p̊a deres uønskede hunting bevægelse
p̊a lige spor. En model af en enkelt to–akslet godsvogn kørende p̊a et generelt
curvilineært spor er udviklet og detaljeret beskrevet. I bund og grund er mod-
ellen et system af sædvanlige differentialligninger. De ikke–glatte karakteris-
tikker af de p̊avirkende kræfter er b̊ade udfordrende i modelleringsfasen, samt
i formuleringen af en passende numerisk integrationsstrategi til at uddrage løs-
ningen af differentialligningssystemet. Modellen er p̊a passende vis inddelt i til-
stande, s̊aledes at modellens ikke–glatheder er defineret ved grænserne mellem
tilstandene. Disse grænser lokaliseres af den numeriske løsningsprocedure, hvil-
ket giver én mulighed for at finde løsningen effektivt og præcist.

Modellen er analyseret for forskellige parametre (akselafstand, affjedrings-
parametre, sporhældning etc.). Løsningsrummet vises at have flere attraktorer,
hvilket understreger de kompliceret dynamiske egenskaber ved disse vogne. Sam-
menfattet kan det siges, hvis vognen kører med høj fart tiltrækkes hjulsættene
af en flange–til–flange bevægelse. Denne voldsomme bevægelse overføres ikke
til vognkassen, hvis den laterale p̊avirkningsfrekvens af hjulsættene er langt
fra yaw egenfrekvensen af vognkassen. Dog er det muligt for den to–akslet
godsvogn at komme ud for en resonansbevægelse ved enten lav, moderat eller
høj hastighed, n̊ar de førnævnte frekvenser falder sammen. Her vil hjulsæt-
tene ikke nødvendigvis bevæge sig fra flange til flange, men vognkassen har en
voldsom lateral og yaw bevægelse.
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Chapter 1

Introduction

1.1 Project background

Transporting goods along railways has been done for many years. Even the an-
cient Greeks used railways in order to transport boats across the Corinth isth-
mus1 in Greece in the 6th century [69]. The valuable principle of rail transport
reappeared in Europe in the 16th century. Horse–drawn wagonways operating
with wooden tracks were used in order to transport ore and coal from mines.
The advent of the steam locomotive in 1804 made the benefits of rail transport
even greater, and through the industrialisation in the 19th century the advan-
tages of rail transport became evident worldwide. Today’s rail transport still
provides an economic and flexible solution to the task of land transport – both
for goods and passengers. However, the increased competition from air travel
and trucks continuously requires an increased payload and travelling speed on
modern freight wagons. To fulfil this demand, it is necessary to ensure that the
running properties still are satisfactory under these conditions. The maximum
axle load on all main railway lines in Europe is 22.5 tonnes, and the maximum
speed is generally 100 km/h.

The design of European freight wagons falls into three categories: 1) Two–
axle freight wagons equipped with the single–axle running gear using leaf springs
and double–links, Figure 1.1 and Figure 1.2. 2) Wagons having two–axle bogies
with leaf springs and single–links, Figure 1.3. 3) Wagons having two–axle bogies
with coil springs and friction dampers, Figure 1.4. These three designs are

1A narrow strip of land that is bordered on two sides by water and connects two larger
land masses.
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approved by the international union of railways, UIC2. The design of the running
gear used on two–axle freight wagons became a standard in Germany in 1890
and has since then been widely used both in Europe and Japan because it is
simple, cheap and robust. However, despite the simple design, the running
properties of the two–axle freight wagons are highly complex and difficult to
understand due to dry friction damping and motion delimiters causing impacts.
Many of these wagons are likely to perform a hunting motion (lateral oscillations
in the track) even at moderate speeds. This motion is unwanted and should be
avoided because the goods might be damaged, and maintenance costs increase
due to additional wear on the wheels and rails. A thorough analysis of the
fundamental running properties of the two–axle freight wagons is the task of
this thesis, and the bogie construction will not be further discussed. A picture
of a typical two–axle freight wagon is shown in Figure 1.1.

Figure 1.1: A two–axle freight wagon.

Figure 1.2: The single–axle running gear
used on two–axle freight wagons. 1) Carbody
2) Suspension bracket 3) UIC links 4) Axle
guidance 5) Leaf spring 6) Axle bearing 7)
Wheelset 8) Connecting bar.

Figure 1.3: G70 bogie. Figure 1.4: Y25 bogie.

The standard suspension system for two–axle freight wagons is called the UIC
standard suspension, see Figure 1.2. Each wagon has four of these suspensions.
They consist of a leaf spring and linkages. The linkages will be referred to as
the UIC links. The leaf spring rests on the axle box and provides the vertical
suspension. The deflection of the leaves yields the stiffness, and dissipative dry
friction forces are generated in between the leaves. The carbody is connected

2Union internationale des chemins de fer.
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with the leaf spring through the UIC links. The system of links works as a
pendular suspension system with friction in the joints and they provide the
horizontal suspension. The damping mechanism is solely provided by dry fric-
tion. The lateral suspension stiffness is stepwise progressive due to a clearance
of 10 mm between the lower link and the suspension bracket. The pendulum
length is immediately halved when this clearance is exceeded. The axle guidance
restricts the relative motion between the wheelset and carbody by a simple end
stop. The clearance is 22.5 mm in the longitudinal direction and 20.0 mm in the
lateral direction. If one of these clearances is exceeded an impact occurs between
the axle box and axle guidance. The elastic response from the axle guidance
is relatively soft in the lateral direction because the axle guidance bends, and
thus the overall effect is like an additional suspension stiffness. However, in
the longitudinal direction the impacts are almost completely elastic due to the
construction of the axle guidance.

The double–link suspension system was introduced to improve the curv-
ing performance of the two–axle freight wagons. The relatively soft horizontal
suspension gives the wheelsets a larger freedom and they are more likely to po-
sition themselves radially in curves, which in general reduces wear. Moreover,
the double–link suspension is used in order to have an overcritical running gear.
The idea of the overcritical running gear is to avoid resonance, between the lat-
eral excitation frequency of the wheelsets and eigenfrequencies of the carbody,
in the operating speed range 60− 120 km/h. Instead, the resonance behaviour
occurs at 35 − 40 km/h, which makes the running properties in the operating
speed range quite good [9].

To understand the fundamental running behaviour of two–axle freight wag-
ons a mathematical model is developed. The model is a rigid multibody model
having one carbody, two wheelsets and two rails, see Figure 1.5. The bodies are
interconnected by forces from the UIC standard suspension and the wheel–rail
contact forces.
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Figure 1.5: Two–axle freight wagon model.

The scientific challenge in building this model is the fact that all interacting
forces are nonsmooth. The wheel–rail contact parameters (position of contact
point, contact angle, size of contact patch etc.) needed in the computation of
the contact forces are discontinuous functions of the lateral displacement of the
wheelset for the standard wheel–rail profiles, S1002/UIC60, used in Europe.
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The force–displacement characteristics of leaf springs are nonsmooth due to its
dry friction damping. The forces from the horizontal suspension, governed by
the UIC links, are nonsmooth due to rolling/sliding transitions and the effect of
the clearance between the lower link and the suspension bracket. The impacts
generated as a consequence of the axle guidance have nonsmooth characteristics
as well.

So, even though the basic design of these two–axle freight wagons has been
known and used for over 100 years it has eluded a thorough theoretical un-
derstanding of the fundamental behaviour, because of the complexity of the
interacting forces. Moreover, simplified linear investigations of such a system
have limited interest since they can not reveal anything about the existence and
stability of nontrivial solutions but only the stationary solution in the centre of
the track. This might lead to the following false conclusions:

• Say that the stationary solution for a given vehicle is stable until 160
km/h and that a periodic attractor exists for speeds higher than 70 km/h.
From a linear analysis it is concluded that the vehicle has good running
properties until 160 km/h – even though there is no guarantee about the
good running properties in the speed range 70− 160 km/h.

• Say that a freight wagon with overcritical running gear is investigated
through a linear analysis. The conclusion is that the running properties are
bad for speeds higher than e.g. 35 km/h, however, due to the overcritical
design the running properties are actually acceptable in the operating
speed range.

In this thesis, the equilibrium states of the fully nonlinear model of a two–
axle freight wagon are investigated w.r.t. uniqueness and stability in the low
frequency range (below 10 Hz). The main tools in this analysis are bifurcation
diagrams and time series because they do not rely on simplified approximations.
The analysis is carried out for different model parameters (wheelbase, suspension
parameters, rail inclination etc.) in order to clarify their sensitivity. The focus is
on the motion of the wagon on a straight and level track without irregularities.

1.2 Literature review

Rail vehicles in general have been analysed theoretically for many years, and the
literature on modelling rail vehicles is extensive. The books [15, 1, 103, 44, 9]
each cover many fundamental as well as advanced aspects useful in any analysis
of rail vehicles. The importance of the nonlinearities existing in rail vehicle
models has been known and emphasised in many research studies since the
1980s, see e.g. [94, 96, 65, 38].

The research on two–axle freight wagons is less extensive due to their com-
plex suspension system. Kämpfe [48] investigated the running properties of
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a two–axle freight wagon in his thesis from 1960 using an analogue computer
implementation of his model. The suspension characteristics are linearised. He
finds that the motion of the wagon is sensitive to the damping in the suspension.
Stichel’s research on two–axle freight wagons illustrates some interesting proper-
ties of these wagons. In [80, 81] he explains the possibility of resonance between
the kinematic hunting of the wheelsets and the yaw eigenmode of the carbody.
The running properties of the wagon are found to be sensitive to the suspension
characteristics, and it is concluded that viscous dampers might be necessary
in order to achieve adequate running properties for wagons running above 130
km/h. Stichel has also observed that two–axle wagons might behave chaotically
[84], and that the structural flexibility for open–sided wagons can have modes
under 10 Hz influencing the running properties [83]. Piotrowski [61] has devel-
oped a model applicable for simulating the dynamics of the UIC links assuming
a cylindrical (nominal) geometry of the link elements. It takes into account
the nonsmooth rolling/sliding transitions present in the links during operation.
A measurement method for determining the mechanical characteristics of the
UIC link suspension has also been developed by Piotrowski [62]. Jönsson has in
his thesis [36], that contains experimental and theoretical studies, investigated
the influence of wear in the UIC links. He finds in his measurements that the
rolling stiffness normally increases with wear and that new links often exhibit
a very low amount of energy dissipation. He also suggests an improved design
with supplementary hydraulic dampers and illustrates the improved running
behaviour through simulations in the multibody simulation program GENSYS.
In the thesis by Grzelak [20] the influence of wear in the link elements is also
studied. He presents a sophisticated model able to take into account the real
link geometry, and he finds that wear influences the stability of the stationary
solution. Other research confirms the complicated running properties of two–
axle wagons, see e.g. [57, 85]. Little attention is often put into the modelling
of the leaf spring because the bad running properties typically find expression
through lateral oscillations. However, the vertical suspension properties can in-
fluence the lateral motion of the wagon through nonlinear couplings. The work
by Fancher et al [14] thoroughly investigates the nonlinear force–displacement
characteristics and the special hysteresis damping found in leaf springs. They
also present a model that can be used in order to simulate the characteristics.
Derailment of freight wagons is analysed in the thesis by Lee [49]. It is empha-
sised that a nonlinear modelling of the leaf spring characteristics is necessary
in order to get reliable results. Further details on leaf springs can be found in
[7, 71].

Nonsmooth dynamical systems have been a very active research area in
the last two decades. Methods are now available to analyse nonsmooth multi-
body systems with dry friction and impacts. Investigating unilateral contacts
in terms of complementarity problems results in the elegant theory by Pfeiffer
and Glocker [60, 17]. Even simple nonsmooth systems often have interesting and
complex bifurcation patterns. Some modern techniques helpful in the analysis of
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bifurcations in nonsmooth systems can be found in the literature [4, 10, 50, 46].
Often classical numerical integration schemes can not be applied to integrate

nonsmooth systems because the basic requirements regarding the existence and
continuity of the derivatives of the system are violated. Two approaches are
typically found in the literature to solve this problem: 1) Event–driven methods
are based on a piecewise integration procedure where each smooth section of the
system is treated separately. It requires a routine that can locate the nonsmooth
instants (events) during simulation, see [4, 18, 19, 77, 91, 101, 45]. 2) Time–
stepping methods use velocity updates instead of accelerations in the progress of
the numerical solution. As a result of this, the mechanical system does not have
to be divided into different smooth states. The procedure normally requires
small time steps, however, it has proved to be a valuable tool in simulating
systems with many unilateral constraints, [52, 87].

1.3 Motivating example

A simple single degree of freedom system is used in order to illustrate some of
the aspects needed in the modelling of the two–axle freight wagon. Consider
the impact oscillator in Figure 1.6. The freight wagon analogue is a suspended
axle box moving in between the axle guidance (the wall).

������
������

T01
m

x

µ = 0

x = xd

F (t)

k1

k2

x02

k

Figure 1.6: Mechanical system.

The motion of the mass is determined from

mẍ = −kx+ F1 + F2 + F (t) x < xd , t ≥ 0 (1.1)

where F1 is the force from the elastic dry friction element, F2 is the force from
the dead band spring and F (t) = A cos(ωt) is an outer harmonic excitation
force. The friction slider obeys Coulomb’s friction law, and the force F1 is found
through the state dependent differential equation (1.2). The state transitions
are governed by the state machine in Figure (1.7). The force from the dead band
spring is found by the state dependent formulation in equation (1.3) together
with the state machine in Figure 1.8. The wall at x = xd is incorporated using
Newton’s impact law, that is ẋ+ = −εẋ−, and the state machine for this element
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is shown in Figure 1.9.

Ḟ1 =
{
−k1ẋ Stick

0 SlidePos/SlideNeg
(1.2)

F2 =

 0 Idle
−k2(x− x02) SpringPos
−k2(x+ x02) SpringNeg

(1.3)

The event–driven integration strategy is used in order to integrate the equations
of motion. The state partitioning of the interacting forces is necessary in order
to avoid integrating across the nonsmooth points. The switching boundaries
are located during simulation, and the state changes are made according to the
state machines.

�� ���� ��SlidePos

g3≥0

��

g3=0, ġ3<0

pp�� ���� ��Stick

g1≤0, g2≥0

""

g2=0, ġ2<0 11

g1=0, ġ1>0 --

g1 = F1 − T01

g2 = F1 + T01

g3 = ẋ

�� ���� ��SlideNeg

g3≤0

��

g3=0, ġ3>0

nn

Figure 1.7: Dry friction element.

�� ���� ��SpringPos

g1≥0

��

g1=0, ġ1<0

oo�� ���� ��Idle

g1≤0, g2≥0

))

g1=0, ġ1>0 11

g2=0, ġ2<0 --

g1 = x− x02

g2 = x+ x02

�� ���� ��SpringNeg

g2≤0

��

g2=0, ġ2>0

oo

Figure 1.8: Dead band spring.

�� ���� ��FreeZone

g1≥0

��

g1=0, ġ1<0

##

g1 = xd − x

ẋ+ = −εẋ−bb

Figure 1.9: Wall.

It is noted that an impact can cause a state shift for the elastic dry friction
element because the mass’ velocity is reversed. Thus, it is necessary to perform
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a consistency check of the current state of the elastic dry friction element after
an impact. This check is done according to Algorithm 1.

if IMPACT then
if (SlidePos ∧ ẋ+ < 0) ∨ (SlideNeg ∧ ẋ+ > 0) then

State of elastic dry friction element← Stick
end if

end if

Algorithm 1: Consistency check regarding the elastic dry friction element after an impact.

Results from a numerical simulation are illustrated in Figure 1.10 and 1.11.
Further details on the simulation parameters are found in Appendix B.1. The
motion of the mass is clearly restricted by the wall (xd = 0.02 m), and the non-
smooth characteristics of the suspension force are illustrated by the hysteresis
loop in Figure 1.11. The event–driven method assures that the force character-
istics really are nonsmooth, i.e. the corners are not smoothed or rounded, and
that the integration method still is efficient and accurate.
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Figure 1.10: Displacement history.
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Figure 1.11: Hysteresis loop.

To emphasise the importance of locating the events consider the simulated force
characteristics shown in Figure 1.12 and 1.13. The discrete solution points
obtained by the numerical method are illustrated by the circles. It is clearly
seen that without the event location it costs a lot of cpu–time to get past the
nonsmooth corners. On the other hand, integrating with event location gets
around the corners without any trouble.

1.4 Outline

The thesis is divided into 7 chapters, 5 appendices and the bibliography. The
background and main motivation behind the project is given in chapter 1. The
mathematical model of the European two–axle freight wagon is described in
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Figure 1.12: Without event location.
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Figure 1.13: With event location.

chapter 2 together with a detailed analysis of the interacting forces. The model is
essentially a system of nonsmooth ordinary differential equations. The numerical
integration method used in order to extract the solution from this system is
given in chapter 3. The design of the computer implementation of the model
is sketched in chapter 4. The results obtained from the freight wagon model is
presented and discussed in chapter 5. Future work in relation to this project is
discussed in chapter 6. The conclusion is given in chapter 7.

Appendix A is devoted to give an overview of the notation and symbols used
throughout the thesis. Appendix B includes four illustrative and small examples.
Each of them emphasises some interesting and important aspects related to the
modelling of two–axle freight wagons. The tedious derivation of the rotation
matrices defining the relations between the different coordinate systems used is
shown in Appendix C. Dantzig’s algorithm for solving linear complementarity
problems is given in Appendix D. An overview of the code developed in the
project is given in Appendix E.
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Chapter 2

Mathematical model

2.1 Curvilinear track

The equations of motion are of central importance in any multibody model.
These equations are derived in this chapter and they are formulated on the
general curvilinear track using the theory from [5]. This formulation is conve-
nient because it allows one to analyse the vehicle on straight track, curved track
and transition curves without complicating the governing equations of motion
dramatically. For the analysis several coordinate systems are needed. These
are presented along with the rotation matrices defining their mutual relations.
A derivation of the relative kinematics is also given, resulting in the formulae
needed in the analysis of the interacting forces.

2.1.1 Coordinate systems

System Base Description
RO : {O;x, y, z} i, j,k Inertial system
RT : {OT ;xT , yT , zT } iT , jT ,kT Track system
Rb : {Ob;xb, yb, zb} ib, jb,kb Body system
Rc : {Oc;xc, yc, zc} ic, jc,kc Wheel–rail contact system

Table 2.1: Coordinate systems.

The coordinate systems in Table 2.1 are found appropriate for the curvilinear
track analysis. All coordinate systems are right hand systems.
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Figure 2.1: Side view of the freight wagon model.

z

y

x
RT1

RT2

s

R0
RT3

Rb3
Rb1

Rb2

Figure 2.2: The coordinate systems for the curvilinear track analysis.

The inertial system is an absolute reference. The origin O is fixed to the
beginning of the track and located in the track plane in the centre of the track.
It is assumed that the track is initially straight and horizontal. x is tangent
to the track centre line and points in the direction of travel. y is a horizontal
axis pointing towards the left rail w.r.t. to the direction of travel. z is pointing
upwards completing the right hand system.

The track system moves with the speed of the vehicle V along the track
and it follows the curves and track gradients. The origin of the track systems,
OT , moves along the curvilinear abscissa s which is a coordinate axis along
the track centre line. xT (longitudinal direction) is tangent to the track centre
line and points in the direction of travel. yT (lateral direction) is a horizontal
axis pointing towards the left rail w.r.t. to the direction of travel. zT (vertical
direction) is pointing upwards from the track. The body system is a local system
belonging to a rigid body. The origin of the body system is located in the centre
of mass, and the axes are aligned with the principal axes of the body. The wheel–
rail contact system is an auxiliary coordinate system used in the formulation of
the contact forces between the wheel and rail.

The freight wagon consists of two wheelsets and one carbody as illustrated
in Figure 2.1. To model the freight wagon the coordinate systems shown in
Figure 2.2 are used. Each body has its own body system and a corresponding
track system.
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2.1.2 Rotation matrices

The relation between the different coordinate systems is given by the Euler
angles defined in this section. The rotation matrices are derived using successive
(counter–clockwise) rotations, see Appendix C. A rotation of the angle α around
the x, y, z coordinate axes, respectively, is given by the following matrices

A
(α)
x =

241 0 0
0 cosα − sinα
0 sinα cosα

35 A
(α)
y =

24 cosα 0 sinα
0 1 0

− sinα 0 cosα

35 A
(α)
z =

24cosα − sinα 0
sinα cosα 0

0 0 1

35
The relation between the coordinate systems and the orientation of the axes are
defined using these rotation matrices. An important property of the rotation
matrices is that they are orthogonal. This means that the inverse matrix is
equivalent to the transposed matrix, A−1 = AT .

Inertial system to track system
1. Rotation around z by βC (track yaw), RO → RI1

2. Rotation around yI1 by θC (track gradient), RI1 → RT

AOT = A
(βC)
z A

(θC)
y , ATO = AT

OT

Track system to body system
1. Rotation around zT by ψ (yaw), RT → RI2

2. Rotation around yI2 by θ (pitch), RI2 → RI3

3. Rotation around xI3 by φ (roll), RI3 → Rb

ATb = A
(ψ)
z A

(θ)
y A

(φ)
x , AbT = AT

Tb

Body system to wheel–rail contact system
1. Rotation around xb by δ (contact angle), Rb → Rc

Abc = A
(δ)
x , Acb = AT

bc

For a spinning body, e.g. a wheelset, the body system does not follow the rotation
around the spinning axis. This means that θ ≡ 0 for all time. See Table C.2
in Appendix C for an entire list of approximate rotation matrices used in the
project.

2.1.3 Angular velocity of coordinate axes

The angular velocity of the track system, in reference to its own base, is

ΩT =
“
A

(θC)
y

”T 24 0
0

β̇C

35 +

24 0

θ̇C
0

35 ≈
24 0

θ̇C
β̇C

35
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The angular velocity of the body system, in reference to its own base, is

Ωb = AbTΩT +

24φ̇0
0

35 +
“
A

(φ)
x

”T 240

θ̇
0

35 +
“
A

(φ)
x

”T “
A

(θ)
y

”T 240
0

ψ̇

35 ≈
24 φ̇

θ̇C + θ̇

β̇C + ψ̇

35

2.1.4 Auxiliary functions

Two auxiliary functions Th(s) and Tv(s) are defined as follows

d2Th(s)
ds2

=
1

ρh(s)
d2Tv(s)

ds2
= − 1

ρv(s)
(2.1)

where 1/ρh and 1/ρv are the curvatures of the track in the horizontal and vertical
plane, respectively. From this definition, it is found by integration that

dTh(s)
ds

= βC(s)
dTv(s)

ds
= −θC(s) (2.2)

Furthermore, the following expressions can be derived

dTh(s(t))
dt

=
dTh
ds

ds
dt

= βCV (2.3)

dTv(s(t))
dt

=
dTv
ds

ds
dt

= −θCV (2.4)

and

d2Th(s(t))
dt2

=
d(βCV )

dt
=

dβC
ds

ds
dt
V + βC

dV
dt

=
V 2

ρh
+ ΓβC

d2Tv(s(t))
dt2

=
d(−θCV )

dt
= −

(
dθC
ds

ds
dt
V + θC

dV
dt

)
= −

(
V 2

ρv
+ ΓθC

)
Here, V and Γ denote the speed and acceleration of the track system, respec-
tively.

2.1.5 Relative kinematics

The position of the centre of mass of the i’th body, in reference to the track
base, is

r =

 xi
ȳi + yi
z̄i + zi


where the vector [0, ȳi, z̄i]T defines the equilibrium position. Consider the situ-
ation in Figure 2.3. Pi is a fixed point on the i’th body, and Pj is a fixed point
on the j’th body. The relative displacement between Pi and Pj , in reference to
the track base of the i’th body, is

rij = rPj − rPi (2.5)
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Figure 2.3: Relative displacement between Pi and Pj .
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Figure 2.4: Horizontal plane.
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Figure 2.5: Vertical plane.
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rPi =

 xi
ȳi + yi
z̄i + zi

 + ATibi

xPiyPi
zPi


rPj = ATiTj

 xj
ȳj + yj
z̄j + zj

 + ATjbj

xPjyPj
zPj

 +

 xOTj
xOTj(βCj − βCi)/2
−xOTj(θCj − θCi)/2


where Figure 2.4 and 2.5 have been used in determining the position of OTj in
reference to the track base of the i’th body. The nominal displacement between
the Pi and Pj is

rij0 =

 xPj + xOTj − xPi
ȳj + yPj − ȳi − yPi
z̄j + zPj − z̄i − zPi


The deformation of an element between Pi and Pj is

∆r = rPj − rPi − rij0

= ATiTj

0@24 xj
ȳj + yj
z̄j + zj

35 + ATjbj

24xPjyPj
zPj

351A−ATibi

24xPiyPi
zPi

35
+

24 −xi − xPj + xPi
xOTj(βCj − βCi)/2− yi − ȳj − yPj + yPi
−xOTj(θCj − θCi)/2− zi − z̄j − zPj + zPi

35
≈

264[x∗ − ψ∗yP∗ + θ∗zP∗]
j
i − (βCj − βCi)(ȳj + yPj) + (θCj − θCi)(z̄j + zPj)

[y∗ + ψ∗xP∗ − φ∗zP∗]ji + (βCj − βCi)xPj + xOTj(βCj − βCi)/2
[z∗ − θ∗xP∗ + φ∗yP∗]

j
i − (θCj − θCi)xPj − xOTj(θCj − θCi)/2

375
=

264[x∗ − ψ∗yP∗ + θ∗zP∗ − βC∗(ȳ∗ + yP∗) + θC∗(z̄∗ + zP∗)]
j
i +A1

[y∗ + ψ∗xP∗ − φ∗zP∗ + βC∗xP∗]
j
i + xOTj(βCj + βCi)/2 +A2

[z∗ − θ∗xP∗ + φ∗yP∗ − θC∗xP∗]ji − xOTj(θCj + θCi)/2 +A3

375
Here, products of small quantities have been neglected and

A1 = βCi(ȳj + yPj − ȳi − yPi)− θCi(z̄j + zPj − z̄i − zPi)
A2 = −βCi(xPj + xOTj − xPi)
A3 = θCi(xPj + xOTj − xPi)

Assuming a zero nominal displacement, i.e. rij0 = 0, makes

A1 = A2 = A3 = 0

and thus

∆r ≈

[x∗ − ψ∗yP∗ + θ∗zP∗ − βC∗(ȳ∗ + yP∗) + θC∗(z̄∗ + zP∗)]
j
i

[y∗ + ψ∗xP∗ − φ∗zP∗ + βC∗xP∗]
j
i + xOTj(βCj + βCi)/2

[z∗ − θ∗xP∗ + φ∗yP∗ − θC∗xP∗]ji − xOTj(θCj + θCi)/2
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A Taylor expansion of the auxiliary functions gives

Th(s+ a) =
∞∑
n=0

an

n!
dnTh(s)

dsn
, Tv(s+ a) =

∞∑
n=0

an

n!
dnTv(s)

dsn

The definition of the auxiliary functions says that

dTh(s)
ds

= βC(s) ,
dTv(s)

ds
= −θC(s) ,

d2Th(s)
ds2

=
1

ρh(s)
,

d2Tv(s)
ds2

= − 1
ρv(s)

and by neglecting high order terms (n ≥ 3) it is found that

Th(s+ a)− Th(s) ≈ a

[
βC(s) +

a

2ρh(s)

]
Tv(s+ a)− Tv(s) ≈ −a

[
θC(s) +

a

2ρv(s)

]
Furthermore, it is valid that

βC(s+ a)− βC(s) ≈ a

ρh
θC(s+ a)− θC(s) ≈ a

ρv

Using this information the following relations are found

Th(s+ a)− Th(s) ≈ a
βC(s+ a) + βC(s)

2

Tv(s+ a)− Tv(s) ≈ −aθC(s+ a) + θC(s)
2

and they are used to simplify the expression for the deformation, i.e.

∆r ≈

[x∗ − ȳ∗βC∗ + z̄∗θC∗ − yP∗(ψ∗ + βC∗) + zP∗(θ∗ + θC∗)]
j
i

[y∗ + Th∗ + xP∗(ψ∗ + βC∗)− zP∗φ∗]ji
[z∗ + Tv∗ − xP∗(θ∗ + θC∗) + yP∗φ∗]

j
i

 (2.6)

Since the components of ∆r are small, it is approximately valid that the time
derivative of the ∆r is equal to the time derivative of its components, that is

∆ṙ ≈


[
ẋ∗ − ȳ∗β̇C∗ + z̄∗θ̇C∗ − yP∗(ψ̇∗ + β̇C∗) + zP∗(θ̇∗ + θ̇C∗)

]j
i[

ẏ∗ + Ṫh∗ + xP∗(ψ̇∗ + β̇C∗)− zP∗φ̇∗
]j
i[

ż∗ + Ṫv∗ − xP∗(θ̇∗ + θ̇C∗) + yP∗φ̇∗

]j
i

 (2.7)

The expressions in equation (2.6) and (2.7) are first order approximations and
it is assumed that the attachment points of the undeformed suspension element
are identical in space. Note also that the vectors are expressed in reference to
the track base of the i’th body.



18 Mathematical model

2.1.6 Equations of motion

The equations of motion for the wheelsets and carbody are presented in this
section. The derivation procedure presented is based on [5, 60]. The wheelset
is treated first. For convenience, the crossproduct x× is expressed by the linear
operator x̃ (see Appendix A for further details on notation). The velocity v and
acceleration a of the centre of mass are expressed in reference to the track base.

v =

24V0
0

35 +

24ẋẏ
ż

35 + Ω̃T

24 x
ȳ + y
z̄ + z

35 ≈
24V + ẋ+ θ̇C z̄ − β̇C ȳ

ẏ
ż

35 (2.8)

a =

24Γ
0
0

35 + Ω̃T

24V0
0

35 +

24ẍÿ
z̈

35 +
“

˙̃ΩT + Ω̃2
T

” 24 x
ȳ + y
z̄ + z

35 + 2Ω̃T

24ẋẏ
ż

35 (2.9)

≈

24Γ + ẍ+ θ̈C z̄ − β̈C ȳ
ÿ + V 2/ρh
z̈ − V 2/ρv

35 =

24Γ + ẍ+ θ̈C z̄ − β̈C ȳ
ÿ + T̈h − ΓβC
z̈ + T̈v + ΓθC

35 (2.10)

The angular velocity of the wheelset Ω is expressed in reference to the base of
the body system. Note, that the wheelset has a spin around its lateral axis.

Ω =

24 Ωbx
Ωby + V/r0 + ν̇

Ωbz

35 ≈
24 φ̇

θ̇C + ν̇ + V/r0
β̇C + ψ̇

35 (2.11)

Here, ν̇ is a spin perturbation that measures the difference between the nominal
and actual spin of the wheelset around its axis of revolution. The nominal spin
is V/r0, where r0 is the nominal rolling radius.

The change in linear and angular momentum are fundamental quantities
regarding the motion of a rigid body.{

ṗ = ma

L̇ = Isα + Ω̃bIsΩ
(2.12)

α is the angular acceleration and Is is the inertia tensor. The equation with the
linear momentum is expressed in reference to the track base, and the equation
with the angular momentum is expressed in reference to the base of the body
system. Equation (2.12) is rewritten into[

ṗ
L̇

]
= M̄

[
a
α

]
+

[
0

Ω̃bIsΩ

]
(2.13)

where

M̄ = diag([m,m,m, Ixx, Iyy, Izz]) , Is = diag([Ixx, Iyy, Izz])

The system is in dynamical equilibrium when the virtual power vanishes

δW =
[
δv
δΩ

]T ([
ṗ
L̇

]
−

[
Fext

Mext

])
= 0 (2.14)
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Here, Fext = [Fx, Fy, Fz]T are the external forces in reference to the track base,
and Mext = [Mx,My,Mz]T are the external torques in reference to the base of
the body system. Combining equation (2.13) and (2.14) it is found that

δW =
[
δv
δΩ

]T (
M̄

[
a
α

]
+

[
0

Ω̃bIsΩ

]
−

[
Fext

Mext

])
= 0 (2.15)

Introducing the generalised coordinates one can write

Dx = x+ z̄θC − ȳβC
Dy = y + Th
Dz = z + Tv
Dφ = φ
Dθ = θC + ν
Dψ = βC + ψ

q =


Dx

Dy

Dz

Dφ

Dθ

Dψ

 q̇ =



Ḋx

Ḋy

Ḋz

Ḋφ

Ḋθ

Ḋψ


The linear and angular acceleration can be expressed using the generalised co-
ordinates by [

v
Ω

]
= Jq̇ + j̃ ,

[
a
α

]
≈ Jq̈ + j̄ ,

[
δv
δΩ

]
= Jδq̇

where J is equal to the identity matrix and

j̃ = [V,−V βC , V θC , 0, V/r0, 0]T , j̄ = [Γ,−ΓβC ,ΓθC , 0,Γ/r0, 0]T

Equation (2.15) is now rewritten into

δq̇T
(
JTM̄Jq̈ + JTM̄j̄ + JT

[
0

Ω̃bIsΩ

]
− JT

[
Fext

Mext

])
= 0

The linear independency in the generalised coordinates gives the following con-
densed formulation of the equations of motion, also known as the projected
Newton-Euler equations

Mq̈− h(q, q̇) = 0 (2.16)

where

M = JTM̄J

h(q, q̇) = −JTM̄j̄− JT
[

0
Ω̃bIsΩ

]
+ JT

[
Fext

Mext

]
Hence, the motion of the wheelset is determined from

q̈ ≈

26666664

−Γ + Fx/m
ΓβC + Fy/m
−ΓθC + Fz/m

(ḊψIyyV/r0 +Mx)/Ixx
My/Iyy

(−ḊφIyyV/r0 +Mz)/Izz

37777775 ,

26666664

D̈x
D̈y
D̈z
D̈φ
D̈ψ
Ḋβ

37777775 ≈
26666664

−Γ + Fx/m
ΓβC + Fy/m
−ΓθC + Fz/m

(ḊψIyyV/r0 +Mx)/Ixx
(−ḊφIyyV/r0 +Mz)/Izz

My/Iyy

37777775
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where Dβ = Ḋθ.
The same approach is used for the carbody. The only difference is that

the carbody is a non–spinning body meaning that Ωb ≡ Ω. The resulting
coordinates and equations are given below.

Dx = x+ z̄θC − ȳβC
Dy = y + Th
Dz = z + Tv
Dφ = φ
Dθ = θC + θ
Dψ = βC + ψ

q =


Dx

Dy

Dz

Dφ

Dθ

Dψ

 q̇ =



Ḋx

Ḋy

Ḋz

Ḋφ

Ḋθ

Ḋψ



Mq̈ = −JTM̄j̄− JT
[

0
Ω̃bIsΩ

]
+ JT

[
Fext

Mext

]
, Ω = Ωb ≈

 φ̇

θ̇C + θ̇

β̇C + ψ̇



q̈ ≈

2666664
−Γ + Fx/m
ΓβC + Fy/m
−ΓθC + Fz/m

Mx/Ixx
My/Iyy
Mz/Izz

3777775 ,

26666664

D̈x
D̈y
D̈z
D̈φ
D̈θ
D̈ψ

37777775 ≈
2666664
−Γ + Fx/m
ΓβC + Fy/m
−ΓθC + Fz/m

Mx/Ixx
My/Iyy
Mz/Izz

3777775
To have a steady motion of the freight wagon the carbody is restricted to move
with the motion of the track system, RT , along the track. Hence, x = 0 and the
carbody has no longitudinal degree of freedom. This constraint will put energy
into the system. Introducing this constraint we have

Dx = z̄θC − ȳβC
Ḋx = z̄V/ρv − ȳV/ρh

and the equations are reduced to266664
D̈y
D̈z
D̈φ
D̈θ
D̈ψ

377775 ≈
26664

ΓβC + Fy/m
−ΓθC + Fz/m

Mx/Ixx
My/Iyy
Mz/Izz

37775

2.1.7 Defining the track

The theoretical track is defined through its horizontal curvature 1/ρh(s) and
vertical curvature 1/ρv(s). Only piecewise linear curvature functions are con-
sidered. An example of a horizontal curvature function for a left hand curve is
shown in Figure 2.6. The track is divided into stages according to the linear
sections of the curvatures. For the i’th stage the curvature can be represented
as shown in equation (2.17), see also Figure 2.7.
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s

1/ρh

Figure 2.6: Horizontal curvature for a left
hand curve.

Stage i
s

ri

ri+1

si+1si

Figure 2.7: The curvature is linear.

1
ρ(s)

= ri +
ri+1 − ri
si+1 − si

(s− si) si ≤ s ≤ si+1 (2.17)

The curve parameters (βC , θC , Th and Tv) are found by integration and utilising
the definition of the auxiliary functions given in equation (2.1) and (2.2). For
the i’th stage (si ≤ s ≤ si+1) the theoretical curvilinear track is represented by

1

ρh(s)
= Phi1(s)

1

ρv(s)
= P vi1(s)

βC(s) = βC(si) +

Z s

si

Phi1(s′) ds′

= βC(si) + Phi2(s)

θC(s) = θC(si) +

Z s

si

P vi1(s′) ds′

= θC(si) + P vi2(s)

Th(s) = Th(si) + βC(si)(s− si) +

Z s

si

Phi2(s′) ds′

= Th(si) + βC(si)(s− si) + Phi3(s)

Tv(s) = Tv(si)−
„
θC(si)(s− si) +

Z s

si

P vi2(s′) ds′
«

= Tv(si)− (θC(si)(s− si) + P vi3(s))

where the polynomials P kij(s) are

P ki1(s) = rki +
rki+1 − rki
si+1 − si

(s− si)

P ki2(s) =
(s− si)(rki+1(s− si)− rki (si + s− 2si+1))

2(si+1 − si)

P ki3(s) =
(s− si)2(rki+1(s− si)− rki (2si + s− 3si+1))

6(si+1 − si)
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The track coordinates in the inertial system, R0, are obtained from the curve
parameters by integrating the following relation

dx
dy
dz

 = A(βC)
z A(θC)

y

ds
0
0

 =

cosβC cos θC ds
sinβC cos θC ds
− sin θC ds


In Figure 2.8 to 2.11 and example is shown illustrating the curve parameters for
a left hand curve.
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Figure 2.8: Horizontal curvature, 1/ρh(s).
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Figure 2.9: Track yaw, βC(s).
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Figure 2.10: Auxiliary function, Th(s).
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Figure 2.11: Track seen from above.

To reduce the effect of the centrifugal acceleration in curves the outer rail is
often superelevated. The inner rail keeps the same level as on straight track.
This track cant is modelled by adjusting the auxiliary function Tv(s) [5]. The
contact forces are computed using the adjusted values:
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∆Tv = |φSE(s)|b0
Tv

∣∣
left

← Tv + ∆Tv + φSE(s)b0
Tv

∣∣
right

← Tv + ∆Tv − φSE(s)b0

where φSE(s) is the superelevation and 2b0 = 1.5 m is the distance between the
nominal rolling circles of the wheels. Linear superelevation ramps are used in
this project making the shape of the superelevation function φSE(s) similar to
the curvature in Figure 2.6.
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2.2 Wheel–rail contact

The wheel–rail contact forces have the fundamental task of guiding the rail ve-
hicle along the track. The modelling of the wheel–rail contact forces become
naturally an important aspect of any rail vehicle model. The geometry of the
contacting surfaces and the elastic interaction between the bodies makes it diffi-
cult to formulate simple and accurate routines for computing the contact forces.
Both wheels and rails are made of steel with the material properties: Poisson’s
ratio ν = 0.27, Young’s modulus E = 2.1 · 1011 N/m2, and shear modulus
G = E/(2(1+ν)) = 8.27 ·1010 N/m2. The friction coefficient between the wheel
and rail is set to µ = 0.30.

A conventional wheelset consists of two rigidly connected wheels. The wheel
profiles can be divided into three parts: tread, root and flange. In Figure 2.12 the
European standard wheel profile S1002 is shown. The wheel is usually in contact
with the rail through a contact region located on the tread. The lateral distance
from the centre of mass of the wheelset to the nominal rolling circle is 0.75
m. The conical shape of the tread gives the wheelset a self steering capability
due to the difference in rolling radii, caused by a wheelset in any off–centred
position. The flange is located on the inside of the wheel tread and improves
the lateral guiding whenever necessary, e.g. in curves or during hunting. The
European standard rail profile UIC60 is shown in Figure 2.13. The rails usually
have an inclination inwards, see Figure 2.14, in order to match the conical wheel
profile. This rail inclination is not the same throughout Europe. For instance, it
is 1/40 in Germany, 1/30 in Sweden and 1/20 in France. The rail separation is
defined by the track gauge which is measured 14 mm below the top of the rails.
The standard track gauge of 1435 mm is used in all simulations. It is assumed
that the rails are fixed to the ground without any flexibility. This flexibility has
previously been investigated by Slivsgaard [79] and the effect was observed to
be of minor importance regarding the dynamic behaviour of the vehicle.

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

y [mm]

z 
[m

m
]

flange

root tread

Figure 2.12: S1002 standard wheel profile.
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Figure 2.16: Possible contact points.
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As a consequence of the shape of the wheel and rail profiles they only touch
each other in certain regions of the profiles, see Figure 2.16. This makes the
contact parameters, e.g. position of contact point and contact angle, discontin-
uous functions of the lateral position of the wheelset.

A thorough treatment of contact mechanics can be found in the work by
Johnson [35], and the state–of–the–art article in [63] gives an overview of im-
portant issues and existing models regarding the wheel–rail contact.

When the wheel and rail are pressed together by a certain load, a contact
region is generated as a consequence of the elasticity of the bodies. The contact
region typically has the size of a finger nail. In the contact region both normal
and shear stresses exist. In fact, we are dealing with a three dimensional rolling
contact problem with a coupled normal and tangential problem being very dif-
ficult to solve. Through a finite element approach an accurate computation of
the contact forces can be found (see e.g. [88]), however, incorporating this into
the multibody model here is not really appropriate because the contact compu-
tations would be very time demanding and thereby making the wanted dynamic
analysis unfeasible.

The half–space assumption is often used in the analysis of the wheel–rail
contact. It says that, since the contact region is small compared to the dimen-
sions of the wheel and rail, it is reasonable to assume that the contact stresses
are not influenced by the shape of the bodies. The stresses are calculated by as-
suming that the contacting bodies are semi–infinite bodies limited by a straight
plane. Furthermore, the contacting bodies are made of the same material and
thus they are said to be quasi–identical. This leads to the convenient result that
the normal– and tangential contact problem can be treated independently. Fur-
thermore, the contact problem is considered to be quasi–static. Kalker [39] has
developed the program CONTACT being able to solve contact problems with
bodies described by elastic half–spaces. The program is very general and accu-
rate, and often considered as an exact reference in comparing wheel–rail rolling
contact routines. On the other hand, it is computationally very demanding and
not well suited for multibody models.

To simplify the contact problem further, the contact region is approximated
by an ellipse according to Hertz’ theory [25]. With the Hertzian contact as-
sumption, it is possible to formulate simplified models that are fast and still
retain an adequate accuracy. Moreover, it is assumed that the contact problem
is two–dimensional, i.e. neglecting the yaw of the wheelset, and that there is no
longitudinal shift of the contact point on the wheel. This assumption is rea-
sonable on straight track and curves with large radii (> 500 m), which also is
the scenario of the simulations presented later on. It is also assumed that the
torsional modes of the wheelset (having a frequency range of 50−80 Hz) do not
interfere with the low frequent modes of interest here (< 10 Hz). Due to the
small contact region the wheel–rail interaction is represented as point forces in
the complete vehicle model. These point forces are computed as integrals of the
surface stresses over the contact region. The contact forces are formulated in a
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contact system located at the corresponding contact point, see Figure 2.15.

2.2.1 Normal contact

Two methods are common when solving the normal contact problem: an elastic
model or a constraint model. In the elastic model, the wheelset and rails are
rigid and the normal force is computed by modelling the contact stiffness as a
stiff spring using Hertz’ theory [25]. The spring deformation is determined from
a fictitious penetration of the wheel into the rail. In the constraint model, the
wheelset and rails are also rigid, however, the contact stiffness is assumed to
be infinite. The influence of the normal force is incorporated into the model
through contact constraints that, typically, makes the vertical and roll motion
of the wheelset to be dependent coordinates and thereby reducing the wheelsets
degrees of freedom (DOF). The constraint model has been analysed and the
general procedure is exemplified in Appendix B.4. The model assumes that the
wheelset is supported through a unique contact point on each wheel. Having
several contact points on a wheel leads to a situation were the support of the
wheelset no longer has a unique solution. The elastic model does not have this
restriction and it will be used for the freight wagon model.

Penetration In the elastic model, the normal force is a function of the pen-
etration of the wheel into the rail. The vector from the contact point on the
wheel to the contact point on the rail, in reference to the base of the contact
system, is

Rpen = Acb (AbT (RR −RC)−Rw)

where

RC = (ȳ + y) jT + (z̄ + z) kT
RR = RRy jT +RRz kT
Rw = Rwy jb +Rwz kb

RC and RR defines the position of the centre of mass of the wheelset and the
position of the contact point on the rail, respectively, in reference to the base
of the track system. Rw is the position of the contact point on the wheel in
reference to the base of the body system. Rw and RR are tabulated for different
lateral displacements of the wheelset before simulation. The penetration depth,
qpen, is the z–component of Rpen

qpen ≈ −(RRy − ȳ − y + φ(RRz − z̄)−Rwy) sin δ
+(RRz − z̄ − z − φ(RRy − ȳ)−Rwz) cos δ
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Normal force The normal force, N , is calculated using Hertz’ theory [25].
The contact region is approximated by an ellipse leading to a semi–ellipsoidal
normal stress distribution. The semi–axes of the contact ellipse are denoted by
a (longitudinal) and b (lateral). From the theory the following useful relations
follow

N ∝ (qpen)
3
2 , a ∝ N 1

3 , b ∝ N 1
3 (2.18)

By pre–calculating the reference values N0 and qpen,0 from a static consideration
of the wheelset on the rail, it is possible to compute the dynamic normal force
during simulation by

N = N0

(
qpen

qpen,0

) 3
2

(2.19)

Likewise, the contact ellipse is dynamically adjusted through the use of the
pre–calculated reference values a0 and b0.

a

b
=
a0

b0
, ab = a0b0

(
N

N0

) 2
3

= a0b0
qpen

qpen,0
(2.20)

It is worth mentioning that the Hertzian spring stiffness is very high (about
109 N/m) due to the hard steel to steel contact. For numerical reasons, and to
some degree represent the material damping, a linear damping term is added to
equation (2.19). The damping coefficient is set to 1.5 · 105 N s/m based on the
work [54].

2.2.2 Tangential contact

Slip Adhesion

Contact ellipse

Wheel
Direction of motion

Rail

Figure 2.17: The adhesion and slip partition of the contact ellipse.
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Creep The tangential contact forces (creep forces) arise because of a micro–
slip between the wheel and rail. Figure 2.17 illustrates how the contact region
(approximated by an ellipse) is partitioned into an adhesion part and a slip part
in the simple case of purely longitudinal creepage.

The normalised rigid slip between the wheel and rail (creep) plays an impor-
tant role in computing the tangential forces. The expressions used for computing
the creep are derived next. From equation (2.8) and (2.11) it is seen that the
linear and angular velocity of the wheelset can be formulated as

v =

V + Ḋx

ẏ
ż

 , Ω =

 Ḋφ

Dβ + V/r0
Ḋψ


The relative velocity between the wheel and rail, in reference to the base of

the contact system, is

vcon = Acb (AbT v + Ω×Rw)

≈ Acb

0@24 1 ψ 0
−ψ 1 φ
0 −φ 1

35 24V + Ḋx
ẏ
ż

35 +

24(Dβ + V/r0)Rwz − ḊψRwy
−ḊφRwz
ḊφRwy

351A
= Acb

24V + Ḋx + ψẏ + (Dβ + V/r0)Rwz − ḊψRwy
−ψ(V + Ḋx) + ẏ + φż − ḊφRwz

−φẏ + ż + ḊφRwy

35
=

24V + Ḋx + ψẏ + (Dβ + V/r0)Rwz − ḊψRwy
(−ψ(V + Ḋx) + ẏ + φż − ḊφRwz)/ cos δ

0

35
where it is assumed that bodies in contact are rigid so that the velocity in the
normal direction is zero (vcon

∣∣
z

= 0). By neglecting products of small quantities
and using that V + Ḋx ≈ V , it is found that

vcon ≈

V + (Dβ + V/r0)Rwz − ḊψRwy
(ẏ − ψV − ḊφRwz)/ cos δ

0


Inserting that Ṫh = V βC (see equation (2.3)) one finds

vcon ≈

V + (Dβ + V/r0)Rwz − ḊψRwy
(Ḋy − V Dψ − ḊφRwz)/ cos δ

0


The angular velocity of the wheelset, in reference to the base of the contact
system, is

AcbΩ =

 Ḋφ

(Dβ + V/r0) cos δ + Ḋψ sin δ
−(Dβ + V/r0) sin δ + Ḋψ cos δ
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Three creep terms are defined: the longitudinal creep (ξx), lateral creep (ξy)
and spin creep (ξs)

ξx =
vcon

∣∣
x

V
= 1 +

(
(Dβ + V/r0)Rwz − ḊψRwy

)
/V (2.21)

ξy =
vcon

∣∣
y

V
=

(
Ḋy − V Dψ − ḊφRwz

)
/(V cos δ) (2.22)

ξs =
(AcbΩ)

∣∣
z

V
=

(
Ḋψ cos δ − (Dβ + V/r0) sin δ

)
/V (2.23)

Creep forces Based on the analysis by Vermeulen and Johnson [102] a heuris-
tic model for the creep forces has been formulated by Shen–Hedrick–Elkins [78].
The model takes into account the important nonlinearity existing between the
creep and creep forces. The longitudinal creep force Tx and the lateral creep
force Ty are given by

Tx = εF̃x , Ty = εF̃y (2.24)

[
F̃x
F̃y

]
= −Gab

[
C11 0 0
0 C22

√
abC23

]ξxξy
ξs


ε = |F|/|F̃| , |F̃| =

√
F̃ 2
x + F̃ 2

y

|F| =
{
µN

(
u− 1

3u
2 + 1

27u
3
)

u < 3
µN u ≥ 3 , u =

|F̃|
µN

The coefficients C11, C22 and C23 are known as Kalker’s creepage coefficients.
They depend on a/b and Poisson’s ratio ν. Under the assumption of Hertz’
theory it is true that a/b = a0/b0 (see equation 2.20), where a0 and b0 are
the reference values found from a static consideration of the wheelset. Shen–
Hedrick–Elkins’ model assumes a small spin creepage and it is not appropriate
for studying flange climbing for instance.

Spin moment The spin moment existing around the vertical axis of the con-
tact system is neglected. This is found reasonable due to the simulation scenario,
i.e. straight track and curves with large radii (> 500 m), where its magnitude
is assumed to be insignificant compared to the other torques acting on the
wheelset.

2.2.3 Contact table

Calculating the important contact parameters such as the position of the con-
tact point, the contact angle and the size of contact ellipse is time consuming.
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For efficiency reasons it is advantageous to pre–calculate and tabulate the con-
tact parameters and then interpolate this table during simulation. The contact
table is generated from a static consideration of the wheelset for different lateral
positions using RSGEO [2, 42]. The contact table used has a table entry every
∆y = 0.2 mm in the interval y ∈ [−10.0 mm; 10.0 mm]. The contact parameters
contained in the contact table is shown in Table 2.2.

Column Description
1 Lateral displacement [mm]
2 Contact angle [rad]
3 Contact point on wheel (lateral, body frame) [m]
4 Contact point on rail (lateral, track frame) [m]
5 Contact point on wheel (vertical, body frame) [m]
6 Contact point on rail (vertical, track frame) [m]
7 Penetration [m]·106

8 Normal force [N]
9 ab [m2]·106

10 a/b [–]
11 Kalker’s creepage coefficient, C11 [–]
12 Kalker’s creepage coefficient, C22 [–]
13 Kalker’s creepage coefficient, C23 [–]
14 Kalker’s creepage coefficient, C33 [–]

Table 2.2: The parameters contained in the contact table.

In Figure 2.18 to 2.21 some of the contact parameters are shown for the
profile combination S1002/UIC60 with 1/40 rail inclination. It is seen that
the parameters are discontinuous functions of the lateral displacement of the
wheelset.
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Figure 2.18: Contact angle.
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Figure 2.19: Lateral position of contact
point on wheel.

The interpolation of the contact table is done using cubic splines on each
continuous section of the table. The spline is found using the Moment repre-
sentation [55]. Let xj , j = 0, . . . , n and sj , j = 0, . . . , n be the nodes and
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Figure 2.20: Vertical position of contact
point on wheel.
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Figure 2.21: a/b

the corresponding contact parameter values, respectively. The node spacing is
hj = xj − xj−1. The spline interpolant is given by

s(xj−1 + hjt) = (1− t)(sj−1 +
1

6
h2
j ((1− t)2 − 1)s′′j−1) + t(sj +

1

6
h2
j (t

2 − 1)s′′j )

j = 1, . . . , n , 0 ≤ t ≤ 1

where the s′′j is the second derivative of the spline at the j’th node. Imposing
natural spline conditions implies that s′′0 = s′′n = 0, and the remaining values
are found by solving the linear system

26664
2(h1 + h2) h2

h2 2(h2 + h3) h3

·
. . . ·
hn−1 2(hn−1 + hn)

37775
26664
s′′1
s′′2
...

s′′n−1

37775 =

26664
d1
d2
...

dn−1

37775 (2.25)

where
dj ≡ 6

„
sj+1 − sj
hj+1

−
sj − sj−1

hj

«
, j = 1, . . . , n− 1

The s′′j are also tabulated before simulation.

2.2.4 Multiple contacts

Due to the elastic properties of the wheel and rail, the discontinuities in the
contact table often correspond to situations where multiple contacts on the same
wheel are likely to occur. For instance, double contact is typical for a wheel
approaching the flange. In this situation one contact point will be present on
the tread and another on the flange. Inspired by the work of Pascal and Sauvage
[70, 58] the discontinuities are treated by having an overlap region around the
discontinuities in which multiple contacts occur. Most of the contact parameters
in the overlap region are found by extrapolating the two splines surrounding the
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discontinuity as illustrated in Figure 2.22. The extrapolation should be done
with care because it might diverge rapidly far from the interpolating nodes,
however, since the overlap region is small (about 0.2 mm) it is found suitable.
The normal force (N0) and the product of the semi–axes (a0b0) should behave
differently because the wheel load should be distributed between the contact
points. In order to gradually transfer the load from one contact point to the
other one a linear decay is imposed on these parameters in the region as shown
in Figure 2.23. The contacts in the overlap region are treated separately using
the models described previously and they are assumed to be independent.

Overlap region

y

Parameter

Con. 1

Con. 2

Discont.

Figure 2.22: Extrapolation.

Overlap region

y

Parameter

Con. 1

Con. 2

Discont.

Figure 2.23: Linear decay.

The contact model is divided into states, and the discontinuous jumps in the
contact parameters are located during simulation. For example, the discontinu-
ity representing the flange would naturally lead to the following state division:
a state with tread contact only, a state for the overlap region, a state with flange
contact only. Generally, the i’th state is defined by y ∈ [yi,lo; yi,hi] where y is the
lateral position of the wheelset. The state machine for the wheel–rail contact
model is shown in Figure 2.24.

State i-1
�� ���� ��State i

gi,1=0, ġi,1<0

aa

gi,2=0, ġi,2>0

!!

gi,1>0, gi,2<0

��

gi,1 = y − yi,lo
gi,2 = y − yi,hi

State i+1

Figure 2.24: Wheel–rail state machine.
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2.3 UIC standard suspension

The European standard suspension system for two–axle freight wagons is called
the UIC standard suspension, see Figure 2.25. It consists of a leaf spring and
a link system. The deflection of the leaves yields the stiffness, and dissipative
dry friction forces are generated in between the leaves. The link system works
as a pendular suspension system for the horizontal motion. Dry friction in the
support of the link elements provides the necessary damping for the horizontal
motion. The only damping mechanism in the UIC suspension is dry friction.
Motion delimiters also exist to guide the axle box. The axle guidance basically
restricts the relative motion between carbody and wheelset by end stops causing
impacts.

The design of this suspension system became a standard in Germany in
1890 and has since then been widely used both in Europe and Japan. It is
advantageous because it is simple, cheap and robust.

Figure 2.25: UIC standard suspension 1) Carbody 2) Suspension bracket 3) UIC links 4)
Axle guidance 5) Leaf spring 6) Axle bearing 7) Wheelset 8) Connecting bar.

The motion of the freight wagon is to a high degree influenced by the suspension
system. Therefore, the suspension model automatically becomes an important
aspect of the multibody model. By nature, the suspension characteristics are
nonlinear and even nonsmooth. This is a consequence of the dry friction and
impacts present in the suspension system. In the following, the suspension model
is described in detail. An appropriate and reasonable division of the suspension
system is into its longitudinal, lateral and vertical characteristics. They are
treated independently. The suspension elements in the multibody model are
situated as illustrated in Figure 2.26 and 2.27.

2.3.1 Suspension deformation

The suspension models are formulated as a function of the suspension deforma-
tion and its derivative. The results derived previously in equation (2.6) and (2.7)
can be used directly in order to express the needed quantities. It is utilised that
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Figure 2.27: Top view.

the suspension is attached to the axle box in a position having xPw = zPw = 0.
The deformation and its derivative are

∆r ≈

24Dxw − yPwDψw − (z̄cbθCcb − ȳcbβCcb − yPcbDψcb + zPcbDθcb)

Dyw − (Dycb + xPcbDψcb − zPcbDφcb)
Dzw + yPwDφw − (Dzcb − xPcbDθcb + yPcbDφcb)

35 (2.26)

∆ṙ ≈

24Ḋxw − yPwḊψw − (z̄cbV/ρvcb − ȳcbV/ρhcb − yPcbḊψcb + zPcbḊθcb)

Ḋyw − (Ḋycb + xPcbḊψcb − zPcbḊφcb)
Ḋzw + yPwḊφw − (Ḋzcb − xPcbḊθcb + yPcbḊφcb)

35 (2.27)

Note, that the above expressions are in reference to the track base of the carbody.
The suspension deformation vector, ∆r, is a vector from the attachment point
on the carbody to the attachment point on the wheelset.

2.3.2 Leaf spring

A leaf spring is constructed by layering several leaves on top of each other.
The leaves are clamped together by a simple device in the middle of the leaf
spring. The curvature of the leaves are all different such that small clearances
are present in between the leaves. The basic function of the leaf spring is that
bending of the leaves generates the suspension stiffness while the dry friction
in between the leaves provides the damping. The leaf springs found on todays
freight wagons are either of the trapezoidal or parabolic type, see Figure 2.28
and 2.29. The parabolic leaf spring differs from the trapezoidal leaf spring
in that the leaf design is parabolic (optimal material utilisation), it is lighter,
additional spacing in between the leaves and the leaves all have the same length.
The parabolic leaf spring is often used on modern freight wagons and has several
advantages [71], e.g. longer lifetime, better structural design possibilities, lower
weight due to better material utilisation and constant spring characteristics
during its lifetime.
The parabolic leaf spring shown in Figure 2.29 is a so called two–stage parabolic
leaf spring. It has an additional leaf to support heavy loads.

Modelling the leaf spring is challenging because the nonsmooth stick–slip
transitions and the interaction with the additional leaf (for the two–stage type)
generate the complex suspension characteristics with hysteresis known from leaf
springs. An example of such a hysteresis loop is illustrated in Figure 2.30 [71].
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Figure 2.28: Trapezoidal. Figure 2.29: Two–stage parabolic.

Figure 2.30: Example of a hysteresis loop for a two–stage parabolic leaf spring.

The hysteresis loop reveals that the damping and effective spring rate both
depend on the excitation amplitude and nominal static load, i.e.: 1) The damp-
ing increases if either the excitation amplitude or nominal static load is increased
2) The effective spring rate decreases if the excitation amplitude is increased or
the nominal static load is decreased. Another important property, which has
been experimentally verified by the work in [14], is that the spring characteristics
are not influenced by the excitation frequency in the range 0 to 15 Hz.

The model developed in order to simulate the above mentioned character-
istics is based on the work in [14, 7]. The aim is to have a general model that
can be used for both the trapezoidal leaf spring and two–stage parabolic leaf
spring, and the specific type is then controlled through the model parameters.
The restoring force from the leaf spring is expressed by the following differential
equation [14, 7]

∂F

∂δ
=
Fenv − F

β
(2.28)

where F is the spring force, Fenv is an envelope function, δ is the spring deflection
and β is a decay constant. The envelope function defines the upper and lower
boundaries of the hysteresis loop, and the decay constant determines how steep
the transition between the boundaries should be. In other words, the static
spring stiffness is controlled by the envelope function, and the dynamic spring
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stiffness is controlled by the decay constant. Equation (2.28) is multiplied with
δ̇

Ḟ =
Fenv − F

β
δ̇ (2.29)

which will be used in the mathematical model of the dynamics of the wagon.
A proper formulation of the envelope function is found to be

Fenv =


ch(1 + µ0)z + Fr z ≤ z0, ż ≥ 0 (loading)
cz(1 + µ0)(z − z∗) + Fr z ≥ z0, ż ≥ 0 (loading)
cz(1− µ0)(z − z∗)− Fr z ≥ z0, ż ≤ 0 (unloading)
ch(1− µ0)z − Fr z ≤ z0, ż ≤ 0 (unloading)

(2.30)

Here, ch is the spring stiffness with an inactive additional leaf, cz is the spring
stiffness with an active additional leaf, µ0 is a friction parameter, z is the de-
formation of the spring, z0 is the position of the additional leaf and Fr is the
residual spring force. The deflection and deformation are related by δ = |z|.
For two–stage leaf springs z0 is finite, and for one–stage leaf springs z0 = ∞.
Furthermore, z∗ is determined from

z∗ =
{

(1− ch/cz)z0 0 < z0 <∞
0 z0 =∞

The leaf spring model is divided into the four natural states named and shown
in Table 2.3.

State Description
LoadingH z ≤ z0, ż ≥ 0
LoadingHZ z ≥ z0, ż ≥ 0
UnloadingHZ z ≥ z0, ż ≤ 0
UnloadingH z ≤ z0, ż ≤ 0

Table 2.3: Leaf spring states.

Hence, the envelope function becomes

Fenv =


ch(1 + µ0)z + Fr LoadingH
cz(1 + µ0)(z − z∗) + Fr LoadingHZ
cz(1− µ0)(z − z∗)− Fr UnloadingHZ
ch(1− µ0)z − Fr UnloadingH

and the resulting model is

Ḟ =
ż

β


chz − F + chµ0z + Fr LoadingH
cz(z − z∗)− F + czµ0(z − z∗) + Fr LoadingHZ
−(cz(z − z∗)− F ) + czµ0(z − z∗) + Fr UnloadingHZ
−(chz − F ) + chµ0z + Fr UnloadingH

(2.31)
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The right hand side of equation (2.31) is nonsmooth due to the loading / un-
loading transitions and the interaction with the additional leaf. In order to
properly integrate past these transitions, it is necessary to locate the transition
points defined by the functions ż = 0 and z − z0 = 0. On the other hand, close
to equilibrium it can be utilised that the loading / unloading transitions are
approximately smooth due to

chz − F ≈ 0 z ≤ z0 , |ż| � 1
cz(z − z∗)− F ≈ 0 z ≥ z0 , |ż| � 1

Thus, close to equilibrium it is valid that

Ḟ ≈ ż

β

{
chµ0z + Fr z ≤ z0
czµ0(z − z∗) + Fr z ≥ z0

The measure for close to equilibrium is

|chz − F | < Ftol z ≤ z0
|cz(z − z∗)− F | < Ftol z ≥ z0

To further enhance the performance of the numerical integration equation (2.31)
is normalised with the static spring load (mcbg/4). The state machine of the
model is shown in Figure 2.31.

�� ���� ��LoadingH

g1≥0, g2≤0

��
g2=0, ġ2>0

++

g1=0, ġ1<0

��
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g1≥0, g2≥0

��

g1=0, ġ1<0

���� ���� ��UnloadingH

g1≤0, g2≤0

MM

g1=0, ġ1>0

XX

g1 = ż
g2 = z − z0

�� ���� ��UnloadingHZ

g1≤0, g2≥0

RR

g1=0, ġ1>0

XX

g2=0, ġ2<0

kk

Figure 2.31: State machine of the leaf spring model.

Trapezoidal leaf spring To model the trapezoidal leaf spring the following
parameters are used: β = 3.0 mm, µ0 = 0.10, ch = cz = 1.1 MN/m, Fr = 7
kN, Ftol = 5 kN, z0 =∞. The decay constant is chosen such that the dynamic
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stiffness factor, kdyn/kstat, is about 5. In Figure 2.32 and 2.33 the results from a
harmonic excitation are shown. The characteristic hysteresis loop from the leaf
spring is modelled as expected.

A simulation of a mass (7500 kg) finding its equilibrium on the leaf spring
is investigated next. The time history of the simulation is shown in Figure 2.34
together with the hysteresis loop. The hysteresis loop depicts the normalised
restoring force. Note, that the events are only detected far from equilibrium
(Figure 2.34), and that no additional integration steps are taken in order to
pass the corners (Figure 2.35).
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Figure 2.32: 20 mm amplitude.
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Figure 2.33: 73.2 mm amplitude.

0 20 40 60 80 100
0

0.5

1

1.5

2

Fn
 [−

]

0 20 40 60 80 100
0

1

2

z [mm]

t [
s]

Events

Figure 2.34: Simulation with a mass on the
leaf spring.
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Figure 2.35: Integrating the corner.

Two–stage parabolic leaf spring The following parameters are used: β =
2.0 mm, µ0 = 0.075, ch = 0.65 MN/m, cz = 1.82 MN/m, Fr = 7 kN, Ftol = 5
kN, z0 = 62.9 mm. The results by simulating a mass on this spring is shown in
Figure 2.36 and 2.37. The effect of the additional leaf is clearly visible. Note,
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the different equilibrium positions for the two different masses. One important
property that leaf springs exhibit is that small amplitude oscillations are rather
poorly damped. In Figure 2.38 and 2.39 the time history by simulating the
mass of 7500 kg in 6 s is shown. Note, how the large amplitude oscillations
are adequately damped (Figure 2.38), and that the small amplitude oscillations
sustain for a while (Figure 2.39). The physical explanation for this phenomenon
is that the leaves are practically all sticking to each other and no frictional
energy is released. A linear model will not resemble this because the oscillations
are damped exponentially at all times.
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Figure 2.36: m = 3000 kg.
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Figure 2.37: m = 7500 kg.
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Figure 2.38: m = 7500 kg.
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Figure 2.39: Zoomed view.
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2.3.3 UIC double–link connection

The carbody is connected to the leaf spring through the UIC double–link con-
nection (UIC links), see Figure 2.40. The link system works as a pendular
suspension system with friction. The double–link type used for two–axle wag-
ons provides a relatively soft horizontal suspension giving the wheelset a larger
freedom to position itself radially in curves. The suspension damping stems
from the dry friction in the joints. The clearance of 10 mm between the lower
link and the suspension bracket, see Figure 2.41, makes the suspension stiffness
stepwise progressive. This is due to the fact that the pendulum length is halved
when the clearance is exceeded.

Figure 2.40: UIC links.

Figure 2.41: Clearance between the lower
link and the suspension bracket.

The UIC double–link connection provides a very robust suspension system with
low maintenance costs. The disadvantages are its sensitivity to the friction
coefficient in the joints and wear of the link elements. These quantities are not
easy to control and in general influenced by external factors. For instance, the
current weather conditions and the amount of dirt and oil in the joints affect the
friction coefficient. A high friction coefficient might prevent sliding in the joints
such that no energy is dissipated. It is also reported [36] that the rolling stiffness
of the links often increases by wear. This naturally also influences the suspension
characteristics and eventually the dynamic performance of the wagon.

Technical pendulum The technical pendulum distinguishes itself from the
mathematical pendulum in that rolling and sliding in the joint is taken into
account. The UIC links can be considered as a system composed of technical
pendulums. See the illustrations in Figure 2.42 to 2.44. Two variants of the
technical pendulum appear in studying the UIC links: the fixed pivot type
(Figure 2.45) and fixed hub type (Figure 2.46). In the longitudinal direction the
end bearing is rolling over the pin (fixed pivot), and in the lateral direction the
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link is rolling in the end bearing (fixed hub). It is noted that the design of the
end bearings decouples the longitudinal and lateral suspension characteristics.
The basic characteristics of the UIC links can be extracted by investigating the
technical pendulum.

Figure 2.42: UIC links. 1) Pin
2) End bearing 3) Link 4) Split
5) Intermediate bearing 6) C–
washer.

Figure 2.43: Longitudinal.
Figure 2.44: Lateral.
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Figure 2.45: Fixed pivot.
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Figure 2.46: Fixed hub.

In [61] it is shown that a proper model of the technical pendulum is a linear
spring in parallel with an elastic element with dry friction, see Figure 2.47. The
dry friction slider obeys Coulomb’s friction law (Figure 2.48). It is shown in [61]
that the spring stiffnesses (k and k1) depends only on geometry, i.e. pendulum
length and radii of the elements, but not the coefficient of friction. Moreover, the
break out force (T0) is almost proportional to the coefficient of friction between
the elements.

Exciting this suspension model harmonically yields the hysteresis loop shown
in Figure 2.49. Starting at zero displacement the restoring force increases with
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Figure 2.49: Hysteresis loop.



44 Mathematical model

the gradient of k + k1 because the friction slider sticks and thus both springs
are working. At the point (y1, Py1) the friction limit of T0 = k1y1 is saturated.
Hereafter, the friction slider begins to slide and the model stiffness immediately
drops to k since the spring in series with the dry friction slider is inactive. As
soon as the direction of the excitation is reversed the dry friction slider sticks
meaning that the model stiffness is k + k1 again. This pattern is then repeated
over again. Note, how the model parameters easily can be identified from the
hysteresis loop, i.e. the model stiffnesses are given by the gradient of the different
parts of the loop and the friction limit is found by T0 = k1y1.

The model can be verified by measuring the hysteresis loop using the proce-
dure described in [62]. Moreover, it also provides a simple method for identifying
the model parameters. A technical pendulum is instrumented with an inertial
accelerometer and a displacement sensor like in Figure 2.50 and 2.51. The out-
put of the inertial accelerometer can be divided into two constributions: 1) The
acceleration due to the motion of the mass m which is g tan γ cosφ. 2) The
acceleration due to the fact that the mass within the inertial accelerometer is
exposed to gravity, i.e. g sinφ. The measured acceleration is therefore

η = g(tan γ cosφ− sinφ)

The (normalised) restoring force can be computed using the identity in equa-
tion (2.32).

Py
mg

= tan γ , tan γ = tanφ+
η

g cosφ
(2.32)

The sway angle φ is found by recording the displacement z together with the
identity φ = arctan(z/b), and η is the measured tangential acceleration. The
experiment is performed by releasing the pendulum from a nonzero sway angle
configuration and then recording the quantities z and η while the pendulum is
freely swaying. The measured sway angle for an experiment in the longitudinal
direction with real UIC elements is shown in Figure 2.52, and the measured
hysteresis loop is shown in Figure 2.53.

The measurements reveal an important property of the UIC links: there is
practically no damping if the elements are rolling over each other. This is the
typical situation for small amplitude excitations. On the other hand, dissipative
dry friction forces sets in if the amplitude exceeds a certain magnitude because
the link elements are sliding.
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Figure 2.50: Technical pendulum (fixed
pivot type).

Figure 2.51: Experimental setup.
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Figure 2.53: Hysteresis loop.
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Cylindrical elements A proper model for the UIC links with (nominal) cylin-
drical geometry has been developed by Piotrowski [61]. The model is shown in
Figure 2.54 and 2.55. Both longitudinally and laterally the model is charac-
terised by a linear spring in parallel with elastic elements with dry friction. The
friction sliders obey Coulomb’s friction law and the coefficient of friction is as-
sumed to be the same in all joints. In the lateral direction, the interaction with
the suspension bracket is modelled by a linear spring with a dead band.
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Figure 2.54: Longitudinal direction.
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Figure 2.55: Lateral direction.

The mathematical formulation is presented in equation (2.33) and (2.34).
The force from the elastic element with dry friction is determined from the state
dependent differential equation shown in equation (2.35). The corresponding
state machine is shown in Figure 2.56. The force from the dead band spring is
found using equation (2.36) and the state machine in Figure 2.57.

Fx(ξ ≡ x) = −kxξ +
4∑
i=1

Tix (2.33)

Fy(ξ ≡ y) = −kyξ + T1y + Fsb (2.34)

Ṫi(ξ) =
{
−kiξ̇ Stick

0 SlidePos/SlideNeg
(2.35)

Fsb(y) =

 0 Idle
−ksb(y − y0) SpringPos
−ksb(y + y0) SpringNeg

(2.36)

Measurements Measurements of the lateral characteristics have been per-
formed on a worn suspension. The measurements were carried out at the In-
stitute of Vehicles, Warsaw University of Technology, with the aid of Prof. J.
Piotrowski and Ph.D. A. Grzelak. The complete experiment setup with instru-
mentation is illustrated in Figure 2.58 to 2.61. The suspension is loaded by a
mass of 378.2 kg. It is assumed that the normalised suspension characteristics,
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i.e. the restoring force normalised with the suspension load as a function of the
suspension displacement, is independent of the excitation frequency and the sus-
pension load. This assumption is found reasonable based on the experiments
shown in [36]. Measuring the hysteresis loop directly from a freely swaying sus-
pension, like in the case with the technical pendulum, is not appropriate here
because the dissipation is strong and therefore it is not possible to get a sufficient
amount of loops. Instead, the suspension is excited at its eigenfrequency (about
1 Hz) being a typical operating condition. An electrical motor provides the ex-
ternal excitation, g(t), with constant amplitude. This excitation is transferred
to the suspension mass through a spring with unknown characteristic. The sus-
pension is then further in connection with fixed ground through the UIC links.
Three quantities are measured during the experiment: the external force, Fmotor,
acceleration of the mass, η, and displacement of the mass, y. Newton’s second
law yields the following equation from which the restoring force, Py, from the
UIC links can be computed.

Py = mη − Fmotor (2.37)

In short the procedure of the experiment is:

1. Attach the sensors such that they are measuring according to Figure 2.58.

2. If not done previously then calibrate sensors (see below).

3. Tune motor until the measured force is at minimum amplitude.

4. Start measurement.
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Calibration of the displacement sensor:

• Put the system in equilibrium position.

• Set displacement sensor in appropriate position.

• Set zero for the sensor in software. Advantech–Grapol : Calibration/Shift+F1.

• Calibrate the sensor by putting the Johanson–piece (or other material of known dimen-
sions) between the sensor and mass. Enter this state into the program. Advantech–
Grapol : Calibration/Shift+F2.

• Enter the calibration distance of this sensor into the program. Advantech–Grapol :
Calibration/Shift+F3.

Calibration of the (inertial) accelerometer:

• Put the accelerometer in level position (make sure that the surface is really horizontal).

• Enter the zero into program. Advantech–Grapol : Calibration/Shift+F1.

• Turn the accelerometer 90 degrees and expose it to 1 g. Enter this state into program.
Advantech–Grapol : Calibration/Shift+F2.

• Enter the calibration distance into program, e.g. 1 g. Remember that this means that
the acceleration is measured in g’s. Advantech–Grapol : Calibration/Shift+F3.

Calibration of the force sensor:

• Put the force sensor in horizontal position without exposing it to any force, and set
zero. Advantech–Grapol : Calibration/Shift+F1.

• Find some mass of known weight (it is necessary to know the weight accurately).

• Attach this mass to the sensor and put the sensor in vertical position. Enter this state
into program. Advantech–Grapol : Calibration/Shift+F2.

• Enter the calibration force into program, e.g. 4 kilos, and remember that the sensor is
now measuring in kilos. The force is eventually found by multiplication with g (since the
calibration was done in vertical position). Advantech–Grapol : Calibration/Shift+F3.
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Figure 2.58: Experimental setup diagram.
Figure 2.59: Overview.

The measured acceleration signal is slightly delayed compared to the displace-
ment signal, see Figure 2.62. Physically, they are in phase, however, due to
the internal suspension properties of the inertial accelerometer the effect will be
present in the measured signal. The measurements are performed at approxi-
mately 1 Hz and the eigenfrequency of the inertial accelerometer is 19 Hz so the
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Figure 2.60: Side view. Figure 2.61: Force and displacement sensor.
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Figure 2.62: Delay in accelerometer.
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Figure 2.63: Adjusted signals.
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effect is small. However, it is important to adjust the delay because the result-
ing hysteresis loop is sensitive to the effect. The adjusted signal is illustrated
in Figure 2.63. The delay does not affect the measured hysteresis loop from
the technical pendulum because it is modulated by the sway angle through the
formula in equation (2.32).

The measured hysteresis loop for four different measurements is shown in
Figure 2.64 to 2.67. It is seen that there is a gradual transition between rolling
and sliding in the joints. An explanation of this could be a different coefficient
of friction in the joints such that the link elements starts to slide at different
instants. A comparison between an excitation with a small and high amplitude
is shown in Figure 2.68. The measurement with the small excitation is very
lightly damped resulting in the very thin hysteresis loop.

To model the measured hysteresis loop it has been found necessary to intro-
duce several dry friction sliders in order to resemble the gradual transition from
rolling to sliding in the suspension. The model is shown in equation (2.38) and
Figure 2.69. A comparison between a measured hysteresis loop and a simulated
one is compared in Figure 2.70.

Fy(ξ ≡ y) = −kyξ + Fsb +
4∑
i=1

Tiy (2.38)
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Figure 2.64: Measured hysteresis loop (1).
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Figure 2.65: Measured hysteresis loop (2).

Suspension parameters In several studies [61, 12, 81, 36, 85] models similar
to the one presented here (Figure 2.54, 2.55 and 2.69) have been used to simulate
the UIC links, however, the actual parameters used in the literature are widely
different. In particular, this is true for the parameters related to the elastic dry
friction elements (determining the behaviour of the rolling phase of the links).
A possible explanation for this is the influence of wear on the rolling stiffness.

Different parameter sets are used to be able to investigate their influence on
the dynamic performance of the wagon, see Table 2.4 and 2.5. The parameters
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Figure 2.66: Measured hysteresis loop (3).
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Figure 2.67: Measured hysteresis loop (4).
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Figure 2.68: Comparison between a high and low amplitude excitation.
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Figure 2.69: Model of the measured hys-
teresis loop.
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are normalised with the suspension load. The PTP set is taken from [61] and
is the basic reference set. They are found from a theoretical consideration of
the links with a cylindrical geometry and a friction coefficient of 0.3 between
the links. It is appropriate as a reference because they model an idealised
configuration with UIC elements having cylindrical geometry. The parameter
set SPP is the proposed suspension characteristics from [80], the parameter set
INP is from [12] and ASZ has been used in relation to the work [85]. The
parameter set MP includes the previously described measured characteristics in
the lateral direction, and the theoretical ones [61] are used in the longitudinal
direction.

The parameter ksb is put equal to ky such that the pendulum stiffness is
doubled when the clearance is exceeded, and the clearance is y0 = 0.01 m.

k [1/m] k1 [1/m] k2 [1/m] k3 [1/m] k4 [1/m]
PTP x 5.51 3.56 1.90 0.35 1.86

y 3.406 10.375 – – –
SPP x 4.50 25.00 – – –

y 4.90 20.00 – – –
INP x 4.60 22.99 – – –

y 4.60 13.79 – – –
ASZ x 2.70 32.00 15.70 4.10 –

y 4.00 52.00 8.00 – –
MP x 5.51 3.56 1.90 0.35 1.86

y 6.00 2.00 2.00 2.00 2.00

Table 2.4: Normalised stiffness parameters.

T01 [–] T02 [–] T03 [–] T04 [–]
PTP x 0.02103 0.01425 0.00278 0.02059

y 0.053 – – –
SPP x 0.08 – – –

y 0.10 – – –
INP x 0.07 – – –

y 0.07 – – –
ASZ x 0.016 0.037 0.020 –

y 0.040 0.064 – –
MP x 0.02103 0.01425 0.00278 0.02059

y 0.0015 0.0020 0.0025 0.0030

Table 2.5: Normalised friction limits.
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2.3.4 Axle guidance

The motion of the axle box is restricted by the axle guidance, see Figure 2.71.
The axle guidance works as a motion delimiter both in longitudinal and lateral
direction. The longitudinal clearance is 22.5 mm and the lateral is 20.0 mm. Like
the axle box, the axle guidance is made of steel. If the longitudinal clearance
is exceeded, a hard steel to steel impact occurs due to the construction of the
axle guidance. In the lateral direction, the axle guidance yields a relatively soft
elastic response because the axle guidance bends. Hence, the lateral behaviour
can be considered as an additional suspension stiffness.

The modelling of the axle guidance is described in detail below. In short,
the lateral model is a unilateral dead band spring model, and the longitudinal
model is Newton’s impact law with a coefficient of restitution.

Figure 2.71: Axle guidance (top view).

Lateral A unilateral dead band spring model appropriately models the be-
haviour of the axle guidance in the lateral direction. This model is shown in
Figure 2.72. The stiffness of the guidance is set to kgl = 1.5 MN/m [24] and
the clearance is y0 = 20 mm. The mathematical formulation is presented in
equation (2.39) and (2.40). The model is made state dependent due to its nons-
mooth behaviour and the corresponding state machine is a simplified case of the
state machine presented for the dead band spring model shown in Figure 2.57.

F right
gl (y) =

{
0 Idle

−kgl(y − y0) SpringPos
(2.39)

F left
gl (y) =

{
0 Idle

−kgl(y + y0) SpringNeg
(2.40)

Longitudinal Modelling the almost completely elastic impacts between the
axle box and axle guidance in the longitudinal direction is done using Newton’s
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y0

ky

Figure 2.72: Model of axle guidance in the lateral direction.

impact law. It is noted that the unilateral dead band spring model is not
appropriate here because it would require very high spring stiffnesses, which is
unwanted from a numerical perspective.

The classical formulation of Newton’s impact law is given in equation (2.41).
The model instantaneously changes the direction of the motion along the x–
coordinate. The velocity is multiplied by a coefficient of restitution, ε, to take
into account the energy dissipation from the impact.

ẋ+ = −εẋ− (2.41)

This formulation of Newton’s impact law can not be used directly for mod-
elling the axle guidance because: 1) There might be multiple impacts (simulta-
neously). 2) The distance between the axle box and axle guidance depends on
the motion of the wheelset as well as the carbody, and thus it is necessary to
take into account several degrees of freedom.

An elegant formulation of the impact problem is achieved using the theory on
unilateral contact problems from [60, 16]. If one or several of the longitudinal
clearances are exceeded during simulation, the integration is stopped and a
corresponding impact problem is solved in order to find the effect of the impact
on the generalised coordinates. This impact problem is naturally formulated as
a linear complementarity problem (LCP) being an optimisation problem with
nonnegativity and orthogonality constraints. After solving the impact problem
the integration is continued with a new initial condition that reflects the resulting
effect of the impact. This formulation is more general in that it takes into
account multiple impacts and it does not have the one dimensional restriction
as the classical version. The basic effect of the impact is that the velocity in
the normal direction at the contact point is reversed (multiplied by coefficient
of restitution). In Appendix B.3, the strategy is illustrated for a 3 DOF system
being slightly simpler than the axle guidance situation.

The contact problem considered here is illustrated in Figure 2.73. The two
rods modelling the axle boxes can hit the axle guidance at one or several of the
eight contact points. The DOF in the axle guidance model are

q = [Dxfw, Dψfw, Dxrw, Dψrw, Dθcb, Dψcb]T

and the contact points are defined by the following set

IG = {C1, C2, C3, C4, C5, C6, C7, C8}
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Figure 2.73: Contact points for the model of the axle guidance in the longitudinal direction.

Let gNi ≥ 0 denote the distance between the contact point Ci to the axle box.
If this distance vanish at the i’th contact point then an impact will occur. The
following unilateral constraint functions are found by using the results from
equation (2.26)

gN1(t,q) = −(R1(q) + ζ(t)) + x0

gN2(t,q) = −(R2(q) + ζ(t)) + x0

gN3(t,q) = R3(q) + ζ(t) + x0

gN4(t,q) = R4(q) + ζ(t) + x0

gN5(t,q) = −(R5(q) + ζ(t)) + x0

gN6(t,q) = −(R6(q) + ζ(t)) + x0

gN7(t,q) = R7(q) + ζ(t) + x0

gN8(t,q) = R8(q) + ζ(t) + x0

where

Ri =

(
Dxfw − yPwDψfw + yPcbDψcb − zPcbDθcb i = 1, 2, 3, 4

Dxrw − yPwDψrw + yPcbDψcb − zPcbDθcb i = 5, 6, 7, 8

and
ζ(t) = −z̄cbθCcb + ȳcbβCcb

The quantity x0 denotes the clearance between the axle box and axle guidance.
It is reminded that the suspension attachment point on the wheelset is defined
by the vector [xPw, yPw, zPw]T , and that [xPcb, yPcb, zPcb]T is the corresponding
vector for the carbody. The set of active constraint functions is

IS = {i ∈ IG|gNi = 0; ġNi ≤ 0}

The equations of motion can be written as

Mq̈− h−
∑
i∈IS

(wNλN )i = 0

where (wNλN )i is the projection of the contact force at the i’th active contact
point into the space of generalised coordinates. The vector h represents the sum
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of the external forces. The relative velocity in the normal direction for the i’th
contact is

ġNi =
d
dt

(gNi(t,q)) = wT
Niq̇ + ζ̇

where wNi is the generalised normal force direction for the i’th contact defined
by

wNi =
∂gNi
∂q

=
[
∂gNi
∂Dxfw

,
∂gNi
∂Dψfw

,
∂gNi
∂Dxrw

,
∂gNi
∂Dψrw

,
∂gNi
∂Dθcb

,
∂gNi
∂Dψcb

]T

wN1 = [−1, yC1fw, 0, 0, zC1cb,−yC1cb]T

wN2 = [−1, yC2fw, 0, 0, zC2cb,−yC2cb]T

wN3 = [1,−yC3fw, 0, 0,−zC3cb, yC3cb]T

wN4 = [1,−yC4fw, 0, 0,−zC4cb, yC4cb]T

wN5 = [0, 0,−1, yC5rw, zC5cb,−yC5cb]T

wN6 = [0, 0,−1, yC6rw, zC6cb,−yC6cb]T

wN7 = [0, 0, 1,−yC7rw,−zC7cb, yC7cb]T

wN8 = [0, 0, 1,−yC8rw,−zC8cb, yC8cb]T

In matrix–vector notation the equations of motion and the constraint functions
are written as

Mq̈− h−WNλN = 0 , ġN = WT
N q̇ + ζ̇

For each member in IS the associated vector wNi is gathered into a matrix WN ,
i.e. if C1 and C3 are the only active contact points then WN = [wN1,wN3].
Denote the impact time by tA and the detachment time by tE . Assuming that
the duration of the impact is very short, one can rewrite the equations of motion
on the impulse level

lim
tE→tA

∫ tE

tA

(Mq̈− h−WNλN ) dt = M(q̇E − q̇A)−WNΛN = 0

where

ΛN = lim
tE→tA

∫ tE

tA

λN dt

The relative velocity in the normal direction at tA and tE is

ġNA = WT
N q̇A + ζ̇ , ġNE = WT

N q̇E + ζ̇

Subtracting these two equations yields

ġNE − ġNA = WT
N (q̇E − q̇A) (2.42)
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Combining this information with the impulse formulation of the equations of
motion yields

ġNE − ġNA = WT
NM−1WNΛN (2.43)

Newton’s impact law can be expressed by the corner law in Figure 2.74, see [16],
[60]. This means that

ġNE + εN ġNA ≥ 0 , ΛN ≥ 0 , (ġNE + εN ġNA)TΛN = 0

where εN = diag{εNi} contains the coefficients of restitution. A LCP can now
be formulated by adding εN ġNA to equation (2.43)

ġNE + εN ġNA︸ ︷︷ ︸
ξ

= WT
NM−1WN︸ ︷︷ ︸

A

ΛN + (I + εN )ġNA︸ ︷︷ ︸
b

The matrix I is the identity matrix. In simplified notation the LCP problem is
formulated as

ξ = AΛN + b , 0 ≤ ξ ⊥ ΛN ≥ 0

See Appendix D for a description on how to solve the LCP. The LCP is solved
for ξ and ΛN . After solving the LCP the simulation is continued with an
initial condition that is adjusted according to the velocity vector expressed in
equation (2.44), which is deduced by combining equation (2.42) and (2.43).

q̇E = q̇A + M−1WNΛN (2.44)

The impact model presented above introduces a discontinuity into the system.
The time instant of the impact is located during simulation and the state ma-
chine of the model is shown in Figure 2.75.

-

6

ġNE

ΛN

−εN ġNA0

Figure 2.74: Newton’s impact law.
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Figure 2.75: State machine.
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2.4 Two–axle freight wagon model

The model used for simulating two–axle freight wagons can now be formulated.
In Table 2.6 the DOF are shown. The number of DOF is 17.

DOF Front wheelset Rear wheelset Carbody
Longitudinal × × –

Lateral × × ×
Vertical × × ×

Roll × × ×
Pitch – – ×
Yaw × × ×

Spin pert. × × –

Table 2.6: Degrees of freedom.

The model is essentially formulated as a system of first order ordinary differential
equations. The equations of motion (see section 2.1.6) constitute of several
second order differential equations. A second order equation is transformed into
two first order equations by the transformation

ẍ = f(x, ẋ) → x1 ≡ x
x2 ≡ ẋ

→
{
ẋ1 = x2

ẋ2 = f(x1, x2)

The resulting model is the 68 ODEs shown in equation (2.45).

ẏ = f(t,y) y ∈ R68 f ∈ R68 t ≥ 0 (2.45)

where

y1→5 = [Dxfw, Dyfw, Dzfw, Dφfw, Dψfw]T

y6→10 = [Dxrw, Dyrw, Dzrw, Dφrw, Dψrw]T

y11→15 = [Dycb, Dzcb, Dφcb, Dθcb, Dψrw]T

y16→21 = [Ḋxfw, Ḋyfw, Ḋzfw, Ḋφfw, Ḋψfw, Dβfw]T

y22→27 = [Ḋxrw, Ḋyrw, Ḋzrw, Ḋφrw, Ḋψrw, Dβrw]T

y28→32 = [Ḋycb, Ḋzcb, Ḋφcb, Ḋθcb, Ḋψcb]
T

y33→40 = [T1flx, T2flx, T3flx, T4flx, T1fly , T2fly , T3fly , T4fly ]
T

y41→48 = [T1frx, T2frx, T3frx, T4frx, T1fry , T2fry , T3fry , T4fry ]
T

y49→56 = [T1rlx, T2rlx, T3rlx, T4rlx, T1rly , T2rly , T3rly , T4rly ]
T

y57→64 = [T1rrx, T2rrx, T3rrx, T4rrx, T1rry , T2rry , T3rry , T4rry ]
T

y65→68 = [Fflz , Ffrz , Frlz , Frrz ]
T
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Ṫ2rrx
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Ṫ2rry
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Equation 1 to 32 are the equations of motion, equation 33 to 64 are related to the
friction forces in the UIC links and equation 65 to 68 are the normalised forces in
the leaf springs. Note that the equations related to the spin of the wheelset, i.e.
equation 21 and 27, were already expressed as first order differential equations
in section 2.1.6. The external forces and torques on the two wheelsets are
(i = fw, rw)

24FxiFyi
Fzi

35 = ATiOFgi + ATiTcb (Fsli + Fsri) + ATibi

24 ncX
j=1

AbicjFcj

35 (2.46)

24Mxi

Myi

Mzi

35 = R̃sl AbiTcbFsli + R̃sr AbiTcbFsri +

ncX
j=1

R̃cj AbicjFcj (2.47)

Likewise, the external forces and torques on the carbody are (i = cb)

24FxiFyi
Fzi

35 = ATiOFgi + Fsfli + Fsfri + Fsrli + Fsrri (2.48)

24Mxi

Myi

Mzi

35 = R̃sfl AbiT iFsfli + R̃sfr AbiT iFsfri + R̃srl AbiT iFsrli (2.49)

+R̃srr AbiT iFsrri

Here, R̃ is the linear operator R×.
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The gravitational forces are expressed in the inertial frame

Fgi =

 0
0

−mig


The suspension forces from the UIC suspension are functions of the suspension
deformation and its time derivative from equation (2.26) and (2.27), respectively.
The longitudinal suspension force FUIC,x is found through equation (2.33). It
is a function of the suspension deformation ∆rx and the forces from the elastic
dry friction elements T1x to T4x. The lateral suspension force FUIC,y is given by
equation (2.34) (cylindrical case) or by equation (2.38) (measured case). The
lateral guidance model in equation (2.39) and (2.40) is also incorporated into
FUIC,y. The lateral suspension force is a function of the suspension deformation
∆ry and the forces from the elastic dry friction elements T1y to T4y. The vertical
suspension forces are found by scaling the normalised values given in y65, y66,
y67, y68 with the static load on the leaf spring, mcbg/4. The suspension forces
are expressed in the track system of the carbody.

Fsflcb =

24−FUIC,x(∆rflx, y33, y34, y35, y36)
−FUIC,y(∆rfly , y37, y38, y39, y40)

mcbgy65/4

35 , Fslfw = −Fsflcb

Fsfrcb =

24−FUIC,x(∆rfrx, y41, y42, y43, y44)
−FUIC,y(∆rfry , y45, y46, y47, y48)

mcbgy66/4

35 , Fsrfw = −Fsfrcb

Fsrlcb =

24−FUIC,x(∆rrlx, y49, y50, y51, y52)
−FUIC,y(∆rrly , y53, y54, y55, y56)

mcbgy67/4

35 , Fslrw = −Fsrlcb

Fsrrcb =

24−FUIC,x(∆rrrx, y57, y58, y59, y60)
−FUIC,y(∆rrry , y61, y62, y63, y64)

mcbgy68/4

35 , Fsrrw = −Fsrrcb

The contact forces are computed in the contact coordinate system.

Fcj =

TxjTyj
Nj


The position of the j’th wheel–rail contact point is defined by Rcj . This vector
is found using the contact table.

The suspension attachment points for the bodies are defined (and fixed)
relative to the body frames. For the wheelsets these points are defined by

Rsl =

0
1
0

 Rsr =

 0
−1
0
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The suspension attachment points for the carbody are (i = cb)

Rsfl =

 dwb
1− ȳcb
−(z̄cb − r0)

 Rsfr =

 dwb
−1 + ȳcb
−(z̄cb − r0)


Rsrl =

 −dwb
1− ȳcb
−(z̄cb − r0)

 Rsrr =

 −dwb
−1 + ȳcb
−(z̄cb − r0)


where dwb is the half wheelbase.

Wagons Three different wagons have been implemented and used for the anal-
ysis. The wagons are shown in Figure 2.76 and their corresponding wagon data
are given in Table 2.7. The Hbbills 311 is a covered wagon from Germany with
a long wheelbase. The vertical suspension is provided by two–stage parabolic
leaf springs. The G69 is an older covered standard wagon from France with
short wheel base and trapezoidal leaf springs. The Swedish Kbps is an open–
sided wagon with trapezoidal leaf springs. The Kbps wagon data is taken from
Stichel’s work [80].

The Hbbills 311 wagon uses the modern wheelset BA004 with the BA381 bear-
ings. The inertia properties for this wheelset are provided by RAFIL (Germany)
[68] and shown in Table 2.8. The inertia from the wheelset bearing and the UIC
suspension is incorporated into the wheelset mass in the simulations. The UIC
suspension with a parabolic leaf spring weighs 147.6 kg (DSB Produktion, Den-
mark). Hence, the inertia properties of the simulated wheelset become

m/kg = 1032.0 + 2 · 81.5 + 2 · 147.6 ≈ 1490.0
Ixx/kg m2 = 529.8 + 2 · 81.5 · 12 + 2 · 147.6 · 12 ≈ 988.0
Iyy/kg m2 ≈ 90.0
Izz/kg m2 ≈ 988.0



62 Mathematical model

Hbbills 311 G69 Kbps

Figure 2.76: Wagon pictures.

Unit Hbbills 311 G69 Kbps
mw [kg] 1490.0 1570.0 1420.0
Ixxw [kg m2] 988.0 810.0 1040.0
Iyyw [kg m2] 90.0 112.0 154.0
Izzw [kg m2] 988.0 810.0 1040.0
mcb [kg] 15176.0 8860.0 8610.0
Ixxcb [kg m2] 32675.0 16600.0 25000.0
Iyycb [kg m2] 422084.0 86000.0 121400.0
Izzcb [kg m2] 413250.0 88000.0 127700.0
r0 [m] 0.46 0.43 0.46
ȳw [m] 0.0 0.0 0.0
z̄w [m] 0.46 0.43 0.46
ȳcb [m] 0.0 0.0 0.0
z̄cb [m] 1.57 1.58 1.20
Clearance, x0 [m] 0.0225 0.02 0.02
Clearance, y01 [m] 0.01 0.01 0.01
Clearance, y02 [m] 0.02 0.02 0.02
Wheelbase [m] 10.0 5.7 8.0
COM height [m] 1.57 1.58 1.20

Table 2.7: Wagons – inertia and details. Empty wagons.

mBA381 81.5 kg
mBA004 1032.0 kg
Ixx,BA004 529.8 kg m2

Iyy,BA004 89.9 kg m2

Izz,BA004 529.8 kg m2

r0 460 mm
Max. axle load 23.5 t

Table 2.8: Wheelset data.



Chapter 3

Numerical integration

3.1 Integration method

A key aspect in simulating the freight wagon is the integration of the differential
equation system constituting the model (see equation (2.45)). As a consequence
of the system complexity (nonlinear/nonsmooth, tabulated parameters for the
wheel–rail contact, system size) it is necessary to find approximate solutions by
numerical integration. Fortunately, the field of numerical analysis of differential
equations existed since before the prevalence of computers and the available
methods today are extensive. A thorough treatment of many popular methods
can be found in [22, 23, 30, 4].

The model of the freight wagon is integrated with the implicit Runge–Kutta
scheme with error control from [89, 106]. To be more specific the initial value
problem (IVP) in equation (3.1) is numerically approximated using the scheme
in equation (3.2).

ẏ = f(t,y) , y(t0) = y0 , f : R× Rm → Rm (3.1)

yn+1 = yn + h
4∑
i=1

biki (3.2)

ki = f

tn + cih,yn + h
i∑

j=1

aijkj

 (3.3)
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0 0 0 0 0
5/6 5/12 5/12 0 0

10/21 95/588 −5/49 5/12 0
1 59/600 −31/75 539/600 5/12

yn+1 59/600 −31/75 539/600 5/12
en+1 −37/600 −37/75 1813/6600 37/132

=
c A

bT

dT

Table 3.1: Butcher tableau.

The local stepsize is denoted by h and the integration coefficients are shown
by the Butcher tableau in Table 3.1. The method belongs to the ESDIRK1

family of Runge–Kutta methods. Any usable numerical method should satisfy
the fundamental requirement that it is convergent saying that the numerical
solution tends to the true solution as the grid is refined (h → 0). The order of
the method tells how fast the error incurred in the numerical integration from
tn to tn + h decreases to zero with the stepsize h. A method has order p if
the difference between the Taylor series for the exact solution through the point
yn evaluated at y(tn + h) and the numerical solution yn+1 is O(hp+1). The
ESDIRK method used here is of order p = 3. Globally the behaviour of the
method is O(hp).

Note that only the first stage derivative k1 = f(tn,yn) is explicit. The
remaining k2,k3,k4 are implicitly defined through equation (3.3). Newton–
Raphson’s iterative method is used to find the implicit ki, that is

loop

{
∇F(k(k)

i )∆ki = −F(k(k)
i )

k(k+1)
i = k(k)

i + ∆ki
, i = 2, 3, 4

where

F(ki) = ki − f

tn + cih,yn + h
i∑

j=1

aijkj


∇F(ki) = I− haii∇yf

tn + cih,yn + h
i∑

j=1

aijkj


and ∇yf ≡ ∂f/∂y. The identical diagonal elements in ESDIRK methods can
be exploited to achieve an efficient solver because a single factorisation of the
matrix ∇F(ki) is often sufficient in each integration step [23].

The stepsize h is adaptively controlled using the error estimate in equa-
tion (3.4), see [89, 22] for further details. This local error estimate is obtained

1Explicit singly diagonally implicit Runge–Kutta
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by comparing the numerical solution with an embedded method of order 4.

en+1 = h
4∑
i=1

diki (3.4)

Systems characterised by solutions having modes at considerably different time
scales will cause problems for the numerical stability for some methods. These
systems are called stiff systems. Therefore, in order to properly integrate stiff
systems it is necessary to use an integration scheme with certain stability prop-
erties. The system modelling the freight wagon is stiff because the high contact
stiffness between the wheel and rail generate modes on a different time scale
compared to modes induced by the suspension system. The stability of nu-
merical methods is investigated through the scalar linear test equation [23, 30]

y′ = λy , t ≥ 0 , y(0) = 1 (3.5)

The stability region D of a numerical method is defined by all numbers hλ ∈ C
such that limn→∞ yn = 0. To avoid numerical instabilities it is required that in
the n’th step the eigenvalues of the Jacobi matrix (∇yf) should satisfy

hλn,1, hλn,2, . . . , hλn,d ∈ D (3.6)

The well known Euler scheme is characterised by having a stability region being
the interior of a complex disc with unit radius, centred at z = −1. For stiff
systems the method is unsuitable because some eigenvalues will be very distant
from the stability region, and in order to avoid numerical instability, it is neces-
sary to force the stepsize down such that equation (3.6) is obeyed. In practice,
it is only possible to reduce the stepsize until a certain level, and moreover small
steps makes the method inefficient. The stability region regarding the ESDIRK
method in equation (3.2) is found next. By a straight forward application of the
integration scheme it is found that

yn+1 = yn + h
4∑
i=1

biki , ki = λ

yn + h
i∑

j=1

aijkj


Letting

k = [k1, k2, k3, k4]T , b = [b1, b2, b3, b4]T , 1 = [1, 1, 1, 1]T

it is found that

yn+1 = yn + hbTk , k = λ(yn + hAk)

Hence
yn+1 = R(hλ)yn , R(z) = 1 + zbT (I− zA)−11 (3.7)
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From this equation it is seen that yn = [R(hλ)]n, n = 0, 1, . . . and therefore the
stability region is

D = {z ∈ C : |R(z)| < 1}

Inserting the coefficients from the Butcher tableau in Table 3.1 gives

R(z) =
1− 1

4z −
11
48z

2 − 17
1728z

3(
1− 5

12z
)3 , z ∈ C

Figure 3.1 and 3.2 illustrates the stability region of the ESDIRK method. The
fact that

C− = {z ∈ C : Re(z) < 0}

belongs to the stability region D provides a good stability property of the nu-
merical scheme. The method is said to be A–stable. It basically means that
the stability of the method does not require that the stepsize should be below a
certain level, and hence the stepsize can be chosen on accuracy considerations
only.

Figure 3.1: Illustrating the stability region,
|R(z)| < 1.

Figure 3.2: Top view. The white patch in-
dicates the region where the method is not
stable, i.e. |R(z)| ≥ 1.

The construction of a so called continuous extension is useful for several pur-
poses: generation of dense output, provide a good initial guess for the Newton–
Raphson’s method in determining the stage derivatives, and event location. The
continuous extension is basically the polynomial yc(tn + θh) approximating the
true solution between yn and yn+1.

yc(tn + θh) = yn + h
4∑
i=1

b̄i(θ)ki , θ ∈ [0; 1] (3.8)

The coefficients b̄i(θ) are found through satisfying the 3. order conditions [23, 45]
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b̄TCk−11 =
θk

k
k = 1, 2, 3 , b̄TAC1 =

θ3

6
where C = diag(c1, c2, c3, c4) and 1 = [1, 1, 1, 1]T . These conditions can be
written in matrix–vector notation as

1 1 1 1
0 c2 c3 1
0 c22 c23 1
0 γc2 a32c2 + γc3 b2c2 + b3c3 + γ



b̄1
b̄2
b̄3
b̄4

 =


θ

θ2/2
θ3/3
θ3/6

 (3.9)

The linear system in equation (3.9) is singular with one degree of freedom. By
letting b̄1 = b1θ the following coefficients have been found

b̄1(θ) =
59
600

θ

b̄2(θ) = −541
75

θ +
62
5
θ2 − 28

5
θ3

b̄3(θ) =
26509
6600

θ − 49
10
θ2 +

98
55
θ3

b̄4(θ) =
541
132

θ − 15
2
θ2 +

42
11
θ3

It is seen that the continuous extension interpolates the numerical solution at
both end points, i.e.

b̄i(0) = 0 , b̄i(1) = bi , i = 1, 2, 3, 4 (3.10)

An important remark is that the construction of the continuous extension is
done efficiently because it is based on the same ki that already are computed
in the progress of the numerical solution. Hence, additional function calls of f ,
typically being very expensive, are not necessary.

3.2 Event system

In the solution procedure for the freight wagon model yet another challenge
appears: the function f in the IVP in equation (3.1) is nonsmooth. The non-
smoothness is due to the nature of the interacting forces, i.e. stick–slip transi-
tions in the suspension model, impacts between the axle box and axle guidance,
discontinuities in the contact parameters for the wheel–rail contact. Classical
numerical methods are all based on the existence of the derivatives of f . Gen-
erally speaking this nonsmoothness tends to have the following effects on the
numerical method: 1) The numerical solution is simply inaccurate because the
progress of the solution is based on non–existing derivatives of f . This is a com-
mon situation for constant stepsize integration schemes. 2) The simulation time
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is unacceptably high because the stepsize is forced down near the nonsmooth
points in order to satisfy the error tolerance specified. This happens when in-
tegration schemes with variable stepsize and error control are applied but it is
due to the lack of smoothness of the local error.

To avoid these numerical problems an event system is formulated. Each
nonsmoothness of f defines a so called event. The solution to the IVP is found
by a piecewise integration strategy where each smooth section is integrated
separately. The isolated events are located during the simulation and treated
independently. In the freight wagon model, a typical action for such an event is
a state change in one of the suspension elements.

Central in the event system is locating of the nonsmooth instants during
the simulation. These points can be expressed as a root finding problem of the
event functions defining the switching boundaries between the different states
of the model. The event location procedure is discussed next [77, 101, 13, 89].
Consider the time integration from yn to yn+1, and let

gi(t,y) i = 1, 2, . . . , N

be the complete set of event functions. If any of these event functions become
active, i.e. has a root within the time step, then the continuous extension from
equation (3.8) is constructed. The first occurred event is of interest because it
defines the time instant when it is necessary to take action. The time t∗ of this
event is defined by

t∗ = tn + θ∗h , θ∗ = min
i∈IG
{θi|gi(tn + θih,yc(tn + θih)) = 0} (3.11)

where IG is the set of active event functions. It is important that the contin-
uous extension interpolates the numerical solution exactly at both end points,
i.e. the property defined by equation (3.10), otherwise it might happen that
an event is defined by θ∗ /∈ [0; 1]. For instance, consider the integration from
yn to yn+1 and assume that the event function gj is having gj(tn,yn) < 0
and gj(tn+1,yn+1) > 0, i.e. a root within the time step. Assume also that
the numerical method is of order q and the event is located using a continu-
ous extension of order q + 1. This means that yn+1 − yc(tn+1) = O(hq+1).
If the root is sufficiently close to the right end point then it is possible that
gj(tn+1,yc(tn+1)) < 0, or in other words the event has not happened yet. So,
even though the continuous extension is locally more accurate it would cause
the event system to be inconsistent.

The root of the nonlinear equation g(tn + θh,yc(tn + θh)) = 0 can be found
with a few iterations of Newton–Raphson’s method using the good initial guess
in equation (3.12). This initial guess is derived directly from the linear inter-
polant between the two solution points surrounding the event.

θ0 =
g(tn,yn)

g(tn,yn)− g(tn+1,yn+1)
(3.12)
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The Newton–Raphson’s method is shown below

θk+1 = θk −G(θk)/G′(θk)

where

G(θ) ≡ g(tn + θh,yc(tn + θh))
G′(θ) ≡ gth+ gyy′c(tn + θh)

The derivative of the continuous extension w.r.t. θ is required for the Newton–
Raphson’s method. From the definition of the continuous extension (see equa-
tion (3.8)) the following is found

y′c(tn + θh) = h

4∑
i=1

b̄′i(θ)ki

The polynomial b̄′i(θ) is given by

b̄i(θ) = b̄i,1θ + b̄i,2θ
2 + b̄i,3θ

3

b̄′i(θ) = b̄i,1 + 2b̄i,2θ + 3b̄i,3θ2

The resulting event location algorithm is shown in Algorithm 2. Before simula-
tion a list containing a reference to all submodels with nonsmooth properties is
generated, see Table 3.2. If an event occurs in the i’th submodel it is located and
put into an event queue. This queue always contains the first occurred event. If
another event has the same value of θ (say with in a tolerance of 10−8) it will
be appended to the event queue. After running through the complete event list
the necessary state changes of the submodels specified in the event queue are
executed.

The overall integration procedure can now be illustrated by the flow diagram
in Figure 3.3. Visualising the state changes for a specific simulation is helpful for
understanding the event system, see Figure 3.4. The top figure gives the time
history of the front wheelset, and the bottom figure indicates the state changes
in some of the submodels. It is seen that the wagon starts near the centre of the
track and eventually ends up in an oscillating motion. The legends and general
interpretation of the bottom figure is described in the following:

DFE refers to an elastic dry friction element used in the modelling of the
UIC links. Such an element has three different states: Stick (no peak), SlidePos
(small peak), SlideNeg (high peak). An identifier such as FLY says that the
element is positioned in the model of the front left suspension in the lateral
direction. DBS is the dead band spring modelling the suspension bracket in the
UIC links. The corresponding states are: Idle (no peak), SpringPos (small peak),
SpringNeg (high peak). WR is a wheel–rail contact module. This element can
have several states depending on the amount of discontinuities in the contact
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θmin = 1.0
event = false
for i ∈ EVTLIST do

call state machine of the i’th event for θ = 1
if i’th event is active then
θ = gi(tn,yn)/(gi(tn,yn)− gi(tn+1,yn+1))
iter = 1
repeat
θ = θ − gi(tn + θh,yc)/(gi,th+ gi,yy′c)

until |gi(tn + θh,yc)| < tol ∨ iter + + > maxiter

if θ ∈ [0; 1] then
event = true
if θ < θmin then

clear EVTQUEUE

insert i’th event into EVTQUEUE

θmin = θ
else if θ − θmin < 10−8 then

insert i’th event into EVTQUEUE

end if
end if

end if
end for
for i ∈ EVTQUEUE do

call action command on the i’th event.
end for

Algorithm 2: Event location.

Index Description
0 Dry friction element (FLX)
1 Dry friction element (FLX)
2 Dry friction element (FLX)
3 Dry friction element (FLX)
4 Dry friction element (FLY)
5 Dry friction element (FLY)
6 Dry friction element (FLY)
7 Dry friction element (FLY)
8 Dry friction element (FRX)
9 Dry friction element (FRX)
10 Dry friction element (FRX)
11 Dry friction element (FRX)
12 Dry friction element (FRY)
13 Dry friction element (FRY)
14 Dry friction element (FRY)
15 Dry friction element (FRY)
16 Dry friction element (RLX)
17 Dry friction element (RLX)
18 Dry friction element (RLX)
19 Dry friction element (RLX)
20 Dry friction element (RLY)
21 Dry friction element (RLY)
22 Dry friction element (RLY)
23 Dry friction element (RLY)
24 Dry friction element (RRX)
25 Dry friction element (RRX)
26 Dry friction element (RRX)
27 Dry friction element (RRX)
28 Dry friction element (RRY)
29 Dry friction element (RRY)
30 Dry friction element (RRY)
31 Dry friction element (RRY)

Index Description
32 Suspension bracket (FLY)
33 Suspension bracket (FRY)
34 Suspension bracket (RLY)
35 Suspension bracket (RRY)
36 Axle guidance (FRY)
37 Axle guidance (RRY)
38 Axle guidance (FLY)
39 Axle guidance (RLY)
40 Leaf spring (FLZ)
41 Leaf spring (FRZ)
42 Leaf spring (RLZ)
43 Leaf spring (RRZ)
44 Track event (FW)
45 Track event (RW)
46 Track event (CB)
47 Axle guidance (FLX, C1)
48 Axle guidance (FRX, C2)
49 Axle guidance (FLX, C3)
50 Axle guidance (FRX, C4)
51 Axle guidance (RLX, C5)
52 Axle guidance (RRX, C6)
53 Axle guidance (RLX, C7)
54 Axle guidance (RRX, C8)
55 Wheel–rail (FL)
56 Wheel–rail (FR)
57 Wheel–rail (RL)
58 Wheel–rail (RR)

Table 3.2: Event list.
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Figure 3.3: Flow diagram.
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parameters for the specific wheel–rail profiles used. Typically, these disconti-
nuities are found near the flange, and hence the diagram tells if the wheel is
flanging. For the left wheels this causes one or several peaks upwards, and for
the right wheels the peaks will be pointing downwards.

It is interesting to see how all the elements start out in their corresponding
idle states and then, as the oscillations reach a certain amplitude, begin to
change state – that is the suspension elements are sliding, the rear suspension
bracket clearances are exceeded, and the wheels are oscillating from flange to
flange.
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3.3 Jacobi matrix

The Newton–Raphson’s method used for calculating the stage derivatives (equa-
tion (3.3)) needs the Jacobi matrix ∇yf . The (i, j)’th entry in the Jacobi matrix
are numerically estimated using the central difference estimate

∂fi
∂yj
≈ fi(t, y1, . . . , yj + ∆y, . . . , yn)− fi(t, y1 . . . , yj −∆y, . . . , yn)

2∆y
(3.13)

where ∆y is a small perturbation. Regarding the system modelling the freight
wagon, the Jacobi matrix is a sparse matrix with 68 · 68 = 4624 elements.
Any unnecessary computations should be avoided in approximating the Jacobi
matrix because the resulting simulation time is highly dependent on this. In
particular, the following optimisations are important to take into account:

• The Jacobi matrix is sparse and there is no need to numerically approx-
imate the zeros. The dependencies of the function f are identified before
simulation (see page 74). These dependencies yield the pattern in Fig-
ure 3.5 illustrating the nonzero entries.

• The relative kinematics and interacting forces are functions of y. Comput-
ing the entries in the Jacobi matrix in a columnwise fashion is beneficial
because the relative kinematics and interacting forces computed for the
two perturbations related to yj can be reused for all nonzero elements in
the j’th column.
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nz = 1082

Figure 3.5: Nonzero entries in the Jacobi matrix.
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Chapter 4

Implementation

4.1 Analysis and design

The freight wagon model is implemented in C++ providing an excellent environ-
ment for efficient object oriented programs. The program structure is described
in the following.

Bodies For each body in the model an object is instantiated holding the
characteristic quantities defining the body, i.e. mass, inertia around the princi-
pal axes, equilibrium position of centre of mass. These quantities are defined
in a common super class body. Derived from this class is the wheelset and
carbody classes that besides the characteristic quantities mentioned above in-
cludes the position and orientation coordinates for the wheelset and carbody,
respectively. The position and orientation of the wheelset is defined through:
Dx, Dy, Dz, Dφ, Dψ, Dβ . Likewise, for the carbody: Dy, Dz, Dφ, Dθ, Dψ. See
Figure 4.2 for an illustration. The source code related to the above mentioned
classes are found in bodies.h, wheelset.cpp and carbody.cpp.

Event system The event system is built around the abstract interface evt_-
base having the virtual functions and variables shown in Figure 4.1. All sub-
models of the nonsmooth interacting forces are implemented as classes derived
from the evt_base. The virtual declaration is beneficial because the implemen-
tation of the function is to be specified in the derived classes. Regarding the
event system the state machine function, sm(...), event function, g(...) and
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action command function, action(...), are all basic functions with model spe-
cific implementations. The boolean active indicates whether or not an event
has occurred within the time step, and the variable state holds the state of the
element.

virtual void sm(double tn, double hn, double theta) = 0;

virtual double g(double tn, double hn, double theta, int i) = 0;

virtual void action(DVector &y) = 0;

bool active;

int state;

Figure 4.1: The abstract interface evt_base.

The dead band spring, elastic dry friction element, longitudinal guidance model,
leaf spring, track and wheel–rail contact are all implemented as classes derived
from the abstract interface evt_base, and they are gathered into the event
list (see Table 3.2) declared by evt_base *evtlist[59]. See Figure 4.3 for
an illustration. The event location algorithm (Algorithm 2) is found in evt-
det.cpp. The source code related to the event system is found in events.h,
evtdet.cpp, events_base.cpp, events_dbs.cpp, events_dfe.cpp, events_-
gl.cpp, events_ls.cpp, events_tr.cpp and events_wr.cpp.

Auxiliary objects The nodes and function values of the track curvatures and
the superelevation are defined by constructing a track object. The object con-
tains an interface for the formulas in section 2.1.7 in order to find the curvilinear
parameters. The track object is implemented in track.h, track.cpp.

As described in section 2.2.3 the contact table is divided into continuous
sections. The contact parameters regarding a specific section is stored in a sec-
tion object. Besides holding the contact parameters this object also provides
a function through which the table can be interpolated given the lateral dis-
placement of the wheelset. The section object is implemented in section.h,
section.cpp.

Freight wagon model The entire freight wagon model is built using a wagon
object. This object provides a convenient interface for the relative kinematics,
interacting forces and equations of motion. The class is defined in freight-
wagon.h (see Figure 4.4), the basic functions related to the wagon object are
found in freight_main.cpp, the resultant forces and torques acting on the
bodies are computed in freight_forces.cpp, the initial condition of the freight
wagon is specified in freight_ic.cpp, solution output from the model are imple-
mented in freight_io.cpp, and the model parameters for the different wagons
investigated in this project are found in freight_wagons.cpp.
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Integration method The ESDIRK implementation by Østergaard [106] is
used. The ESDIRK library is accessed through the creation of a Sdirk object.
The code has been extended so it is possible to externally access the continuous
extension which is needed for the event system. The ESDIRK code needs an
implementation of the right hand side function f and its corresponding Jacobi
matrix ∂f/∂y. These are implemented in system.cpp.

Simulation scripts The main function of the program and the basic integra-
tion loop regarding the initial value problem are found in integrate.cpp. A
wagon object and a Sdirk object are created. They provide the needed refer-
ences to the freight wagon model and the ESDIRK library. See Figure 4.5 for an
illustration. Interfacing the C++ code from Java is also possible using function
declarations according to the Java Native Interface (JNI). This feature is made
available in integrate_jni.cpp which basically is a clone of integrate.cpp.

class wheelset : body

class carbody : body
Dy, Dz, Dphi, Dtheta, Dpsi, ...

Dx, Dy, Dz, Dphi, Dpsi, ...

class body

m, Ixx, Iyy, Izz, ...

bodies.h

Figure 4.2: Bodies.

events.h

class evt_base
virtual void sm(...)
virtual double g(...)
virtual void action(...)
bool active
int state

class evt_dbs : evt_base

class evt_dfe : evt_base

class evt_gl : evt_base

class evt_ls : evt_base

class evt_tr : evt_base

class evt_wr : evt_base

Figure 4.3: Event system.
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body *bodies[3]

evt_base *evtlist[59]

track *mytrack

void get_evtlist()

void get_relkin()

void get_forces()

double ydot(int eqn)

Gravitational forces
Wheel−rail contact forces
Vertical susp. forces
Longitudinal susp. forces
Lateral susp. forces

freightwagon.h

class wagon

Implementation of eqn. (2.46) − (2.49)

Constructs the event list

Reference to the wheelsets and carbody

Reference to the event list

Reference to the track parameters

Implementation of rhs of eqn. (2.45)

Implementation of eqn. (2.26) and (2.27)

Computes:

Figure 4.4: Freight wagon.

integrate.cpp (simulation script)

solver = new Sdirk(...)

Sdirk *solver
wagon *wag

wag = new wagon(...)

Set initial condition

Integrate one step

Check for events (Algorithm 2)

do {

} while (t < tend)

void simulate() {

}

Figure 4.5: Simulation script.
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4.2 TAFWA code

A graphical user interface is created on top of the freight wagon model. The
GUI is programmed in Java and is integrated with the model using the Java Na-
tive Interface (JNI) [33]. This framework constitutes the TAFWA1 program and
has been used to analyse the two–axle freight wagons in this project. TAFWA
provides a simple interface for simulating and analysing the wagons, and com-
plicated model details are hidden from the user. Screen–shots from TAFWA are
shown in Figure 4.6 and 4.7. The solve pane contains the wagon simulator. A
simulation is simply started by selecting a wagon from the list and then clicking
start. The C++ model is then activated in its own thread such that it will not
lock the entire program during simulation. After the simulation has ended the
results can be analysed using the utilities found in the visualise pane. Here
a general purpose plotting program is found. For a quick analysis, click load
to specify the solution file and use the Quick plot features (1 is time history
of the lateral motion of the bodies, 2 is longitudinal suspension analysis, 3 is
lateral suspension analysis, 4 is vertical suspension analysis, and 5 is wheelset
analysis).

In order to simulate a new wagon using the TAFWA code we execute the fol-
lowing steps:

1. Make a new function with the wagon data in freight_wagons.cpp (e.g.
by copy–paste an old one)

2. Make a prototype of this function in freightwagon.h

3. Update the wagon list in freight_main.cpp

4. Find the equilibrium position of the new wagon using get_z function in
integrate.cpp

5. To be able to select the wagon using the GUI it is necessary to update the
wagon list in SolveControlPanel.java and to put a html description file
in the html directory

The program is most easily compiled and started using the Makefile provided.
Compile by make, and start TAFWA by make run. The model can also be used
without the GUI by make cpponly and make runcpp. On the Solaris system
use gmake instead of make. It might be necessary to modify the JNI path in the
Makefile in order to match the Java installation directory on the system used.

1Two–axle freight wagon analyser
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Figure 4.6: The simulator.

Figure 4.7: The visualising toolbox.



Chapter 5

Results

The running properties of two–axle freight wagons are not always satisfactory
on straight track due to the well known and unwanted hunting motion. Using
the model developed, it is possible to shed some light on the complex dynamic
behaviour of these wagons.

Time domain simulations and bifurcation diagrams provide the basic ap-
proach of analysis because they do not rely on simplified formulations of the
model. A bifurcation diagram is a convenient tool in the analysis of nonlinear
dynamical systems. It shows the long–term behaviour of the system as a func-
tion of a (bifurcation) parameter. An equilibrium state for which the system
evolves after long enough time is called an attractor. A hallmark of dissipative
nonlinear systems like the freight wagon model presented here is that multiple
attractors might coexist for the same parameter value [94, 86].

5.1 Stability on straight track

The running properties of rail vehicles are sensitive to the contact geometry
between the wheel and rail, and the two–axle freight wagon is no exception to
this. All results presented here are based on the European standard wheel–rail
profile combination S1002/UIC60. The rail inclination (see Figure 2.14) is not
the same throughout Europe, for instance it is 1/40 in Germany, 1/30 in Sweden
and 1/20 in France. For the two–axle freight wagons the rail inclination has
an important qualitative influence on the running properties. The bifurcation
diagrams in Figure 5.1 to 5.3 illustrate this for the Hbbills 311 wagon using the
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Figure 5.1: Attractors, 1/20 rail inclination.
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Figure 5.2: Attractors, 1/30 rail inclination.
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PTP suspension parameters. The two other wagons have the same qualitative
behaviour. The speed is the bifurcation parameter and the ordinate indicates
the maximum lateral displacement of the bodies measured in the track system.
Stable and unstable equilibrium states are shown by solid and dashed lines,
respectively.

The stationary solution in the centre of the track is not well defined due to
the dry friction in the UIC links. This is shown by giving the stationary solution
a finite width. This width depends on the instantaneous friction parameters in
the suspension. The rail inclination is seen to have a strong influence on the
stability of the stationary solution. In the case with 1/20 rail inclination the
stability is lost at high speed whereas it is lost at very low speed for 1/40 rail
inclination. The stability of the stationary solution is lost in a subcritical Hopf–
bifurcation.

The nonlinearity in the system is responsible for the fact that multiple at-
tractors coexist. A high amplitude attractor appears for the wheelsets at high
speeds. It will be denoted the flange–to–flange attractor because the wheelsets
moves from flange to flange. The wheel flanges are limiting the lateral motion
of the wheelset, and the amplitude is basically the distance to the flange. If the
wheelsets are on this attractor, the carbody responds with a violently oscillat-
ing motion in the 1/20 rail inclination case. This is in contrast to the motion
found with the 1/30 and 1/40 rail inclinations where the carbody has a small
amplitude oscillation around 1 mm with an irregular pattern.

In the case with 1/30 and 1/40 rail inclinations, there exists also a periodic
medium amplitude attractor with increasing amplitude for decreasing speed.
The sudden increase in amplitude is a consequence of a resonance motion of
the wagon. As suggested by Stichel in [80, 81] a resonance between the lateral
excitation frequency of the wheelsets and the yaw eigenfrequency of the car-
body might occur. These frequencies can be approximated by the formulas in
equation (5.1). The wheelset lateral excitation frequency is approximated by
Klingel’s formula.

fyaw =
1
2π

√
4a2ky
Izz

, fw =
V

2π

√
λ

b0r0
(5.1)

Here, a is the half wheelbase, ky is the lateral suspension stiffness, Izz is the yaw
moment of inertia of the carbody, V is the speed, λ is a wheel conicity, 2b0 is the
distance between the nominal rolling circles and r0 is the nominal rolling radius.
The nonlinearities in the suspension as well as the wheel–rail geometry make
ky and λ dependent on the current configuration of the system. Estimating the
suspension stiffness using the PTP parameters with a deformation of 10 mm
and letting the conicity be defined by the equivalent conicity (see e.g. Table
7–8 in [1]) the relations depicted in Figure 5.4 can be found for the Hbbills 311
wagon. From the figure it is seen that the excitation frequency of the wheelsets
coincide with the yaw eigenfrequency of the carbody at 12 m/s, 18 m/s and 49
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m/s for 1/40, 1/30 and 1/20 rail inclination, respectively.
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Figure 5.4: Comparing the eigenfrequency of the yaw mode of the carbody with Klingel’s
estimate of the lateral excitation frequency of the wheelsets.

Even though this estimate of resonance is an approximate one, it actually
helps interpreting the bifurcation diagrams. The peaks of the medium amplitude
attractor in the 1/30 and 1/40 case are due to this resonance. There is no
medium amplitude attractor in the 1/20 case, however, the resonance still occurs
at 49 m/s as predicted – but in the speed interval for which the wheelsets are
on the flange–to–flange attractor. The carbody also oscillates dramatically in
this case.

The fact that the nonlinearity in the link suspension characteristics is of
the softening type, i.e. the suspension stiffness decreases when sliding sets in
(Figure 2.49), could explain why all the resonance curves are bending to the left
[41]. It is further noted that the resonance attractor disappears in a saddle–node
bifurcation for all three rail inclinations.

On the flange–to–flange attractor, in the case with 1/30 and 1/40, the lateral
excitation frequency of the wheelsets are far beyond the yaw eigenfrequency
of the carbody, hence no resonance occurs and the result is a weak carbody
response. The spectral analysis shown in Figure 5.5 and 5.6 highlights the
different frequencies found in the lateral motion of the front wheelset on the
flange–to–flange attractor in case 1/20 and 1/40. The frequency is 1.3 Hz for
the 1/20 rail inclination and 6.4 Hz for the 1/40 rail inclination. Although,
the amplitude of the flange–to–flange attractor is almost constant (and equal to
the distance to the flange) the width of the peaks in the power spectrum reveals
that the flange–to–flange motion is actually aperiodic. The abrupt guiding force
from the flange is held responsible for this behaviour.

The attractors can be illustrated by starting out at high speed and then
decelerate until the stationary solution is the only stable attractor left. This
is done for the three rail inclinations with the Hbbills 311 wagon using the
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Figure 5.5: Hbbills 311 (empty, PTP, 1/20)
running at 50 m/s.
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Figure 5.6: Hbbills 311 (empty, PTP, 1/40)
running at 45 m/s.

PTP parameters and the results are shown in Figure 5.7 to 5.9. The figures to
the left show the contact angle as a function of the lateral displacement of the
wheelset. The time series of the speed, lateral position of front wheelset and
lateral position of carbody are shown in the figures to the right. The contact
angle helps in interpreting the amplitude of the different attractors related to the
wheelsets. It is interesting to watch how the oscillation of the carbody suddenly
increases in amplitude due to the bifurcation c in the situation with 1/30 rail
inclination.
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Figure 5.7: Shadowing attractors by decelerating from 50 m/s to 5 m/s.
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Figure 5.8: Shadowing attractors by decelerating from 50 m/s to 5 m/s.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

y [mm]

C
A

 [r
ad

]

 

 

Left
Right

0 5 10 15 20 25 30 35 40 45

20

40

V
 [m

/s
]

0 5 10 15 20 25 30 35 40 45
−5

0

5

yf
w

 [m
m

]

0 5 10 15 20 25 30 35 40 45
−5

0

5

t [s]

yc
b 

[m
m

]

Contact angle. Decelerating from 50 m/s.

Figure 5.9: Shadowing attractors by decelerating from 50 m/s to 5 m/s.
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The resonance in the carbody yaw mode is confirmed in the illustration of the
yaw angles shown in Figure 5.10. This plot is obtained from the same simulation
as in Figure 5.9. The yaw motion of the carbody is seen to increase towards
the resonance at 12 m/s. Figure 5.11 depicts the special situation of the Hbbills
311 wagon running at 40 m/s with 1/40 rail inclination where three coexisting
attractors are present. They are illustrated here through time series of the front
wheelset.
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Figure 5.10: Time series of yaw angles. Hb-
bills 311 (empty, PTP, 1/40).
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Figure 5.11: Three coexisting attractors at
40 m/s. Hbbills 311 (empty, PTP, 1/40).

The parameters used for the model of the UIC links influence the simulation
results. The PTP parameters provide a good reference because they are the-
oretically found using the (idealised) nominal cylindrical geometry of the UIC
links. As indicated by the parameters in Table 2.4 (section 2.3.3) the rolling
stiffness is often very different from measurement to measurement. In the work
by Jönsson [36] it is also noted that the rolling stiffness typically increases with
wear. The results in Figure 5.12 are obtained from the Hbbills 311 wagon with
1/40 rail inclination but using the SPP parameters. These parameters differ
from the PTP by having a more stiff rolling phase. A quantitative difference
is observed by comparing with the reference case (Figure 5.9). The flange–
to–flange attractor disappears at 66 m/s instead of 38 m/s. Furthermore, the
stiffer lateral suspension increases the yaw eigenfrequency of carbody, see equa-
tion (5.1), hence the resonance motion occurs at higher speed, i.e. 18 m/s.

Simulating with the experimentally identified parameters MP generates the
results in Figure 5.13. The parameters are characterised by a short rolling phase
due to a low break out force in the links. The sliding phase is pronounced and
dissipation occurs at small displacements. This clearly influences the amplitude
of the oscillations at resonance speed which are seen to be small. The flange–to–
flange attractor is also moved slightly to lower speeds such that it exists until
35 m/s.

Breaking the symmetry in the suspension parameters has an interesting ef-
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Figure 5.12: Stiff rolling phase. Hbbills 311
(empty, SPP, 1/40).
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Figure 5.13: Low break out force. Hbbills
311 (empty, MP, 1/40).
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Figure 5.15: Simulation at 37 m/s with
asymmetric suspension parameters.



Stability on straight track 89

fect on the wheelset attractors. This is illustrated by the results in Figure 5.14
obtained with UIC link parameters having different friction coefficients and as-
suming the cylindrical geometry [61]. The friction coefficients used are

fFL = 0.1 , fFR = 0.3 , fRL = 0.5 , fRR = 0.2

where FL, FR, RL, RR denote the front left, front right, rear left, rear right
horizontal suspension model, respectively. The broken symmetry in the suspen-
sion parameters break the symmetry in the wheelset attractors as well. Running
at e.g. 37 m/s, the special scenario occurs where the front wheelset is on the
flange–to–flange attractor and the rear wheelset is not, see Figure 5.15.

According to the formula of the yaw eigenfrequency of the carbody in equa-
tion (5.1) an increased yaw moment of inertia should decrease the yaw eigenfre-
quency of the carbody. This is also confirmed by the results of an analysis that
is shown in Figure 5.16. However, the effect is weak due to the square root in
the formula for the eigenfrequency, see equation (5.1).

0 5 10 15 20 25 30 35 40

20

40

V
 [m

/s
]

0 5 10 15 20 25 30 35 40
−5

0

5

yf
w

 [m
m

]

0 5 10 15 20 25 30 35 40
−5

0

5

t [s]

yc
b 

[m
m

]

0 5 10 15 20 25 30 35 40

20

40

V
 [m

/s
]

0 5 10 15 20 25 30 35 40
−5

0

5

yf
w

 [m
m

]

0 5 10 15 20 25 30 35 40

−5

0

5

t [s]

yc
b 

[m
m

]

Izz − 20%. Izz + 20%.

Figure 5.16: A demonstration of the influence of the yaw moment of inertia of the carbody
on the dynamics. Hbbills 311 (empty, PTP, 1/40).
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Next, the Hbbills 311 wagon is simulated in a loaded configuration (22.5 t axle
load). The mass and inertia of the carbody are changed to

mcb = 41176.0 kg Ixxcb = 66492.0 kg m2

Iyycb = 993040.0 kg m2 Izzcb = 986832.0 kg m2

These inertias are found by assuming that the load is a homogeneous box of
26 t with dimensions (l, w, h) = (16.01, 2.90, 2.35) m. The simulation results are
shown in Figure 5.17 and 5.18 for two different heights of the centre of mass.
In both cases the flange–to–flange motion only exists for speeds higher than 60
m/s. The resonance motion still occurs at low speed (12 m/s) despite the fact
that the yaw moment of inertia of the carbody is significantly bigger compared
to the empty wagon. The reason for this is that the stiffness of the pendular
suspension system is correspondingly more stiff such that the yaw eigenfrequency
of the carbody is almost the same, see equation (5.1).

Regarding the motion of the loaded wagon with the high centre of mass, it
is noted that in a speed interval around 33 m/s the amplitude of the attractor
increases. The explanation for this is that a roll mode of the carbody is excited.
The eigenfrequency of the roll motion can be approximated by equation (5.2).

froll =
1
2π

√
4(L2

1kz + L2
2ky)

Ixx
(5.2)

where L1 = 1.0 m and L2 = z̄cb − r0 are the lateral and vertical distances
between the centre of mass and the UIC suspension, respectively. The lateral
suspension stiffness ky is estimated as described for the yaw eigenfrequency and
kz reflects the dynamic stiffness of the leaf spring. For the empty wagon, the roll
eigenfrequency is actually about the same as the yaw eigenfrequency, however,
the roll mode is not excited because, typically, the wheelsets are oscillating with
a phase difference, which prevents a severe roll motion of the carbody. For the
loaded wagon, the roll eigenfrequency is changed to about 3.3 Hz primarily due
to the stepwise progressive suspension stiffness of the two–stage parabolic leaf
spring. This roll mode can get excited if the wheelsets are moving at 30 m/s
(see Figure 5.4) without a phase shift, and this is exactly the situation for the
loaded wagon with the high centre of mass.

Figure 5.19 and 5.20 illustrate how the motions of the wheelsets differ when
the yaw and roll modes are excited. At 14 m/s the wheelsets oscillate with a
phase shift and the yaw mode is excited, and at 33 m/s the wheelsets oscillate
in phase and the roll mode is excited.
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Figure 5.17: A simulation of a loaded
wagon. Hbbills 311 (loaded, PTP, 1/40).
Centre of mass is 1.6 m above track plane.
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Figure 5.18: A simulation of a loaded
wagon. Hbbills 311 (loaded, PTP, 1/40).
Centre of mass is 2.1 m above track plane.

0 0.5 1 1.5 2 2.5 3 3.5 4
−4

−3

−2

−1

0

1

2

3

4

y 
[m

m
]

fw
rw

Figure 5.19: A simulation of a loaded
wagon. Hbbills 311 (loaded, PTP, 1/40) at
14 m/s. Centre of mass is 2.1 m above track
plane.
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Figure 5.20: A simulation of a loaded
wagon. Hbbills 311 (loaded, PTP, 1/40) at
33 m/s. Centre of mass is 2.1 m above track
plane.
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5.2 Comparing wagons

The Kbps and G69 wagons from Table 2.7 have been simulated for comparison
reasons and the results are presented in Figure 5.21 to 5.24. Qualitatively,
the Kbps and G69 wagons behave as predicted by the bifurcation diagrams in
Figure 5.1 to 5.3, i.e. the rail inclination basically determines the existence and
amplitude of the attractors. On the other hand, quantitative differences are
found in the simulations of the Kbps and G69 wagons. Note how the flange–to–
flange attractor for the G69 in Figure 5.23 exists until 22 m/s due to its short
wheel base, and that the medium amplitude attractor of the Kbps wagon in
Figure 5.22 has an irregular pattern at high speeds (35− 55 m/s).
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Figure 5.21: Kbps (empty, SPP, 1/40).
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Figure 5.22: Kbps (empty, SPP, 1/30).
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Figure 5.23: G69 (empty, PTP, 1/40).
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Figure 5.24: G69 (empty, INP, 1/20).

The irregular motion of the Kbps wagon in Figure 5.22 is analysed in further
detail. A spectral analysis of the lateral motion of the front wheelset at 55
m/s reveals a broad spectrum of frequencies indicating a chaotic motion, see
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Figure 5.25. The chaotic motion is further confirmed by the phase portrait
in Figure 5.26. A sensitivity in the initial condition has to be present if the
attractor is truly chaotic. This is investigated through two simulations (Sim
1 and Sim 2) starting at t = 0 with identical initial conditions except that
ysim2
fw ≡ ysim1

fw +10−6. The solutions diverge from each other and after 15 seconds
their motions are completely different, see Figure 5.27.

0 5 10 15
−4

−2

0

2

4

t [s]

yr
w

 [m
m

]

0 5 10 15 20
0

0.5

1

1.5

x 10
−3

Frequency [Hz]

P
yy

Figure 5.25: Kbps (empty, SPP, 1/30) run-
ning at 55 m/s.
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Figure 5.26: Phase portrait (ẏrw vs yrw) of
the chaotic motion at 55 m/s. Kbps (empty,
SPP, 1/30).
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Figure 5.27: Kbps (empty, SPP, 1/30) run-
ning at 50 m/s. The chaotic attractor ex-
hibits a sensitivity to the initial condition.
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Figure 5.28: Wheelset behaviour at 43 m/s.
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It is now investigated how the periodic medium amplitude attractor (at low
speed) bifurcates into the chaotic attractor (at high speed) regarding the Kbps
wagon. The numerical bifurcation diagrams in Figure 5.29 to 5.31 illustrate this.
The bifurcation diagrams are obtained using the steps:

1. Simulate the transient for 20 s.

2. Continue simulation and extract the next 20 maxima from the time series
of the lateral displacement.

3. Change the speed by 0.2 m/s (either up or down) and goto 1.

In the speed range 30 − 34 m/s the 20 maxima defines a single point in the
diagram, and hence it is a periodic motion with constant amplitude. At 34 m/s
it bifurcates into another motion. The motion is no longer periodic but has a
chaotic motion imposed on top of it. It is noted that there is a periodic window in
the range 39 m/s to 41 m/s which is typical for systems with chaotic behaviour.
At 46 m/s another bifurcation occurs that results in a chaotic attractor for
speeds greater than 46 m/s.

Regarding the front wheelset, it is observed that peaks exist near the centre
of the track in the range 40 m/s to 45 m/s. The stationary solution is found
to be stable until 49 m/s for the Kbps wagon with the SPP parameters and
the 1/30 rail inclination. The coexisting attractors (stationary and chaotic)
both seem to influence the bifurcation diagram in this speed range. The local
extrema near the centre of the track are also visible in the time series shown in
Figure 5.28.

The diagrams are made for increasing speed as well as decreasing speed
in order to reveal any possible hysteresis in relation to the bifurcations. The
periodic attractor (30 − 34 m/s) has a minor jump, and hysteresis is found in
relation to this jump. Apart from this, no hysteresis is observed.
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Figure 5.29: Bifurcation diagram of the front wheelset. Kbps (empty, SPP, 1/30).
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Figure 5.30: Bifurcation diagram of the rear wheelset. Kbps (empty, SPP, 1/30).
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Figure 5.31: Bifurcation diagram of the carbody. Kbps (empty, SPP, 1/30).



96 Results

5.3 Curved track analysis

The Hbbills 311 wagon is sent through a left hand curve to analyse its behaviour
in curves. The radius of the circular part of the curve is 1000 m with a track
cant of 150 mm. The transition curve is linear and has a linear ramp. Results
obtained by running at 20 m/s and 30 m/s are shown in Figure 5.32 and 5.33,
respectively. The equilibrium speed, i.e. the speed for which the track plane
acceleration vanishes, is 31.3 m/s for this curve.

The wagon starts out in the centre of the track before it enters the curve.
The stationary solution is unstable and hence the wagon is thrown out on the
periodic attractor by the curve and it stays on this attractor after leaving the
curve. In the curve, the wheelsets approach the right rail. Especially, the front
wheelset is significantly displaced and provides the basic guiding of the wagon
through the curve. The positive lateral displacement of the carbody is caused
by two effects: the geometric curving overthrow and the roll of the carbody.
The geometric curving overthrow is due to the fact that the mid–section of the
carbody is taking a short cut through the curve. In other words, the carbody
defines a chord in the circular part of the curve.

The roll angles of the bodies are influenced by the track cant. The ramp
in the transition curve influences the pitch of the carbody. When the carbody
enters the curve the leading part is lifted relative to the trailing part, and when
it leaves the curve the opposite is true. The yaw angles of the wheelsets indicate
that the wheelsets are positioning themselves almost radially in the curve with
a tendency to be slightly underradial.

From the vertical suspension deformations, it is seen that at the entrance to
the curve an additional deformation of the front right vertical suspension of the
vehicle (FRZ) is generated. It is caused by the increasing cant. The front left
vertical suspension (FLZ) is correspondingly less deformed. Leaving the curve
has the opposite effect on the vertical suspension deformations. It is seen from
the results at 20 m/s that the carbody is leaning slightly on the left suspension in
the circular part of the curve. This is because the speed is below the equilibrium
speed and consequently there is a cant excess1. When the wagon runs at 30
m/s (close to the equilibrium speed) the carbody suspension deformation in the
circular part of the curve is seen to be equal to the deformations on straight
track.

1The real cant is greater than the equilibrium cant (zero track plane acceleration)



Curved track analysis 97

0 100 200 300 400 500 600 700 800 900
−4

−2

0

yf
w

 [m
m

]

0 100 200 300 400 500 600 700 800 900
−1.5

−1
−0.5

0
0.5

yr
w

 [m
m

]

0 100 200 300 400 500 600 700 800 900
0

50

100

s [m]

yc
b 

[m
m

]

0 100 200 300 400 500 600 700 800 900

−0.1

−0.05

0

ph
ifw

 [r
ad

]

0 100 200 300 400 500 600 700 800 900

−0.1

−0.05

0

ph
irw

 [r
ad

]
0 100 200 300 400 500 600 700 800 900

−0.1

−0.05

0

s [m]
ph

ic
b 

[ra
d]

Lateral. Roll.

0 100 200 300 400 500 600 700 800 900

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

s [m]

th
et

ac
b 

[m
ra

d]

0 100 200 300 400 500 600 700 800 900

−1

0

1

ps
ifw

 [m
ra

d]

0 100 200 300 400 500 600 700 800 900
−1

0

1

ps
irw

 [m
ra

d]

0 100 200 300 400 500 600 700 800 900
−1

0

1

s [m]

ps
ic

b 
[m

ra
d]

Carbody pitch. Yaw.

54 56 58 60 62 64

30

35

40

45

50

Fz
fl 

[k
N

]

54 56 58 60 62 64
0

200

400

600

800

dzfl [mm]

s 
[m

]

48 50 52 54 56 58 60 62
25

30

35

40

45

Fz
fr 

[k
N

]

48 50 52 54 56 58 60 62
0

200

400

600

800

dzfr [mm]

s 
[m

]

FLZ suspension. FRZ suspension.

Figure 5.32: Hbbills 311 (empty, PTP, 1/40) running through a left hand curve at 20 m/s.
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Figure 5.33: Hbbills 311 (empty, PTP, 1/40) running through a left hand curve at 30 m/s.
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5.4 Miscellaneous studies

In this section different aspects of the freight wagon model is investigated sep-
arately. In order to illustrate that the attractor in the centre of the track has
a width as indicated by the bifurcation diagrams in Figure 5.1 to 5.3 let us
consider the simulations in Figure 5.34 and 5.35. When all friction sliders in the
suspension model are in their neutral positions then a motion will go towards
the exact centre of the track. On the other hand, if the friction sliders are not
in their neutral position, e.g. after a hunting motion, then the bodies will tend
towards off–centred equilibrium positions.
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Figure 5.34: Friction sliders in neutral po-
sition. Kbps (empty, SPP, 1/30) at 10 m/s.
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Figure 5.35: New equilibrium after return-
ing from a hunting motion. Kbps (empty,
SPP, 1/30) at 10 m/s.

The lateral suspension characteristics are illustrated by the simulation results
presented in Figure 5.36 where the wagon is attracted to a flange–to–flange
motion. The rolling phase and sliding phase that are characteristic for the UIC
links are clearly visible. Moreover, the additional stiffness due to the interaction
with the suspension bracket is also seen for displacements larger than 10 mm.

A simulation of an asymmetrically loaded wagon results in the suspension
characteristics shown in Figure 5.37. The centre of mass is moved 10 cm lon-
gitudinally and laterally towards the front left suspension. It is seen that the
working area for the vertical suspension is different from suspension to sus-
pension. The left suspensions are deformed more than the right suspensions.
This also influences the lateral suspension stiffnesses because the stiffness of a
pendular suspension system depends on the load.

The longitudinal UIC links might exhibit a friction climbing phenomenon as
illustrated in Figure 5.38 for the front left suspension. The top figure shows the
hysteresis loop and the bottom figure depicts the evolution of the suspension
deformation. The results are obtained from a simulation of the Kbps wagon that
is attracted to a chaotic hunting motion at 50 m/s. Note how the equilibrium
is shifted (about 5 mm) towards the leading guidance.
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Figure 5.36: Illustrating the lateral suspension characteristics. Hbbills 311 (empty, PTP,
1/20) at 60 m/s.
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Figure 5.37: Illustrating the lateral and vertical suspension characteristics. Hbbills 311
(asym. loaded, PTP, 1/40) running at 15 m/s.
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Figure 5.38: Friction climbing in the longitudinal suspension. Kbps (empty, SPP, 1/30) at
50 m/s.
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The vertical suspension is most often only excited with a small amplitude around
a deformation determined by the load from the carbody. To see how the leaf
spring model actually works at larger amplitudes a simulation is made with the
carbody pulled out from its vertical equilibrium. The vertical suspension char-
acteristics of the front left suspension is shown in Figure 5.39. The additional
leaf has been active before the carbody settles down on its equilibrium. The
state changes in the four leaf spring models are illustrated by the event dia-
gram in Figure 5.40. Each level of the signal represents a state, see Table 5.1.
The AUTO state is used close to equilibrium since the model is approximately
smooth here and no event detection is necessary. All models follow the state
sequence:

1→ 2→ 3→ 4→ 1→ 4→ 0→ 1→ 4→ 0
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Figure 5.39: Carbody out of vertical equi-
librium. Hbbills 311 (empty, SPP, 1/30) run-
ning at 20 m/s.
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Figure 5.40: Event diagram for the four leaf
spring models.

Level State Description
0 AUTO Close to equilibrium
1 LoadingH Loading main leaves only
2 LoadingHZ Loading main leaves and additional leaf
3 UnloadingHZ Unloading main leaves and additional leaf
4 UnloadingH Unloading main leaves only

Table 5.1: Leaf spring states.
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Even though the nonlinear model of the leaf spring is fundamentally different
from that of a linear model, the dynamics were not found to be very sensitive
to the linear/nonlinear modelling of the leaf spring. A comparison is given in
Figure 5.41. Qualitatively, the results are similar and the positioning of the
flange–to–flange attractor as well as the resonance hunting are the same.

The vertical suspension characteristics at 17 m/s are shown in Figure 5.42.
The linear model has a clear discrepancy because both stiffness and damping of
the leaf spring depend on the excitation amplitude and suspension load. It is
possible to fit the linear parameters such that the nonlinear characteristics are
more accurately resembled for a particular excitation, however, the discrepancy
would reappear at any other excitation amplitude (or suspension load). It is
expected that the nonlinear modelling is important in an analysis where vertical
track irregularities are investigated.
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Figure 5.41: Comparing results obtained with a linear and nonlinear modelling of the leaf
spring. Hbbills 311 (empty, PTP, 1/40).
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311 (empty, PTP, 1/40) running at 17 m/s.
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The flange–to–flange motion of the Hbbills 311 wagon has been analysed using
the multibody software VOCOLIN developed at INRETS, France. Simulation
results are shown in Figure 5.43. The wagon runs on a straight track having a
shift of 8 mm after a distance of 20 m. The wagon starts out at 50 m/s and
decelerates with 0.25 m/s2. It is noted that the flange–to–flange motion stops at
about 2000 m, which after some basic calculations is found to correspond to 38.7
m/s. After the flange–to–flange attractor disappears the motion falls down on
a small amplitude attractor. The results obtained with VOCOLIN corresponds
to the ones found with the model developed in this thesis, see Figure 5.9. It
should be noted that VOCOLIN has been used in many simulations in which
the simulation results have been verified in road tests of the real vehicle.

Track. Carbody.

Front wheelset. Rear wheelset.

Figure 5.43: Simulation using VOCOLIN. Hbbills 311 (empty, PTP, 1/40).
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The discontinuous behaviour of the wheel–rail contact parameters is illustrated
by the simulation shown below. The contact parameters are divided into con-
tinuous sections as illustrated for the contact angle in Figure 5.44. The wagon
starts out close to the centre of the track but eventually ends up on a flange–
to–flange attractor, see the time series in Figure 5.45. From the time series of
the contact angle, Figure 5.46, it is shown how the contact angle jumps between
the different sections. Double contact occurs in small regions around the points
of discontinuity, and from the zoomed view in Figure 5.47 these situations are
identified by the overlapping regions.
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Figure 5.44: Contact angle, 1/40.
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Figure 5.45: Time series of the front wheel-
set. Hbbills 311 (empty, PTP, 1/40) running
at 50 m/s.
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Figure 5.46: Time series of the contact an-
gle. Hbbills 311 (empty, PTP, 1/40) at 50
m/s.
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Figure 5.47: Zoomed view.



Miscellaneous studies 105

As described in section 2.2.3 each continuous section of the contact table is
interpolated using cubic splines. Traditionally, a piecewise linear interpolat-
ing method is used to interpolate the contact table. Such a method, however,
introduces a nonsmoothness into the system. This might cause a numerical in-
tegration scheme to be inaccurate and/or inefficient. The additional work in
constructing the cubic splines (having smooth properties) was found to be very
beneficial in the end. Consider the comparison between the two interpolating
strategies shown in Figure 5.48 and 5.49 based on a simulation with the Hb-
bills 311 wagon running at 20 m/s in 20 simulation seconds. The motion of the
wheelsets is periodic with a small amplitude. For the same error tolerance the
cubic spline method uses only 29% of the steps taken by the piecewise linear
method. Any qualitative difference in the simulated results obtained with the
two interpolating strategies could not be found.

0 5 10 15 20
−1

−0.5

0

0.5

1

yf
w

 [m
m

]

0 5 10 15 20
−1

−0.5

0

0.5

1

t [s]

yr
w

 [m
m

]

Figure 5.48: Hbbills 311 (empty, PTP, 1/40) running at 20 m/s in 20 s.

(CUBIC SPLINE METHOD)
steps = 5048(good) + 1011(bad) + 0(div) = 6059

(LINEAR METHOD)
steps = 17187(good) + 3755(bad) + 0(div) = 20942

Figure 5.49: Comparing contact table interpolation methods.
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The wheel–rail contact table used in this thesis is generated using the program
RSGEO [2]. From analyses of the dynamics of rail vehicles it is well known
that the wheel–rail contact computations are a sensitive part of the model.
The simulation of the Hbbills 311 wagon discussed previously (Figure 5.9) is
compared with a simulation using the same model parameters except that the
contact table is generated using the program WRKIN [104]. The comparison
is shown in Figure 5.50. There is an obvious quantitative difference between
the results. The flange–to–flange motion does not disappear at the same speed
and the amplitude of the resonance motion is clearly less in the simulation with
WRKIN. Differences are also observed in the computed contact angles obtained
by the two programs.
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Figure 5.50: Influence of different contact tables. Hbbills 311 (empty, PTP, 1/40).
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The longitudinal model of the axle guidance is seldom active in the idealised
simulations considered in this thesis, i.e. straight track with no irregularities.
To verify that it truly works in the entire freight wagon framework the simu-
lation results presented in Figure 5.51 to 5.53 are made. The carbody of the
Hbbills 311 wagon alone is given a deceleration of 5 m/s2 from 45 m/s. This
makes the wheelsets impact against their leading axle guidances as illustrated
by Figure 5.52. The distance to the axle guidance is 22.5 mm. In the zoomed
view, Figure 5.53, it is more clearly seen that the motion of the axle boxes are
restricted by the 22.5 mm.
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Figure 5.51: Hbbills 311 (empty, PTP, 1/40) decelerating with 5 m/s2.

0 1 2 3 4 5 6 7 8

0

5

10

15

20

t [s]

dx
 [m

m
]

FL
FR
RL
RR

Figure 5.52: Time series of longitudinal sus-
pension deformations.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

10

12

14

16

18

20

22

24

t [s]

dx
 [m

m
]

FL
FR
RL
RR

Figure 5.53: Zoomed view.



108 Results



Chapter 6

Future work

Here are some suggestions for future work in relation to this project. This thesis
mainly focuses on the fundamental running properties on straight track and less
attention is put into the curving behaviour. A thorough analysis of the running
properties in curves is of course very important. It could also be interesting
to investigate the model in a scenario where measured track irregularities are
taken into account. On a real track the motion of the wagon is always a transient
because track irregularities (and other imperfections) prevent the wagon to settle
down on one of the attractors. Transients in nonlinear systems with multiple
attractors and chaotic dynamics can be severe and therefore such a study is
wanted. Track forces and carbody accelerations are central quantities in the
acceptance of rail vehicles according to international standards. It would be
highly recommendable to include such an analysis in the simulation output.
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Chapter 7

Conclusion

A mathematical model of the European two–axle freight wagon is presented and
analysed in this thesis. The model is primarily used to investigate the running
properties on straight track of different types of wagons. The interacting forces
in the system are all nonsmooth being a consequence of the dry friction, clear-
ances and the geometry between the wheel and rail. An effort is invested into
the numerical integration of the system of differential equations. A consistent
and accurate method is achieved by the application of an implicit Runge–Kutta
method of order 3 linked with an event location routine that deals with the non-
smoothness of the model in an appropriate manner. The model is characterised
by:

• Rigid body model with 17 DOF having two rails (fixed), two wheelsets
and one carbody. The DOF of the wheelsets are: longitudinal, lateral,
vertical, roll, yaw and spin perturbation. The DOF of the carbody are:
lateral, vertical, roll, pitch, yaw. The longitudinal DOF of the carbody
is constrained to move with a prescribed speed (or acceleration). The
curvilinear track model from [5] is implemented. The track is assumed to
be perfect without irregularities.

• The wheel–rail contact is based on the European standard wheel–rail pro-
files S1002/UIC60. Different rail inclinations have been analysed. The
wheel–rail contact geometry is tabulated prior to simulation assuming that
the yaw angle can be neglected. During the simulation, the current ge-
ometry is found by interpolation in the contact table using cubic splines.
The normal force is computed using an elastic approach (Hertzian spring),
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and the tangential contact forces are found by Shen–Hedrick–Elkins model
[78].

• A general model able to simulate the suspension characteristics from a
trapezoidal as well as parabolic leaf spring is developed. It is based on
the work by Fancher et al [14]. The dry friction between the leaves is
responsible for the fact that the damping and effective spring rate both
depend on the excitation amplitude and suspension load. This special
behaviour that cannot be linearised is taken into account in the nonlinear
model developed.

• The UIC double–link connection is simulated by Piotrowski’s model [61].
The model incorporates the nonsmooth behaviour of the rolling/sliding
transitions in the links as well as the load dependent suspension charac-
teristics. Moreover, a dead band spring models the effect of the clearance
between the lower link and the suspension bracket.

• The lateral axle guidance is modelled using a unilateral dead band spring
model, and the longitudinal axle guidance is modelled by Newton’s impact
law (in the LCP formulation from [60]).

• All nonsmooth models are implemented in state dependent formulations
dividing the characteristics into smooth submodels.

The rail inclination has an important influence on the qualitative running prop-
erties of the two–axle freight wagon on straight track. This is due to a reso-
nance motion of the wagon. The resonance occurs because the lateral excitation
frequency of the wheelsets coincide with the yaw eigenfrequency of the car-
body. Since the rail inclination influences the lateral excitation frequency of
the wheelsets it implicitly determines the speed for which the resonance motion
occurs. The running properties of the wagon are observed to be undercritical
for 1/20 rail inclination (resonance speed at 176 km/h) and overcritical for 1/40
rail inclination (resonance speed at 43 km/h). Overcritical running properties
are not the same as bad running properties. Actually, the overcritical running
properties can be quite good in the operating speed range (60 − 120 km/h),
because the only existing attractor has a small amplitude. The behaviour for
1/30 rail inclination gave a scenario somewhere in between the undercritical and
overcritical. Even though the stationary solution is stable within the operating
speed range, there is a potential bad running behaviour for a large speed range
in the 1/30 rail inclination case because a medium amplitude attractor exists.
At high speeds the wheelsets might get attracted to a flange–to–flange motion.
This is observed for all rail inclinations, however, it is most severe in the 1/20 rail
inclination case because the wheelsets excite the yaw eigenmode of the carbody.
The yaw eigenfrequency of the carbody depends on the yaw moment of inertia
of the carbody but the parameter is not found sensitive w.r.t. the resonance
behaviour.
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The two–axle freight wagon does not have a well defined stationary motion
due to a rolling/sliding effect in the suspension links. An example of an off–
centred solution is given. It is also observed that the dry friction might be
responsible for a friction climbing phenomenon in the longitudinal suspension
where the axle box progressively moves closer to the axle guidance.

Despite several fundamental differences between a linear and nonlinear model
of the leaf spring, the running properties on straight track are not found very
sensitive to the model of the leaf spring being linear or nonlinear.

The medium amplitude attractor in the 1/30 rail inclination case is investi-
gated in some detail. It is illustrated how the attractor bifurcates from periodic
to chaotic dynamics. The chaotic motion has two variants: 1) Chaotic motion
imposed on top of a periodic motion having small variations in amplitude. 2)
Chaotic motion with a very irregular pattern. Both of them occur at high speed
(above 122 km/h).

In summary, the bad running properties of European two–axle freight wagons
have two variants: a resonance motion and a flange–to–flange motion. The rail
inclination has a strong influence on the resonance speed which should be outside
the operating speed range for satisfying running behaviour. Too much friction
in the suspension links leads to a more violent resonance motion. The flange–
to–flange motion is moved to higher speeds when: the wheelbase is longer, the
horizontal suspension is stiffer, the wagon is loaded. For instance, the empty
Hbbills 311 wagon (long wheelbase, 1/40 rail inclination) has a flange–to–flange
motion for speeds higher than 140 km/h, and if the wagon is loaded and the
centre of gravity is not too high the running properties are satisfactory until
210 km/h. In contrast, the flange–to–flange motion for the empty G69 wagon
(short wheelbase, 1/40 rail inclination) exists for speeds higher than 80 km/h.
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Appendix A

Notation and symbols

Throughout the thesis the following notation is applied.

• Matrices and vectors are written in bold font, e.g. x,A.

• The reference base of a given vector appears from the preceding text.

• The time derivate is written by a dot, e.g. ẋ.

• The Jacobi matrix, ∂f/∂y, of the function f(y) is written in short by ∇f .

• The notation x ≥ 0 denotes that all components of x are nonnegative.

• The matrix x̃ is the skew–sym. operator expressing the crossproduct x×.

• Changing base of a vector is done using the rotation matrices. For instance,
a vector x defined in the track base can be expressed in the inertial base
by AOTx.

See Table A.1 to A.6 for an overview of the abbreviations and symbols used.



116 Notation and symbols

ASZ Parameter set for the UIC links (see Table 2.4 and 2.5)
CONTACT Program developed by Kalker [39] for solving contact problems
DAE Differential–algebraic equations
DOF Degrees of freedom
GUI Graphical user interface
INP Parameter set for the UIC links (see Table 2.4 and 2.5)
IVP Initial value problem
JNI Java native interface
LCP Linear complementarity problem
MP Parameter set for the UIC links (see Table 2.4 and 2.5)
ODE Ordinary differential equations
PTP Parameter set for the UIC links (see Table 2.4 and 2.5)
RSGEO Wheel–rail contact geometry program [2]
S1002 Standard wheel profile
SPP Parameter set for the UIC links (see Table 2.4 and 2.5)
ESDIRK Explicit singly diagonal implicit Runge–Kutta
TAFWA Two–axle freight wagon analyser
UIC Union internationale des chemins de fer
UIC60 Standard rail profile
VOCOLIN VOitures en COurbes, Logiciel INrets
WRKIN Wheel–rail contact geometry program [104]

Table A.1: Abbreviations.
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AOT Rotation matrix changing track coordinates to inertial coordinates
ATO Rotation matrix changing inertial coordinates to track coordinates
ATb Rotation matrix changing body coordinates to track coordinates
AbT Rotation matrix changing track coordinates to body coordinates
Abc Rotation matrix changing contact coordinates to body coordinates
Acb Rotation matrix changing body coordinates to contact coordinates
ATiTj Rotation matrix changing track coordinates related the j’th body to

track coordinates related the i’th body
ATc Rotation matrix changing contact coordinates to track coordinates

A
(α)
x Rotation matrix. Around axis x with the angle α

A
(α)
y Rotation matrix. Around axis y with the angle α

A
(α)
z Rotation matrix. Around axis z with the angle α

a Acceleration vector
a Longitudinal semi–axis in the contact ellipse
b Lateral semi–axis in the contact ellipse
b0 Half distance between the nominal rolling circles of the wheels
bi Runge–Kutta weights
b̄i(θ) Continuous extension weights
C Complex numbers
ci Runge–Kutta nodes
ch, cz Leaf spring stiffnesses
C11, C22, C23 Kalker’s creepage coefficients
D Stability region
Dx Generalised coordinate (longitudinal)
Dy Generalised coordinate (lateral)
Dz Generalised coordinate (vertical)
Dφ Generalised coordinate (roll)
Dθ Generalised coordinate (pitch)
Dψ Generalised coordinate (yaw)

Dβ Spin coordinate, Dβ = Ḋθ
E Young’s modulus
Fc Wheel–rail contact force
Fg Gravitational force
Fsl Suspension force on left axle box
Fsr Suspension force on right axle box
Fsfl Suspension force at the front left position on the carbody
Fsfr Suspension force at the front right position on the carbody
Fsrl Suspension force at the rear left position on the carbody
Fsrr Suspension force at the rear right position on the carbody
Fext External forces
Fr Residual spring force
Ftol Force quantifying close to equilibrium in the leaf spring model
Fenv Envelope function related to the modelling of the leaf spring

F̃x, F̃y Creep forces according to Kalker’s linear theory

|F̃| Magnitude of the creep force according to Kalker’s linear theory
|F| Magnitude of the creep force according to Shen–Hedrick–Elkins’

model
Fmotor External force in the measurements on the UIC suspension
Fgl Force from the axle guidance in the lateral direction
Fsb Force from the dead band spring modelling the interaction between

the UIC links and the suspension bracket

Table A.2: Latin symbols (a to f).
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G Shear modulus
gi State transition function, event function
gNi Constraint functions in the model of the axle guidance in the longitu-

dinal direction
h Stepsize in the numerical integration
hj Spline node spacing
h(q, q̇) Vector containing gyroscopical accelerations and all active forces and

torques
I Identity matrix
Is Inertia tensor
IG Set defining the possible contact points between the axle box and axle

guidance in the longitudinal direction
IS Set of active constraint functions in the model of the axle guidance in

the longitudinal direction
Ixx, Iyy , Izz Roll, pitch and yaw moment of inertia
i, j,k Base of the inertial coordinate system
iT , jT ,kT Base of the track coordinate system
ib, jb,kb Base of the body coordinate system
ic, jc,kc Base of the contact coordinate system
J Jacobi matrix used in expressing the absolute coordinates in terms of

the generalised coordinates

j̃ Vector holding additional terms in expressing the absolute velocities
in terms of the generalised velocities

j̄ Vector holding additional terms in expressing the absolute accelera-
tions in terms of the generalised accelerations

k, k1 Spring stiffnesses
ki Runge–Kutta stage derivatives
kx Pendular stiffness related to the modelling of the UIC links in the

longitudinal direction
ky Pendular stiffness related to the modelling of the UIC links in the

lateral direction
kix Serial stiffness in the i’th elastic dry friction element related to the

modelling of the UIC links in the longitudinal direction
kiy Serial stiffness in the i’th elastic dry friction element related to the

modelling of the UIC links in the lateral direction
kgl Stiffness of the axle guidance in the lateral direction
ksb Stiffness of the dead band spring modelling the interaction with the

UIC links and the suspension bracket
L Angular momentum
M̄ Mass matrix
M Mass matrix (projected form)
Mext External torques
mcb Carbody mass
mw Wheelset mass
N Normal force between the wheel and rail
nc Number of wheel–rail contact points
O Origin of the inertial coordinate system
OT Origin of the track coordinate system
Ob Origin of the body coordinate system
Oc Origin of the contact coordinate system

Table A.3: Latin symbols (g to o).
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Pi Point on the i’th body
Pj Point on the j’th body
Py Restoring force from the technical pendulum / UIC suspension
Pki1(s) Polynomial used in expressing the curve parameters 1/ρh(s), 1/ρv(s)

as functions of the track curvatures at the node points of the i’th track
stage

Pki2(s) Polynomial used in expressing the curve parameters βC(s), θC(s) as
functions of the track curvatures at the node points of the i’th track
stage

Pki3(s) Polynomial used in expressing the curve parameters Th(s), Tv(s) as
functions of the track curvatures at the node points of the i’th track
stage

p Linear momentum
q Generalised coordinates
qpen Penetration depth of the wheel into the rail
q̇A Generalised velocity before impact
q̇E Generalised velocity after impact
R Real numbers
R(z) Rational function related to the stability of Runge–Kutta methods
RO Inertial coordinate system
RT Track coordinate system
Rb Body coordinate system
Rc Contact coordinate system
Rpen A vector from the contact point on the wheel to the contact point on

the rail
RR Vector defining the contact point on the rail
Rw Vector defining the contact point on the wheel
∆r Vector defining the deformation between Pi and Pj
r0 Nominal rolling radius of the wheel
ri Curvature at si
rij Vector between Pi and Pj
s Curvilinear abscissa
si The position along the curvilinear abscissa where the i’th track stage

begins
sj Parameter value at the j’th spline node
s′′j Second derivative of the spline at the j’th node

t Time, spline parameter
T0 Break out force for a dry friction slider
Ti Force from the i’th elastic element with dry friction
Th, Tv Auxiliary functions (defined in section 2.1.4)
∆Tv Adjustment to the auxiliary function in the vertical direction in mod-

elling the track cant
Tx, Ty Creep forces according to Shen–Hedrick–Elkins’ model
V Speed of track system, vehicle speed along the track
vs Relative velocity between the sliding elements
v Velocity vector
vcon Relative velocity between the wheel and rail

Table A.4: Latin symbols (p to v).
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δW Virtual power
wNi Generalised normal force direction for the i’th contact in the model

of the axle guidance in the longitudinal direction
WN Matrix of generalised normal force directions in the model of the axle

guidance in the longitudinal direction
δx Virtual displacement of the vector x
x0 Longitudinal clearance between axle box and axle guidance
xOTj Longitudinal distance from i’th to j’th track system
xj Spline nodes
xi, yi, zi Coordinates of the centre of mass of the i’th body
xPw, yPw, zPw Coordinates of the suspension attachment point on the wheelset
xPcb, yPcb, zPcb Coordinates of the suspension attachment point on the carbody
y01 Lateral clearance between suspension UIC links and suspension

bracket
y02 Lateral clearance between axle box and axle guidance
yi,lo, yi,hi Boundary points of the i’th wheel–rail state
ȳi Lateral equilibrium position of the centre of mass of the i’th body
yc Continuous extension
yn The n’th numerical solution point
z̄i Vertical equilibrium position of the centre of mass of the i’th body
z0 Position of the additional leaf

Table A.5: Latin symbols (w to z).

α Angular acceleration vector
β Decay constant related to the leaf spring model
βC Track yaw
Γ Acceleration of track system
δ Contact angle, leaf spring deflection
ε Adjustment factor in Shen–Hedrick–Elkins’ model
εN Diagonal matrix containing the coefficients of restitution in the model of the

axle guidance in the longitudinal direction
η Measured acceleration
θC Track gradient
θ Pitch angle, continuous extension parameter
ΛN Impact impulses in the model of the axle guidance in the longitudinal direction
µ Friction coefficient between the wheel and rail
µ0 Friction parameter related to the leaf spring model
ν Poisson’s ratio
ν̇ Spin perturbation
ξx Longitudinal creep
ξy Lateral creep
ξs Spin creep
1/ρh Horizontal track curvature
1/ρv Vertical track curvature
φ Roll angle, sway angle in the technical pendulum
φSE Track superelevation
ψ Yaw angle
Ω Angular velocity of wheelset, carbody
ΩT Angular velocity of track system
Ωb Angular velocity of body system

Table A.6: Greek symbols.
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Examples

The purpose of the examples presented here is to illustrate some of the key
issues in the modelling of the two–axle freight wagon, i.e. the elastic dry friction
element, dead band spring, nonlinear leaf spring and multiple impacts. The
models have few DOF such that the modelling aspects will appear clearly.

B.1 Impact oscillator

The classical impact oscillator with a suspended mass impacting against a mo-
tion delimiter is investigated. The mass is assumed to be suspended by a system
similar to the UIC links. The single DOF model is illustrated in Figure B.1.
The friction slider is assumed to obey Coulomb’s friction law. There are three
reasons why this is a nonsmooth dynamical system: 1) The force from the elas-
tic dry friction element is nonsmooth due to the stick–slip transitions of the dry
friction slider. 2) The dead band spring has a nonsmooth force characteristic
because of the instants were the dead band clearance is exceeded. 3) The ef-
fect of the wall is a sudden change in the moving direction of the mass, i.e. a
discontinuity in the velocity coordinate.

Using Newton’s second law it is seen that the dynamic motion is governed
by

mẍ = −kx+ F1 + F2 + F (t) x < xd , t ≥ 0 (B.1)

The external force is harmonic, F (t) = A cos(ωt). The force from the elastic
dry friction element, F1, is determined from the differential equation in equa-
tion (B.2) along with the state machine found in Figure B.2. The formulation
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Figure B.1: The impact oscillator.

is found convenient because it does not require any tracing of the actual sliding
distance of the dry friction slider. In the sticking state the element works as
a linear spring and in the sliding phase the force is constant. The equilibrium
of the spring changes each time the dry friction slider sticks at a new position.
The force from the dead band spring, F2, is found from equation (B.3) and the
state machine in Figure B.3.

Ḟ1 =
{
−k1ẋ Stick

0 SlidePos/SlideNeg
(B.2)

F2 =

 0 Idle
−k2(x− x02) SpringPos
−k2(x+ x02) SpringNeg

(B.3)
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g2=0, ġ2<0 11

g1=0, ġ1>0 --
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Figure B.2: Dry friction element.
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Figure B.3: Dead band spring.

The wall at x = xd is incorporated using Newton’s impact law, ẋ+ = −εẋ−.
The state machine is illustrated in Figure B.4. After an impact it is necessary
to perform a consistency check of the dry friction element, see Algorithm 3.
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The necessity of this can be illustrated by a situation where the mass is moving
towards the wall. Assume that the state of the elastic dry friction element is
SlidePos prior the impact. After the impact the mass will be moving away from
the wall and hence the state can no longer be SlidePos. Instead the state should
be Stick because the velocity is reversed.

�� ���� ��FreeZone

g1≥0

��

g1=0, ġ1<0

##

g1 = xd − x

ẋ+ = −εẋ−bb

Figure B.4: Wall.

if IMPACT then
if (SlidePos ∧ ẋ+ < 0) ∨ (SlideNeg ∧ ẋ+ > 0) then

State of elastic dry friction element← Stick
end if

end if

Algorithm 3: Consistency check.

The state transitions are all located during the simulation using an event system.
For the numerical simulation presented next, the parameters are set to: m =

1000 kg, Q = 40000 N, k/Q = 4 m−1, k1/Q = 10 m−1, k2/Q = 2 m−1, T01/Q =
0.08, x02 = 0.015 m, xd = 0.020 m, A = 10 kN, ω = 3π and ε = 0.9. The
quantity Q represents an external load influencing the suspension parameters.
The initial condition is x(0) = ẋ(0) = F1(0) = 0. The time history of the
simulation is shown in Figure B.5 and B.6. It is seen that the wall is clearly
restricting the motion. The hysteresis loop and phase plot of the asymptotic
solution shown in Figure B.7 and B.8 also emphasise the nonsmooth properties
of the system.
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Figure B.5: Displacement history.
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Figure B.6: Zoomed view.
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Figure B.7: Hysteresis loop.
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Figure B.8: Phase plot.
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B.2 Leaf spring

Modelling a leaf spring is challenging because of its dry friction damping. The
model presented here can simulate the characteristic hysteresis loop from trape-
zoidal leaf springs and two–stage parabolic leaf springs. These two leaf spring
types are illustrated in Figure B.9 and B.10.

Figure B.9: Trapezoidal.
Figure B.10: Two–stage parabolic.

The restoring force is found by integrating the differential equation in equa-
tion B.4. The derivation of this equation is inspired by the work in [7, 14].

Ḟ =
ż

β


chz − F + chµ0z + Fr LoadingH
cz(z − z∗)− F + czµ0(z − z∗) + Fr LoadingHZ
−(cz(z − z∗)− F ) + czµ0(z − z∗) + Fr UnloadingHZ
−(chz − F ) + chµ0z + Fr UnloadingH

(B.4)

where z is the suspension deformation, ch, cz are spring stiffnesses, Fr is the
residual spring force, β is a decay constant, µ0 is a friction parameter, z0 is the
distance to the additional leaf, and z∗ = (1− ch/cz)z0. At the switching bound-
ary between two states, the new state is determined using the state machine
in Figure B.12. To speed up the numerical integration, equation (B.4) is nor-
malised with the static spring load. Furthermore, it can be utilised that close to
equilibrium the loading/unloading transitions are approximately smooth. This
is a consequence of the fact that the following condition

chz − F ≈ 0 z ≤ z0 , |ż| � 1
cz(z − z∗)− F ≈ 0 z ≥ z0 , |ż| � 1

is satisfied close to equilibrium. Hence, near the equilibrium it is not necessary
to locate the loading/unloading transitions.

The model presented can be used for modelling a trapezoidal leaf spring and
a two–stage parabolic leaf spring. The main difference between these two types
is the amount of dry friction damping and the interaction with the additional
leaf. The parabolic leaf spring has an additional spacing between the leaves
eventually providing less damping compared to the trapezoidal leaf spring.

The model can be illustrated by simulating a single mass suspended on a leaf
spring, see Figure B.11. The model parameters are given in Table B.1 and the
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results are presented in Figure B.13 to B.16. Note the characteristic hysteresis
loop and how the model properly integrates past the corner. It is also seen that
the event location is only performed far from equilibrium.

Trapezoidal Two–stage parabolic
β 3.0 mm 2.0 mm
µ0 0.10 0.075
ch 1.1 MN/m 0.65 MN/m
cz 1.1 MN/m 1.82 MN/m
Fr 7 kN 7 kN
z0 ∞ 62.9 mm

Table B.1: Parameters.

m

z

Figure B.11: Mass on
leaf spring.

�� ���� ��LoadingH

g1≥0, g2≤0

��
g2=0, ġ2>0
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XX

g1 = ż
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Figure B.12: State machine of the leaf spring model.
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Figure B.13: Trapezoidal, m = 7500 kg.
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Figure B.14: Integrating the corner.
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Figure B.15: Parabolic, m = 3000 kg.
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Figure B.16: Parabolic, m = 7500 kg.
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B.3 Guided rod

The longitudinal clearance between the axle box and axle guidance on a two–
axle freight wagon generates hard impacts if the clearance is exceeded. This is
modelled using the generalised version of Newton’s impact law from [60]. The
axle box is considered as a rigid rod moving freely between four rigid contact
points defined by the set

IG = {C1, C2, C3, C4}

The four contact points model the axle guidance and the situation is shown in
Figure B.17. The axle box has 3 DOF: x (longitudinal, positive towards C1
and C2), y (lateral, positive towards C1 and C3), ψ (yaw, positive in a counter
clockwise rotation)

q = [x, y, ψ]T

dbox

C4

C3 C1

C2

Axle box

Axle guidance

gC1

gC2

gC3

gC4

BodyInertial

ly

Figure B.17: Guided rod.

The coordinates of the contact points in reference to the inertial system is

R1 = [dbox/2 + dclear, ly/2]T

R2 = [dbox/2 + dclear,−ly/2]T

R3 = [−dbox/2− dclear, ly/2]T

R4 = [−dbox/2− dclear,−ly/2]T

The constraint functions defining the distance between the axle box and the
contact points are found by expressing the above contact point vectors in the
body system, i.e.

Ri =
[
x
y

]
+ AIBRbody

i ⇒ Rbody
i = ABI

(
Ri −

[
x
y

])
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where

ABI =
[
cosψ − sinψ
sinψ cosψ

]
Taking the local x–coordinate of Rbody

i and then subtract the half width of the
axle box yields the constraint functions, i.e.

gN1 = (dbox/2 + dclear − x) cosψ + (ly/2− y) sinψ − dbox/2

gN2 = (dbox/2 + dclear − x) cosψ + (−ly/2− y) sinψ − dbox/2

gN3 = −(−dbox/2− dclear − x) cosψ + (ly/2− y) sinψ)− dbox/2

gN4 = −(−dbox/2− dclear − x) cosψ + (−ly/2− y) sinψ)− dbox/2

The set of active constraint functions is

IS = {i ∈ IG|gNi = 0; ġNi ≤ 0}

The equations of motion can be written as

Mq̈− h−
∑
i∈IS

(wNλN )i = 0 , M = diag([m,m, Izz])

where (wNλN )i is the projection of the contact force at the i’th active contact
point into the space of generalised coordinates. The vector h represents the
sum of the external forces which, in this case, is 0, however, included for the
generality of the derivation. The relative velocity in the normal direction for
the i’th contact is

ġNi = wT
Niq̇ , wNi =

∂gNi
∂q

=
[
∂gNi
∂x

,
∂gNi
∂y

,
∂gNi
∂ψ

]T
In matrix–vector notation the equations of motion and the constraint functions
are written as

Mq̈− h−WNλN = 0 , ġN = WT
N q̇

Denote the impact time by tA and the detachment time by tE . Assuming that
the duration of the impact is very short one can rewrite the equations of motion
on the impulse level

lim
tE→tA

∫ tE

tA

(Mq̈− h−WNλN ) dt = M(q̇E − q̇A)−WNΛN = 0

where

ΛN = lim
tE→tA

∫ tE

tA

λN dt

The relative velocity in the normal direction at tA and tE is

ġNA = WT
N q̇A , ġNE = WT

N q̇E
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Subtracting these two equations yields

ġNE − ġNA = WT
N (q̇E − q̇A) (B.5)

Combining this information with the impulse formulation of the equations of
motion yields

ġNE − ġNA = WT
NM−1WNΛN (B.6)

Newton’s impact law can be expressed by the corner law in Figure B.18, see
[16], [60]. This means that

ġNE + εN ġNA ≥ 0 , ΛN ≥ 0 , (ġNE + εN ġNA)TΛN = 0

where εN = diag{εNi} contains the coefficients of restitution. A LCP can now
be formulated by adding εN ġNA to equation (B.6)

ġNE + εN ġNA︸ ︷︷ ︸
ξ

= WT
NM−1WN︸ ︷︷ ︸

A

ΛN + (I + εN )ġNA︸ ︷︷ ︸
b

The matrix I is the identity matrix. In simplified notation the LCP problem is
formulated as

ξ = AΛN + b , 0 ≤ ξ ⊥ ΛN ≥ 0

See Appendix D for a description on how to solve the LCP. The LCP is solved
for ξ and ΛN . After solving the LCP the simulation is continued with an
initial condition that is adjusted according to the velocity vector expressed in
equation (B.7), which is deduced by combining equation (B.5) and (B.6).

q̇E = q̇A + M−1WNΛN (B.7)

The impact model presented above introduces a discontinuity into the system.
The time instant of the impact is located during simulation and the state ma-
chine of the model is shown in Figure B.19.

-

6

ġNE

ΛN

−εN ġNA0

Figure B.18: Newton’s impact law.

�� ���� ��FreeZone

gi≥0

��

gi=0, ġ1<0

  

gi(t,q)

LCP``

Figure B.19: State machine.
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The parameters used for the numerical simulation presented in the following
are m = 1022 kg, Izz = 678 kg m2, ly = 2.0 m, dbox = 0.265 m, dclear = 4·0.0225
m. The clearance is exaggerated by a factor 4 for visualisation purposes. The
simulation shown in Figure B.20 and B.21 has the initial condition

[x, ẋ, y, ẏ, ψ, ψ̇] = [0, 0.12, 0, 0, 0, 0.001]

Note the irregular motion. The simulation shown in Figure B.22 and B.23 has
the initial condition

[x, ẋ, y, ẏ, ψ, ψ̇] = [0, 0.2, 0, 0, 0, 0]

The behaviour is still as expected even though there are double impacts. Note
also the influence of the coefficient of restitution in time history of the x–
coordinate where it is seen that the impacts becomes less frequent as time goes
by.
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Figure B.20: Time history.
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Figure B.21: Single contact.
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Figure B.22: Time history.
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Figure B.23: Double contact.
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B.4 Constrained wheel–rail contact

A single wheelset with conical profiles is simulated on a straight and level track
using the theory from [74]. The wheel–rail contact is considered to be a rigid
constraint eventually leading to a differential–algebraic equation (DAE) system
describing the motion of the wheelset. The model is implemented in Matlab.

Multibody system

Left rail

Right rail

Track system 1435 mm
z x

y

V

Figure B.24: Top view.

Right rail Track system Left rail

Body system
V

yx

z

Contact system

Figure B.25: Front view.

The German BA004 [68] wheelset is simulated. The mass is 1032 kg and the
moments of inertia are Ixx = Izz = 529.8 kg m2 and Iyy = 89.9 kg m2. The
nominal rolling radius is r0 = 0.46 m. The lateral distance from the centre of
mass to the circular wheel section having radius r0 is 0.75 m. The track gauge
is 1435 mm, which is measured 14 mm below the top of the rails.

The multibody system is illustrated in Figure B.24 and B.25. Three bodies
are considered: 1) Wheelset 2) Left rail 3) Right rail. The motion of the wheelset
is defined relative to the track system, which moves with the constant speed V
along the track. Furthermore, a body system is defined for the wheelset. The
origin is in the centre of mass and the axes are aligned with the principal axes
of the wheelset. The body system is obtained from the track system by two
successive rotations: 1) ψ (yaw) around the vertical axis 2) φ (roll) around
the longitudinal axis. For the computation of the tangential contact forces it
is convenient to define a contact coordinate system for each contact point (see
Figure B.25). The origin is in the contact point and the axes are obtained by
rotating the body system around its longitudinal axis into the contact plane.
All defined coordinate systems are right hand systems.

For simplicity and in order to avoid multiple contacts on a single wheel it
is assumed that the wheel profiles are conical and the rail profiles are circular.
The contact is also assumed to be two dimensional and hence the yaw angle is
neglected in the computation of the normal contact forces. The conicity of the
wheel is δ and the radius of the circular rails is R = 0.21 m.

The profiles are described in parametric form by ūik, where i and k are body
and contact numbers, respectively. This numbering is given in Table B.2. For
each profile, the vector ūik refers to a local system, i.e. the wheel profiles are
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defined in the body system and the rail profiles are defined in the track system.
This yields the simplest (and most natural) representation of the profiles. The
wheel profile parameters, s11 and s12, measure the lateral distance w.r.t. to a
reference point at r0, and the rail profile parameters, s21 and s32, measure the
angle with vertical (see Figure B.26). Thus

ū11 =
[

y11
0 + s11

−r0 + s11 tan δ

]
ū12 =

[
y12
0 + s12

−r0 − s12 tan δ

]
ū21 =

[
y21
0 −R sin s21

R(cos s21 − 1)

]
ū32 =

[
y32
0 −R sin s32

R(cos s32 − 1)

]
where

y11
0 = 0.75 m y12

0 = −0.75 m y21
0 = 0.79 m y32

0 = −0.79 m

Here, y11
0 and y12

0 are the lateral distances from the centre of mass of the wheelset
to the reference points at r0 on the left and right wheels, respectively, and y21

0

and y32
0 are the lateral distances from the centre of the track to the reference

points on top of the left and right rails, respectively.

1 2 3
i (body index) Wheelset Left rail Right rail

k (contact index) Left contact point Right contact point –

Table B.2: Body and contact numbering.

s 21

Left rail

r
0

s
11

δ

0

Left wheel

Figure B.26: Profile parameters (front view).

Equations of motion

The motion of any multibody system can be found using Newton–Euler equa-
tions [73, 60, 11]. For a single wheelset with fixed speed on a straight track the
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equations of motion are

Mq̈ = Q(q, q̇)
β̇ = h(q, q̇)

(B.8)

Q(q, q̇) =


Fy
Fz

Iyyψ̇V/r0 +Mx

−Iyyφ̇V/r0 +Mz


h(q, q̇) = My/Iyy

The position and orientation of the wheelset are defined by q = [y, z, φ, ψ]T . The
coordinate β is called the spin perturbation and defines the difference between
the actual spin and the nominal value of V/r0. The x–coordinate is fixed relative
to the track system, hence the wheelset is constrained to move with the speed
V along the track. This yields an energy input and is a simple way to provide
a steady motion of the wheelset. It is seen that the wheelset has 5 degrees
of freedom. The mass matrix is M = diag(m,m, Ixx, Izz) and the external
forces and torques affecting the wheelset are Fext = [Fx, Fy, Fz]T and Mext =
[Mx,My,Mz]T .

Wheel–rail constraints

By imposing two rail constraints the number of degrees of freedom is reduced.
The yaw angle ψ is neglected in the computations of the normal contact forces
and therefore q = [y, z, φ]T and Q = [Fy, Fz, Iyyψ̇V/r0+Mx]T . The coordinates
q are only descriptor variables now and not degrees of freedom because y, z and
φ are connected through the wheel–rail constraints. Two conditions are imposed
for each wheel–rail contact

1. The contact point on the wheel and rail should be identical in space (con-
tact point constraint)

2. The normal vectors to the wheel and rail profiles are aligned (orientation
constraint)

These two conditions are written in the contact constraint equation

C(q, s) =


R1 + A1ū11 − ū21

R1 + A1ū12 − ū32

n̄21TA1t̄11

n̄32TA1t̄12

 = 0 (B.9)

where
t̄ik ≡ (ūik)′ , n̄ik ≡ ˆ̄tik = (ˆ̄uik)′
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and

q =

 y
z
φ

 R1 =
[

y
r0 + z

]
A1 =

[
cosφ − sinφ
sinφ cosφ

]
The notation (.)′ means differentiation w.r.t. its argument. For example, the
vector ūik depends on the parameter sik hence (ūik)′ = dūik/dsik. The vector
v̂ is defined by v̂ = [−v2, v1]T .

The profiles are described by the four parameters s = [s11, s21, s12, s32]T .
These parameters are determined through the contact constraint equation (B.9).
Since there are four unknown parameters and six constraint equations the num-
ber of degrees of freedom is reduced by two, that is z(y) and φ(y).

DAE formulation

The normal contact forces are taken into account by imposing Lagrange multi-
pliers to the equations of motion [73, 75, 74, 11]

Mq̈ + CT
qλ = Q(q, q̇, s, ṡ,λ) (B.10)

where λ is the Lagrange multipliers and Cq = [∂C/∂y, ∂C/∂z, ∂C/∂φ]. The
external forces incorporated into the right hand side function Q should not
include the normal forces because they are taken into account through the La-
grange multipliers λ. The equations of motion given in equation (B.10) together
with the contact constraint equation (B.9) is a DAE system of differential index
3 [92] and not directly solvable. To come around this problem a reformulation
is presented using the augmented Lagrangian form [75]. The contact constraint
equation is differentiated twice w.r.t. time (index reduction)

C(q, s) = 0 (B.11)

Cqq̇ + Csṡ = 0 (B.12)

Cqq̈ + Css̈ = −(Cqq̇)qq̇− (Cqq̇)sṡ− (Csṡ)qq̇− (Csṡ)sṡ =: Qd (B.13)

Since the normal contact forces are defined to be acting normal to the constraint
manifold it is required that [75]

CT
s λ = 0 (B.14)

Combining equation (B.10), (B.13) and (B.14) it is found that

2664
M 0 CT

q

0 0 CT
s

Cq Cs 0

3775
24 q̈

s̈
λ

35 =

24 Q(q, q̇, s, ṡ,λ)
0

Qd(q, q̇, s, ṡ)

35 ,

M = diag(m,m, Ixx)

q = [y, z, φ]T

s = [s11, s21, s12, s32]T

(B.15)

This equation can be solved in order to determine the accelerations and the
Lagrange multipliers. Note that the right hand side is dependent on the La-
grange multipliers because the tangential contact forces depend nonlinearly on
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the normal load. Thus equation (B.15) is nonlinear in λ. To solve equation
(B.15) it is necessary to know Cq, Cs and Qd. It is seen that A1

φv = A1v̂
where v̂ = [−v2, v1]T . Utilising this information and by straight forward differ-
entiation it is found that

Cq =

2664
I2×2 A1 ˆ̄u11

I2×2 A1 ˆ̄u12

01×2 n̄21TA1n̄11

01×2 n̄32TA1n̄12

3775

Cs =

2664
A1t̄11 −t̄21 02×1 02×1

02×1 02×1 A1t̄12 −t̄32

n̄21TA1(t̄11)′ t̄11TA1T (n̄21)′ 0 0
0 0 n̄32TA1(t̄12)′ t̄12TA1T (n̄32)′

3775

(Cqq̇)qq̇ =

2664
−A1ū11φ̇2

−A1ū12φ̇2

−n̄21TA1t̄11φ̇2

−n̄32TA1t̄12φ̇2

3775

(Cqq̇)sṡ = (Csṡ)qq̇ =

2664
A1n̄11φ̇ṡ11

A1n̄12φ̇ṡ12

n̄21TA1(n̄11)′φ̇ṡ11 + n̄11TA1T (n̄21)′φ̇ṡ21

n̄32TA1(n̄12)′φ̇ṡ12 + n̄12TA1T (n̄32)′φ̇ṡ32

3775

(Csṡ)sṡ =

2664
A1(t̄11)′(ṡ11)2 − (t̄21)′(ṡ21)2

A1(t̄12)′(ṡ12)2 − (t̄32)′(ṡ32)2

n̄21TA1(t̄11)′′(ṡ11)2 + 2(n̄21T )′A1(t̄11)′ṡ11ṡ21 + t̄11TA1T (n̄21)′′(ṡ21)2

n̄32TA1(t̄12)′′(ṡ12)2 + 2(n̄32T )′A1(t̄12)′ṡ12ṡ32 + t̄12TA1T (n̄32)′′(ṡ32)2

3775
For conical wheel profiles the following is valid

(t̄11)′ = (t̄12)′ = (t̄11)′′ = (t̄12)′′ = (n̄11)′ = (n̄12)′ = (n̄11)′′ = (n̄12)′′ = 0 (B.16)

By inserting t̄ik = (ūik)′, n̄ik = ˆ̄tik = (ˆ̄uik)′ and equation (B.16) it is found

C(q, s) =

2664
R1 + A1ū11 − ū21

R1 + A1ū12 − ū32

(ˆ̄u21T )′A1(ū11)′

(ˆ̄u32T )′A1(ū12)′

3775 , Cq =

2664
I2×2 A1 ˆ̄u11

I2×2 A1 ˆ̄u12

01×2 (ˆ̄u21T )′A1(ˆ̄u11)′

01×2 (ˆ̄u32T )′A1(ˆ̄u12)′

3775

Cs =

2664
A1(ū11)′ −(ū21)′ 02×1 02×1

02×1 02×1 A1(ū12)′ −(ū32)′

0 (ū11T )′A1T (ˆ̄u21)′′ 0 0
0 0 0 (ū12T )′A1T (ˆ̄u32)′′

3775

(Cqq̇)qq̇ =

2664
−A1ū11φ̇2

−A1ū12φ̇2

−(ˆ̄u21T )′A1(ū11)′φ̇2

−(ˆ̄u32T )′A1(ū12)′φ̇2

3775 , (Csṡ)sṡ =

2664
−(ū21)′′(ṡ21)2

−(ū32)′′(ṡ32)2

(ū11T )′A1T (ˆ̄u21)′′′(ṡ21)2

(ū12T )′A1T (ˆ̄u32)′′′(ṡ32)2

3775

(Cqq̇)sṡ = (Csṡ)qq̇ =

2664
A1(ˆ̄u11)′φ̇ṡ11

A1(ˆ̄u12)′φ̇ṡ12

(ˆ̄u11T )′A1T (ˆ̄u21)′′φ̇ṡ21

(ˆ̄u12T )′A1T (ˆ̄u32)′′φ̇ṡ32

3775



Constrained wheel–rail contact 137

Forces

The external forces (track system) and torques (body system) are given by Fx
Fy
Fz

 = Fg + Fs + ATb(Ffl + Ffr) + ATclFcl + ATcrFcr

 Mx

My

Mz

 = Rcl × (AbclFcl + Ffl) + Rcr × (AbcrFcr + Ffr)

Fg is the gravitational force, Fs is a lateral suspension force, Fcl, Fcr are the
wheel–rail contact forces, Ffl, Ffr are flange forces, ATb, ATcl,ATcr,Abcl,Abcr

are rotation matrices and Rcl, Rcr are position vectors from the centre of mass
of the wheelset to the contact points. The gravitational force and primary
suspension are modelled by

Fg =

 0
0
−mg

 , Fs =

 0
−ksy

0


The flange is modelled by a stiff spring with a dead band

Ffl =
{

0 y ≤ yf
[0,−kf (y − yf ), 0]T y > yf

Ffr =
{

[0,−kf (y + yf ), 0]T y < −yf
0 y ≥ −yf

where ks = 1.823 MN/m, kf = 14.60 MN/m and yf = 0.0091 m. These values
are from Cooperrider’s bogie [8, 38]. The nonsmooth characteristic of the dead
band spring is appropriately divided into its natural states and the switching
boundaries between the states are located during the numerical integration. To
keep focus on the treatment of the DAE issues, the event location procedure is
not further discussed here. The rotation matrices are

ATb =

24 cosψ − sinψ cosφ sinψ sinφ
sinψ cosψ cosφ − cosψ sinφ

0 sinφ cosφ

35
ATcl =

24 cosψ − sinψ cos(φ+ δ) sinψ sin(φ+ δ)
sinψ cosψ cos(φ+ δ) − cosψ sin(φ+ δ)

0 sin(φ+ δ) cos(φ+ δ)

35
ATcr =

24 cosψ − sinψ cos(φ− δ) sinψ sin(φ− δ)
sinψ cosψ cos(φ− δ) − cosψ sin(φ− δ)

0 sin(φ− δ) cos(φ− δ)

35
Abcl =

24 1 0 0
0 cos(δ) − sin(δ)
0 sin(δ) cos(δ)

35 , Abcr =

24 1 0 0
0 cos(δ) sin(δ)
0 − sin(δ) cos(δ)

35
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The position of the contact point is found using the profile parameters

Rcl =

24 0
y110 + s11

−r0 + s11 tan δ

35 , Rcr =

24 0
y120 + s12

−r0 − s12 tan δ

35
The normal forces are found using the Lagrange multipliers

Nl =
√
λ2

1 + λ2
2 Nr =

√
λ2

3 + λ2
4

The tangential contact forces (creep forces) depends on the relative velocity
between the wheel and rail (creep). The creep is computed using the following
approximations.

ξx,cl ≈ 1 + ((V/r0 + β)ū11
2 − ψ̇ū11

1 )/V

ξx,cr ≈ 1 + ((V/r0 + β)ū12
2 − ψ̇ū12

1 )/V

ξy,cl ≈ (−ψV + ẏ − φ̇ū11
2 )/(V cos δ)

ξy,cr ≈ (−ψV + ẏ − φ̇ū12
2 )/(V cos δ)

ξs,cl ≈ (ψ̇ cos δ − (V/r0 + β) sin δ)/V

ξs,cr ≈ (ψ̇ cos δ + (V/r0 + β) sin δ)/V

The creep forces Tx and Ty are calculated using the nonlinear model proposed
by Shen–Hedrick–Elkins [78]

Tx = εF̃x , Ty = εF̃y

where
a = a0(N/N0)1/3 , b = b0(N/N0)1/3

F̃x = −abGC11ξx

F̃y = −abG
(
C22ξy +

√
abC23ξs

)
|F̃| =

√
F̃ 2
x + F̃ 2

y

|F| =
{
µN

(
u− 1

3u
2 + 1

27u
3
)

u < 3
µN u ≥ 3 , u =

|F̃|
µN

ε = |F|/|F̃|

and a0 = 2.8134 mm, b0 = 1.6745 mm, N0 = 5073 N, C11 = 4.8530, C22 =
4.5548, C23 = 2.2666, G = 8.27 ·1010 N/m2, ν = 0.27, µ = 0.30. Here, C11, C22,
C23 are Kalker’s creepage coefficients [39]. The contact forces are

Fcl = [Tx,cl, Ty,cl, Nl]T Fcr = [Tx,cr, Ty,cr, Nr]T

Note that in computing the term Q in equation (B.15) the normal forces should
be excluded because they are taken into account using the Lagrange multipliers.
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Numerical integration

1. Initial condition: The coordinates y0, ψ0, ẏ0, ψ̇0, β0 are specified. The de-
pendent coordinates qd,0 = [z0, φ0]T , q̇d,0 = [ż0, φ̇0]T , s and ṡ are deter-
mined by solving equation (B.11) and (B.12). Equation (B.11) is solved
using Newton–Raphson’s method (see e.g. [76]). From a simple geometric
consideration the following initial value is found appropriate2666664

z
φ
s11

s21

s12

s32

3777775 =

2666664
0
0

(y210 − y110 )−R sin δ
δ

(y320 − y120 ) +R sin δ
−δ

3777775
and the Jacobi matrix is

J = [Cqd ,Cs] , qd = [z, φ]T

Equation (B.12) is solved by exploiting the linearity, i.e.

[Cqd ,Cs]
[

q̇d
ṡ

]
= −Cqi q̇i ,

qi = y
qd = [z, φ]T

2. Equation (B.15) is solved using fixed–point iteration. This gives the cur-
rent value of q̈ and λ. The static load is used as a first initial guess,
however, during simulation the previous value gives a better estimate.
From the static load it is found

λ0 =
[mg

2
tan δ,−mg

2
,−mg

2
tan δ,−mg

2
, 0, 0

]T
3. The independent accelerations are integrated one step forward in time

4. The new value of the dependent coordinates are found through solving
equation (B.11) and (B.12)

5. Repeat step 2. to 4. until the end of the simulation is reached

Implementation

In order to integrate the DAE system in Matlab the following formulation of
the system is presented

y = [y, ψ, ẏ, ψ̇, β, z, φ, s11, s21, s12, s32]T

Mẏ =



y3
y4
ÿ (known from equation (B.15))
(−Iyyφ̇V/r0 +Mz)/Izz
My/Iyy
C(q, s) (see equation (B.9))
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where
q = [y1, y6, y7]T s = [y8, y9, y10, y11]T

and M is the singular mass matrix providing zeros on the left hand side in
the 6 last equations, see equation (B.17). The dependencies of the right hand
side function are important for an efficient computation of the Jacobi matrix,
which is needed when using an implicit numerical integrator. The dependencies
are given in Jpattern, see equation (B.18). The system is integrated using the
Matlab solver ode15s.

M =

26666666666666664

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

37777777777777775
(B.17)

Jpattern =

26666666666666664

0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 1 1 1 1 0 0
1 0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 1

37777777777777775
(B.18)

Results

In Figure B.27 to B.30 the results from a simulation at 20 m/s are shown. The
wheelset is not suspended. The conicity is δ = 0.05. The centre track solution
is unstable, however, the amplitude of the oscillations are limited by the flange.

In Figure B.31 and B.32 the results from a simulation at 100 m/s are shown.
The wheelset is suspended, ks = 1.823 MN/m. The conicity is still δ = 0.05.
The centre track solution is now stable. Note that δ+φ = s21 ≈ 0.05 because the
wheel profile is conical and the rails are circular. Similarly, δ−φ = −s32 ≈ 0.05.

In Figure B.33 and B.34 the speed is still 100 m/s. The wheelset is suspended,
ks = 1.823 MN/m. The conicity is set to δ = 0.08. It is seen that this higher
conicity makes the centre track solution unstable. Again, δ + φ = s21 ≈ 0.08
and δ − φ = −s32 ≈ 0.08.

These results confirm our expectations from experience.
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Figure B.27: y(t), δ = 0.05, ks = 0.
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Figure B.28: z(t), δ = 0.05, ks = 0.
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Figure B.29: φ(t), δ = 0.05, ks = 0.
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Figure B.30: sij(t), δ = 0.05, ks = 0.
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Figure B.31: y(t), δ = 0.05, ks = 1.823
MN/m.
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Figure B.32: sij(t), δ = 0.05, ks = 1.823
MN/m.
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Figure B.33: y(t), δ = 0.08, ks = 1.823
MN/m.
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Figure B.34: sij(t), δ = 0.08, ks = 1.823
MN/m.
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Rotation matrices

The rotation matrices A(α)
x , A(α)

y and A(α)
z are derived here. The angle α is

defined to be positive in a counter–clockwise rotation.

Rotation around x

Consider the following coordinate systems

R1 : (O1;x1, y1, z1) , R2 : (O2;x2, y2, z2)

where R2 is obtained by a counter–clockwise rotation of R1 around x1 with the
angle α. The two bases are related by

i1 = (i1 · i2)i2 + (i1 · j2)j2 + (i1 · k2)k2 = i2
j1 = (j1 · i2)i2 + (j1 · j2)j2 + (j1 · k2)k2 = cosαj2 − sinαk2

k1 = (k1 · i2)i2 + (k1 · j2)j2 + (k1 · k2)k2 = sinαj2 + cosαk2

A(α)
x ≡ A12 =

1 0 0
0 cosα − sinα
0 sinα cosα

 j2
α

α

k1k2

i1
i2

j1
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Rotation around y

Consider the following coordinate systems

R1 : (O1;x1, y1, z1) , R2 : (O2;x2, y2, z2)

where R2 is obtained by a counter–clockwise rotation of R1 around y1 with the
angle α.

i1 = (i1 · i2)i2 + (i1 · j2)j2 + (i1 · k2)k2 = cosαi2 + sinαk2

j1 = (j1 · i2)i2 + (j1 · j2)j2 + (j1 · k2)k2 = j2
k1 = (k1 · i2)i2 + (k1 · j2)j2 + (k1 · k2)k2 = − sinαi2 + cosαk2

A(α)
y ≡ A12 =

 cosα 0 sinα
0 1 0

− sinα 0 cosα


α

α

i2
i1

k2

k1
j2

j1

Rotation around z

Consider the following coordinate systems

R1 : (O1;x1, y1, z1) , R2 : (O2;x2, y2, z2)

where R2 is obtained by a counter–clockwise rotation of R1 around z1 with the
angle α.

i1 = (i1 · i2)i2 + (i1 · j2)j2 + (i1 · k2)k2 = cosαi2 − sinαj2
j1 = (j1 · i2)i2 + (j1 · j2)j2 + (j1 · k2)k2 = sinαi2 + cosαj2
k1 = (k1 · i2)i2 + (k1 · j2)j2 + (k1 · k2)k2 = k2

A(α)
z ≡ A12 =

cosα − sinα 0
sinα cosα 0

0 0 1


α

α

k1

j2
j1

i2

i1
k2

Inertial system to track system

1. Rotation around z by βC (track yaw), RO → RI1

2. Rotation around yI1 by θC (track gradient), RI1 → RT

AOT = A
(βC)
z A

(θC)
y , ATO = AT

OT
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Track system to body system

1. Rotation around zT by ψ (yaw), RT → RI2

2. Rotation around yI2 by θ (pitch), RI2 → RI3

3. Rotation around xI3 by φ (roll), RI3 → Rb

ATb = A
(ψ)
z A

(θ)
y A

(φ)
x , AbT = AT

Tb

Body system to wheel–rail contact system

1. Rotation around xb by δ (contact angle), Rb → Rc

Abc = A
(δ)
x , Acb = AT

bc

AOT = A
(βC )
z A

(θC )
y

=

24cβCcθC −sβC cβCsθC
sβCcθC cβC sβCsθC
−sθC 0 cθC

35
ATiTj = ATiO AOTj

=

264cθiCcθjCc(βiC − β
j
C) + sθiCsθjC cθiCs(βiC − β

j
C) cθiCsθjCc(βiC − β

j
C)− sθiCcθjC

−cθjCs(βiC − β
j
C) c(βiC − β

j
C) −sθjCs(βiC − β

j
C)

sθiCcθjCc(βiC − β
j
C)− cθiCsθjC sθiCs(βiC − β

j
C) sθiCsθjCc(βiC − β

j
C) + cθiCcθjC

375
ATb = A

(ψ)
z A

(θ)
y A

(φ)
z

=

24cψcθ cψsθsφ− sψcφ cψsθcφ+ sψsφ

sψcθ sψsθsφ+ cψcφ sψsθcφ− cψsφ

−sθ cθsφ cθcφ

35
A

(θ=0)
Tb = A

(ψ)
z A

(φ)
x

=

24cψ −sψcφ sψsφ

sψ cψcφ −cψsφ

0 sφ cφ

35
Abc = A

(δ)
x

=

241 0 0

0 cδ −sδ

0 sδ cδ

35
ATc = A

(θ=0)
Tb Abc

=

24cψ −sψc(φ+ δ) sψs(φ+ δ)

sψ cψc(φ+ δ) −cψs(φ+ δ)

0 s(φ+ δ) c(φ+ δ)

35

Table C.1: Rotation matrices. Here, c = cos and s = sin.
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AOT ≈

24cβC −sβC θCcβC
sβC cβC θCsβC
−θC 0 1

35
ATiTj ≈

264 1 −(βjC − β
i
C) θjC − θ

i
C

βjC − β
i
C 1 0

−(θjC − θ
i
C) 0 1

375
ATb ≈

24 1 −ψ θ
ψ 1 −φ
−θ φ 1

35
A

(θ=0)
Tb ≈

241 −ψ 0
ψ 1 −φ
0 φ 1

35
Abc =

241 0 0
0 cδ −sδ
0 sδ cδ

35
ATc ≈

241 −ψc(φ+ δ) ψs(φ+ δ)
ψ c(φ+ δ) −s(φ+ δ)
0 s(φ+ δ) c(φ+ δ)

35

Table C.2: Approximate rotation matrices. Here, c = cos and s = sin.
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Linear complementarity
problem

The formulation of the impact problem modelling the longitudinal clearance
between the axle box and axle guidance is a linear complementarity problem
(LCP). The general form of a LCP is given equation (D.1). The vectors x and
y are the unknown quantities. Dantzig’s algorithm, see [53, 6], for solving LCPs
is presented in the following. It should be noted that, in the case of modelling
a frictionless impact problem, the matrix A is positive semidefinite which is a
sufficient condition for the algorithm to terminate with an unique solution. For
an arbitrary matrix A there is no guarantee about the solvability.

y = Ax + b , 0 ≤ x ⊥ y ≥ 0 (D.1)

Dantzig’s algorithm is in the class of pivoting methods for solving linear and
quadratic programs. The pseudocode is given in Algorithm 4 together with the
auxiliary functions in Algorithm 5 and 6. A very readable description of the
algorithm can be found in [6]. About the algorithm notation: yd means the
d’th element in the vector y, and ACd means the vector obtained by extracting
the rows corresponding to the indices in the set C from the d’th column in the
matrix A.
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function [x,y] = lcp dantzig(A,b)
x = 0
y = b
C = NC = ∅
while ∃d such that yd < 0 do

goon = true
while goon do

∆x = xdirection(A, d,C)
∆y = A∆x
[s, j] = maxstep(x,y,∆x,∆y, d)
x = x + s∆x
y = y + s∆y
if j ∈ C then

C = C− {j}
NC = NC ∪ {j}

else if j ∈ NC then
NC = NC− {j}
C = C ∪ {j}

else
C = C ∪ {j}
goon = false

end if
end while

end while

Algorithm 4: Dantzig’s algorithm.

function ∆x = xdirection(A, d,C)
∆x = 0
∆xd = 1
solve ACCz = −ACd

∆xC = z

Algorithm 5: xdirection.

function [s, j] = maxstep(x,y,∆x,∆y, d)
s =∞
j = −1
if ∆yd > 0 then
j = d
s = −yd/∆yd
for i ∈ C do

if ∆xi < 0 then
s′ = −xi/∆xi
if s′ < s then
s = s′

j = i
end if

end if
end for
for i ∈ NC do

if ∆yi < 0 then
s′ = −yi/∆yi
if s′ < s then
s = s′

j = i
end if

end if
end for

end if

Algorithm 6: maxstep.
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Source code

The source code of the programs developed are found on the attached CD–
ROM in the directory phdthesis/code. The contents of this directory is shown
in Table E.1.

Directory Description
code/daecont/ Constrained wheel–rail contact example (Matlab)
code/freightwagon/ Freight wagon model (C++, Java)
code/guidrod/ Guided rod example (Matlab)
code/impactosc/ Impact oscillator example (C++)
code/leafspring/ Leaf spring example (Matlab)
code/sdirk/ Integrator (C++)
code/wrcon/ Contact table scripts (Matlab)

Table E.1: Source code overview.

Execute the following steps to compile and run the freight wagon simulator:

1. ./config_phd (bash script for compilation)

2. cd code/freightwagon (change directory)

3. make run (Linux)

4. gmake run (Solaris)
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