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Bayesian learning

T. Bayes “An Essay Towards Solving a Problem in the Doctrine
of Chances, Phil. Trans. Roy. Soc., 53, 370-418, 1783

B The world is uncertain......
assign probabilities to hypothesis from specific data set

choose between actions to minimize loss/risk

B Basic axiom systems for decision theory and inference leads to that
rational analysis must corresponds to a Bayesian paradigm [Berger]

B You are probably already doing Bayes — even if you don't know it
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Intention

B Crash course in Bayesian learning for those unfamiliar with this
paradigm

B Experienced people hopefully gets new inspiration
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B Generalization estimation

B Bayesian model selection

B Discussion of Bayesian framework
B Example of Bayesian learning: RVM
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General Resources

B D. MacKay: Information Theory, Inference and Learning
Algorithms, http://www.inference.phy.cam.ac.uk/mackay/itprnn

m J.O. Berger: Statistical Decision Theory and Bayesian Analysis,
Springer-Verlag, 2nd edition, 1985.

B C.P. Robert: The Bayesian Choice: A Decision-Theoretic
Motivation, Springer-Verlag, 1994.

mJ.J.K. O Ruanaidh and W.J. Fitzgerald: Numerical Bayesian
Methods Applied to Signal Processing, Spinger-Verlag, 1996.
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Why Bayesian learning?

B principal framework which combines available uncertain knowledge
- data, prior etc.

B Bayesian learning is optimal - if you are

B Bayesian learning is typically more robust to mis-specifications and
small data sets

B classical learning schemes are special cases
B known to give better performance for most models

B offers model selection as an integrated part
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Why Bayesian learning?

B predictions/forecast comes with errorbars (credible sets, highest
posterior density credibility set)

W new approaches such as Variational Bayes, Expectation
Propagation makes the Bayesian learning computational attractive

Jan Larsen
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Applications of Bayesian learning

B clustering using mixture of Gaussians (Attias, Rasmussen)

B mixture of factor analyzers clustering and dimensionality reduction
(Ghahramani+-Beal)

B principal components analysis (Bishop)

B independent component analysis
(Hgjen-Sgrensen+Whinter+Hansen, Lee, Attais, Valpola,
Miskin+MacKay)

B state-space models, e.g., extended Kalman filters
(Ghahramani+Beal, de Freitas, Niranjan, Wan, Doucet, Gordon)

B time series modeling (Roberts+Penny,
Quifionero+Girard+Larsen+Rasmussen)
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Applications of Bayesian learning (cont.)

B mixture of experts (Ueda)
B hidden Markov models (MacKay)

B Bayesian networks, graphical models (Heckerman, Jordan,
Ghahramani, Bishop, Spiegelhalter)
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Software Tools

B VIBES (Bishop, Spiegelhalter, Winn) http://vibes.sourceforge.net/
Bm Matthew Beal http://www.cse.buffalo.edu/faculty/mbeal/software.html
B |CA toolbox (DTU) http://isp.imm.dtu.dk /toolbox

B Bayes Blocks (HUT) http://www.cis.hut.fi/projects/bayes /software
B Bayes Net toolbox (Kevin Murphy) http://bnt.sourceforge.net

B ReBEL : Recursive Bayesian Estimation Library (E. Wan)
http://choosh.ece.ogi.edu/rebel

B NetlLab (Bishop) http://www.ncrg.aston.ac.uk/netlab/index.php
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Basic ideas of Bayesian framework

W all variables have associated probability densities

B variables not required in the final estimate are integrated out
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The basic ingredients

W variables which we want to infer

B problems (unsupervised /supervised)

W data

B model

B prior

B predictive distribution through Bayes theorem
M loss and Bayes risk

B Bayes estimate

N
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The basic ingredients - variables

Predict y from measurement x

B x multivariate input

B y multivariate output

B z multivariate hidden/latent variables
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The basic ingredients

Problems
B unsupervised modeling if only @
B predictive modeling if  and y

— 4 continuous is regression, e.g., time-series modeling
— v discrete is classification

M state-space models, mixture models use continuous or discrete
hidden variables
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The basic ingredients - data

N
D=A{xp, yr}i_

Usually i.i.d. samples
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The basic ingredients - models

Models
p(ylx,0,m) = /p(y,z\w,@,m) dz

B O are model parameters usually not amenable for interpretation

B m index a particular model structure

B we consider usually flexible universal approximation model families
neural networks, Gaussian processes, mixture models

ENE
1
p(y|z,0) = W@XDHy — fla,w))*/207)
0 = (o2, w)
N
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The basic ingredients - priors

p(0)

expresses the degree of belief

B probability is limit of frequency #outcomes/#total

B properties beliefs lead to same rules as for probabilities, hence
using probability to measure belief

. more on choice of prior later

19
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The basic ingredients - Bayes theorem

Combining information using Bayes theorem

PAB) = T 5 PB) = 3 PUBLAP(A)
A

p(D|0)p(0)

p(D)
likelihood X prior

prob of data

p(0|D)

posterior =

Y

p(D|0) = | | p(yplzk, 6, m)
k=1

N
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The basic ingredients - predictive
distribution

plylz, D, m) = / plylz,8,m) - p(6|D) d8

is the result of Bayesian learning and provides a full conditional
distribution for new inputs @

Relation to classical learning

B MAP: p(0|D) =06(0 — 0y14p), Opsap = argmaxg p(6|D)
p(yl|z, D, m) = p(y|x, Oy ap, m)

B ML: no prior 8,7 = argmaxg p(D|0)
plyle, D, m) = p(y|z,0 1, m)

N /
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Jan Larsen 21 -—



Informatics and Mathematical Modelling / Intelligent Signal Processing

p
The basic ingredients - transductive
learning

plylz, D, m) — / plylz,0,m) - p(6|D, z) d6

Model is updated for every test input @

p(D, z|0)p(6)
p(D, )

p(H‘D, CL‘) —

Requires a model for input distribution as well!
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Predictive distribution example

Model
plylx, 0) = N(mTH, 02)

MAP (or ML)
plylz, D) = N(z ' 6yap,0°)

Gaussian prior on 6

plylx, D) = ./\/(:13T§7 o2+ a:TZga:)

N
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The basic ingredients - loss function

L(y,y) = L(y(z), y(x|D))
defines how close our estimate ¥y is from the truth y.
Can formally be defined through axiomatic utility theory Berger

Examples
square loss for continuous variable

Ly, 9) = (y — 9)’

zero-one loss for classification y,y € [1;C]
(

I
<)

L(y,y) = 4

0, y
L,y

N
<)

\ 7
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The basic ingredients - risk

Frequentist risk
Ry.§) = [ L(y.5(D)-p(D) D

average over all possible data sets

Bayes risk
mmmz/iwﬂm»m@mDMy

average w.r.t. predictive distribution and conditioned on data

N
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The basic ingredients - risk

Integrated frequency risk

r(G) = / L(y.§(D)) - ply|z, D)p(D) dydD
~ [ (@) p(p) D

~ [ Lw.3(D) - plylw. 0)p(DI6)p(6) By
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Bayes estimator

G5 = arg min () = arg min p(F[D)
Yy Yy
Risk of Bayes estimator
r(Yp)
N
28
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Bayes estimator in continuous case
Square loss

yp = arg mgin p(y|D) = arg mgin/(y —3)” - plylz, D) dy

Yp = /y -p(ylx,D)dy = Epeqly]

Absolute loss

9 = arzmin / y — 3| - plyle, D) dy

Yy 3 is the median of predictive distribution

N
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Bayes estimator for classificstion

Loss matrix
Penalty of estimating class i € [1; C] if the truth is class y € [1; C]

)
0 if ¥y =y (correct decision)

L{y.y) = Uy.9) if §#y € [1;C]
t if y=C+1 (rejection)

N

Zero-one loss with rejection

)
0 if y =y (correct decision)

Ly, y) = 1if g#ye[;C]
! if y=C + 1 (rejection)

N
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Bayes decision rule - general loss

p(yID) = ZL y,9) - ply|, D)

For y = C +1then } L(y,y) - plyle, D) =t >, ply|lz, D) =1

ko if mingee Y, L(y. ) - plyle, D) <t

yB =
C + 1 otherwise

N
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Bayes decision rule - zero-one loss

> L(y.7) - plylz, D) = «

Y \

arg max, < p(y|e, D), and prob > 1 —1

yB =
C+1ifall p(yle,D) <1—1t

p(y|le, D) > 1/C which means 1 — ¢ > 1/C' for rejection to occur

Jan Larsen 32

W



Informatics and Mathematical Modelling / Intelligent Signal Processing

g
Bayes classifier

-

decision boundaries

p(x|CP(C) N\~

S p(x[CYp(Cy)

decision boundaries are specified by p(y = i|x, D) = p(y = j|x, D)

Jan Larsen
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Optimality through admissibility

Admissibility
Yo is inadmissible if
Yy, R(y,yo) > R(y,y1), Fyo, R(yo,Yo) > R(yy, Y1)

Generalized Bayes estimator is admissible under regularity conditions

mp(ylx) = p(yle, D)p(D)/p(Dly, x) > 0 for all data

B R(y,y) is continuous in y

N

B Bayes risk is finite (might fail for generalized - improper prior case)
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Optimality through generalization error

Randomized estimators
use predictive distribution p = p(y|x, D) as random estimator rather

than point estimate y

Kullback-Leibler information as average loss between distributions

(y|x)
)1 d
/ y\w 0g y‘m D) J
— E{L

B the loss is defined as
L(p,p) = logp(y|x) — log p(y|z, D)
mKL>0withOifandonlyifp=p

N
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On the property of KL
Inequality
—logA>1—Afor A>0 and —logA=1—AforA=1

Proof ~Define A(y) = p(y)/p(y). That is —log A(y) = log p(y)/p(y)
p(y)[—log Ay)] dy

N
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Optimality through generalization error

KL = G — H(p)

generalization error  entropy

Average generalization error
= EpEa{G} =~ [ logplyle, Dip(D)p(a) dydadD
is integrated frequency risk (also averaged w.r.t p(x)) up to a

constant

L.K. Hansen: “Bayesian Averaging is Well-Temperated,” NIPS99, 265-271, 2000
shows optimality in generalization error

~
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More on priors

B subjective priors: consider relative likelihood of various
parameters values

B empirical priors: obtained from past experience data
B structural priors:

— independence of some parameters?
— imposing functional smoothness
— invoking constraints

B convenience priors:

— nice functional form in order to make calculations simple

— conjugate priors: posterior and prior have same shape

-
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More on priors

m hierarchical: p(0) = [ p(6|\)p(\) d

B non-informative: make the influence of the prior as small as

possible

B improper: improper priors do not integrate to one. Leads to
generalized Bayes estimator which typically also is admissible

Ja

n Larsen
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Non-informative priors

B discrete parameter taking C' values: p(0) =1/C
B continuous parameter p(#) = 1 which is improper [ p(0)df = o

Location parameter

invariance to choice of parameterization

/ p(n) dn = / p(0) do
/p(n—C) dn = /p(n) dn

for all . With n = ¢ then p(c) = p(0) thus p(#) =1

n==06+c Vc

-
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Non-informative priors

Scale parameter n = cf, Vc > 0

/ p(n)dn = / p(0) do
[ o e an = [ tmyan

thus with 7 = ¢ and p(c) = ¢ p(1). Setting p(1) = 1 then
p(0) =0

Jeffrey's non-informative
p(0) = /At I(6)
1(0) = —E[0%log p(x|0) /0000 ']

N
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Optimizing hyperparaters using evidence

p(0) = p(6|A)

A are hyperparameters
Evidence - marginal likelihood

p(D) = p(DIA) = / p(D|6, \)p(6]\) d6

Avp-11 = argmaxp(DIA)

~
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Generalization is the ultimate frequentist

objective

Generalization error
G(D) = [ Liy.§(D) - pla.y) ddy

B {x;y} is a sample independent of all samples in the training set

B L(-) is any loss function

N
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Generalization error decomposition

Average generalization error / averaged integrated risk

['=Ep{G(D);
Decomposition
['= + Bias +
O (minimal Bayes risk) can not be modeled

B Bias is due to an incomplete model

[] Is due to a finite training set

N
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A general B/V decomposition Heskes, 1998

Properties
W bias only depends on true and average distributions

W variance is non-negative not a function of true distribution, and
zero only if and only if distributions are equal

B mean-square error is a special case
Decomposition
I'= Ep{G(D); = H(p) + KL(plp)
+ KL(p[p) +
= + Bias +

with average model
p=2"exp(Ep {log p})

~
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Model complexity

N

low

Bias/variance dilemma

high

cannot fit

fits to noise

Jan Larsen
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Bias/variance dilemma

Generalization Error

Iraining Error

Optimal

-

Complexity

Jan Larsen 49
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Overfitting

-

nis Gussian (0,1) noise

50
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Overfitting

Fit: y;=1.13-0.98*x Fit: y,=1.31-1.46*x+0.23*x?

MSE;4,=0.91 MSE,,;,=0.91

«MSE =1.03
*

*MSE ,=1.02
*

Jan Larsen 51
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Overfitting

Fit: y3=1.87-4.94*x+4.71*x>-1.5*x3

MSE,,,=0.88

*MSE o =1.11
*

Fit: y;=—4.08+58.69*x—188.1*x?+233.7*x3-123*x*+23.03*x°

MSE, ,,=0.66

«MSE =3.13

Jan Larsen
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Overfitting in an RBF network

-
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Generalization estimation

Approaches
B Asymptotic theory leading to algebraic estimates of the

B Resampling approaches (cross-validation, jackknife, and bootstrap)
of the generalization error or

Purposes
B Assessing the final quality and reliability of the model

B Model selection

N

Jan Larsen 55

W



Informatics and Mathematical Modelling / Intelligent Signal Processing

p
Limited data is always a challenge

Design Test

£ Y
j D
— 7T )%

Training  Validation

Design/Test Split

B Test set is exclusively used for final assessment of model designed
from &

B Objective is high generalization ability and reliable assessment

J. Larsen and C. Goutte: “On Optimal Data Split for Generalization Estimation
and Model Selection,” in Proceedings of the IEEE NNSP Workshop [X,

pp. 225-234, 1999

N
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p
Limited data is always a challenge

Design Test

£ — al—
j D
— 7T )%

Training  Validation

Training/Validation Split
B Model is trained on training set. Validation set is used to select
optimal model or tune additional hyperparameters

B Objective is high generalization ability.

N
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Hold-Out Cross-Validation

Data Splitting
By =14/Ni=1,2--- N — 1is the split ratio
BN =N for testing and Ng = (1 — v)N for design

HO Estimate

Gro = Ng 1) —logp(y(k)|z(k),€,m)
keF

Property HO is an unbiased estimate of the generalization error for

I.i.d. samples

N
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Quality of the HO Estimator

MSEpo(v) = Ep { (@Ho - G*)Q}

- £p{ (Guo - 60)) | + En {i6(D) - 67}

\ V

N

variance bias

where G is the minimum achievable gen. error for the current
model, i.e., infinitely data
Property

mBias | as v |
m Variance T as v |

\ /
oy
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K-fold Cross-Validation

Procedure

m Split data into K disjoint subsets F; (approx. equal sizes)
BK =|1/v], fory<1/2,
v=A{1/N,1/(N —=1),---,1/2,--- 1 —=1/N}
B Evaluate on each subset the model designed on the remaining
data, £, =D \ F;

Estimate

Tkov = — S‘Y —logp(y(k)|z(k), Ej, m)

j L keF;

Property Unbiased estimator the average generalization error, I,
based on N¢ data.

-
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Quality of KCV Estimator

MSEkcv(v) = Ep { (chv — G*)Q}

= Ep { (chv - F)2} +Ep {(F = G*)2}J

\ .

N~

variance

N

N

bias

61
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Results

B Analytical expression for opt. design/test splits for location
parameter model. Tends to hold asymp. for other models:

—HO: vopt — 1,as N — o0
— KCV: vyopt = 1/N, (LOO)
B Model selection using KCV:

— Yopt — 1, as N — o0
— LOO seems to optimal when NV is small both wrt. generalization
error and probability of selecting correct model

B Model selection using HO:
— Conflict between opt. gen. error and probability of selecting

correct model

-
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Algebraic Generalization Error Approach

Properties
B Asymptotic estimates valid for large training sets

B Various assumptions on model bias and example dependencies

B No data need to be set aside for validation

N

~
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Exact (Hansen 93) Unbiased lin. zero-mean Gaus data ML
FPE (Akaike 69) Unbiased, no prior MSE
FPER (Larsen 94) Unbiased with prior Pen. MSE
AIC (Akaike 73) Unbiased no prior ML
AlCc (Hurvich&Tsai 1989) Unbiased no prior ML
GEN (Larsen 92, 2000) No restrictions, auto corr data Pen. MSE/MAP
GPE (Moody 91) nonlin with prior MSE
NIC (Murata 94) nonlin(NN),nested, i.i.d. data MAP
TIC (Takeuchi 76) nonlin i.i.d. data MAP
GIC (Konishi&Kitagawa 96) general i.i.d. MAP,Bayes
DIC (Spiegelhalter et al. 2002) general i.i.d. Bayes
-
64
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GEN

Major Assumptions

B Asymptotic validity, o(1/N)
B Applies to bias and regularized models

B Estimates average generalization error

MAP approach

N
Cp(8) = N~y Uy (k)|z(k),8) + R(6) = Sp(6) + R(6)
k=1

-
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GEN Estimator
Capn = Ep{Sp(@)} + —Lf
A OR, . .. .OR, .
S R U R AT

B Optimal parameters: 8* = arg ming G(0) where the expected
cost: C'(0) = Ep{Cp(0)} = G(8) + R(0)

B For practical use an unbiased o(1//N) estimator is obtained by,
neglecting the expectation, replacing 8* by 0, and J by Jp

-
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GEN Estimator

B Effective number of parameters

M
mepp = tr | JH(OF) | K(0)+ ) al J; "Kn) + KT (n)

n=1

= tr [J_l(ﬁ*)L}
where M = min(M, N — 1), M is the time dependence length
(for i.i.d. examples M = 0),
A=M+1—-M(M+1)/2N
mK(n) = FE{00Kk)/00 - 0l(k+n)/00 '} with
(k) = l(y(k)|x(k),07))
B J(0) is the Hessian matrix of the expected cost function C(0)

-
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Bayesian model selection

Bayes optimal decision rule (under 0/1 loss function) leads to the

optimal model
Mopt = arg mT%Xp(m|D)

p(D|m)P(m)

M
> p(D|m)P(m)
m=1

p(m|D) =

is the probability of the model given data

N
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Probabilistic Model Selection

Uniform Model Belief
In the case of equal model priors, i.e., P(m) = 1/M, the model

selection concerns computing the evidence p(D|m)

Evidence

p(Dlm) = / p(D, 8m) df = / p(D|6, m)p(6]m) d6

where

B 0 are model parameters

Bp(D|B,m) is the likelihood

B p(0|m) is the prior which is normally assumed vague and

normalizable

N
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Approximations

B Laplace approximation

B BIC approximation (large sample Laplace)

B variational Bayes (“EM like")

B expectation propagation

B ensemble learning

B (annealed) importance sampling, particle filtering
B Gibbs sampling

B Markov chain Monte Carlo methods (Metropolis-Hastings, Parallel
tempering (gets marginal likelihood), particle path filter)

-

Jan Larsen 71

WEN



Informatics and Mathematical Modelling / Intelligent Signal Processing

p
Models with hidden variables

plyle, D) = /p(y,Z\w,H,m) -p(0|D) dzd

In particular ensemble learning and Variational Bayes are useful

B approximate by integrating w.r.t. proposal distributions ¢(z, 0)

B ensemble learning uses simple functional forms often fully
factorized ¢(z,0) = [ [; q(z) | [, 4(0;)

m Variational Bayes uses functional forms as priors partly factorized
q(z,0) =q(z)]],q9;)

B works for on-line models Ghahramani, Valpola

-
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Variational Bayes learning

Key ingredients
B Use factorized approximate posterior distribution
q(0,2) = q(0) - q(z)

B Use Jensen's inequality to bound marginal likelihood (evidence)

Resources

B www.variational-bayes.org

B /. Ghahramani, C. Bishop, G. Hinton, M.l. Jordan, D. MacKay, C.

Rasmussen, R. Neal, M. Beal

N
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Variational Bayes learning
logp(D|lm) = log/p (D, 6 z\m ) dzdO
D 0
— Jog / a(9 ZIm) a6
= Fm(q(6 ) )+ KLpost(qu)
Variational free energy F bounds the evidence
log p(Dlm) = Fnl (2), D)
p(D, 0
= / log Zm) dzd@
q(0)q(z)
N
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Variational Bayes learning

Kullback-Liebler between true and approximate posterior
p(0, z|D, m)

KL tqp:/qé?qzlog dzd0O

p08< ’ ) ( ) ( ) Q(9>Q(Z)

N
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Variational Bayes learning

Maximize F,(q(0),q(z), D) w.r.t. ¢(0) and ¢(z) i.e., minimize
KLpost(QHP)

"E-step” - estimate posterior over hidden variables

X exp [/ logp(D,z\H,m)q(j)(H)] dé

"M-step” - estimate posterior over parameters

700) o p0) e | [10sp(D.210.m) - | a

Reduces to classical EM when ¢(8) = 6(6 — 8)

N
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Exponential distribution family

Complete likelihood
ply, 210,2) = [y, @, 2)9(0) exp | $(0) "uly, z,2)|

Conjugate prior

p(Ol,v) = h(,v)9(6)" exp | $(6) v ]

B many standard distribution belongs to exponential family

B also complete likelihood for many mixture models, classes of
Markov models, etc.

N
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=
Optimum under exponential distribution

family

.i.d. Data D = {zp, yp}_,
Exact posterior as in regular EM but using averaged natural
parameters

q(z) o f(Yp, T, 21) exp [¢(9)Tu(yk, 2 mk)} =p(2k|Yg, Tk, H(0)
»(0) = <¢(9)>q<3) are natural parameters

q(0) also exponential family conjugate

~

1(8) = h(i, 2)g(8)exp | $(6) |

n=n+N,v = V“"Z?]z\[:lﬂ(ykvwk)'
u(yp, T) = (w(yp, mk»q(z)
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Expectation propagation

B Minka: focus on approximating maginals for each sample:
t;(0) = p(@)p(yg|zk, 0).
B Use KL(p|q) not KL(q|p) as in VB which typically under-estimates
variability.
W [terate for each sample £
— Deletion: delete £1.(0)
— Projection: update #1(0)
— Inclusion: update ¢(0)

B No proof of convergence.

-
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Simple evidence approximation
Simpler than more involved methods like Laplace, variational Bayes
and MCMC
Normalized log-posterior
1
Cp(0) = —; (logp(D|8,m) + log p(B]m))
and the maximum a posteriori (MAP) solution
6 = arg max Cp(0)
N _/
ETE
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Approximations

Gaussian MAP approximation
1 I I
<%ﬂﬂ20m@—§w—9ﬂbw—9f

 9°Cp(9)
0000" |, -

Jp = — 0(1)

Essential assumptions
B Jp should be of full rank, hence JZ_Dl should exists

mJp = O(1) is usually fulfilled with N1 normalization. Sinusoidal
model is a counter example Stoica

N
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Approximations

Laplace Approximation

N

p(Dlm) = / exp (NCp(6)) d6

2T

AN

dim (0)
2

~ / exp <NCD(§) _ gw _0)Jp(6—0)

P

N —

T) 46
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Bayesian Information Criterion

Since Jp = O(1), the leading term for large N does not involve the
often complicated Hessian, hence, the evidence is approximated as

dim (0)
~ ~ )T 2
p(Dlon) ~ p(DI0.m) - p(@lm) - (% )

AN AN

logp(D|m)/N ~ BIC = Cp(0) + dim(0) - log(N)/(2N)

-
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Views on Bayesian model selection

B BIC gives a consistent model selection as N — oo if the true
model is among the candidates

B GEN/AIC consistently overfit for N — 0o has a smaller penalty
dim(@)/N compared to dim(8) - log(N)/2N in BIC

Connection between BIC and GEN/AIC
mIn GEN/AIC Ep {G(D)} is approximated by a 2nd order Taylor

BIn BIC, Ep{exp (G(D))} is approximated a 2nd order Taylor;
hence log is performed

N
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Discussion of Bayesian Learning
Objectivity

B no-free-lunch theorems

B link to philosophical theories
B J. Friedman: “no methods dominates all others over all possible

situations’

N
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Discussion of Bayesian Learning

Prior knowledge
likelihood, loss function, model family, parameter priors

B G.E.P. Box (1976) and Stephen Strother: “all models are wrong —
but some are useful”

W use flexible models with careful model optimization

B be as data-driven as possible, minimum non-informative prior
assumptions

B use Bayes for formal incorporation of all available knowledge

B use careful model evaluation (generalization performance,
robustnes to changes in assumptions, sensitivity analysis)

-
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Discussion of Bayesian Learning

Robustness

W sensitivity analysis
W generalization error - test performance
W extensive cross-validation

W learning curves

B information conveyed by data and by prior - if they clash we want
likelihood dominance.

B errorbars and fluctuations in predictive distributions
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Discussion of Bayesian Learning

Robustness
B iterated modeling until desired performance/robustness is obtained

B trade-off between performance and robustness for specific limited

data set

N
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Bayesian learning in RBF nets -

relevance vector machine
RBF network

me~ N(0,0%) and i.i.d
m () = exp(—|lz — z(5)|]°/20°),

Vector notation of training data
Y = d'O+e

N
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Getting the predictive distribution
Ingredients
Prior ~ N(0,A7Y), A = diag(a), aj is (inverse)

individual weight decay or hyperparameter

Likelihood | p(D[0, 0%, %) = [To_ N (y(k) — ¢ " (z(k))0, 02)

Posterior weight distribution

2+ 2 _ p(D]0, 0% ) N
p(H‘D7O- 7A7V ) e p(D‘O’27A,V2) NN(0729)

Y = (6 2®®' + A)7!
0 = o ’Xyby = (®d' +5°A) By

N
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/
Optimizing hyperparameters
o2, A, v* are optimized by maximizing the evidence using EM and

simple search

p(D|o%, A,v%) = p(D|6.0”.17)

Literature:

Quinonero-Candela, J., Girard, A., Larsen, J., Rasmussen, C. E.: “Propagation of

Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead
Forecasting,” ICASSP, vol. 2, pp. 701-704, 2003

Quinonero-Candela, J., Hansen, L. K.: “Time Series Prediction Based on the
Relevance Vector Machine with Adaptive Kernels,” [CASSP, pp. 985-988, 2002

\
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Example

-

—— training examples
(O chosen relevance vectors
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Bayesian signal detection model

Literature:

Hansen, L. K., Nielsen, F. ., Larsen, J.; “Exploring fMRI Data for Periodic Signal
Components,” Artificial Intelligence in Medicine, vol. 25, pp. 2544, 2002

B observed signal y = {y(n)} isa N x 1 (data D) vector
B K = 2k periodic basis functions k € [1; K]
ror.(n) = cos(kwon), wor_1(n) = sin(kwon)
X ={x1(n)}isa N x K matrix
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B 0. linear coefficients b = {b..} is a K x 1 vector

m noise: € ~ N(0,0?)

-
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Objective

Bayesian learning

W integrate out undesired model parameters 8 = (b, 0?)

B select model wy(m), K(m), m = [1; M|

B m = 0 corresponds to only noise, i.e., X = 0.

p(wo, Kly) =

p(y|wo, K)p(wp, K)
p(y)

e
=

Jan Larsen
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Marginal likelihood

p(ylwo, K) = /p(y!b, o2, wp, K) - p(b, 0°) dbdo?

= /(2%02)]\[/2 exp (—Hy — XbH2/202) . p(b, %) dbdo”

Conjugate prior: normal-inverse-gamma

(a/Q)d/2 . (02)—(d+K+2)/2
(2m)K/2 . det V2. T(d/2)

p(b,o%a,d, K,m,V) =

exp (—(b —m)T(262V) L b — m) — a/202)

N

W
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Priors

p(bla,d, K,m,V) = /p(b, o’la,d, K,m,V)do?
~ T(m,aV /(d —2))

plo?la, d) = /p(b, o’la,d, K,m,V)db ~ IG(a/(d — 2))

B mean of noise variance a/(d — 2) = O' —y'y/N
B d = 3 is smallest value for which prior is finite, hence “weak”

B m = 0 for no prior assumption of mean amplitude of periodic

components

-
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Priors
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BV = vl for simplicity

Eprior[yTy} /N = TT[XXTEmer[bbTH/N

If Epm’or [yTy] /N =

—v-a/(d—2) -Tr[XX']/N

35 —a/(d—2)thenv =N -Tr[XX ']~

Jan Larsen
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Marginal likelihood

posterior is NIG thus the marginal likelihood is its normalization
integral
1/2
[(dp/2)
(d/2)

p(ywo,K)< detv};'ad )
detV-aPP-ﬂN
BV =Vl XTX
mmp=Vp(Vim+ X'y

Bap =a-+ m'Vim+yly— m]TDV]_Dlmp
.dp:d—l—N

-
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Model selection

uniform models prior p(wo(m), K(m)) =1/(M + 1)
p(y|m)
> m—o p(ylm)

p(m|y) =

with
mp(y|m) = p(ylw(m), K(m)), m >0
mp(y|0) = p(y|w, K) with X =0

-
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Example

JBABILITY

FRC

"TRUE" AMD NOILSY SIGHALS

&0 : 100 120 140
TRUE AND R STRUCTED SIGMALS (K =2)

120 140

4 i) -] T

NUMBER OF HARMOMICS

1&0
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Suggestions for a roadmap

B More research on the evaluation of the learning process. Account
for all variation — also data set variability

B Development of better and easy to communicate approximation
schemes

B More research on online learning in a non-stationary switching
dynamics settings

B Bayes does not tell you anything about the domain exterior to the
model - hence, more focus on integrating the data representation,
feature selection, and preprocessing steps

B Systems interact with other systems and humans — model the man
in the loop, model irrationality

-
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Wrap up

B Bayesian learning combines all available knowledge in principled
way

B Ingredients: variable, data, model, prior, loss
B Bayes is optimal in admissibility /generalization sense

B Bayes framework is complete as it offers model selection and
confidence

B Robustness needs to be tested, model mis-specifications can cause
arbitrary errors
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