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Abstract

This project investigates the costs of replacing the communication structure
of a hearing aid system developed by Widex A/S. The existing design is based
on an inflexible ad-hoc point-to-point structure, which is sought replaced by a
flexible communication structure in future system designs.

Two NoC structures have been implemented and synthesized for area and
power estimation. As power consumption and area cost are constrained design
parameters in hearing aids, all design effort has been put into designing the
cheapest solution that fulfill the system requirements.

The power dissipation and area estimates of the NoCs are compared to the
current system design to get a realistic estimate of the costs involved in using
a NoC. The comparison shows a low area and power overhead, which indicate
that NoC are suitable for even small lower power DSP-systems.

This report documents the design, implementation and synthesis of the net-
works. Design choices involved in designing NoCs such as topology, appli-
cation mapping, services, routing and interfacing are discussed. As the NoC
solution is designed with a particular system in mind, an introduction to digital
hearing aid systems is also given along with a short introduction to the NoC
concept.
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Chapter 1

Introduction

The rapid development in the area of CMOS technology, allow more and more com-
plex circuits to be integrated into a single chip. The idea of having a complete system
in a single chip is today possible and is known as System-on-Chip (SoC).

In order to keep up with increasing system complexity, designers tend to use
larger reusable blocks when designing systems. Designing everything from scratch is
no longer feasible and larger blocks like microprocessors, DSP-units, memories and
I/O-controllers are reused. These can be thought of as separate subsystems, designed
independently and then put together. The major challenge of designing systems is
then how to put these subsystems together. A general connection structure must be
designed to support all the different subsystems and allow them to exchange data.
Furthermore a standard interface must be employed to ensure cooperation between
blocks and communication structure.

Point-to-point connections is an obvious solution, but will give a fully connected
network structure, when all subsystems have to be able to communicate. This solu-
tion is requires a lot of wires and becomes infeasible for systems containing more
than a few subsystems. Furthermore the wire utilization is low and thereby not very
area efficient.

A shared bus gives better wire utilization, but becomes a bottleneck in the system.
It does not allow independent data transfers to take place concurrently. Busses does
not scale well because the capacitance increases dramatically, with increasing bus
length and more subsystems connected.

A more suitable solution may be found somewhere in between, by having sev-
eral shared busses. Taking a step further and introducing more intelligent bus shar-
ing, will lead to a network-like structure, where links are shared and data is routed
through these, from one point to another. Using this kind of communication structure
also allows more flexible communication. Adding reconfigurability to the network
will increase the system flexibility even more by supporting multiple configurations,
which can be switched at run-time to meet communication requirements in different
situations. This feature is useful in DSP systems, where data may be processed by
different subsystems under different configurations.

1



2 CHAPTER 1 INTRODUCTION

1.1 Project description

In this project a flexible solution for communication in an existing special purpose
DSP is designed. The goal is to replace the existing communication structure in the
system, with a configurable structure and investigate the costs in terms of area and
power.

The DSP is a configurable system for digital audio processing in digital hearing
aids developed by Widex A/S. It consists of a number of audio processing blocks
connected by point-to-point connections, which can be thought of as the subsystems
of the hearing aid. In addition a shared bus is used for configuration purposes. Blocks
are reconfigured regularly to match changing audio conditions, i.e. filter parameters
are tuned in. Special modes can be selected by the user, for special situations, which
reconfigures the audio blocks by loading in new instructions and parameters.

The current implementation is inflexible and leaves no room for changing algo-
rithms, when the system has been designed. More and more advanced features re-
quire more communication between the subsystems, and make a more flexible com-
munication structure more suitable for the system.

The current system consist of special purpose blocks, these become more and
more advanced and new blocks are introduced into the system, as new audio process-
ing algorithms are developed. Future systems may include general purpose DSP-
blocks that can be used for various tasks under different configurations. It is of great
interest to investigate new and more flexible communication structures for future
generations of digital hearing aid systems.

1.2 Network-on-Chip

Network-on-Chip (NoC) is gaining more and more attention at universities and con-
ferences1, as it is believed to be a solution to existing and future design problems.

NoC is a different way of designing systems that has great influence on SoC
systems during design, implementation and on the functionality of the final system.
The idea behind the NoC concept is to replace point-to-point wires and global shared
busses, with a generic communication medium that can support all types of commu-
nication as illustrated in Figure 1.1. NoC addresses issues like:

• Electrical wire scaling in very large systems by wire sharing in a regular wiring
structure avoiding long wires.

• System synchronization. Decoupling communication from computation loosens
the global synchronization requirements and global clock distribution may be
avoided.

• Design productivity. NoCs provide an excellent platform for modular design
and reuse.

1At Design, Automation and Test in Europe Conference 2006 a new symposium was proposed
under the name “IEEE International Symposium on Networks on Chip (NoC)”
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A NoC consists of routing nodes connected in some topology using point-to-point
links. The network can be expanded by adding more routing nodes, which scales well
as no additional electrical capacitance or other parasitic factors has greater effect in
larger networks. Links and nodes may be pipelined to increase the bandwidth. One
may see the network as an advanced pipeline, where data is send through a link every
clock cycle. It is determined at each routing node where to send data next, which
requires logic control of the dataflow that implements the routing protocol. It may
be necessary to stall some links, while others continue to solve conflicts. Just like
stalling an ordinary pipeline to avoid data hazards.

By sharing the links between routing nodes, the number of wires is reduced and
there are no very long wires with large capacitances. Long wires are segmented by
the network pipeline, which reduce or eliminate the need for buffers and reduce the
cost overhead a network interconnect.

The subsystems (blocks) are connected to the network and are then able to com-
municate with other subsystems connected to the network. Data is routed through
the network from source to destination, which may not be directly connected. The
blocks send and receive data through a standard interface and the network handles
data transport. This interface marks the clear separation and decoupling of commu-
nication and computation in NoC systems.

Block 1 Block 2 Block 3

Block 4 Block 5 Block 6

NoC

Figure 1.1: NoC-based SoC.

1.3 Previous work

Currently Network-on-Chip is a research topic on several universities. Different ap-
proaches are investigated which focus on the advantages of using NoC. While some
focus on creating general network platforms, suitable for a wide range of systems,
others focus on more specialized networks for a narrow range of applications. Both
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clock-less and clocked networks exist. Asynchronous networks try to avoid the clock
distribution problem in very large systems.

These networks are in general large and expensive, but offer many features. Most
of them use standard block interfaces like OCP, creating a general network that can
be used for a wide range of applications.

MANGO[1] is an asynchronous network supporting guaranteed services and best
effort traffic. CHAIN[2] is a simpler asynchronous network, which has been demon-
strated in a multiplexer/demultiplexer tree-like topology for a small system. SPIN[3]
investigates a network based on the butterfly fat-tree topology. QNoC[4] is a cus-
tomized Quality of Service NoC architecture derived by modifying generic topolo-
gies. Xpipes[5] is library of network components that can be configured in various
network architectures, which can be used for both regular general networks and ap-
plication specific networks.

The networks mentioned above are all developed for academic purposes. To
my knowledge AEthereal[6] is the only network developed and used for industrial
purposes. It is synchronous and supports both guaranteed services and best effort
communication. The cost of using AEthereal in a commercial SoC is investigated in
[7].

1.4 Report structure

This report will give a short introduction to the most essential topics in the area of
Network-on-Chip in Chapter 2, where references to sources of more information on
NoC can be found too. Chapter 3 will introduce digital hearing aid systems. The
focus will mainly be on digital hearing aids from a system point of view, where
communication is important. Chapter 4 will discus how to design a more flexible
communication structure for digital hearing aid systems based on a black box view
of the existing system. Chapter 5 will give some details on how the NoC is imple-
mented and the design flow used for the implementation. Chapter 6 will present a
communication analysis, based on a model of the actual communication in the exist-
ing system. The cost of introducing a new communication structure is presented here
as well. Chapter 7 will discus the costs of more flexible interconnects. Trade offs
between cost and added features in the system will be discussed along with future
hearing aid system designs based on NoC. Chapter 8 concludes the thesis.



Chapter 2

Network on Chip

This chapter will give an introduction NoCs and terms used to in the context of intra-
chip communication. A more thorough introduction can be found in the referenced
papers and articles, especially the survey found in [1]. This chapter is safe to skip for
readers already familiar to the essential NoC principles.

2.1 Introduction

The increasing complexity and number of blocks in digital systems causes more com-
munication within the chip. The limiting resource in future technologies is expected
to shift from transistors to wires. NoC-based systems try to shift the design focus to
give communication more attention and deal with it in a structured way.

In existing systems the blocks are tied together using point-to-point links and
buses to form a working SoC. In [8] the idea of using networks instead of ad-hoc
solutions using point-to-point connections and buses is introduced. With this ap-
proach subsystems communicate by sending packets to one another over a network
connecting all subsystems. A network is a more general communication medium,
which both has a more well-defined structure and adds more flexibility to the system.
Wire sharing is an inherent feature of communication networks and scales better than
ad-hoc bus designs.

Network-on-Chip is broad term which simply indicates that some kind of com-
munication network is implemented on the chip. Many design choices and trade
offs must be made when designing the network, to try to find an optimal solution to
the communication demands of the particular system. No single network design is
optimal in all designs and for all applications. Systems have different design require-
ments, like power consumption, physical size, performance and work load, which
will cause some designs more suitable than others.

Replacing the wire structures on a chip with a network comes at a cost. Where
communication structure was made up of wires and buffers before, a network also has
to include control logic, to switch and route data through the network. Area overhead

5
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and increased communication latency must be expected, when using a network. But
it adds more features to the system in terms of flexibility.

Furthermore, modular design is an inherent feature of the structured design ap-
proach of NoCs. Modular design and more reuse is becoming more and more impor-
tant to the design productivity to keep up with the increasing amounts of available
chip resources. Blocks designed using a standard interface can easily be used in
different NoC systems. One could imagine SoC designs made up of a NoC where
subsystems are just plugged in.

2.2 Topologies

A network is a common communication structure with communicating blocks at-
tached. In general a network can be classified as a direct network or an indirect
network [1].

In a direct network blocks communicate directly with each other and has the
ability to route data. A block does not require a direct connection to communicate.
Data is routed through intermediate blocks to reach the destination. Indirect net-
works have separated the block and network routing into distinct components. The
network is made up of routing components connected with each other using uni- or
bidirectional links. Blocks are attached to these routing components, but the network
may have routing components which does nothing else but routes data. Both types
of networks are illustrated in Figure 2.1.

a)

b)

Figure 2.1: a) Direct network. b) Indirect network.

From a simplified perspective a network consists of the following fundamental
components:

• Routing Nodes route the data through the network according to the chosen
protocol. The routing nodes handle switching of data between the links and
implement the routing strategy.

• Links connects the routing nodes to allow the routing nodes to communicate
and exchange data. Links can be uni- or bidirectional and provides the raw
bandwidth in the network. They may contain one or more physical or logical
channels. They may be pipelined to achieve higher throughput and their only
task is to transfer data between routing nodes.



TOPOLOGIES 7

• Network Adapters (NA) implements the interfaces presented to the blocks. The
network adapter translates transactions on this interface into network commu-
nication. The advantage of using a network adapter is hiding the implemen-
tation details of the communication structure, the network, to the block. The
blocks do not need any knowledge about the network to communicate. The
computational units are decoupled from communication, which allow inde-
pendent design and implementation and easier reuse.

The routing nodes and links are very similar to network nodes and edges known
from general network theory and the network adapters introduce higher level of ab-
straction to the connected subsystems. These essential concepts are illustrated in
Figure 2.2 along with an example topology.

Core Core

CoreCore

CoreCore Core

Core

Core

NA

Node

Core
interface

Core

Link

Figure 2.2: NoC components.

Routing nodes are spread across the chip and connected by links to form a net-
work. How these are arranged is known as the network topology and the protocol
specifies how these nodes and links are used. A network is defined mainly by its
topology and the protocol it implements. The task of the network is to deliver mes-
sages from source to destination. The network provides hardware support for basic
communication primitives, which can be used to implement higher level protocols.
The task of the network adapter is to translate any command on its block interface
into network communication in terms of the communication primitives provided by
the network. The network adapter at the destination block converts received network
request into the original command set up by the source block and presents the com-
mand at the destination block interface as illustrated in Figure 2.3. A network should
essentially appear as virtual wires between the connected blocks.

The topology of the network is a very important design choice, which influences
the support for traffic locality and the distance between blocks. Depending on the
system, there may be many or few blocks to be connected to the network. If there
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Figure 2.3: Hiding the NoC to the blocks.

is no prior knowledge on the what kind of communication to expect a more gen-
eral topology should be chosen, but will imply a larger overhead in terms of unused
network capacity. Clustering deals with localization in the network, both in physi-
cal and logical. Logical clustering can be very useful for programming applications
using the network and be implemented as virtual wires. Physical clustering is physi-
cally arranging the blocks in a way to minimize global communication based on prior
knowledge on the traffic. Additionally the topology has influence on the reconfigura-
bility of the network. Configuration deals with how network resources are allocated.
A topology with more connections and more bandwidth overhead is more flexible,
than an optimized network with few links with high utilization.

2.2.1 Regular topologies

Most NoCs implement regular topologies that can be laid on a chip surface. This
means that the topology has to map well into a 2-dimensional plane. This makes a
grid based topologies a popular choice. Regular networks are homogeneous struc-
tures where power dissipation and area scales predictably for increasing size. They
are based on one or just a few different routing nodes, and routing is simple.

A grid (k-ary n-cube) is an example of a regular network. Depending on the
nature of the links, different grid topologies can be constructed. A mesh network has
routing nodes placed in a rectangular structure and bidirectional links connect them to
their four neighbors. A close related topology is the torus which is essentially a mesh
with connected edges. The torus topology is demonstrated in [9] as interconnect for a
multiprocessor chip is an example of a unidirectional grid topology. Most networks
presented in NoC research are based the mesh topology using bidirectional links.
Grid based networks are usually direct networks.

Other examples regular topologies explored in NoCs are k-ary trees and k-ary
n-dimensional fat trees. In tree topologies local traffic is completely separated if
the links are bidirectional, as it takes place within a single branch of the tree. A
simpler tree based topology is a folded tree or mux/demux topology as known from
CHAIN[2]. It has the advantage of very simple routing nodes and routing scheme.
Fat tree topologies are more complex by having multiple roots. In tree based topolo-
gies, blocks are usually attached the leaf nodes creating indirect networks.
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Figure 2.4: Regular NoC topologies. a) Mesh, b) Torus, c) Fat tree, d) Folded tree.

Figure 2.4 shows a few examples of regular topologies. In general mesh network
provides good flexibility and link utilization, while tree based topologies have shorter
paths and isolated local traffic. A detailed comparative evaluation of a set of recently
proposed NoC topologies is presented in [10]. Three grid based topologies is com-
pared to a ring based and two tree based topologies. The ring based topology does
not scale well, but in a system with eight blocks any block can be reached within two
hops. The choice of topology is a design trade off. Some topologies can sustain very
high data rates at the expense of high power consumption and area overhead, while
others provide a lower data rate at lower costs.

2.2.2 Irregular topologies

Irregular topologies are derived from mixing different forms in a hierarchical or hy-
brid fashion. An irregular topology does not scale linearly in area and power con-
sumption. But on the other hand it can be used to create more specific topologies
that fit the communications requirements of the system better and reduce overhead
capacity.

A hierarchical network topology could use different topologies at lower levels in
the hierarchy to optimize the network based on prior knowledge about the system. A
different approach is to incorporate a sub-network into another topology, replacing
the global topology in that region. The sub-network is seamlessly integrated into
the global topology, but adds extra features or more resources to that region. This
approach is proposed in [11].
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The topologies mentioned above are all composed of one or more regular topolo-
gies. An extreme option is design a completely custom topology. Designing a net-
work specifically for an application gives the best performance with lowest area over-
head and power consumption, but requires much more design effort. The goal of most
NoCs proposed until now is to provide a more or less general NoC platform, which
can be used for a range of applications. However application specific optimizations
as proposed in [12] and [13], show that much can be gained from custom networks.
In regular networks it may be difficult to obtain high utilization in systems with many
different blocks, but are on the other hand more flexible. The choice of using a gen-
eral network or an optimized network is trade off between design cost, area overhead,
power consumption and flexibility that must be done for the specific system.

2.3 Routing

Data is transferred through the network according to a communication protocol.
Switching is defined as transport of data, while the protocol is the intelligence be-
hind it that determines the path through the network. Comparing NoCs to the OSI
model on networks as done in [1], the routing nodes must implement essential com-
munication primitives which implement the protocol.

The protocol defines the use of available network resources. Important topics in
protocol and routing node design addressed in NoC research are:

- Circuit and packet switching. In circuit switched systems resources are allo-
cated and set up before use. They are hold until the data transfer is complete.
This is opposed to packet switching, where data is just send through the net-
work along with routing information.

- Connection-oriented or connection-less. Connection-oriented protocols in-
volves setting up a logical connection before data can be transferred. In connection-
less protocols no prior set up is required. Circuit switched systems are always
connection-oriented, while packet switching can be both connection-oriented
and connection-less.

- Deterministic and adaptive routing. In a deterministic routing protocol, the
path between source and destination is found on the basis of their locations
only. In adaptive routing, the path may be influenced by other factors. The path
could be chosen to avoid congested links if the routing nodes have knowledge
about the current state of the network.

- Minimal routing. A routing algorithm is minimal if it always chooses the short-
est path between source and destination. This may not always be the best
choice, especially when the routing scheme is adaptive.

- Delay and loss. In computer networks like the Internet, data is discarded in
the network to loosen congestions and data must be retransmitted. A NoC is
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a more controlled environment and makes it easier to prevent the situations to
occur. Adding handling of data loss to the protocol will increase it complexity
and cost significantly.

The majority of NoC research is based on packet switching networks. Usually
connection-less communication is used for best effort traffic, while connection ori-
ented communication is used to provide service guarantees.

A packet is a unit of data wrapped into a frame that may also contain extra in-
formation used by the network during transfer. This is usually placed before the data
payload. As packets may be very large and vary in size it is useful to separate them in
smaller parts. A flit is the smallest unit that can be handled by the network. A packet
can span several flits, which can be transferred sequentially. Figure 2.5 illustrates the
flit principle.
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Figure 2.5: Packet and flits.

How the packets are passed between the routing nodes is known as forward-
ing. The forwarding strategy influences the buffering in the routing nodes and how
resources are used in the network. The most common forwarding strategies are store-
and-forward, wormhole and virtual cut-through.

Store-and-forward routing stores the entire packet before it is forwarded based
on the information in the packet header. The routing node may stall if the receiver is
not able to accept the packet.

Wormhole routing minimizes the latency by forwarding flits as soon as possible,
creating a stream of flits making its way through the routing nodes and links like a
worm. If the receiving routing node is unable to receive the flit, all routing nodes and
links spanned by the packet may stall.

Virtual cut-through routing forwards packets by streaming flits, similar to worm-
hole routing. However to avoid stalling several routing nodes an links, virtual cut-
through routing ensures that the receiving routing node is able to receive the entire
packet before forwarding the first flit. If a packet is stalled it will aggregate in the
buffer of the current routing node.

A very important part of the protocol is to provide flow control. Flow control
dictates the movement of the packet along the path in the network. As there can be
many packets in the network, they must be coordinated according to some strategy.

Resources should be shared in a fair way, so no packets experience starvation.
Flow control may also include traffic priorities. Furthermore flow control must han-
dle deadlocks in topologies prone to deadlocks. Deadlocks occur when the network
reach a state where packets block each other by circular dependencies. Deadlocks



12 CHAPTER 2 NETWORK ON CHIP

can be handled when they occur, but the simplest solution is to completely avoid
deadlocks by design. Solving deadlocks require either handling of data loss or some
other roll-back mechanism, which are both complex and expensive.

Virtual channels are used for sharing physical channels by several logical chan-
nels with individual and independent buffers. The use of virtual channels have a
number of advantageous uses which includes avoiding deadlocks, optimizing wire
utilization, traffic priorities and improving performance.

When a virtual channel stalls, it will not stall the physical link, which can be
used by other virtual channels. This reduces the amount of stalls in the network
significantly. Additionally virtual channels are very useful to prevent deadlocks.

In some network topologies is it possible to avoid deadlocks by choosing the
path carefully. Others require virtual channels to avoid the possibility of circular
dependencies. Routing and deadlock avoidance are described in more details in [14]
chapter 10.

2.4 Services

The basic service provided by a network is transfer of data from source to destination.
However demanding blocks may impose more strict requirements on the network
than eventually performing the data transmission.

Quality of Service (QoS) is defined as service quantification that is provided by
the network to a demanding block. The service could be low latency, high thought-
put, low power, etc. Such services must be negotiated with the network in order to
allocate resources needed to provide the service.

Generally speaking services can be put into two classes: Best effort (BE) service
and guaranteed services (GS). BE provides no guarantees at all, while GS do give do.
In context of NoC research BE refers to traffic where only correctness and completion
are guaranteed. In other words BE traffic will eventually arrive at its destination. NoC
GS means traffic for which additional guarantees are given.

In macro networks service guarantees are usually statistical guarantees, as the
hard guarantees require tighter coupling of the nodes in the network. In smaller sys-
tems like SoCs, hard guarantees are preferred and easier to implement as the com-
municating nodes are tight coupled and the network is limited in size. In SoCs the
network will be static in most cases. No blocks will be physically added or removed
during operation.

Hard guarantees require logical independence of other traffic in network, which
means that GS must have independent resources in the network. GS requires connection-
oriented routing to allocate these resources. GS connections are virtual circuits,
which uses independent resources. These circuits may be implemented using virtual
channels, time-slots, etc. Because of the independence requirement, more GS means
a lot more network resources and increases the cost of the network significantly.

GS allows analytical system verification and is valuable tool when network re-
sources are analyzed and distributed among the communicating blocks. Concerns
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regarding traffic interference and other unpredictable conditions can be removed by
GS. However GS does not utilize the network efficiently. The maximum number
of simultaneous GS the network can support is determined by the worst case use of
each GS set up in the network. The network will only be utilized fully, when all GS
reservations are fully loaded. The utilization may also be limited by different kinds
of GS influencing each other.

In order to make use of the overhead, that can not be avoided in NoCs supporting
GS, it can be combined with BE. Idle resources that are reserved for GS can be used
by BE traffic without affecting the GS. This approach is taken in most proposed NoCs
that supports GS. [15] discusses the design of a GS router for the AEthereal[6] NoC,
which supports BE too. BE traffic is handled at lowest priority and uses whatever
resources are available, to fill up the gaps between the GS traffic.

If the traffic in a system is deterministic, GS may not be necessary to provide
QoS. If all traffic can be predicted a NoC supporting BE should be sufficient in most
cases. The communication can be scheduled during design to fit into the NoC. This
approach is taken in [13] where QoS is guaranteed by mapping and planning the NoC
using a traffic pattern obtained by simulation. The method presented is restricted to
system with no or very little variation in the input streams.

Adding support for priorities to BE traffic makes it possible to plan the traffic in
the network, even though not all traffic is known before hand. However it may not
be possible to analyze or simulate all situations and GS using analytical verification
is then the only option.

2.5 Programming model

Programming the network has two aspects: How to configure the network and how to
use it. The network implementation is hidden to the blocks by the network adapter,
but the interface presented to the block can handle this abstraction in different ways.
A popular way of handling communication between processors and peripherals is
memory mapping. Blocks are assigned to specific addresses in a global address
space. Data reads and writes to these locations are transparently transferred to or
from the particular system. This approach is intended for systems with one master
and one or more slaves.

Systems with more blocks acting as masters can communicate using shared mem-
ory. This is not efficient for systems with close cooperation between blocks, as the
shared memory will soon become a bottleneck. Using message passing instead will
send data directly between communicating blocks avoiding the shared memory. Or-
dinary wires can be viewed as simple message passing and can easily be mapped
into a network. The network adapter then supports passing messages to particular
blocks instead of mapping them into a memory address. This still does not require
any knowledge about the network, just the blocks available.

The network have to be configured initially to be able to hide its implementation
to the blocks. The network adapters have to be configured to know where to send
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data, as the blocks do not. This task has to be handled by one or more blocks that
know the network and how to program it. A typical solution is to have a programming
unit or responsible block, that programs the network adapters initially or when it is
necessary.

A network may be reconfigured for different tasks. Each scenario is known as a
use-case. The use-case describes the communication requirements of that particular
task. A use-case can be illustrated by constructing an application graph as shown
in Figure 2.6. The nodes of the graph represent processes in the application and the
edges represent the communication between the processes. Mapping these graphs
onto the NoC topology is known as application mapping. Systems may have a set
of use-cases, and switch between these often, which mean reconfiguring the NoC.
All use-cases may not even be known when designing the system. The NoC must be
designed to handle all expected use-cases, which will have unused network resources
in some use-cases.
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Figure 2.6: Application graph example.



Chapter 3

Digital Hearing Aids

This project is a case study of an existing system and an introduction to the system
is therefore necessary to gain enough knowledge about the system to make proper
design choices. This chapter will give a general introduction to digital hearing aids
and then describe the digital system, which has the focus in this project. The sys-
tem description will concentrate on the data flow in the system and general system
behavior, which are relevant to communication structure design.

The system is the latest digital back-end chip used in the latest generation of
wearable digital hearing aids by Widex A/S. The back-end system handles all digital
signal processing in the hearing aid device. The back-end chip is interfaced to an
analog frond-end chip, which performs preliminary analog signal processing. The
current design is very application specific and optimized for low power consumption
and area. That means specially designed hardcode blocks with limited configurabil-
ity. The area is restricted by the fact that it has fit into hearing aids of very small
physical dimensions. Hearing aids vary in sizes from rather large behind the ear
models, to completely in canal models that can not be seen when worn by the user.
The size of the current back-end chip is limited to approximately 2.5× 3.5 mm.

Hearing loss is a wide spread problem and is target for intensive audiological
research to improve hearing aids to help more people and help them better. This
research leads to new and better algorithms for signal processing in hearing aids.
A revised or new back-end system is required to support these new algorithms and
features, which then becomes the next generation of hearing aid products.

As algorithms and features become more and more advanced, the requirements
for the supporting hardware platform increase similarly. The system is currently
developed as a very tightly coupled system, consisting of several communicating
subsystems. Communication is mainly done using point-to-point connections and
shared buses. New application features often requires new subsystems to be fitted
into the system and additional communication is therefore introduced.

15
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3.1 Introduction to Hearing Aids

To obtain a better understanding of the application and the supporting system, a quick
introduction to digital hearing aids is given here.

The purpose of a hearing aid is to amplify sound in a way that it compensates
for the user’s hearing loss. This is done by recording sound using a microphone,
amplify and process the sound electronically and deliver the amplified sound into the
ear of the user, using a speaker. The basic idea of a digital hearing aid is illustrated
in Figure 3.1.

Audio
Filters

Feedback
Cancelling

AmpDigital

Figure 3.1: Basic data flow in hearing aid

The sound amplification and processing is not a simple task, and is under con-
stant development. Previously hearing aids were implemented as analog electronic
systems. Today digital signal processing has by far overtaken analog processing.
Both filtering and amplification is done digitally in modern hearing aids.

Hearing aids are programmed to fit every user’s special needs, to give the best
possible experience. Looking at a digital hearing aid at a high level of abstraction,
the system has a few major components. The signal from the microphone is passed
through a front-end, which handles the analog to digital conversion. The digital
audio is then passed on to the digital back-end. The audio is represented by samples,
which are passed through a range of filters and amplified according to the needs of
the particular user.

The audio signal is split into several frequency bands, which are treated sepa-
rately and then added up to form the speaker output signal. Because the microphone
and the speaker are situated millimeters apart, the system is very prone to feedback.
This is handled by a special feedback canceling system, which plays a significant role
in the signal processing done in the back-end system. Feedback canceling is done us-
ing the digital output signal, which is fed back through the system and used to create
a compensating signal. This means that there are more than just data flowing straight
from input to output. Various signals are fed back through the system too.

3.2 The back-end chip

The back-end system is a separate integrated circuit that is interfaced to the front-
end, external memory and the speaker. The system configuration, including fitting
settings for the particular user, is stored in the external memory and loaded into the
back-end system at start up.
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3.2.1 System architecture

The back-end system currently consists of 12 subsystems, as illustrated in Figure 3.2.
These subsystems have very different tasks and vary significantly in size and com-
munication requirements. Subsystems directly involved in the signal processing are
in general larger and communicate more than the other units. The audio streams are
passed between the subsystems as samples. In some parts of the datapath, the audio
signal is treated in bands. Every full spectrum audio sample is split into 15 samples,
each representing a frequency band. This gives 15 times as much data to process
and communicate through the system. Modern hearing aids use two microphones in
order to suppress background noise and locate the sound source. Parts of the system
use samples from both microphones using two separate signals. In other subsystems
only single samples or parameters are used.
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Figure 3.2: Traffic pattern. High bandwidth is indicated by bold arrows.

The back-end system is implemented as a globally synchronous system with a
main clock domain and a few slower clocks running at frequencies divided down
from the main clock. The main clock frequency is faster than the sampling rate,
which allows subsystems to spend several clock cycles processing each sample, with-
out having a deep pipeline. To keep the power consumption as low as possible, sub-
systems with a longer acceptable latency are using divided clock to minimize the
switching activity. Subsystem may even be disabled by clock gating, when they are
not used.

A hearing aid can be categorized as a real-time system. Audio must be processed
and delivered to the speaker within a certain deadline. Too long processing time is
inconvenient for the user. The delay from things happen to the sound is delivered to
the user must be unnoticed. However a fairly large delay can be tolerated. It is more
important that the delay is constant, to avoid having large buffers in the system.

When the system is configured during start up or at mode switches, speaker out-
put is disabled. A delay in the order of milliseconds is acceptable by any user and is
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not critical.
The hearing aid has different modes of operation for different situations that can

be chosen by the user. For each mode the subsystems may need to be reconfigured.
This involves loading in new configurations from the external memory and distribut-
ing the new configurations to the subsystems, for use in the new mode.

The internal design of the subsystems is not discussed in further details here, as
they are not relevant to the communication structure. One of the basic ideas of NoC’s
is decoupling computation and communication.

3.3 Internal back-end communication

The communication between subsystems in the current design is handled by point-to-
point connections. In addition to the signals in the datapath, a separate configuration
bus is used to configure the subsystems.

The traffic in the system is deterministic. For every audio sample period the
communication in the system is the same, when no mode changes occur. The delay
through the back-end is a few sample periods, so more than one sample is concur-
rently being processes in a pipelined fashion. But every time a sample enters the
back-end, processing starts over and is exactly the same as for the previous sample.
This creates a constant flow of samples through the back-end system.

In general every signal has dedicated wires in the current design. As the system
clock is faster than the sampling rate, wires are saved by time multiplexing the audio
bands on one set of wires, which is able to transfer one audio band at the time in
the parts of the system where audio is treated band-wise. Just as the band-wise
information can be transferred sequentially, computational hardware is minimized
by sequential processing of each audio band.

The back-end system operates on data streams. There is no shared memory in-
volved in the signal processing and no need for a global addressing space. Dedicated
wires mean no addressing is required. Because the processing repeats for every sam-
ple, each subsystem knows exactly what piece of information to expect next. No
explicit identification of data received from other subsystems is necessary, except
when bands are multiplexed.

3.3.1 Traffic types

Looking at the system from a communication point of view, it is possible to define a
few different types of traffic with different requirements. The majority of the commu-
nication in the system is audio samples. Besides these are parameters, which are sent
between the subsystems regularly, but not necessarily for every sample. During re-
configuration and mode shifts a third kind of traffic occurs, when new configurations
are distributed to the subsystems.
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Audio samples

Samples occur periodic at the rate of the audio sampling at the input and must be
delivered to the speaker at the same rate. An audio sample is a relatively small
amount of data, but processing generates much more data on the way through the
system, before it is reduced to a single audio sample again at the end. The band-wise
audio processing effectively generates 15 times as much audio data.

Parameters

Parameters are passed between the subsystems during operation to coordinate the
behavior of the subsystems. Some parameters have hard deadlines similar to audio
samples. Other parameters have soft deadlines that can be missed occasionally. If a
filter parameter is updated for one sample or the next does not change the big picture.
The deadline is not necessarily tight, but its is more important to know how much
it can be missed. The bandwidth requirements of the parameters vary significantly.
Not all parameters are passed for every audio sample, which means that the amount
of parameters transferred between the subsystems is not the same for every sample
period, but varies periodically.

Configuration paramaters

Configurations are written into the configuration registers in the subsystems during
system initialization and mode shift. This is all handled by the configuration bus con-
troller using the bus. At initialization all subsystems have to be configured, which
generates a large amount of communication, while at mode shift only some subsys-
tems have to be reconfigured. In general there is no deadline on configuration. But
is has to be done within reasonable time. Speaker output is disabled until all systems
have been configured.

3.3.2 Communication protocol

As the back-end system communication structure is based on dedicated wires and the
subsystems always knows which data it will receive next, no advanced communica-
tion protocol is really needed. A simple data valid signal is used to indicate when
new data is sent on the wires as illustrated in Figure 3.3.

data valid

clk

data

data id

Figure 3.3: Communication protocol
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A situation where the subsystem is busy and can not receive the next data sample,
will never occur. Samples will always arrive in the same pace, which the system is
designed to handle.

3.3.3 Traffic patterns

Communication within the system is far from evenly distributed among the subsys-
tems. Some subsystems are connected to several other subsystems using high band-
width, while others are having only a few connections. The system communication
is illustrated in Figure 3.2. Because not all subsystems communicate with each other,
locality exists in the traffic pattern. Very high bandwidth is required to some of the
neighboring subsystems, while far less bandwidth is required to other subsystems.

The traffic density is not constant over time. The main flow is always active, but
more communication takes place during mode shifts. As mentioned before, some
signals are not active in every sample period, which causes the traffic density to vary
in time.

A few signals are distributed to more than one subsystem effectively implement-
ing a signal multicast.

The back-end system has four subsystems, which most communication takes
place in between. These perform band wise signal processing. Two audio inputs
are used for advanced filtering. Both of these are split into bands, which generate
large amounts of traffic between these subsystems. The size of an audio sample is
not constant throughout the system, but is general around 20 bits of data. The four
main units are described in the following.

• Unit 1 performs the band splitting. It has two audio samples as input and some
parameters from Unit 4. It has two signals for the output samples to Unit 2 and
3. Parameters are passed for some bands to Unit 4 generating an amount of
traffic similar to the two sample outputs. A small parameter signal is passed to
Unit 3.

• Unit 2 performs processing of each audio band received from Unit 1. Parame-
ters are sent and received from Unit 3 and 4, but generate only a small amount
of traffic compared to the sample inputs.

• Unit 3 is the most busy unit in the system in terms of traffic. Large parameters
are received from Unit 4 on two broad signals almost every clock cycle. A few
parameters are sent and received from Unit 2 and 4. One 15 band audio data
signal inputs audio samples from Unit 1.

• Unit 4 gets parameters from many of the smaller subsystems and Unit 2. Pa-
rameters are sent and received from Unit 1. Parameters sent to Unit 3 generates
by far the most traffic.
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The signals already have a high utilization, which makes it hard to save wires by
more sharing. These are targets of much optimization to reduce the power consump-
tion as much as possible.

The bandwidth used for parameters between Unit 3 and 4 is approximately twice
as big as the bandwidth used by any other subsystem. Table 3.1 below, shows the total
input and output traffic for each subsystem, for every sample period. This includes
all traffic under normal operation.

Unit Input Output
1 441 1629
2 801 593
3 2602 408
4 3137 2356
5 40 82
6 300 600
7 321 21
8 0 8
9 32 20
10 20 46
11 20 40
12 20 0

Table 3.1: Traffic to and from each subsystem. Off chip communication is left out.
All numbers are total amount data in bits per sample period.

From a NoC perspective the Table 3.1 is the bandwidth requirement of interface
between subsystem and network. The traffic is considered as connections between
subsystems in Table 3.2, which reveals other important details about the traffic pat-
tern. The number of connections between subsystems and bandwidth requirements
are important in relation to NoC design.

3.3.4 Programming

Each hearing aid is fitted to the particular user by storing personal configuration
parameters in the external memory in the hearing aid. The parameters are loaded into
the back-end system when the hearing aid is switched on along with other parameters.

The parameters are loaded into special registers in each subsystem. When the
user switches the operation mode of the hearing aid, other parameters are loaded into
these registers to reconfigure the hearing aid.

The configuration registers are programmed using the configuration bus shown
in Figure 3.4. The subsystems have a special configuration interface connected to
this bus, which allows both read and write to the registers located in the subsystems.
The bus is controlled by a single controller. The controller handles input interface
to the bus, and all bus transactions goes through the controller. Reading parameters
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Conn. Bandwidth Conn. Bandwidth
1-2 300 5-1 41
1-3 309 5-4 1
1-4 720 6-2 300
1-6 300 6-7 300
2-3 324 7-2 21
2-4 216 8-5 8
2-7 21 9-10 20
2-9 32 10-11 20
3-2 180 10-3 13
3-4 228 10-4 13
4-1 400 11-12 20
4-3 1956 11-4 20

Table 3.2: Traffic between subsystems. All numbers are total amount data in bits per
sample period.

and logs from subsystems is handled by the controller, which uses a simple address
signal to specify which subsystem it is communicating with. As this bus is designed
to communicate between the controller and the subsystems, it is not very well suited
for communication between subsystems, but it is possible. The configuration bus is
idle most of the time under normal use of the hearing aid. However, data may also
be extracted from blocks occasionally for logging using the configuration bus.

The configuration bus is the only flexible communication structure available in
the current system design. It is designed for programming the hearing aid and collect-
ing logged data only. However it can be used for some simple fixes, where parameters
have to be moved from one system to another. But the flexibility is very limited.
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Figure 3.4: Configuration bus

The subsystems are designed in a way that the order of configuration, does not
influence the system. Subsystems that can reach an illegal state if configured in a
certain order, are self resetting when all configuration parameters are received.
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3.4 Low power design

The back-end system has to fit into even the smallest hearing aids, which restricts the
physical size of the system. The current design is approximately 8.75mm2. Some
effort is put into area optimization to fit the design into this small area.

The main focus of optimization is power consumption. The system is powered
by a single battery. The goal is as long operation on a battery as possible using the
smallest battery as possible.

Low power consumption is obtained by considering power consumption in all
phases of the design and implementation, from transistor to system level. At tran-
sistor level, a very energy and area efficient standard cell library is used for smallest
possible footprint. Clock gating and slower clocks minimize the switching activ-
ity. During synthesis the design is optimized for power, to further reduce the power
consumption.

Because of these very tight constraints, the system is very tightly integrated to
save as many transistors as possible. When the back-end is designed, it is designed
to support the current snapshot of algorithms developed for signal processing. No
further improvements are introduced later. Late changes and bug fixes then have to
be solved by ad-hoc solutions, which may not always be easy.

3.5 Future hearing aid systems

As CMOS technology progresses and gives design capacity for new and more ad-
vanced audio processing systems, a more flexible communication structure is wanted.
The number of blocks increase and thereby also the communication needs. Instead
of creating even more dedicated wires that are only used in special cases, a general
communication structure is better solution.

Having a programmable communication structure, late changes to algorithms
will be easier to accommodate, as it is only a matter of configuration to introduce new
signals between subsystems. This assumes that the block designs will be changed
similarly to exploit the flexible communication structure.

Subsystems may not be needed in all modes and can be bypassed and turned
off in a more flexible system, instead of adding some pass through path in these
subsystems.

Future generations of hearing aids may include more general processing units,
that can be used for different tasks different places in the system, in different situa-
tions. A general processor could be introduced to take over the jobs of smaller sub-
systems. The order in which subsystems are used may be changed and rearranged in
different modes. This requires that the system is able to redirect data and parameters
between subsystems in a more flexible way, than is possible in the current system.
These situations are illustrated in Figure 3.5.
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Figure 3.5: Configurable communication. a. Bypassing subsystems. b. Moving tasks
between subsystems. c. Changing the processing flow.



Chapter 4

Design

This chapter will discus the design of NoCs for use in small lower power systems. In
particular the back-end chip designed by Widex A/S.

From the introduction to NoCs given in Chapter 2, it is obvious to look for a
network structure to provide a more flexible communication system. Alternatives are
using more buses or multiplexing dedicated wires. Both solutions do not scale well
and does not offer the same level of general flexibility as a NoC.

Before looking into the design of a NoC for the back-end chip, the requirements
for the NoC must be specified. The design choices and trade offs to be made are
based on the introduction to the system is given in Chapter 3.
After specifying the communication requirements, designs are discussed and pro-
posed. The design of NoCs involves several choices and trade offs to be made. The
design trade offs are strongly correlated and can not be considered separately. How-
ever, each topic will be discussed in separate sections here and then summarized and
put together in the final section to form the network design.

4.1 Requirements

Based the information about the back-end chip in Chapter 3 and the concept of NoC
introduced in Chapter 2, it is possible to derive the requirements for a suitable net-
work.

The overall goal is to propose a new solution, which supports the ideas for future
back-end chips introduced in Section 3.5. This will add some extra cost to the system
in term of area and power consumption. These factors are focus of much optimization
in the current design, and a new system should strain to keep these factors as low as
possible too. The solution has to be simple but yet suitable. An area overhead of less
than 10% is estimated for other NoCs [8], which is also the goal for this network.

As seen in Figure 3.2, the back-end system has a general data flow from input
to speaker output. This main flow will be preserved under any use, but the path in
between may change in different use-cases.
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The traffic in the system is deterministic, which means that it is possible to pre-
dict the traffic patterns in the system. During normal operation the traffic pattern is
periodic, repeating itself for every audio sample. When the use-case is switched, a
smooth transition is not essential. The output can be turned of during the transition
and no data or connection has to be preserved.

The network has to be able to cope with the current bandwidth requirements in
the back-end chip. But additional capacity is needed to have room for other system
configurations. The amount of unused capacity for reconfiguration is a trade off be-
tween the costs and expected use of the network. The NoC should support rerouting
any signal to any destination and adding new signals. A minimum requirement is
redirecting or adding at least one 15-audio band signal.

The current design uses a global clock for synchronization. The clock frequency
is low to reduce the power consumption. As the system is already globally syn-
chronous a clocked interconnection structure is also preferred.

The increased latency by using a network, should be kept as low as possible.
However, audio processing is quite tolerant to latency, as long as it is consistent i.e.
no jitter. Because of the low clock frequency additional clock cycles spend in the
network are expensive.

The network must be able to handle both data, parameters and block configura-
tion. Furthermore it must be ensured that data and parameters are guaranteed to have
bounded latency and no jitter to occur during normal operation.

To summarize the network has to be as cheap as possible in terms of area and
power, while maintaining flexibility. The system is characterized as a real-time sys-
tem with well known traffic patterns. Reconfiguring network without data loss is not
crucial, a few samples can safely be dropped.

4.2 Network Topology

The topology has great influence on most aspects of network design. Routing and
application mapping depend directly on the chosen topology. The topology is very
important in terms of area, power dissipation and latency. The majority of networks
proposed in NoC research are not targeted specific applications, but are developed as
more general interconnects, for use in a variety of systems. However, in this project
the NoC is designed with only the back-end system in mind. Any application specific
optimizations can be used to bring down the costs of using the NoC.

There is no straight forward way to choose a suitable network, it is a complicated
design trade off with great influence on the NoC design. An optimal solution is hard
to find and may not exist.

The approach taken here is to take the traffic pattern of the current system into
consideration, and find a topology that this pattern can be mapped into in an efficient
way. The traffic pattern of the current system shows a great diversity in bandwidth
requirements. The most bandwidth intensive block requires more than a factor of 100
more bandwidth than the least communicating block. Furthermore the traffic pattern
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shows locality that can be exploited. The following lists possible topologies. Others
exist though, but these are common topologies, which are good candidates for small
NoC designs.

4.2.1 Tree topologies

One approach is a tree based topology as described in Section 2.2. The short overall
path between any two blocks in a bidirectional tree means low power dissipation and
latency. However, the root is a bottleneck. The back-end system main traffic flow
will causes a significant amount of traffic through the root links. The traffic locality
must be exploited.

Binary tree

The mux/demux topology has simple routing and cheap routing nodes, which are
essentially multiplexers and demultiplexers as known from CHAIN[2]. However,
traffic locality can not be exploited, which is problem because of the bandwidth re-
quirements. The root link has to cope with the entire bisection bandwidth on a single
link, which makes this topology infeasible.

Fat tree topology

The fat tree topology counters the root bottleneck by having multiple roots. The short
paths of the tree topology are maintained and traffic locality can be exploited. Two
examples of fat tree topologies are the butterfly fat tree topology shown in [10], which
has routing nodes with two parent links and four child links, and the SPIN[3], which
is more link intensive by having four child and parent links for each routing node.
The disadvantage is more complex routing nodes because of the increased number of
routing node ports, and a more advanced routing as there are multiple paths between
two blocks. Due to complex routing, limited support for physical clustering and
mapping this topology is not suitable for this application.

4.2.2 Grid topologies

Another option is to use a grid based topology as introduced in Section 2.2. Opposed
to hierarchical topologies, there is no single bottleneck in the network, which makes
it very flexible for use in systems with very different use-cases. Link redundancy
means support for advanced routing schemes. Care must be taken to avoid deadlocks.

Mesh topology

The mesh topology has great support for physical clustering, as four neighbors are
just one link away and mapping is not restricted by any hierarchy. It is possible to
balance the traffic among all links in the network, even though it may not be possible
for real applications. The downside is the number of relatively complex routing
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nodes, which means a high cost. High network utilization is hard to obtain, because
of the link redundancy.

Torus topology

The torus topology is a simpler grid topology. Unidirectional links means low routing
node costs. The downside is that it does not benefit from local traffic and routing is
restricted. Lack of physical clustering has an impact on latency, which makes it less
suitable for this application.

4.2.3 Custom topologies

A different option is to use a custom topology, where topology and mapping are inte-
grated. Reducing the network resources to match the requirements of the application
and thereby compromising the overall flexibility can reduce the NoC costs signifi-
cantly.

In systems with well defined use-cases this optimization is obvious. Especially
single use-case systems can reduce the network overcapacity to a minimum, while
systems with many use-cases will have some overhead to support all use-cases.
Knowing the exact system requirements is very important. For this application the
exact system traffic is known and a level of overhead for flexibility has been specified.

Custom topologies may be optimized topologies or designed from scratch. The
following lists different approaches and optimizations.

Custom from scratch

A custom topology can be designed from scratch inspired by the task graph of the
application. But it will become a complex task in systems with multiple use-cases.
A fully custom topology is an unstructured approach, which requires a huge design
effort, which may not pay off in the end. It is a more safe choice to rely on opti-
mizations for well understood topologies, which makes this option irrelevant to this
application.

Optimized topology

An optimized topology based on a regular topology is another option. The approach
is introduced in [4] and [13].

In [13] the NoC design flow has three phases illustrated in Figure 4.1.

1. In the first phase the application is mapped to into hardware blocks and traffic
model is developed for initial simulation from which traffic characteristics are
obtained. These characteristics are used to generate graphs representing the
traffic flow between the blocks and bandwidth constraints.
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2. In the second phase the blocks are mapped onto a generic topology. The map-
ping considers several design objectives, such as minimizing power consump-
tion and hop delay.

3. In the last phase post optimizations are carried out. In this step redundant
switches, ports and links are removed. The result is a custom topology derived
from a generic topology in order to save resources, while still meeting the
application needs.
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Figure 4.1: Deriving custom NoC topologies. 1) Application graph, 2) Mapping to
generic topology, 3) Post optimization.

Multiple blocks per node

Another way of reducing NoC costs is to connect more blocks to each routing node,
and thereby reduce the network size. Blocks with low bandwidth requirements can
share a port in routing node or use any unused ports left over from topology optimiza-
tion or unused ports in nodes along the edges of the network. Both approaches are
illustrated in Figure 4.2. The disadvantage is that the NAs must be able to interface
all ports on the routing node, and the routing protocol will be slightly more complex.
This approach suits the application very well because of the different bandwidth re-
quirements among the blocks.

Multiple connections per block

Another option to reduce the overall NoC costs is to avoid network hot spots, which
requires significant more bandwidth than the system average. This can be done by
splitting the traffic among more interfaces to reduce the bandwidth requirements on
links and NAs as seen in Figure 4.3. This will not change the overall network topol-
ogy but care must be taken when mapping the application onto the topology.

Using multiple connection points to solve bandwidth issues for single blocks,
is simpler than scaling up the network resources locally. This optimization works
very well with the application as signals are already completely independent in the
current design, thus they can easily be distributed among more network interfaces.
Each connection can be treated independently except that physical placement of the
block in relation to the network must be considered.
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b)a)

Figure 4.2: NoC optimizations. a) Connecting blocks to unused ports. b) Sharing
ports.

Figure 4.3: Connecting a single block to two nodes to load balance the traffic across
two network interfaces.

Hybrids

It is also possible to use a hybrid solution. Special local requirements may be satisfied
better by using a different local topology or a dedicated signal, than scaling up the
entire network to handle this special situation. It can be viewed as a special purpose
region in the network, which is completely transparent. The disadvantage of this
approach is limited flexibility.

4.2.4 Design choices

Based on the previous discussion on different approaches on NoC topology and the
requirements, a design choice has to be made. As the main reason for using a NoC
in the system is to provide more flexibility in future systems, the topology should be
as flexible as possible at the lowest possible costs.

Generic topologies offer most flexibility, while optimized topologies are most
cost-efficient. It is therefore chosen implement two topologies for comparison: A
generic mesh topology and an optimized topology based on a mesh topology.
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Because of the great variation in bandwidth requirements of the blocks, both
topologies will be supported by a small number of point-to-point connections. Fur-
thermore both topologies will use interface splitting to even out the bandwidth re-
quirements further.

The mesh topology offers the best flexibility and physical clustering, though it is
expensive. The traffic requirements of the system are well known, which is a good
foundation for optimization. Both topologies are based on the same routing nodes
and NAs. The optimized topology will reduce the cost of a generic mesh topology by
connecting multiple blocks to each routing node and remove unused routing nodes
and links as proposed in [13]. The optimizations are closely related to the application
mapping, which is discussed in the following section.

4.3 Application mapping

Application mapping determines how the application is mapped onto the NoC topol-
ogy, i.e. how the blocks are arranged. The application is described by its use-cases
represented by application graphs as introduced in 2.5. The problem of embedding
one graph is intractable and is a well studied problem in literature with many heuristic
algorithms available.

The back-end system contains different traffic types. These are considered equal
during mapping to ensure predictable latencies for both audio samples and param-
eters. However, configuration parameters are not considered as they mainly occur
during mode shift. Reconfiguration is discussed in Section 4.4.

Mapping can be done in various ways depending on the main objective, like min-
imizing resource requirements. Mapping strategies are described in the following.

Bandwidth constrained mapping

One strategy is bandwidth constrained mapping, which maps the use-cases onto the
topology minimizing the link bandwidth requirements. Methods for bandwidth con-
strained mapping application graphs to generic topologies are presented in [16], [13]
and [17].

In [16] an algorithms for mapping a single application graph onto a mesh topol-
ogy is presented. The first algorithm uses minimal-path routing between blocks in a
mesh topology and the second refined algorithm uses traffic splitting to distribute the
traffic more even across the links in cases where multiple shortest paths exists. As
mentioned in the previously, mapping and topology optimization can be combined
for further improvement, which is done in [13].

A methodology for mapping multiple use-cases onto a NoC architecture is pre-
sented in [17]. Mapping such an application onto a NoC is a tedious task to do by
hand. Instead use-cases are grouped to form compound use-cases and the bandwidth
requirement is then the maximum of all bandwidth requirements of all involved use-
cases. The mapping algorithm presented in the methodology scales the network to
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fit by iteratively mapping the most bandwidth intensive path one by one from each
use-case.

Power and latency optimization

Other optimization parameters are also possible during application mapping. An
energy and performance aware approach is taken in [18]. An algorithm is proposed,
which maps blocks onto regular topologies minimizing the power consumption under
specified system constraints. The dynamic power consumption of the NoC is caused
by the traffic. A coarse model of dynamic NoC power consumption can be expressed
as follows.

Epacket = 2× ENA + nHops × ENode

The power consumption of the NoC-links is lumped into ENode, which makes the
power consumption of the NoC directly proportional to the number of hops between
source and destination. Reducing the number of number of hops saves power and
reduces the NoC latency. It can be done by using minimal routing and by using
topologies with more connections between routing nodes.

4.3.1 Design choices

Bandwidth constrained mapping has been chosen due to the minimal bandwidth re-
quirements. However, this choice does not exclude power and latency from consid-
eration. Bandwidth constrained mapping will also reduce power and latency, as the
most bandwidth intensive blocks are mapped close to put load on fewer links.

Two topologies have been chosen previously, which the application graph repre-
senting the system has to be mapped onto. The application graph representing the
current back-end system under normal use is shown in Figure 4.4.

As described in Chapter 3 the traffic between the four main blocks has by far the
largest bandwidth requirements. How these are mapped onto the topology is essential
to the system performance and the demands imposed on the NoC. It was chosen in
Section 4.2.4 to use a few point-to-point signals for the most bandwidth intensive
signals and use two NAs for the four most bandwidth demanding blocks. Removing
these from the application graph and connecting the four main blocks to two routing
nodes results in a modified application graph shown in Figure 4.5.

In certain situations data may extracted from blocks for statistical purposes. This
additional data can interfere with the existing traffic in the network and cause in-
creased latency. This can be treated as special use-case, but as latency for logging
purposes is not important, the traffic can be routed along links with low utilization to
limit the performance impact on the system. Data logging is not treated separately
in this design, but is considered as part of the reconfiguration overhead included for
new signals.
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Application mapping onto the optimized topology more complicated than map-
ping onto the mesh topology because of the topology integration into the mapping.
The following describes how mapping is performed on the two topologies.

Mesh topology mapping

The mapping is done by connecting the most bandwidth demanding blocks to neigh-
boring routing nodes. Then mapping blocks with less requirements, to keep band-
width intensive communication local. In the blocks using multiple connections, each
connection is placed relative to the block to minimize bandwidth requirements.

Optimized topology mapping

Application mapping and topology are integrated in the optimized NoC. The overall
structure is mesh-like, while the number of blocks connected to each routing node is
determined by the application mapping. The mesh is sized to have enough unused
ports for all required NAs. The mesh topology leaves three unused links at corner
nodes and two unused links at nodes along the edges, while only one link is available
at links embedded in the network.

The mapping is done iteratively by selecting groups of two or three blocks with
local communication in the application graph and assigning them to nodes in the
network. The sum of their global communication, additional capacity for redirecting
or adding extra signals later, and global traffic passing through the node must not
exceed the capacity of any link connecting the node to the network. All NAs on
blocks with multiple connections must be placed in the vicinity of the block.

Blink ≥ Bglobal + Bpass−through + Bextra

In nodes connected by more than one link to the network, the distribution of
global traffic among the links, depend on the mapping of destination blocks. The
condition above should hold for any link in the system, when all blocks have been
mapped onto the NoC. Any unused routing nodes are removed, while all links on the
remaining routing nodes are preserved for better flexibility and routing.

This mapping strategy saves area by reducing the number of routing nodes. It
reduces latency as the network size is smaller and fewer hops between the blocks.
Reduced distance also means lower power consumption. A higher utilization of the
routing capacity of the routing node is expected. Instead of mapping demanding
blocks on neighboring nodes, these should be mapped to the same node instead. The
routing node traffic is illustrated in Figure 4.6.

4.4 Services and features

The services of the NoC are the guarantees offered by the network by design. Fun-
damentally a network is expected to eventually deliver data at its destination uncor-
rupted. But in context of the back-end system real-time guarantees are interesting.
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Figure 4.6: Routing node traffic with multiple NAs attached.

The design costs are very crucial for this application, which correlates the choice
of services with the cost of their implementation. Choice are therefore made here on
basis of design options discussed later in Section 4.5.1

As described in Chapter 3 traffic in the back-end system is samples and parame-
ters pushed through dedicated wires between the blocks. This means minimal latency
of data transfers and the exact clock cycle where data arrive is known. Removing the
point-to-point signals and replacing them with a NoC will introduce some extra com-
munication latency. Added latency is not a major concern, but predicable latency and
low jitter are. If the network causes too much jitter, extra buffers will be needed
which will increase the costs significantly. The design options are discussed in the
following.

4.4.1 Guaranteed service

It is possible to provide hard guarantees in a tight coupled network as a NoC. GS
requires connection-oriented communication for network resources reservation. GS
can be thought of as a mere tool for system planning and traffic management. Traf-
fic planning is an easy task using a GS enabled network when resources, such as
bandwidth, are reserved.

However, it will be clear from the later discussion in Section 4.5.1 that connection-
oriented communication and resource reservation leads to more complex network
routers.

4.4.2 Best effort service

Opposed to GS, BE does not offer any hard guarantees. However, similar network
performance is obtainable without using connection-oriented traffic with bandwidth
guarantees. By using bandwidth constrained mapping as introduced in [16], traffic
can be planned in NoCs that are not GS enabled if the use-cases are well defined.

Thorough traffic planning requires deterministic traffic to exactly define the use-
cases. In systems containing non-deterministic traffic sources, precise traffic predic-
tion is not possible. In these cases explicit hard service guarantees is the only way to
ensure network performance.
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Introducing prioritized classes of BE traffic, allow high priority traffic to get
through congested parts of the network faster. However, having a slight overhead
network capacity will decrease the difference in performance of the priority classes,
as there is room for everyone.

4.4.3 Use-case switching

An important design consideration in relation to NoC services, is how services are
set up. A major concern in recent NoC research is reconfiguring the NoC when
changing use-case. This is mainly a problem in connection-oriented communications
such as GS, where connections have to be set up and taken down without data loss,
for a smooth transition between the use-cases. For connection-less communication
the use-case change must be synchronized between all parts of the system. But if a
smooth transition is not required, it is simpler to reconfigure connection-less NoCs
as there is no connection handling.

4.4.4 Multicast

An obvious feature to include in the communication system is multicast support.
Multicast can either be a feature of the network or handled by the blocks them selves.
The NA can implement multicast by supporting special multicast transactions from
the block and then send data to blocks. The NA will have an internal list of multicast
destinations, which must be configured before hand, similar to the routing paths. It
will add overhead to every NA in the network and increase the bandwidth require-
ment on link attached to the NA proportional to the number of blocks receiving mul-
ticast transfers. Multicast support can be moved to a special multicast unit situated
in a central spot in the network. Multicast is then available to anyone who needs it,
but adds another unit to the system. If the use of multicast is limited in the system
and the number of receiving blocks is just a few, the best solution is not to support
explicit multicast and let the blocks duplicate the transactions themselves.

4.4.5 Design choice

BE is chosen due to the fact that it is cheapest, and the traffic of the application is
well defined. All signals are deterministic and periodic which means that thorough
planning is possible. Under normal operation no unexpected traffic interference will
ever occur, which means that guarantees can be given from the use-cases. The cur-
rent traffic pattern of the back-end system will be used with bandwidth constrained
mapping as discussed in Section 4.3, which will ensure that bandwidth is sufficient.
Most of the signals have the same level of importance to the overall system perfor-
mance, which means that prioritizing traffic is not useful. The latency will depend
on the traffic interference, but will be low as long as the links are not at full capacity.

The total system latency can be determined by simulation and thereby taken into
account by the block design. The speaker output has to be periodic. Under normal
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use, this means that no buffering is needed in the system, as the latency is constant.
However, if special events, like data log extraction occur, additional traffic is added
to the network, which may influence the system latency. As long as the total amount
of traffic does not exceed the network capacity in any resource, the system will still
operate correctly, but the latency will be different. At the moment additional traffic
is introduced in the NoC, the period between the output-samples will be longer. But
once the latency has stabilized, the output-samples will arrive periodically again as
illustrated in Figure 4.7. To account for varying system latency buffering is needed
at the system output and the algorithms need to be able to tolerate limited variation
of the system latency.
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Figure 4.7: Latency variation impact on system output.

Varying latency is also the main reason why handshake protocol interfacing is
important. Blocks need to wait for data to arrive.

When the use-case is switched the blocks and the NoC are reconfigured. Block
reconfiguration involves resetting the block, so no smooth transition is required. Any
connections can be set up during the transition without paying attention to data loss.
However, the system uses many signals. If each signal require its own resource reser-
vations, the NoC will become quite complex to handle all of them. Furthermore as
discussed later in Section 4.5.1, connection-oriented communication requires some
kind of connection-less communication service to set up the connections.

During mode shifts the network and the blocks are reconfigured, which will cause
a burst of additional traffic in the network. The system is reconfigured as fast as
possible, which means that congestion may occur on some links temporarily dur-
ing reconfiguration. Thus the traffic will not flow as planned before everything is
reconfigured.

Multicast is not supported by the NoC and must be handled by the block itself.
Figure 3.2 shows very limited use of multicast and only involves two receivers.

4.5 Routing

Routing dictates the use of the network topology and the communication primitives
offered by the network, and thereby implements the network services. Routing is
implemented by the routing node and network adapter design and involves important
design choices. The following sections will discuss design choices regarding switch-
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ing, forwarding strategy, buffering and protocol which are all very important to the
network component design.

4.5.1 Switching

Switching determines how data and connections are handled by the network and
is a very important choice to both routing node design and the network services.
The two switching concepts have been introduced shortly in Section 2.3, but further
discussion is necessary to make a design choice.

Switching and network services are entangled design trade offs. Both GS and BE
considerations are discussed in this section because the cost of GS is the reason for
choosing BE in Section 4.4.

Circuit switching

In circuit switching resources are reserved throughout the network for that particular
connection. Circuits are logically independent and can not interfere in any way.

Circuit switching is advantageous in networks providing hard service guarantees.
Latency and bandwidth guarantees are inherent features. But the greedy resource
reservation has the disadvantage of low resource utilization. Resources are idle when
the circuit is idle, even if other connections might be able to use the resources. Cir-
cuit switched network has capacity for a certain number of circuits which cannot be
exceeded. Circuit switching is strict design approach that does not support BE traffic.

Looking at the back-end system a circuit switched network is a good choice from
a service point of view. Planning the traffic in a circuit switched network is straight
forward, as it is guaranteed by design that no signals interfere with each other. How-
ever, circuit switching has limited network flexibility, especially in cases where the
actual bandwidth is sufficient, but the conservative resource reservation prevent fur-
ther connections to be established. Though circuit bandwidth can be scaled by allo-
cating fewer or more resources, the diverse communication demands in this applica-
tion will cause a large resource overhead.

Packet switching

Packets are forwarded independently between routing nodes through the network
using available resources along its path. Because packets are independent entities,
they can be interleaved arbitrarily. This means that network resources are never re-
served and idle. Any idle resource can be used at any time as illustrated in Figure
4.8. There is no limitation on the number of connections through the network, just
limited network resources which limits the overall performance. Adding more traf-
fic will in general decrease the performance experienced by every individual data
stream. Resources are used efficiently and a high utilization is obtainable. But the
lack of resource reservation may cause congestion. Congestion has severe impact
on packet latency and system performance and should be avoided in real-time sys-
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tems, like this application. Congestion can be avoided by thorough characterization
of use-cases and network resource planning.
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Figure 4.8: Network resource utilization using circuit and packet switching.

Packet switched networks fundamentally treats all traffic as BE. Combining con-
nection oriented packet switching with service guarantees and resource reservation
give similar advantages to circuit switched networks. However, sharing idle reserved
resources is still possible as done in the router designed in [15] and in the EAthereal
NoC [6], where BE traffic can use unused reserved time slots. Combining BE and GS
traffic is the key to high resource utilization in GS enabled NoCs. The downside of
this approach is that the routing nodes have to handle the two types of traffic. Instead
of a having a router supporting either connection-oriented GS or BE, the router has
to include both, which will have an impact on the cost of the routing nodes. Though
BE support is needed for GS enabled NoCs for configuration anyway or a special
configuration bus must be used, which will be discussed in Section 4.6.

Design choice

Packet switching is chosen due to greater flexibility. The streaming behavior of the
signals in the system makes a circuit switched solution appealing. But circuit switch-
ing is better suited for systems with constant data streams with similar bandwidth
requirements. Packet switching flexibility leads to better resource utilization in this
application. Keeping the cost as low as possible is a main objective, which requires
high network efficiency and is another reason for choosing a packet switched design.

Traffic planning is not as easy in packet switched networks as communication in-
terfere. Non-deterministic traffic causes uncertain latencies because of unpredictable
interference. However, this uncertainty can be reduced or removed by GS support.
In deterministic systems like back-end system, use-cases are well known and traffic
can be planned using the bandwidth requirements as discussed in Section 4.3 even
without GS.

The packet switched communication is chosen to be connection-less without GS
support due to the choice made in Section 4.4.
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4.5.2 Forwarding

The forwarding mechanism is as important design choice in packet switched net-
works. It influences the buffering requirements, but also the protocol when packets
a blocked. Three forwarding approaches were introduced in Section 2.3, which will
be treated in further detail here to make a design choice.

Store and forward

The store and forward strategy is illustrated in Figure 4.9a. Stalled packets block
just the routing node, where it is currently located. The disadvantage is the buffer
requirements of the routing nodes. The buffers have to be able to hold the entire
packet, which limits the packet size. If the packet size is small, the links can be made
wide enough to transfer an entire packet in one step. This is the only way to obtain
a one cycle latency using store and forward. If the packet is split into more flits, the
first flit will be waiting for the tail flit to arrive before continuing, even if resources
ahead is available. This means a large total latency, which is given by:

lNoC = nflits × lflit × nhops + 2× lNA

In this application the clock frequency is low, which means latency is quite im-
portant and links must be wide enough to transfer the entire packet in parallel.

Wormhole

Wormhole routing approach is illustrated in Figure 4.9b. The advantage is the low
buffering requirements. Essentially each node just need buffer capacity to hold a
single flit. On the other hand if a packet is stalled, it will stall all nodes it is currently
spanning across. This can be avoided by using virtual channels but require redundant
buffers in each routing node. Wormhole routing use buffer space efficiently and has
low latency even for multi-flit packets.

lNoC = nflits + lflit × nhops + 2× lNA

Low latency, no packet size limitation and low buffering requirements makes this
approach suitable for this application.

Virtual cut-through

Virtual cut-through is illustrated in Figure 4.9c. Low latency is ensured by not wait-
ing for the last flit to arrive before continuing. But the next node has to be able to
buffer the entire packet before accepting the first flit. Virtual cut-through requires
more buffering than wormhole routing and packet size is limited. The additional
buffer space compared to wormhole routing is only used, when packets are blocked.
The network latency is equivalent to wormhole routing.
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a)

c)

b)

Figure 4.9: Forwarding strategies. a) Store-and-forward. b) Wormhole routing. c)
Virtual cut-through.

Design choice

Wormhole routing is chosen due to the fact that it has the lowest buffering require-
ments and low latency. Wormhole routing does not restrict the packet size. The sig-
nals of the back-end system have different bit widths, which makes flexible packet
sizes the best choice. The link width is chosen to be wide enough for transferring
packets containing a standard audio sample in parallel to reduce the latency.

4.5.3 Buffering

Buffers are a fundamental part of any network router. Each routing node needs
buffers to decouple the input ports from the output in order to segment the network.
Buffers account for the main router area costs in by far the most NoC architectures
presented in NoC research. Minimizing the buffer requirements under given perfor-
mance requirements is a major concern of NoC research.

The two main considerations involved in choosing buffering strategy is the buffer
size and their location within the router. These design choices will be discussed in
the following.

Buffer size

The buffer size influences the flow through the network. The minimum buffer size
is determined by the forwarding strategy as discussed previously, though buffer size
may be increased to act like queues. Large buffers smooth the traffic flow in case of
bursts, but can not prevent congestion. If traffic is running smooth the buffer size can
be kept low.
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In [12] an algorithm which sizes buffers in a mesh based NoC on basis of traffic
pattern is presented. It is shown that intelligent buffer allocation results in great
savings in area. Long queues are only needed if the traffic contains bursts.

In case of wormhole routing the buffer size also influences blocked packets.
Longer queues can reduce the number of nodes blocked by stalled packets, as they
allow more flits to assemble at each routing node.

For this application minimum buffering is major concern because of the area
costs, but decoupling buffers are needed. Considering decoupling, it is not possible to
have buffering capacity of less than two flits per port, while maintaining a throughput
of one flit per cycle. This is illustrated in Figure 4.10. Single flit buffers behave
like a pipeline, and need every flit throughout the system to move simultaneously as
illustrated in Figure 4.10a and 4.10b. A stalled flit may block the path of other flits
that may be several hops away. All depending flits must know immediately if they
can continue or not, which requires global signaling. To decouple output from input,
the input must be able to accept without knowing if the output is blocked or not,
which requires a buffer capacity of at least two flits, Figure 4.10d. Otherwise routing
node latency will be at least two cycles as shown in 4.10c.

c)

d)

Go Go
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GoStop
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Go
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Figure 4.10: Decoupling buffers. a) Global signaling: Blocked flit. b) Global signal-
ing: Free flow. c) Local signaling: Flit is blocked even though forwarding is possible.
The flit must wait for the next buffer to be empty, which increases the latency. d) Lo-
cal signalling using two-flit buffer: Full throughput.
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Buffer location

The buffer location and the number of buffers are both important design choices in
relation to routing node performance and cost.

The buffers can be situated at the input or the output of the router. The buffer-
ing location mainly influences how packets block each other. In long input queues
the flit at the head of the queue may block flits destined to other ports, causing un-
necessary performance reduction. However, if queues are short, the problem is less
significant and not present for single-flit buffers. Blocking can be reduced using vir-
tual channels, introduced shortly in this section and treated in more detail in Section
4.5.4.

Buffers may be distributed and dedicated to a port or shared in pools by more
ports. One approach is to have one dedicated queue for each input or output. Buffer-
ing capacity can be utilized more efficiently by more advanced buffering strategies,
like managing buffers in centralized buffer pools. However, these are found too ex-
pensive in area due to the overhead of controlling logic, as stated in [1].

Distributed buffering may be combined with the virtual channel (VC) concept.
VC is basically sharing physical links by several logically separate channels with in-
dividual and independent buffer queues, Figure 4.11. VCs allow packets to overtake
stalled packets among other performance advantages that will be discussed in Section
4.5.4. In relation to buffers, the independent buffers of VCs introduce more buffers
in the router design, but may allow shorter queues.

Physical link

VC 0

VC 1

VC 2

VC 3

Figure 4.11: Virtual Channels.

Design choice

For this application cost is the main factor in the design trade offs. Wormhole routing
was chosen earlier due to low buffering requirements. It is chosen to combine worm-
hole routing with virtual channels to minimizes the impact of stalled packets in the
network and obtain better buffer utilization.

Input buffering is chosen to minimize the link feedback signals required for an
efficient VC based design. Output buffering would require buffer status of all port to
be available to neighboring nodes to make proper protocol decisions.

The buffer size is chosen to be minimal, while maintaining full routing node
throughput and a latency of one cycle. As stated earlier a buffer capacity of two flits is
the minimum for full throughput. Instead of having a two flit queue, two independent
buffers can be used in an alternating manner. Thus two VCs are offered for only
the overhead of a switching unit with two inputs per port. Each VC can not utilize
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more than half the link bandwidth, which prevent data intensive communication from
starving others packets using the same link. The router has to alternate between each
VCs for full link utilization as illustrated in Figure 4.12.

This design uses two VCs to offer full link utilization and full decoupling (i.e.
a one cycle latency) with just two single-flit buffers at each input port. The link
utilization depend on the chosen VC handling, which is determined by the routing
protocol. The buffer size is minimal, but still efficient because of the VC principle.

a)

0

VC buffer

VC buffer

Switch

1

1

VC buffer

VC buffer

Switch

0

b)

Figure 4.12: VC input buffers. Full link utilization using one-flit buffers by alternat-
ing between the VCs.

4.5.4 Protocol

A network is a medium shared by many users. The protocol determines how to share
the resources in a fair way and avoid any conflicts. The protocol design includes
important choices on path selection, deadlock handling and resource allocation. A
NoC is a very restricted network that will under normal circumstances never be ex-
panded or reduced in size, capacity or number of blocks attached. The controlled
environment thus it can be assumed that data loss and corruption will never occur.

Path selection

The most fundamental task of the routing protocol is to determine the path from
source to destination, which data is to be forwarded along. Network topologies with
multiple paths between two locations make choosing the path a part of the protocol.
The aspects affecting the path selection have been introduced in Section 2.3, but will
be discussed in the following in relation to this application.

Routing can be either deterministic or adaptive. Deterministic routing has the
advantage of being simpler than adaptive routing. Adaptive routing involves dynamic
arbitration schemes based on current conditions in the network. An alternative path
may be chosen if one path is currently congested or based on some other condition.
This makes the path selection logic more complicated. The routing nodes have to be
directly involved in the path selection.

Comparing deterministic and adaptive routing it is obvious that adaptive routing
comes at the price of more complex routing nodes. In systems with deterministic
traffic conditions are predictable, and adaptive routing is unnecessary overhead.
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The path can be chosen to be minimal to minimize the overall network load and
power dissipation. But an alternative path may be a better choice to avoid congestion
in overloaded resources. In this application minimal routing is the best choice from a
performance point of view. But allowing different paths too, will increase the system
flexibility as network resources can be utilized better.

The actual path may be determined by source routing or distributed routing. In
distributed routing the path is chosen by the routing nodes. Each routing node decides
by itself in which direction to forward the packet.

In source routing the path is determined by the source network adapter. The path
through the network is included as the routing information in the packet header. The
path is read by the routing nodes to determine where to forward the packet. Relative
path descriptions allow simpler routing nodes, as they do not have to know their
location in the network. Figure 4.13 shows the principle of source routing using
directional instructions. If the paths given by the source NA can be altered, the
network is not stuck with one routing scheme. Paths may be changed arbitrarily
under different use-cases.

The path can be selected according to different schemes. XY-routing is a popular
deterministic routing schemes used in mesh based NoCs. XY-routing is characterized
by strict minimal dimension-wise routing. Furthermore XY-routing has an advantage
regarding deadlocks.

NA

NA

NA

NA

Figure 4.13: Source routing.

Avoiding Deadlocks

The previously chosen mesh based topologies have the possibility of circular depen-
dencies and are therefore prone to deadlocks. Deadlock avoidance is therefore a very
important part of the protocol design.

Deadlocks can be avoided by design or solved when they occur. Deadlock avoid-
ance is a conservative approach restricting the routing in a way that the system will
never reach a deadlock state. Solving deadlocks when they occur does not impose
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restrictions on the routing scheme, but needs to discard data or use a roll back mech-
anism.

Avoiding deadlocks by design is by far the cheapest approach, as there is no need
for special deadlock handling. In [14] it is proved that XY-routing in bidirectional
mesh topologies is deadlock-free under the assumption that packets are always re-
moved from the network at its destination.

The proof of absence of deadlocks in a network in [14] is summarized here for
the purpose of proving that XY-routing in optimized mesh-like networks is deadlock-
free. When a mesh network is optimized by removing unused links, as discussed
in Section 4.2, strict XY-routing is no longer be possible without modifications to
account for removed links.

The proof constructs a channel dependency graph to demonstrate that no circular
channel dependencies exist. Figure 4.14a shows the dependency graph of a regular
bidirectional mesh network using XY-routing, while Figure 4.14b shows that adding
an extra node creating an irregular topology, does not introduce cyclic dependencies.
The dashed line indicates routing that does not comply with the XY-scheme, caused
by the missing links.
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Figure 4.14: Channel dependency graphs which show absence of cyclic dependencies
when using XY-routing. a) Dependency graph for a regular 3 by 3 bidirectional mesh
without VCs. b) Dependency graph for irregular mesh-like network.

Resource allocation

Resource allocation is an important design topic in relation to NoC performance. The
resources of the network are the links, buffers and VCs.

Order preservation is a very valuable network property for the system designer.
The resource allocation therefore has to ensure that packets between two blocks pre-
serves ordering, while they can be interleaved arbitrarily with other packets. Deter-
ministic routing is a prerequisite for network guaranteed order preservation.
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The use of VCs and wormhole routing means that flits may overtake each other.
However, they are a part of a packet that must be logically separated from other
packets. Flit handling is how packets are treated as entities, while packet ordering is
how to ensure data ordering. These are both important choices along with input port
arbitration.

Flit handling

One approach is to forward each individual flit using any available VC without
regard to packets. This means that every flit has to contain routing informa-
tion as the routing node has no way to distinguish flits from different packets.
The header is a large overhead, which makes this choice infeasible for this
application.

Another approach is keep flits of a packet logical separated from other flits by
VC reservation. When a multi-flit packet arrives at a routing node, the node
reserves a VC on the output link for that particular packet. The VC is released
when the last flit of the packet has been forwarded. Thus the flits of each packet
are handled as a logical entity. As long as each VC is reserved for each packet
while it is passed through, no one else can use that VC. However, the physical
link is still available to the other VC, if the packet is blocked. The advantage
of this approach is that the routing node knows that packets are send separately
using only one VC. When the destination of the packet has been determined
from the packet header in the first flit, all the following flits can be forwarded
in the same direction until the last flit marks the end of the packet and releases
the VC reservation. Thus no routing information is need for the following flits.

Packet ordering

One approach is to assign specific directions to a specific VC. The routing node
determines the VC by the direction of the packet in the next node. Packets
destined for a particular output port on the following node is always assigned
to one VC. Thereby packets heading for the same destination can not overtake
each other preserving ordering. This approach is very inflexible, especially in
this case where the number of VCs is less than the number of output ports.
More outputs must be assigned to a single VC, which means that packets may
block each other for no reason.

Another approach is to forward packets using any available VC and preserve
ordering by recording the order of arrival. It may happen that two packets with
the same destination use both VCs. The first to arrive must be forwarded first
to preserve ordering. This solution is less restrictive and more efficient with a
low number of VCs. The downside is that in a worst case scenario packets for
the same destination may end up blocking all VCs on an input link. However,
this situation is unlikely to occur.

Port arbitration
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One approach is to use a dynamic port arbitration scheme, to ensure a fairer
scheduling of the packets arriving at the input ports. Round-robin is an ex-
ample of scheduling scheme providing weak fairness. However, such schemes
become complex when multi-flit packets come into consideration.

Another option is static scheduling. The input ports are handled by a prioritized
list. If the first port has flit waiting it is forwarded otherwise the next port is
handled and so on. This approach does not guarantee any fairness, but copes
well with VC reservation. Input with ongoing VC reservations can easily be
assigned higher priority.

Design choice

The size of the NoC and the number of blocks attached to it, make deterministic rout-
ing a better choice than adaptive routing schemes. Traffic conditions are predictable
and eliminate the need of adaptive routing.

Source routing is chosen due to simpler routing node design. The network adapters
hold an address table containing paths to which it needs to communicate with. Obvi-
ously these addresses must be inserted into the table before any communication can
take place. Redirecting a signal is done by changing the corresponding path in the
address table of the source network adapter.

The chosen topologies are mesh-based, which makes XY-routing the best choice
due to the deadlock prevention. In the optimized network topology, strict XY-routing
may not be possible. In these cases routing is done as close to XY-routing as pos-
sible with slight modifications to take removed nodes and links into account. These
modifications makes source routing an excellent choice as the paths are explicitly
programmed into the NAs. The routing nodes do not need to know anything about
neighboring nodes or attached blocks. Packets are forwarded solely on basis of the
path included in the packet header. This means that non-minimal routes are supported
too, for better system flexibility.

Flit handling is chosen to be handled by VC reservation as it is most efficient.
Packet ordering is done by input ordering. Deterministic traffic, bandwidth con-
strained mapping and alternating use of VCs makes it is unlikely that two packets
will end up blocking both VCs an a link. Static input arbitration is chosen.

4.6 Programming model

The programming model design specifies how NoC is configured, which is important
in relation to the system flexibility. Connection-less packet switching using relative
source routing have been chosen earlier, which means that the routing nodes do not
need any configuration. Only the NA configuration is necessary. The design choices
to be considered are who is responsible for configuring the NAs and how it is done.
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4.6.1 Distributed programming

One approach is to let each block configure the NA it is attached to. This requires
network-aware blocks and the blocks has to be able to access the network config-
uration. The advantage is that any block is in control of its own communication.
However, all blocks have to network-aware and hold its the configuration locally or
have access to some other communication structure to get it elsewhere.

4.6.2 Centralized programming

Another approach is to let one network-aware unit configure all NAs in the entire
network. This unit knows the network topology and is able to send configurations to
all NAs in the NoC. The advantages are that the blocks can be network-unaware and
only one unit needs to have access to initial network configuration, which typically
stored in externally.

4.6.3 Programming method

Programming can either be done using the network itself or a dedicated configuration
bus. Having separate communication structure just for configuration seems unneces-
sary. But the network is unable to transfer any data before it is configured initially,
this is the only option. However, the routing nodes in this design are not configurable
and fully operational, which makes programming using the network itself possible.

Configuring the NAs using special configuration packets means that any attached
to the network is able to change the configuration of any NA.

4.6.4 Design choices

The back-end system already contains a unit responsible for configuring the blocks.
It is obvious to use a similar unit attached to the network to both configure the NAs
and the blocks.

The blocks in the current back-end system design is configured using a special
configuration bus, which is responsible for loading configuration parameters into the
system from external non-volatile memory. This bus is sought replaced by the general
network, but a configuration unit is still needed.

It is therefore chosen do initial NA configuration centralized by a special unit at-
tached directly to the NoC which has access to the configuration in external memory.
The configuration of the NAs is done by configuration packets containing the routing
information to be written into the NA address table. The packets are tagged using a
configuration flag in the packet header. Anybody able to insert configuration pack-
ets can program any NA. This is a valuable feature if a future back-end system will
include a general purpose processor. It will then be able to take control and redirect
data streams if it is needed.
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4.7 Interfacing

The network interface design involves important design choices, as it defines the
abstraction of the network to the blocks attached. Possible abstraction models were
introduced shortly in Section 2.5.

4.7.1 Abstraction

One approach is memory mapping, which is very suitable fro systems that are al-
ready operating with memory abstraction like general purpose processors do. The
blocks are network unaware and the NA appears as a normal memory interface to the
attached block and network communication is hidden as read and write operation.

Another approach is message passing, which is network aware. The blocks com-
municate by sending messages to each other identified by logical identifiers. The
NAs will then translate the message into network traffic.

Both approaches mentioned above are primarily targeted SoCs using proces-
sors. There is no global memory abstraction in the current back-end system but
data streams. Instead of introducing a higher level of abstraction than necessary, data
streams are handled like virtual wires. The signals in the back-end system does not
use explicit read or acknowledges write operations, data is pushed on the next block
without any feedback. There is no need for a higher level of abstraction as long as
the system is constructed from dedicated blocks. Furthermore the virtual wire model
means simpler NA design by avoiding blocking commands.

4.7.2 Interface

The blocks in the current system does not use any kind of common interfacing, which
means that some blocks uses many signals of various bit width while others use just
a few. In order to design a generic network adapter, it is assumed that these signals
are multiplexed into a single interface.

Similarly it is assumed that the block is able to demultiplex incoming streams.
Demultiplexing multiple signals from the same source can be done by counting, as
deterministic routing using certain VC arbitration ensures that data ordering is always
preserved. Blocks receiving signal from different sources require indication of the
source of the data it is currently receiving. This can be done by including a source
and/or stream ID in the header of the packet or explicitly as a part of the packet
payload. It has to be unique, which requires the ID to be agreed between sender and
receiver. The agreed ID has to be reconfigurable in both ends, to allow redirecting
signals to other blocks. But the choice is left for the block design.

The interfacing protocol used in the existing design is a simple data valid protocol
that pushes the data on without any feedback. This protocol is not sufficient in a
NoC based system, as it can no longer be assumed that the receiver, which is now
the network, is ready to accept the data. A request/acknowledge protocol has to be
employed instead.
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4.7.3 Design choices

The chosen interface design is simple data in- and output using request/acknowledge.
It is assumed that signal are multiplexed and demultiplexed by the block itself. Sig-
nal multiplexing and dealing with the request/acknowledge protocol requires insight
to the actual implementation of the blocks, which is not investigated further here.
Replacing a point-to-point communication system in a very tightly coupled system
with a NoC, will require some modifications of the blocks related to interfacing.

The block configuration bus is replaced by ordinary network traffic. The block
itself must separate from the incoming data. Block configuration might be tagged by
the configuration unit. This is left for the block design.

The block interface is illustrated in Figure 4.15 and consists of a data input, a
destination selection input, which used by the NA to select the right destination, and
the request/acknowledge signals.
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Figure 4.15: The NA/block interface.

4.8 The networks

This chapter has discussed the design trade offs involved in designing a NoC to re-
place the point-to-point connections and the configuration bus of the back-end sys-
tem used in digital hearing aids by Widex A/S. This section will summarize the design
choices and apply the design methodologies to form the network adapter, the routing
node and the network designs.

Area and power dissipation have been the main focus throughout the design dis-
cussion. The major challenge in designing NoCs for very small systems is to deter-
mine essential features of the NoC that are required by the application. Two NoCs
has been chosen for implementation using the same NoC components.

1. A NoC based on a regular mesh topology.
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2. A NoC based on optimized mesh-like topology.

Both NoCs follow the same design specification and differs only by topology and
application mapping. Source routing and topology unaware NAs and routing nodes
mean that the NoC components can be used to construct both topologies. The design
choices are summarized below.

• Connection-less packet switching implementing BE communication ensures
simple but flexible communication.

• Wormhole routing means minimal buffering and no packet size limitations.

• Source routing means programmable paths and topology unaware routing nodes.
Deterministic XY-routing ensures data order preservation and prevents dead-
locks.

• Two virtual channels for efficient buffer utilization and better traffic flow.

• Bandwidth constrained mapping and known use-cases ensures that latencies
are predictable.

4.8.1 The routing node

The routing node is a generic 5-port router illustrated in Figure 4.16. All ports are
equal and have one physical link for incoming data and one for outgoing data, both
having two VCs. The port names in Figure 4.16 are insignificant. Any port can be
connected to either another routing node or a NA.

Figure 4.17 illustrates the routing node design. The VC buffers are located at
each port. The VC buffers are available to the output ports through the switch. The
switch is not fully connected. Packets can not turn around and return the way they
came. The switch is controlled by routing logic at each output port, which determines
which packets to be forwarded. If the packets do not compete for the same output
port, full throughput on all inputs and outputs is possible simultaneously. If two ports
try to access the same port, one of them is chosen by the static arbitration scheme.
Starving one source is theoretically possible, but is not a problem as long as the links
of the network is not fully loaded.
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Figure 4.16: 5 port routing node
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Figure 4.17: Routing node design overview.

The links between the routing nodes transfer one flit at the time in parallel in each
direction. Data serialization is expensive and requires NoC transfer rates significantly
faster than block throughput.

The back-end system operates at a low frequency, which means pipelining the
implementation is not necessary. Buffers are expensive in terms of area, should only
be used for decoupling purposes in relation to routing and forwarding.

Source routing means that the path in the packet header is represented by a series
of direction instructions, one for each routing node. Each node read the first instruc-
tion and forwards the packet in the specified direction after the path has been rotated
one instruction in the packet header.

4.8.2 The network adapter

The NAs are designed to use only one VC at the time, as handling both VCs simul-
taneously dramatically increases the complexity of the NA. Furthermore restricting
all NAs to use only one VC means they can only use half the bandwidth of any net-
work link. Thus the flit interleaving on the links prevent data intensive streams from
starving other streams.

The network adapter has a block interface and a network interface matching the
ports of the routing node. NAs are connected to the network using the same type
of links as between the routing nodes and behaving similarly, which mean that NAs
can be attached to any port on the routing node. This is exploited in the optimized
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topology. The NA buffers block data inputs and wraps into packets. Buffering the
data will release the block earlier in case of large packets, which are split into more
flits. Similarly flits received by the NA have to be buffered before the payload can be
assembled and delivered to the block. Just as the NAs are designed to use only one
VC when sending packets, they cannot receive packets simultaneously on both VCs.

The NoC latency is determined by several factors. The main contributor is the
logical distance between source and destination. Ideally one hop is one clock cycle,
however interference with other traffic may increase the latency. Furthermore flit
serialization and alternating use of VCs increases the latency for each additional flit,
which leads to this general expression of the NoC latency.

lpacket = 2× lNA + (nflits − 1)× lflits + nHops × lNode + linterference

Inserting know latencies into the expression gives the following latency estimate.

lpacket = 2 + 2× (nflits − 1) + nHops + linterference

Source routing means that the NA is not topology dependent. The NA just has to
know the path to be included in the packet header. This path is hold in an address ta-
ble indexed by the address signal from the block. The address table is initially empty
and has to be programmed at system initialization using programming packets. The
contents of the received programming packets are written directly into the address
table. Figure 4.18 illustrates the design of the network adapter.
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Figure 4.18: Network Adapter design overview.

4.8.3 The mesh

The mesh based NoC is constructed using the previously designed NoC components.
As discussed in Section 4.3 the traffic of the four main blocks of the system is split
across two NAs. 16 NAs are therefore needed to accommodate the entire system. A
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4 by 4-node mesh is designed for the purpose. The programming unit is connected
to an unused link at the edge of the network. The application graph is mapped to the
topology by placing bandwidth intensive blocks close as discussed in Section 4.3.
Figure 4.19 shows the system design. Two signals have been assigned to dedicated
point-to-point links to reduce the bandwidth requirements. These are not shown in
the figure.

The bisection bandwidth of the 4 by 4-node mesh equals the total bandwidth
available to the cores. Congestion is therefore local problem, it is solved by the
mapping.

1

2 3

4

95

6

7

8 10

11

12

Figure 4.19: The mesh based NoC with mapping.

4.8.4 The optimized mesh

The optimized mesh network has to be sized to accommodate 16 NAs and leave one
additional link for the programming unit. The network is aimed to be square shaped
to minimize the maximum number of hops between two blocks.

At least 7 routing nodes are required to accommodate the 16 NAs in a mesh-like
topology. One routing node is connected by only one link. The mapping is done
according to the method discussed in Section 4.3. The network layout and mapping
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Figure 4.20: The optimized NoC with mapping.

is illustrated in Figure 4.20. The XY-routing has to be modified slightly to account
for the missing node.

Reducing the number of nodes brings the blocks closer in terms of network dis-
tance. This means that the maximum number of hops between two blocks is reduced.
Bits can be saved in the packet header, when the path is shorter.

The optimized mesh topology brings the blocks closer, which means further de-
crease in power consumption than what is saved by having fewer routing nodes and
links.



Chapter 5

Implementation

This chapter presents the NoC implementations and how results have been obtained.
An overview of the design tool flow is presented and power estimation is discussed.

A NoC is not a system by itself, it is the interconnection structure that binds the
system together. The essential parts of a NoC, which is the routing nodes and the NAs
have been implemented at RTL, while other parts have been modeled by behavioral
simulation components. The NoCs have not been integrated into the current back-
end system design, as it would require modifying the block interfaces as discussed
in the design. The purpose of the implementation is to find a realistic estimate of the
NoC costs for future system designs.

The blocks are modeled by traffic generators, emulating the traffic pattern of the
current back-end system. The programming unit responsible for configuring both
block and network is modeled by behavioral code, as it is the communicating with
off-chip memory. The implementation is done in VHDL, both for behavioral and
RTL implementations. Tools for code generation and traffic generation have been
developed in C and Perl. The VHDL source code is included in Appendix C.

The following sections will give an overview of the implementation of the net-
work adapter and the routing node, used to construct the two NoCs implemented in
this project.

5.1 Routing node

The routing node has five bidirectional ports that are completely independent and can
operate simultaneously at full bandwidth. Distributing the control logic among the
ports are therefore the most simple and efficient implementation. The routing node
implementation is split into sub-entities. The VC buffers are located at the input ports
and are implemented as buffers with room for a single flit. The header decoding is
handled by a separate unit for each input buffer. The actual routing logic is imple-
mented as an entity placed at the output ports. The routing node implementation is
illustrated in Figure 5.3.
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Before looking into the internals of the routing node, the NoC links and the flits
are described.

5.1.1 NoC links and flits

Wormhole routing means that packets can span multiple flits. The routing informa-
tion is only included in the first flit as illustrated in Figure 5.1, while the following
flits only contains data. When the first flit has been forwarded, the routing node has
to remember the output port and VC for the following flits. The path included in the
header is a string of instruction to the routing nodes. Each instruction dictates the
forwarding direction. The string is rotated when the flit is forwarded, thus the first
instruction of the string is always the next to be executed.
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Figure 5.1: Flits. a) The first flit of a packet. b) Additional flits if the packets span
more flits.

The NoC links consists of a signal wide enough for transferring one flit in parallel
along with the packet type flag and signaling bits. The signaling bits are not a part
of the flit, but indicates if data is valid, the active VC and if the current flit is the last
flit of the packet. The NoC link has a signal in reverse direction to indicate whether
buffer space is available or not. Figure 5.2 illustrates the NoC link.

Available buffersData valid

Virtual Channel

End of packet

Packet type

Flit

Forward link FB link

Figure 5.2: NoC link.

5.1.2 Flit handler

The flit handlers is located just after the input buffers and handles header decoding.
The buffer status is feed back to the neighboring node, for use by its router. The path
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is decoded and the direction is stored in case of a multi-flit packet. The presence of
a flit signaled to all relevant routers. When a new flit arrives to either VC buffer, a
signal is toggled to indicate the newest flit in order to preserve packet ordering.

5.1.3 Router

The routers implement that actual routing mechanism. Several flits may be destined
for the same output port, which requires input arbitration. The arbitration is static
prioritizing among the input VC buffers. As long as the network is not fully loaded,
the arbitration scheme has very little or no impact on the NoC performance. Flits
for reserved VCs are given higher priority to finish packets as soon as possible and
release the VC. A VC is available for new packet transmission if it is not reserved
and the buffer in the receiving node is empty. The VC is released as soon as the last
flit has been forwarded.

The routers can not forward packets from their own input, but select flits from
any other input buffer using an eight input multiplexer.

The implemented logic is simplified by the fact that the buffers are able to hold
one flit only, but is otherwise highly configurable. Adding deeper buffers will require
modifications to the input arbitration. However the cost of adding deeper buffers has
a much greater cost impact than a slightly more complicated arbitration scheme.
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NoC link fw

NoC link bw

NoC link fw
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Control

Flit handler

Flit handler

Flit handler
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NoC link fw

NoC link bw

3 more ports

Figure 5.3: Routing node implementation showing only two ports.
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5.2 Network adapter

The network adapter has a NoC and a block interface, which are both bidirectional.
The NoC interface communicates directly with any port on a routing node.

The block input and output ports are separate signals. The input port has two
additional signals for indicating address and packet type. The address selects the
data destination and the packet type indicates whether the packet is ordinary data or
a NA configuration packet. This allows any block connected to the NoC to configure
NAs.

The NoC interface has an input and an output port just as the routing node shown
in Figure 5.2. End of packet indicates that the flit is the last flit of that packet, which
clears any VC reservation in the routing node. The type flag is used only by the NA
for configuration packets. These are used to configure the NA and will never reach
the output port on the block interface.

The NA implementation is separated into sub entities similar to the blocks shown
in the Figure 4.18.

5.2.1 Unpack unit

The two VC buffers are located at the NoC input, followed a single unpacking unit.
Header data is discarded and data is reassembled in an internal buffer. It is then pre-
sented on the block output or written to the address table if the received packet is a
configuration packet. Packets may arrive at both VCs, however the NA implementa-
tion handles one packet at the time, blocking any packets arriving on the other VC.
Worst case, the NA is capable of receiving flits at the rate of a single VC.

5.2.2 Pack unit

The packing unit converts data input to flits. As mentioned earlier, multi-flit packets
are forwarded using reserved VCs. Packets are inserted at half the rate of the NoC
link, unless two packets are generated simultaneously and forwarded interleaved by
the NA. The implementation supports one packet to be sent at the time. The data
block input is buffered before it is wrapped into flits. The header of first flit contains
the path selected by the address input in the address table. The following flits contain
just data. The NA can be configured to any data width and flit size at instantiation.
However the flit size must be large enough to hold the header.

The address table of the network adapter is a register file which is quite expensive
in area, thus keeping the number of entries as low as possible is important. Most
blocks only communicate with a few other blocks, but a general purpose processor
in a future back-end system might need to communicate with all other block without
reconfiguring the NA. The number of entries is therefore implemented as parameter
specified by instantiation.
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5.3 Network configuration

Source routing means that the address tables of the NAs must be configured before
any communication is possible. For simulation purposes a behavioral programming
unit has been implemented along with a tool for generating configuration packets to
initialize the NoC. The XY-routing is implemented by the NoC configuration. The
routing scheme can be changed by using other paths in the NA configurations. This
flexibility makes optimized topologies possible, as missing links and routing nodes
can be taken into account in the configuration. However, deadlock-free routing must
be reconsidered, as discussed in Section 4.5.4, if the routing scheme is changed.
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Figure 5.4: NA configuration packet. The payload contains the address to be the
configured and the path to be inserted.

5.4 Traffic generators

The blocks connected to the NoC are modeled by behavioral traffic generators. The
traffic generator uses a file for input, which lists data to be input along with a time
reference indicating when to send the data. Data received by the traffic generator is
logged to an output file. Tools have been developed in C and Perl to generate packets
and analyze logged packets.

5.5 Synthesis

To estimate the costs of the NoCs, the RTL code must be translated into a physical
implementation. The area and power consumption depends strongly the target plat-
form for implementation. Different technologies have different characteristics and
leads to results that are not directly comparable. In order to produce results that can
be compared to the existing back-end system implementation, a similar design flow
must be used.

5.5.1 Design flow

Widex A/S provided access to their design tools, flow and technical assistance for this
project, to produce as realistic results as possible. The design flow used is the flow
used for the current back-end system implementation. Thus the results are expected
to give a realistic idea of the costs of the NoCs. The flow will be described briefly to
provide an overview.
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The target technology used by Widex A/S is low-power 0.13µ. The flow is in
general very focused on low power design and illustrated in Figure 5.5. It consists of
various tools, scripts and configurations.

The first step towards a physical implementation of the RTL code is logic syn-
thesis. This is done using Synopsys which maps the RTL description into a netlist of
primitives available in the design library. The output is a verilog netlist and timing in-
formation in SDF (Standard Delay Format). Synopsys is also able to give pre-layout
area estimate, based on the netlist.

The verilog netlist is used to verify the design at gate-level with timing informa-
tion. The verilog model inserted into a VHDL test bench for stimuli and simulated
using Cadence NCsim. A module is incorporated in the verilog model to record
switching activity at all internal signals in the netlist in SAIF (Switching Activity
Interchange Format).

The switching activity information is fed back into Synopsys along with the orig-
inal verilog netlist to optimize the netlist with regard to power consumption. This
means that the netlist is altered to reduce the power as much as possible with the
switching activity causes by the test bench. The power optimized netlist is then used
by Synopsys to estimate the area and power consumption of the design after new
switching activity has been recorded using gate-level simulation.

The next step towards an ASIC implementation is physical planning of the prim-
itives in the netlist. This is done at Widex A/S using Synopsys Physical Compiler.
As the NoC is only the communication structure of a whole system, this step has not
been performed.

5.5.2 Power estimation

The EDA tools are able to estimate power consumption using the gate netlist be-
fore physical mapping and wire routing. The exact wire lengths are not known and
approximated loads are used to model the loads of the wires. This model is fairly
accurate. The flow used at Widex A/S usually predicts the power consumption with
accuracy around of 10% of the actual chip, from the netlist alone.

A NoC is not a separate part of a system, which makes accurate power estima-
tion more complicated. Synthesizing the NoC alone will make the flow treat as a
complete system, placing all logic close together. If the NoC is embedded into the
back-end system, the logic is more likely to be distributed among the blocks of the
system, i.e. NAs will be placed within the blocks and the routing nodes close by.
The links will be long wires, which are not accounted fore in the pre-routing power
estimation. Furthermore additional buffers and stronger drivers may be introduced
during physical planning, which will affect the power consumption too. However
physical planning of the NoC is not possible without the rest of the system.

The only option is to rely on the pre-routing power estimation. The estimate is
based on the actual switching activity in the netlist produced by the synthesis tool,
extracted from the gate-level simulation. However the estimated will be lower than
what can be expected for a real NoC implementation. On the other hand the power
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Figure 5.5: Synthesis flow.
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consumption without wire loads can be directly compared to the power consumption
of the current back-end chip, where similar wires are already present. The power con-
sumption reported pre-routing can be viewed as an estimated overhead that will be
introduced by the NoC. Otherwise the power consumption of the wires in the current
system should be deducted from the total power consumption for a fair comparison.

A more correct result can be obtained by manually adding load to the links to
model the expected wire loads. Wires loads can be estimated by various more or less
realistic models. An overview of wire models can be found in [19]. For this purpose
a lumped capacitive load is sufficient. Many factors come into play for the actual
wire loads, which are impossible to account for. The purpose of adding wire loads
is to get a slightly more realistic power estimate. The actual power consumption
can not be found without integrating the NoC into the actual system and do physical
planning and route the wires.

The link length can quickly be estimated from the dimensions of the current
back-end chip, and used along with the technology specification to estimate the ca-
pacitance of a wire. This capacitance could be introduced in the netlist either by
directly editing the net list or by adding logic load similar to the wire load. The
netlist is generated by the flow and is not human readable, which makes modifica-
tions more difficult. Another approach is to add extra gates to the wire with a load
similar to the wire capacitance estimate. But the advanced synthesis algorithms may
avoid the extra loading. A third option is to use the Synopsys facility for wire load
modeling. Synopsys supports different wire load models provided by the technology
library for estimating wire loads before physical planning. Adding the load before
synthesis, will make the tool account for the load and create more realistic driving
circuits to the loaded wires. The Synopsys model has been applied.

Power consumption and area estimates have been produced both with and without
modeling the wire loads. Excluding the wire load model estimates the cost of the
logic and the buffering of the network. The wire model setup approximates the wire
loads based on the size of the system. Overriding the size by specifying the size of
the entire system, i.e. the size of the current back-end system, gives more realistic
wire loads. Furthermore driving circuits are synthesized to fit the increased wire
loads. The downside of the Synopsys model is that wire loads are distributed evenly
among all wires. In a real implementation the wires within the routing nodes and the
NAs are most likely to be very short with no significant wire load, while the NoC
links are longer and have greater loads. Thus the estimate including wire load is very
pessimistic, but provides an upper limit on power consumption.

5.6 Verification

Testing and verification are integral parts of design implementation. Testing is done
both at RTL and gate-level. RTL simulation is cycle accurate and preserves all in-
ternal signals, which makes it excellent for debugging. The purpose of gate-level
simulation is to verify the functionality of the netlist generated by the synthesis tool.
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This simulation includes the gate timing information to verify the system timing.
Furthermore the switching activity of all internal nets can be extracted for power
estimation.

Functional tests have been carried out at RTL to verify the implemented compo-
nents. Initially blocks have been tested manually in small setups, before putting them
together to form a NoC. A testbench for the entire NoC has been made for full scale
functional test and to evaluate the NoC performance. In this main testbench the NoC
is configured and stimulated by behavioral black-box components acting as the pro-
gramming unit and the blocks found in the back-end system. The test data used by
these components are generated using scripts and tools implemented in C and Perl.
The black-box components generate packets to resemble the communication of the
back-end system and log incoming packets. These logs are then processed by scripts
to verify the NoC functionality and extract NoC performance data, like latencies and
link utilization. The main test bench is illustrated in Figure 5.6.

The main testbench is a functional test that tests both the indidual NoC compo-
nents and their ability to communicate. The NAs are programmed by the program-
ming unit and then the test blocks exercise the network. The test packets are tagged
to identify the packets at the destination. The traffic logs are compared to the traf-
fic input and the network configuration to verify the network functionality. The test
pattern can be changed by generating new configuraions for the test blocks using the
test tools developed.

The network has been synthesized and verified by gate-level simulations at nom-
inated clock frequency of the current back-end system. The testbench from the RTL
simulation is reused to verify the netlist produced by the synthesis tool and the timing
constraints of the current back-end system are met.

Neither functional testing nor gate-level simulation revealed any bugs or timing
constraint violations. The test pattern used resembles the data flow in the back-end
system and thereby gives a fair picture of the network functionality. Routing nodes
and NAs are tested under different load conditions in different part of the system.
However, a structural test of each individual components is the only way for complete
verification. This has not been done.
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Results

In this chapter the results of the implemented NoCs are presented. The NoCs have
been simulated at RTL using ModelSim to evaluate performance, while physical
costs have been estimated using the tool flow provided by Widex A/S.

To put the results obtained into perspective they are compared to the current back-
end system design. The absolute numbers are inside information held by Widex A/S
that can not be brought here. All results are therefore listed relative to these figures
instead.

6.1 NoC performance

The performance evaluation of the NoCs requires realistic traffic. Random traffic will
not give a fair picture of the NoC performance, as it has been designed specifically
for the back-end system.

Using the signals of the current back-end system and their usage, a traffic model
has been developed to emulate the behavior of the back-end system. The model is
designed to model the traffic as realistically as possible. Packets in the model are
sized to fit the bit-width of the signals in the back-end system. Signals may be com-
bined into one packet to reduce the network overhead. These kinds of optimizations
have not been included in the model, as they require more insight into the blocks of
the system to know if they are feasible. The only assumption is that the blocks are
able to multiplex and demultiplex the signals internally. To simplify the model, all
packet sizes are scaled up to a common size.

6.1.1 NoC utilization

The load of the NoC is determined by the mapping of the application graph onto
the designed NoCs. The load on each link can be estimated using the bandwidths
listed in Table 3.2 and the mapping shown previously in Figure 4.20. The exact flow
of packets through the network is determined using RTL simulation. The network
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utilizations are illustrated in Figure 6.1 and Figure 6.2. The numbers are packets per
sample period.
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Figure 6.1: NoC utilization in the regular mesh topology.

6.1.2 NoC latency

The NoC introduces long buffered paths to the communication structure. Using a net-
work will cause increased communication latency compared to point-to-point com-
munication. The back-end system operates at a low clock frequency, which makes
NoC latency even more critical. The NoC latency is influenced by the topology,
application mapping and implementation.

The latencies have been simulated using the traffic of the model described pre-
viously in this section. The latency distributions of all communication in the system
are shown in Figure 6.3, while the average latency for each topology is listed in Table
6.1. The latencies are measured from input to NA at the source to output from the NA
at the destination including any delays caused by the NoC. The latencies presented
here are all listed as clock cycles.
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Figure 6.2: NoC utilization in the optimized mesh topology.
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Topology Avg. latency [clock cycles]
Mesh 4.50 cycles
Optimized mesh 3.67 cycles

Table 6.1: Average end-to-end latencies.
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The latency impact of adding an extra 15-channel sample stream in the optimized
NoC is seen in Figure 6.4. The added signal is worst case, travelling the longest
possible distance in the network and arriving at Unit 12. That accounts for the high
latency impact in Unit 12, while the only block affected is Unit 11 by an increased
average latency of one clock cycle.
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Figure 6.4: Latency impact of adding extra signal.

6.2 Network costs

Estimating the costs of a NoC implementation of the back-end system is the main
goal of this project. The costs have been estimated using the methods described in
Section 5.5 using Synopsys. All results are estimates based on the cell net list alone.
No floor-planning, placement or wire routing has been done. The main results are
presented in Table 6.2 below, while further comparisons and results are presented in
the following sections. These results represent the costs of the NoC alone. Replacing
the communication structure in a system requires modifications to the blocks, which
have not been accounted for in these cost estimations.

NoC Area Power Power (w. wire load)
Mesh 16.3% 12.1% -
Optimized mesh 7.5% 5.9% 11.6%

Table 6.2: NoC cost summary.
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6.2.1 Area

The area estimate is based on the synthesized cell net list. It contains all cells used
to implement the NoC in the 0.13µ technology. This is a fairly good area estimate,
which can be compared directly to the cost of the current back-end system design.
However the net interconnect area is not included. All area results are based on
synthesis without wire modeling.

Both NoCs have been synthesized to estimate area and power costs. The results
are compared to current back-end system costs in Table 6.2.

The area costs of the two implemented topologies are compared in Figure 6.5,
which reveals the significant area reduction of the optimized NoC. It is also clear
from the figure that the main contributor to the area costs is the routing nodes. The
number of NAs is the same for both NoCs, the cost reduction is obtained by reducing
the number of routing nodes alone.
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Figure 6.5: Area comparison.

A more detailed cost overview is available in Appendix A. All routing nodes and
NAs have been optimized individually during synthesis for optimal results, which
causes the slight variation in area costs among the entities. Overall, the combinational
and noncombinational areas contribute equally to the total area.

Synopsys synthesis using the wire load model adds load to all internal wires and
creates a netlist with stronger driving circuits for all signals. This netlist therefore
very pessimistic for area estimation and has not been used.

6.2.2 Power consumption

The power consumption estimates are based on realistic switching activity in syn-
thesized net lists. Estimates both with and without wire load modeling have been
conducted to approximate the NoC influence on power consumption.
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Both implemented NoC topologies have been synthesized and internal switching
activity has been obtained by gate-level simulations. The NoC has been stimulated by
packet flow of the traffic model of the back-end system containing random payload
data. The power estimates can not be compared directly to the power consumption of
the back-end system, because it includes the power consumption of wires that will be
replaced by the NoC. However, the estimates without wire loading only include the
cell power consumption, which will be added to the total system power consumption.
This power consumption overhead caused by the NoC hardware is listed in Table 6.2.

Wire load modeling prior to physical planning is based on statistics gathered
from other designs and is not very accurate. Using the power consumption of the
wires in the current back-end system might be a better estimate than using a stan-
dard model. However, synthesis using a standard wire load model has been carried
out for comparison. As mentioned earlier, the wire model is applied to all wires in
the design, which makes the estimate very pessimistic for NoC based systems. The
power consumption of the optimized NoC including wire loads is listed in Table 6.2.
This includes all power consumption caused by block communication except the two
preserved dedicated wires and can not be considered as the NoC power consump-
tion overhead. The real power consumption overhead is expected to be somewhere
between the two power estimates. The wire load model has not been applied to the
power estimate of the regular mesh network.

When comparing the two NoC topologies, the results reveal an overall power
consumption reduction similar to the area reduction. The contributions of each indi-
vidual routing node and NA are listed in Appendix A. From the variations in power
consumption it is obvious that the switching activity has great influence. Routing
nodes with high utilization consume more energy. One might expect higher average
power consumption within nodes in the optimized topology due to higher utilization.
However, shorter paths lead to less switching activity and reduces the power con-
sumption. The average power consumption of the routing nodes of the two topologies
differs by a mere 5%.

An interesting figure to determine in relation to system flexibility is the cost of
adding an extra signal to the system. The price is obviously more switching activity
and increased power consumption. An alternative traffic model including an extra
signal has been power estimated in the optimized NoC. The signal generates traffic
equivalent to 15 audio samples per sample period. The power estimate revealed
increased power consumption in nodes along the signal path and caused an overall
increase of 11%.
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Discussion

This chapter will discuss the results obtained in this project, put them into perspective
and suggest future work.

7.1 Result Elaboration

Looking at the latency impact of the two NoC topologies implemented, it is seen that
using a NoC has a price. Signals no longer arrive immediately at the destination,
which will affect the system and must be accounted for in the block design.

Most NoCs presented in NoC research are targeted at large SoC systems as gen-
eral interconnect structures. In these systems performance and modular design are
important factors. The NoC replaces advanced bus interconnects, to provide a fast
and flexible communication structure. The blocks are typically processors, mem-
ory and interface controllers, which are pipelined for maximum performance and
designed to cope with communication bottlenecks by local caching. Replacing the
communication structure with a NoC does not require overall changes in the system
design.

Very small battery powered systems, like digital hearing aids, are characterized
by tight area and power constraints. Tightly integrated design means a high level
of application specific optimization and limited flexibility. The blocks are small and
work close together using point-to-point communication. Using a NoC approach for
internal communication in this type of system means a rather different view on block
communication. The existing point-to-point solution is efficient, but not flexible.
What distinguish NoCs designed for large SoCs from a NoC solution for small ded-
icated system is that the NoC is not used to solve bottlenecks in bus interconnects,
but adding flexibility to the system. The NoC adds extra costs in terms of area and
power consumption to the system, but adds value in terms of a more flexible system
design. It is a trade off between costs and system flexibility.

The costs of the NoC approach are compared to the current design to justify
whether it is feasible or not for future system designs. An area overhead of 6.6% is
predicted in [8] for large system, when using a NoC interconnection structure. To
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obtain a similar overhead for a small system, like a digital hearing aid, the NoC has
to be designed to exactly match the system requirements.

The results show an area overhead of 7.5% for the optimized NoC, which is rea-
sonable considering the size of the entire system. Even though the power estimates
have several sources of uncertainties, they do provide a reasonable guess. The cell
power consumption has a mere overhead of 5.9%, while the wire load model esti-
mates a power consumption of 11.6% compared to the total back-end system power
consumption, which means the power consumption after physical planning can be
expected to be somewhere in between. The wire load is hard to estimate as there is
no way to predict the physical layout precisely. But the estimated cell power con-
sumption has a small margin of error.

Regarding flexibility, the power cost of adding or redirecting signals in the sys-
tem is very interesting. A NoC power consumption increase of 11% seems drastic.
However, this setup demonstrates the absolute worst case scenario, by adding a signal
with high bandwidth demands at the longest possible distance in the NoC. Several
similar signals are already a part of the system communication, which shows the
importance of minimizing communication paths during application mapping. The
highly optimized application mapping means low power consumption in use-cases
used for the application mapping. Slightly increased power consumption should be
expected when redirecting or adding signals. However this price may be worth pay-
ing for added functionality or fixing bugs.

Both NoC topologies are based on the same components, which are designed
to use as few decoupling buffers as possible to keep the cost and latency down to
a minimum. As stated in the results around half the area is spend on buffers. The
number of buffers in the routing node can not be further reduced without significant
performance impact. Area can be saved by reducing the bit width of the links, which
reduces the width of the buffers similarly. Reducing the link width means more
flits per packet, less overall bandwidth and increased latency. This can be countered
by increasing the clock frequency, which will on the other hand increase the power
consumption. The clock frequency used by the current back-end system is thereby
the main limiting factor of bandwidth and latency. Granted that the traffic does not
increase similarly, faster clocks in future systems will allow more data serialization
and save area in the routing nodes.

Using a particular topology, the latency is affected by the routing scheme and the
mapping of the application to the topology. Minimal routing is employed for both
NoCs implemented and the application is mapped with minimizing the number of
hops is mind. However the topology has great influence too, which becomes clear
when looking at the average latencies of the two NoCs. The average latency of the
regular mesh is 22% longer than in the optimized NoC. This is a direct consequence
of attaching more blocks to each routing node.

Comparing the regular topology to the custom one show clearly that a general
NoC solution is not feasible. The regular mesh has greater flexibility, but can not
justify approximately double area and power consumption. The optimized topology
still maintains the specified level of flexibility, which makes custom topologies the
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best choice for application specific systems.
Comparing the NoC design presented in this project to other NoCs, like AEthereal[6]

and MANGO[1], shows that this design differs from the others by being application
optimized and rely on application mapping and planning rather than avanced network
features to avoid expensive GS implementations. It is not suitable as a generic NoC,
but a low-cost NoC targeted at small systems with a limited number of use-cases
which allow application specific optmizations.

Due to the lack of NoC suited interfaces on the blocks of the current system
design, the NoC has not been integrated into the actual system. The results of this
project serve as a rough estimate of the costs that can be expected by using a NoC
interconnect in future back-end system designs. The system interconnect strategy is
a fundamental system design decision.

It is clear that replacing a point-to-point structure with a NoC in a tightly inte-
grated system based on hard-coded processing units does not add much flexibility
to the system. A NoC is a different system design methodology, which adds flexi-
ble communication to a flexible system design. System configurability has to be an
integral part of the system design, to fully exploit the potential of a NoC.

7.2 NoC in DSP-systems

This project is a case-study on a NoC communication structure for a digital hearing
aid. However the overall results obtained are not restricted to this system, but apply
to DSP-system in general.

Increased digital processing power has moved the trend towards general flex-
ible processing platforms and implementing signal processing algorithms in soft-
ware. This does not only apply for large DSP-systems, but also for small embedded
DSP-systems. Low power DSP-platforms with configurable embedded DSP-units
are commercially available.

A more flexible hardware platform means easier reuse. The DSP hardware plat-
form may last several product generations by just algorithm improvements. Hard-
coded DSP-algorithms are prone to bugs, which are extremely hard to correct later.
A more flexible software solution will allow such late changes and field upgrades.

NoCs call for a standard interface for system blocks. A standard interface re-
quires more design effort in the first place, but means easier reuse later. New sys-
tems can be compiled from existing and new blocks. Soft core solutions are already
commercially available [20] and demonstrated for DSP-applications in [21]. Similar
systems may very well be based on NoC communication structures in the future. The
NoC flexibility has great potential for DSP systems, where processing units can be
rearranged to accommodate different algorithms.

Future CMOS technologies, like 65 nm, will give a significantly higher system
transistor count. Furthermore, decreasing standard supply voltage means that the
clock frequency can be increased dramatically even for battery powered applications.
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A fast system clock makes it feasible to include general purpose processing blocks
in the system, which makes NoC based communication very interesting.

Flexible communication structures like NoCs enable a new kinds of system de-
signs. An extreme approach could be a fine grained NoC, probably a hierachical
topology, where relatively small DSP-units are attached directly to the NoC, which
controls the data flow through the units. A hybrid solution using both general pur-
pose DSP-units and dedicated blocks connected by a NoC may be a more efficient
solution. The design must then determine which blocks to be implemented in dedi-
cated blocks and which to implemented as code for DSP-units. It is a trade off that
trades power for area and flexibility. A software approach saves area if it is using
general purpose resources already available, but on the other hand it comsumes more
power than a dedicated block. This approach seems reasonable for future hearing aid
systems and other low power applications.

7.3 Future work

Much work is still left on block interfacing and system design before NoC based
digital hearing aids will emerge. System design based on NoCs and characterization
of NoC suited applications are topics which require more attention in NoC research.
A better understanding on how to exploit NoCs is necessary before the added costs
become feasible. This is especially true for small DSP-systems.

The NoC components designed in this project are very flexible and can be used
to form various topologies. More components could be designed to create a library
of NoC components, like the Xpipes library [5], for constructing application specific
NoCs for DSP-like systems. This could be extended further by automated topology
generation from a specific application graph, like the xpipes compiler [22].
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Conclusion

This project has investigated NoC as a flexible communication structure for small
DSP-systems, based on a case study of the digital back-end system designed by
Widex A/S. The communication requirements of the system have been characterized,
in order to derive a suitable NoC design.

A generic NoC and a custom optimized topology NoC have been implemented
and synthesized. Area and power reductions of a factor of two have been obtained by
optimizing the topology for the application compared to the generic topology. This
shows that much can be gained from optimized topologies, which is very important
especially in small systems. The NoC components designed are very flexible and can
be used to form any topology using routing nodes with five ports.

Synthesis has been done using the Widex A/S design flow to enable comparison
of the NoC implementation and the current system implementation. The optimized
NoC adds a 7.5% area overhead to the system, while the power consumption over-
head is estimated to be equivalent to 5.9% of the current back-end system power
consumption. These results are reasonable for today’s technology and promising for
future technologies.

Looking at the obtained results in a greater perspective, they show that NoCs are
feasible communication solutions for even small system designs. When the system
design is highly optimized, the NoC must also undergo a similar degree of optimiza-
tion. GS and resource reservation are expensive for small systems, which should
rather rely on BE based NoCs optimized for the particular application and use-case
planning. Future CMOS technologies will decrease the relative overhead and make
NoCs a promising communication structure for even the smallest systems.

Increased system flexibility does not come from a NoC alone, but by exploiting
the NoC in the overall system design. The NoC costs estimated here indicate that
feasible NoC based hearing aid systems may emerge in the future.
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Appendix A

NoC costs

A.1 Mesh NoC internal costs

A.2 Optimized NoC internal costs

A.1



A.2 APPENDIX A NOC COSTS

Component Area % Power %
node 00 5.5 3.8
na 00 0.8 0.3
node 10 5.5 3.8
na 10 0.8 0.3
node 20 5.5 3.9
na 20 0.8 0.3
node 30 5.6 5.7
na 30 0.8 0.4
node 01 5.5 4.1
na 01 0.8 0.4
node 11 5.4 4.8
na 11 0.8 1.0
node 21 5.4 5.3
na 21 0.8 1.2
node 31 5.5 4.1
na 31 0.8 0.3
node 02 5.5 7.0
na 02 0.8 1.3
node 12 5.4 6.1
na 12 0.8 0.9
node 22 5.4 5.5
na 22 0.8 1.0
node 32 5.5 5.4
na 32 0.8 0.8
node 03 5.6 6.2
na 03 0.8 0.6
node 13 5.5 7.3
na 13 0.8 1.5
node 23 5.5 8.0
na 23 0.8 1.5
node 33 5.6 6.7
na 33 0.8 0.7

Table A.1: Mesh NoC internal costs.



OPTIMIZED NOC INTERNAL COSTS A.3

Component Area % Power %
node 00 11.0 12.2
na 00a 1.5 2.1
na 00w 1.5 0.8
node 10 10.8 14.4
na 10a 1.5 2.0
na 10s 1.5 2.4
node 20 10.8 5.3
na 20a 1.5 0.5
na 20s 1.5 0.7
node 30 11.0 7.7
na 30n 1.5 0.5
na 30e 1.5 0.6
na 30s 1.5 0.6
node 01 10.8 13.1
na 01n 1.5 1.2
na 01w 1.5 1.8
na 01a 1.5 2.6
node 11 10.8 14.4
na 11n 1.5 3.1
na 11a 1.5 3.1
node 21 10.8 7.9
na 21n 1.5 1.5
na 21a 1.5 1.6

Table A.2: Optimized NoC internal costs.



Appendix B

CD contents

The attached CD-ROM includes all source code from Appendix C.

• noc_components All network components and subentities.

• r_mesh The optimized NoC including main testbench.

• mesh_4x4 The mesh NoC including main testbench.

• tools C programs and Perl scripts to generate NoC configurations.

B.1



Appendix C

Source code

Source for NoC components and NoCs.

C.1 NoC components

C.1.1 Flit handler
-------------------------------------------------------------------------------
-- Flit handler
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity flit_handler is
generic (

INPUT : rt_direction);
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
eop : in std_logic; -- End of packet
empty : in std_logic; -- Data valid
rd : in std_logic; -- Read buffer (First flit detection)
dir_i : in std_logic_vector(HOP_BITS-1 downto 0);
dir_o : out std_logic_vector(HOP_BITS downto 0);
rot : out std_logic); -- Rotate header (Indicates header flit)

end flit_handler;

architecture fh of flit_handler is

signal dir_in, dir_reg : std_logic_vector(HOP_BITS downto 0);
signal dir_reg_en : std_logic;

begin -- fh

process (dir_i, eop, dir_reg, empty, rd)
begin -- process

dir_in <= "0" & dir_i;
dir_o <= "0" & dir_i;

C.1
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dir_reg_en <= ’0’;
rot <= ’0’;
if empty = ’0’ then
if eop = ’0’ then

if dir_reg = rt_x then
rot <= ’1’;
if rd = ’1’ then

dir_reg_en <= ’1’;
end if;
if INPUT = rt_a then

dir_o <= "0" & dir_i;
else

if dir_i = INPUT(1 downto 0) then
dir_in <= rt_a;
dir_o <= rt_a;

else
dir_o <= "0" & dir_i;

end if;
end if;

else
rot <= ’0’;
dir_o <= dir_reg;

end if;
else

if dir_reg /= rt_x then
rot <= ’0’;
dir_reg_en <= ’1’;
dir_in <= rt_x;
dir_o <= dir_reg;

else
rot <= ’1’;
if INPUT = rt_a then

dir_o <= "0" & dir_i;
else

if dir_i = INPUT(1 downto 0) then
dir_o <= rt_a;

else
dir_o <= "0" & dir_i;

end if;
end if;

end if;
end if;

end if;
end process;

-- purpose: Register
-- type : sequential
-- inputs : clk, rst, dir_in, dir_reg_en
-- outputs: dir_reg
process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
dir_reg <= rt_x;

elsif clk’event and clk = ’1’ then -- rising clock edge
if dir_reg_en = ’1’ then

dir_reg <= dir_in;
end if;

end if;
end process;
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end fh;

C.1.2 BE router
-------------------------------------------------------------------------------
-- BE Router
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity be_router is

generic (
DIR : rt_direction := "000"); -- Routing direction

port (
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
src_0 : in std_logic_vector(4 downto 0); -- Source 0
src_1 : in std_logic_vector(4 downto 0); -- Source 1
src_2 : in std_logic_vector(4 downto 0); -- Source 2
src_3 : in std_logic_vector(4 downto 0); -- Source 3
src_4 : in std_logic_vector(4 downto 0); -- Source 4
src_5 : in std_logic_vector(4 downto 0); -- Source 5
src_6 : in std_logic_vector(4 downto 0); -- Source 6
src_7 : in std_logic_vector(4 downto 0); -- Source 7
vc_empty : in std_logic_vector(VC_bit downto 0); -- Empty output VC’s
vc_sel : out std_logic_vector(0 downto 0); -- VC select
src_sel : out std_logic_vector((4*VC)-1 downto 0)); -- Source select/read

end be_router;

architecture src_order of be_router is

signal src_0_dir, src_1_dir, src_2_dir, src_3_dir, src_4_dir, src_5_dir,
src_6_dir, src_7_dir : rt_direction; -- Directions

signal src_0_eop, src_1_eop, src_2_eop, src_3_eop, src_4_eop, src_5_eop,
src_6_eop, src_7_eop : std_logic; -- EOP

signal src_0_empty, src_1_empty, src_2_empty, src_3_empty, src_4_empty,
src_5_empty, src_6_empty, src_7_empty : std_logic; -- Empty

signal vc0_res, vc1_res, vc0_res_reg, vc1_res_reg
: std_logic_vector(3 downto 0); -- VC reservation registers

begin -- src_order

src_0_dir <= src_0(2 downto 0);
src_0_eop <= src_0(3);
src_0_empty <= src_0(4);
src_1_dir <= src_1(2 downto 0);
src_1_eop <= src_1(3);
src_1_empty <= src_1(4);
src_2_dir <= src_2(2 downto 0);
src_2_eop <= src_2(3);
src_2_empty <= src_2(4);
src_3_dir <= src_3(2 downto 0);
src_3_eop <= src_3(3);
src_3_empty <= src_3(4);
src_4_dir <= src_4(2 downto 0);
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src_4_eop <= src_4(3);
src_4_empty <= src_4(4);
src_5_dir <= src_5(2 downto 0);
src_5_eop <= src_5(3);
src_5_empty <= src_5(4);
src_6_dir <= src_6(2 downto 0);
src_6_eop <= src_6(3);
src_6_empty <= src_6(4);
src_7_dir <= src_7(2 downto 0);
src_7_eop <= src_7(3);
src_7_empty <= src_7(4);

-- purpose: Routing algorithm
-- type : combinational
-- inputs : src_0, src_1, src_2, src_3, src_4, src_5, src_6, src_7
-- outputs: src_sel, vc_empty, vc0_res, vc1_res
rt: process (src_0_dir, src_1_dir, src_2_dir, src_3_dir, src_4_dir, src_5_dir,

src_6_dir, src_7_dir, src_0_eop, src_1_eop, src_2_eop, src_3_eop,
src_4_eop, src_5_eop, src_6_eop, src_7_eop, src_0_empty,
src_1_empty, src_2_empty, src_3_empty, src_4_empty, src_5_empty,
src_6_empty, src_7_empty, vc0_res_reg, vc1_res_reg)

begin -- process rt
vc0_res <= vc0_res_reg;
vc1_res <= vc1_res_reg;
-- Ongoing transmission through VC0
if vc0_res_reg = "1000" and src_0_empty = ’0’ and vc_empty(0) =’1’ then

vc_sel <= "0";
src_sel <= X"01";
if src_0_eop = ’1’ then

vc0_res <= "0000";
end if;

elsif vc0_res_reg = "1001" and src_1_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"02";
if src_1_eop = ’1’ then

vc0_res <= "0000";
end if;

elsif vc0_res_reg = "1010" and src_2_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"04";
if src_2_eop = ’1’ then

vc0_res <= "0000";
end if;

elsif vc0_res_reg = "1011" and src_3_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"08";
if src_3_eop = ’1’ then

vc0_res <= "0000";
end if;

elsif vc0_res_reg = "1100" and src_4_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"10";
if src_4_eop = ’1’ then

vc0_res <= "0000";
end if;

elsif vc0_res_reg = "1101" and src_5_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"20";
if src_5_eop = ’1’ then

vc0_res <= "0000";
end if;
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elsif vc0_res_reg = "1110" and src_6_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"40";
if src_6_eop = ’1’ then

vc0_res <= "0000";
end if;

elsif vc0_res_reg = "1111" and src_7_empty = ’0’ and vc_empty(0) =’1’ then
vc_sel <= "0";
src_sel <= X"80";
if src_7_eop = ’1’ then

vc0_res <= "0000";
end if;

-- Ongoing transmission through VC1
elsif vc1_res_reg = "1000" and src_0_empty = ’0’ and vc_empty(1) =’1’ then

vc_sel <= "1";
src_sel <= X"01";
if src_0_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1001" and src_1_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"02";
if src_1_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1010" and src_2_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"04";
if src_2_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1011" and src_3_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"08";
if src_3_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1100" and src_4_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"10";
if src_4_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1101" and src_5_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"20";
if src_5_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1110" and src_6_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"40";
if src_6_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc1_res_reg = "1111" and src_7_empty = ’0’ and vc_empty(1) =’1’ then
vc_sel <= "1";
src_sel <= X"80";
if src_7_eop = ’1’ then

vc1_res <= "0000";
end if;

elsif vc_empty(0) = ’1’ then
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vc_sel <= "0";
if src_0_dir = DIR and src_0_empty = ’0’ and vc1_res_reg /= "1000" then

src_sel <= X"01";
if src_0_eop = ’0’ then

vc0_res <= "1000";
end if;

elsif src_1_dir = DIR and src_1_empty = ’0’ and vc1_res_reg /= "1001" then
src_sel <= X"02";
if src_1_eop = ’0’ then

vc0_res <= "1001";
end if;

elsif src_2_dir = DIR and src_2_empty = ’0’ and vc1_res_reg /= "1010" then
src_sel <= X"04";
if src_2_eop = ’0’ then

vc0_res <= "1010";
end if;

elsif src_3_dir = DIR and src_3_empty = ’0’ and vc1_res_reg /= "1011" then
src_sel <= X"08";
if src_3_eop = ’0’ then

vc0_res <= "1011";
end if;

elsif src_4_dir = DIR and src_4_empty = ’0’ and vc1_res_reg /= "1100" then
src_sel <= X"10";
if src_4_eop = ’0’ then

vc0_res <= "1100";
end if;

elsif src_5_dir = DIR and src_5_empty = ’0’ and vc1_res_reg /= "1101" then
src_sel <= X"20";
if src_5_eop = ’0’ then

vc0_res <= "1101";
end if;

elsif src_6_dir = DIR and src_6_empty = ’0’ and vc1_res_reg /= "1110" then
src_sel <= X"40";
if src_6_eop = ’0’ then

vc0_res <= "1110";
end if;

elsif src_7_dir = DIR and src_7_empty = ’0’ and vc1_res_reg /= "1111" then
if src_7_eop = ’0’ then

vc0_res <= "1111";
end if;
src_sel <= X"80";

else
src_sel <= X"00";

end if;
elsif vc_empty(1) = ’1’ then

vc_sel <= "1";
if src_0_dir = DIR and src_0_empty = ’0’ and vc0_res_reg /= "1000" then

src_sel <= X"01";
if src_0_eop = ’0’ then

vc1_res <= "1000";
end if;

elsif src_1_dir = DIR and src_1_empty = ’0’ and vc0_res_reg /= "1001" then
src_sel <= X"02";
if src_1_eop = ’0’ then

vc1_res <= "1001";
end if;

elsif src_2_dir = DIR and src_2_empty = ’0’ and vc0_res_reg /= "1010" then
src_sel <= X"04";
if src_2_eop = ’0’ then

vc1_res <= "1010";
end if;

elsif src_3_dir = DIR and src_3_empty = ’0’ and vc0_res_reg /= "1011" then
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src_sel <= X"08";
if src_3_eop = ’0’ then

vc1_res <= "1011";
end if;

elsif src_4_dir = DIR and src_4_empty = ’0’ and vc0_res_reg /= "1100" then
src_sel <= X"10";
if src_4_eop = ’0’ then

vc1_res <= "1100";
end if;

elsif src_5_dir = DIR and src_5_empty = ’0’ and vc0_res_reg /= "1101" then
src_sel <= X"20";
if src_5_eop = ’0’ then

vc1_res <= "1101";
end if;

elsif src_6_dir = DIR and src_6_empty = ’0’ and vc0_res_reg /= "1110" then
src_sel <= X"40";
if src_6_eop = ’0’ then

vc1_res <= "1110";
end if;

elsif src_7_dir = DIR and src_7_empty = ’0’ and vc0_res_reg /= "1111" then
src_sel <= X"80";
if src_7_eop = ’0’ then

vc1_res <= "1111";
end if;

else
src_sel <= X"00";

end if;
else

src_sel <= X"00";
vc_sel <= "0";

end if;

end process rt;

-- purpose: Reservation registers
-- type : sequential
-- inputs : clk, rst, vc0_res, vc1_res
-- outputs: vc0_res_reg, vc1_res_reg
res_reg: process (clk, rst)
begin -- process res_reg

if rst = ’0’ then -- asynchronous reset (active low)
vc0_res_reg <= (others => ’0’);
vc1_res_reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
vc0_res_reg <= vc0_res;
vc1_res_reg <= vc1_res;

end if;
end process res_reg;

end src_order;

C.1.3 Data buffer
-------------------------------------------------------------------------------
-- Data buffer
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;



C.8 APPENDIX C SOURCE CODE

use IEEE.std_logic_1164.all;
use work.types.all;

entity data_buffer is
generic (

DATA_WIDTH : integer := 32;
ADDR_BITS : integer := 4);

port (
data_i : in std_logic_vector(ADDR_BITS + DATA_WIDTH-1 downto 0);
data_o : out std_logic_vector(ADDR_BITS + DATA_WIDTH-1 downto 0);
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
rd : in std_logic; -- Read
wr : in std_logic; -- Write
full : out std_logic; -- Write
empty : out std_logic); -- Empty

end data_buffer;

architecture buf_reg of data_buffer is

begin -- buf_reg

-- purpose: Buffer register
-- type : sequential
-- inputs : clk, rst, data_i, rd, wr
-- outputs: data_o, empty
reg: process (clk, rst)
begin -- process reg

if rst = ’0’ then -- asynchronous reset (active low)
data_o <= (others => ’0’);
empty <= ’1’;
full <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if rd = ’1’ then

empty <= ’1’;
full <= ’0’;

end if;
if wr = ’1’ then

data_o <= data_i;
empty <= ’0’;
full <= ’1’;

end if;
end if;

end process reg;

end buf_reg;

C.1.4 VC buffer
-------------------------------------------------------------------------------
-- VC buffer - Virtual Channel buffer
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity vc_buffer is
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port (
data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0); -- Data input
data_o : out std_logic_vector(FLIT_WIDTH-1 downto 0); -- Data output
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
rd : in std_logic; -- Read
wr : in std_logic; -- Write
full : out std_logic; -- Full
empty : out std_logic); -- Empty

end vc_buffer;

architecture buf_reg of vc_buffer is

begin -- buf_reg

-- purpose: Buffer register
-- type : sequential
-- inputs : clk, rst, data_i, rd, wr
-- outputs: data_o, empty
reg: process (clk, rst)
begin -- process reg

if rst = ’0’ then -- asynchronous reset (active low)
data_o <= (others => ’0’);
empty <= ’1’;
full <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if wr = ’1’ then

data_o <= data_i;
empty <= ’0’;
full <= ’1’;

end if;
if rd = ’1’ then

empty <= ’1’;
full <= ’0’;

end if;
end if;

end process reg;

end buf_reg;

C.1.5 Address table
-------------------------------------------------------------------------------
-- NA address tbl - NA address table
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use work.types.all;

entity na_address_tbl is

generic (
ADDR_BITS : integer := 4); -- Number of entries

port (
addr_i : in std_logic_vector(ADDR_BITS-1 downto 0);
addr_rd : in std_logic_vector(ADDR_BITS-1 downto 0);
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dat_i : in std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
dat_o : out std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
rw : in std_logic; -- Read/write
clk : in std_logic;
rst : in std_logic);

end na_address_tbl;

architecture tbl of na_address_tbl is

type Regfile_type is array (natural range<> )
of std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);

signal Regfile_Coff : Regfile_type(0 to 2**4);

begin

dat_o <= Regfile_Coff(conv_integer(unsigned(addr_rd)));

process (clk)
begin -- process

if clk’event and clk = ’1’ then -- rising clock edge
if rw = ’1’ then

Regfile_Coff(conv_integer(unsigned(addr_i))) <= dat_i;
end if;

end if;
end process;

end tbl;

C.1.6 Pack Unit
-------------------------------------------------------------------------------
-- NA packet gen - Pack unit
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity na_packet_gen is

generic (
DATA_WIDTH : integer); -- Input data width

port (
data_i : in std_logic_vector(DATA_WIDTH-1 downto 0);
route_i : in std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
type_i : in std_logic_vector(TYPE_BITS-1 downto 0);
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
buf_rd : out std_logic;
buf_empty : in std_logic;
clk : in std_logic;
rst : in std_logic);

end na_packet_gen;

architecture packet_gen of na_packet_gen is
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signal flit_no, flit_no_reg, vc_res, vc_res_reg : integer;
signal testv : integer := 0;

begin -- packet_gen

process(data_i, buf_empty, route_i, noc_bw_i, flit_no_reg, type_i, vc_res_reg)
begin -- process data_i, buf_empty, route_i, noc_bw_i

noc_fw_o(EOP_BIT_POS) <= ’1’; -- eop
noc_fw_o(TYPE_BITS+TYPE_BIT_POS-1 downto TYPE_BIT_POS)

<= type_i(TYPE_BITS-1 downto 0);
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’0’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "0"; --vc_id
noc_fw_o(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto HDR_ADDR_OFFSET)

<= route_i;
noc_fw_o(DATA_WIDTH-1 downto 0) <= data_i(DATA_WIDTH-1 downto 0);
flit_no <= flit_no_reg;
vc_res <= vc_res_reg;
buf_rd <= ’0’;
if DATA_WIDTH < HDR_ADDR_OFFSET then

noc_fw_o(HDR_ADDR_OFFSET-1 downto DATA_WIDTH) <= (others => ’0’);
end if;

if buf_empty = ’0’ then
if (noc_bw_i(0) = ’1’ and (vc_res_reg = 0 or vc_res_reg = VC)) then

if DATA_WIDTH <= HDR_ADDR_OFFSET then
noc_fw_o(EOP_BIT_POS) <= ’1’; -- eop
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’1’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "0"; --vc_id
noc_fw_o(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto HDR_ADDR_OFFSET)

<= route_i;
noc_fw_o(DATA_WIDTH-1 downto 0) <= data_i(DATA_WIDTH-1 downto 0);
if DATA_WIDTH < HDR_ADDR_OFFSET then

noc_fw_o(HDR_ADDR_OFFSET-1 downto DATA_WIDTH) <= (others => ’0’);
end if;
buf_rd <= ’1’;

else
if flit_no_reg = 0 then

noc_fw_o(EOP_BIT_POS) <= ’0’; -- eop
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’1’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "0"; --vc_id
noc_fw_o(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto HDR_ADDR_OFFSET)

<= route_i;
noc_fw_o(HDR_ADDR_OFFSET-1 downto 0)

<= data_i(DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET);
buf_rd <= ’0’;
flit_no <= flit_no_reg +1;
vc_res <= 0;

else
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’1’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "0"; -- vc_id
if DATA_WIDTH-HDR_ADDR_OFFSET-flit_no_reg*FLIT_DATA_WIDTH < 0 then

noc_fw_o(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*FLIT_DATA_WIDTH-1 downto 0)
<= data_i(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*FLIT_DATA_WIDTH-1 downto 0);
noc_fw_o(FLIT_WIDTH-3 downto DATA_WIDTH-HDR_ADDR_OFFSET

-(flit_no-1)*FLIT_DATA_WIDTH) <= (others => ’0’);
noc_fw_o(EOP_BIT_POS) <= ’1’; -- eop
buf_rd <= ’1’;

testv <= 1;
flit_no <= 0;
vc_res <= VC;

else
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noc_fw_o(FLIT_WIDTH-3 downto 0)
<= data_i(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*FLIT_DATA_WIDTH-1 downto
DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg)

*FLIT_DATA_WIDTH);
noc_fw_o(EOP_BIT_POS) <= ’0’; -- eop
buf_rd <= ’0’;
flit_no <= flit_no_reg +1;
vc_res <= 0;

end if;
end if;

end if;
elsif noc_bw_i(1) = ’1’ and (vc_res_reg = 1 or vc_res_reg = VC) then

if DATA_WIDTH <= HDR_ADDR_OFFSET then
noc_fw_o(EOP_BIT_POS) <= ’1’; -- eop
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’1’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "1"; -- vc_id
noc_fw_o(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto HDR_ADDR_OFFSET)

<= route_i;
noc_fw_o(DATA_WIDTH-1 downto 0) <= data_i;
if DATA_WIDTH < HDR_ADDR_OFFSET then

noc_fw_o(HDR_ADDR_OFFSET-1 downto DATA_WIDTH) <= (others => ’0’);
end if;
buf_rd <= ’1’;

else
if flit_no_reg = 0 then

noc_fw_o(EOP_BIT_POS) <= ’0’; -- eop
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’1’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "0"; --vc_id
noc_fw_o(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto HDR_ADDR_OFFSET)

<= route_i;
noc_fw_o(HDR_ADDR_OFFSET-1 downto 0)

<= data_i(DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET);
buf_rd <= ’0’;
flit_no <= flit_no_reg +1;
vc_res <= 1;

else
noc_fw_o(FLIT_WIDTH + VC_bit) <= ’1’; -- dv
noc_fw_o(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH) <= "1"; -- vc_id
if DATA_WIDTH-HDR_ADDR_OFFSET-flit_no_reg*FLIT_DATA_WIDTH < 0 then

noc_fw_o(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*FLIT_DATA_WIDTH-1 downto 0)
<= data_i(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*FLIT_DATA_WIDTH-1 downto 0);
noc_fw_o(FLIT_WIDTH-3 downto DATA_WIDTH-HDR_ADDR_OFFSET

-(flit_no-1)*FLIT_DATA_WIDTH) <= (others => ’0’);
noc_fw_o(EOP_BIT_POS) <= ’1’; -- eop
buf_rd <= ’1’;
flit_no <= 0;
vc_res <= VC;

else
noc_fw_o(FLIT_WIDTH-3 downto 0)

<= data_i(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*FLIT_DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET
-(flit_no_reg)*FLIT_DATA_WIDTH);

noc_fw_o(EOP_BIT_POS) <= ’0’; -- eop
buf_rd <= ’0’;
flit_no <= flit_no_reg +1;
vc_res <= 1;

end if;
end if;

end if;
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end if;
end if;

end process;

-- purpose: Keeps track of multiple flit packets
-- type : sequential
-- inputs : clk, rst, flit_no
-- outputs: flit_no_reg
flit_no_counter: process (clk, rst)
begin -- process flit_no_counter

if rst = ’0’ then -- asynchronous reset (active low)
flit_no_reg <= 0;
vc_res_reg <= VC;

elsif clk’event and clk = ’1’ then -- rising clock edge
flit_no_reg <= flit_no;
vc_res_reg <= vc_res;

end if;
end process flit_no_counter;

end packet_gen;

C.1.7 Unpack Unit
-------------------------------------------------------------------------------
-- NA unpack - Unpack Unit
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity na_unpack is

generic (
DATA_WIDTH : integer); -- Input data width

port (
data_o : out std_logic_vector(DATA_WIDTH-1 downto 0);
type_o : out std_logic;
vc0_data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0);
vc1_data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0);
vc0_empty_i : in std_logic;
vc1_empty_i : in std_logic;
vc0_rd_o : out std_logic;
vc1_rd_o : out std_logic;
dv : out std_logic;
clk : in std_logic;
rst : in std_logic);

end na_unpack;

architecture unpack of na_unpack is

signal flit_no, flit_no_reg, vc_res, vc_res_reg : integer := 0;
signal packet, packet_reg : std_logic_vector(DATA_WIDTH-1 downto 0);
signal s_type : std_logic;
constant last_flit : integer := (DATA_WIDTH+HDR_ADDR_WIDTH) / FLIT_DATA_WIDTH;
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begin -- packet_gen

data_o <= packet;
type_o <= s_type;

process (vc0_data_i, vc1_data_i, vc0_empty_i, vc1_empty_i, packet_reg,
vc_res_reg, flit_no_reg)

begin -- process
if DATA_WIDTH <= HDR_ADDR_OFFSET then

packet <= vc0_data_i(DATA_WIDTH-1 downto 0 );
s_type <= vc0_data_i(TYPE_BIT_POS);
vc0_rd_o <= ’0’;
vc1_rd_o <= ’0’;
dv <= ’0’;
if vc0_empty_i = ’0’ then

packet <= vc0_data_i(DATA_WIDTH-1 downto 0 );
s_type <= vc0_data_i(TYPE_BIT_POS);
vc0_rd_o <= ’1’;
dv <= ’1’;

elsif vc1_empty_i = ’0’ then
packet <= vc1_data_i(DATA_WIDTH-1 downto 0 );
s_type <= vc1_data_i(TYPE_BIT_POS);
vc1_rd_o <= ’1’;
dv <= ’1’;

end if;
else

packet <= vc0_data_i(HDR_ADDR_OFFSET-1 downto 0)
& packet_reg(DATA_WIDTH-HDR_ADDR_OFFSET-1 downto 0);

s_type <= vc0_data_i(TYPE_BIT_POS);
if flit_no_reg = 0 then

vc0_rd_o <= ’0’;
vc1_rd_o <= ’0’;
dv <= ’0’;
if vc0_empty_i = ’0’ then

packet <= vc0_data_i(HDR_ADDR_OFFSET-1 downto 0)
& packet_reg(DATA_WIDTH-HDR_ADDR_OFFSET-1 downto 0);

s_type <= vc0_data_i(TYPE_BIT_POS);
vc0_rd_o <= ’1’;
if vc0_data_i(EOP_BIT_POS) = ’1’ then

dv <= ’1’;
flit_no <= 0;
vc_res <= VC;

else
dv <= ’0’;
flit_no <= 1;
vc_res <= 0;

end if;
elsif vc1_empty_i = ’0’ then

packet <= vc1_data_i(HDR_ADDR_OFFSET-1 downto 0)
& packet_reg(DATA_WIDTH-HDR_ADDR_OFFSET-1 downto 0);

s_type <= vc1_data_i(TYPE_BIT_POS);
vc1_rd_o <= ’1’;
if vc1_data_i(EOP_BIT_POS) = ’1’ then

dv <= ’1’;
flit_no <= 0;
vc_res <= VC;

else
dv <= ’0’;
flit_no <= 1;
vc_res <= 1;

end if;
end if;
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else
dv <= ’0’;
vc0_rd_o <= ’0’;
vc1_rd_o <= ’0’;
packet <= packet_reg;
s_type <= vc0_data_i(TYPE_BIT_POS);
vc_res <= vc_res_reg;
flit_no <= flit_no_reg;
if vc_res_reg = 0 and vc0_empty_i = ’0’ then

vc0_rd_o <= ’1’;
if flit_no_reg = last_flit then

dv <= ’1’;
packet <= packet_reg(DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET

-(flit_no_reg-1)*(FLIT_DATA_WIDTH))
& vc0_data_i(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*(FLIT_DATA_WIDTH)-1 downto 0);
s_type <= vc0_data_i(TYPE_BIT_POS);
flit_no <= 0;
vc_res <= VC;

else
dv <= ’0’;
packet <= packet_reg(DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET

-(flit_no_reg-1)*(FLIT_DATA_WIDTH))
& vc0_data_i(FLIT_DATA_WIDTH-1 downto 0)
& packet_reg(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*(FLIT_DATA_WIDTH)-(FLIT_DATA_WIDTH)-1 downto 0);
s_type <= vc0_data_i(TYPE_BIT_POS);
flit_no <= flit_no_reg +1;
vc_res <= vc_res_reg;

end if;
elsif vc_res_reg = 1 and vc1_empty_i = ’0’ then

vc1_rd_o <= ’1’;
if flit_no_reg = last_flit then

dv <= ’1’;
packet <= packet_reg(DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET

-(flit_no_reg-1)*(FLIT_DATA_WIDTH))
& vc1_data_i(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*(FLIT_DATA_WIDTH)-1 downto 0);
s_type <= vc1_data_i(TYPE_BIT_POS);
flit_no <= 0;
vc_res <= VC;

else
dv <= ’0’;
packet <= packet_reg(DATA_WIDTH-1 downto DATA_WIDTH-HDR_ADDR_OFFSET

-(flit_no_reg-1)*(FLIT_DATA_WIDTH))
& vc1_data_i(FLIT_DATA_WIDTH-1 downto 0)
& packet_reg(DATA_WIDTH-HDR_ADDR_OFFSET-(flit_no_reg-1)

*(FLIT_DATA_WIDTH)-(FLIT_DATA_WIDTH)-1 downto 0);
s_type <= vc1_data_i(TYPE_BIT_POS);
flit_no <= flit_no_reg +1;
vc_res <= vc_res_reg;

end if;
end if;

end if;

end if;
end process;

-- purpose: Keeps track of multiple flit packets
-- type : sequential
-- inputs : clk, rst, flit_no
-- outputs: flit_no_reg



C.16 APPENDIX C SOURCE CODE

flit_no_counter: process (clk, rst)
begin -- process flit_no_counter

if rst = ’0’ then -- asynchronous reset (active low)
flit_no_reg <= 0;
vc_res_reg <= VC;
packet_reg <= (others => ’0’);

elsif clk’event and clk = ’1’ then -- rising clock edge
flit_no_reg <= flit_no;
vc_res_reg <= vc_res;
packet_reg <= packet;

end if;
end process flit_no_counter;

end unpack;

C.1.8 Programming Unit
-------------------------------------------------------------------------------
-- PGM Unit - Behavioral programming unit
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_textio.all;
use std.textio.all;
use work.types.all;

entity pgm_unit is

generic (
filename : string);

port (
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic);

end pgm_unit;

architecture pgm of pgm_unit is

component na_packet_gen
generic (

DATA_WIDTH : integer); -- Input data width
port (

data_i : in std_logic_vector(DATA_WIDTH-1 downto 0);
route_i : in std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
type_i : in std_logic_vector(TYPE_BITS-1 downto 0);
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
buf_rd : out std_logic;
buf_empty : in std_logic;
clk : in std_logic;
rst : in std_logic);

end component;

signal buf_i_empty, buf_i_rd : std_logic;
signal s_data : std_logic_vector(HDR_ADDR_OFFSET-1 downto 0);
signal s_route : std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
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signal s_type_i : std_logic_vector(TYPE_BITS-1 downto 0);

file input : text open read_mode is filename;

begin -- na

s_type_i <= "1";

pckt_gen : na_packet_gen
generic map(

DATA_WIDTH => HDR_ADDR_OFFSET)
port map(

data_i => s_data,
route_i => s_route,
type_i => s_type_i,
noc_fw_o => noc_fw_o,
noc_bw_i => noc_bw_i,
buf_rd => buf_i_rd,
buf_empty => buf_i_empty,
clk => clk,
rst => rst);

process (clk)
variable l : line;
variable v : std_logic_vector(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto 0);
variable w : integer := 0;

begin -- process
-- assert endfile(input) report "End of file" severity note;

if rst = ’1’ and clk = ’1’ then
if buf_i_rd = ’1’ then

w := 0;
buf_i_empty <= ’1’;

end if;
if w = 0 and not endfile(input) then

readline(input, l);
read(l,v);
buf_i_empty <= ’0’;
w := 1;

end if;
s_data <= v(HDR_ADDR_OFFSET-1 downto 0);
s_route <= v(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1 downto HDR_ADDR_OFFSET);

end if;
if rst = ’0’ then

buf_i_empty <= ’1’;
end if;

end process;

end pgm;

C.1.9 Network Adapter
-------------------------------------------------------------------------------
-- Mesh NA - Network Adapter
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;
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entity mesh_na is

generic (
ADDR_BITS : integer := 4;
DATA_WIDTH_I : integer := 32;
DATA_WIDTH_O : integer := 32);

port (
noc_fw_i : in noc_link_fw;
noc_bw_o : out noc_link_bw;
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_i : in std_logic_vector(ADDR_BITS-1 downto 0);
type_i : in std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end mesh_na;

architecture na of mesh_na is

component data_buffer
generic (

DATA_WIDTH : integer := 32;
ADDR_BITS : integer := 4);

port (
data_i : in std_logic_vector(ADDR_BITS + DATA_WIDTH-1 downto 0);
data_o : out std_logic_vector(ADDR_BITS + DATA_WIDTH-1 downto 0);
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
rd : in std_logic; -- Read
wr : in std_logic; -- Write
full : out std_logic; -- Full
empty : out std_logic); -- Empty

end component;

component na_address_tbl
generic (

ADDR_BITS : integer := 4); -- Number of entries

port (
addr_i : in std_logic_vector(ADDR_BITS-1 downto 0);
addr_rd : in std_logic_vector(ADDR_BITS-1 downto 0);
dat_i : in std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
dat_o : out std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
rw : in std_logic; -- Read/write
clk : in std_logic;
rst : in std_logic);

end component;

component na_packet_gen
generic (

DATA_WIDTH : integer); -- Input data width
port (
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data_i : in std_logic_vector(DATA_WIDTH-1 downto 0);
route_i : in std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
type_i : in std_logic_vector(TYPE_BITS-1 downto 0);
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
buf_rd : out std_logic;
buf_empty : in std_logic;
clk : in std_logic;
rst : in std_logic);

end component;

component na_unpack
generic (

DATA_WIDTH : integer); -- Input data width
port (

data_o : out std_logic_vector(DATA_WIDTH-1 downto 0);
type_o : out std_logic;
vc0_data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0);
vc1_data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0);
vc0_empty_i : in std_logic;
vc1_empty_i : in std_logic;
vc0_rd_o : out std_logic;
vc1_rd_o : out std_logic;
dv : out std_logic;
clk : in std_logic;
rst : in std_logic);

end component;

component vc_buffer
port (

data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0); -- Data input
data_o : out std_logic_vector(FLIT_WIDTH-1 downto 0); -- Data output
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
rd : in std_logic; -- Read
wr : in std_logic; -- Write
full : out std_logic; -- Full
empty : out std_logic); -- Empty

end component;

signal buf_i_empty, buf_i_full, buf_i_wr, buf_i_rd, pgm_wr, vc0_wr, vc0_full,
vc0_empty, vc0_rd, vc1_wr, vc1_full, vc1_empty, vc1_rd, s_type, s_req_o
: std_logic;

signal vc0_data, vc1_data : std_logic_vector(FLIT_WIDTH-1 downto 0);
signal s_data : std_logic_vector(DATA_WIDTH_I-1 downto 0);
signal s_buf_input, s_buf_output : std_logic_vector(TYPE_BITS + DATA_WIDTH_I

+ ADDR_BITS -1 downto 0);
signal pgm_addr, s_addr : std_logic_vector(ADDR_BITS-1 downto 0);
signal pgm_route, s_route : std_logic_vector(HDR_ADDR_WIDTH-1 downto 0);
signal s_data_o : std_logic_vector(DATA_WIDTH_O-1 downto 0);
signal s_type_i : std_logic_vector(TYPE_BITS-1 downto 0);

begin -- na
s_buf_input <= type_i & addr_i & data_i;
s_addr <= s_buf_output(ADDR_BITS+DATA_WIDTH_I-1 downto DATA_WIDTH_I);
s_data <= s_buf_output(DATA_WIDTH_I-1 downto 0);
s_type_i <= s_buf_output(TYPE_BITS+ADDR_BITS+DATA_WIDTH_I-1 downto

ADDR_BITS+DATA_WIDTH_I);
ack_o <= req_i and buf_i_empty;
buf_i_wr <= req_i and not buf_i_full;
data_o <= s_data_o;
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buf_i : data_buffer
generic map (

DATA_WIDTH => DATA_WIDTH_I,
ADDR_BITS => ADDR_BITS+TYPE_BITS)

port map(
data_i => s_buf_input,
data_o => s_buf_output,
clk => clk,
rst => rst,
rd => buf_i_rd,
wr => buf_i_wr,
full => buf_i_full,
empty => buf_i_empty);

addr_tbl : na_address_tbl
generic map (

ADDR_BITS => ADDR_BITS)
port map (

addr_i => pgm_addr,
addr_rd => s_addr,
dat_i => pgm_route,
dat_o => s_route,
rw => pgm_wr,
clk => clk,
rst => rst);

pckt_gen : na_packet_gen
generic map(

DATA_WIDTH => DATA_WIDTH_I)
port map(

data_i => s_data,
route_i => s_route,
type_i => s_type_i,
noc_fw_o => noc_fw_o,
noc_bw_i => noc_bw_i,
buf_rd => buf_i_rd,
buf_empty => buf_i_empty,
clk => clk,
rst => rst);

buf_vc0 : vc_buffer
port map (

data_i => noc_fw_i(FLIT_WIDTH-1 downto 0),
data_o => vc0_data,
clk => clk,
rst => rst,
rd => vc0_rd,
wr => vc0_wr,
full => vc0_full,
empty => vc0_empty);

vc0_wr <= ’1’ when (noc_fw_i(DV_bit) = ’1’
and noc_fw_i(FLIT_WIDTH-1 + VC_bit

downto FLIT_WIDTH) = "0") else ’0’;

buf_vc1 : vc_buffer
port map (

data_i => noc_fw_i(FLIT_WIDTH-1 downto 0),
data_o => vc1_data,
clk => clk,
rst => rst,
rd => vc1_rd,
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wr => vc1_wr,
full => vc1_full,
empty => vc1_empty);

vc1_wr <= ’1’ when (noc_fw_i(DV_bit) = ’1’
and noc_fw_i(FLIT_WIDTH-1 + VC_bit

downto FLIT_WIDTH) = "1") else ’0’;

noc_bw_o <= not vc1_full & not vc0_full;

unpack : na_unpack
generic map(

DATA_WIDTH => DATA_WIDTH_O) -- Input data width
port map(

data_o => s_data_o,
type_o => s_type,
vc0_data_i => vc0_data,
vc1_data_i => vc1_data,
vc0_empty_i => vc0_empty,
vc1_empty_i => vc1_empty,
vc0_rd_o => vc0_rd,
vc1_rd_o => vc1_rd,
dv => s_req_o,
clk => clk,
rst => rst);

req_o <= s_req_o and not s_type;
pgm_addr <= s_data_o(DATA_WIDTH_O-1 downto DATA_WIDTH_O-ADDR_BITS);
pgm_route <= s_data_o(DATA_WIDTH_O-ADDR_BITS-1

downto DATA_WIDTH_O-ADDR_BITS-HDR_ADDR_WIDTH);
pgm_wr <= s_req_o and s_type;

end na;

C.1.10 Routing Node
-------------------------------------------------------------------------------
-- Mesh Router - Routing Node
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity mesh_router is

port (
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
-- Input links
link_w_fw_i : in noc_link_fw; -- Input link west data
link_w_bw_o : out noc_link_bw; -- Input link west ack
link_n_fw_i : in noc_link_fw; -- Input link north data
link_n_bw_o : out noc_link_bw; -- Input link north ack
link_e_fw_i : in noc_link_fw; -- Input link east data
link_e_bw_o : out noc_link_bw; -- Input link east ack
link_s_fw_i : in noc_link_fw; -- Input link south data
link_s_bw_o : out noc_link_bw; -- Input link south ack
link_a_fw_i : in noc_link_fw; -- Input link adapter data
link_a_bw_o : out noc_link_bw; -- Input link adapter ack
-- Output links
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link_w_fw_o : out noc_link_fw; -- Input link west data
link_w_bw_i : in noc_link_bw; -- Input link west ack
link_n_fw_o : out noc_link_fw; -- Input link north data
link_n_bw_i : in noc_link_bw; -- Input link north ack
link_e_fw_o : out noc_link_fw; -- Input link east data
link_e_bw_i : in noc_link_bw; -- Input link east ack
link_s_fw_o : out noc_link_fw; -- Input link south data
link_s_bw_i : in noc_link_bw; -- Input link south ack
link_a_fw_o : out noc_link_fw; -- Input link adapter data
link_a_bw_i : in noc_link_bw); -- Input link adapter ack

end mesh_router;

architecture mesh_router of mesh_router is

component vc_buffer
port (
data_i : in std_logic_vector(FLIT_WIDTH-1 downto 0); -- Data input
data_o : out std_logic_vector(FLIT_WIDTH-1 downto 0); -- Data output
clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
rd : in std_logic; -- Read
wr : in std_logic; -- Write
full : out std_logic; -- Full
empty : out std_logic); -- Empty

end component;

component be_router
generic (

DIR : rt_direction); -- Routing direction
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
src_0 : in std_logic_vector(4 downto 0); -- Source 0
src_1 : in std_logic_vector(4 downto 0); -- Source 1
src_2 : in std_logic_vector(4 downto 0); -- Source 2
src_3 : in std_logic_vector(4 downto 0); -- Source 3
src_4 : in std_logic_vector(4 downto 0); -- Source 4
src_5 : in std_logic_vector(4 downto 0); -- Source 5
src_6 : in std_logic_vector(4 downto 0); -- Source 6
src_7 : in std_logic_vector(4 downto 0); -- Source 7
vc_empty : in std_logic_vector(VC-1 downto 0); -- Empty output VC’s
vc_sel : out std_logic_vector(0 downto 0); -- VC select
src_sel : out std_logic_vector((4*VC)-1 downto 0)); -- Source select/read

end component;

component flit_handler
generic (

INPUT : rt_direction);
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
eop : in std_logic; -- End of packet
empty : in std_logic; -- Data valid
rd : in std_logic; -- Read buffer (First flit detection)
dir_i : in std_logic_vector(HOP_BITS-1 downto 0);
dir_o : out std_logic_vector(HOP_BITS downto 0);
rot : out std_logic); -- Rotate header (Indicates header flit)

end component;
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signal w_vc0_wr, w_vc1_wr, n_vc0_wr, n_vc1_wr, e_vc0_wr, e_vc1_wr, s_vc0_wr,
s_vc1_wr, a_vc0_wr, a_vc1_wr : std_logic; -- Write VC buffer 0

signal w_vc0_rd, w_vc1_rd, n_vc0_rd, n_vc1_rd, e_vc0_rd, e_vc1_rd, s_vc0_rd,
s_vc1_rd, a_vc0_rd, a_vc1_rd : std_logic; -- Read VC buffer 0

signal src_sel_w, src_sel_n, src_sel_e, src_sel_s, src_sel_a
: std_logic_vector((4*VC)-1 downto 0); -- Source select

signal link_w_vc0, link_w_vc1, link_n_vc0, link_n_vc1, link_e_vc0,
link_e_vc1, link_s_vc0, link_s_vc1, link_a_vc0, link_a_vc1
: vc_data; -- VC data

signal link_w_vc0_rot, link_w_vc1_rot, link_n_vc0_rot, link_n_vc1_rot,
link_e_vc0_rot, link_e_vc1_rot, link_s_vc0_rot, link_s_vc1_rot,
link_a_vc0_rot, link_a_vc1_rot : vc_data;

signal link_w_vc0_dir, link_w_vc1_dir, link_n_vc0_dir, link_n_vc1_dir,
link_e_vc0_dir, link_e_vc1_dir, link_s_vc0_dir, link_s_vc1_dir,
link_a_vc0_dir, link_a_vc1_dir
: rt_direction; -- Translated routing direction

signal link_w_vc0_empty, link_w_vc1_empty, link_n_vc0_empty,
link_n_vc1_empty, link_e_vc0_empty, link_e_vc1_empty, link_s_vc0_empty,
link_s_vc1_empty, link_a_vc0_empty, link_a_vc1_empty : std_logic;

signal link_w_vc0_b_empty, link_w_vc1_b_empty, link_n_vc0_b_empty,
link_n_vc1_b_empty, link_e_vc0_b_empty, link_e_vc1_b_empty,
link_s_vc0_b_empty, link_s_vc1_b_empty, link_a_vc0_b_empty,
link_a_vc1_b_empty : std_logic;

signal link_w_vc0_full, link_w_vc1_full, link_n_vc0_full, link_n_vc1_full,
link_e_vc0_full, link_e_vc1_full, link_s_vc0_full, link_s_vc1_full,
link_a_vc0_full, link_a_vc1_full
: std_logic; -- Translated routing direction

signal rot_w_vc0, rot_w_vc1, rot_n_vc0, rot_n_vc1, rot_e_vc0, rot_e_vc1,
rot_s_vc0, rot_s_vc1, rot_a_vc0, rot_a_vc1 : std_logic; -- Rotate header

signal w_vc_old, s_vc_old, e_vc_old, n_vc_old, a_vc_old : std_logic;

begin -- mesh_router

-- West
buf_w_vc0 : vc_buffer

port map (
data_i => link_w_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_w_vc0,
clk => clk,
rst => rst,
rd => w_vc0_rd,
wr => w_vc0_wr,
full => link_w_vc0_full,
empty => link_w_vc0_b_empty);

w_vc0_wr <= ’1’ when (link_w_fw_i(DV_bit) = ’1’
and link_w_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "0") else ’0’;

w_vc0_rd <= (src_sel_a(0) or src_sel_n(0) or src_sel_e(0) or src_sel_s(0));
link_w_vc0_rot <= link_w_vc0 when rot_w_vc0 = ’0’ else link_w_vc0(EOP_BIT_POS)

& link_w_vc0(TYPE_BIT_POS)
& link_w_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_w_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_w_vc0(HDR_ADDR_OFFSET-1 downto 0);

fh_w_vc0 : flit_handler
generic map(

INPUT => rt_w)
port map(

clk => clk,
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rst => rst,
eop => link_w_vc0(EOP_BIT_POS),
empty => link_w_vc0_b_empty,
rd => w_vc0_rd,
dir_i => link_w_vc0(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_w_vc0_dir,
rot => rot_w_vc0); -- Rotate header (Indicates header flit)

buf_w_vc1 : vc_buffer
port map (

data_i => link_w_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_w_vc1,
clk => clk,
rst => rst,
rd => w_vc1_rd,
wr => w_vc1_wr,
full => link_w_vc1_full,
empty => link_w_vc1_b_empty);

w_vc1_wr <= ’1’ when (link_w_fw_i(DV_bit) = ’1’
and link_w_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "1") else ’0’;

w_vc1_rd <= (src_sel_a(4) or src_sel_n(4) or src_sel_e(4) or src_sel_s(4));
link_w_vc1_rot <= link_w_vc1 when rot_w_vc1 = ’0’ else link_w_vc1(EOP_BIT_POS)

& link_w_vc1(TYPE_BIT_POS)
& link_w_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_w_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_w_vc1(HDR_ADDR_OFFSET-1 downto 0);

fh_w_vc1 : flit_handler
generic map(

INPUT => rt_w)
port map(

clk => clk,
rst => rst,
eop => link_w_vc1(FLIT_WIDTH-1),
empty => link_w_vc1_b_empty,
rd => w_vc1_rd,
dir_i => link_w_vc1(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_w_vc1_dir,
rot => rot_w_vc1); -- Rotate header (Indicates header flit)

-- Determine VC order.
process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
w_vc_old <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if (link_w_vc0_b_empty xor link_w_vc1_b_empty) = ’1’ then

w_vc_old <= link_w_vc0_b_empty;
end if;

end if;
end process;

link_w_vc0_empty <= ’1’ when ((link_w_vc1_dir = link_w_vc0_dir)
and w_vc_old = ’1’)

else link_w_vc0_b_empty;
link_w_vc1_empty <= ’1’ when ((link_w_vc1_dir = link_w_vc0_dir)
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and w_vc_old = ’0’)
else link_w_vc1_b_empty;

router_w : be_router
generic map (

DIR => rt_w)
port map (

clk => clk,
rst => rst,
src_0(2 downto 0) => link_a_vc0_dir,
src_0(3) => link_a_vc0(EOP_BIT_POS),
src_0(4) => link_a_vc0_empty,
src_1(2 downto 0) => link_n_vc0_dir,
src_1(3) => link_n_vc0(EOP_BIT_POS),
src_1(4) => link_n_vc0_empty,
src_2(2 downto 0) => link_e_vc0_dir,
src_2(3) => link_e_vc0(EOP_BIT_POS),
src_2(4) => link_e_vc0_empty,
src_3(2 downto 0) => link_s_vc0_dir,
src_3(3) => link_s_vc0(EOP_BIT_POS),
src_3(4) => link_s_vc0_empty,
src_4(2 downto 0) => link_a_vc1_dir,
src_4(3) => link_a_vc1(EOP_BIT_POS),
src_4(4) => link_a_vc1_empty,
src_5(2 downto 0) => link_n_vc1_dir,
src_5(3) => link_n_vc1(EOP_BIT_POS),
src_5(4) => link_n_vc1_empty,
src_6(2 downto 0) => link_e_vc1_dir,
src_6(3) => link_e_vc1(EOP_BIT_POS),
src_6(4) => link_e_vc1_empty,
src_7(2 downto 0) => link_s_vc1_dir,
src_7(3) => link_s_vc1(EOP_BIT_POS),
src_7(4) => link_s_vc1_empty,
vc_empty => link_w_bw_i,
vc_sel => link_w_fw_o(FLIT_WIDTH-1+VC_bit downto FLIT_WIDTH),
src_sel => src_sel_w);

link_w_bw_o <= not link_w_vc1_full & not link_w_vc0_full;
link_w_fw_o(FLIT_WIDTH-1 downto 0) <= link_a_vc0_rot when src_sel_w = X"01" else

link_n_vc0_rot when src_sel_w = X"02" else
link_e_vc0_rot when src_sel_w = X"04" else
link_s_vc0_rot when src_sel_w = X"08" else
link_a_vc1_rot when src_sel_w = X"10" else
link_n_vc1_rot when src_sel_w = X"20" else
link_e_vc1_rot when src_sel_w = X"40"
else link_s_vc1_rot;

link_w_fw_o(FLIT_WIDTH+VC_bit) <= src_sel_w(0) or src_sel_w(1) or src_sel_w(2)
or src_sel_w(3) or src_sel_w(4)
or src_sel_w(5) or src_sel_w(6)
or src_sel_w(7);

-- North
buf_n_vc0 : vc_buffer

port map (
data_i => link_n_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_n_vc0,
clk => clk,
rst => rst,
rd => n_vc0_rd,
wr => n_vc0_wr,
full => link_n_vc0_full,
empty => link_n_vc0_b_empty);
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n_vc0_wr <= ’1’ when (link_n_fw_i(DV_bit) = ’1’
and link_n_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "0") else ’0’;

n_vc0_rd <= (src_sel_a(1) or src_sel_w(1) or src_sel_e(1) or src_sel_s(1));
link_n_vc0_rot <= link_n_vc0 when rot_n_vc0 = ’0’ else link_n_vc0(EOP_BIT_POS)

& link_n_vc0(TYPE_BIT_POS)
& link_n_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_n_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_n_vc0(HDR_ADDR_OFFSET-1 downto 0);

fh_n_vc0 : flit_handler
generic map(

INPUT => rt_n)
port map(

clk => clk,
rst => rst,
eop => link_n_vc0(EOP_BIT_POS),
empty => link_n_vc0_b_empty,
rd => n_vc0_rd,
dir_i => link_n_vc0(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_n_vc0_dir,
rot => rot_n_vc0); -- Rotate header (Indicates header flit)

buf_n_vc1 : vc_buffer
port map (

data_i => link_n_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_n_vc1,
clk => clk,
rst => rst,
rd => n_vc1_rd,
wr => n_vc1_wr,
full => link_n_vc1_full,
empty => link_n_vc1_b_empty);

n_vc1_wr <= ’1’ when (link_n_fw_i(DV_bit) = ’1’
and link_n_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "1") else ’0’;

n_vc1_rd <= (src_sel_a(5) or src_sel_w(5) or src_sel_e(5) or src_sel_s(5));
link_n_vc1_rot <= link_n_vc1 when rot_n_vc1 = ’0’ else link_n_vc1(EOP_BIT_POS)

& link_n_vc1(TYPE_BIT_POS)
& link_n_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_n_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_n_vc1(HDR_ADDR_OFFSET-1 downto 0);

fh_n_vc1 : flit_handler
generic map(

INPUT => rt_n)
port map(

clk => clk,
rst => rst,
eop => link_n_vc1(EOP_BIT_POS),
empty => link_n_vc1_b_empty,
rd => n_vc1_rd,
dir_i => link_n_vc1(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_n_vc1_dir,
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rot => rot_n_vc1); -- Rotate header (Indicates header flit)

-- Determine VC order.
process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
n_vc_old <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if (link_n_vc0_b_empty xor link_n_vc1_b_empty) = ’1’ then

n_vc_old <= link_n_vc0_b_empty;
end if;

end if;
end process;

link_n_vc0_empty <= ’1’ when ((link_n_vc1_dir = link_n_vc0_dir)
and n_vc_old = ’1’)

else link_n_vc0_b_empty;
link_n_vc1_empty <= ’1’ when ((link_n_vc1_dir = link_n_vc0_dir)

and n_vc_old = ’0’)
else link_n_vc1_b_empty;

router_n : be_router
generic map (

DIR => rt_n)
port map (

clk => clk,
rst => rst,
src_0(2 downto 0) => link_w_vc0_dir,
src_0(3) => link_w_vc0(EOP_BIT_POS),
src_0(4) => link_w_vc0_empty,
src_1(2 downto 0) => link_a_vc0_dir,
src_1(3) => link_a_vc0(EOP_BIT_POS),
src_1(4) => link_a_vc0_empty,
src_2(2 downto 0) => link_e_vc0_dir,
src_2(3) => link_e_vc0(EOP_BIT_POS),
src_2(4) => link_e_vc0_empty,
src_3(2 downto 0) => link_s_vc0_dir,
src_3(3) => link_s_vc0(EOP_BIT_POS),
src_3(4) => link_s_vc0_empty,
src_4(2 downto 0) => link_w_vc1_dir,
src_4(3) => link_w_vc1(EOP_BIT_POS),
src_4(4) => link_w_vc1_empty,
src_5(2 downto 0) => link_a_vc1_dir,
src_5(3) => link_a_vc1(EOP_BIT_POS),
src_5(4) => link_a_vc1_empty,
src_6(2 downto 0) => link_e_vc1_dir,
src_6(3) => link_e_vc1(EOP_BIT_POS),
src_6(4) => link_e_vc1_empty,
src_7(2 downto 0) => link_s_vc1_dir,
src_7(3) => link_s_vc1(EOP_BIT_POS),
src_7(4) => link_s_vc1_empty,
vc_empty => link_n_bw_i,
vc_sel => link_n_fw_o(FLIT_WIDTH-1+VC_bit downto FLIT_WIDTH),
src_sel => src_sel_n);

link_n_bw_o <= not link_n_vc1_full & not link_n_vc0_full;
link_n_fw_o(FLIT_WIDTH-1 downto 0) <= link_w_vc0_rot when src_sel_n = X"01" else

link_a_vc0_rot when src_sel_n = X"02" else
link_e_vc0_rot when src_sel_n = X"04" else
link_s_vc0_rot when src_sel_n = X"08" else
link_w_vc1_rot when src_sel_n = X"10" else
link_a_vc1_rot when src_sel_n = X"20" else



C.28 APPENDIX C SOURCE CODE

link_e_vc1_rot when src_sel_n = X"40"
else link_s_vc1_rot;

link_n_fw_o(FLIT_WIDTH+VC_bit) <= src_sel_n(0) or src_sel_n(1) or src_sel_n(2)
or src_sel_n(3) or src_sel_n(4)
or src_sel_n(5) or src_sel_n(6)
or src_sel_n(7);

-- East
buf_e_vc0 : vc_buffer

port map (
data_i => link_e_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_e_vc0,
clk => clk,
rst => rst,
rd => e_vc0_rd,
wr => e_vc0_wr,
full => link_e_vc0_full,
empty => link_e_vc0_b_empty);

e_vc0_wr <= ’1’ when (link_e_fw_i(DV_bit) = ’1’
and link_e_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "0") else ’0’;

e_vc0_rd <= (src_sel_a(2) or src_sel_n(2) or src_sel_w(2) or src_sel_s(2));
link_e_vc0_rot <= link_e_vc0 when rot_e_vc0 = ’0’ else link_e_vc0(EOP_BIT_POS)

& link_e_vc0(TYPE_BIT_POS)
& link_e_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_e_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_e_vc0(HDR_ADDR_OFFSET-1 downto 0);

fh_e_vc0 : flit_handler
generic map(

INPUT => rt_e)
port map(

clk => clk,
rst => rst,
eop => link_e_vc0(EOP_BIT_POS),
empty => link_e_vc0_b_empty,
rd => e_vc0_rd,
dir_i => link_e_vc0(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_e_vc0_dir,
rot => rot_e_vc0); -- Rotate header (Indicates header flit)

buf_e_vc1 : vc_buffer
port map (

data_i => link_e_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_e_vc1,
clk => clk,
rst => rst,
rd => e_vc1_rd,
wr => e_vc1_wr,
full => link_e_vc1_full,
empty => link_e_vc1_b_empty);

e_vc1_wr <= ’1’ when (link_e_fw_i(DV_bit) = ’1’
and link_e_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "1") else ’0’;

e_vc1_rd <= (src_sel_a(6) or src_sel_n(6) or src_sel_w(6) or src_sel_s(6));
link_e_vc1_rot <= link_e_vc1 when rot_e_vc1 = ’0’ else link_e_vc1(EOP_BIT_POS)

& link_e_vc1(TYPE_BIT_POS)
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& link_e_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS
downto HDR_ADDR_OFFSET)

& link_e_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1
downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)

& link_e_vc1(HDR_ADDR_OFFSET-1 downto 0);

fh_e_vc1 : flit_handler
generic map(

INPUT => rt_e)
port map(

clk => clk,
rst => rst,
eop => link_e_vc1(EOP_BIT_POS),
empty => link_e_vc1_b_empty,
rd => e_vc1_rd,
dir_i => link_e_vc1(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_e_vc1_dir,
rot => rot_e_vc1); -- Rotate header (Indicates header flit)

-- Determine VC order.
process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
e_vc_old <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if (link_e_vc0_b_empty xor link_e_vc1_b_empty) = ’1’ then

e_vc_old <= link_e_vc0_b_empty;
end if;

end if;
end process;

link_e_vc0_empty <= ’1’ when ((link_e_vc1_dir = link_e_vc0_dir)
and e_vc_old = ’1’)

else link_e_vc0_b_empty;
link_e_vc1_empty <= ’1’ when ((link_e_vc1_dir = link_e_vc0_dir)

and e_vc_old = ’0’)
else link_e_vc1_b_empty;

router_e : be_router
generic map (

DIR => rt_e)
port map (

clk => clk,
rst => rst,
src_0(2 downto 0) => link_w_vc0_dir,
src_0(3) => link_w_vc0(EOP_BIT_POS),
src_0(4) => link_w_vc0_empty,
src_1(2 downto 0) => link_n_vc0_dir,
src_1(3) => link_n_vc0(EOP_BIT_POS),
src_1(4) => link_n_vc0_empty,
src_2(2 downto 0) => link_a_vc0_dir,
src_2(3) => link_a_vc0(EOP_BIT_POS),
src_2(4) => link_a_vc0_empty,
src_3(2 downto 0) => link_s_vc0_dir,
src_3(3) => link_s_vc0(EOP_BIT_POS),
src_3(4) => link_s_vc0_empty,
src_4(2 downto 0) => link_w_vc1_dir,
src_4(3) => link_w_vc1(EOP_BIT_POS),
src_4(4) => link_w_vc1_empty,
src_5(2 downto 0) => link_n_vc1_dir,
src_5(3) => link_n_vc1(EOP_BIT_POS),
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src_5(4) => link_n_vc1_empty,
src_6(2 downto 0) => link_a_vc1_dir,
src_6(3) => link_a_vc1(EOP_BIT_POS),
src_6(4) => link_a_vc1_empty,
src_7(2 downto 0) => link_s_vc1_dir,
src_7(3) => link_s_vc1(EOP_BIT_POS),
src_7(4) => link_s_vc1_empty,
vc_empty => link_e_bw_i,
vc_sel => link_e_fw_o(FLIT_WIDTH-1+VC_bit downto FLIT_WIDTH),
src_sel => src_sel_e);

link_e_bw_o <= not link_e_vc1_full & not link_e_vc0_full;
link_e_fw_o(FLIT_WIDTH-1 downto 0) <= link_w_vc0_rot when src_sel_e = X"01" else

link_n_vc0_rot when src_sel_e = X"02" else
link_a_vc0_rot when src_sel_e = X"04" else
link_s_vc0_rot when src_sel_e = X"08" else
link_w_vc1_rot when src_sel_e = X"10" else
link_n_vc1_rot when src_sel_e = X"20" else
link_a_vc1_rot when src_sel_e = X"40"
else link_s_vc1_rot;

link_e_fw_o(FLIT_WIDTH+VC_bit) <= src_sel_e(0) or src_sel_e(1) or src_sel_e(2)
or src_sel_e(3) or src_sel_e(4)
or src_sel_e(5) or src_sel_e(6)
or src_sel_e(7);

-- South
buf_s_vc0 : vc_buffer

port map (
data_i => link_s_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_s_vc0,
clk => clk,
rst => rst,
rd => s_vc0_rd,
wr => s_vc0_wr,
full => link_s_vc0_full,
empty => link_s_vc0_b_empty);

s_vc0_wr <= ’1’ when (link_s_fw_i(DV_bit) = ’1’
and link_s_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "0") else ’0’;

s_vc0_rd <= (src_sel_a(3) or src_sel_n(3) or src_sel_e(3) or src_sel_w(3));
link_s_vc0_rot <= link_s_vc0 when rot_s_vc0 = ’0’ else link_s_vc0(EOP_BIT_POS)

& link_s_vc0(TYPE_BIT_POS)
& link_s_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_s_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_s_vc0(HDR_ADDR_OFFSET-1 downto 0);

fh_s_vc0 : flit_handler
generic map(

INPUT => rt_s)
port map(

clk => clk,
rst => rst,
eop => link_s_vc0(EOP_BIT_POS),
empty => link_s_vc0_b_empty,
rd => s_vc0_rd,
dir_i => link_s_vc0(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_s_vc0_dir,
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rot => rot_s_vc0); -- Rotate header (Indicates header flit)

buf_s_vc1 : vc_buffer
port map (

data_i => link_s_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_s_vc1,
clk => clk,
rst => rst,
rd => s_vc1_rd,
wr => s_vc1_wr,
full => link_s_vc1_full,
empty => link_s_vc1_b_empty);

s_vc1_wr <= ’1’ when (link_s_fw_i(DV_bit) = ’1’
and link_s_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "1") else ’0’;

s_vc1_rd <= (src_sel_a(7) or src_sel_n(7) or src_sel_e(7) or src_sel_w(7));
link_s_vc1_rot <= link_s_vc1 when rot_s_vc1 = ’0’ else link_s_vc1(EOP_BIT_POS)

& link_s_vc1(TYPE_BIT_POS)
& link_s_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_s_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_s_vc1(HDR_ADDR_OFFSET-1 downto 0);

fh_s_vc1 : flit_handler
generic map(

INPUT => rt_s)
port map(

clk => clk,
rst => rst,
eop => link_s_vc1(EOP_BIT_POS),
empty => link_s_vc1_b_empty,
rd => s_vc1_rd,
dir_i => link_s_vc1(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_s_vc1_dir,
rot => rot_s_vc1); -- Rotate header (Indicates header flit)

-- Determine VC order.
process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
s_vc_old <= ’0’;

elsif clk’event and clk = ’1’ then -- rising clock edge
if (link_s_vc0_b_empty xor link_s_vc1_b_empty) = ’1’ then

s_vc_old <= link_s_vc0_b_empty;
end if;

end if;
end process;

link_s_vc0_empty <= ’1’ when ((link_s_vc1_dir = link_s_vc0_dir)
and s_vc_old = ’1’)

else link_s_vc0_b_empty;
link_s_vc1_empty <= ’1’ when ((link_s_vc1_dir = link_s_vc0_dir)

and s_vc_old = ’0’)
else link_s_vc1_b_empty;

router_s : be_router
generic map (

DIR => rt_s)
port map (
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clk => clk,
rst => rst,
src_0(2 downto 0) => link_w_vc0_dir,
src_0(3) => link_w_vc0(EOP_BIT_POS),
src_0(4) => link_w_vc0_empty,
src_1(2 downto 0) => link_n_vc0_dir,
src_1(3) => link_n_vc0(EOP_BIT_POS),
src_1(4) => link_n_vc0_empty,
src_2(2 downto 0) => link_e_vc0_dir,
src_2(3) => link_e_vc0(EOP_BIT_POS),
src_2(4) => link_e_vc0_empty,
src_3(2 downto 0) => link_a_vc0_dir,
src_3(3) => link_a_vc0(EOP_BIT_POS),
src_3(4) => link_a_vc0_empty,
src_4(2 downto 0) => link_w_vc1_dir,
src_4(3) => link_w_vc1(EOP_BIT_POS),
src_4(4) => link_w_vc1_empty,
src_5(2 downto 0) => link_n_vc1_dir,
src_5(3) => link_n_vc1(EOP_BIT_POS),
src_5(4) => link_n_vc1_empty,
src_6(2 downto 0) => link_e_vc1_dir,
src_6(3) => link_e_vc1(EOP_BIT_POS),
src_6(4) => link_e_vc1_empty,
src_7(2 downto 0) => link_a_vc1_dir,
src_7(3) => link_a_vc1(EOP_BIT_POS),
src_7(4) => link_a_vc1_empty,
vc_empty => link_s_bw_i,
vc_sel => link_s_fw_o(FLIT_WIDTH-1+VC_bit downto FLIT_WIDTH),
src_sel => src_sel_s);

link_s_bw_o <= not link_s_vc1_full & not link_s_vc0_full;
link_s_fw_o(FLIT_WIDTH-1 downto 0) <= link_w_vc0_rot when src_sel_s = X"01" else

link_n_vc0_rot when src_sel_s = X"02" else
link_e_vc0_rot when src_sel_s = X"04" else
link_a_vc0_rot when src_sel_s = X"08" else
link_w_vc1_rot when src_sel_s = X"10" else
link_n_vc1_rot when src_sel_s = X"20" else
link_e_vc1_rot when src_sel_s = X"40"
else link_a_vc1_rot;

link_s_fw_o(FLIT_WIDTH+VC_bit) <= src_sel_s(0) or src_sel_s(1) or src_sel_s(2)
or src_sel_s(3) or src_sel_s(4)
or src_sel_s(5) or src_sel_s(6)
or src_sel_s(7);

-- Adapter
buf_a_vc0 : vc_buffer

port map (
data_i => link_a_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_a_vc0,
clk => clk,
rst => rst,
rd => a_vc0_rd,
wr => a_vc0_wr,
full => link_a_vc0_full,
empty => link_a_vc0_b_empty);

a_vc0_wr <= ’1’ when (link_a_fw_i(DV_bit) = ’1’
and link_a_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "0") else ’0’;

a_vc0_rd <= (src_sel_w(0) or src_sel_n(1) or src_sel_e(2) or src_sel_s(3));
link_a_vc0_rot <= link_a_vc0 when rot_a_vc0 = ’0’ else link_a_vc0(EOP_BIT_POS)

& link_a_vc0(TYPE_BIT_POS)
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& link_a_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS
downto HDR_ADDR_OFFSET)

& link_a_vc0(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1
downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)

& link_a_vc0(HDR_ADDR_OFFSET-1 downto 0);

fh_a_vc0 : flit_handler
generic map(

INPUT => rt_a)
port map(

clk => clk,
rst => rst,
eop => link_a_vc0(EOP_BIT_POS),
empty => link_a_vc0_b_empty,
rd => a_vc0_rd,
dir_i => link_a_vc0(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_a_vc0_dir,
rot => rot_a_vc0); -- Rotate header (Indicates header flit)

buf_a_vc1 : vc_buffer
port map (

data_i => link_a_fw_i(FLIT_WIDTH-1 downto 0),
data_o => link_a_vc1,
clk => clk,
rst => rst,
rd => a_vc1_rd,
wr => a_vc1_wr,
full => link_a_vc1_full,
empty => link_a_vc1_b_empty);

a_vc1_wr <= ’1’ when (link_a_fw_i(DV_bit) = ’1’
and link_a_fw_i(FLIT_WIDTH-1 + VC_bit downto FLIT_WIDTH)
= "1") else ’0’;

a_vc1_rd <= (src_sel_w(4) or src_sel_n(5) or src_sel_e(6) or src_sel_s(7));
link_a_vc1_rot <= link_a_vc1 when rot_a_vc1 = ’0’ else link_a_vc1(EOP_BIT_POS)

& link_a_vc1(TYPE_BIT_POS)
& link_a_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1-HOP_BITS

downto HDR_ADDR_OFFSET)
& link_a_vc1(HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-1

downto HDR_ADDR_OFFSET+HDR_ADDR_WIDTH-HOP_BITS)
& link_a_vc1(HDR_ADDR_OFFSET-1 downto 0);

fh_a_vc1 : flit_handler
generic map(

INPUT => rt_a)
port map(

clk => clk,
rst => rst,
eop => link_a_vc1(EOP_BIT_POS),
empty => link_a_vc1_b_empty,
rd => a_vc1_rd,
dir_i => link_a_vc1(HDR_ADDR_WIDTH + HDR_ADDR_OFFSET -1

downto HDR_ADDR_WIDTH + HDR_ADDR_OFFSET - 2),
dir_o => link_a_vc1_dir,
rot => rot_a_vc1); -- Rotate header (Indicates header flit)

-- Determine VC order.
process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
a_vc_old <= ’0’;
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elsif clk’event and clk = ’1’ then -- rising clock edge
if (link_a_vc0_b_empty xor link_a_vc1_b_empty) = ’1’ then

a_vc_old <= link_a_vc0_b_empty;
end if;

end if;
end process;

link_a_vc0_empty <= ’1’ when ((link_a_vc1_dir = link_a_vc0_dir)
and a_vc_old = ’1’)

else link_a_vc0_b_empty;
link_a_vc1_empty <= ’1’ when ((link_a_vc1_dir = link_a_vc0_dir)

and a_vc_old = ’0’)
else link_a_vc1_b_empty;

router_a : be_router
generic map (

DIR => rt_a)
port map (

clk => clk,
rst => rst,
src_0(2 downto 0) => link_w_vc0_dir,
src_0(3) => link_w_vc0(EOP_BIT_POS),
src_0(4) => link_w_vc0_empty,
src_1(2 downto 0) => link_n_vc0_dir,
src_1(3) => link_n_vc0(EOP_BIT_POS),
src_1(4) => link_n_vc0_empty,
src_2(2 downto 0) => link_e_vc0_dir,
src_2(3) => link_e_vc0(EOP_BIT_POS),
src_2(4) => link_e_vc0_empty,
src_3(2 downto 0) => link_s_vc0_dir,
src_3(3) => link_s_vc0(EOP_BIT_POS),
src_3(4) => link_s_vc0_empty,
src_4(2 downto 0) => link_w_vc1_dir,
src_4(3) => link_w_vc1(EOP_BIT_POS),
src_4(4) => link_w_vc1_empty,
src_5(2 downto 0) => link_n_vc1_dir,
src_5(3) => link_n_vc1(EOP_BIT_POS),
src_5(4) => link_n_vc1_empty,
src_6(2 downto 0) => link_e_vc1_dir,
src_6(3) => link_e_vc1(EOP_BIT_POS),
src_6(4) => link_e_vc1_empty,
src_7(2 downto 0) => link_s_vc1_dir,
src_7(3) => link_s_vc1(EOP_BIT_POS),
src_7(4) => link_s_vc1_empty,
vc_empty => link_a_bw_i,
vc_sel => link_a_fw_o(FLIT_WIDTH-1+VC_bit downto FLIT_WIDTH),
src_sel => src_sel_a);

link_a_bw_o <= not link_a_vc1_full & not link_a_vc0_full;
link_a_fw_o(FLIT_WIDTH-1 downto 0) <= link_w_vc0_rot when src_sel_a = X"01" else

link_n_vc0_rot when src_sel_a = X"02" else
link_e_vc0_rot when src_sel_a = X"04" else
link_s_vc0_rot when src_sel_a = X"08" else
link_w_vc1_rot when src_sel_a = X"10" else
link_n_vc1_rot when src_sel_a = X"20" else
link_e_vc1_rot when src_sel_a = X"40"
else link_s_vc1_rot;

link_a_fw_o(FLIT_WIDTH+VC_bit) <= src_sel_a(0) or src_sel_a(1) or src_sel_a(2)
or src_sel_a(3) or src_sel_a(4)
or src_sel_a(5) or src_sel_a(6)
or src_sel_a(7);
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end mesh_router;

C.1.11 Traffic generator
-------------------------------------------------------------------------------
-- Generic traffic - Traffic generator
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_textio.all;
use std.textio.all;
use work.types.all;

entity gen_traffic is
generic (

conf_file : string;
dump_file : string;
period : integer;
init_delay : integer := 50;
ADDR_BITS : integer;
DATA_WIDTH_I : integer;
DATA_WIDTH_O : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_o : out std_logic_vector(ADDR_BITS-1 downto 0);
type_o : out std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end gen_traffic;

architecture arch of gen_traffic is

component file_log_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

signal clock_count, init_count : integer := -1;

begin

process (clk, rst)
begin -- process

if rst = ’0’ then -- asynchronous reset (active low)
clock_count <= -1;
init_count <= -1;

elsif clk’event and clk = ’1’ then -- rising clock edge
if clock_count = period-1 then
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clock_count <= 0;
else

clock_count <= clock_count + 1;
end if;
if init_count < init_delay then

init_count <= init_count + 1;
end if;

end if;
end process;

dump_log : file_log_std_logic
generic map(

filename => dump_file,
DATA_WIDTH => DATA_WIDTH_I)

port map(
clk => clk,
rst => rst,
dv => req_i,
data_i => data_i);

ack_o <= ’1’;

process (clock_count, rst)
variable l : line;
variable cc : integer;
variable v : std_logic_vector(DATA_WIDTH_O+ADDR_BITS+TYPE_BITS-1 downto 0);
variable w : integer := 0;
file input : text is conf_file;

begin -- process
-- assert endfile(input) report "End of file" severity note;

if clock_count’event and rst = ’1’ then
if init_count = init_delay then
if clock_count = 0 then

-- Open conf_file
file_close(input);
file_open(input, external_name => conf_file, open_kind => read_mode);
w := 0;

end if;

if w = 0 then
if not endfile(input) then

readline(input, l);
read(l,cc);
read(l,v);

end if;
w := 1;

end if;

if w = 0 and ack_i = ’0’ then
req_o <= ’1’;

else
req_o <= ’0’;

end if;

if clock_count = cc then
data_o <= v(DATA_WIDTH_O-1 downto 0);
addr_o <= v(DATA_WIDTH_O+ADDR_BITS-1 downto DATA_WIDTH_O);
type_o <= v(DATA_WIDTH_O+ADDR_BITS+TYPE_BITS-1

downto DATA_WIDTH_O+ADDR_BITS);
req_o <= ’1’;
w := 0;



OPTIMIZED NOC C.37

end if;
end if;

end if;
end process;

end arch;

C.2 Optimized NoC

C.2.1 Optimized NoC
-------------------------------------------------------------------------------
-- R Mesh - Optimized NoC
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity r_mesh is
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset

-- Adapter 00a
na00a_data_i : in std_logic_vector (23 downto 0);
na00a_data_o : out std_logic_vector (23 downto 0);
na00a_addr_i : in std_logic_vector (1 downto 0);
na00a_type_i : in std_logic_vector (0 downto 0);
na00a_req_i : in std_logic;
na00a_req_o : out std_logic;
na00a_ack_i : in std_logic;
na00a_ack_o : out std_logic;
-- Adapter 00w
na00w_data_i : in std_logic_vector (23 downto 0);
na00w_data_o : out std_logic_vector (23 downto 0);
na00w_addr_i : in std_logic_vector (1 downto 0);
na00w_type_i : in std_logic_vector (0 downto 0);
na00w_req_i : in std_logic;
na00w_req_o : out std_logic;
na00w_ack_i : in std_logic;
na00w_ack_o : out std_logic;
-- Adapter 01a
na01a_data_i : in std_logic_vector (23 downto 0);
na01a_data_o : out std_logic_vector (23 downto 0);
na01a_addr_i : in std_logic_vector (1 downto 0);
na01a_type_i : in std_logic_vector (0 downto 0);
na01a_req_i : in std_logic;
na01a_req_o : out std_logic;
na01a_ack_i : in std_logic;
na01a_ack_o : out std_logic;
-- Adapter 01w
na01w_data_i : in std_logic_vector (23 downto 0);
na01w_data_o : out std_logic_vector (23 downto 0);
na01w_addr_i : in std_logic_vector (1 downto 0);
na01w_type_i : in std_logic_vector (0 downto 0);
na01w_req_i : in std_logic;
na01w_req_o : out std_logic;
na01w_ack_i : in std_logic;
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na01w_ack_o : out std_logic;
-- Adapter 01n
na01n_data_i : in std_logic_vector (23 downto 0);
na01n_data_o : out std_logic_vector (23 downto 0);
na01n_addr_i : in std_logic_vector (1 downto 0);
na01n_type_i : in std_logic_vector (0 downto 0);
na01n_req_i : in std_logic;
na01n_req_o : out std_logic;
na01n_ack_i : in std_logic;
na01n_ack_o : out std_logic;
-- Adapter 10a
na10a_data_i : in std_logic_vector (23 downto 0);
na10a_data_o : out std_logic_vector (23 downto 0);
na10a_addr_i : in std_logic_vector (1 downto 0);
na10a_type_i : in std_logic_vector (0 downto 0);
na10a_req_i : in std_logic;
na10a_req_o : out std_logic;
na10a_ack_i : in std_logic;
na10a_ack_o : out std_logic;
-- Adapter 10s
na10s_data_i : in std_logic_vector (23 downto 0);
na10s_data_o : out std_logic_vector (23 downto 0);
na10s_addr_i : in std_logic_vector (1 downto 0);
na10s_type_i : in std_logic_vector (0 downto 0);
na10s_req_i : in std_logic;
na10s_req_o : out std_logic;
na10s_ack_i : in std_logic;
na10s_ack_o : out std_logic;
-- Adapter 11a
na11a_data_i : in std_logic_vector (23 downto 0);
na11a_data_o : out std_logic_vector (23 downto 0);
na11a_addr_i : in std_logic_vector (1 downto 0);
na11a_type_i : in std_logic_vector (0 downto 0);
na11a_req_i : in std_logic;
na11a_req_o : out std_logic;
na11a_ack_i : in std_logic;
na11a_ack_o : out std_logic;
-- Adapter 11n
na11n_data_i : in std_logic_vector (23 downto 0);
na11n_data_o : out std_logic_vector (23 downto 0);
na11n_addr_i : in std_logic_vector (1 downto 0);
na11n_type_i : in std_logic_vector (0 downto 0);
na11n_req_i : in std_logic;
na11n_req_o : out std_logic;
na11n_ack_i : in std_logic;
na11n_ack_o : out std_logic;
-- Adapter 20a
na20a_data_i : in std_logic_vector (23 downto 0);
na20a_data_o : out std_logic_vector (23 downto 0);
na20a_addr_i : in std_logic_vector (1 downto 0);
na20a_type_i : in std_logic_vector (0 downto 0);
na20a_req_i : in std_logic;
na20a_req_o : out std_logic;
na20a_ack_i : in std_logic;
na20a_ack_o : out std_logic;
-- Adapter 20s
na20s_data_i : in std_logic_vector (23 downto 0);
na20s_data_o : out std_logic_vector (23 downto 0);
na20s_addr_i : in std_logic_vector (1 downto 0);
na20s_type_i : in std_logic_vector (0 downto 0);
na20s_req_i : in std_logic;
na20s_req_o : out std_logic;
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na20s_ack_i : in std_logic;
na20s_ack_o : out std_logic;
-- Adapter 21a
na21a_data_i : in std_logic_vector (23 downto 0);
na21a_data_o : out std_logic_vector (23 downto 0);
na21a_addr_i : in std_logic_vector (1 downto 0);
na21a_type_i : in std_logic_vector (0 downto 0);
na21a_req_i : in std_logic;
na21a_req_o : out std_logic;
na21a_ack_i : in std_logic;
na21a_ack_o : out std_logic;
-- Adapter 21n
na21n_data_i : in std_logic_vector (23 downto 0);
na21n_data_o : out std_logic_vector (23 downto 0);
na21n_addr_i : in std_logic_vector (1 downto 0);
na21n_type_i : in std_logic_vector (0 downto 0);
na21n_req_i : in std_logic;
na21n_req_o : out std_logic;
na21n_ack_i : in std_logic;
na21n_ack_o : out std_logic;
-- PGM Unit 21e
link_fw_21_e_o : out noc_link_fw;
link_bw_21_e_i : in noc_link_bw;
link_fw_e_21_i : in noc_link_fw;
link_bw_e_21_o : out noc_link_bw;
-- Adapter 30n
na30n_data_i : in std_logic_vector (23 downto 0);
na30n_data_o : out std_logic_vector (23 downto 0);
na30n_addr_i : in std_logic_vector (1 downto 0);
na30n_type_i : in std_logic_vector (0 downto 0);
na30n_req_i : in std_logic;
na30n_req_o : out std_logic;
na30n_ack_i : in std_logic;
na30n_ack_o : out std_logic;
-- Adapter 30e
na30e_data_i : in std_logic_vector (23 downto 0);
na30e_data_o : out std_logic_vector (23 downto 0);
na30e_addr_i : in std_logic_vector (1 downto 0);
na30e_type_i : in std_logic_vector (0 downto 0);
na30e_req_i : in std_logic;
na30e_req_o : out std_logic;
na30e_ack_i : in std_logic;
na30e_ack_o : out std_logic;
-- Adapter 30s
na30s_data_i : in std_logic_vector (23 downto 0);
na30s_data_o : out std_logic_vector (23 downto 0);
na30s_addr_i : in std_logic_vector (1 downto 0);
na30s_type_i : in std_logic_vector (0 downto 0);
na30s_req_i : in std_logic;
na30s_req_o : out std_logic;
na30s_ack_i : in std_logic;
na30s_ack_o : out std_logic);
end r_mesh;

architecture r_arch of r_mesh is

component mesh_router
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
-- Input links
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link_w_fw_i : in noc_link_fw; -- Input link west data
link_w_bw_o : out noc_link_bw; -- Input link west ack
link_n_fw_i : in noc_link_fw; -- Input link north data
link_n_bw_o : out noc_link_bw; -- Input link north ack
link_e_fw_i : in noc_link_fw; -- Input link east data
link_e_bw_o : out noc_link_bw; -- Input link east ack
link_s_fw_i : in noc_link_fw; -- Input link south data
link_s_bw_o : out noc_link_bw; -- Input link south ack
link_a_fw_i : in noc_link_fw; -- Input link adapter data
link_a_bw_o : out noc_link_bw; -- Input link adapter ack
-- Output links
link_w_fw_o : out noc_link_fw; -- Input link west data
link_w_bw_i : in noc_link_bw; -- Input link west ack
link_n_fw_o : out noc_link_fw; -- Input link north data
link_n_bw_i : in noc_link_bw; -- Input link north ack
link_e_fw_o : out noc_link_fw; -- Input link east data
link_e_bw_i : in noc_link_bw; -- Input link east ack
link_s_fw_o : out noc_link_fw; -- Input link south data
link_s_bw_i : in noc_link_bw; -- Input link south ack
link_a_fw_o : out noc_link_fw; -- Input link adapter data
link_a_bw_i : in noc_link_bw); -- Input link adapter ack

end component;

component mesh_na
generic (

ADDR_BITS : integer := 4;
DATA_WIDTH_I : integer := 32;
DATA_WIDTH_O : integer := 32);

port (
noc_fw_i : in noc_link_fw;
noc_bw_o : out noc_link_bw;
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_i : in std_logic_vector(ADDR_BITS-1 downto 0);
type_i : in std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end component;

component stat_log
generic (

filename : string;
DATA_WIDTH : integer;
PERIOD : integer;
INIT_DELAY : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

signal link_fw_00_w, link_fw_w_00, link_fw_00_01, link_fw_00_10, link_fw_00_s,
link_fw_s_00, link_fw_00_na, link_fw_na_00, link_fw_10_00, link_fw_10_11,
link_fw_10_20, link_fw_10_s, link_fw_s_10, link_fw_10_na, link_fw_na_10,
link_fw_20_10, link_fw_20_21, link_fw_20_30, link_fw_20_s, link_fw_s_20,
link_fw_20_na, link_fw_na_20, link_fw_30_20, link_fw_30_n, link_fw_n_30,
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link_fw_30_e, link_fw_e_30, link_fw_30_s, link_fw_s_30, link_fw_30_na,
link_fw_na_30, link_fw_01_w, link_fw_w_01, link_fw_01_n, link_fw_n_01,
link_fw_01_11, link_fw_01_00, link_fw_01_na, link_fw_na_01, link_fw_11_01,
link_fw_11_n, link_fw_n_11, link_fw_11_21, link_fw_11_10, link_fw_11_na,
link_fw_na_11, link_fw_21_11, link_fw_21_n, link_fw_n_21, link_fw_21_20,
link_fw_21_na, link_fw_na_21 : noc_link_fw;

signal link_bw_00_w, link_bw_w_00, link_bw_00_01, link_bw_00_10, link_bw_00_s,
link_bw_s_00, link_bw_00_na, link_bw_na_00, link_bw_10_00, link_bw_10_11,
link_bw_10_20, link_bw_10_s, link_bw_s_10, link_bw_10_na, link_bw_na_10,
link_bw_20_10, link_bw_20_21, link_bw_20_30, link_bw_20_s, link_bw_s_20,
link_bw_20_na, link_bw_na_20, link_bw_30_20, link_bw_n_30, link_bw_30_n,
link_bw_30_e, link_bw_e_30, link_bw_30_s, link_bw_s_30, link_bw_30_na,
link_bw_na_30, link_bw_01_w, link_bw_w_01, link_bw_01_n, link_bw_n_01,
link_bw_01_11, link_bw_01_00, link_bw_01_na, link_bw_na_01, link_bw_11_01,
link_bw_11_n, link_bw_n_11, link_bw_11_21, link_bw_11_10, link_bw_11_na,
link_bw_na_11, link_bw_21_11, link_bw_21_n, link_bw_n_21, link_bw_21_20,
link_bw_21_na, link_bw_na_21 : noc_link_bw;

signal link_fw_gnd : noc_link_fw;
signal link_bw_high : noc_link_bw;

begin

link_fw_gnd <= (others => ’0’);
link_bw_high <= (others => ’1’);

node_00 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_w_00,
link_w_bw_o => link_bw_w_00,
link_n_fw_i => link_fw_01_00,
link_n_bw_o => link_bw_01_00,
link_e_fw_i => link_fw_10_00,
link_e_bw_o => link_bw_10_00,
link_s_fw_i => link_fw_gnd,
link_s_bw_o => open,
link_a_fw_i => link_fw_na_00,
link_a_bw_o => link_bw_na_00,
-- Output links
link_w_fw_o => link_fw_00_w,
link_w_bw_i => link_bw_00_w,
link_n_fw_o => link_fw_00_01,
link_n_bw_i => link_bw_00_01,
link_e_fw_o => link_fw_00_10,
link_e_bw_i => link_bw_00_10,
link_s_fw_o => open,
link_s_bw_i => link_bw_high,
link_a_fw_o => link_fw_00_na,
link_a_bw_i => link_bw_00_na);

na_00a : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_00_na,
noc_bw_o => link_bw_00_na,
noc_fw_o => link_fw_na_00,
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noc_bw_i => link_bw_na_00,
clk => clk,
rst => rst,
data_i => na00a_data_i,
data_o => na00a_data_o,
addr_i => na00a_addr_i,
type_i => na00a_type_i,
req_i => na00a_req_i,
req_o => na00a_req_o,
ack_i => na00a_ack_i,
ack_o => na00a_ack_o);

na_00w : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_00_w,
noc_bw_o => link_bw_00_w,
noc_fw_o => link_fw_w_00,
noc_bw_i => link_bw_w_00,
clk => clk,
rst => rst,
data_i => na00w_data_i,
data_o => na00w_data_o,
addr_i => na00w_addr_i,
type_i => na00w_type_i,
req_i => na00w_req_i,
req_o => na00w_req_o,
ack_i => na00w_ack_i,
ack_o => na00w_ack_o);

node_10 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_00_10,
link_w_bw_o => link_bw_00_10,
link_n_fw_i => link_fw_11_10,
link_n_bw_o => link_bw_11_10,
link_e_fw_i => link_fw_20_10,
link_e_bw_o => link_bw_20_10,
link_s_fw_i => link_fw_s_10,
link_s_bw_o => link_bw_s_10,
link_a_fw_i => link_fw_na_10,
link_a_bw_o => link_bw_na_10,
-- Output links
link_w_fw_o => link_fw_10_00,
link_w_bw_i => link_bw_10_00,
link_n_fw_o => link_fw_10_11,
link_n_bw_i => link_bw_10_11,
link_e_fw_o => link_fw_10_20,
link_e_bw_i => link_bw_10_20,
link_s_fw_o => link_fw_10_s,
link_s_bw_i => link_bw_10_s,
link_a_fw_o => link_fw_10_na,
link_a_bw_i => link_bw_10_na);

na_10a : mesh_na
generic map(
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ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_10_na,
noc_bw_o => link_bw_10_na,
noc_fw_o => link_fw_na_10,
noc_bw_i => link_bw_na_10,
clk => clk,
rst => rst,
data_i => na10a_data_i,
data_o => na10a_data_o,
addr_i => na10a_addr_i,
type_i => na10a_type_i,
req_i => na10a_req_i,
req_o => na10a_req_o,
ack_i => na10a_ack_i,
ack_o => na10a_ack_o);

na_10s : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_10_s,
noc_bw_o => link_bw_10_s,
noc_fw_o => link_fw_s_10,
noc_bw_i => link_bw_s_10,
clk => clk,
rst => rst,
data_i => na10s_data_i,
data_o => na10s_data_o,
addr_i => na10s_addr_i,
type_i => na10s_type_i,
req_i => na10s_req_i,
req_o => na10s_req_o,
ack_i => na10s_ack_i,
ack_o => na10s_ack_o);

node_20 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_10_20,
link_w_bw_o => link_bw_10_20,
link_n_fw_i => link_fw_21_20,
link_n_bw_o => link_bw_21_20,
link_e_fw_i => link_fw_30_20,
link_e_bw_o => link_bw_30_20,
link_s_fw_i => link_fw_s_20,
link_s_bw_o => link_bw_s_20,
link_a_fw_i => link_fw_na_20,
link_a_bw_o => link_bw_na_20,
-- Output links
link_w_fw_o => link_fw_20_10,
link_w_bw_i => link_bw_20_10,
link_n_fw_o => link_fw_20_21,
link_n_bw_i => link_bw_20_21,
link_e_fw_o => link_fw_20_30,
link_e_bw_i => link_bw_20_30,
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link_s_fw_o => link_fw_20_s,
link_s_bw_i => link_bw_20_s,
link_a_fw_o => link_fw_20_na,
link_a_bw_i => link_bw_20_na);

na_20a : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_20_na,
noc_bw_o => link_bw_20_na,
noc_fw_o => link_fw_na_20,
noc_bw_i => link_bw_na_20,
clk => clk,
rst => rst,
data_i => na20a_data_i,
data_o => na20a_data_o,
addr_i => na20a_addr_i,
type_i => na20a_type_i,
req_i => na20a_req_i,
req_o => na20a_req_o,
ack_i => na20a_ack_i,
ack_o => na20a_ack_o);

na_20s : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_20_s,
noc_bw_o => link_bw_20_s,
noc_fw_o => link_fw_s_20,
noc_bw_i => link_bw_s_20,
clk => clk,
rst => rst,
data_i => na20s_data_i,
data_o => na20s_data_o,
addr_i => na20s_addr_i,
type_i => na20s_type_i,
req_i => na20s_req_i,
req_o => na20s_req_o,
ack_i => na20s_ack_i,
ack_o => na20s_ack_o);

node_30 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_20_30,
link_w_bw_o => link_bw_20_30,
link_n_fw_i => link_fw_n_30,
link_n_bw_o => link_bw_n_30,
link_e_fw_i => link_fw_e_30,
link_e_bw_o => link_bw_e_30,
link_s_fw_i => link_fw_s_30,
link_s_bw_o => link_bw_s_30,
link_a_fw_i => link_fw_gnd,
link_a_bw_o => open,
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-- Output links
link_w_fw_o => link_fw_30_20,
link_w_bw_i => link_bw_30_20,
link_n_fw_o => link_fw_30_n,
link_n_bw_i => link_bw_30_n,
link_e_fw_o => link_fw_30_e,
link_e_bw_i => link_bw_30_e,
link_s_fw_o => link_fw_30_s,
link_s_bw_i => link_bw_30_s,
link_a_fw_o => open,
link_a_bw_i => link_bw_high);

na_30n : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_30_n,
noc_bw_o => link_bw_30_n,
noc_fw_o => link_fw_n_30,
noc_bw_i => link_bw_n_30,
clk => clk,
rst => rst,
data_i => na30n_data_i,
data_o => na30n_data_o,
addr_i => na30n_addr_i,
type_i => na30n_type_i,
req_i => na30n_req_i,
req_o => na30n_req_o,
ack_i => na30n_ack_i,
ack_o => na30n_ack_o);

na_30e : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_30_e,
noc_bw_o => link_bw_30_e,
noc_fw_o => link_fw_e_30,
noc_bw_i => link_bw_e_30,
clk => clk,
rst => rst,
data_i => na30e_data_i,
data_o => na30e_data_o,
addr_i => na30e_addr_i,
type_i => na30e_type_i,
req_i => na30e_req_i,
req_o => na30e_req_o,
ack_i => na30e_ack_i,
ack_o => na30e_ack_o);

na_30s : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_30_s,
noc_bw_o => link_bw_30_s,
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noc_fw_o => link_fw_s_30,
noc_bw_i => link_bw_s_30,
clk => clk,
rst => rst,
data_i => na30s_data_i,
data_o => na30s_data_o,
addr_i => na30s_addr_i,
type_i => na30s_type_i,
req_i => na30s_req_i,
req_o => na30s_req_o,
ack_i => na30s_ack_i,
ack_o => na30s_ack_o);

node_01 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_w_01,
link_w_bw_o => link_bw_w_01,
link_n_fw_i => link_fw_n_01,
link_n_bw_o => link_bw_n_01,
link_e_fw_i => link_fw_11_01,
link_e_bw_o => link_bw_11_01,
link_s_fw_i => link_fw_00_01,
link_s_bw_o => link_bw_00_01,
link_a_fw_i => link_fw_na_01,
link_a_bw_o => link_bw_na_01,
-- Output links
link_w_fw_o => link_fw_01_w,
link_w_bw_i => link_bw_01_w,
link_n_fw_o => link_fw_01_n,
link_n_bw_i => link_bw_01_n,
link_e_fw_o => link_fw_01_11,
link_e_bw_i => link_bw_01_11,
link_s_fw_o => link_fw_01_00,
link_s_bw_i => link_bw_01_00,
link_a_fw_o => link_fw_01_na,
link_a_bw_i => link_bw_01_na);

na_01n : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_01_n,
noc_bw_o => link_bw_01_n,
noc_fw_o => link_fw_n_01,
noc_bw_i => link_bw_n_01,
clk => clk,
rst => rst,
data_i => na01n_data_i,
data_o => na01n_data_o,
addr_i => na01n_addr_i,
type_i => na01n_type_i,
req_i => na01n_req_i,
req_o => na01n_req_o,
ack_i => na01n_ack_i,
ack_o => na01n_ack_o);

na_01w : mesh_na
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generic map(
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_01_w,
noc_bw_o => link_bw_01_w,
noc_fw_o => link_fw_w_01,
noc_bw_i => link_bw_w_01,
clk => clk,
rst => rst,
data_i => na01w_data_i,
data_o => na01w_data_o,
addr_i => na01w_addr_i,
type_i => na01w_type_i,
req_i => na01w_req_i,
req_o => na01w_req_o,
ack_i => na01w_ack_i,
ack_o => na01w_ack_o);

na_01a : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_01_na,
noc_bw_o => link_bw_01_na,
noc_fw_o => link_fw_na_01,
noc_bw_i => link_bw_na_01,
clk => clk,
rst => rst,
data_i => na01a_data_i,
data_o => na01a_data_o,
addr_i => na01a_addr_i,
type_i => na01a_type_i,
req_i => na01a_req_i,
req_o => na01a_req_o,
ack_i => na01a_ack_i,
ack_o => na01a_ack_o);

node_11 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_01_11,
link_w_bw_o => link_bw_01_11,
link_n_fw_i => link_fw_n_11,
link_n_bw_o => link_bw_n_11,
link_e_fw_i => link_fw_21_11,
link_e_bw_o => link_bw_21_11,
link_s_fw_i => link_fw_10_11,
link_s_bw_o => link_bw_10_11,
link_a_fw_i => link_fw_na_11,
link_a_bw_o => link_bw_na_11,
-- Output links
link_w_fw_o => link_fw_11_01,
link_w_bw_i => link_bw_11_01,
link_n_fw_o => link_fw_11_n,
link_n_bw_i => link_bw_11_n,
link_e_fw_o => link_fw_11_21,
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link_e_bw_i => link_bw_11_21,
link_s_fw_o => link_fw_11_10,
link_s_bw_i => link_bw_11_10,
link_a_fw_o => link_fw_11_na,
link_a_bw_i => link_bw_11_na);

na_11n : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_11_n,
noc_bw_o => link_bw_11_n,
noc_fw_o => link_fw_n_11,
noc_bw_i => link_bw_n_11,
clk => clk,
rst => rst,
data_i => na11n_data_i,
data_o => na11n_data_o,
addr_i => na11n_addr_i,
type_i => na11n_type_i,
req_i => na11n_req_i,
req_o => na11n_req_o,
ack_i => na11n_ack_i,
ack_o => na11n_ack_o);

na_11a : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_11_na,
noc_bw_o => link_bw_11_na,
noc_fw_o => link_fw_na_11,
noc_bw_i => link_bw_na_11,
clk => clk,
rst => rst,
data_i => na11a_data_i,
data_o => na11a_data_o,
addr_i => na11a_addr_i,
type_i => na11a_type_i,
req_i => na11a_req_i,
req_o => na11a_req_o,
ack_i => na11a_ack_i,
ack_o => na11a_ack_o);

node_21 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_11_21,
link_w_bw_o => link_bw_11_21,
link_n_fw_i => link_fw_n_21,
link_n_bw_o => link_bw_n_21,
link_e_fw_i => link_fw_e_21_i,
link_e_bw_o => link_bw_e_21_o,
link_s_fw_i => link_fw_20_21,
link_s_bw_o => link_bw_20_21,
link_a_fw_i => link_fw_na_21,
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link_a_bw_o => link_bw_na_21,
-- Output links
link_w_fw_o => link_fw_21_11,
link_w_bw_i => link_bw_21_11,
link_n_fw_o => link_fw_21_n,
link_n_bw_i => link_bw_21_n,
link_e_fw_o => link_fw_21_e_o,
link_e_bw_i => link_bw_21_e_i,
link_s_fw_o => link_fw_21_20,
link_s_bw_i => link_bw_21_20,
link_a_fw_o => link_fw_21_na,
link_a_bw_i => link_bw_21_na);

na_21n : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_21_n,
noc_bw_o => link_bw_21_n,
noc_fw_o => link_fw_n_21,
noc_bw_i => link_bw_n_21,
clk => clk,
rst => rst,
data_i => na21n_data_i,
data_o => na21n_data_o,
addr_i => na21n_addr_i,
type_i => na21n_type_i,
req_i => na21n_req_i,
req_o => na21n_req_o,
ack_i => na21n_ack_i,
ack_o => na21n_ack_o);

na_21a : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_21_na,
noc_bw_o => link_bw_21_na,
noc_fw_o => link_fw_na_21,
noc_bw_i => link_bw_na_21,
clk => clk,
rst => rst,
data_i => na21a_data_i,
data_o => na21a_data_o,
addr_i => na21a_addr_i,
type_i => na21a_type_i,
req_i => na21a_req_i,
req_o => na21a_req_o,
ack_i => na21a_ack_i,
ack_o => na21a_ack_o);

end r_arch;

C.2.2 Global settings
-------------------------------------------------------------------------------
-- Types - Global definitions - Optimized NoC
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-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;

package types is
constant FLIT_WIDTH : integer := 36; -- Flit width
constant EOP_BIT_POS : integer := 35; -- EOP bit position
constant ADDR_HOPS : integer := 5; -- Number of hops in header
constant HOP_BITS : integer := 2; -- Bit pr. hop
constant TYPE_BITS : integer := 1; -- Bits indicating type
constant TYPE_BIT_POS : integer := 34; -- Bits indicating type
constant FLIT_DATA_WIDTH : integer := 34; -- Data width
constant HDR_ADDR_WIDTH : integer := ADDR_HOPS * HOP_BITS;

-- Header bits for routing information
constant HDR_ADDR_OFFSET : integer := 24; -- Address position
constant VC : integer := 2; -- Number of virtual channels
constant VC_bit : integer := 1; -- log2(VC)
constant DV_bit : integer := 37; -- Data valid bit position

subtype noc_link_fw is std_logic_vector((FLIT_WIDTH + VC_bit) downto 0); -- Network forward link
subtype noc_link_bw is std_logic_vector (VC-1 downto 0);

-- Network acknowledge link
subtype vc_data is std_logic_vector(FLIT_WIDTH-1 downto 0); -- VC data

subtype rt_direction is std_logic_vector(2 downto 0); -- Routing direction

constant rt_n : rt_direction := "000"; -- North
constant rt_e : rt_direction := "001"; -- East
constant rt_s : rt_direction := "011"; -- South
constant rt_w : rt_direction := "010"; -- West
constant rt_a : rt_direction := "100"; -- Adapter
constant rt_x : rt_direction := "111"; -- Nowhere

end types;

C.2.3 Main testbench
-------------------------------------------------------------------------------
-- TB R Mesh clean - Optimized NoC main testbench
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity tb_r_mesh_clean is

end tb_r_mesh_clean;

architecture tb_clean_arch of tb_r_mesh_clean is

component r_mesh
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset

-- Adapter 00a
na00a_data_i : in std_logic_vector (23 downto 0);
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na00a_data_o : out std_logic_vector (23 downto 0);
na00a_addr_i : in std_logic_vector (1 downto 0);
na00a_type_i : in std_logic_vector (0 downto 0);
na00a_req_i : in std_logic;
na00a_req_o : out std_logic;
na00a_ack_i : in std_logic;
na00a_ack_o : out std_logic;
-- Adapter 00w
na00w_data_i : in std_logic_vector (23 downto 0);
na00w_data_o : out std_logic_vector (23 downto 0);
na00w_addr_i : in std_logic_vector (1 downto 0);
na00w_type_i : in std_logic_vector (0 downto 0);
na00w_req_i : in std_logic;
na00w_req_o : out std_logic;
na00w_ack_i : in std_logic;
na00w_ack_o : out std_logic;
-- Adapter 01a
na01a_data_i : in std_logic_vector (23 downto 0);
na01a_data_o : out std_logic_vector (23 downto 0);
na01a_addr_i : in std_logic_vector (1 downto 0);
na01a_type_i : in std_logic_vector (0 downto 0);
na01a_req_i : in std_logic;
na01a_req_o : out std_logic;
na01a_ack_i : in std_logic;
na01a_ack_o : out std_logic;
-- Adapter 01w
na01w_data_i : in std_logic_vector (23 downto 0);
na01w_data_o : out std_logic_vector (23 downto 0);
na01w_addr_i : in std_logic_vector (1 downto 0);
na01w_type_i : in std_logic_vector (0 downto 0);
na01w_req_i : in std_logic;
na01w_req_o : out std_logic;
na01w_ack_i : in std_logic;
na01w_ack_o : out std_logic;
-- Adapter 01n
na01n_data_i : in std_logic_vector (23 downto 0);
na01n_data_o : out std_logic_vector (23 downto 0);
na01n_addr_i : in std_logic_vector (1 downto 0);
na01n_type_i : in std_logic_vector (0 downto 0);
na01n_req_i : in std_logic;
na01n_req_o : out std_logic;
na01n_ack_i : in std_logic;
na01n_ack_o : out std_logic;
-- Adapter 10a
na10a_data_i : in std_logic_vector (23 downto 0);
na10a_data_o : out std_logic_vector (23 downto 0);
na10a_addr_i : in std_logic_vector (1 downto 0);
na10a_type_i : in std_logic_vector (0 downto 0);
na10a_req_i : in std_logic;
na10a_req_o : out std_logic;
na10a_ack_i : in std_logic;
na10a_ack_o : out std_logic;
-- Adapter 10s
na10s_data_i : in std_logic_vector (23 downto 0);
na10s_data_o : out std_logic_vector (23 downto 0);
na10s_addr_i : in std_logic_vector (1 downto 0);
na10s_type_i : in std_logic_vector (0 downto 0);
na10s_req_i : in std_logic;
na10s_req_o : out std_logic;
na10s_ack_i : in std_logic;
na10s_ack_o : out std_logic;
-- Adapter 11a
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na11a_data_i : in std_logic_vector (23 downto 0);
na11a_data_o : out std_logic_vector (23 downto 0);
na11a_addr_i : in std_logic_vector (1 downto 0);
na11a_type_i : in std_logic_vector (0 downto 0);
na11a_req_i : in std_logic;
na11a_req_o : out std_logic;
na11a_ack_i : in std_logic;
na11a_ack_o : out std_logic;
-- Adapter 11n
na11n_data_i : in std_logic_vector (23 downto 0);
na11n_data_o : out std_logic_vector (23 downto 0);
na11n_addr_i : in std_logic_vector (1 downto 0);
na11n_type_i : in std_logic_vector (0 downto 0);
na11n_req_i : in std_logic;
na11n_req_o : out std_logic;
na11n_ack_i : in std_logic;
na11n_ack_o : out std_logic;
-- Adapter 20a
na20a_data_i : in std_logic_vector (23 downto 0);
na20a_data_o : out std_logic_vector (23 downto 0);
na20a_addr_i : in std_logic_vector (1 downto 0);
na20a_type_i : in std_logic_vector (0 downto 0);
na20a_req_i : in std_logic;
na20a_req_o : out std_logic;
na20a_ack_i : in std_logic;
na20a_ack_o : out std_logic;
-- Adapter 20s
na20s_data_i : in std_logic_vector (23 downto 0);
na20s_data_o : out std_logic_vector (23 downto 0);
na20s_addr_i : in std_logic_vector (1 downto 0);
na20s_type_i : in std_logic_vector (0 downto 0);
na20s_req_i : in std_logic;
na20s_req_o : out std_logic;
na20s_ack_i : in std_logic;
na20s_ack_o : out std_logic;
-- Adapter 21a
na21a_data_i : in std_logic_vector (23 downto 0);
na21a_data_o : out std_logic_vector (23 downto 0);
na21a_addr_i : in std_logic_vector (1 downto 0);
na21a_type_i : in std_logic_vector (0 downto 0);
na21a_req_i : in std_logic;
na21a_req_o : out std_logic;
na21a_ack_i : in std_logic;
na21a_ack_o : out std_logic;
-- Adapter 21n
na21n_data_i : in std_logic_vector (23 downto 0);
na21n_data_o : out std_logic_vector (23 downto 0);
na21n_addr_i : in std_logic_vector (1 downto 0);
na21n_type_i : in std_logic_vector (0 downto 0);
na21n_req_i : in std_logic;
na21n_req_o : out std_logic;
na21n_ack_i : in std_logic;
na21n_ack_o : out std_logic;
-- PGM Unit 21e
link_fw_21_e_o : out noc_link_fw;
link_bw_21_e_i : in noc_link_bw;
link_fw_e_21_i : in noc_link_fw;
link_bw_e_21_o : out noc_link_bw;
-- Adapter 30n
na30n_data_i : in std_logic_vector (23 downto 0);
na30n_data_o : out std_logic_vector (23 downto 0);
na30n_addr_i : in std_logic_vector (1 downto 0);



OPTIMIZED NOC C.53

na30n_type_i : in std_logic_vector (0 downto 0);
na30n_req_i : in std_logic;
na30n_req_o : out std_logic;
na30n_ack_i : in std_logic;
na30n_ack_o : out std_logic;
-- Adapter 30e
na30e_data_i : in std_logic_vector (23 downto 0);
na30e_data_o : out std_logic_vector (23 downto 0);
na30e_addr_i : in std_logic_vector (1 downto 0);
na30e_type_i : in std_logic_vector (0 downto 0);
na30e_req_i : in std_logic;
na30e_req_o : out std_logic;
na30e_ack_i : in std_logic;
na30e_ack_o : out std_logic;
-- Adapter 30s
na30s_data_i : in std_logic_vector (23 downto 0);
na30s_data_o : out std_logic_vector (23 downto 0);
na30s_addr_i : in std_logic_vector (1 downto 0);
na30s_type_i : in std_logic_vector (0 downto 0);
na30s_req_i : in std_logic;
na30s_req_o : out std_logic;
na30s_ack_i : in std_logic;
na30s_ack_o : out std_logic);
end component;

component file_log_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH downto 0));

end component;

component file_read_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : out std_logic;
data_o : out std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

component file_cc_read_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : out std_logic;
data_o : out std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

component pgm_unit
generic (

filename : string);
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port (
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic);

end component;

component gen_traffic
generic (

conf_file : string;
dump_file : string;
period : integer;
ADDR_BITS : integer;
DATA_WIDTH_I : integer;
DATA_WIDTH_O : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_o : out std_logic_vector(ADDR_BITS-1 downto 0);
type_o : out std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end component;

component stat_log
generic (

filename : string;
DATA_WIDTH : integer;
PERIOD : integer;
INIT_DELAY : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

signal clk, rst : std_logic := ’0’;

signal na00a_data_i, na00w_data_i, na01a_data_i, na01n_data_i, na01w_data_i,
na10a_data_i, na10s_data_i, na11a_data_i, na11n_data_i, na20a_data_i,
na20s_data_i, na21a_data_i, na21n_data_i, na21e_data_i, na30n_data_i,
na30e_data_i, na30s_data_i, na00a_data_o, na00w_data_o, na01a_data_o,
na01n_data_o, na01w_data_o, na10a_data_o, na10s_data_o, na11a_data_o,
na11n_data_o, na20a_data_o, na20s_data_o, na21a_data_o, na21n_data_o,
na21e_data_o, na30n_data_o, na30e_data_o, na30s_data_o
: std_logic_vector(23 downto 0);

signal na00a_addr_i, na00w_addr_i, na01a_addr_i, na01n_addr_i, na01w_addr_i,
na10a_addr_i, na10s_addr_i, na11a_addr_i, na11n_addr_i, na20a_addr_i,
na20s_addr_i, na21a_addr_i, na21n_addr_i, na21e_addr_i, na30n_addr_i,
na30e_addr_i, na30s_addr_i : std_logic_vector(1 downto 0);

signal na00a_type_i, na00w_type_i, na01a_type_i, na01n_type_i, na01w_type_i,
na10a_type_i, na10s_type_i, na11a_type_i, na11n_type_i, na20a_type_i,
na20s_type_i, na21a_type_i, na21n_type_i, na21e_type_i, na30n_type_i,
na30e_type_i, na30s_type_i : std_logic_vector(TYPE_BITS-1 downto 0);

signal na00a_req_i, na00w_req_i, na01a_req_i, na01n_req_i, na01w_req_i,
na10a_req_i, na10s_req_i, na11a_req_i, na11n_req_i, na20a_req_i,
na20s_req_i, na21a_req_i, na21n_req_i, na21e_req_i, na30n_req_i,
na30e_req_i, na30s_req_i, na00a_req_o, na00w_req_o, na01a_req_o,
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na01n_req_o, na01w_req_o, na10a_req_o, na10s_req_o, na11a_req_o,
na11n_req_o, na20a_req_o, na20s_req_o, na21a_req_o, na21n_req_o,
na21e_req_o, na30n_req_o, na30e_req_o, na30s_req_o : std_logic;

signal na00a_ack_i, na00w_ack_i, na01a_ack_i, na01n_ack_i, na01w_ack_i,
na10a_ack_i, na10s_ack_i, na11a_ack_i, na11n_ack_i, na20a_ack_i,
na20s_ack_i, na21a_ack_i, na21n_ack_i, na21e_ack_i, na30n_ack_i,
na30e_ack_i, na30s_ack_i, na00a_ack_o, na00w_ack_o, na01a_ack_o,
na01n_ack_o, na01w_ack_o, na10a_ack_o, na10s_ack_o, na11a_ack_o,
na11n_ack_o, na20a_ack_o, na20s_ack_o, na21a_ack_o, na21n_ack_o,
na21e_ack_o, na30n_ack_o, na30e_ack_o, na30s_ack_o : std_logic;

signal link_fw_e_21_i : noc_link_fw;
signal link_bw_e_21_o : noc_link_bw;

begin -- test

clk <= not clk after 5 ns;
rst <= ’1’ after 17 ns;

noc : r_mesh
port map(

clk => clk,
rst => rst,

na00a_data_i => na00a_data_i,
na00a_data_o => na00a_data_o,
na00a_addr_i => na00a_addr_i,
na00a_type_i => na00a_type_i,
na00a_req_i => na00a_req_i,
na00a_req_o => na00a_req_o,
na00a_ack_i => na00a_ack_i,
na00a_ack_o => na00a_ack_o,
na00w_data_i => na00w_data_i,
na00w_data_o => na00w_data_o,
na00w_addr_i => na00w_addr_i,
na00w_type_i => na00w_type_i,
na00w_req_i => na00w_req_i,
na00w_req_o => na00w_req_o,
na00w_ack_i => na00w_ack_i,
na00w_ack_o => na00w_ack_o,
na01a_data_i => na01a_data_i,
na01a_data_o => na01a_data_o,
na01a_addr_i => na01a_addr_i,
na01a_type_i => na01a_type_i,
na01a_req_i => na01a_req_i,
na01a_req_o => na01a_req_o,
na01a_ack_i => na01a_ack_i,
na01a_ack_o => na01a_ack_o,
na01w_data_i => na01w_data_i,
na01w_data_o => na01w_data_o,
na01w_addr_i => na01w_addr_i,
na01w_type_i => na01w_type_i,
na01w_req_i => na01w_req_i,
na01w_req_o => na01w_req_o,
na01w_ack_i => na01w_ack_i,
na01w_ack_o => na01w_ack_o,
na01n_data_i => na01n_data_i,
na01n_data_o => na01n_data_o,
na01n_addr_i => na01n_addr_i,
na01n_type_i => na01n_type_i,
na01n_req_i => na01n_req_i,
na01n_req_o => na01n_req_o,
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na01n_ack_i => na01n_ack_i,
na01n_ack_o => na01n_ack_o,
na10a_data_i => na10a_data_i,
na10a_data_o => na10a_data_o,
na10a_addr_i => na10a_addr_i,
na10a_type_i => na10a_type_i,
na10a_req_i => na10a_req_i,
na10a_req_o => na10a_req_o,
na10a_ack_i => na10a_ack_i,
na10a_ack_o => na10a_ack_o,
na10s_data_i => na10s_data_i,
na10s_data_o => na10s_data_o,
na10s_addr_i => na10s_addr_i,
na10s_type_i => na10s_type_i,
na10s_req_i => na10s_req_i,
na10s_req_o => na10s_req_o,
na10s_ack_i => na10s_ack_i,
na10s_ack_o => na10s_ack_o,
na11a_data_i => na11a_data_i,
na11a_data_o => na11a_data_o,
na11a_addr_i => na11a_addr_i,
na11a_type_i => na11a_type_i,
na11a_req_i => na11a_req_i,
na11a_req_o => na11a_req_o,
na11a_ack_i => na11a_ack_i,
na11a_ack_o => na11a_ack_o,
na11n_data_i => na11n_data_i,
na11n_data_o => na11n_data_o,
na11n_addr_i => na11n_addr_i,
na11n_type_i => na11n_type_i,
na11n_req_i => na11n_req_i,
na11n_req_o => na11n_req_o,
na11n_ack_i => na11n_ack_i,
na11n_ack_o => na11n_ack_o,
na20a_data_i => na20a_data_i,
na20a_data_o => na20a_data_o,
na20a_addr_i => na20a_addr_i,
na20a_type_i => na20a_type_i,
na20a_req_i => na20a_req_i,
na20a_req_o => na20a_req_o,
na20a_ack_i => na20a_ack_i,
na20a_ack_o => na20a_ack_o,
na20s_data_i => na20s_data_i,
na20s_data_o => na20s_data_o,
na20s_addr_i => na20s_addr_i,
na20s_type_i => na20s_type_i,
na20s_req_i => na20s_req_i,
na20s_req_o => na20s_req_o,
na20s_ack_i => na20s_ack_i,
na20s_ack_o => na20s_ack_o,
na21a_data_i => na21a_data_i,
na21a_data_o => na21a_data_o,
na21a_addr_i => na21a_addr_i,
na21a_type_i => na21a_type_i,
na21a_req_i => na21a_req_i,
na21a_req_o => na21a_req_o,
na21a_ack_i => na21a_ack_i,
na21a_ack_o => na21a_ack_o,
na21n_data_i => na21n_data_i,
na21n_data_o => na21n_data_o,
na21n_addr_i => na21n_addr_i,
na21n_type_i => na21n_type_i,
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na21n_req_i => na21n_req_i,
na21n_req_o => na21n_req_o,
na21n_ack_i => na21n_ack_i,
na21n_ack_o => na21n_ack_o,
link_fw_21_e_o => open,
link_bw_21_e_i => (others => ’1’),
link_fw_e_21_i => link_fw_e_21_i,
link_bw_e_21_o => link_bw_e_21_o,
na30n_data_i => na30n_data_i,
na30n_data_o => na30n_data_o,
na30n_addr_i => na30n_addr_i,
na30n_type_i => na30n_type_i,
na30n_req_i => na30n_req_i,
na30n_req_o => na30n_req_o,
na30n_ack_i => na30n_ack_i,
na30n_ack_o => na30n_ack_o,
na30e_data_i => na30e_data_i,
na30e_data_o => na30e_data_o,
na30e_addr_i => na30e_addr_i,
na30e_type_i => na30e_type_i,
na30e_req_i => na30e_req_i,
na30e_req_o => na30e_req_o,
na30e_ack_i => na30e_ack_i,
na30e_ack_o => na30e_ack_o,
na30s_data_i => na30s_data_i,
na30s_data_o => na30s_data_o,
na30s_addr_i => na30s_addr_i,
na30s_type_i => na30s_type_i,
na30s_req_i => na30s_req_i,
na30s_req_o => na30s_req_o,
na30s_ack_i => na30s_ack_i,
na30s_ack_o => na30s_ack_o);

traffic00a : gen_traffic
generic map(

conf_file => "1a.txt",
dump_file => "1a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na00a_data_o,
data_o => na00a_data_i,
addr_o => na00a_addr_i,
type_o => na00a_type_i,
req_i => na00a_req_o,
req_o => na00a_req_i,
ack_i => na00a_ack_o,
ack_o => na00a_ack_i);

traffic00w : gen_traffic
generic map(

conf_file => "5.txt",
dump_file => "5_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)
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port map(
clk => clk,
rst => rst,
data_i => na00w_data_o,
data_o => na00w_data_i,
addr_o => na00w_addr_i,
type_o => na00w_type_i,
req_i => na00w_req_o,
req_o => na00w_req_i,
ack_i => na00w_ack_o,
ack_o => na00w_ack_i);

traffic01a : gen_traffic
generic map(

conf_file => "6.txt",
dump_file => "6_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na01a_data_o,
data_o => na01a_data_i,
addr_o => na01a_addr_i,
type_o => na01a_type_i,
req_i => na01a_req_o,
req_o => na01a_req_i,
ack_i => na01a_ack_o,
ack_o => na01a_ack_i);

traffic01w : gen_traffic
generic map(

conf_file => "1b.txt",
dump_file => "1b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na01w_data_o,
data_o => na01w_data_i,
addr_o => na01w_addr_i,
type_o => na01w_type_i,
req_i => na01w_req_o,
req_o => na01w_req_i,
ack_i => na01w_ack_o,
ack_o => na01w_ack_i);

traffic01n : gen_traffic
generic map(

conf_file => "7.txt",
dump_file => "7_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
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clk => clk,
rst => rst,
data_i => na01n_data_o,
data_o => na01n_data_i,
addr_o => na01n_addr_i,
type_o => na01n_type_i,
req_i => na01n_req_o,
req_o => na01n_req_i,
ack_i => na01n_ack_o,
ack_o => na01n_ack_i);

traffic10a : gen_traffic
generic map(

conf_file => "2b.txt",
dump_file => "2b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na10a_data_o,
data_o => na10a_data_i,
addr_o => na10a_addr_i,
type_o => na10a_type_i,
req_i => na10a_req_o,
req_o => na10a_req_i,
ack_i => na10a_ack_o,
ack_o => na10a_ack_i);

traffic10s : gen_traffic
generic map(

conf_file => "4b.txt",
dump_file => "4b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na10s_data_o,
data_o => na10s_data_i,
addr_o => na10s_addr_i,
type_o => na10s_type_i,
req_i => na10s_req_o,
req_o => na10s_req_i,
ack_i => na10s_ack_o,
ack_o => na10s_ack_i);

traffic11a : gen_traffic
generic map(

conf_file => "2a.txt",
dump_file => "2a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
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data_i => na11a_data_o,
data_o => na11a_data_i,
addr_o => na11a_addr_i,
type_o => na11a_type_i,
req_i => na11a_req_o,
req_o => na11a_req_i,
ack_i => na11a_ack_o,
ack_o => na11a_ack_i);

traffic11n : gen_traffic
generic map(

conf_file => "3a.txt",
dump_file => "3a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na11n_data_o,
data_o => na11n_data_i,
addr_o => na11n_addr_i,
type_o => na11n_type_i,
req_i => na11n_req_o,
req_o => na11n_req_i,
ack_i => na11n_ack_o,
ack_o => na11n_ack_i);

traffic20a : gen_traffic
generic map(

conf_file => "9.txt",
dump_file => "9_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na20a_data_o,
data_o => na20a_data_i,
addr_o => na20a_addr_i,
type_o => na20a_type_i,
req_i => na20a_req_o,
req_o => na20a_req_i,
ack_i => na20a_ack_o,
ack_o => na20a_ack_i);

traffic20s : gen_traffic
generic map(

conf_file => "10.txt",
dump_file => "10_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na20s_data_o,
data_o => na20s_data_i,
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addr_o => na20s_addr_i,
type_o => na20s_type_i,
req_i => na20s_req_o,
req_o => na20s_req_i,
ack_i => na20s_ack_o,
ack_o => na20s_ack_i);

traffic21a : gen_traffic
generic map(

conf_file => "4a.txt",
dump_file => "4a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na21a_data_o,
data_o => na21a_data_i,
addr_o => na21a_addr_i,
type_o => na21a_type_i,
req_i => na21a_req_o,
req_o => na21a_req_i,
ack_i => na21a_ack_o,
ack_o => na21a_ack_i);

traffic21n : gen_traffic
generic map(

conf_file => "3b.txt",
dump_file => "3b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na21n_data_o,
data_o => na21n_data_i,
addr_o => na21n_addr_i,
type_o => na21n_type_i,
req_i => na21n_req_o,
req_o => na21n_req_i,
ack_i => na21n_ack_o,
ack_o => na21n_ack_i);

traffic30n : gen_traffic
generic map(

conf_file => "empty.txt",
dump_file => "12_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na30n_data_o,
data_o => na30n_data_i,
addr_o => na30n_addr_i,
type_o => na30n_type_i,
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req_i => na30n_req_o,
req_o => na30n_req_i,
ack_i => na30n_ack_o,
ack_o => na30n_ack_i);

traffic30e : gen_traffic
generic map(

conf_file => "11.txt",
dump_file => "11_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na30e_data_o,
data_o => na30e_data_i,
addr_o => na30e_addr_i,
type_o => na30e_type_i,
req_i => na30e_req_o,
req_o => na30e_req_i,
ack_i => na30e_ack_o,
ack_o => na30e_ack_i);

traffic30s : gen_traffic
generic map(

conf_file => "8.txt",
dump_file => "8_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na30s_data_o,
data_o => na30s_data_i,
addr_o => na30s_addr_i,
type_o => na30s_type_i,
req_i => na30s_req_o,
req_o => na30s_req_i,
ack_i => na30s_ack_o,
ack_o => na30s_ack_i);

pgm : pgm_unit
generic map(

filename => "pgm.txt")
port map(

noc_fw_o => link_fw_e_21_i,
noc_bw_i => link_bw_e_21_o,
clk => clk,
rst => rst);

end tb_clean_arch;
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C.3 Mesh NoC

C.3.1 Mesh NoC
-------------------------------------------------------------------------------
-- Mesh 4x4 - Mesh NoC
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity mesh_4x4 is
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset

-- Test enable pin, that will be inserted by DC
-- RTL_SYNTHESIS OFF
-- pragma synthesis_off
test_se : in std_logic; -- syncheck_off
-- pragma synthesis_on
-- RTL_SYNTHESIS ON

-- Programming unit
pgm_data_i : in noc_link_fw;
pgm_data_o : out noc_link_bw;

-- Adapter 00
na00_data_i : in std_logic_vector (23 downto 0);
na00_data_o : out std_logic_vector (23 downto 0);
na00_addr_i : in std_logic_vector (1 downto 0);
na00_type_i : in std_logic_vector (0 downto 0);
na00_req_i : in std_logic;
na00_req_o : out std_logic;
na00_ack_i : in std_logic;
na00_ack_o : out std_logic;
-- Adapter 01
na01_data_i : in std_logic_vector (23 downto 0);
na01_data_o : out std_logic_vector (23 downto 0);
na01_addr_i : in std_logic_vector (1 downto 0);
na01_type_i : in std_logic_vector (0 downto 0);
na01_req_i : in std_logic;
na01_req_o : out std_logic;
na01_ack_i : in std_logic;
na01_ack_o : out std_logic;
-- Adapter 02
na02_data_i : in std_logic_vector (23 downto 0);
na02_data_o : out std_logic_vector (23 downto 0);
na02_addr_i : in std_logic_vector (1 downto 0);
na02_type_i : in std_logic_vector (0 downto 0);
na02_req_i : in std_logic;
na02_req_o : out std_logic;
na02_ack_i : in std_logic;
na02_ack_o : out std_logic;
-- Adapter 03
na03_data_i : in std_logic_vector (23 downto 0);
na03_data_o : out std_logic_vector (23 downto 0);
na03_addr_i : in std_logic_vector (1 downto 0);
na03_type_i : in std_logic_vector (0 downto 0);
na03_req_i : in std_logic;
na03_req_o : out std_logic;
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na03_ack_i : in std_logic;
na03_ack_o : out std_logic;
-- Adapter 10
na10_data_i : in std_logic_vector (23 downto 0);
na10_data_o : out std_logic_vector (23 downto 0);
na10_addr_i : in std_logic_vector (1 downto 0);
na10_type_i : in std_logic_vector (0 downto 0);
na10_req_i : in std_logic;
na10_req_o : out std_logic;
na10_ack_i : in std_logic;
na10_ack_o : out std_logic;
-- Adapter 11
na11_data_i : in std_logic_vector (23 downto 0);
na11_data_o : out std_logic_vector (23 downto 0);
na11_addr_i : in std_logic_vector (1 downto 0);
na11_type_i : in std_logic_vector (0 downto 0);
na11_req_i : in std_logic;
na11_req_o : out std_logic;
na11_ack_i : in std_logic;
na11_ack_o : out std_logic;
-- Adapter 12
na12_data_i : in std_logic_vector (23 downto 0);
na12_data_o : out std_logic_vector (23 downto 0);
na12_addr_i : in std_logic_vector (1 downto 0);
na12_type_i : in std_logic_vector (0 downto 0);
na12_req_i : in std_logic;
na12_req_o : out std_logic;
na12_ack_i : in std_logic;
na12_ack_o : out std_logic;
-- Adapter 13
na13_data_i : in std_logic_vector (23 downto 0);
na13_data_o : out std_logic_vector (23 downto 0);
na13_addr_i : in std_logic_vector (1 downto 0);
na13_type_i : in std_logic_vector (0 downto 0);
na13_req_i : in std_logic;
na13_req_o : out std_logic;
na13_ack_i : in std_logic;
na13_ack_o : out std_logic;
-- Adapter 20
na20_data_i : in std_logic_vector (23 downto 0);
na20_data_o : out std_logic_vector (23 downto 0);
na20_addr_i : in std_logic_vector (1 downto 0);
na20_type_i : in std_logic_vector (0 downto 0);
na20_req_i : in std_logic;
na20_req_o : out std_logic;
na20_ack_i : in std_logic;
na20_ack_o : out std_logic;
-- Adapter 21
na21_data_i : in std_logic_vector (23 downto 0);
na21_data_o : out std_logic_vector (23 downto 0);
na21_addr_i : in std_logic_vector (1 downto 0);
na21_type_i : in std_logic_vector (0 downto 0);
na21_req_i : in std_logic;
na21_req_o : out std_logic;
na21_ack_i : in std_logic;
na21_ack_o : out std_logic;
-- Adapter 22
na22_data_i : in std_logic_vector (23 downto 0);
na22_data_o : out std_logic_vector (23 downto 0);
na22_addr_i : in std_logic_vector (1 downto 0);
na22_type_i : in std_logic_vector (0 downto 0);
na22_req_i : in std_logic;
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na22_req_o : out std_logic;
na22_ack_i : in std_logic;
na22_ack_o : out std_logic;
-- Adapter 23
na23_data_i : in std_logic_vector (23 downto 0);
na23_data_o : out std_logic_vector (23 downto 0);
na23_addr_i : in std_logic_vector (1 downto 0);
na23_type_i : in std_logic_vector (0 downto 0);
na23_req_i : in std_logic;
na23_req_o : out std_logic;
na23_ack_i : in std_logic;
na23_ack_o : out std_logic;
-- Adapter 30
na30_data_i : in std_logic_vector (23 downto 0);
na30_data_o : out std_logic_vector (23 downto 0);
na30_addr_i : in std_logic_vector (1 downto 0);
na30_type_i : in std_logic_vector (0 downto 0);
na30_req_i : in std_logic;
na30_req_o : out std_logic;
na30_ack_i : in std_logic;
na30_ack_o : out std_logic;
-- Adapter 31
na31_data_i : in std_logic_vector (23 downto 0);
na31_data_o : out std_logic_vector (23 downto 0);
na31_addr_i : in std_logic_vector (1 downto 0);
na31_type_i : in std_logic_vector (0 downto 0);
na31_req_i : in std_logic;
na31_req_o : out std_logic;
na31_ack_i : in std_logic;
na31_ack_o : out std_logic;
-- Adapter 32
na32_data_i : in std_logic_vector (23 downto 0);
na32_data_o : out std_logic_vector (23 downto 0);
na32_addr_i : in std_logic_vector (1 downto 0);
na32_type_i : in std_logic_vector (0 downto 0);
na32_req_i : in std_logic;
na32_req_o : out std_logic;
na32_ack_i : in std_logic;
na32_ack_o : out std_logic;
-- Adapter 33
na33_data_i : in std_logic_vector (23 downto 0);
na33_data_o : out std_logic_vector (23 downto 0);
na33_addr_i : in std_logic_vector (1 downto 0);
na33_type_i : in std_logic_vector (0 downto 0);
na33_req_i : in std_logic;
na33_req_o : out std_logic;
na33_ack_i : in std_logic;
na33_ack_o : out std_logic);

end mesh_4x4;

architecture arch_4x4 of mesh_4x4 is

component mesh_router
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset
-- Input links
link_w_fw_i : in noc_link_fw; -- Input link west data
link_w_bw_o : out noc_link_bw; -- Input link west ack
link_n_fw_i : in noc_link_fw; -- Input link north data
link_n_bw_o : out noc_link_bw; -- Input link north ack
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link_e_fw_i : in noc_link_fw; -- Input link east data
link_e_bw_o : out noc_link_bw; -- Input link east ack
link_s_fw_i : in noc_link_fw; -- Input link south data
link_s_bw_o : out noc_link_bw; -- Input link south ack
link_a_fw_i : in noc_link_fw; -- Input link adapter data
link_a_bw_o : out noc_link_bw; -- Input link adapter ack
-- Output links
link_w_fw_o : out noc_link_fw; -- Input link west data
link_w_bw_i : in noc_link_bw; -- Input link west ack
link_n_fw_o : out noc_link_fw; -- Input link north data
link_n_bw_i : in noc_link_bw; -- Input link north ack
link_e_fw_o : out noc_link_fw; -- Input link east data
link_e_bw_i : in noc_link_bw; -- Input link east ack
link_s_fw_o : out noc_link_fw; -- Input link south data
link_s_bw_i : in noc_link_bw; -- Input link south ack
link_a_fw_o : out noc_link_fw; -- Input link adapter data
link_a_bw_i : in noc_link_bw); -- Input link adapter ack

end component;

component mesh_na
generic (

ADDR_BITS : integer := 4;
DATA_WIDTH_I : integer := 32;
DATA_WIDTH_O : integer := 32);

port (
noc_fw_i : in noc_link_fw;
noc_bw_o : out noc_link_bw;
noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_i : in std_logic_vector(ADDR_BITS-1 downto 0);
type_i : in std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end component;

component file_log_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH downto 0));

end component;

component file_read_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : out std_logic;
data_o : out std_logic_vector(DATA_WIDTH-1 downto 0));

end component;
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component file_cc_read_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : out std_logic;
data_o : out std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

component pgm_unit
generic (

filename : string);
port (

noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic);

end component;

component gen_traffic
generic (

conf_file : string;
dump_file : string;
period : integer;
ADDR_BITS : integer;
DATA_WIDTH_I : integer;
DATA_WIDTH_O : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_o : out std_logic_vector(ADDR_BITS-1 downto 0);
type_o : out std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end component;

component stat_log
generic (

filename : string;
DATA_WIDTH : integer;
PERIOD : integer;
INIT_DELAY : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

--signal clk, rst : std_logic := ’0’;

signal link_fw_00_01, link_fw_00_10, link_fw_00_na, link_fw_na_00,
link_fw_10_00, link_fw_10_11, link_fw_10_20, link_fw_10_na,
link_fw_na_10, link_fw_20_10, link_fw_20_21, link_fw_20_30,
link_fw_20_na, link_fw_na_20, link_fw_30_20, link_fw_30_31,
link_fw_30_na, link_fw_na_30, link_fw_01_02, link_fw_01_11,
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link_fw_01_00, link_fw_01_na, link_fw_na_01, link_fw_11_01,
link_fw_11_12, link_fw_11_21, link_fw_11_10, link_fw_11_na,
link_fw_na_11, link_fw_21_11, link_fw_21_22, link_fw_21_31,
link_fw_21_20, link_fw_21_na, link_fw_na_21, link_fw_31_21,
link_fw_31_32, link_fw_31_30, link_fw_31_na, link_fw_na_31,
link_fw_02_03, link_fw_02_12, link_fw_02_01, link_fw_02_na,
link_fw_na_02, link_fw_12_02, link_fw_12_13, link_fw_12_22,
link_fw_12_11, link_fw_12_na, link_fw_na_12, link_fw_22_12,
link_fw_22_23, link_fw_22_32, link_fw_22_21, link_fw_22_na,
link_fw_na_22, link_fw_32_22, link_fw_32_33, link_fw_32_31,
link_fw_32_na, link_fw_na_32, link_fw_03_13, link_fw_03_02,
link_fw_03_na, link_fw_na_03, link_fw_13_03, link_fw_13_23,
link_fw_13_12, link_fw_13_na, link_fw_na_13, link_fw_23_13,
link_fw_23_33, link_fw_23_22, link_fw_23_na, link_fw_na_23,
link_fw_33_23, link_fw_33_32, link_fw_33_na, link_fw_na_33 : noc_link_fw;

signal link_bw_00_01, link_bw_00_10, link_bw_00_na, link_bw_na_00,
link_bw_10_00, link_bw_10_11, link_bw_10_20, link_bw_10_na, link_bw_na_10,
link_bw_20_10, link_bw_20_21, link_bw_20_30, link_bw_20_na, link_bw_na_20,
link_bw_30_20, link_bw_30_31, link_bw_30_na, link_bw_na_30, link_bw_01_02,
link_bw_01_11, link_bw_01_00, link_bw_01_na, link_bw_na_01, link_bw_11_01,
link_bw_11_12, link_bw_11_21, link_bw_11_10, link_bw_11_na, link_bw_na_11,
link_bw_21_11, link_bw_21_22, link_bw_21_31, link_bw_21_20, link_bw_21_na,
link_bw_na_21, link_bw_31_21, link_bw_31_32, link_bw_31_30, link_bw_31_na,
link_bw_na_31, link_bw_02_03, link_bw_02_12, link_bw_02_01, link_bw_02_na,
link_bw_na_02, link_bw_12_02, link_bw_12_13, link_bw_12_22, link_bw_12_11,
link_bw_12_na, link_bw_na_12, link_bw_22_12, link_bw_22_23, link_bw_22_32,
link_bw_22_21, link_bw_22_na, link_bw_na_22, link_bw_32_22, link_bw_32_33,
link_bw_32_31, link_bw_32_na, link_bw_na_32, link_bw_03_13, link_bw_03_02,
link_bw_03_na, link_bw_na_03, link_bw_13_03, link_bw_13_23, link_bw_13_12,
link_bw_13_na, link_bw_na_13, link_bw_23_13, link_bw_23_33, link_bw_23_22,
link_bw_23_na, link_bw_na_23, link_bw_33_23, link_bw_33_32, link_bw_33_na,
link_bw_na_33 : noc_link_bw;

signal link_fw_gnd : noc_link_fw;
signal link_bw_high : noc_link_bw;

begin -- test

link_fw_gnd <= (others => ’0’);
link_bw_high <= (others => ’1’);

node_00 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => pgm_data_i,
link_w_bw_o => pgm_data_o,
link_n_fw_i => link_fw_01_00,
link_n_bw_o => link_bw_01_00,
link_e_fw_i => link_fw_10_00,
link_e_bw_o => link_bw_10_00,
link_s_fw_i => link_fw_gnd,
link_s_bw_o => open,
link_a_fw_i => link_fw_na_00,
link_a_bw_o => link_bw_na_00,
-- Output links
link_w_fw_o => open,
link_w_bw_i => link_bw_high,
link_n_fw_o => link_fw_00_01,
link_n_bw_i => link_bw_00_01,
link_e_fw_o => link_fw_00_10,



MESH NOC C.69

link_e_bw_i => link_bw_00_10,
link_s_fw_o => open,
link_s_bw_i => link_bw_high,
link_a_fw_o => link_fw_00_na,
link_a_bw_i => link_bw_00_na);

na_00 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_00_na,
noc_bw_o => link_bw_00_na,
noc_fw_o => link_fw_na_00,
noc_bw_i => link_bw_na_00,
clk => clk,
rst => rst,
data_i => na00_data_i,
data_o => na00_data_o,
addr_i => na00_addr_i,
type_i => na00_type_i,
req_i => na00_req_i,
req_o => na00_req_o,
ack_i => na00_ack_i,
ack_o => na00_ack_o);

node_10 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_00_10,
link_w_bw_o => link_bw_00_10,
link_n_fw_i => link_fw_11_10,
link_n_bw_o => link_bw_11_10,
link_e_fw_i => link_fw_20_10,
link_e_bw_o => link_bw_20_10,
link_s_fw_i => link_fw_gnd,
link_s_bw_o => open,
link_a_fw_i => link_fw_na_10,
link_a_bw_o => link_bw_na_10,
-- Output links
link_w_fw_o => link_fw_10_00,
link_w_bw_i => link_bw_10_00,
link_n_fw_o => link_fw_10_11,
link_n_bw_i => link_bw_10_11,
link_e_fw_o => link_fw_10_20,
link_e_bw_i => link_bw_10_20,
link_s_fw_o => open,
link_s_bw_i => link_bw_high,
link_a_fw_o => link_fw_10_na,
link_a_bw_i => link_bw_10_na);

na_10 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_10_na,
noc_bw_o => link_bw_10_na,
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noc_fw_o => link_fw_na_10,
noc_bw_i => link_bw_na_10,
clk => clk,
rst => rst,
data_i => na10_data_i,
data_o => na10_data_o,
addr_i => na10_addr_i,
type_i => na10_type_i,
req_i => na10_req_i,
req_o => na10_req_o,
ack_i => na10_ack_i,
ack_o => na10_ack_o);

node_20 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_10_20,
link_w_bw_o => link_bw_10_20,
link_n_fw_i => link_fw_21_20,
link_n_bw_o => link_bw_21_20,
link_e_fw_i => link_fw_30_20,
link_e_bw_o => link_bw_30_20,
link_s_fw_i => link_fw_gnd,
link_s_bw_o => open,
link_a_fw_i => link_fw_na_20,
link_a_bw_o => link_bw_na_20,
-- Output links
link_w_fw_o => link_fw_20_10,
link_w_bw_i => link_bw_20_10,
link_n_fw_o => link_fw_20_21,
link_n_bw_i => link_bw_20_21,
link_e_fw_o => link_fw_20_30,
link_e_bw_i => link_bw_20_30,
link_s_fw_o => open,
link_s_bw_i => link_bw_high,
link_a_fw_o => link_fw_20_na,
link_a_bw_i => link_bw_20_na);

na_20 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_20_na,
noc_bw_o => link_bw_20_na,
noc_fw_o => link_fw_na_20,
noc_bw_i => link_bw_na_20,
clk => clk,
rst => rst,
data_i => na20_data_i,
data_o => na20_data_o,
addr_i => na20_addr_i,
type_i => na20_type_i,
req_i => na20_req_i,
req_o => na20_req_o,
ack_i => na20_ack_i,
ack_o => na20_ack_o);

node_30 : mesh_router
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port map (
clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_20_30,
link_w_bw_o => link_bw_20_30,
link_n_fw_i => link_fw_31_30,
link_n_bw_o => link_bw_31_30,
link_e_fw_i => link_fw_gnd,
link_e_bw_o => open,
link_s_fw_i => link_fw_gnd,
link_s_bw_o => open,
link_a_fw_i => link_fw_na_30,
link_a_bw_o => link_bw_na_30,
-- Output links
link_w_fw_o => link_fw_30_20,
link_w_bw_i => link_bw_30_20,
link_n_fw_o => link_fw_30_31,
link_n_bw_i => link_bw_30_31,
link_e_fw_o => open,
link_e_bw_i => link_bw_high,
link_s_fw_o => open,
link_s_bw_i => link_bw_high,
link_a_fw_o => link_fw_30_na,
link_a_bw_i => link_bw_30_na);

na_30 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_30_na,
noc_bw_o => link_bw_30_na,
noc_fw_o => link_fw_na_30,
noc_bw_i => link_bw_na_30,
clk => clk,
rst => rst,
data_i => na30_data_i,
data_o => na30_data_o,
addr_i => na30_addr_i,
type_i => na30_type_i,
req_i => na30_req_i,
req_o => na30_req_o,
ack_i => na30_ack_i,
ack_o => na30_ack_o);

node_01 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_gnd,
link_w_bw_o => open,
link_n_fw_i => link_fw_02_01,
link_n_bw_o => link_bw_02_01,
link_e_fw_i => link_fw_11_01,
link_e_bw_o => link_bw_11_01,
link_s_fw_i => link_fw_00_01,
link_s_bw_o => link_bw_00_01,
link_a_fw_i => link_fw_na_01,
link_a_bw_o => link_bw_na_01,
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-- Output links
link_w_fw_o => open,
link_w_bw_i => link_bw_high,
link_n_fw_o => link_fw_01_02,
link_n_bw_i => link_bw_01_02,
link_e_fw_o => link_fw_01_11,
link_e_bw_i => link_bw_01_11,
link_s_fw_o => link_fw_01_00,
link_s_bw_i => link_bw_01_00,
link_a_fw_o => link_fw_01_na,
link_a_bw_i => link_bw_01_na);

na_01 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_01_na,
noc_bw_o => link_bw_01_na,
noc_fw_o => link_fw_na_01,
noc_bw_i => link_bw_na_01,
clk => clk,
rst => rst,
data_i => na01_data_i,
data_o => na01_data_o,
addr_i => na01_addr_i,
type_i => na01_type_i,
req_i => na01_req_i,
req_o => na01_req_o,
ack_i => na01_ack_i,
ack_o => na01_ack_o);

node_11 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_01_11,
link_w_bw_o => link_bw_01_11,
link_n_fw_i => link_fw_12_11,
link_n_bw_o => link_bw_12_11,
link_e_fw_i => link_fw_21_11,
link_e_bw_o => link_bw_21_11,
link_s_fw_i => link_fw_10_11,
link_s_bw_o => link_bw_10_11,
link_a_fw_i => link_fw_na_11,
link_a_bw_o => link_bw_na_11,
-- Output links
link_w_fw_o => link_fw_11_01,
link_w_bw_i => link_bw_11_01,
link_n_fw_o => link_fw_11_12,
link_n_bw_i => link_bw_11_12,
link_e_fw_o => link_fw_11_21,
link_e_bw_i => link_bw_11_21,
link_s_fw_o => link_fw_11_10,
link_s_bw_i => link_bw_11_10,
link_a_fw_o => link_fw_11_na,
link_a_bw_i => link_bw_11_na);

na_11 : mesh_na
generic map(
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ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_11_na,
noc_bw_o => link_bw_11_na,
noc_fw_o => link_fw_na_11,
noc_bw_i => link_bw_na_11,
clk => clk,
rst => rst,
data_i => na11_data_i,
data_o => na11_data_o,
addr_i => na11_addr_i,
type_i => na11_type_i,
req_i => na11_req_i,
req_o => na11_req_o,
ack_i => na11_ack_i,
ack_o => na11_ack_o);

node_21 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_11_21,
link_w_bw_o => link_bw_11_21,
link_n_fw_i => link_fw_22_21,
link_n_bw_o => link_bw_22_21,
link_e_fw_i => link_fw_31_21,
link_e_bw_o => link_bw_31_21,
link_s_fw_i => link_fw_20_21,
link_s_bw_o => link_bw_20_21,
link_a_fw_i => link_fw_na_21,
link_a_bw_o => link_bw_na_21,
-- Output links
link_w_fw_o => link_fw_21_11,
link_w_bw_i => link_bw_21_11,
link_n_fw_o => link_fw_21_22,
link_n_bw_i => link_bw_21_22,
link_e_fw_o => link_fw_21_31,
link_e_bw_i => link_bw_21_31,
link_s_fw_o => link_fw_21_20,
link_s_bw_i => link_bw_21_20,
link_a_fw_o => link_fw_21_na,
link_a_bw_i => link_bw_21_na);

na_21 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_21_na,
noc_bw_o => link_bw_21_na,
noc_fw_o => link_fw_na_21,
noc_bw_i => link_bw_na_21,
clk => clk,
rst => rst,
data_i => na21_data_i,
data_o => na21_data_o,
addr_i => na21_addr_i,
type_i => na21_type_i,
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req_i => na21_req_i,
req_o => na21_req_o,
ack_i => na21_ack_i,
ack_o => na21_ack_o);

node_31 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_21_31,
link_w_bw_o => link_bw_21_31,
link_n_fw_i => link_fw_32_31,
link_n_bw_o => link_bw_32_31,
link_e_fw_i => link_fw_gnd,
link_e_bw_o => open,
link_s_fw_i => link_fw_30_31,
link_s_bw_o => link_bw_30_31,
link_a_fw_i => link_fw_na_31,
link_a_bw_o => link_bw_na_31,
-- Output links
link_w_fw_o => link_fw_31_21,
link_w_bw_i => link_bw_31_21,
link_n_fw_o => link_fw_31_32,
link_n_bw_i => link_bw_31_32,
link_e_fw_o => open,
link_e_bw_i => link_bw_high,
link_s_fw_o => link_fw_31_30,
link_s_bw_i => link_bw_31_30,
link_a_fw_o => link_fw_31_na,
link_a_bw_i => link_bw_31_na);

na_31 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_31_na,
noc_bw_o => link_bw_31_na,
noc_fw_o => link_fw_na_31,
noc_bw_i => link_bw_na_31,
clk => clk,
rst => rst,
data_i => na31_data_i,
data_o => na31_data_o,
addr_i => na31_addr_i,
type_i => na31_type_i,
req_i => na31_req_i,
req_o => na31_req_o,
ack_i => na31_ack_i,
ack_o => na31_ack_o);

node_02 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_gnd,
link_w_bw_o => open,
link_n_fw_i => link_fw_03_02,
link_n_bw_o => link_bw_03_02,
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link_e_fw_i => link_fw_12_02,
link_e_bw_o => link_bw_12_02,
link_s_fw_i => link_fw_01_02,
link_s_bw_o => link_bw_01_02,
link_a_fw_i => link_fw_na_02,
link_a_bw_o => link_bw_na_02,
-- Output links
link_w_fw_o => open,
link_w_bw_i => link_bw_high,
link_n_fw_o => link_fw_02_03,
link_n_bw_i => link_bw_02_03,
link_e_fw_o => link_fw_02_12,
link_e_bw_i => link_bw_02_12,
link_s_fw_o => link_fw_02_01,
link_s_bw_i => link_bw_02_01,
link_a_fw_o => link_fw_02_na,
link_a_bw_i => link_bw_02_na);

na_02 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_02_na,
noc_bw_o => link_bw_02_na,
noc_fw_o => link_fw_na_02,
noc_bw_i => link_bw_na_02,
clk => clk,
rst => rst,
data_i => na02_data_i,
data_o => na02_data_o,
addr_i => na02_addr_i,
type_i => na02_type_i,
req_i => na02_req_i,
req_o => na02_req_o,
ack_i => na02_ack_i,
ack_o => na02_ack_o);

node_12 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_02_12,
link_w_bw_o => link_bw_02_12,
link_n_fw_i => link_fw_13_12,
link_n_bw_o => link_bw_13_12,
link_e_fw_i => link_fw_22_12,
link_e_bw_o => link_bw_22_12,
link_s_fw_i => link_fw_11_12,
link_s_bw_o => link_bw_11_12,
link_a_fw_i => link_fw_na_12,
link_a_bw_o => link_bw_na_12,
-- Output links
link_w_fw_o => link_fw_12_02,
link_w_bw_i => link_bw_12_02,
link_n_fw_o => link_fw_12_13,
link_n_bw_i => link_bw_12_13,
link_e_fw_o => link_fw_12_22,
link_e_bw_i => link_bw_12_22,
link_s_fw_o => link_fw_12_11,
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link_s_bw_i => link_bw_12_11,
link_a_fw_o => link_fw_12_na,
link_a_bw_i => link_bw_12_na);

na_12 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_12_na,
noc_bw_o => link_bw_12_na,
noc_fw_o => link_fw_na_12,
noc_bw_i => link_bw_na_12,
clk => clk,
rst => rst,
data_i => na12_data_i,
data_o => na12_data_o,
addr_i => na12_addr_i,
type_i => na12_type_i,
req_i => na12_req_i,
req_o => na12_req_o,
ack_i => na12_ack_i,
ack_o => na12_ack_o);

node_22 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_12_22,
link_w_bw_o => link_bw_12_22,
link_n_fw_i => link_fw_23_22,
link_n_bw_o => link_bw_23_22,
link_e_fw_i => link_fw_32_22,
link_e_bw_o => link_bw_32_22,
link_s_fw_i => link_fw_21_22,
link_s_bw_o => link_bw_21_22,
link_a_fw_i => link_fw_na_22,
link_a_bw_o => link_bw_na_22,
-- Output links
link_w_fw_o => link_fw_22_12,
link_w_bw_i => link_bw_22_12,
link_n_fw_o => link_fw_22_23,
link_n_bw_i => link_bw_22_23,
link_e_fw_o => link_fw_22_32,
link_e_bw_i => link_bw_22_32,
link_s_fw_o => link_fw_22_21,
link_s_bw_i => link_bw_22_21,
link_a_fw_o => link_fw_22_na,
link_a_bw_i => link_bw_22_na);

na_22 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_22_na,
noc_bw_o => link_bw_22_na,
noc_fw_o => link_fw_na_22,
noc_bw_i => link_bw_na_22,
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clk => clk,
rst => rst,
data_i => na22_data_i,
data_o => na22_data_o,
addr_i => na22_addr_i,
type_i => na22_type_i,
req_i => na22_req_i,
req_o => na22_req_o,
ack_i => na22_ack_i,
ack_o => na22_ack_o);

node_32 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_22_32,
link_w_bw_o => link_bw_22_32,
link_n_fw_i => link_fw_33_32,
link_n_bw_o => link_bw_33_32,
link_e_fw_i => link_fw_gnd,
link_e_bw_o => open,
link_s_fw_i => link_fw_31_32,
link_s_bw_o => link_bw_31_32,
link_a_fw_i => link_fw_na_32,
link_a_bw_o => link_bw_na_32,
-- Output links
link_w_fw_o => link_fw_32_22,
link_w_bw_i => link_bw_32_22,
link_n_fw_o => link_fw_32_33,
link_n_bw_i => link_bw_32_33,
link_e_fw_o => open,
link_e_bw_i => link_bw_high,
link_s_fw_o => link_fw_32_31,
link_s_bw_i => link_bw_32_31,
link_a_fw_o => link_fw_32_na,
link_a_bw_i => link_bw_32_na);

na_32 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_32_na,
noc_bw_o => link_bw_32_na,
noc_fw_o => link_fw_na_32,
noc_bw_i => link_bw_na_32,
clk => clk,
rst => rst,
data_i => na32_data_i,
data_o => na32_data_o,
addr_i => na32_addr_i,
type_i => na32_type_i,
req_i => na32_req_i,
req_o => na32_req_o,
ack_i => na32_ack_i,
ack_o => na32_ack_o);

node_03 : mesh_router
port map (

clk => clk,
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rst => rst,
-- Input links
link_w_fw_i => link_fw_gnd,
link_w_bw_o => open,
link_n_fw_i => link_fw_gnd,
link_n_bw_o => open,
link_e_fw_i => link_fw_13_03,
link_e_bw_o => link_bw_13_03,
link_s_fw_i => link_fw_02_03,
link_s_bw_o => link_bw_02_03,
link_a_fw_i => link_fw_na_03,
link_a_bw_o => link_bw_na_03,
-- Output links
link_w_fw_o => open,
link_w_bw_i => link_bw_high,
link_n_fw_o => open,
link_n_bw_i => link_bw_high,
link_e_fw_o => link_fw_03_13,
link_e_bw_i => link_bw_03_13,
link_s_fw_o => link_fw_03_02,
link_s_bw_i => link_bw_03_02,
link_a_fw_o => link_fw_03_na,
link_a_bw_i => link_bw_03_na);

na_03 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_03_na,
noc_bw_o => link_bw_03_na,
noc_fw_o => link_fw_na_03,
noc_bw_i => link_bw_na_03,
clk => clk,
rst => rst,
data_i => na03_data_i,
data_o => na03_data_o,
addr_i => na03_addr_i,
type_i => na03_type_i,
req_i => na03_req_i,
req_o => na03_req_o,
ack_i => na03_ack_i,
ack_o => na03_ack_o);

node_13 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_03_13,
link_w_bw_o => link_bw_03_13,
link_n_fw_i => link_fw_gnd,
link_n_bw_o => open,
link_e_fw_i => link_fw_23_13,
link_e_bw_o => link_bw_23_13,
link_s_fw_i => link_fw_12_13,
link_s_bw_o => link_bw_12_13,
link_a_fw_i => link_fw_na_13,
link_a_bw_o => link_bw_na_13,
-- Output links
link_w_fw_o => link_fw_13_03,
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link_w_bw_i => link_bw_13_03,
link_n_fw_o => open,
link_n_bw_i => link_bw_high,
link_e_fw_o => link_fw_13_23,
link_e_bw_i => link_bw_13_23,
link_s_fw_o => link_fw_13_12,
link_s_bw_i => link_bw_13_12,
link_a_fw_o => link_fw_13_na,
link_a_bw_i => link_bw_13_na);

na_13 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_13_na,
noc_bw_o => link_bw_13_na,
noc_fw_o => link_fw_na_13,
noc_bw_i => link_bw_na_13,
clk => clk,
rst => rst,
data_i => na13_data_i,
data_o => na13_data_o,
addr_i => na13_addr_i,
type_i => na13_type_i,
req_i => na13_req_i,
req_o => na13_req_o,
ack_i => na13_ack_i,
ack_o => na13_ack_o);

node_23 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_13_23,
link_w_bw_o => link_bw_13_23,
link_n_fw_i => link_fw_gnd,
link_n_bw_o => open,
link_e_fw_i => link_fw_33_23,
link_e_bw_o => link_bw_33_23,
link_s_fw_i => link_fw_22_23,
link_s_bw_o => link_bw_22_23,
link_a_fw_i => link_fw_na_23,
link_a_bw_o => link_bw_na_23,
-- Output links
link_w_fw_o => link_fw_23_13,
link_w_bw_i => link_bw_23_13,
link_n_fw_o => open,
link_n_bw_i => link_bw_high,
link_e_fw_o => link_fw_23_33,
link_e_bw_i => link_bw_23_33,
link_s_fw_o => link_fw_23_22,
link_s_bw_i => link_bw_23_22,
link_a_fw_o => link_fw_23_na,
link_a_bw_i => link_bw_23_na);

na_23 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
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DATA_WIDTH_O => 24)
port map(

noc_fw_i => link_fw_23_na,
noc_bw_o => link_bw_23_na,
noc_fw_o => link_fw_na_23,
noc_bw_i => link_bw_na_23,
clk => clk,
rst => rst,
data_i => na23_data_i,
data_o => na23_data_o,
addr_i => na23_addr_i,
type_i => na23_type_i,
req_i => na23_req_i,
req_o => na23_req_o,
ack_i => na23_ack_i,
ack_o => na23_ack_o);

node_33 : mesh_router
port map (

clk => clk,
rst => rst,
-- Input links
link_w_fw_i => link_fw_23_33,
link_w_bw_o => link_bw_23_33,
link_n_fw_i => link_fw_gnd,
link_n_bw_o => open,
link_e_fw_i => link_fw_gnd,
link_e_bw_o => open,
link_s_fw_i => link_fw_32_33,
link_s_bw_o => link_bw_32_33,
link_a_fw_i => link_fw_na_33,
link_a_bw_o => link_bw_na_33,
-- Output links
link_w_fw_o => link_fw_33_23,
link_w_bw_i => link_bw_33_23,
link_n_fw_o => open,
link_n_bw_i => link_bw_high,
link_e_fw_o => open,
link_e_bw_i => link_bw_high,
link_s_fw_o => link_fw_33_32,
link_s_bw_i => link_bw_33_32,
link_a_fw_o => link_fw_33_na,
link_a_bw_i => link_bw_33_na);

na_33 : mesh_na
generic map(

ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
noc_fw_i => link_fw_33_na,
noc_bw_o => link_bw_33_na,
noc_fw_o => link_fw_na_33,
noc_bw_i => link_bw_na_33,
clk => clk,
rst => rst,
data_i => na33_data_i,
data_o => na33_data_o,
addr_i => na33_addr_i,
type_i => na33_type_i,
req_i => na33_req_i,
req_o => na33_req_o,
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ack_i => na33_ack_i,
ack_o => na33_ack_o);

end arch_4x4;

C.3.2 Global settings
-------------------------------------------------------------------------------
-- Types - Global definitions - Mesh NoC
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;

package types is
constant FLIT_WIDTH : integer := 40; -- Flit width
constant EOP_BIT_POS : integer := 39; -- EOP bit position
constant ADDR_HOPS : integer := 7; -- Number of hops in header
constant HOP_BITS : integer := 2; -- Bit pr. hop
constant TYPE_BITS : integer := 1; -- Bits indicating type
constant TYPE_BIT_POS : integer := 38; -- Bits indicating type
constant FLIT_DATA_WIDTH : integer := 38; -- Data width
constant HDR_ADDR_WIDTH : integer := ADDR_HOPS * HOP_BITS;

-- Header bits for routing information
constant HDR_ADDR_OFFSET : integer := 24; -- Address position
constant VC : integer := 2; -- Number of virtual channels
constant VC_bit : integer := 1; -- log2(VC)
constant DV_bit : integer := 41; -- Data valid bit position

subtype noc_link_fw is std_logic_vector((FLIT_WIDTH + VC_bit) downto 0); -- Network forward link
subtype noc_link_bw is std_logic_vector (VC-1 downto 0);

-- Network acknowledge link
subtype vc_data is std_logic_vector(FLIT_WIDTH-1 downto 0); -- VC data

subtype rt_direction is std_logic_vector(2 downto 0); -- Routing direction

constant rt_n : rt_direction := "000"; -- North
constant rt_e : rt_direction := "001"; -- East
constant rt_s : rt_direction := "011"; -- South
constant rt_w : rt_direction := "010"; -- West
constant rt_a : rt_direction := "100"; -- Adapter
constant rt_x : rt_direction := "111"; -- Nowhere

end types;

C.3.3 Main testbench
-------------------------------------------------------------------------------
-- TB Mesh 4x4 clean - Mesh NoC main testbench
-- by Morten Sleth Rasmussen, s011295
-------------------------------------------------------------------------------

library IEEE;
use IEEE.std_logic_1164.all;
use work.types.all;

entity tb_mesh_4x4_clean is

end tb_mesh_4x4_clean;
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architecture clean_4x4 of tb_mesh_4x4_clean is

component mesh_4x4
port (

clk : in std_logic; -- Clock
rst : in std_logic; -- Reset

-- Test enable pin, that will be inserted by DC
-- RTL_SYNTHESIS OFF
-- pragma synthesis_off
test_se : in std_logic; -- syncheck_off
-- pragma synthesis_on
-- RTL_SYNTHESIS ON

-- Programming unit
pgm_data_i : in noc_link_fw;
pgm_data_o : out noc_link_bw;

-- Adapter 00
na00_data_i : in std_logic_vector (23 downto 0);
na00_data_o : out std_logic_vector (23 downto 0);
na00_addr_i : in std_logic_vector (1 downto 0);
na00_type_i : in std_logic_vector (0 downto 0);
na00_req_i : in std_logic;
na00_req_o : out std_logic;
na00_ack_i : in std_logic;
na00_ack_o : out std_logic;
-- Adapter 01
na01_data_i : in std_logic_vector (23 downto 0);
na01_data_o : out std_logic_vector (23 downto 0);
na01_addr_i : in std_logic_vector (1 downto 0);
na01_type_i : in std_logic_vector (0 downto 0);
na01_req_i : in std_logic;
na01_req_o : out std_logic;
na01_ack_i : in std_logic;
na01_ack_o : out std_logic;
-- Adapter 02
na02_data_i : in std_logic_vector (23 downto 0);
na02_data_o : out std_logic_vector (23 downto 0);
na02_addr_i : in std_logic_vector (1 downto 0);
na02_type_i : in std_logic_vector (0 downto 0);
na02_req_i : in std_logic;
na02_req_o : out std_logic;
na02_ack_i : in std_logic;
na02_ack_o : out std_logic;
-- Adapter 03
na03_data_i : in std_logic_vector (23 downto 0);
na03_data_o : out std_logic_vector (23 downto 0);
na03_addr_i : in std_logic_vector (1 downto 0);
na03_type_i : in std_logic_vector (0 downto 0);
na03_req_i : in std_logic;
na03_req_o : out std_logic;
na03_ack_i : in std_logic;
na03_ack_o : out std_logic;
-- Adapter 10
na10_data_i : in std_logic_vector (23 downto 0);
na10_data_o : out std_logic_vector (23 downto 0);
na10_addr_i : in std_logic_vector (1 downto 0);
na10_type_i : in std_logic_vector (0 downto 0);
na10_req_i : in std_logic;
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na10_req_o : out std_logic;
na10_ack_i : in std_logic;
na10_ack_o : out std_logic;
-- Adapter 11
na11_data_i : in std_logic_vector (23 downto 0);
na11_data_o : out std_logic_vector (23 downto 0);
na11_addr_i : in std_logic_vector (1 downto 0);
na11_type_i : in std_logic_vector (0 downto 0);
na11_req_i : in std_logic;
na11_req_o : out std_logic;
na11_ack_i : in std_logic;
na11_ack_o : out std_logic;
-- Adapter 12
na12_data_i : in std_logic_vector (23 downto 0);
na12_data_o : out std_logic_vector (23 downto 0);
na12_addr_i : in std_logic_vector (1 downto 0);
na12_type_i : in std_logic_vector (0 downto 0);
na12_req_i : in std_logic;
na12_req_o : out std_logic;
na12_ack_i : in std_logic;
na12_ack_o : out std_logic;
-- Adapter 13
na13_data_i : in std_logic_vector (23 downto 0);
na13_data_o : out std_logic_vector (23 downto 0);
na13_addr_i : in std_logic_vector (1 downto 0);
na13_type_i : in std_logic_vector (0 downto 0);
na13_req_i : in std_logic;
na13_req_o : out std_logic;
na13_ack_i : in std_logic;
na13_ack_o : out std_logic;
-- Adapter 20
na20_data_i : in std_logic_vector (23 downto 0);
na20_data_o : out std_logic_vector (23 downto 0);
na20_addr_i : in std_logic_vector (1 downto 0);
na20_type_i : in std_logic_vector (0 downto 0);
na20_req_i : in std_logic;
na20_req_o : out std_logic;
na20_ack_i : in std_logic;
na20_ack_o : out std_logic;
-- Adapter 21
na21_data_i : in std_logic_vector (23 downto 0);
na21_data_o : out std_logic_vector (23 downto 0);
na21_addr_i : in std_logic_vector (1 downto 0);
na21_type_i : in std_logic_vector (0 downto 0);
na21_req_i : in std_logic;
na21_req_o : out std_logic;
na21_ack_i : in std_logic;
na21_ack_o : out std_logic;
-- Adapter 22
na22_data_i : in std_logic_vector (23 downto 0);
na22_data_o : out std_logic_vector (23 downto 0);
na22_addr_i : in std_logic_vector (1 downto 0);
na22_type_i : in std_logic_vector (0 downto 0);
na22_req_i : in std_logic;
na22_req_o : out std_logic;
na22_ack_i : in std_logic;
na22_ack_o : out std_logic;
-- Adapter 23
na23_data_i : in std_logic_vector (23 downto 0);
na23_data_o : out std_logic_vector (23 downto 0);
na23_addr_i : in std_logic_vector (1 downto 0);
na23_type_i : in std_logic_vector (0 downto 0);
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na23_req_i : in std_logic;
na23_req_o : out std_logic;
na23_ack_i : in std_logic;
na23_ack_o : out std_logic;
-- Adapter 30
na30_data_i : in std_logic_vector (23 downto 0);
na30_data_o : out std_logic_vector (23 downto 0);
na30_addr_i : in std_logic_vector (1 downto 0);
na30_type_i : in std_logic_vector (0 downto 0);
na30_req_i : in std_logic;
na30_req_o : out std_logic;
na30_ack_i : in std_logic;
na30_ack_o : out std_logic;
-- Adapter 31
na31_data_i : in std_logic_vector (23 downto 0);
na31_data_o : out std_logic_vector (23 downto 0);
na31_addr_i : in std_logic_vector (1 downto 0);
na31_type_i : in std_logic_vector (0 downto 0);
na31_req_i : in std_logic;
na31_req_o : out std_logic;
na31_ack_i : in std_logic;
na31_ack_o : out std_logic;
-- Adapter 32
na32_data_i : in std_logic_vector (23 downto 0);
na32_data_o : out std_logic_vector (23 downto 0);
na32_addr_i : in std_logic_vector (1 downto 0);
na32_type_i : in std_logic_vector (0 downto 0);
na32_req_i : in std_logic;
na32_req_o : out std_logic;
na32_ack_i : in std_logic;
na32_ack_o : out std_logic;
-- Adapter 33
na33_data_i : in std_logic_vector (23 downto 0);
na33_data_o : out std_logic_vector (23 downto 0);
na33_addr_i : in std_logic_vector (1 downto 0);
na33_type_i : in std_logic_vector (0 downto 0);
na33_req_i : in std_logic;
na33_req_o : out std_logic;
na33_ack_i : in std_logic;
na33_ack_o : out std_logic);

end component;

component file_log_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH downto 0));

end component;

component file_read_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : out std_logic;
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data_o : out std_logic_vector(DATA_WIDTH-1 downto 0));
end component;

component file_cc_read_std_logic
generic (

filename : string;
DATA_WIDTH : integer);

port (
clk : in std_logic;
rst : in std_logic;
dv : out std_logic;
data_o : out std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

component pgm_unit
generic (

filename : string);
port (

noc_fw_o : out noc_link_fw;
noc_bw_i : in noc_link_bw;
clk : in std_logic;
rst : in std_logic);

end component;

component gen_traffic
generic (

conf_file : string;
dump_file : string;
period : integer;
ADDR_BITS : integer;
DATA_WIDTH_I : integer;
DATA_WIDTH_O : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH_I-1 downto 0);
data_o : out std_logic_vector(DATA_WIDTH_O-1 downto 0);
addr_o : out std_logic_vector(ADDR_BITS-1 downto 0);
type_o : out std_logic_vector(TYPE_BITS-1 downto 0);
req_i : in std_logic;
req_o : out std_logic;
ack_i : in std_logic;
ack_o : out std_logic);

end component;

component stat_log
generic (

filename : string;
DATA_WIDTH : integer;
PERIOD : integer;
INIT_DELAY : integer);

port (
clk : in std_logic;
rst : in std_logic;
data_i : in std_logic_vector(DATA_WIDTH-1 downto 0));

end component;

signal clk, rst : std_logic := ’0’;
signal test_se : std_logic;

signal na00_data_i, na10_data_i, na20_data_i, na30_data_i, na01_data_i,
na11_data_i, na21_data_i, na31_data_i, na22_data_i, na32_data_i,
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na03_data_i, na13_data_i, na23_data_i, na33_data_i, na00_data_o,
na20_data_o, na30_data_o, na01_data_o, na11_data_o, na21_data_o,
na31_data_o, na22_data_o, na32_data_o, na03_data_o, na13_data_o,
na23_data_o, na33_data_o : std_logic_vector(23 downto 0);

signal na10_data_o : std_logic_vector(23 downto 0);
signal na02_data_i, na12_data_i : std_logic_vector(23 downto 0);
signal na02_data_o, na12_data_o : std_logic_vector(23 downto 0);
signal na00_addr_i, na10_addr_i, na20_addr_i, na30_addr_i, na01_addr_i,

na11_addr_i, na21_addr_i, na31_addr_i, na02_addr_i, na12_addr_i,
na22_addr_i, na32_addr_i, na03_addr_i, na13_addr_i, na23_addr_i,
na33_addr_i : std_logic_vector(1 downto 0);

signal na00_type_i, na10_type_i, na20_type_i, na30_type_i, na01_type_i,
na11_type_i, na21_type_i, na31_type_i, na02_type_i, na12_type_i,
na22_type_i, na32_type_i, na03_type_i, na13_type_i, na23_type_i,
na33_type_i : std_logic_vector(TYPE_BITS-1 downto 0);

signal na00_req_i, na10_req_i, na20_req_i, na30_req_i, na01_req_i,
na11_req_i, na21_req_i, na31_req_i, na02_req_i, na12_req_i, na22_req_i,
na32_req_i, na03_req_i, na13_req_i, na23_req_i, na33_req_i, na00_req_o,
na10_req_o, na20_req_o, na30_req_o, na01_req_o, na11_req_o, na21_req_o,
na31_req_o, na02_req_o, na12_req_o, na22_req_o, na32_req_o, na03_req_o,
na13_req_o, na23_req_o, na33_req_o : std_logic;

signal na00_ack_i, na10_ack_i, na20_ack_i, na30_ack_i, na01_ack_i,
na11_ack_i, na21_ack_i, na31_ack_i, na02_ack_i, na12_ack_i, na22_ack_i,
na32_ack_i, na03_ack_i, na13_ack_i, na23_ack_i, na33_ack_i, na00_ack_o,
na10_ack_o, na20_ack_o, na30_ack_o, na01_ack_o, na11_ack_o, na21_ack_o,
na31_ack_o, na02_ack_o, na12_ack_o, na22_ack_o, na32_ack_o, na03_ack_o,
na13_ack_o, na23_ack_o, na33_ack_o : std_logic;

signal link_input_0_fw : noc_link_fw;
signal link_input_0_bw : noc_link_bw;

begin -- test

test_se <= ’0’;
clk <= not clk after 250 ns;
rst <= ’1’ after 2000 ns;

noc : mesh_4x4
port map(

clk => clk,
rst => rst,

pgm_data_i => link_input_0_fw,
pgm_data_o => link_input_0_bw,
test_se => test_se,

na00_data_i => na00_data_i,
na00_data_o => na00_data_o,
na00_addr_i => na00_addr_i,
na00_type_i => na00_type_i,
na00_req_i => na00_req_i ,
na00_req_o => na00_req_o ,
na00_ack_i => na00_ack_i ,
na00_ack_o => na00_ack_o ,
na01_data_i => na01_data_i,
na01_data_o => na01_data_o,
na01_addr_i => na01_addr_i,
na01_type_i => na01_type_i,
na01_req_i => na01_req_i ,
na01_req_o => na01_req_o ,
na01_ack_i => na01_ack_i ,
na01_ack_o => na01_ack_o ,
na02_data_i => na02_data_i,
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na02_data_o => na02_data_o,
na02_addr_i => na02_addr_i,
na02_type_i => na02_type_i,
na02_req_i => na02_req_i ,
na02_req_o => na02_req_o ,
na02_ack_i => na02_ack_i ,
na02_ack_o => na02_ack_o ,
na03_data_i => na03_data_i,
na03_data_o => na03_data_o,
na03_addr_i => na03_addr_i,
na03_type_i => na03_type_i,
na03_req_i => na03_req_i ,
na03_req_o => na03_req_o ,
na03_ack_i => na03_ack_i ,
na03_ack_o => na03_ack_o ,
na10_data_i => na10_data_i,
na10_data_o => na10_data_o,
na10_addr_i => na10_addr_i,
na10_type_i => na10_type_i,
na10_req_i => na10_req_i ,
na10_req_o => na10_req_o ,
na10_ack_i => na10_ack_i ,
na10_ack_o => na10_ack_o ,
na11_data_i => na11_data_i,
na11_data_o => na11_data_o,
na11_addr_i => na11_addr_i,
na11_type_i => na11_type_i,
na11_req_i => na11_req_i ,
na11_req_o => na11_req_o ,
na11_ack_i => na11_ack_i ,
na11_ack_o => na11_ack_o ,
na12_data_i => na12_data_i,
na12_data_o => na12_data_o,
na12_addr_i => na12_addr_i,
na12_type_i => na12_type_i,
na12_req_i => na12_req_i ,
na12_req_o => na12_req_o ,
na12_ack_i => na12_ack_i ,
na12_ack_o => na12_ack_o ,
na13_data_i => na13_data_i,
na13_data_o => na13_data_o,
na13_addr_i => na13_addr_i,
na13_type_i => na13_type_i,
na13_req_i => na13_req_i ,
na13_req_o => na13_req_o ,
na13_ack_i => na13_ack_i ,
na13_ack_o => na13_ack_o ,
na20_data_i => na20_data_i,
na20_data_o => na20_data_o,
na20_addr_i => na20_addr_i,
na20_type_i => na20_type_i,
na20_req_i => na20_req_i ,
na20_req_o => na20_req_o ,
na20_ack_i => na20_ack_i ,
na20_ack_o => na20_ack_o ,
na21_data_i => na21_data_i,
na21_data_o => na21_data_o,
na21_addr_i => na21_addr_i,
na21_type_i => na21_type_i,
na21_req_i => na21_req_i ,
na21_req_o => na21_req_o ,
na21_ack_i => na21_ack_i ,
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na21_ack_o => na21_ack_o ,
na22_data_i => na22_data_i,
na22_data_o => na22_data_o,
na22_addr_i => na22_addr_i,
na22_type_i => na22_type_i,
na22_req_i => na22_req_i ,
na22_req_o => na22_req_o ,
na22_ack_i => na22_ack_i ,
na22_ack_o => na22_ack_o ,
na23_data_i => na23_data_i,
na23_data_o => na23_data_o,
na23_addr_i => na23_addr_i,
na23_type_i => na23_type_i,
na23_req_i => na23_req_i ,
na23_req_o => na23_req_o ,
na23_ack_i => na23_ack_i ,
na23_ack_o => na23_ack_o ,
na30_data_i => na30_data_i,
na30_data_o => na30_data_o,
na30_addr_i => na30_addr_i,
na30_type_i => na30_type_i,
na30_req_i => na30_req_i ,
na30_req_o => na30_req_o ,
na30_ack_i => na30_ack_i ,
na30_ack_o => na30_ack_o ,
na31_data_i => na31_data_i,
na31_data_o => na31_data_o,
na31_addr_i => na31_addr_i,
na31_type_i => na31_type_i,
na31_req_i => na31_req_i ,
na31_req_o => na31_req_o ,
na31_ack_i => na31_ack_i ,
na31_ack_o => na31_ack_o ,
na32_data_i => na32_data_i,
na32_data_o => na32_data_o,
na32_addr_i => na32_addr_i,
na32_type_i => na32_type_i,
na32_req_i => na32_req_i ,
na32_req_o => na32_req_o ,
na32_ack_i => na32_ack_i ,
na32_ack_o => na32_ack_o ,
na33_data_i => na33_data_i,
na33_data_o => na33_data_o,
na33_addr_i => na33_addr_i,
na33_type_i => na33_type_i,
na33_req_i => na33_req_i ,
na33_req_o => na33_req_o ,
na33_ack_i => na33_ack_i ,
na33_ack_o => na33_ack_o);

traffic00 : gen_traffic
generic map(

conf_file => "8.txt",
dump_file => "8_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na00_data_o,
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data_o => na00_data_i,
addr_o => na00_addr_i,
type_o => na00_type_i,
req_i => na00_req_o,
req_o => na00_req_i,
ack_i => na00_ack_o,
ack_o => na00_ack_i);

traffic10 : gen_traffic
generic map(

conf_file => "empty.txt",
dump_file => "12_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na10_data_o,
data_o => na10_data_i,
addr_o => na10_addr_i,
type_o => na10_type_i,
req_i => na10_req_o,
req_o => na10_req_i,
ack_i => na10_ack_o,
ack_o => na10_ack_i);

traffic20 : gen_traffic
generic map(

conf_file => "11.txt",
dump_file => "11_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na20_data_o,
data_o => na20_data_i,
addr_o => na20_addr_i,
type_o => na20_type_i,
req_i => na20_req_o,
req_o => na20_req_i,
ack_i => na20_ack_o,
ack_o => na20_ack_i);

traffic30 : gen_traffic
generic map(

conf_file => "10.txt",
dump_file => "10_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na30_data_o,
data_o => na30_data_i,
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addr_o => na30_addr_i,
type_o => na30_type_i,
req_i => na30_req_o,
req_o => na30_req_i,
ack_i => na30_ack_o,
ack_o => na30_ack_i);

traffic01 : gen_traffic
generic map(

conf_file => "5.txt",
dump_file => "5_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na01_data_o,
data_o => na01_data_i,
addr_o => na01_addr_i,
type_o => na01_type_i,
req_i => na01_req_o,
req_o => na01_req_i,
ack_i => na01_ack_o,
ack_o => na01_ack_i);

traffic11 : gen_traffic
generic map(

conf_file => "1a.txt",
dump_file => "1a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na11_data_o,
data_o => na11_data_i,
addr_o => na11_addr_i,
type_o => na11_type_i,
req_i => na11_req_o,
req_o => na11_req_i,
ack_i => na11_ack_o,
ack_o => na11_ack_i);

traffic21 : gen_traffic
generic map(

conf_file => "4b.txt",
dump_file => "4b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na21_data_o,
data_o => na21_data_i,
addr_o => na21_addr_i,
type_o => na21_type_i,
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req_i => na21_req_o,
req_o => na21_req_i,
ack_i => na21_ack_o,
ack_o => na21_ack_i);

traffic31 : gen_traffic
generic map(

conf_file => "9.txt",
dump_file => "9_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na31_data_o,
data_o => na31_data_i,
addr_o => na31_addr_i,
type_o => na31_type_i,
req_i => na31_req_o,
req_o => na31_req_i,
ack_i => na31_ack_o,
ack_o => na31_ack_i);

traffic02 : gen_traffic
generic map(

conf_file => "6.txt",
dump_file => "6_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na02_data_o,
data_o => na02_data_i,
addr_o => na02_addr_i,
type_o => na02_type_i,
req_i => na02_req_o,
req_o => na02_req_i,
ack_i => na02_ack_o,
ack_o => na02_ack_i);

traffic12 : gen_traffic
generic map(

conf_file => "1b.txt",
dump_file => "1b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na12_data_o,
data_o => na12_data_i,
addr_o => na12_addr_i,
type_o => na12_type_i,
req_i => na12_req_o,
req_o => na12_req_i,
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ack_i => na12_ack_o,
ack_o => na12_ack_i);

traffic22 : gen_traffic
generic map(

conf_file => "2b.txt",
dump_file => "2b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na22_data_o,
data_o => na22_data_i,
addr_o => na22_addr_i,
type_o => na22_type_i,
req_i => na22_req_o,
req_o => na22_req_i,
ack_i => na22_ack_o,
ack_o => na22_ack_i);

traffic32 : gen_traffic
generic map(

conf_file => "4a.txt",
dump_file => "4a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na32_data_o,
data_o => na32_data_i,
addr_o => na32_addr_i,
type_o => na32_type_i,
req_i => na32_req_o,
req_o => na32_req_i,
ack_i => na32_ack_o,
ack_o => na32_ack_i);

traffic03 : gen_traffic
generic map(

conf_file => "7.txt",
dump_file => "7_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na03_data_o,
data_o => na03_data_i,
addr_o => na03_addr_i,
type_o => na03_type_i,
req_i => na03_req_o,
req_o => na03_req_i,
ack_i => na03_ack_o,
ack_o => na03_ack_i);
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traffic13 : gen_traffic
generic map(

conf_file => "2a.txt",
dump_file => "2a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na13_data_o,
data_o => na13_data_i,
addr_o => na13_addr_i,
type_o => na13_type_i,
req_i => na13_req_o,
req_o => na13_req_i,
ack_i => na13_ack_o,
ack_o => na13_ack_i);

traffic23 : gen_traffic
generic map(

conf_file => "3a.txt",
dump_file => "3a_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na23_data_o,
data_o => na23_data_i,
addr_o => na23_addr_i,
type_o => na23_type_i,
req_i => na23_req_o,
req_o => na23_req_i,
ack_i => na23_ack_o,
ack_o => na23_ack_i);

traffic33 : gen_traffic
generic map(

conf_file => "3b.txt",
dump_file => "3b_log.txt",
period => 64,
ADDR_BITS => 2,
DATA_WIDTH_I => 24,
DATA_WIDTH_O => 24)

port map(
clk => clk,
rst => rst,
data_i => na33_data_o,
data_o => na33_data_i,
addr_o => na33_addr_i,
type_o => na33_type_i,
req_i => na33_req_o,
req_o => na33_req_i,
ack_i => na33_ack_o,
ack_o => na33_ack_i);

pgm : pgm_unit
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generic map(
filename => "pgm.txt")

port map(
noc_fw_o => link_input_0_fw,
noc_bw_i => link_input_0_bw,
clk => clk,
rst => rst);

end clean_4x4;
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