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Abstract

Bayesian predictions are stochastic just like predictions of any other
inference scheme that generalize from a �nite sample	 While a sim�
ple variational argument shows that Bayes averaging is generaliza�
tion optimal given that the prior matches the teacher parameter
distribution the situation is less clear if the teacher distribution is
unknown	 I de�ne a class of averaging procedures� the temperated
likelihoods� including both Bayes averaging with a uniform prior
and maximum likelihood estimation as special cases	 I show that
Bayes is generalization optimal in this family for any teacher dis�
tribution for two learning problems that are analytically tractable

learning the mean of a Gaussian and asymptotics of smooth learn�
ers	

� Introduction

Learning is the stochastic process of generalizing from a random �nite sample of
data	 Often a learning problem has natural quantitative measure of generalization	
If a loss function is de�ned the natural measure is the generalization error� i	e	� the
expected loss on a random sample independent of the training set	 Generalizability
is a key topic of learning theory and much progress has been reported	 Analytic
results for a broad class of machines can be found in the litterature ��� ��� �� ��
describing the asymptotic generalization ability of supervised algorithms that are
continuously parameterized	 Asymptotic bounds on generalization for general ma�
chines have been advocated by Vapnik ���	 Generalization results valid for �nite
training sets can only be obtained for speci�c learning machines� see e	g	 ��	 A
very rich framework for analysis of generalization for Bayesian averaging and other
schemes is de�ned in ��	

Averaging has become popular as a tool for improving generalizability of learning
machines	 In the context of �time series� forecasting averaging has been investigated
intensely for decades ��	 Neural network ensembles were shown to improve general�
ization by simple voting in �� and later work has generalized these results to other
types of averaging	 Boosting� Bagging� Stacking� and Arcing are recent examples
of averaging procedures based on data resampling that have shown useful see ��
for a recent review with references	 However� Bayesian averaging in particular is
attaining a kind of cult status	 Bayesian averaging is indeed provably optimal in a



number various ways �admissibility� the likelihood principle etc� ��	 While it fol�
lows by construction that Bayes is generalization optimal if given the correct prior
information� i	e	� the teacher parameter distribution� the situation is less clear if
the teacher distribution is unknown	 Hence� the pragmatic Bayesians downplay the
role of the prior	 Instead the averaging aspect is emphasized and �vague� priors are
invoked	 It is important to note that whatever prior is used Bayesian predictions
are stochastic just like predictions of any other inference scheme that generalize
from a �nite sample	

In this contribution I analyse two scenarios where averaging can improve gener�
alizability and I show that the vague Bayes average is in fact optimal among the
averaging schemes investigated	 Averaging is shown to reduce variance at the cost
of introducing bias� and Bayes happens to implement the optimal bias�variance
trade�o�	

� Bayes and generalization

Consider a model that is smoothly parametrized and whose predictions can be
described in terms of a density function�	 Predictions in the model are based on a
given training set
 a �nite sample D � fx�gN��� of the stochastic vector x whose
density � the teacher � is denoted p�xj���	 In other words the true density is assumed
to be de�ned by a �xed� but unknown� teacher parameter vector ��	 The model�
denoted H� involves the parameter vector � and the predictive density is given by

p�xjD�H� �

Z
p�xj��H�p��jD�H�d� ���

p��jD�H� is the parameter distribution produced in training process	 In a maxi�
mum likelihood scenario this distribution is a delta function centered on the most
likely parameters under the model for the given data set	 In ensemble averaging
approaches� like boosting bagging or stacking� the distribution is obtained by train�
ing on resampled traning sets	 In a Bayesian scenario� the parameter distribution
is the posterior distribution�

p��jD�H� �
p�Dj��H�p��jH�R

p�Dj���H�p���jH�d��
���

where p��jH� is the prior distribution �probability density of parameters if D is
empty�	 In the sequel we will only consider one model hence we suppress the model
conditioning label H	

The generalization error is the average negative log density �also known as simply
the �log loss� � in some applied statistics works known as the �deviance��

��Dj��� �
Z
� log p�xjD�p�xj���dx� ���

The expected value of the generalization error for training sets produced by the
given teacher is given by

����� �

Z Z
� log p�xjD�p�xj���dxp�Dj���dD� ���

�This does not limit us to conventional density estimation� pattern recognition and
many functional approximations problems can be formulated as density estimation prob�
lems as well�



Playing the game of �guessing a probability distribution� �� we not only face a
random training set� we also face a teacher drawn from the teacher distribution
p����	 The teacher averaged generalization must then be de�ned as

� �

Z
�����p����d��� ���

This is the typical generalization error for a random training set from the randomly
chosen teacher � produced by the model H	 The generalization error is minimized
by Bayes averaging if the teacher distribution is used as prior	 To see this� form the
Lagrangian functional

L�q�xjD� �

Z Z Z
� log q�xjD�p�xj���dxp�Dj���dDp����d����

Z
q�xjD�dx ���

de�ned on positive functions q�xjD�	 The second term is used to ensure that q�xjD�
is a normalized density in x	 Now compute the variational derivative to obtain

�L
�q�xjD�

� � �

q�xjD�

Z
p�xj���p�Dj���p����d�� � �� ���

Equating this derivative to zero we recover the predictive distribution of Bayesian
averaging�

q�xjD� �

Z
p�xj�� p�Dj��p���R

p�Dj���p����d�� d�� ���

where we used � �
R
p�Dj��p���d� is the appropriate normalization constant	 It is

easily veri�ed that this is indeed the global minimum of the doubly averaged gen�
eralization error	 We also note that if the Bayes average is performed with another
prior than the teacher distribution p����� we can expect a higher generalization er�
ror	 The important question from a Bayesian point of view is then
 Are there cases
where averaging with generic priors �e	g	 vague or uniform priors� can be shown to
be optimal�

� Temperated likelihoods

To come closer to a quantative statement about when and why vague Bayes is the
better procedure we will analyse two problems for which some analytical progress is
possible	 We will consider a one�parameter family of learning procedures including
both a Bayes and the maximum likelihood procedure�

p��j��D�H� �
p��Dj��R
p��Dj���d�� � ���

where � is a positive parameter �plying the role of an inverse temperature�	 The
family of procedures are all averaging procedures� and � controls the width of the
average	 Vague Bayes �here used synonymously with Bayes with a uniform prior�
is recoved for � � �� while the maximumposterior procedure is obtained by cooling
to zero width � ��	

In this context the generalization design question can be frased as follows
 is there
an optimal temperature in the family of the temperated likelihoods�

��� Example� �D normal variates

Let the teacher distribution be given by

p�xj��� � �p
����

exp

�
� �

���
�x� ���

�

�
����



The model density is of the same form with � unknown and assumed �� known in
advance	 For N examples the posterior �with a uniform prior� is�

p��jD� �

r
N

����
exp

�
� N

���
�x� ���

�
� ����

with x � �	N
P
� x�	 The temperated likelihood is obtained by raising to the ��th

power and normalizing�

p��jD� �� �
r

�N

����
exp

�
��N

���
�x� ���

�
� ����

The predictive distribution is found by integrating w	r	t	 ��

p�xjD� �� �
Z

p�xj��p��jD� ��d� � �q
�����

exp

�
� �

���
�

�x� x��

�
� ����

with ��� � ������	�N �	 We note that this distribution is wider for all the averaging

procedures than it is for maximum likelihood �� � ��� i	e	� less variant	 For very
small � the predictive distribution is almost independent of the data set� hence
highly biased	

It is straightforward to compute the generalization error of the predictive distribu�
tion for general �	 First we compute the generalization error for the speci�c training
set D�

��D� �� ��� �

Z
� log p�xjD� ��p�xj���dx � log

q
����

�
� �

�

����

�
�x� ���

� � ��
�
�

����
The average generalization error is then found by averaging w	r	t the sampling
distribution using x � N ���� ��	N �	�

���� �

Z
��D� ��dDp�Dj��� � log

q
����� �

��

����

�
�

N
� �

�
� ����

We �rst note that the generalization error is independent of the teacher �� param�
eter� this happened because � is a �location� parameter	 The ��dependency of this
generalization error is depicted in Figure �	 Solving 
����	
� � � we �nd that the
optimal � solves

��� � ��
�

�

�N
� �

�
� ��

�
�

N
� �

�
� � � � ����

Note that this result holds for any N and is independent of the teacher parameter	
The Bayes averaging at unit temperature is optimal for any given value of ��� hence�
for any teacher distribution	 We may say that the vague Bayes scheme is absolutely
robust to the teacher distribution in this case	 Clearly this is a much stronger
optimality than the general result proven above	

��� Bias�variance tradeo�

It is interesting to decompose the generalization error in Eq	 �� in bias and variance
components	 We follow Heskes �� and de�ne the bias error as the generalization
error of the geometric average distribution�

B��� �
Z
� logp�x�p�xj���dx� ����
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Figure �
 Bias�variance trade�o� as function of the width of the temperated likeli�
hood ensemble �temperature � �	�� for N � �	 The bias is computed as the gen�
eralization error of the predictive distribution obtained from the geometric average
distribution w	r	t	 training set �uctuations as proposed by Heskes	 The predictive
distribution produced by Bayesian averaging corresponds to unit temperature �ver�
tical line� and it achieves the minimal generalization error	 Maximum�likelihood
estimation for reference is recovered as the zero width�temperature limit	

with

p�x� � Z�� exp

�Z
p�xjD�p�Dj���dD

�
� ����

Inserting from Eq	 ����� we �nd

p�x� �
�q
�����

exp

�
� �

����
�x� ���

�

�
� ����

Integrating over the teacher distribution we �nd�

B��� �
�

�
log ����� �

��

����
����

The variance error is given by V ��� � ���� �B����

V ��� �
��

�N��
�

����

We can now quantify the statements above	 By averaging a bias is introduced �the
predictive distribution becomes wider� which decrease the variance contribution
initially so that the generalization error being the sum of the two decreases	 At
still higher temperatures the bias becomes to strong and the generalization start to
increase	 The Bayes average at unit temperature is the optimal trade�o� within the
family of procedures	



��� Asymptotics for smoothly parameterized models

We now go on to show that a similar result also holds for general learning prob�
lems in limit of large data sets	 We consider a system parameterized by a �nite
dimensional parameter vector �	 For a given large training set and for a smooth
likelihood function� the temperated likelihood is approximately Gaussian centered
at the maximumposterior parameters���� hence the normalized temperated poste�
rior reads

P ��j�D�H� �

s�����NA�D� �ML�

��

���� exp
�
��N

�
���A�D� �ML���

�
����

where �� � ���ML� with �ML � �ML�D� denoting the maximumlikelihood solution
for the given training sample	 The second derivative or Hessian matrix is given by

A�D� �� �
�

N

NX
���

A�x�� �� ����

A�x� �� �

�


�
��
� log p�xj�� ����

The predictive distribution is given by

p�xj��D� �

Z
p�xj��p��j��D� ����

we write p�xj�� � exp����xj��� and expand ��xj�� around �ML to second order� we
�nd

p�xj�� � p�xj�ML� exp
��a�xj�ML���� � �

�
���A�xj�ML���

�
� ����

We are then in position to perform the integration over the posterior to �nd the
normalized predictive distribution�

p�xj��D� � p�xj�ML�
s

j�NA�D�j
j�NA�D� � A�x�j exp

�
�

�
a�xj�ML��A�xj�ML�a�xj�ML�

�
�

����
Proceeding as above� we compute the generalization error

���� ��� �

Z Z
� log p�xj��D�p�xj���dxp�Dj���dD ����

For su�ciently smooth likelihoods� �uctuations in the maximum likelihood param�
eters will be asymptotic normal� see e	g	 ��� and furthermore �uctuations in A�D�
can be neglected� this means that we can approximate�

A�x� � A�D� � �
�

N
� ��A�� A� �

Z
A�xj���p�xj���dx ����

where A� is the averaged Fisher information matrix	 With these approximations
�valid as N ��� the generalization error can be found�

���� ��� � ���� �
d

�
log

�
� �

�

�N

�
� d

�

� � �

N

� � �N
� ����

with d � dim��� denoting the dimension of the parameter vector	 Like in the �D
example �Eq	 ����� we �nd the generalization error is asymptotically independent
of the teacher parameters	 It is minimized for � � � and we conclude that Bayes
is well�temperated in the asymptotics and that this holds for any teacher distri�
bution	 In the Bayes literature this is refered to as the prior is overwhelmed by
data ��	 Decomposing the errors in bias and variance contributions we �nd similar
results as for in �D example� Bayes introduces the optimal bias by averaging at unit
temperature	



� Discussion

We have seen two examples of Bayes averaging being optimal� in particular improv�
ing on maximum likelihood estimation	 We found that averaging introduces a bias
and reduces variance so that the generalization error �being the sum of bias and
variance� initially decrease	 Bayesian averaging at unit temperature is the optimal
width of the averaging distribution	 For larger temperatures �widths� the bias is
too strong and the generalization error increases	 Both examples were special in the
sense that they lead to generalization errors that are independent of the random
teacher parameter	 This is not generic� of course� rather the generic case is that a
mis�speci�ed prior can lead to arbitrary large learning catastrophes	
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