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Abstract

We discuss pruning as a means of structure learning in independent component analysis.
Sparse models are attractive in both signal processing and in analysis of abstract data, they
can assist model interpretation, generalizability and reduce computation. We derive the
relevant saliency expressions and compare with magnitude based pruning and Bayesian
sparsification. We show in simulations that pruning is able to identify underlying sparse
structures without prior knowledge on the degree of sparsity. We find that for ICA mag-
nitude based pruning is as efficient as saliency based methods and Bayesian methods, for
both small and large samples. The Bayesian information criterion (BIC) seems to outper-
form both AIC and test sets as tools for determining the optimal degree of sparsity.

Key words: Independent component analysis, ICA, pruning, sparsity, automatic relevance
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Independent component analysis is a topic of significant current interest in many
scientific areas, see, e.g., (Hyvärinen, 2001). ICA is used in a variety of signal pro-
cessing applications such as reconstruction of sound sources from multi-microphone
recordings, image processing, as well as for understanding EEG signals from mul-
tiple independent sources in the human brain. ICA has found numerous uses in data
analysis ranging from text mining to bioinformatics and modelling of music, see,
e.g., the recent conference proceedings (Rosca et al., 2006).

Structure learning is of interest in independent component analysis of abstract data
and in causal inference where it can assist model interpretation, see, e.g., (Tenen-
baum and Griffiths, 2000; Hansen et al., 2001; Shimizu et al., 2005; Hoyer et al.,
2006). Furthermore, structure learning is relevant to classical blind signal separa-
tion applications. In ICA of complex multi-agent visual or auditory scenes sources
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can be present only in a subset of the recorded mixtures. For example in video
where objects can be obscured (Bronstein et al., 2005). In blind separation of audio
mixtures of sources in motion a source can be blocked by a physical barrier so that
it practically disappears from the scope of a microphone.

In the recent work on ICA based causal modeling (Shimizu et al., 2005; Hoyer
et al., 2006) a sparse Markovian structure is sought, causing the separation matrix to
become lower triangular or a row/column permutation of a lower triangular matrix.

In general, structure learning reduces complexity and can reduce overfit in short
data sequences, hence improves generalizability by Occam’s principle. ICA com-
plexity control at the level of estimation of the number of sources has earlier been
shown to improve generalizability, see, e.g., (Hansen et al., 2001). Finally, we note
that structurally optimized sparse models may reduce the computational burden.

A number of schemes have been proposed for learning sparse representations in
ICA, most are based on using sparse priors for the mixing coefficients, see, e.g.,
(Knuth, 1999; Højen-Sørensen et al., 2002; He and Cichocki, 2006; Park et al.,
2006) . However, a more direct approach to sparse models is provided by parameter
pruning. In (Shimizu et al., 2005; Hoyer et al., 2006) a scheme was proposed for
causal structure discovery, which essentially amounts to weight magnitude based
pruning.

Pruning approaches to sparsification are widely used in other machine learning
contexts, often based on estimating the individual parameter saliency, see, e.g.,
(Bishop, 1996) for a comprehensive review. Pruning typically proceeds by elim-
inating the least salient parameters, retraining the reduced model, and repeating the
procedure until a minimal configuration is obtained. Selecting the optimal model
within the derived nested sequence of pruned models can be based on cross-validation,
or on criteria such as BIC, AIC or MacKay’s Evidence (Bishop, 1996). Here we will
investigate these schemes for ICA. In particular we are interested in testing whether
magnitude based pruning is viable.

The paper is organized as follows. First we outline the basic ICA model in section
1. In section 2 pruning based on estimated saliency will be reviewed. We run a sim-
ulation experiment in 3 to illustrate the ranking quality. In section 4 we will test
the basic model selection criteria. Finally, in section 5, we present a more elabo-
rate simulation experiment to demonstrate the efficiency of pruning based structure
learning in auditory scene analysis.
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1 Independent Component Analysis

The basic independent component model involves a linear mixture of L sources
into L observations, X = AS, where S = {s1, ..., sT} is the source matrix, X =
{x1, ...,xT} the observation matrix, st and xt the source and observation L-vectors
at time t. A is a square L× L mixing matrix. Assuming that the source signals are
i.i.d., p(st) =

∏
i p(st

i), we obtain the likelihood function,

p(X|A) =
∏
t

p(xt|A),

=
∏
t

∫
p(xt|st,A)

∏
i

p(st
i)ds

t.

Introducing the separation matrix W = A−1 the likelihood can be written,

p(xt|st,A) = δ(xt −Ast),

p(xt|W) =
∫

δ(xt −W−1st)
∏
i

p(st
i)ds

t,

= |detW|
∏
i

p(
∑

j Wijx
t
j).

We will assume a simple parameter free source distribution for computational con-
venience, p(s) = 1

π cosh(s)
. The negative log likelihood can thus be written in terms

of either the mixing or the separation matrix,

L=−T log |detW|+
∑

t

∑
i

log cosh(
∑

j Wijx
t
j) + TL log π,

= M(W),

L= T log |detA|+
∑

t

∑
i

log cosh(
∑

j[A
−1]ijx

t
j) + TL log π,

= M(A).

We base estimation of the mixing parameters on maximum likelihood leading to
Infomax-like algorithms (Bell and Sejnowski, 1995; Cardoso, 1997). As discussed
in Pedersen et al. (2005) optimization of the mixing or separation matrices do not
necessarily produce equivalent results. In the context of sparsity there is further the
issue of whether we seek sparsity of the mixing A or separation W matrices. Here
we will discuss both options and in appendix A we provide the necessary gradients
and Hessian expressions.
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2 Sparsity by pruning

Pruning has been widely used for simplification of neural network architectures
(Le Cun et al., 1990; Thodberg, 1991; Hassibi and Stork, 1993; Gorodkin et al.,
1993; Pedersen et al., 1996; Thodberg, 1996; Ragg et al., 1997; Gorodkin et al.,
1997; Kaashoek and van Dijk, 2002). Pruning typically proceeds from some over-
parametrized model which is simplified in a sequence of pruning/retraining steps
leading to some minimum null configuration. The sequence of nested architec-
tures can then be inspected for performance to obtain a given objective, e.g., cross-
validation performance. The pruning process can be seen as an efficient heuristic
substituting for a complete search through all possible architecture subsets of the
initial configuration.

The first and simplest approach to importance ranking is by parameter magnitude
(Le Cun et al., 1990) and it has recently been proposed for ICA in Shimizu et al.
(2005). In (Le Cun et al., 1990) however, it was shown that for optimization of
neural network architectures for generalizability significantly better results can be
obtained using the saliency concept. The key idea is to compute the increase in
the cost function - or equivalently the decrease in likelihood - incurred by setting a
given parameter to zero. One way to achieve this is by actually setting the parameter
to zero and recompute the error, this has been referred to as ‘brute force’ pruning
(Thodberg, 1991). To reduce the computational burden, ranking based on estimated
saliency has been proposed.

We note that if model selection is based on either probability using the Bayesian
information criterion or estimated by Akaike’s information criterion, these criteria
take the form of the training set log-likelihood plus a penalty term that is only a
function of the number of parameters, hence is optimal if we remove the parameter
that incurs the least decrease in the training set log-likelihood. Hence, the saliency
should in these cases be based on the likelihood cost.

In the so-called optimal brain damage scheme (OBD) (Le Cun et al., 1990) the
saliency estimator is based precisely on an expansion of the cost function which
can be the negative log-likelihood,

δEi =
∂E

∂θi

δθi +
1

2
Hii(δθi)

2 +O(δθ3
i ).

H is the Hessian matrix of second derivatives. If the set of weights used for expan-
sion are obtained by cost minimization, the first term can be assumed zero. If we
further neglect third order terms the price of setting a single weight to zero can be
estimated by the OBD saliency,
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δEi ∼ Si ≡
1

2
Hiiδθ

2
i =

1

2
Hiiθ

2
i .

Later Hassibi and Stork (1993) noted that within the second order approximation
it is possible to estimate the result of both deleting a parameter and retrain the
remaining parameters. This leads to the so-called optimal brain surgeon (OBS)
saliency,

Si =
1

2

θ2
i

[H−1]ii
.

Sparsification based on parameter priors can be cast in terms so-called pruning pri-
ors (Goutte, 1996; Goutte and Hansen, 1997) which is equivalent to shrinkage re-
gression with an L1 norm regularization, see, e.g., (Tibshirani, 1996). Alternatively,
hierarchical priors with adaptive hyper-parameters can lead to pruning (Hansen and
Rasmussen, 1994). This mechanism was used in (Tipping, 2001) to obtain sparse
Bayesian models. The basic mechanism is also referred to as automatic relevance
determination (ARD), see, e.g., (MacKay, 1995). We here review the basic results,
see also (Bishop, 1996) for additional detail.

We consider the joint pdf of data and parameters obtained by introducing a prior on
the parameters,

p(X, θ|α) = p(X|θ)p(θ|α),

where θ can be either A or W and α is the regularization parameter vector. We
will use the conventional Gaussian prior with the hyper-parameters playing the role
of precisions p(θ|α) ∝ exp(−1

2

∑
i αiθi).

In the so-called maximum likelihood II approach the hyper-parameter vector α is
estimated using the so-called evidence, which is the marginal likelihood obtained
by integrating out the parameters. In ICA models it is not possible to perform
the marginalization in closed form, but we can invoke the Laplace approximation
which is based on a Taylor expansion of the negative log-likelihood in the vicinity
of the maximum posterior value of θ,

p(θ|α,X)∼= eM(θMP ,α)

∣∣∣∣∣ H2π
∣∣∣∣∣
− 1

2

e−M(θMP ,α)− 1
2
∆θT H∆θ,

where H is the Hessian computed at the (α-dependent) current values of θMP .
The negative log-likelihood of the hyper-parameters is estimated by integrating the
parameters out using the approximate posterior,

− log p(X|α)∼= M(θMP , α)− 1

2
log |H|+ 1

2
L2 log 2π.
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This expression is minimized with respect to the hyper-parameters in an EM-like
iterative scheme in which first, the maximum posterior weights are estimated for
fixed hyper-parameters, and next, we re-estimate the hyper-parameters for fixed
weights using gradient descent based on,

∂(− log p(X|α))

∂αij

=
∂M(θMP , α)

∂αij

+
1

2

∂ log |H|
∂αij

,

=
1

2
(θMP )2

ij −
1

2αij

+
1

2
[H−1](ij)(ij) = 0 ⇔ (1)

αnew
ij =

1− αold
ij [H−1](ij)(ij)

θ2
MP,ij

.

The derivative of log |H| is,

log |H|
∂αij

= Tr(H−1 ∂H

∂αij

),

H=∇θ∇θM(θ) + diag(α).

Equation (1) could be ‘solved’ and the optimal hyper-parameters found in one step,
however practise has shown that this is too greedy. Therefore hyper-parameters and
parameters are updated iteratively (Bishop, 1996).

For a Gaussian weight prior the individual hyper-parameters can either converge
to some finite value, hence producing finite weights or they can escape to infinity,
implying a delta-like posterior distribution for the corresponding parameters, i.e.,
effectively pruning the associated parameter away (Hansen and Rasmussen, 1994;
MacKay, 1995).

3 Quality of ranking

In this section experiments will evaluate the quality of the pruning algorithms in
a simulated example. We will initially assume that the true number of non-zero
parameters is known. We will consider pruning based on magnitude (MB), ARD,
OBD and OBS for a synthetic data set.

A random mixing or separation matrix is generated with a number of zeros and is
used to generate the observations. The non-zero entries are generated using W =
r + 1

2
sign(r), where r ∼ N (0, 1). In the experiment the matrix is chosen quadratic

with L = 5 sources. To gauge the dependence on sample size we vary the number
of observations T ∈ [0; 1000].
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In ARD based pruning the procedure is carried out once (iterating weights and
hyper-parameter to convergence) and the resulting hyper-parameters are used to
define the ranking order for deletion towards the desired number of non-zero ele-
ments. For MB, OBD and OBS we prune one weight at a time until the desired num-
ber is achieved, including intermediate re-training steps of each partially pruned
model. The experiment is repeated 1000 times with different random sources and
mixing/separation matrices. In this study we have created ‘true’ models that are
lower triangular. Since a lower triangular matrix has a lower triangular inverse this
corresponds to the Markovian structures investigated in (Hoyer et al., 2006). We
report in figure 1 the miss-classification rate as a function of the number of sam-
ples in the training data. Both for estimating mixing and separation matrices we
find that performance is strongly dependent on the amount of data provided. The
maybe most surprising result is that in both cases the magnitude based method out-
performs the more involved estimators with OBD being significantly poorer in the
range of larger sample size where the performance of the three other methods are
more or less at par.

To understand the properties of the Hessian we can pass to the large sample limit, by
replacing sums over t with expectations over the assumed distribution of the source
signals, the Hessian (parameterized using the separation matrix) then becomes,

Ĥi′j′,i′′j′′ = T (Aj′i′′Aj′′i′ + δi′,i′′
∑

i Aj′iAj′′iEt[(s
t
i)

2
(
1− tanh2 st

i′

)
]).

The expectation value is given by Et[(s
t
i)

2(1 − tanh2 st
i′)] = π2

8
− δii′ . Hence, we

obtain,

Ĥi′j′,i′′j′′ = T ((1− δi′,i′′)Aj′i′′Aj′′i′ + δi′,i′′
π2

8

∑
i Aj′iAj′′i). (2)

Now, for OBD only the diagonal elements of the Hessian are of interest and the
saliency becomes,

Si′j′ =
1

2
Ĥi′j′,i′j′W 2

i′j′ =
π2

16
TW 2

i′j′
∑

i A
2
j′i.

The Hessian elements in equation (2) are seen to depend only weakly on the actual
location of the weight, i.e., the second term takes a constant value for all elements
in a row of the mixing matrix. This may explain in part why the saliency is not sig-
nificantly better than mere MB pruning. Overall, the fact the estimated saliencies
are less efficient may indicate that the second order expansion is not always valid.
It is well-known that the ICA likelihood has singularities due to co-linearity in the
mixing matrix, see, e.g., (Pedersen et al., 2005). Clearly, the radius of convergence
for Taylor expansions do not extend beyond such singularities. To further probe
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Fig. 1. Mis-classification rate in 1000 pruning sequences. The rate is reported versus sample
size. The ICA problem is square with D=5, the true mixing matrix is lower triangular, hence
having 10 zeros. In (A) we show performance for pruning based on the separation matrix
while in (B) the result is based on the mixing matrix. Performance is strongly dependent
on sample size. While performances of magnitude based, ARD and OBS are comparable,
OBD seems to fall short even after learning in relatively large data sets.

the validity of the estimated saliency, we have setup an experiment similar to an
evaluation carried out in Gorodkin et al. (1993). At four positions along a pruning

8



−10 0 10 20
−10

−5

0

5

10

Estimated

T
ru

e

First

−10 0 10 20
−5

0

5

10

Estimated

T
ru

e

Fourth

−10 0 10 20
−5

0

5

10

Estimated

T
ru

e

Seventh

−10 0 10 20
−5

0

5

10

Estimated

T
ru

e

Tenth

(A)

−20 −10 0 10
−20

−10

0

10

Estimated

T
ru

e

First

−10 0 10
−10

−5

0

5

Estimated

T
ru

e

Fourth

−5 0 5 10
−5

0

5

Estimated

T
ru

e

Seventh

−5 0 5 10
−5

0

5

10

Estimated

T
ru

e

Tenth

(B)

Fig. 2. Estimated vs. true saliency. A brute force measurement of the cost in likelihood
of deleting parameters at four positions along a pruning sequence (when pruning the first
parameter, the fourth, the seventh and the tenth). Log-log axes are used to accomodate the
significant dynamic range. (A) is OBD and (B) is OBS.

sequence (when pruning the first parameter, the fourth, the seventh and the tenth)
we measure the ‘real saliency’ by brute force elimination of all parameters in turn,
for the OBS saliency we also retrain after every tentative deletion. These measures
are compared to the estimated saliency as seen in figure 2. There is a comforting
agreement, with a tendency towards over estimation of saliency for OBS and under-
estimation for OBD. The largest deviations are found for OBS indicating that the
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second order expansion is not quite reliable for estimating the retraining configu-
ration, while the cost of deletion is fine for most weights. This however does not
translate into OBD being better for pruning, because the importance is not directly
related to the absolute value of the weight, hence, not an indication of whether a
weight is zero in the ‘true’ configuration.

4 Model selection

As we have seen the pruning procedure is able to produce acceptable results if
informed about the number of non-zero elements, hence, the optimal structure is
in the nested sequence, and we just need to find it. We propose to follow the
procedures developed for artificial neural networks and base model selection on
either expected generalizability or posterior probability. The posterior probability
is aimed at finding the correct architecture, i.e., the placement of zero and non-
zero elements. However, for finite training samples the correct architecture need
not be the one that has the highest expected log-likelihood, since the non-zero pa-
rameters may have a wrong value. As the training sample size increases the two
measures will converge to make identical decisions. The posterior probability can
be estimated either using the Bayes information criterion (BIC) or the higher order
approximation denoted the ‘Laplace approximation’ (LAP) (Bishop, 1996). The
expected log-likelihood can be estimated using either a test set (cross-validation)
or by Akaike’s information criterion (AIC). In figure 3 (A) these different measures
are compared for a single run. As seen the ‘training error’ (negative log-likelihood
on the training sample) can not be used for model selection as it is steadily increas-
ing during pruning. The other criteria all finds the true number of zero parameters
in this example.

In figure 3 (B) we show the miss classification rate of the correct number of zeros
over 1000 trials. As before we test the ability to find the correct structure as function
of the training set size. In this experiment we used MB pruning. We find that BIC
is superior for larger data sets. The BIC and the Laplace approximation are both
aimed at locating the correct model, hence, more consistent with our evaluation in
terms of miss-rate than the generalizability measures. The Laplace approximation
seems to be too sensitive due to the problems with the second order expansion we
have mentioned earlier induced by the singularities in the ICA likelihood, hence,
fails more often than the simpler BIC. The failure of the test error can be due to
two factors. First, it focuses more on getting the density function correct, hence
getting the correct parameters, and secondly, it is a quite general finding that the
cross-validated test error is a noisy quantity.

We finally evaluate the efficiency of the different pruning schemes in combination
with BIC for model selection. The picture in figure 4 confirms our earlier findings:
MB, OBS and ARD all perform well for larger data sets. We conclude that the
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Fig. 3. Evaluation of standard statistical stop criteria. The ‘true’ structure is lower triangular
as before and has 10 zero parameters out of 25 parameters for the five source model. In
figure (A) a single experiment is plotted, each candidate stop criterion locates the correct
model. In (B) the miss classification rate of the correct number of zeros over 1000 trials is
reported.

magnitude based pruning in combination with the BIC criteria can provide the cor-
rect number of zero elements (A) and that they are also in correct position (B) for
sufficiently large sample sizes.
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Fig. 4. In (A) the miss classification rate of finding the correct number of zero parameters
is reported using BIC with the different pruning ranking schemes. In (B) we report the miss
classification rate for the complete process of finding the correct zero parameters using BIC
as pruning stop criterion.

5 Auditory scene analysis

In order to demonstrate the viability of pruning based sparsification in audio data
we consider a blind signal separation scenario involving again five sources and five
observations. The set of sources consists of three speech sources, a ‘confounding’
music piece and a street noise source. The scene consists of two rooms connected
by a hallway. The music and the noise sources are considered stationary in position
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corresponding to a stereo and open windows. The speech sources are placed in
different locations aimed to mimic movement. The five observations comes from
five different microphones placed so that two are located in each room and one
in the hallway. The microphones will record from sources in the room where it
is placed and from adjacent rooms. This means that the microphones in a given
room will record from that room and the hallway but not from the other room. The
hallway microphone records everything. Three different placement schemes have
been simulated and are illustrated in figure 5.
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Fig. 5. Auditory scene analysis example. The diagram shows placement of observations
and sources in three different situations (A), (B) and (C). Numbers specify the order in the
mixing matrix.

Using the setup from above a mixing matrix is generated using the distances be-
tween sources and observations. The setup in figure 5 (A) gives a mixing matrix,
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A(A) =



0.89 0 0.41 0 0.21

0.37 0 0.74 0 0.30

0 0.32 0 1.31 0.45

0 0.74 0 0.37 0.30

0.21 0.20 0.54 0.46 1.37


As can be seen this is a sparse matrix, and by identifying the zeros it is possible to
allocate sources to the different rooms. The sound is divided into segments of fixed
length which will assure stationarity of the positions during a given configuration
(A,B,C). The ICA algorithm is run and pruning is performed using MB and BIC.
Different signal lengths (sample sizes) are considered to compare performance and
the resulting miss classification rates are reported in figure 6.
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Fig. 6. Auditory scene analysis by sparsified ICA. We report the miss classification rates
for the mixing matrix zeros in three different scenarios as a function of the training set size,
i.e., at variable window lengths. (A), (B) and (C) refers to the different placement schemes
in figure 5.

The performance is as before strongly dependent on sample size. For these real
signals this is actually more severe due to non-stationarity. For example, the silent
parts of speech signals severely limits performance, clearly dramatically so if they
span an entire segment. Furthermore, real signals can be colored and they are not
necessarily distributed according to the model assumptions. It can also be seen that
the performance is somewhat dependent on the actual placement of the sources. In
the first scheme (A) the sources are most evenly placed and this is also the scheme
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that gives rise to the best performance. The miss-classification rate increases in the
second and is highest in the third scenario (C) which has most sources located in
one room.

Despite the higher miss rates, a reasonable performance is achieved for larger sam-
ples. If the speakers are not moving too fast it is reasonable to assume stationarity
say, within 2-3 seconds then the zero miss classification rate is less than 5 percent
in scenarios (A,B).

6 Discussion and conclusion

We have shown that ICA models can be efficiently sparsified by pruning. This is
highly relevant for causal models, as well as it can assist interpretation for data
analytic applications of ICA.

We have derived expressions for the Hessians of the likelihood function based on
both estimation of mixing and separation matrices. We have shown that the sparsity
of a generative model can be recovered with high precision at larger sample sizes.
We found that simple magnitude based pruning works well, especially for relatively
small samples. This is in contrast to published results for neural networks. This dis-
crepancy may be due to the well-known singularities in the ICA likelihood function
induced by co-linearities in the mixing matrix.

To determine the optimal degree of sparsity we recommend using the Bayesian in-
formation criterion. This approximation works better than both test sets and the
nominally higher order Laplace approximation. Test sets are notoriously noisy,
while the problems for the Laplace approximation may again be attributed to the
limited validity of Taylor expansions.
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A Gradients and Hessians for ICA

For both saliency based pruning and for the ARD approach we need the Hessian of
the negative log-likelihood. We here provide the necessary expressions for param-
eterization by mixing and separation matrices

M(W, α) =−T log |detW|+
∑
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∑
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log cosh(st
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