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Abstract

Algorithms can automatically analyze human brain
mapping studies represented in a neuroinforma-
tics database. We describe one such meta-
analytic method that relies on a combination of
text mining, functional volumes modeling, partial
least squares and non-negative matrix factoriza-
tion (NMF): NMF decomposes the product be-
tween a bag-of-words matrix, constructed from ab-
stract words, and a voxelization matrix constructed
by kernel density modeling of the stereotaxic co-
ordinates in the scientific papers contained in a
database. The components found allows us to con-
struct a functional atlas where voxels and words
get loaded on components interpretable as brain
functions. When applied on the Brede Database
with 186 papers we find components such as mem-
ory, emotion, pain and audition. Furthermore, we
present a cluster validation procedure based on per-
mutation and cluster matching that quantifies the
variability of the functional atlas.

1 Introduction

One of the aims in human brain mapping is to es-
tablish a functional atlas of the entire human brain,
making it possible to label each brain area with
one or more specific functions. Kleist (1934) con-
structed such an atlas based on correlating the loca-
tion of brain lesions with behavioral examinations,
where many of the areas corresponded to those of
Brodmann (1994), and in the modern era several
atlases show the macaque visual areas (Van Es-
sen, 2003). For more anatomy-oriented atlases the
systematic collection of brain regional features al-
lows, e.g., Kötter et al. (2001) to perform multivari-
ate analyses of multimodal receptor binding and

connectivity in macaque, and Zilles et al. (2004)
and Schleicher et al. (1999) to characterize the hu-
man cerebral cortex based on multimodal recep-
tor binding profile and cytoarchitectonic profile, re-
spectively.

Modern human brain mapping produces a wealth
of information linking brain and behavioral vari-
ables. Here we describe a system for automated
construction of a functional atlas based on a neu-
roinformatics database.

We work with data from the Brede Database
(Nielsen, 2003). As inspired from the Brain-
Map database (Fox et al., 1994) it contains 3-
dimensional stereotaxic Talairach coordinates (Ta-
lairach and Tournoux, 1988) representing focal
brain lesions or change in brain activity to the men-
tal process under investigation as reported in pub-
lished neuroimaging papers. In the Brede Database
we have previously used multivariate analysis in the
form of singular value decomposition, independent
component analysis, K-means clustering and non-
negative matrix factorization to extract consensus
patterns across sets of articles represented as vox-
elized volumes (Nielsen and Hansen, 2004; Nielsen,
2003). Though the analyses produce maps in Ta-
lairach space, which in some cases can have an in-
terpretation as a specific brain function, they do not
directly allow us to functionally label voxels auto-
matically. In a previous meta-analysis we sought
the largest elements in the joint density between
abstract words and Talairach coordinates for func-
tional labeling of Talairach coordinates (Nielsen
et al., 2004b). In that work we showed that non-
negative matrix factorization provides a means for
exploiting the covariance between words and voxels
and in our present work we pursue and extend this
so we can functionally label all grey matter areas of
the human brain, either with individual words for
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a a’s aberrant aberrations abilities ability ab-
lated ablations able abnormal abnormalities
abnormality abolished about above . . . you
you’d you’ll you’re you’ve young younger
your yours yourself yourselves z zero zone
zones . . . amygdala amygdaloid angular an-
terior area basal bilateral brain brainstem
calcarine callosomarginalis caudal caudate
. . . temporo temporoparietal thalamic thala-
mus uncus ventral ventrolateral ventrome-
dial ventroposterior vermis vi viib

Table 1: Excerpt of stop word list.

brain functions or with a “component” that loads
on words as well as voxels.

2 Method

Our procedure combines four different methods for
the parcellation of the human brain into functional
areas: Text modeling, functional volumes model-
ing, non-negative matrix factorization and partial
least squares. In each case we take the simplest ap-
proach. For our method we rely on the implemen-
tations in the Brede Toolbox (Nielsen and Hansen,
2000a).

2.1 Text modeling

The abstracts of papers in the Brede Database form
the base for text modeling and we use the so-called
“vector space model” (Salton et al., 1975), where
a bag-of-words matrix X(N × P ) represents P dif-
ferent words in N different abstracts. The absolute
frequency (the count) of the p’th word in the n’th
abstract cnp enters the (n, p) matrix element as the
square root xnp =

√
cnp (Cutting et al., 1992). We

choose this normalization to control the variance
of each element: Regarding each count as gener-
ated from an individual Poisson distribution, the
count itself can act as a fairly good estimate of the
variance σ̂2

np = cnp, and with xnp = cnp/σ̂np each
matrix element gets standardized to approximately
unit variance.

The most common words of English (“the”, “of”,
etc.) dominate the matrix. A stop word list, setup
in one of our previous studies (Nielsen et al., 2005),
eliminates these common words as well as words for
brain anatomy and a large number of other words
that appear often in scientific abstracts, see Table 1
for a few examples. Words for brain function dom-
inate the matrix after application of this list. We

also eliminate words that only occur in a single ab-
stract.

2.2 Functional volumes modeling

For the modeling of the Talairach coordinates —
“functional volumes modeling” (Fox et al., 1997) —
we construct a matrix Y(N ×Q) from voxelization
of all the Talairach coordinates in each of the N
papers. Our method uses kernel density estimation
on the Talairach coordinates (Chein et al., 2002;
Nielsen and Hansen, 2002b; Turkeltaub et al., 2002;
Wager et al., 2003; Nielsen and Hansen, 2000b)
convolving each 3-dimensional coordinate vl in the
n’th paper with a 3-dimensional isotropic Gaussian
kernel in Talairach space v

p(v|n) =

En
∑

e

Ln,e
∑

l

(2πσ2)−3/2

√

EnLn,e

exp

[

(v − vl)
2

−2σ2

]

,

(1)
with En as the number of experiments (e.g., indi-
vidual contrast images) in the n’th paper and Ln,e

as the number of coordinates in each experiment.
We get a pseudo-probability density p(v|n) since
the normalization uses the square root of the num-
bers and thus the density does not integrate to one.
The normalization tries to weight equally coordi-
nates regardless of whether the individual coordi-
nate comes from a paper with few or many other co-
ordinates — weakly justified from a voting system
(Penrose, 1946; Nielsen, 2005). We set the kernel
width to σ = 10mm and then sample the pseudo-
probability density on an 8 × 8 × 8 millimeter grid
obtaining a volume for each paper. Labeled voxels
in the “AAL” atlas of Tzourio-Mazoyer et al. (2002)
act as mask for grey matter regions, resulting in Q
number of voxels. With the voxels within the mask
vectorized and the row vectors for N papers stacked
we get the voxelization matrix Y.

Slight differences exist between templates used
for spatial normalization, and the anatomical dif-
ferences might make it difficult or impossible to
match multiple brains. Thus two locations with
the same coordinate do not necessarily appear in
the same (anatomical) brain area if they come from
two different studies. For the Brede Database the
program for data entry corrects for the difference
between the (original) Talairach and the Montreal
Neurological Institute (MNI) spaces by applications
of “Brett’s transformation” (Brett, 1999), though
this does not fully correct the discrepancy (Chau
and McIntosh, 2005; Lancaster et al., 2006).

Some voxel-based meta-analyses choose to filter
their studies, including only studies with a field of
view for the entire human brain (Fox et al., 2005).
The Brede Database does presently not represent
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the imaging or reporting field of view for the major
part of the papers. It means that we cannot auto-
mate a correction for this, and results may become
biased.

Instead of a voxel-based analysis we could match
each location to a brain area specified, e.g., by its lo-
bar anatomy or Brodmann area, building a (paper
× brain area)-matrix (Indefrey and Levelt, 2000;
Lloyd, 2000). We view this as a more complex pro-
cedure, since one would need to specify the pre-
cise anatomical delineation and construct a match-
ing algorithm that assigns a location to an area.
One would either rely on “author-labels” or “atlas-
labels” (Laird et al., 2005). Neuroimaging au-
thors applies very little standardized neuroanatom-
ical terminology, so the match becomes difficult for
author-labels (Laird et al., 2005; Nielsen, 2006).
For atlas-labeling the area of an atlas label should
overlap with the area of the individual study, but,
e.g., what an author labels cerebellum may not fall
in the cerebellum of the atlas (Nielsen and Hansen,
2002b), so one would expect some slight mislabel-
ing.

2.3 Partial least squares

The text modeling and the functional volumes mod-
eling give two data sets represented in matrices X

and Y, and our further modeling correlates these
two matrices. There exists a number of multivariate
analysis methods for this such as canonical corre-
lation analysis (Mardia et al., 1979), inter-battery
factor analysis (Tucker, 1958), partial least squares
by singular value decomposition (McIntosh et al.,
1996; McIntosh and Lobaugh, 2004), and canonical
ridge analysis (Vinod, 1976; Mardia et al., 1979;
Nielsen et al., 1998), all which submit to a for-
mulation as a generalized eigenvalue decomposition
(Borga et al., 1992). We will take the simplest form
of these methods and use partial least squares. This
first constructs a product matrix

Z = X
T
Y. (2)

In one type of partial least squares technique a sin-
gular value decomposition extracts interesting fac-
tors from the product matrix. However, we instead
use non-negative matrix factorization on the prod-
uct matrix and we term this non-negative partial
least squares (nPLS).

2.4 Non-negative matrix factoriza-

tion

Both of matrices from text modeling and functional
volumes modeling are non-negative, i.e., all ele-

ments are either zero or positive. Any matrix prod-
uct between two non-negative matrices becomes
non-negative. One finds a number of algorithms
and models specifically targeting non-negative ma-
trices, e.g., the latent class model (Goodman,
1974), non-negative CANDECOMP (Carroll et al.,
1989), factor analysis with non-negative transfor-
mation (Shen and Israël, 1989), positive matrix fac-
torization (Paatero, 1997), non-negative matrix fac-
torization (Lee and Seung, 1999, 2001), the “aspect
model” (Saul and Pereira, 1997; Hofmann, 1999),
mixture of multinomials (Rigouste et al., 2005;
Nigam et al., 2000), replicator dynamics (Neumann
et al., 2005), non-negative PARAFAC (Bro and
Jong, 1997) and different variations of non-negative
independent component analysis (Højen-Sørensen
et al., 2002; Plumbley, 2003), where some of these
share similar parameter update forms (Gaussier
and Goutte, 2005).

Here we will not explore the full range of non-
negative algorithms, but confine us to the “Eu-
clidean” version of non-negative matrix factoriza-
tion (NMF), which stands as simple, reasonable
fast, row/column symmetric in its decomposition,
and with no hyperparameters, except for the num-
ber of components. The product of two non-
negative matrices W(P×K) ≥ 0 and H(K×Q) ≥ 0
acts as a low-rank approximative factorization of
the product matrix Z = X

T
Y

WH = Z + U, (3)

with U as a residual matrix. We use the iterative
updates of Lee and Seung (2001):

Hkp ← Hkp

(

W
T
Z

)

kp

(WTWH)kp

(4)

Wqk ← Wqk

(

ZH
T
)

qk

(WHHT)qk

. (5)

We let the algorithm run for 50000 iterations or
until no considerable change between iterations ap-
pears. We also run the factorization multiple times
with different initializations and pick the one with
the lowest Frobenius norm of the residual matrix.
Our hardware exhibited slow performance during
underflow multiplications with denormalized num-
bers (Goldberg, 1991), and during iterations we sat
elements in W and H to zero if they where be-
low 1020 times the underflow threshold. Further-
more, we add a small value to the nominators of
the update formula 4 and 5 to avoid divisions by
zero (Shahnaz et al., 2006).

This standard NMF fails to be unique since scal-
ing factors can be moved between the columns of W
and the rows of H. We compute vectorial 2-norms
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and distribute the scaling equally between the two
matrices. The remaining variation may be captured
by our cluster validation procedure described later.

As the only parameter the number of components
K needs to be set. We presently set this to K ≈
√

N/2 — related to the rule of thumb of Mardia
et al. (1979, p. 365) — rather than try to optimize
this.

For exclusive assignment of each word and each
voxel to a component K we apply winner-take-all
functions to W and H

w̃pk =

{

wpk if ∀k′ : wpk ≥ wpk′

0 otherwise
(6)

h̃kq =

{

hkq if ∀k′ : hkq ≥ hk′q

0 otherwise.
(7)

This will result in a two-way clustering of both
words and voxels, i.e., a hard parcellation of both
words and voxels.

2.5 Cluster validation

The clustering obtained with the nPLS varies de-
pending on the data, the scaling of the matrices
and the initialization of the NMF algorithm. A
number of measures for quantifying the variability
of (any type of) clusterings has been devised, see,
e.g., (Meilă, 2002; Law and Jain, 2003). These mea-
sures typically quantify the cluster stability based
on the labels from two clusterings. One type of
measures require that the individual clusters should
be mapped (or “matched”) between the clusterings:
The first cluster in the first clustering corresponds
not necessarily to the first cluster in the second clus-
tering (Strehl and Ghosh, 2002). One possible way
of matching, the greedy algorithm, seeks out the
largest element in the confusion matrix, say aij ,
and matches the i’th cluster from the first clus-
tering with the j’th cluster from the second clus-
tering, then deletes the i’th row and the j’th col-
umn from the confusion matrix and performs the
operation again repeatedly on the reduced matrix
(Meilă and Heckerman, 2001; Meilă, 2002). An-
other algorithm, the so-called Hungarian method
(Kuhn, 1955; Roth et al., 2002; Lange et al., 2003;
Tichavský and Koldovský, 2004), may make a bet-
ter pairing at the expense of larger time complex-
ity. We implemented a variation of this algorithm
(Munkres, 1957; Pilgrim, 2006).

We do not aim for a “global” measure for the
stability of the entire clustering algorithm (Fowlkes
and Mallows, 1983; Levine and Domany, 2001) or
a measure for the stability of each cluster (Monti
et al., 2003), rather we want a measure for each in-
dividual clustered element – in our case: the voxel.

So with inspiration from the NPAIRS framework
(Strother et al., 2002, 2004), co-validation (Madani
et al., 2005) and a resampling approach for cluster
validation by Roth et al. (2002) we perform a half-
split resampling and compare how often each voxel
fall in corresponding clusters of the two split-halfs.
We work from the bag-of-words and voxelization
matrices, X and Y, then

1. Permute randomly the rows of X by a permu-
tation matrix Pr and take the first half of the
rows of X for one matrix X1,r and the second
half for another matrix X2,r. Do the same op-
eration with the same permutation matrix for
Y

X1,r = [PrX](1...dN/2e) (8)

X2,r = [PrX](dN/2e+1...N) (9)

Y1,r = [PrY](1...dN/2e) (10)

Y2,r = [PrY](dN/2e+1...N) . (11)

2. Perform nPLS on the two product matrices

W1,rH1,r ← nmf
(

X
T

1,rY1,r

)

W2,rH2,r ← nmf
(

X
T

2,rY2,r

)

.

We use the same number of components K as
for the nPLS on the full data set.

3. Apply winner-take-all functions on the H ma-
trices obtaining H̃1,r and H̃2,r.

4. Match the rows of H̃1,r and H̃2,r with the Hun-
garian method applied on the product matrix
H̃1,rH̃

T

2,r.

5. Record for each voxel whether it resides in the
same cluster in the two independent split-halfs,
i.e., whether a specific column has a non-zero
value in the same rows of H̃1,r and H̃2,r after
the rows have been matched.

6. Repeat the preceding steps R times with a new
permutation matrix Pr, r = 1 . . . R, and for
each voxel p count the number of times cp it
resides in the same cluster in the two split-halfs
with the result in a vector c with length P .

The count now appears as our statistics for the sta-
bility of a voxel, and to generate a distribution for
the null hypothesis for this statistics we apply a
further permutation: In this permutation test we
randomly permute the two half-split bag-of-word
matrices, but not the voxelization matrices:

X̃1,r = P1,rX1,r (12)

X̃2,r = P2,rX2,r. (13)
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Figure 1: Surface view of functional atlas in a corner cube environment. The blue lines outline the
contour of the brain from the Talairach atlas and red axes indicate the anterior and posterior commisure
axes. Each colored area corresponds to a nPLS component, see Fig. 3 for a legend.

Then we perform steps 2–6 with these matrices and
obtain a vector of counts c̃. We examine the maxi-
mum in this vector and use it as the parameter in
a Poisson distribution which gives us a distribution
for the maximum count of a null distribution, some-
what related to the maximum permutation statis-
tics of Holmes et al. (1996).

We repeated steps 1–5 of the cluster validation
method R = 1000 times, each running a NMF with
a maximum of 1000 iterations, i.e., a total of four
million NMF iterations (2 NMFs for the half-split
data and further 2 NMFs for the null distribution).

3 Results

We included data from the N = 186 papers con-
tained in the Brede Database. P = 470 words and
Q = 2492 voxels remained after the initial process-
ing, and with the number of components for the

nPLS set to K = 10 ≈
√

186/2 we obtained the
results in Figs. 1, 2 and 3, where the ten com-
ponents are color coded. Figs. 1 and 2 display
the non-zero elements of the H factorization ma-
trix (with the winner-take-all function applied) as
3-dimensional surfaces in a Talairach space corner
cube environment (Rehm et al., 1998), while Fig. 3
lists the words associated with the five elements
with the highest load in the W matrix.

Running our cluster validation method 1000
times we found 157 as the largest number of times a
voxels appeared in the same cluster in both the half-
split data sets of the permutation test. We use this
as a parameter for a Poisson distribution λ = 157
and get 178 as a threshold value corresponding to
an upper tail area in the cumulative distribution of
P ≈ 0.05. Fig. 4 displays the results after thresh-
olding: The cluster validation retains many of the
voxels (compare Figs. 1 and 4). However, some
small clusters disappear, e.g., the fifth component
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Figure 2: Functional atlas with a view towards the medial part of the right hemisphere. For the legend
see Fig. 3.

(dark blue) around the left angular gyrus. Table 2
lists local maxima in the volumes of the H ma-
trix, with a local maximum defined as a voxel with
a load higher than its 26 neighboring voxels. The
table lists only maxima that survive the cluster val-
idation threshold. For convenience the transformed
AAL atlas labels anatomically the coordinates.

The first component (black) loads predominately
in the posterior cingulate area and associates with
words such as “memory” and “retrieval”. Table 2
reveals the highest load to be the voxel (0,−56, 16).
With our spatial transformation the AAL atlas la-
bels this as in the cerebellum, but inspection of the
original Talairach atlas shows this as the posterior
cingulate area.

The second component (brown) clusters at the
central sulcus, in the premotor cortex and the cere-
bellum and peaks in postcentral gyri and supple-
mentary motor area. Sensory and motor words as-
sociates with it.

A pain topic splits between two component with
the third component (grey) primarily in the ante-
rior cingulate cortex, the thalamus and putamen
(Fig. 2), and the fourth component (white) in left
and right insula (Figs. 1 and 4).

The fifth component (dark blue) occupies much
of the dorsal surface of the prefrontal cortex, with
its peak in “area triangularis” (triangular part of
the inferior frontal gyrus) and loads on words for
speech/language and cognition.

Large portions of the occipital and parietal lobes
incorporate a component (light blue) loaded on the
words “vision”, “eye” and “attention”. Whereas
this component falls in the “dorsal stream” area
(Ungeleider and Haxby, 1994), the seventh com-
ponent (cyan) relates to the “ventral stream” area
with object vision words such as “faces”, “recogni-
tion” and “images”. Similar with the first compo-
nent there is a discrepancy between the label from
our transformed AAL atlas (Table 2) and visual in-
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 1: memory, retrieval, words, neutral, episodic

 2: motor, movements, somatosensory, hand, finger

 3: pain, noxious, unpleasantness, perceived, hot

 4: painful, perception, thermal, heat, warm

 5: semantic, phonological, cognitive, verbal, decision

 6: visual, eye, time, attention, mental

 7: faces, face, recognition, perceptual, category

 8: auditory, spatial, neglect, awareness, language

 9: emotion, emotions, sadness, disgust, happiness

 10: motion, word, kinetic, reading, rest

Figure 3: Ordered lists of words associated with
high load on the ten components. This figure also
acts as a legend for Figs. 1, 2 and 4.

spection in the orginal Talairach atlas. The latter
place the maxima in the fusiform gyri.

For each of the eighth (green) and tenth (orange)
components the word labeling suggests more than
one brain function: The eighth component appears
in the temporal gyri and labels primarily with audi-
tory function but also incorporate spatial awareness
as its other function (“spatial”, “neglect”, “aware-
ness”). The tenth component lies posterior to
the eighth component and consists of visual mo-
tion, supported by “motion” and “kinetic” high
loaded words but also language supported by words
“word” and “reading”.

The words of the ninth component (yellow)
clearly shows an emotion function, e.g., “emotion”,
“sadness” and “disgust”. It loads in mediobasal
frontal cortex and goes superior in the medial area,
continues posteriorly in the ventral part of the
frontal cortex to amygdala towards the anterior hip-
pocampus and to the temporal pole (Fig. 2) with
peaks in the medial part of the superior frontal
gyrus and the hippocampus according to our trans-
formed AAL atlas (Table 2). The maxima falls be-
tween the lentiform nucleus, thalamus, hippocam-
pus, closest to the amygdala and hypothalamus,
when compared to the Talairach atlas with the Ta-
lairach Daemon (Lancaster et al., 2000) and the
anatomical labels in the Brede Database (Nielsen
and Hansen, 2002a,b).

4 Discussion

Our episodic memory retrieval component (black)
in the posterior cingulate area agrees with the ma-
jor review of Cabeza and Nyberg (2000) as also
noted in our data mining of this particular area
(Nielsen et al., 2005). Our pain components load
on the areas mentioned by Ingvar (1999), though
additionally we find loading in the left putamen.
That pain dominates, e.g., the anterior cingulate
cortex, we attribute to the many pain studies added
to the Brede Database in connection with our pre-
vious studies (Nielsen et al., 2004a, 2005).

That audition loads in the temporal lobe and vi-
sion in the occipital lobe does not surprise. How-
ever, the auditory component also incorporates spa-
tial awareness. Two spatial neglect studies in the
Brede Database (Karnath et al., 2001, 2004) re-
port Talairach coordinates in the temporal lobe at
the same position as auditory studies do and the
co-localization of audition and spatial awareness
merely reflects this fact.

Luria (1989) stresses the major divide between a
lateral and a mediobasal part of frontal cortex as-
sociated with speech activity and emotional states,
respectively. We find this dichotomy with our emo-
tion component (yellow) and the language compo-
nent (dark blue). Our language component contin-
ues in the right hemisphere. Our method will label
an only weakly loaded brain area provided no other
brain function occupies it, so if no other brain func-
tion consistently associates with the right hemi-
sphere it may simply be taken over by our speech
and language component which also incorporates
general cognition as indicated by the words “cogni-
tive” and “decision” highly loaded on this compo-
nent. Cabeza and Nyberg (2000) associate working
memory with prefrontal cortex. Our database con-
tains relatively few working memory studies. Their
small number is probably responsible for the lack
of an individual working memory component. Phan
et al. (2002) notes that “the medial prefrontal cor-
tex appeared to have a general role in emotion pro-
cessing” and our functional atlas supports this con-
clusion. Steel and Lawrie (2004) consider emotion
and cognition in the meta-analysis of the prefrontal
cortex based on the studies identified by Cabeza
and Nyberg (2000) and Phan et al. (2002), and
find higher inferior medial activations for emotion
induction tasks compared to cognitive tasks which
our study supports. They also report difference in
load in the anterior cingulate area while in our case
pain occupies this areas. The limited resolution
could explain why the peaks for the emotion com-
ponent occur between the amygdala and hypotha-
lamus brain structures.
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x y z Load

1. memory, retrieval, words, neutral, episodic, encoding, associative, novelty

Lobule IV, V of vermis 0 −56 16 483.07

Left fusiform gyrus −24 −32 −8 137.83

Left gyrus rectus 0 48 −16 60.16

Right fusiform gyrus 40 −16 −24 53.68

2. motor, movements, somatosensory, hand, finger, representations, voluntary, sensory

Left postcentral gyrus −40 −24 48 381.54

Left supplementary motor area 0 0 56 308.61

Right postcentral gyrus 40 −24 40 117.95

3. pain, noxious, unpleasantness, perceived, hot, forearm, interaction, affective

Left anterior cingulate gyrus 0 16 24 343.95

Left thalamus −8 −16 8 300.22

Right thalamus 8 −16 8 288.98

Left putamen −24 8 8 175.58

Right insula 48 0 8 158.12

4. painful, perception, thermal, heat, warm, cold, patterns, sensation

Left insula −40 −8 8 373.40

Right insula 40 8 8 165.82

5. semantic, phonological, cognitive, verbal, decision, fluency, syllable, pseudowords

Left area triangularis −48 24 16 262.73

Left superior frontal gyrus, medial part −8 24 40 188.18

Right middle frontal gyrus, lateral part 40 32 24 137.10

Left superior frontal gyrus, medial orbital part −8 40 0 90.17

6. visual, eye, time, attention, mental, movement, attentional, visually

Right superior occipital 24 −64 48 218.72

Left superior parietal lobule −24 −56 48 195.47

Left middle occipital −24 −88 16 144.92

Right middle occipital 32 −80 16 142.20

Left calcarine sulcus 0 −80 0 132.42

Left precentral gyrus −40 0 40 111.31

Right precentral gyrus 40 0 48 110.13

7. faces, face, recognition, perceptual, category, images, artefacts, matching

Left Lobule VI of cerebellar hemisphere −40 −56 −16 286.18

Right Lobule VI of cerebellar hemisphere 40 −56 −16 278.67

8. auditory, spatial, neglect, awareness, language, sounds, lesions, voice

Right superior temporal gyrus 56 −24 8 430.81

Left middle temporal gyrus −56 −16 0 150.40

Left middle temporal gyrus −56 −32 8 133.13

9. emotion, emotions, sadness, disgust, happiness, emotional, facial, expressions

Left hippocampus −16 −8 −8 271.45

Right hippocampus 16 −8 −8 265.40

Left superior frontal gyrus, medial part 0 48 24 208.92

10. motion, word, kinetic, reading, rest, semantically, integration, sentences

Left middle temporal gyrus −48 −56 8 344.50

Right middle temporal gyrus 48 −64 8 239.95

Table 2: Local maxima in Talairach space in each of the 10 components. It is automatically generated
and with anatomical labels from the AAL atlas.
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Figure 4: Functional atlas after thresholding based on cluster validation. The grey and black component
in the cingulate gyrus appear in a hole on the lateral surface made from voxel that did not survive the
threshold.

The bag-of-words representation of a paper
makes a simplistic representation of the topic of it,
e.g., words can occur in negative assertions, though
this seems rarely the case. More complex represen-
tations of the abstracts could use phrase frequency
rather than just word frequency or utilize natu-
ral language processing with understanding of the
grammar. Furthermore, the stop word list might
not be optimal, e.g., as a common personal pro-
noun we added the word “self” to the stop word
list. However, in abstracts in the Brede database it
often appears as a noun referring to a psychologi-
cal concept. At present our method will thus over-
look such a topic unless other words support it. On
the other hand the stop word list does not contain
“time” and it loads highly on the sixth component.
A brief inspection shows that the word mostly finds
application in contexts of experimental methodol-
ogy and not so much in relation to brain function.
The inclusion of this word may confound the re-
sults.

Our coarse 8 millimeter voxels and the broad 10

millimeter kernel width give a somewhat blocky and
rough atlas. As the database increases in size and
scope we may allow for a higher resolution and a
narrower kernel. Also a new alignment between
templates (Lancaster et al., 2006) may make a bet-
ter match so one would expect more precise local-
izations. However, such detail as seen in the at-
lases constructed through autoradiography by Zilles
et al. (2004) will probably not come about with
our method. Furthermore, as more studies come
into the database the eighth component might di-
vide into an auditory and a spatial awareness com-
ponent, and the orange tenth component might
split into visual motion and language components,
though the motion verb study of Wallentin et al.
(2005) exists in the Brede Database linking these
functions that one would usually regard as two en-
tirely separate.

The threshold from cluster validation will not be
valid under all interpretations of consistency. For
instance, consider a voxel consistently switching be-
tween two clusters in each permutation. Among
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1000 half-split iterations around 500 times the voxel
will be counted as in the same cluster by our
method — a number considerably higher than the
null distribution threshold on 178. On the other
hand, a voxel that switches uniformly and ran-
domly between the ten components in each permu-
tation will on average be counted 100 times as in the
same cluster in the two split-halfs. The statistics
of such a voxel will fall under the cluster validation
threshold and be eliminated. For voxels of this type
our cluster validation will make a valid cut-off.

The Brede Database has errors among the over
11,000 numbers that make up the 3-dimensional
stereotaxic coordinate information. These errors
arise during typing in the database or from print
errors in the articles. Outlier detection can spot
some of these (Nielsen and Hansen, 2002b). nPLS
approximates the data and presupposes a residual
regardless of whether outliers infects the data or
not. Outliers would only affect the results little
when the bulk of coordinates are correct.

Incorporating various kinds of studies into one
model helps to balance the interpretations, e.g.,
the modeling of the language in Broca’s area by
Poldrack (2006) requires access to non-language
studies to evaluate sensitivity and specificity. This
type of analysis may clarify which functions make
a strong involvement in an area when compared
against other functions. A caveat is the limited
number of studies in the Brede Database. That
memory and pain tops as important components
and dominate the cingulate area derives from the
many studies of this kind added to the Brede
Database in our previous studies. Furthermore,
publication bias may make the results from neu-
roimaging seem more homogeneous (Phan et al.,
2002). In our case it might both affect the re-
sults through under-reporting of coordinates as well
as selection of words in the formulation of the
abstract, e.g., when studying face recognition re-
searchers may choose only to scan the slices of the
brain containing the fusiform gyrus, and when per-
forming an episodic memory retrieval study and
finding a change in the posterior cingulate area this
may be noted in the abstract simply because it
falls in line with the review of Cabeza and Nyberg
(2000).

The results should not be taken to support the
notion of “exclusive” or “exhaustive” functional
specialization (Lloyd, 2002), but rather that some
areas associate particularly with a specific brain
function. One area may very well be involved in
several functions. Our winner-take-all function will
exclusively focus on the most dominant of them and
we have chosen this reductionism for the sake of
conciseness and leave room for future more verbose

description.
Authors disagree in how consistent functional

brain imaging observations are (Lloyd, 2002; Ut-
tal, 2002). Bearing its limitations in mind our
method gives some quantitative indication of the
degree of consistency in the neuroimaging litera-
ture. The components we find, however, span quite
broad functions and they do not show the extent of
consistency for more specialized higher-level cog-
nitive processes, such as “moral judgment”, “the
anticipation of pain” and “reading body language”
mentioned by Uttal (2002).

Pattern recognition should serve to make neu-
roinformatics databases more than just “one damn
fact after another”. Our functional atlas auto-
matically analyses the content of our database and
presents a view from the top. It does not rely on
a taxonomy of brain functions (Nielsen, 2005) or
whether it is at all possible to build a valid psy-
chobiological taxonomy (Uttal, 2001). The bag-of-
words representation makes up a description of ex-
periments in papers on a “simple utilitarian level”.

In the bioinformatics arena automated text min-
ing has already shown its utility, e.g., with the
PubGene web-service revealing association between
genes (Jenssen et al., 2001), and in web-navigation
automated algorithms, e.g., using PageRank (Brin
and Page, 1998), play the major role compared
to human generated web-indices. Our work aligns
more with such services rather than the “usual”
neuroimaging meta-analysis study where a human
expert carefully selects the studies for investigation.
One would probably trust such a meta-analysis
more than our “quick and dirty” high-throughput
method, but we hope that our shows utility as
a data-driven overlook on functional human brain
mapping.
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