
VOIP Spam Counter Measures

Michael Pantridge

Kongens Lyngby 2006
IMM-MSC-2006-85



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-MSC: ISSN 0909-3192



Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the MSc degree in Computer Systems Engineering.

The thesis deals with different approaches in tackling the future problem of
redundant, SPAM-like internet telephony calls.

The thesis was written during the period February - August 2006. Lyngby, August 2006

Michael Pantridge



ii



Acknowledgments

I thank my supervisor Dr. Robin Sharp for his continual encouragement and
provision of direction and critical thought.

Additional tribute is paid to the many enthusiastic participants during the test-
ing procedure, who so willingly contributed samples of their own voices.

————————————
Michael Pantridge August 2006



iv



Contents

Preface i

Acknowledgments iii

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Document Organisation . . . . . . . . . . . . . . . . . . . . . . . 2

2 Analysis 3

2.1 Existing Approach - Email Case Study . . . . . . . . . . . . . . . 3

2.2 Voice Spam Vs Email Spam . . . . . . . . . . . . . . . . . . . . . 11

2.3 Technology Background - VOIP . . . . . . . . . . . . . . . . . . . 13

2.4 Shaping the solution . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Feature Extraction 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



vi CONTENTS

3.2 Mel Frequency Cepstral Coefficients . . . . . . . . . . . . . . . . 30

3.3 Linear Predictive Cepstral Coefficients . . . . . . . . . . . . . . . 38

3.4 Perceptual Linear Prediction - (PLP) . . . . . . . . . . . . . . . . 42

3.5 Noise / Speech Segmentation . . . . . . . . . . . . . . . . . . . . 46

4 Speaker Classification 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Modelling - An audio fingerprint . . . . . . . . . . . . . . . . . . 57

4.3 LBG (Linde-Buzo-Gray) . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Implementation Details 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Foundational technologies . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Programming the Interface . . . . . . . . . . . . . . . . . . . . . 84

6 Testing 93

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Test 1 - Optimal Configuration . . . . . . . . . . . . . . . . . . . 95

6.3 Test 2 - Blacklist/Whitelist Trials . . . . . . . . . . . . . . . . . . 97

6.4 Test 3 - Spoofing . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Test 4 - Unknown Speakers . . . . . . . . . . . . . . . . . . . . . 98

6.6 Test Case limitations . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Test Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



CONTENTS vii

7 Review and Conclusions 103

7.1 Overall Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Personal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . 104

A VOIP Context 105

A.1 VOIP Technology Overview . . . . . . . . . . . . . . . . . . . . . 105

B Implementation Details 127

B.1 General Code structure . . . . . . . . . . . . . . . . . . . . . . . 127

B.2 Programming the parts . . . . . . . . . . . . . . . . . . . . . . . 128

C Test Results 149



viii CONTENTS



Chapter 1

Introduction

1.1 Problem Definition

The modern phenomenon of spam mail is widespread throughout the internet.
Most email systems have inbuilt mechanisms to detect and handle such mail
automatically before the culprit mails are even presented to the user.
Spam is not limited to just email. It is certainly to be found in the standard tele-
phone networks in the form of automated advertisements and unsolicited sales
offers. As broadband networks develope and voice conversation becomes more
prevalent over the internet through the medium of Voice-Over-IP (VOIP), the
possibility of generating and delivering voice spam messages increases rapidly.
Undoubted consequences include frustration and inconveniencing of the user
and cluttered bandwidth. More sophisticated techniques will need to be used
in comparison to the existing email spam counter mechanisms. The message
medium changes from plain text to audio samples.
In addition, vocal correspondence demands real-time operation in order to be
effective. This places strong limitations on what operations can actually be per-
formed on incoming voice packets with regards to the speed and complexity of
the analysis.
The aim of this project will be to investigate suitable counter-measures which
may be utilized to detect voice spam and deal appropriately with it before the
user is inconvenienced. Within the context of VOIP, appropriate voice recogni-
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tion technology and pattern matching techniques will be examined, resulting in
the construction of a prototype voice spam filter.

1.2 Document Organisation

Many common existing spam detection methods are to be found in the email
model. Therefore, an analysis of what form they take was performed. With this
established it was considered which techniques could be carried over into the
realm of voice audio as a means of content filtering. Foundational to the project
will be an understanding of typical VOIP structures so that the contextual po-
sition of any prototype voice spam filter may be isolated. Chapter 2 will detail
both of these preliminary steps.
By the conclusion of Chapter 2 it should be possible to see how the proposed
solution could be generalised. The solution was basically divided in two parts
- Voice Recognition Feature Extraction and Pattern Matching Classification.
Chapters 3 and 4 respectively discuss these topics. Chapter 5 provides an
overview on how the chosen methods in Chapters 3 and 4 could be implemented
in practice. Chapter 6 describes how the resulting implementation was tested
and concluding remarks are drawn together in Chapter 7.



Chapter 2

Analysis

2.1 Existing Approach - Email Case Study

2.1.1 What is SPAM?

For the basis of this project one categorises everything which finds its way into
one’s email inbox which one does not want and is only very loosely directed at
the recipient as SPAM. This includes not just the latest mortgage offers from
such-and-such a company, but also viruses (sometimes from acquaintances),
chain letters and monetarily or religiously persuasive correspondences which
are unwanted. [28, 11]
It is a pest, is generally recognisable and ultimately turns the everyday process
of email checking into an often troublesome and painstaking experience of sift-
ing through SPAM emails to separate them from legitimate correspondences.
In 2004 it was estimated that 60 % of all email messages sent were SPAM.[41]

How does one maintain an open channel of communication with a variety of
sources in the outside world, whilst at the same time protecting the inbox from
this flood of unsolicited, unwanted trash?

Before introducing strategies which continue to be used to combat SPAM emails,
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it is necessary to establish a couple of integral concepts and terms.

• HAM - The opposite of SPAM, namely the good emails which are legiti-
mate and come from trusted sources with genuine purposes. [42]

• False Positives - The proportion of HAM (ie, the valid, trusted emails)
which are wrongly discarded or identified as SPAM by any SPAM protec-
tion technique. In many ways, false positives pose a greater problem than
SPAM mail which gets through any defence put in place - it results in a
loss of information.

• False Negatives -The SPAM mails which somehow breach any counter
measures employed. Their consequences can range from being harmless
to reasonably serious, should virii exist within. Generally, though False
Positives are of greater concern than False Negatives. [11]

”a filter that yields false positives is like an acne cure that carries a risk
of death to the patient” [11].

2.1.2 Counter Measures - Preliminary Steps

A common sense approach is to make sure that the email address is not publicly
on display for all to see.[28]
If the user has to transmit their email address to another party then some kind
of conventional encoding of the address could provide some limited obscurity.

ie. johnsmith@NOSPAMhotmail.com

or ”johnsmith at hotmail dot com”

The user could also use several ”throw-away” addresses. Transactions could
occur through these for a temporary time period and then the address could be
disposed of, taking accumulated SPAM with it.
This may be suitable for people whose online activities are confined to online
purchases, Message boards, Usenet and mailing lists, but for those who actively
promote a business or enterprise where their email address has to be displayed
as a formal communication portal, it is most impractical.
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2.1.3 Basic Text Filtering

It is possible to detect a large proportion of incoming SPAM by using a simple
string matching technique to scan the header fields or the body [28, 9].This is
based on the premise that the appearance of certain character stings is common
to certain SPAM messages. Unfortunately this can lead to a high false positive
rate - the variety of human communication and expression across a number of
communication scenarios makes this inevitable.
There are however a few basic steps one can take where this kind of filtering
can be used:

1. Identify and accept peculiar headers which are known to be from legitimate
sources though may otherwise be rejected by other rules.

2. Identify and reject known bad senders

• This may be known email addresses from whom correspondence is
not wanted

• ”<>” in the From: field. (ie empty)

• ”@<” in the header (typical of a lot of SPAM)

• Certain content types which could contain virii and one would wish
to avoid regardless.

• Certain strings associated with certain countries (A lot of SPAM
comes from certain areas/countries in the world - Korea, China).

3. Accept messages where the contents of the From field are known (ie per-
haps cross referenced with a contact list or list of previous correspon-
dences).

2.1.4 Blacklisting

These are semi-static lists of known SPAM hosts which are maintained on a
local host. The sender information from the incoming mail is checked against
the list, and if a match is found, the message is labelled as SPAM.

2.1.5 Real-Time Black Holes (RBLs)

These work in much the same way as Blacklists however, RBLs are dynamic
lists which contain more up to date information on SPAM hosts. They there-
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fore must be downloaded from a trusted third party before being able to be
effectively used [42, 9].
Black lists and RBLs allow for SPAM emails to be blocked before they even en-
ter the infrastructure of a company. An advantage is that it could be configured
for the SPAM host to receive a reject message, leading to the possible removal
of the recipient’s address from their list of targets. Extra processing time could
be required however for connection to RBL databases.
RBLs are effectively a kind of distributive and adaptive Black List. A further
way they can be extended is every time someone deletes a SPAM message, noti-
fication can be sent to a distributed authority which would maintain a digest of
known SPAMs. Minor or automated mutations of what is essentially the same
SPAM message can be easily detected also. Razor (http://razor.sourceforge.net)
and Pyzor (http://pyzor.sourceforge.net) are two such services currently in op-
eration.
Should someone report a valid message to the digests in this way, it would only
be effective for that person since legitimate mail characteristics vary from person
to person. Because the distributed blacklist servers are maintained and man-
aged regularly, misreported legitimate messages could be easily detected and
corrected.
False positives are therefore unlikely with this technique, though false negatives
are still likely to persist suggesting that further techniques should be used in
conjunction with this one.

2.1.6 White Lists

Essentially the inverse of a Black-list, a white-list is a list against which incoming
mail can be checked and if the sender credentials are found on the list then that
sender will always be respected as legitimate. Mail will always be accepted from
senders on the whitelist regardless of whether they might also appear on a black
list or RBL.

2.1.7 Automated Verification

A more aggressive addition to just using a whitelist would be to only accept mail
messages where the sender is on the whitelist - and nothing else. Otherwise the
whitelist filter would send a challenge to the sender, with instructions on how
the sender can be added to the whitelist. This challenge would also contain a
Hash ID of the original mail and the response back from the sender should also
contain this ID for the sender to be added to the whitelist. When a challenge
is successfully answered, the sender is added to the whitelist and any future
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messages are automatically allowed through [28].

Since nearly all SPAM messages contain a forged return address, the challenge
will not arrive anywhere. If the SPAMMER does provide a usable return ad-
dress, he is unlikely to respond anyway for several reasons:

1. should the SPAMMER respond, he would make himself more easily trace-
able.

2. SPAMMERs are using automated delivery systems which do not cope with
incoming mail - they exist solely to produce outgoing spam mail [11].

This method is likely to be quite effective against SPAM, however it has the
following drawbacks:

• Places an extra burden on legitimate senders. They may not respond to a
challenge for a variety of reasons and in doing so, effectively raise the false
positive rate - this could be down to an over-draconian firewall, unreliable
ISP, or apathy or ignorance on the part of the original sender.

• This simply would not work for non-human correspondents (ie valid auto-
mated response systems from online sales, online registrations etc.)

• Ultimately, where timeliness of response and fluidity of correspondence
matters, an unexpected hurdle is placed at the onset of a new dialogue.

2.1.8 Sender Policy Framework (SPF)

This is a different mode of validating whether a sender really is who they say
they are, by querying the SPF record of the domain which is listed in the From:
field (Most SPAMMERS use forged addresses) [9].
It is a community effort which is rapidly gaining support, and it requires that
each company which supplies email addresses supply an SPF record. The SPF
record may be queried to ascertain if the sender’s address and the machine used
are credible values according to the email company.
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2.1.9 Header Filtering

Inconsistencies or errors in the header information of the email may be searched.
Normal email clients by default send complete header information with each
mail, but it is not difficult for a SPAMmer to alter the header information
which might in some way disguise where the mail has been sent from, or the
real identity of the mischievous sender.
A common tactic employed is to make the FROM: and TO: field identical so that
it appears that the recipient has received the SPAM message from his/herself.
Also contained within the email header is the Route through the internet the
message took to arrive at the user agent of the recipient. Suspicious route in-
formation would therefore sometimes be included should a SPAMmer wish to
conceal their identity by masquerading as taking a certain, false path.
The email distribution agent is also included in the header information which
is sent. It gives some idea as to the origin of the email by highlighting its con-
struction method. SPAMMERs using an automated approach of sending out
thousands of emails to generated addressed are probably not using a standard
email client such as Outlook or Mozilla Thunderbird to do so.
Shouting text (where the subject line may be in CAPITALS) is a further charac-
teristic of SPAM mail. The SPAMMER ultimately wants to catch the attention
of the person who has been lumbered with their unsolicited offers.

Further anomalies which could be detected directly from the header alone, are:

• An empty or malformed MIME from: field

• A large recipient list included. (one could use a threshold value to deter-
mine the email as SPAM should there be more than X recipients). These
tend to be joke or chain mails.

• Messages containing links to remote images - Spammers are using image
only mails to circumvent text filters.

• Invalid domain listed. A simple DNS lookup would easily detect an invalid
domain.

• The first part of the mail address listed in the subject line - SPAMMERs
do this to ”personalise” the SPAM mail.

All of the above give initial pointers as to the nature of the received email
without even looking at the content of the email. In fact, an option could be
for the user to just download the header information from an email without the
content, and still have good indicators as to its credibility.
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2.1.10 Content filtering - Bayesian Filtering

Bayesian filtering is an artificial intelligence technique which can be used to
perform filtering on emails [11, 12, 28, 41]. It can be used to filter both normal
and abnormal patterns of actual mail the individual receives.
The method works on the premise that an event is more likely to occur in the
future if it has occurred in the past, and subsequent re-occurrence increases this
likelihood. One could extend this premise to the arena of filtering emails for
familiar textual patterns. It would be possible to use a database of known pat-
terns which are typically found in spam messages and normal messages (known
as ”Ham”), and assigning each word or token a probability value based on how
often that word appears in Normal or spam messages. To obtain these prob-
ability values and the actual tokens, a typical system must be trained to read
and analyse the user’s mail for some period of time. In a way the discernment
of the system becomes tailored for the actual user themselves.
The words which have been tokenised and extracted from the two corpus-es will
each be assigned a probability based around how their presence in a message is
likely to contribute to the message being actual SPAM or HAM. These proba-
bilities may also be weighted according to the profile of the person concerned.
An overall probability rating is ultimately assigned to the message after all the
words have been analysed. Words which are not normally associated with SPAM
actually contribute to the validity of the mail as much as more notorious occur-
rences (such as ”sex” or ”viagra”) contribute to a SPAM designation. All the
evidence is considered together so that isolated occurrances of problem words
do not adversely determine the outcome.
The two corpus-es can be kept up to date by moving the most recent messages
into them (a ”delete-as-spam” button would be one option which would remove
SPAM from the inbox, but hold it in the SPAM database for future analysis of
incoming mail). This enables the filter itself to evolve as SPAM evolves.

In addition to this self-balancing attribute, a further advantage is that it is
self-adapting. It is capable of learning from new SPAM and new valid outgoing
emails. For example, substitution of letters in words would be easily detected
- ”5ex” instead of ”Sex” is commonly found in SPAM but there is very little
likelihood that a Bayesian filter would ignore this.
The system is also language independent and international - because it is self-
adaptive it can be used to any language however it would require keyword lists
to be set up in the language concerned.
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2.1.10.1 Reservations

This style of Bayesian filtering is used by both Microsoft Outlook’s Spam filter
and the internet message filter in Exchange Server. They do not require initial
learning but they do rely on a publicly available Ham file which could possibly
be hacked and bypassed. Because it is not tailored to the user the chances of
getting more false positives increases.
The success of such a Bayesian filter is ultimately reliant upon the SPAM file
being kept up to date. A recent BBC article outlines the success of Bayesian
filtering, with a 99.7 percent success rate and low false positive rate [40]
But tests have shown that despite a high success rate, infiltrating spam emails
may be used to fool the filter in the future. Continued false acceptances over
time may subtly and gradually convince a filter that the reappearance of the
same random words is to be permitted. Therefore, the filter learns to accept
a sub-series of emails which it has accepted as valid in the past but which are
actually not [41].

A more recent algorithm aside from Bayesian filtering is the use of the Chung-
Kwei algorithm to detect patterns of letters in messages which would suggest
the message is SPAM. (The Bayesian method uses patterns of words with each
word being a kind of token). This uses pattern recognition in the same way as
is used with DNA analysis and identification. Similar to Bayesian Filtering, the
system would required training from a known set of SPAM and HAM patterns,
though tests show that it would only take up to 15 minutes to train a system
using 22000 known SPAM messages and 66000 HAM messages. The rate of
successful identification has been found to be around 97% [38].

With the Bayesian case, contextual training is ultimately crucial to the suc-
cess of the system, and the recommended 2 week setup period is a necessary if
irksome procedure.

2.1.11 Content Filtering - Heuristic Rule-based

Where the Bayesian method trains a system with SPAM ”signatures” an heuris-
tic rule approach analyses the content and context of the message qualitatively.
The artificial intelligence used is if you like, more ”artificial”. It assumes that
there are consistent standardised traits employed within SPAM which can be de-
tected [28]. Regular expressions are used and category specific attributes allow
the user to tune their preferences to differentiate between SPAM and accepted



2.2 Voice Spam Vs Email Spam 11

communications.

Where the heuristic techniques excel is at identifying traits of SPAM which
have been previously unreferenced (in other words previously unseen and not
stored in any database - a signature of unknown validity). As SPAMMERs learn
new techniques to overcome identification through signature analysis, heuristic
techniques may provide an effective second line of defence.

The weakness with Heuristic rules is that the methodology behind the rules
is entirely subjective and the rules must be tuned according to the user’s pref-
erences. If not properly configured false positive rates could increase because
the system is not comparing fingerprint against fingerprint if you like - there is
never an explicit pre-existing reference. As SPAM itself evolves, so too must
these rules for detecting it - Viagra may be a popular theme now, but it may
change to something else in a few years.

In general though, the Heuristic Rules should check for both legitimate traits
and illegitimate traits in the message. Some of the latter could be:

• Message header follows non-standard formats and hop patterns.

• Excessive use of punctuation, including multiple interjections or exclama-
tions.

• Unsubscribe footer follows conventional formats to appear legitimate.

• Text syntax consistencies between paragraphs appear normal.

• Self-executing Javascript contained within.

2.2 Voice Spam Vs Email Spam

2.2.1 Introduction

There is no reason to suggest why the White-list and Black-list ideas used with
normal email could not be extented into the VOIP realm - communication is
from one point to another and both parties should, to a certain extent be pre-
sented with some information pertaining to each other prior to the start of
the vocal communication. Towards the end of the previous section the meth-
ods employed as content-based filtering were discussed - continually up-to-date
Heuristic Rules and Bayesian Filtering, tailored to the individual concerned
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and performed on the textual email body. The question is now considered,
what could be learned from these techniques in relation to a message body of a
different kind - namely speech data? Three issues will be addressed:

1) How does Voice SPAM compare in nature with Text SPAM and how well
could the above methods be adapted?
2) What are the practical considerations of detection which would need to be
taken into account in order to make any Voice SPAM content filter usable?
3) What other inherent characteristics of a voice message, unrelated to textual
analysis, can be monitored and therefore used to predict the credibility of a
message?

2.2.2 Statistical analysis

In many cases a collection of letters can be pronounced in some way, even if that
collection of letters is not recognised as a given word in a particular language.
However, some collection of letters are extremely difficult to pronounce, for ex-
ample ”xgrdyb”. Furthermore, a certain collection of letters may be pronounced
in a different way, depending on

• intonation,

• accent,

• speed of speech,

• syllable emphasis.

This outlines one of the problems of dealing in spoken word terms as opposed to
textual terms. Text is much more universal in that it does not undergo the same
degrees of variation. A word typed by one person will always be the same as the
same word typed by someone else as long as the spelling is correct. By studying
a word, one can objectively tell if it is spelled correctly. It is also unambiguous
as to where one word starts and another finishes - whitespace takes care of this.
Words are easily compared and easily parsed and tokenised.
With the Bayesian example described earlier, advantage is taken of this attribute
through the ability to assign re-occurring tokens a qualitative value. This occurs
after the trivial process of detecting and deciphering what the ”word” is - even
if it is merely a group of letters. Words or groups of letters are unambiguous,
discrete, and easily compared.
Unfortunately with speech, words and sentences are not transferred as unam-
biguous symbolic information, rather as compressed audio. After decompressing
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the audio it is possible to obtain a waveform representation of a sequence of
speech. However, it is not always clear where one word starts and another ends.
There is also no guarantee that a 100% reliable 1-1 mapping from waveform
onto word entity could be made. There is a high degree of subjectivity, which a
trained human brain can accommodate but with which a computer has major
difficulties. Word analysis by a computer would require the following steps:

1. decompression of speech into waveform representation

2. tokenisation of waveform into separated words

3. mapping of spoken word onto known word entity

4. statistical manipulation of collected word entities & comparison against
known SPAM.

[45] Steps 1 to 3 are not present in the textual model, but yet in the vocal model
they are essential and present the greatest hurdles.
Step 4 would be as straight-forward as the textual model if it were possible
to maintain large repositories of SPAM and HAM voice messages, or rather
some kind of discrete representation of what known SPAM and HAM are which
can be referenced against incoming, ”interpreted” waveforms. This assumes
that SPAM voice messages are something which is a well established, everyday
occurrence and can be consequently learnt over time by a machine. Herein
lies a further problem. Whilst the existence of such SPAM is not in question,
its propagation is perhaps less evident at this moment in time. Consequent
problems are therefore presented in relations to the acquisition of SPAM and
HAM examples.

2.3 Technology Background - VOIP

Continuing the discussion of content based filtering, it would be useful to know
from where within existing VOIP models, content itself can be captured. Be-
fore any content analysis can happen, the speech of the calling party has to be
collected from somewhere. Without performing any great technical assessment
on the types of VOIP available, some background on the sort of system likely
to be used will be needed to determine where and how any filtering of VOIP
traffic can occur. This section will concentrate mainly on the communication
aspects of various kinds of VOIP network, and at the same time suggest possible
junctures at which any kind of filtering could happen. Because the project is
centred around what solutions are available for the management of incoming
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SPAM, the area of interest extends only to the boundaries of a network which
has allowed VOIP protocols to be passed through its perimeter firewalls, and
once inside, how and where the data flow can be checked.

An in-depth coverage of the entire scenario in relation to the two main VOIP
technologies (SIP and H.323) is provided in ??.

2.3.1 Isolating the point of interest

After consultation with Appendix A it should be clear that any kind of Voice
SPAM filtering system in either VOIP architecture would at some stage receive
RTP packets from the calling party. It is from these packets, and after subse-
quent reconstruction and decoding that the proposed system would be presented
with a wave of an incoming speech pattern.[16]

It was decided then that this should become the entrance point for the project
- a proposed system should be presented voice information in the form of a
waveform and then subsequent content-based filtering would be implemented
(figure 2.1).

Incoming 
RTP Stream

New VOIP
Anti SPAM
System

Get Payloads from RTP
Packets

Reconstruct
Codec stream 
from packets�

Decode Codec Stream
Waveform 
of speech
obtained�

Project
Scope

Figure 2.1: General scope of the project
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2.4 Shaping the solution

Any possible overall solution must take into consideration the context of a VOIP
conversation, at least in comparison with a standard telephone conversation. A
temporal context of the problem is shown in figure 2.2, the red arrow indicating
at what stage any sort of content filtering would have to be performed.

Figure 2.2: Temporal Context of the problem

2.4.1 Conversational Conventions

One of the differences between a normal phone call conversation and that of a
VOIP conversation is that with the former, convention dictates the conversation
is started by the callee. It is almost as if the presence of the callee on the other
end of the line, indicated by the callee’s initial greeting (ie ”hello, this is xxx”)
is a final acknowledgement of the callee’s acceptance of the incoming call.
Sometimes if one called an answering machine, a voice would appear at the
other end of the line, but the semantics of the response are different, since the
answering machine is telling the caller that their call can not be taken right now.
In a way, this is an acknowledgement of the call getting through, but further
analysis of this ”acknowledgement” would show that it is hardly akin to a kind
of ”200 OK” response. In this sense, it is more like a 3xx response - ”yes, you
have reached the correct person, but he’s not here”.
Often, when one encounters a typical SPAM message over the standard tele-
phone lines, it consists of merely a recorded message, which either begins im-



16 Analysis

mediately with the caller picking up the phone, or there is a short pause before
the useless message begins. In any event, a sane person can usually tell very
quickly whether there is any cognisance at the other end of the line. It is with
this in mind that one may be tempted to reduce the problem to a determina-
tion of intelligence on the part of the caller. However whilst it may be true
that most SPAM messages currently in operation presently are ”dumb” and are
solely recorded, SPAMMER technology could improve in the future to incorpo-
rate more sophisticated methods. One is hesitant to consider a solution which
merely monitors for continuous, uninterrupted ”babble” whilst does little to ac-
tively identify the caller, which is much more useful.
The setting of a context therefore would be a most desirable scenario both for
collecting a meaningful and sufficient sample of the caller’s voice and also to
establish cognisance from the calling party.

2.4.2 The Secretary Model

Faced with the burden of voice sample collecting in real time, the proposed solu-
tion is based around providing an automated context for voice sample procure-
ment, namely a kind of secretary interface which could function independently
of the callee and could query the caller appropriately whilst performing an anal-
ysis any caller voice samples which have been possible to collect. Largely akin to
the role of a secretary in an office, the role here of this additional mechanism is
to provide a further authentication stage, via the content channel (figure 2.3).
When the RTP Session is set up, instead of being directly involved in the con-
versation, the callee would pass control of events to a Secretary interface which
would begin by issuing some kind of automated challenge to the caller (figure
2.4). This challenge could be defined in content by the callee and could be in
the form of:

• A simple question with an elementary answer.

• A request to repeat a one-time password challenge.

• A request to the caller to quote their name or the current date.

2.4.2.1 The Challenge

There are a number of options available here for the parameters governing the
challenge message itself.
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Figure 2.3: Standard Secretary Operation
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Figure 2.4: Secretary Challenge/Response

Does one produce the recorded challenge message oneself?
Does one produce a number of different challenges over time?
If there are a number of different challenges, how are they alternated?
Do they change monthly/weekly/daily?
Are they selected at random each time they are activated?
What should the challenge consist of?
How much information should it require the caller to give? (this will ultimately
determine the amount of data one will have to perform analysis on)
How long should the challenge be (in seconds)?
How much information should the challenge message give about the callee?

2.4.2.2 The Response

Since the system aims to establish a meaningful context between the callee and
a credible caller, any response received during the Secretary phase should be
monitored for both its timing and for its actual content. Also, how much time
should be allowed for the caller to give a response - should there be a time-out
phase for this? The amount of time given for this should be balanced by what
is the expected amount of data to be returned and what is a reasonable amount
of time to be allowed for such a response.
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2.4.2.3 Timing of the Response

Much then depends on any SPAM message trying to get through and its re-
sponse to the challenge. Is there a built in delay or does the message begin
immediately? The actual timing of the packets coming in from the calling party
becomes an issue. It could then be possible to detect typical SPAM messages by
scanning packets sent with timestamps indicating creation before the Secretary
has finished issuing the challenge. In effect the Secretary would be challenging
the caller in some way and the caller SPAM message would interrupt the secre-
tary. In the event of a ”dumb” SPAM message, the interruption would also be
a fairly prolonged affair, the message is just sent with no regard for any kind of
interaction.
But perhaps the SPAM message could use some kind of delaying tactic so that
the message would play after the secretary has greeted/challenged on the other
end of the connection. In response then, the Secretary challenge could be made
long enough to render the delay useless. With reference to figure 2.5, responses

Figure 2.5: Ideal Challenge/Response Flow

from the caller should be expected within a certain period. A response arriving
before this period indicates that the caller could not have fully listened to the
challenge. A response arriving after this period indicates the message response
is probably junk as it has taken an unreasonably long time to be transmitted in
its entirety.
C is the length of time taken to transmit the challenge message. In effect it cor-
responds to the playback length of the challenge in seconds. The period when
responses can be received begins 2xC seconds from when the challenge began
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to be transmitted. This is the minimum time (assuming negligible propagation
delays) after which a response could be received.

Figures 2.8,2.7, and 2.6 help to describe the aforementioned scenarios based
around the timing of the messages sent from the Caller to the Secretary. They
explain what traits might be discovered from typical SPAM messages in relation
to each of the scenarios. Figure 2.5 shows how a credible caller might use

Figure 2.6: Immediate Response - Challenge interruption

Figure 2.7: Delayed response arrives at an unacceptable time

the system. Figure 2.6 illustrates the case when the SPAM message is sent
immediately and appears to collide with the secretary as the challenge is being
made. Figure 2.7 is similar, only the SPAM caller waits for a short time and
then sends the message. In any case, even though the secretary has finished
sending the challenge by the time the first packets of the response arrive, it is
still too early based on a calculation of when a valid response is likely to have
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Figure 2.8: Response too long in duration

been sent. Figure 2.8 demonstrates two means of detection, namely receiving
RTP packets too early and too late. This example shows when a caller sends
the SPAM message as soon as it receives RTP packets from the Secretary, but
it also shows how the Secretary can provide some kind of safeguard against long
response streams.

2.4.2.4 Examining the caller

By having access to a recorded sample of the caller’s speech, some kind of feature
extraction could take place, upon which subsequent classification of the caller
could be made. Some initial assumptions made about typical SPAM callers and
methods of detecting them may be found in ??.
It was decided that the goal should be to identify the caller in relation to who the
system may have had experience with before. So, the chosen approach was to
utilise existing voice recognition techniques to first of all reduce the speech signal
into a compact acoustic representation [32] and then try to identify patterns
which may be specific to a certain caller. Modern voice recognition systems
may be summarised as shown in Figure 2.9 [45, 8, 37]. This however assumes
an intended tokenisation and recognition at the word level. In this project it
was decided that word recognition may not be necessary if it is identities rather
than semantic attributes which are sought after. This theme is expanded in
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the next section and a more generalised view of a modern speaker recogniser is
shown in Figure 2.10 [5, 14].
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Figure 2.9: Modern Automatic Speech Recognisers
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Figure 2.10: Modern Speaker Recognisers

2.4.3 Expanding the Solution - A text independent speaker
problem

Each speaker voice sample would be statistically reduced to a vocal ”fingerprint”
or model using existing feature extraction methods.[5] The examination would
stop short of extracting phonemes, words and phrases from the capture. Instead
of separating the voice data into a series of states, the entire utterance would
be examined as a single state effecting the creation of a speaker model for each
caller sample. The choice was a straight-forward one after consideration of the
following general Operational and Practical constraints.

2.4.3.1 Practical Constraints

1. Lack of VOIP spam sample data
Some experience of SPAM telephone callers may be wide spread in rela-
tion to regular phone services, but precious little is known of the same
through VOIP networks. One can only make assumptions on what likely
characteristics are exhibited based on the regular phone equivalent. Ac-
quisition of VOIP spam calls would require the release of the constitutive
data packets from an ISP. ISPs are typically reluctant in this respect.

2. Language
Tokenisation of words is computationally impractical if one should try
to copy the standard email model. Speech evolves and does not inherit
the same rigid boundaries and syntax as text. Some other alternative
representation of the speaker’s voice is necessary.

3. Processing time
Telephone calls are a real time activity and any undue delay will have an
adverse effect on the quality of the service. The secretary interface affords
the user a context and some additional processing time for the monitoring
of incoming calls. Any solution with a low processing time overhead is
still highly desirable.
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2.4.3.2 Operational Constraints

1. Placement of proposed system
The ideal placement of such a content based filtering system is outlined
in figure 2.1. This assumes access and familiarity to existing VOIP tech-
nology and infrastructure. The technical nature of VOIP as detailed in
appendix ... would no doubt require much work in adapting existing struc-
tures to incorporate any proposed filtering system.

2. Sample gathering time
A larger captured sample will require more processing time, whilst a
shorter captured sample may prove cost efficient with regard to time but
prove insufficient in regard to meaningful content. A balance is necessary.

3. Sample quality
A standard audio format used by most of the codecs in VOIP is an 8000hz,
linear 16 encoded audio file [18]. Codecs may introduce some quantisation
noise. Therefore, the above format as a WAV file should be assumed to be
the (unreachable) upper limit for quality in regard to the type of recon-
structed sample file the system will deal with. Codecs are only available
under licence thus restrictions will be placed on how accurately one can
re-produce VOIP speech samples. Estimations based on the above audio
file quality are really the only viable option in this respect.

4. Project Complexity - Word Recognition
The time allotted for the project as a whole will simply not allow for the
creation of an entire voice recognition system (including the creation of
Hidden Markov models for bottom-up state-wise word discernment from
phonemes [8]).

With reference to the previously described timing mechanisms and existing
speaker recognisers, an overview of the proposed solution is presented in figure
2.11 which will act as a guide to how the remainder of this document is struc-
tured and discussed.
The next chapter discusses the Feature Extraction which is performed upon the
captured response from the caller.
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Chapter 3

Feature Extraction

3.1 Introduction

For each captured WAV sample which is made from incoming caller utterances,
it should be possible to create a low cost statistical representation of the speech
activity. Such representations will now be referred to as features. They will
form the basis of any model construction for any given caller. Focusing in on
the Feature Extraction area of Figure 2.11, time-based vectors of features
should be extracted from the speech as shown in Figure 3.1. In the interests

Feature Extraction

Listen
for 
Response

Frames of
Speech

Feature
Vectors

To
Classification

LPCC computation

PLP computation

MFCC Computation

Speech segmentation
/ Noise calculation

Figure 3.1: Feature Extraction

of robustness and capacity for successful identification, any extracted features
should exhibit the following characteristics [26, 20].
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1. Large variability between speakers - Features should contrast between
speakers to a reasonable degree.

2. Small variability within one speaker - Features from a single individual
should not alter much with different words, accents or emotional emphases.

3. Ease of measurement - Feature gathering should take place within a rea-
sonably short period of time. They should be representative of naturally
occurring in human speech.

4. Low Complexity - The feature sets one extracts from a certain piece of
speech should be very small relative to the amount of actual speech data
which they strive to model.

5. Resilience to Noise/Interference - Any speech data traveling through a low
bitrate channel will be subject both to additive noise and linear distortion
[1]. The former is that which is introduced by anything in the real envi-
ronment which happens to be picked up by the recording equipment.The
latter is caused by distortion in the spectral realm caused by the quality
of the recording equipment, the construction of room, or the quantisation
in the transmission channel.

One would hope that a chosen feature set would inherit as many of these at-
tributes as possible, thus avoiding several undesired scenarios:

1. A valid speaker is refused because their speech bared no resemblance to
that which the identification system was used to.

2. A SPAM caller would gain entry because their speech bared no resem-
blance to that which the identification system was used to, in a negative
sense.

3. A valid speaker might be refused entry because noise prevented a pure
recording from taking place.

4. A SPAM caller might try to disguise their voice by changing their utterance
or through mimicry. For example, in a text independent scenario, were a
SPAM caller to yield a speech utterance which is closer textually to what a
perceived valid caller might, he is more likely to score higher in a whitelist
matching scheme than otherwise.

And finally a very serious issue must be considered which is also of concern to
standard email SPAM filters. That is, the enrollment by accident or otherwise
of a SPAM caller in the system as a valid caller. This would have critical
implications for the future discernment of callers coming into the system [41].
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3.1.1 Existing Measures

When one considers existing techniques used in text independent speaker identi-
fication, there are several approaches to transforming the speech input from its
high-content source data to a smaller, feature-set representation. Two notable
procedures are:

1. Mel Frequency Cepstral Coefficients (MFCCs) [1, 8, 7, 20, 33, 31, 17, 13]

2. Linear Prediction Coding Coefficients (LPCCs) [8, 22, 43, 4, 27, 29, 32,
20, 33, 31, 17, 13]

During the course of this project it was decided these two be explored. In addi-
tion an enhanced extension to the latter was also implemented and considered
as a third alternative. This involved the use of warped spectral filterbanks, in-
corporated to reproduce the actual human perception of speech. This is why it
is called Perceptual Linear Prediction Modeling (PLP) [15].

3.1.1.1 The Human Vocal Tract

All of the above are based on the principle that it is possible to obtain infor-
mation pertaining to the size and shape of the human vocal tract and the mass
of the vocal chords, by analysis of the frequency spectrum of a speech sample
[45, 8, 1]. The power spectrum of an observed speech signal is the product of
the Physical Excitation mechanisms (the lungs and vocal chords) and the Vocal
Tract (those passages above the vocal chords through which air passes during
voiced speech - includes the oral and nasal cavities).

Px = PvPh

Where Px is the observed power spectrum, Pv is the excitation power and Ph is
the vocal tract filter.

The vocal tract varies greatly in size and shape between speakers and so feature
sets based on estimations and approximations of its effects are most desirable.
Voiced sounds are those where the vocal chords vibrate creating the initial sound
(and determining the fundamental frequency). As the sound travels upwards,
the vocal tract influences the creation of other resonant frequencies (formants).
The resultant speech passes out through the mouth and nose, however the vocal
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tract closes or is obstructed at certain points in time, and in different places
corresponding to the creation of consonant sounds. All vowel sounds are voiced
sounds where there is no obstruction in the vocal tract, but not consonant
sounds require the vocal chords to vibrate (for example, ”p”, ”t”) [45].
The above proposed methods examine the power spectrum and model the human
physical speech mechanisms based on the formant and fundamental frequency
trajectories.

3.2 Mel Frequency Cepstral Coefficients

This method attempts to isolate features from speech in a way that is akin to
the human ear. It uses perceptual weighting principles to warp the frequency
spectrum of the sound data in a way that is non-uniform and conducive to
accentuating speech signal features which are influenced by the shape of the
human vocal tract [1, 7]. Generally, this scheme seeks to extract a set number
of coefficient values from an input speech sequence which may be subsequently
elongated according to delta and delta-delta time, thereby including speed and
acceleration movements.
The typical number of coefficients which may be extracted from the speech
waveform is 12-14 [1].Of course, coupled with the delta coefficients, this can rise
up to 24-28 or even 36-42. In any case, this is a significant representational
reduction given that the input speech may be up to 8khz in bandwidth over
several seconds.
A diagrammatic overview of the procedure is shown in Figure 3.2.
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Figure 3.2: MFCC Calculation Overview
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3.2.1 Pre-emphasis

High frequency formants have a smaller amplitude with respect to lower ones.
One would wish to have a similar amplitude across all formants [1, 31, 17, 13].
Therefore, the first stage in the process is to filter the speech signal so as to
achieve this. the function then is:

H(z) = 1− a ∗ z−1

In the above, a is the pre-emphasis factor and has a typical value of 0.95. Con-
sequently, the high frequencies are amplified by about 20dB [1].

3.2.2 Windowing

As a speaker talks the spectral response varies according to the different words,
syllables and phonemes spoken. The phoneme is the contents of the shortest
time interval over which articulatory stability happens [8, 45]. Therefore, it may
be considered to be the shortest interval during which meaningful vocal activity
occurs. A reasonable expectation is for this interval to last in the region of
20-30ms [1]. This approach makes the assumption a phoneme, should be able
to be encased in one window.
The speech signal could then be split up into a continuous string of these regions
(or windows), each containing what is called the short time spectrum - the power
spectrum for that particular window, or interval [8] (figure 3.3).

But the windowing function is not just a matter of arbitrarily splitting a

overlap

Short term windowed power spectrum

8khz0khz

Figure 3.3: The short term spectral window
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sound wave into consecutive short-time periods. The very presence of a window
introduces a distortion on the whole picture - this is called leakage and happens
when adjacent windows swap energy from different spectral frequency values [1].
To reduce this, a Hamming window function was chosen and windows were set to
overlap with each other. The size of the overlap is of course a separate debate,
but for the basis of this thesis, a length of 10ms was chosen. The hamming
function itself is given as:

w(n) =

{
0.54− 0.46 cos( 2πn

N−1), n = 0, ..., N − 1

0 Otherwise
(3.1)

There are alternatives to the Hamming window (for example ”Hanning”) but
the guiding principle in the application is that the side lobes are lower than with
a purely rectangular implementation, which, combined with the overlap reduces
the leakage problem. Figure 3.4 further describes the typical application of a
Hamming window in this context.

3.2.3 Spectral analysis

Spectral analysis follows the windowing of the sound sample in that each window
of speech generated in step 2 undergoes a Discrete Fourier Transform [8]. This
has the effect of translating each window into an M-point histogram where each
interval on the x axis represents an approximated frequency band (from 0 up to
8khz) and the y-axis indicates the magnitude for that frequency.
Taking the square magnitude of each individual DFT value results in the power
spectrum.

powerspectrum = |DFT (w(n))|2 (3.2)

The resolution of the power spectrum is determined then by the number of
points specified at the Discrete Fourier transform stage. In this thesis, 256 was
specified as a compromise between accuracy and complexity.

3.2.4 Filterbanks

Filterbanks are applied to the short term power spectrums, emphasising human-
observable characteristics of the sound. The human ear uses around 24 different
filter banks to process the sound information which it receives. This method
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Figure 3.5: A Power Spectrum for an 8Khz range

aims to replicated this processing though a kind of perceptual weighting process
[1].
Mel Frequency Cepstral Coefficients get their name from the Mel Scale Filter
banks through which the power spectrum is passed. These filter banks are
spaced such that the spectrum below 1Khz is processed by more banks since
it contains more information on the vocal tract shape. Then, moving over
1Khz the band frequency gets higher, so too does the bandwidth of the filter
bank (logarithmically)(figure 3.6). This increasing nature helps to allow for
temporal resolution of bursts [1]. Each filter is a triangular window which then

1Khz 8Khz

First 10 Filter banks
uniform up to 1 Khz

Remaining 14 filterbanks expand in width 
according to the Mel Scale

1

0

Figure 3.6: Mel Scale Filter Banks

gets shifted and warped according to the frequencies it covers. The construction
of these filter banks is constructed by first determining the mid point, or the
point of the triangle in each case. The entire range of filterbanks can then be
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constructed using the following formula:

U4m(k) =

{
|midpoint− f | < 4m → 1− (|midpoint− f |/4m)

|midpoint− f | ≥ 4m → 0
(3.3)

where 4m is 1
2 the width of the m-th triangular filter bank.

The width of each triangular filter is chosen so that there are 10 uniformly
spaced filters from 0-1Khz. The triangular mid points can be calculated as be-
ing the sum of the previous midpoint and half the current triangle width:

bm = bm−1 +4m (3.4)

from 1Khz up to 8khz then, the width of the next triangle is approximately
equal to 1.2 * 1

2 the current triangle width [1]:

4m = 1.2×4m−1 (3.5)

The output of each filter bank is then merely the sum of the magnitudes when
the filter bank is applied to the window in question (see figure 3.7).

Yt(m) =

bm+4m∑

k=bm−4m
Xt(k)U4m(k + bm) (3.6)

3.2.5 Log energy calculation

The output of each filter bank together yield N impulse values. By taking the
logarithm of these values, a dynamic compression is applied which has the effect
of making feature extraction less sensitive to dynamic variation - similar to the
ear’s processing [1].

3.2.6 Mel Frequency Cepstrum Calculation

It is profitable in terms of inter-speaker robustness if one could further de-
correlate the filterbank outputs. This is achieved by performing an inverse
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Discrete Fourier Transform upon them.

Y
(m)
t (k) =

M∑

m=1

lg{|Yt(m)|} · cos(k(m− 1

2
)
π

M
), k = 0, ..., L (3.7)

The IDFT in effect reduces to a Discrete Cosine Transform (DCT) which is
very good at procuring uncorrelated values and creates what one refers to as
the cepstrum [1, 8]. Its also useful because it means that the complexity of the
representation is further reduced from 24 down to somewhere in the region of
9-13. In most modern Speech Recognition Systems the number of coefficients
calculated is less than 15, and in this project 12 was chosen [1].
In practice the total number of coefficients to be used is the number of cepstral
coordinates +1, because the logarithm of the total energy for the frame in
question is appended to the start of the coefficient set. It is a useful additional
value because it gives a more complete picture of the stress a certain speaker
might place on different sounds.
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3.2.7 Delta Coefficients

The feature values by this stage do not take into consideration much about the
dynamic variation of the speech. In other words, the speed and acceleration of
the speech as perhaps characteristic of that speaker.
Such information can be represented by taking the first and second order dif-
ferences with respect to time. The delta and delta-delta coefficients may be
obtained from windows in the same locality of the entire window sequence:

40{ut} = ut

4i{ut} =4i−1{ut+1} −4i−1{ut−1}
(3.8)

where ut is a given feature vector at time t and i is the order of the difference.

Inclusion of the delta and delta-delta coefficients produces an overall feature vec-
tor of size 3*NoOfCoefficients. Applying this to a windowed sound sample is
equivalent to reducing several seconds of speech into N*(3*NoOfCoefficients),
where N is the number of windows decided at the outset in accordance with the
sample length,window length and window overlap, and NoOfCoefficients is 13.

3.2.8 Summary

Certainly if one is looking for a way to transform an input speech sequence
in a more simplified, uncorrelated and dynamically-aware representation, the
MFCCs offer a most viable option. It is a popularly used method in many mod-
ern speech recognition systems [7] though it will require the setting of several
parameters.

Below is an overview of the inputs, outputs and parameter choices:

Inputs:
A sequence of speech (T seconds long)
No of pts in Fourier Transforms (256)
The length of the windows (30ms)
the length of the window overlap (10ms)
the windowing function (Hamming)
the pre-emphasis factor (0.95)
the number of Mel filter banks (24)
the number of coefficients to extract (12)
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Outputs:
N*(3*NoOfCoefficients) (39 ∗N)
ie. N 39pt feature vectors

3.3 Linear Predictive Cepstral Coefficients

Rather than performing operations on a set number of filterbank outputs, Lin-
ear Predictive Coding seeks to produce an approximation of the all-pole model
of a spectral envelope by weighting the sum of previous speech samples [29].
The same preliminary step of converting the sound wave into a windowed, spec-
tral representation is used as with the MFCC calculations, thereby yielding a
series of short term, spectral windows which can be further analysed individu-
ally. Of particular significance again is the pre-emphasis step which is required
to even out the spectrum in preference of higher frequency characteristics which
tend to have a lower amplitude.
The said approximation is made possible through the premise that each sample
can be calculated as a weighted sum of past samples, which is intuitive given
that adjacent speech samples are usually highly correlated. To begin with then,
the following equation presents this notion (taking into account a window of
length N) [27]:

ŝn ≈
p∑

i=1

aisn−i, i = 1, ...., p (3.9)

where p is the order of the predictor.

The goal is to compile a list of these ”a” values or linear prediction coefficients
such that at each stage in the prediction, the error of the predictor is minimised.
The error (e) of a certain predicted value can be calculated from the correspond-
ing actual value:

en = sn − ŝn (3.10)

and then from this one can find the summed squared error (E)over a window of
length N would be:

E =

N−1∑

n=0

e2
n (3.11)
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OR

E =

N−1∑

n=0

(sn −
p∑

k=1

aksn−k)2 (3.12)

The most accurate predictor value for the a value is then one where the Squared
Error value is a minimum and this is obtainable by solving the equation when
the derivative with respect to a is 0.

∂E

∂aj
= 0 (3.13)

Differentiating equation 3.12 with respect to aj gives:

0 = −∑N−1
n=0 (2(sn −

∑p
k=1 aksn−k)sn−j)

0 = −2
∑N−1
n=0 snsn−j + 2

∑N−1
n=0

∑p
k=1 aksn−ksn−j

∑N−1
n=0 snsn−j =

∑p
k=1 ak

∑N−1
n=0 sn−ksn−j

(3.14)

One may define the covariance matrix Φ with elements φi,k

φi,k =
∑N−1

n=0 sn−isn−k

φi,0 =
∑p
k=1 φi,kak

(3.15)

This can be re-written in matrix form which looks like this [27]:





φ1,0

φ2,0

φ3,0

· · ·
φp,0





=





φ1,1 φ1,2 φ1,3 · · · φ1,p

φ2,1 φ2,2 φ2,3 · · · φ2,p

φ3,1 φ3,2 φ3,3 · · · φ3,p

· · · · · · · · · · · · · · ·
φp,1 φp,2 φp,3 · · · φp,p









a1

a2

a3

· · ·
ap





(3.16)

or just Φ0 = Φa

and therefore, the a values can be simply retrieved by multiplying the toepliz
by the matrix inverse:

a = Φ−1Φ0 (3.17)

At this point the window of speech is considered once again. By refining the
above equations to take into consideration the boundary edges the following is
sufficient to describe the toepliz matrix in relation to the window:
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φi,k =

N−1−(i−j)∑

n=0

snsn+(i−j) (3.18)

Thus, φi,k can be written in terms of the auto-correlation function ri−j since it
is only dependent on the difference i− j [8, 4]:

rk =
N−1−k∑

n=0

snsn+k (3.19)

Consequently the application of the autocorrelation matrix looks something like
this [8, 27]:





r1

r2

r3

· · ·
rp


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=



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r0 r1 r2 · · · rp−1

r1 r0 r1 · · · rp−2
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· · · · · · · · · · · · · · ·
rp−1 rp−2 rp−3 · · · r0


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a1

a2

a3

· · ·
ap





(3.20)

Inverting the matrix to help calculate the a parameters is achieved via the
recursive Levinson-Durbin approach [27]:

1. Assume a
(i)
k denotes the values of the predicted parameters at iteration i.

2. Assume E(i) denotes the residual energy at iteration i ( and when i is 0,
E(0) is just the total energy for the frame).

3. ki = (ri −
∑i−1

j=1 a
(i−1)
j r(i−j))/E(i−1)

4. a
(i)
i = ki

5. a
(i)
j = a

(i−1)
j − kia(i−1)

i−j , 1 ≤ j < i

6. E(i) = (1− k2
i )E(i−1)

The k’s which are calculated are intermediate values which are otherwise re-
ferred to as reflection parameters [27].

The output from the Levinson Durbin recursions which are of most interest
are the a parameters, the prediction parameters for the spectral window. The
number used is open to experimentation but the greater the number, the more
adept the prediction model (figure 3.8) [17]. As a general rule, one parameter
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No of parameters (p) = 6
No of parameters (p) = 25

Figure 3.8: The Power Spectrum with approximations by different sizes of pre-
dictive parameter sets

is selected for each khz in the range, plus 2-4 in addition to model lip and glottal
effects. This project is concerned with source audio of 8khz. Therefore, 12 was
chosen as the number of parameters to estimate.
A feature set with highly correlated values is not of much use as it will not en-
sure high inter speaker variability. A further step is involved in order to convert
the LP parameters into cepstral coefficients [7].

ck = ak + 1
k

∑k−1
i=1 iciak−i

1 ≤ k ≤ p
(3.21)

The end product was therefore set as a feature vector of 12 cepstral points, which
could be extended to include the same delta and delta delta sets as before, given
that the processing is occurring on a window by window basis.

3.3.1 Summary

The nature of this kind of analysis is somewhat different than that of the Mel
Filter bank outputs. It is an all pole modeling technique taken from a least
squares comparison and resulting in a ”best possible” estimation of the fre-
quency curve, the resolution of which is determined by the user’s specification
of the order of the linear predictor.

Inputs:
A sequence of speech (T seconds long)
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No of pts in Fourier Transforms (256)
The length of the windows (30ms)
the length of the window overlap (10ms)
the windowing function (Hamming)
the pre-emphasis factor (0.95)
the order of the linear predictor (12) (also equivalent to the number of coeffi-
cients)

Outputs:
N*(3*NoOfCoefficients) (39*N)
ie. N 39pt feature vectors

3.4 Perceptual Linear Prediction - (PLP)

Perceptual Linear Prediction is an extension of the Linear Predictive Model in
that it aims to provide a cepstral coefficient feature set based on the predictive
all pole modeling of the windowed spectrum. However, it is enhanced by the ex-
ploitation of known perceptive/acoustic properties incorporated by the human
ear when it processes sound. This takes the form of the perceptual weighting
of the audio spectrum and helps the overall process isolate more clearly distinct
features within it [15].
Moreover, when the Linear predictive model is created under the previous proce-
dure, it ignores the fact that the spectral resolution of human hearing decreases
with frequency. Hearing is also more sensitive to the middle frequency range in
human conversation.
The pictorial overview for this method is shown in figure 3.9.

3.4.1 Preliminaries - Windowing, FFT, Pre-emphasis

These functions are performed in same way as with MFCC’s and LPCC’s. They
are foundational to any of these feature extraction methods.

3.4.2 The Bark scale

The bark scale is a psycho acoustical scale which ranges from 1-24. That is,
there are 24 critical bands, so 1 bark corresponds to a an area or range within
the spectrum where some kind of unique activity may be humanly perceived.



3.4 Perceptual Linear Prediction - (PLP) 43

Pre-
emphasis

Hamming
windowing

Discrete
Fourier
Transform

LPC Parameters
(Auto-
Correlation)
(Levinson/
Durbin
 iteration)

Bark Scale
creation

Convolve
with
critical
bands

Equal 
Loudness
Pre-emphasis

Cubic 
Compression

PLP Filter bank creation

Inverse
Discrete
Fourier
Transform

Filter
 bank
 outputs

Cepstral
Computation

LPCCs

PLP 
Cepstral
Coefficients

Standard LPCC procedure

PLP Procedure

Figure 3.9: PLP Overview

It is possible to convert a Hz value into a Bark value by applying the following
formula:

Ω(f) = 13 arctan(0.00076f) + 3.5 arctan((f/7500)2)

OR

Ω(f) = 6 ln{f/1200π+ [(f/1200π)2 + 1]0.5}
(3.22)

where f is the frequency in hz.

The bark scale is fairly reminiscent of the mel scale, though the filter banks
used in PLP are shaped differently.
The frequency axis of the short term spectral window is converted from hz to
Bark and the bark index for each amplitude is translated accordingly. The
filter banks are constructed by determining the mid point of each. These are
distributed at roughly 1 bark intervals throughout the spectrum. For each fil-
terbank, the total range of bark values are surveyed and subtracted from the
filterbank midpoint. The difference value is then used to determine the value
for that index point in the critical band filters. The following formula provides
a further illustration:
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Ψ(Ω) =





0 for Ω′ < −1.3

102.5(Ω′+0.5) for − 1.3 ≤ Ω′ ≤ −0.5

1 for − 0.5 < Ω′ < 0.5

10−1.0(Ω′−0.5) for 0.5 ≤ Ω′ ≤ 2.5

0 for Ω′ > 2.5

(3.23)

where Ω′ = Ω(f) - Ω(i) and i = 1,...,24, denoting the midpoints of the filterbanks.
(the above representation is a more generalised approach to the convolution of
the critical band filter definition and periodic function provided in [15] ).

3.4.3 Equal loudness curve

The next step is to apply equal loudness pre-emphasis. The human ear is non-
equally sensitive to different frequencies, so in order to adapt the spectral model
appropriately an equal loudness curve is applied to the array of filter banks. The
curve seeks to simulate the sensitivity of the human ear to sounds at around the
40dB level.
The equation of the curve itself is given as:

E(w) = [(w2 + 56.8x106)w4]/[(f2 + 6.3x106)2 × (f2 + 0.38x109)] (3.24)

It is applied to the filter banks in this way:

Ξ(Ω(w)) = E(w)Ψ (3.25)

ie the hz equivalent of each bark value from the critical band filters is multiplied
by the Equal loudness curve. By applying this curve to the filter banks the
structure in 3.10 is created:

3.4.4 Cubic compression

The resultant filters banks are then applied to the actual spectral window of the
speech which means that a spectral sum is taken of each filter bank, incorpo-
rating the weighting which the filter bank imposes on its area of the spectrum.
Mathematically this means:

Ξ(Ω(wi)) =
∑w=wi24

w=wi1
wi(w)P (w) where i = 1....24 (3.26)

where P is the power spectrum and wi is the weighting function performed by
the filter bank concerned.
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Figure 3.10: PLP Filter Banks

24 filter bank summations are then collected, but in order to further replicate
the non-linear relationship between perceived loudness and sound intensity, a
cube root operation is performed on each filter bank output.

Φ(Ω) = Ξ(Ω)0.33 (3.27)

3.4.5 Auto regressive modeling

The cubic compressed filterbank outputs can be transformed using an Inverse
Fourier Transform to yield the auto correlation values which are same parameter
approximations used in the LPC model - the a’s in equation 3.9. As with the
LPC model one need only choose the first p auto correlation values from the
IDFT. The value of p was set to be the same as the LPC procedure.

3.4.6 Cepstral Transformations

The same de-correlating procedure as with the standard LPCC calculation is
repeated, providing cepstral coefficients according to the number of parameters
[7].
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ck = ak + 1
k

∑k−1
i=1 iciak−i

1 ≤ k ≤ p
(3.28)

3.4.7 Summary

PLP cepstral coefficients can be further extended to include speed and acceler-
ation information in the form of delta and delta delta coefficients.
The PLP method shows a good appreciation for the the psychoacoustic realities
of human hearing. In tests it is shown to have competed on a par with MFCCs
and better than LPCCs under noisier conditions [39]. It would certainly appear
to be a more involved and informed approach to the standard LPCC computa-
tion.

Inputs:
A sequence of speech (T seconds long)
No of pts in Fourier Transform (256)
No of pts in Inverse Fourier Transform (34?)
The length of the windows (30ms)
the length of the window overlap (10ms)
the windowing function (Hamming)
the pre-emphasis factor (0.95)
Number of critical band filter banks (24)
the order of the linear predictor (12) (also equivalent to the number of coeffi-
cients)

Outputs:
N*(3*NoOfCoefficients) (39 ∗N)
ie. N 39pt feature vectors

3.5 Noise / Speech Segmentation

Regardless of any recording conditions, noise is almost always present in any
audio sample, and in VOIP especially it is unavoidable. This presents a number
of challenges in relation to accurately extracting meaningful and unbiased data
from the speech. However, it may also provide an extra point of leverage in
spam detection.
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Spoken word is not a constant stream of vocal activity. Human speech is char-
acterised by pauses and gaps between words, syllables and sentences. The entire
utterance can therefore be divided up into those time intervals which contain
speech and those which do not (figure 3.11). In other words, it is necessary to
run a speech segmentation stage in parallel with the standard feature extraction
techniques (figure 3.1). In other words

Silence regions

Figure 3.11: A waveform consisting of audio and silence

Entireutterance = spokenpart+ silencepart

3.5.1 Audio codecs

A related technique used in low bandwidth audio codecs (eg G.729) is the use of
Voice Activity Detection (VAD) [18]. In order to preserve bandwidth, the codec
will only code those areas of the input speech pattern which it can ascertain as
speech. The remaining pauses are not encoded, but instead the codec merely
waits until it detects the voice again. In the meantime some of these codecs
introduce their own noise at the decoding end to fill the gap.
In such a situation as this project it would be most helpful if the spoken part
of each voice sample could be gathered together and the silence part merely
discounted from playing any further part in feature extraction. This has the
following benefits:
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1. Only that which is relevant to feature extraction is collected together.
Normalisation at various stages would be adversely affected by silences.

2. The cost of processing the speech part would be less than processing the
entire duration of the input sound sample.

3. Quantifying the amount of actual speech determines an estimate of overall
vocal activity. In a situation such this VOIP SPAM problem, one indica-
tion of SPAM is a seemingly unintelligent stream of speech, unbounded
by cognisance on the part of the calling party.

The above objectives are achievable through the following techniques.

3.5.2 Standard activity detection

Assuming the entire sample of the input utterance can be split up into a series
of overlapping windows, there is a discrete time division already built into the
audio source which is to be analysed (figure 3.12). The totality of the sample

Figure 3.12: Waveform windowing gives a frame-based timing dimension

could be defined as a sequence of windows designated as either pure noise or
pure speech. Distinguishing which is which is found by examining the frame-
wise signal energy from the short term power spectrums [36].
For each window, the total observed signal can be said to be X(wall, t). At
time t one is concerned with the corresponding spectral window and w is each
individual frequency within the range of the spectrum. Speech and Noise are
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assumed to be additive and independent, therefore it follows that

X(w, t) = S(w, t) +N(w) (3.29)

This equation assumes that the background noise energy is stationary through-
out the input signal.
The signal energy of each window, X(w,t), will either be greater than or equal
to the noise energy, N(w,t). The degree of how much larger the energy from
X(w,t) is in comparison with N(w,t) decides if the frame is a designated ”noise”
frame or not. N(w,t) is a continual estimate based on previous designated noise
frames with the initial frame defaulting as noise and thereby the base estimate.
Calculating the status of the current frame is done via the following formula:

N(w, t) =

{
N(w, t− 1) ifXNR(t) > α

(1− β)N(w, t− 1) + βX(w, t) otherwise
(3.30)

where: XNR(t) =
∑
wX(wall, t)/

∑
wN(wall, t− 1)

α is a threshold for the signal to noise ratio.
β is a parameter determining the adaptation speed of the noise estimation.

The above formula produces an estimation of the noise spectrum for each win-
dow in the input signal and also a strict designation as to whether the given
window/frame is pure speech or pure noise (in effect, a noise ”masking” array).

3.5.2.1 Limitations

The above method is useful as long as there is a reasonable definition between
the noisy regions and the speech regions. Much depends on the setting of the
XNR and adaptation parameters. One cannot assume that all incoming speech
signals are the same in regards to their expected noise levels.
However, for basic tests with a controlled sample procurement environment it
is adequate and cost effective.

3.5.3 Quantile Based Noise Estimation

A more realistic view of the noise situation within a given speech signal is
possible by moving from frame-wise noise estimation to frequency based esti-
mations [36, 2]. Not all frequency bands contain significant magnitudes during
real speech. In fact, even when a subject is talking some bands still remain
around the base noise level. A more accurate approximation of the overall noise
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spectrum may be had if each window is sorted according to each frequency mag-
nitude. In the form of an equation this would be:

for each w sort X(w, t) such that

X(w, t0) ≤ X(w, t1) ≤ ...... ≤ X(w, tT ) where T = no of Windows

Plotting a graph of the resulting sort according to a qth-quantile of time (0 ≤
q ≤ 1), would resemble figure 3.13.

Frequency 1

Frequency 2

Frequency 3

Frequency 4

q-time

1.00

q-line

Figure 3.13: QBNE approach to sorted frequencies

q is a quantile of the total length of the sorted signal. The graph only shows a
handful of sampled frequencies from a set of possibly 256, though it is imme-
diately apparent that each frequency does not contain much information for a
significant portion of the overall time. One could say that each frequency band
carries pure noise for at least the qth-fraction of time. Expressed as a formula
this translates to:

N(w) = X(w, tbqT c)

Thus, the setting of the q value is tantamount to the setting of a time-influenced
noise threshold for each frequency. A recommended value for q is the median
(0.5), though this value is open to experimentation and is somewhat dependent
on the expected noise level of the incoming signal.
Ultimately the estimated noise spectrum can be found on a frequency by fre-
quency basis by taking the highest magnitude value occurring before the q-time
bounded cutoff in the sorted collections.
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3.5.4 Advanced Quantile Based Noise Estimation

This method seeks to take into consideration the non-uniformity of the curves
in figure 3.13. For example, using 0.5 as a q-time cutoff value may be suitable
for some frequencies but not optimal for all, even when the same basic shape
is made by each. To cater for the variety of speeds and accelerations with each
frequency curve subsequent to the q-cutoff point, AQBNE proposes that this
point should not be a single static boundary in q-time. Instead it should be
curved itself to allow for a more realistic estimation of noise levels [2].
Figure 3.14 demonstrates how the QBNE may be improved upon through this
modification.

Frequency 1

Frequency 2

Frequency 3

Frequency 4

q-time

1.00

q-line

Figure 3.14: Improved AQBNE approach

In this improved model there is a qmin parameter which designates the origi-
nal point of the curve, where it begins to slope downwards. Furthermore, the
specification of the r parameter determines the steepness of the slope the curve
makes. Typical values for qmin are 0.3-0.45 and for r, 10-15. Both are open to
experimentation. In the same way as before, an estimation of the noise spec-
trum is merely a case of taking the sorted frequencies arrays and for each, using
the magnitude at the point of intersection with the q-time curve.

3.5.5 Weiner Filtering/Noise removal

Assuming a varying degree of additive noise contained within every incoming
speech signal, it may prove beneficial to try to remove it, thereby leveling the
playing field so to speak, in relation to each caller candidate prior to feature
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extraction.
A well known method for carrying out this task is Wiener Filtering [36, 8] which
is defined as:

H(w, t) = (X(w, t)−N(w, t))/X(w, t) (3.31)

S(w, t) = H(w, t)2X(w, t) (3.32)

where the intermediate result (H(w, t)) is calculated from the original spectrum
(X(w, t)) and the estimated Noise Spectrum (N(w, t)). It is then used to find
S(w, t) which is the noise-removed spectrum.
Often, equation 3.31 is modified to

H(w, t) = max(X(w, t)−N(w, t), 0)/X(w, t) (3.33)

taking consideration of the case where the long term estimated noise spectrum is
larger than the instantaneously observed power spectrum. It has been observed
that better speech recognition results are obtained if a small fraction of the noise
spectrum is actually left in the signal. The formula then becomes:

Sγ(w, t) = max(S(w, t), γN(w, t)) (3.34)

where γ = 0.04 (experimentally obtained).

3.5.6 Summary

Noise analysis allows the measurement of noise quantity, noise spectrum and
the separation of speech from silence. The noise spectrum may be then used to
remove the noise from the signal.

Inputs:
A sequence of speech (T seconds long)
No of pts in Fourier Transform (256)
The length of the windows (30ms)
the length of the window overlap (10ms)
the windowing function (Hamming)
the pre-emphasis factor (0.95)
β - the adaptation speed parameter to the Noise spectrum estimation
α - the XNR threshold value
q - the QBNE quantile-time cutoff value
qmin - the first q-time point of the AQBNE cutoff curve
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r - governs the steepness of the AQBNE cutoff curve
γ - the Wiener filter noise remnant fraction

Outputs:
A mask array of length T showing which windows are noise and which aren’t
(T = No of Windows)

Frame-wise noise estimation:
An array of noise spectrum estimates, the final one being the most accurate.(length
T )

QBNE/AQBNE :
a single noise spectrum estimate for the whole input signal.
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Chapter 4

Speaker Classification

4.1 Introduction

Feature Extraction procures a number of different quantities. But how may
these quantities be manipulated into a form which is useful when the desire is
to compare the similarity between different groups of extracted features? The
focus of this chapter will therefore be on techniques used to order or cluster
the extracted features into a more generalised representation. In effect these
techniques will shape a model or ”audio fingerprint” based on the raw features,
paving the way for pattern-matching of different identities.
If at the start of feature extraction, the input speech signal had been split into
N windows then one can expect to have the following available:

• N feature vectors, made up of cepstral coefficients from one of the 3 listed
methods (MFCC, LPCC or PLP). Each vector containing up to 39 con-
stituent values.

• a noise mask array of N values, determining the noise value for that window
(”1” for noise, ”0” for speech).

• An estimated Noise spectrum and estimated values for the overall noise
energy - using AQBNE and QBNE.
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Figure 4.1: Classification Overview
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Figure 4.1 is an overview of the different components described in this chapter.
It is subset of figure 2.11 and shows how selected features are normalised, and
then passed to one of two pattern matching algorithms. The first is Vector
Quantization with reference to trained speaker models. The second is a Self
Organising Map. Both will return an similarity score or some kind of measure-
ment as to how the observed features correspond to existing knowledge within
the system. These scores provide a basis for subsequent categorisation.

4.1.1 Frame selection / Normalisation

The feature vector set for one speaker needs to be normalised to allow effective
comparison with other stored examples. However, the normalisation process
should be only concerned with the pure voice data from the captured sample.
Otherwise silences have an unessessary influence on the normalisation. There-
fore, using the noise mask obtained from the Feature Extraction phase, it is
possible to normalise the extracted coefficients on a frame-wise basis - with ref-
erence to whether the frame contains speech or not. The resultant normalised
vectors are set to values between 0 and 1 and passed on for modeling to take
place.

4.2 Modelling - An audio fingerprint

For dichotomisation of feature vectors two main approaches were considered at
the outset.
The first is the parametric model where one makes an assumption on the feature
vectors - that they can be fitted to a certain distribution (eg. Gaussian) accord-
ing to the maximisation of certain inherent criteria. Some structure is assumed
and that can be described through parameterisation [14, 20]. The advantages of
this approach are that different parametric models are more succinctly discrimi-
native, and the dichotomisation from feature vector to ”speaker model” is more
efficiently performed. The disadvantages of this approach are that the assumed
structure of the data may be too rigid and in a situation where the range of
sample data is more fluid and less predictable, it may be inappropriate to apply
such restrictive assumptions.
Taking into account the scope of this project, and considering the variety of
sound data which may be possible to transmit over IP telephony an alternative
approach to parametric modelling was preferred. (Speech, and in particular a
prompted spoken response is but one type of source which could be used as
input to the system. Any kind of aural information - music, quantised digi-
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tal tones, pure noise, silence, shouting, white noise - could be used to counter,
frustrate or confuse the decision making process). If one could be assured that
every time a call is received the caller plays by the rules by supplying a spoken
word response, then parametric modelling would be more appropriate. Such a
guarantee is not automatic.

The second, and preferred approach was to apply non− parametric modelling,
where no structure is assumed present in the source sound sample [14]. Within
this approach, there are several options in regard to performing a comparison.
A Nearest Neighbour approach involves the calculation of a similarity score from
the individual distance measurements between each point in the feature vector
and their nearest correspondents in a separate, trained sample [32]. For example:

dNN(x,R) = min|x− rj | where rj ∈ R

However, such a method is often open to distortion from outliers, and it may
be computationally expensive both in terms of training data and testing and
comparing newly observed samples against known samples
Vector Quantisation (VQ) [32, 14, 19] can be used instead and it was the cho-
sen method for this project. Instead of directly comparing the feature vector
data itself directly, the vectors are transformed in a representative form of lower
complexity. It involves the construction of what is referred to as a codebook - a
collection of centroids calculated from the feature vectors which are also known
as codewords. This could be viewed as the clustering of input feature vectors
where each feature vector falls into the catchment area of one cluster (or cen-
troid, or codeword) (figure 4.2). The number of codewords to be used is not
always clear however. Of course, it depends very much on the data itself which
is to be clustered. In this project therefore, the exact amount will be left as an
exercise during the testing phase. Another acknowledged shortcoming with this
approach is that there can be no overlap between cluster areas - each feature
vector therefore relates to one, and only one centroid. Depending on the type
of data analysed this may be prove to be too rigid.
In any case, what is then required is that codebooks be created for each training
sample. Then it is the codewords of each known sample which are compared to
the extracted feature vectors of the observed utterance and the distances calcu-
lated in much the same fashion as the Nearest Neighbour method, namely:

given a codebook C
where C = c0, c1, c2.....cK−1 (K = number of codewords)

and given an input feature vector set X
where X = x0, x1, x2, ....xT−1 (T = number of Feature Vectors)

dV Q(xi, C) = dmin(xi, cj) (where cj ∈ C)



4.2 Modelling - An audio fingerprint 59

Cluster Region 2

Cluster Region 1

Cluster Region 3

Cluster Region 3

Centroids

Figure 4.2: Cluster Regions and Centroids
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Furthermore, it is possible to obtain the average quantisation distortion (AQD)
from the individual distortions, across the entire input range. This essentially
gives an estimate of how well a set of feature vectors fits a codebook and an
effectual similarity score:

AQD(X,C) = 1
T

∑T
i=1 d(xi, C)

4.2.1 Creating the codebook and learning methods

If a system such as the proposed one is to be capable of comparing new, previ-
ously unseen feature vector sets to some kind of existing, experiential knowledge,
this knowledge must take the form of a set of codebooks gained from training
data.
A system which relies on training data to postulate the identity of new obser-
vations will only be as effective as the training data allows it to be. Therefore
the choice of how to train the system and how to manipulate known samples
for this is crucial.
Training can be supervised or unsupervised [32, 20]. The former relies on an
allowance of inter-dependencies between all the possible sets of data used to
train the model. The latter implies the creation of some kind of dichotomised
representation, independent of other feature sets. In other words, where there
exists a feature vector set, it may be transformed into a clustered representation
based purely on its own overall characteristics. With the supervised model, the
cluster set would be identified in relation to prior experience with other feature
vector sets.
In this project it was decided that both be explored as a means of comparing
codebooks. The well-known LBG (Linde-Buzo-Gray) algorithm [24] was imple-
mented along with Patane and Russo’s enhanced version [30], as an unsuper-
vised approach. Tuevo Kohonens Self Organising Maps provided a supervised
alternative [21].

4.3 LBG (Linde-Buzo-Gray)

4.3.1 Introduction

The LBG, or Generalised Lloyd algorithm works by selecting an initial codebook
of size K and then iteratively finding a new quantiser where the overall distortion
is less than or equal to the previous amount. Figure 4.6 gives an overall picture
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of the general procedure.
The first step is the initialisation of the codebook itself into K codewords. K

Calculate Initial Codebook

Start

Stop

Random
Initialization

Initialization
by
splitting

Codebook
Optimization

Figure 4.3: Basic LBG overview [30]

is only chosen experimentally, and effective values of K are largely dependant
on the data to be clustered.
The initial codewords are chosen by either randomly selectingK different vectors
from the input set, or by choosing an initial vector from the set and splitting it
according to a value e which is a pre-calculated, fixed perturbation vector. This
is repeated m times so that the final number of codewords is equal to 2m, where
each stage involved the splitting of each previously generated codeword.
Once the initialisation of the original codebook is complete, the remainder of
the LBG algorithm is concerned with optimising the codewords so that the
overall distortion measure in relation to the feature vector set is reduced on
each iteration.
The general procedure is as follows:

1. Find the Voronoi partition of the current codebook Y in relation to the
input set X. This consists of assigning the nearest codeword to each input
vector in the set:

P (Y ) = S1....SNc (where Nc = Number of Codewords)
and
Si = {x ∈ X : d(x, yi) ≤ d(x, yj), j = 1...Nc, j 6= i} i = 1...Nc
(y ∈ Y )
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On a side note, P (Y ) is in effect an optimal partition because

D(Y, S) ≥ D(Y, P (Y ))

2. Calculate the quantiser distortion of the Voronoi set P (Y ) set in relation
to the current codebook. This is given by:

Dm = D(Ym, P (Ym)) (where m is the iteration number)

then,

if |Dm −Dm−1|/Dm > ε (where ε > 0 and is a precision measure)
constitute new Codebook Ym+1 from P (Ym) (step 3)
return to step 1 and begin a new iteration
else stop → Ym is the optimal codebook

(where ε > 0 and is a precision measure)
(generally ε = 0.001 - 0.1)

3. Calculating the new codebook is the same as calculating a new centroid
x(A) whereby the Euclidean Squared Distances between it and any of the
input vectors which reference it as their Nearest Neighbour (set A) is a
minimum:

d(x, x(A))| x ∈ A = dmin(x, u)|x ∈ A
(d() is the Euclidean Squared distance measure)
(u is any vector in the set referencing the centroid as its NN)

so in other words, the new centroid is calculated merely through:

x(A) = 1
N

∑N
n=1 xn (where there are N elements in A anxd x ∈ A)

Figure 4.4 provides an overview of the entire scheme.

The end product of the process is an optimised codebook whose code-
words are effectively the optimised cluster centroids with respect to the
input data set.

4.3.2 Limitations of LBG - Enhanced LBG

The LBG algorithm is essentially an approximating algorithm with limitations
imposed by the positioning of the initial codebook. The initial codebook plays a
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Figure 4.4: LBG Flowchart
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large part in determining just how effective the overall method is and badly po-
sitioned codewords at the beginning simply may be recovered from, [30]. More-
over, badly positioned initial codewords slow the algorithm down somewhat [23].
Figure 4.5 gives a basic picture of the possible problems represented in just
two dimensions.

Over-represented cluster

Isolated
codeword

Under-represented cluster

KEY:
= codeword

Figure 4.5: Typical LBG Clustering problems

Namely three particularly undesirable effects may be brought to pass [30] :

• Over-representation of a cluster. A relatively small cluster can be made
to have a large number of centroids.

• Under-representation of a cluster and consequent loss of precision. A rel-
atively large cluster can be made to have a small number of centroids.

• Isolated clusters never influenced. If an initial codebook contains code-
words which are never referenced during the calculation of Voronoi par-
tition on each LBG iteration calculation, then they will never actually
be moved closer to any of the other clusters. They will remain in their
isolation because all the feature vectors in the input set will continually
reference other centroids.

The LBG algorithm is improved if the 3 situations above can be identified and
appropriate action taken in each instance.
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Patane and Russo’s enhanced version includes the addition of an ELBG block
to figure 4.4 just prior to the calculation of the new codebook. Its purpose is
to locate poorly positioned codewords and to take appropriate action, but only
if a repositioned codeword will have a positive effect on the continuing iterative
process of diminishing the overall quantiser distortion. Figure 4.6 resembles
the ELBG block.

The flowchart in figure 4.7 gives some idea of where it is placed.

Calculate Initial Codebook

Start

Stop

Random
Initialization

Initialization
by
splitting

Codebook
Optimization

Figure 4.6: Basic ELBG overview

4.3.2.1 Enhanced LBG

Gersho states that ”each cell makes an equal contribution to the total distortion
in optimal vector quantisation with high resolution” [30].The method relies on
the computation of what is called a ”Utility” index Ui for each of the code-
words. This is in effect a measure of how much distortion a given codeword is
contributing overall.
It is defined as the normalisation of the total distortion of the codeword with
respect to the mean distortion of all the codewords:

Dmean = 1
Nc

∑Nc
i=1 Di
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Figure 4.7: ELBG Flowchart [30]
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Ui = Di/Dmean, for i = 1...Nc

With respect to Gersho, it is apparent that the equalisation of distortions is
equivalent to the equalisations of Utilities.
In practise then, a codeword with a low utility value (where Ui < 1) is one where
there would appear to be more centroids or codewords representing a relatively
small cluster area. Conversely, a codeword with a higher utility value is one
where its own distortion is quite high and would lead to the assumption that it
may be a single centroid representing a more disperse cluster.
The aim of the ELBG block then is to identify codewords with low utility values
and try to move them into the general vicinity of codewords with high utility
(but of course governed by the condition that the projected mean distortion
must be lowered for such a codeword shift to be viable). It is an iterative pro-
cess of shift attempts or SoCA’s (Shift of Codeword attempts) which then ends
when all the low utility valued codewords have been considered.
The actual workings of the ELBG algorithm will now be described.

Over-represented clusters Si and Sl

Under-represented cluster

KEY:
= codeword

yp

Sp

yi

yl

Figure 4.8: Initial Cluster situation (REF Patane, Russo)

step 1 - Utility calculations: The Utility value of each codeword is calcu-
lated and two groups are formulated:
1)those codewords with a Utility value < 1→ Ui
2)those codewords with a Utility value > 1→ Up
Two candidate codewords are then selected, one from the Ui group and the



68 Speaker Classification

KEY:
= codeword

yp

yi

yl

New Si

Sl

New Sp

Old Si

Figure 4.9: Moving the low utility centroid (REF Patane, Russo)

KEY:
= codeword

yp

yi

yl

New Si

New Sl

New Sp

Figure 4.10: Reapportioning the cluster regions (REF Patane, Russo)
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other from the Up group. Typically the candidate from Ui will be selected in a
sequential manner, whereas the Up candidate is selected stochastically from the
following probability measure:

Pp = Up/
∑
h:Uh<1 Uh

step 2 - Codeword shift: Shifting a codeword not only affects the values the
codeword represents. It also means that the old cluster of a low utility code-
word must have a new representative centroid to reflect its movement away.
This would involve the merging of the old cluster with the next nearest cluster
(which should be close-by because of the low utility).
The centroid of the cluster to which the low utility codeword is moved, is a high
utility codeword, but it must also be recalculated in order to cater for the fact
that the new cluster must be split to accommodate the new codeword.
Notice in the previous illustrations, the high utility codeword is called yp and its
cluster Sp. The low utility codeword is called yi and its cluster Si. The closest
codeword to yi is yl and its corresponding cluster is Sl.
Therefore when yi is moved to Sp, Sp must be re-split because yi and yp both
reside within it. yp’s coordinates must change to reflect this and yi’s new coor-
dinates must be calculated in accordance.
The two new sets of coordinates are determined by placing them on the prin-
cipal diagonal in the h-dimensional hyper-box in which the cluster resides. (h
is determined by the number of coordinates there are in each feature vector).
One is placed at a point corresponding to 1

4 of the range of each coordinate set
whilst the other, 3

4 of the range. The following formula better describes this idea:

h-dim Hyper-box = [(x1m, x1M )× (x2m, x2M )× (x3m, x3M ).....× (xhm, xhM )]
m = the minimum value in that coordinate range
M = the maximum value in that coordinate range

So, for example:

yi becomes [ 1
4 (x1M−x1m)× 1

4 (x2M−x2m)× 1
4 (x3M−x3m)×......× 1

4 (xhM−xhm)]
yp becomes [ 3

4 (x1M−x1m)× 3
4 (x2M−x2m)× 3

4 (x3M−x3m)×......× 3
4 (xhM−xhm)]

This is not exactly the same procedure as given in Patane and Russo, but is
rather a reasonable approximation of what is admittedly a suboptimal solution.
The outline given in Patane and Russo is of a 2 dimensional solution. The above
approximation was considered appropriate given the 13-39 dimensions likely to
be used in this project.
In order to fine tune the new yi and yp points, a local LBG is used with a high
precision value(ε = 0.1-0.3), and this usually only adds a couple of iterations to



70 Speaker Classification

the overall complexity. Considering yi ’s old cluster Si, it is merged with Sl and
yl is adjusted by recalculating its centroid from the union of Si and Sl.

Step three - Recalculating the distortion: The Voronoi partition is re-
calculated using the new codewords (including the shifted ones) and the overall
distortion is compared against the previous value to see if the shift has actually
been advantageous.
But the calculation of the Voronoi partition is perhaps the most computation-
ally expensive part of the process. Again, a slightly suboptimal alternative is
preferred. If one considers the three new cluster regions after shifting then their
combined distortions may be said to be:

Dinew +Dpnew +Dlnew

It follows then that if this combined distortion is less than the combined distor-
tion when considering the 3 regions in their previous state, the overall distortion
of the entire codebook will be less.
In other words,

if Dinew +Dpnew +Dlnew < Diold +Dpold +Dlold

then Overall Distortion is less, and thus, shift was beneficial
else shift was counter productive, and should be discarded.

Generally, this approximated intelligent shifting is a balance between preci-
sion and computational complexity. It does not offer an optimal solution but
given timing and computational constraints, offers a reasonable compromise for
gaining an accurate codebook.

4.3.3 Kohonen Self-Organising Maps (SOM)

A Self Organising Map [21, 44, 10, 35, 6] produces a 2D or 3D representation
of each 13-39 pt feature vector which has been extracted from the speech. This
is not merely a cut-price dimensional reduction on its own - it is done with ref-
erence to what the system understands to be the universe of feature vectors at
that point in time. The Map stores topological relationships inherent to training
data in network form.
For simplicity’s sake only the 2 Dimensional representation is considered for the
time being, though implementation of both 2-D and 3-D models was planned.
The map design very much mirrored the existing C++ implementation from
[44]
As a preliminary step, the size of the map must be determined. It can be con-
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sidered as a 2 dimensional grid shape or ”lattice” of height y and width x and
therefore containing x*y constituent nodes. Each node will contain a set of
weights, the number of which is determined by the size of feature vectors which
will be presented as input (figure 4.11).

W1

W2

W3

�Wn

.

.

.

.

x

y

Figure 4.11: Basic 4x4 SOM configuration

The end goal will be to have a lattice weighted according to every possible
input in the training data so that from the subsequent presentation of future
sample vectors, a 2-D equivalent can be returned corresponding to the best fit
point on the grid for that vector.
The categorisation of any input vector is relatively trivial. It is just a case of
finding the node on the lattice whose weight set is closest to the vector. The
categorisation is therefore a single 2-D point for each vector input.
However, this point determination is made trivial because the map will have
undergone training at a prior stage.

4.3.3.1 Training the SOM

Each node in the x*y lattice will contain weights according to the size of the
input vectors. The weight of each node is initialised as a random number be-
tween 0 and 1. (The assumption is made that every training vector consists of
normalised values within the same range).
For each training vector which is presented to the SOM, the best matching
unit (BMU) is calculated by iteratively finding the Euclidean Distance from the
training vector to the weights at each node.
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DistEUC =

√√√√
NoWeights∑

i=1

(vi − wi)2 (4.1)

(where v ∈ V , an input/training Vector
and w ∈W , the set of weights for a given node)

Once the BMU has been calculated for a particular input vector, the neigh-
bourhood of the selected node is then discovered. This neighbourhood is a set
area, the residents of which will have their weights adjusted to a greater or
lesser degree depending on how close they are to the BMU. This adjustment
itself occurs over a number of iterations, which is decided prior to the creation
of the SOM.

BMU

illustrates neighbourhood radius

Figure 4.12: The ever-shrinking BMU Neighbourhood of a 10x10 SOM
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In figure 4.12 it can be seen that the neighbourhood takes the form of a
circle, the size of which is adequately described by its radius. The radius is
set to shrink over time according to the iteration number. The formula for the
radius is as follows:

radiust = radius0 × e(−t/λ) (4.2)

where t is the iteration number (1,2,3...maxNoIterations),
λ is a time constant given as

maxNoIterations/log(SOMradius)

As the learning takes place and the iterations pass, the size of the neighbourhood
reduces until it consists of merely the BMU on its own.

4.3.3.2 Adjusting the weights

When a neighbourhood is defined of course, the constituent member nodes must
have their weights adjusted. This is an iterative process and is done by adding
a fraction of the difference between the old weight and the input vector to get
the current weight for that iteration.

Wt+1 = Wt + Lt(Vt −Wt) (4.3)

where Wt is a given weight at time t,
Lt is the learning rate at time t
Vt is the corresponding value in the training vector at time t

The learning rate is set with an initial value (0.1) which then also decays with
each iteration. It is defined as:

Lt = L0 ∗ e(−t/λ) (4.4)

Equation 4.3 would be fine if all the neighbourhood nodes were to have their
weights adjusted by the same amount, but as previously mentioned, this needs
be done in proportion to how far a neighbourhood node is from the BMU.
Amending equation 4.3 to include this dynamic provides the following:

Wt+1 = Wt + θtLt(Vt −Wt) (4.5)

where θt is a time dependant value (actually decays over time itself) governing
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how much influence a node’s distance from the BMU has on its learning. θt is
defined as:

θt = e(−dist2/2×SOMradius2) (4.6)

4.3.3.3 Querying the SOM

Each training vector is passed through to the SOM and the weights of all the
nodes in the lattice are representative of the topological relationships present in
the entire training set.
This allows a new feature vector set from an observed speaker to be passed
through to the SOM and the BMU can be queried for each vector. Of course,
this will give no indication of how well the observed feature vector fits as a typ-
ical member within a set but it will provide a means of determining the closest
identity to the observed vector.
A further requirement is that the SOM be continually retrained using retained
feature vector sets of all previously observed identities (from both training and
recorded samples). For each identity, there will then be created a new disperse
group of 2 dimensional pts which can then be compared against the similarly
calculated equivalent of the input vector. Some kind of nearest neighbour com-
parison could then be made and the winning candidate from the identities in
the knowledge base is that with the lowest distortion measurement.

4.3.3.4 Practical Considerations

The unsupervised LBG algorithms requires less overhead and less dependence
upon a continual renewal of the knowledge base. However, the supervised na-
ture of the SOM demands a retained and ever-widening knowledge base as new
feature set observations are presented.
It will be necessary to manage a feature vector ”repository” which is used to
retrain the system with each iteration.
The continual retraining of the SOM would certainly be a time-consuming ac-
tivity but nonetheless unavoidable if the map is to be in any way effective.
However, any inconveniences introduced by complexity of retraining are offset
by the fact that the application of the system is infrequent and allows an ample
period in between use where re-training could be easily implemented.
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4.4 Categorisation

Comparisons and distortion measures will lead to the creation of a similarity
score which should give some idea of how well the observed data fits known
identities. The aim of this section is to describe how the ultimate SPAM or
NON-SPAM designation is made using these results.

4.4.1 Nature of the comparison

The similarity score is given meaning by measuring it against some kind of
threshold. The threshold setting ultimately determines the designation made.
In regard to the comparisons there are two modes of operation [32, 5]:

Closed Set : the collected features from a new observation would be com-
pared against all the previously observed examples, and the one with the highest
matching score is chosen as the identity. The newly observed sample would be
expected to be contained within the group of known samples. As the size of the
known group grows, so does the difficulty of finding an exact match.

Open Set : the observed speaker might not be contained within the known
group. In this case, it is not so much a matter of finding the closest matching
example, it more a case of deciding on if the observed speaker is ”known” with
reference to the others as a whole.

With inspiration from the standard email model a closed set White-list com-
parison was used in tandem with an open set Black-list comparison. The latter
would first determine the close-ness of an observed identity to a SPAM corpus
treated as a single block entity. The former would then determine candidates
for known identities from the observation data - one assumes there ought to be
a strong favourite amongst the candidates if the observed speaker is in fact a
member.
For the White-list the individual average distortion measurements could be nor-
malised since the comparison isn’t checking for membership of the group, instead
its trying to find a possible identity within the group. If the highest normalised
similarity score rises above a set threshold, then the designation of the observed
speakers can be made with reference to the highest scoring model. In other
words, the comparison against the whitelist would serve to discover if there is a
succinct, clear and well matching known candidate which stands out from the
others.
Two conditions could then be said to govern the overall SPAM designation:
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1. The observed identity is sufficiently close to the blacklist set - (the Black-
list condition)

OR

2. there is a known whitelist entry which is sufficiently close to the observed
sample in relation to it peers, and the sample is sufficiently far from the
blacklist group (the White-list condition).

If neither of the above are fulfilled then one assumes that the analysis has been
insufficient for a conclusion to be reached. In effect, such samples would fall
under a ”grey list” category - one simply cant categorise the data.
Some kind of effective strategy to deal with these types of situations has still
to be formulated. Some possible solutions are listed below, though any kind of
automatic designation using these techniques would be left to the user to choose
as their own preferred supplementary option, rather than including them as part
of the main decision making process - this is to acknowledge the premise that
the ”recorded characteristics” used in these methods are not as reliable as the
feature vectors one gains from MFCC/LPCC/PLP methods.

1)Do nothing to a ”grey list” observation. Leave it up to the users to listen
to the recording and determine its validity themselves.
2)Employ some kind of neural net extension to the Whitelist, which includes as
inputs:

AQBNE/QBNE values
Average pitch
Pitch standard Deviation.

The above would be calculated for each observed sample which makes it onto
the White-list. A nearest-neighbour calculation could then give some kind of
clue as to the validity of the caller.
3)Automatically default grey list observations to being blacklisted or whitelisted,
depending on how paranoid the system is to be.

Figure 4.13 presents an overview of the chosen designation process.
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Figure 4.13: Proposed Whitelist/Blacklist Approach

4.4.2 Consequences of designation

The continual success of such a system is dependant on its ability to update
itself. Machine learning implies that the system will not merely rest on the lau-
rels of the training data alone - but will continue to hone its knowledge based
on continuing samples of real life data.
Where an observation sample has been designated ”white” or ”black” it would
be of much use to retain the data and add to the systems knowledge base.
Therefore, if the system has decided that the incoming caller is SPAM, the user
should be at least prompted for the addition of a further codebook to the black-
listed models, based on the extracted feature vectors. In the same way, if an
incoming caller is deemed to match a model on the whitelist, the user should
be at least prompted to add a further calculated codebook of the caller to the
already existing codebooks in the whitelist.
The term ”at least prompted” is used because the system should offer the user
the final say in the matter. Although the system should be capable of automatic
designation and thus update, in the early stages of development, it would be
helpful to add the functionality whereby SPAM messages can be heard back to
the user before they submit any models for future determinations.

There are then three types of data which can be retained and their re-use is
summarised in figure 4.14 and figure 4.15. The former explains what should
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happen if the observed utterance matches a blacklist model (ie, it is within a
threshold range of the open set). The latter explains the procedure when the
observed utterance produces no match in the Blacklist but strongly matches one
of the known speakers in the Whitelist.

Calculated Codebook 

(Designated as SPAM
- match on the Blacklist) 

Blacklist
Directory

black05

black05 black04 black03

black02 black01

Figure 4.14: Consequences of a Blacklist Match
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Figure 4.15: Consequences of a Whitelist Match
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Chapter 5

Implementation Details

5.1 Introduction

The basic practical foundation upon which the project was built will now be
discussed. For a more involved description of the transition from the afore-
mentioned design to the actual working implementation, Appendix ... may be
consulted. The system was built as self contained ”product”, an interactive
solution which allowed for model training and testing against real-time voice
captures and procured test sample audio. The TkSnack interface [34] was cho-
sen in conjunction with the Python programming language (www.python.org).
After brief descriptions of their involvement, this section will conclude with a
presentation of the graphical interface, designed to show the system at work and
how it may be trained and configured.
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5.2 Foundational technologies

5.2.1 TkSnack

Initial trials of the discussed formulae may be easily implemented in MATLAB
(www.mathworks.com). There exist many libraries for this which can read and
write WAV files, perform Fourier transforms, filterbank scale conversions, and
give the ability to view the results of such functions graphically [3]. (Whilst
the viewing of graphical interpretations of the captured speech data and its ma-
nipulations is not critical to the actual working of the system, it gives a most
valuable visual verification that the data concerned is meaningful.)
In a signal processing / laboratory environment this is sufficient, however prac-
tically it is not especially helpful when one prefers an actual system which can
prompt for a response, record the response, perform an analysis on the response
and give a conclusion all automatically. This implies that one needs a handle on
the recording and playback of sound samples, together with instantaneous access
to the data within. It also means that the timing of when different processes
get activated is in accordance with the desired intervals of speech playback and
speech acquisition. (see section 2.4.2.3)

K̊are Sjölander from the department of speech, music and hearing at the Royal
Institute of Technology in Sweden has developed an interface to the Python/Tkinter
programming languages, which fortunately solves this issues in a most helpful
way. His ”Snack Sound Toolkit” provides extensions to the above scripting
languages which ultimately would allow the creation of a standalone Secretary
system - ie something which could be called from the command line and exe-
cuted. The Snack Toolkit, (or ”TkSnack”) is cross platform, has commands
for basic sound handling (recording, playback, file IO, socket IO) and also pro-
vides visualisation functions (waveforms, spectrograms) which can be used on
any digital sound file. It is also completely open source and one existing online
example of its use is the capture of streaming audio from the internet. In general
the main advantages and reasons for choosing this as a foundation to this thesis
project are as follows:

• Sound procurement: TkSnack allows for the capture of sound in many
formats, encodings, and bitrates. (Very useful in replicating real-life speech
channel qualities).
It is also possible to capture audio directly from a known sound source (ie
sound card output) in a computer system. Or it is even possible to take
sound data directly from a socket connection.

• Sound representation: TkSnack is able to maintain its own representation
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of the captured sound in memory by using its Sound() object. Sound()
objects can be created from known files resident on the system, or may be
created as empty and subsequently used as container to hold whatever may
be captured via a connected source. Their contents may be subsequently
written to files on the system.

• Sound manipulation: TkSnack Sound() objects may be queried and ma-
nipulated themselves. It is possible to extract ranges of values from the
Sound() object together with the all important power spectrum directly.
Pitch values may also be obtained in a similar way.

• Sound visualisation: Given any Sound() object it is possible to view a
graphical representation of its waveform and dBPower spectrum on top of
a TKinter canvas window.

• Interface embedding: Because TkSnack is effectively an extension of both
python and Tcl/Tk, the latter may be used in conjunction with it to not
only display evidences of how the system is performing its calculations,
but also to construct a user interface around the main working processing.
This yields a more real life solution and more of a prototype ”feel” about
the whole thing.

• Extensible Assurance: By using TkSnack in conjunction with both Tk
and Python, one therefore has access to all of the provided resources in-
herent to these scripting languages. Not only that, but it should allow
the final solution or at least parts of it to be embedded itself within other
structures and projects (for example a Python software driven IP tele-
phone)

Considering these given attributes it was decided that TkSnack provided the
best available entrance point to the implementation of the project.

5.2.2 Python

The fact that TkSnack is essentially provided as an extension to Python and
that the author had previous experience with it as a scripting language made
its choice an inevitability. Python whilst offering extensive standard libraries
further provides threading and object orientated functionality making it an at-
tractive and widespread language in the realm of software development. It also
offers strong support for integration with other programming languages and
platforms.
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5.3 Programming the Interface

TkSnack could be developed in conjunction with both python and tcl/tk. Aside
from the obvious benefits of the audio processing toolkit, there existed an exten-
sive graphical toolkit for the display of various functions and operations together
with the basic primitives for building a windows-style interface. The develop-
ment of this interface for the project is therefore not mission critical so to speak,
in that the basic building blocks of the timing, feature extraction and decision
making are altered. However, the use of such graphics helps to augment the
system by:

• providing a tangible, visual demonstration of how it should work overall

• illustrating the interaction between the calling and called party and prompt-
ing the latter appropriately.

• providing a means of visual verification, that the data is actually being
captured in a sensible way. The mathematics used in this project, when
considered as a whole paints a very complicated picture and is virtually
impossible to make sense of or even validate, given merely the numbers
themselves.

5.3.1 General Operation

Running the Secretary.py file commences the system which immediately begins
the challenge to the would-be caller. The corresponding interface window is
shown in figure 5.1. Interestingly the flashing of the secretary’s eyes in the
main interface window indicates that sound data is actually being recorded,
even during the greeting. This continues until the greeting is finished and the
response listening period begins (figure 5.2). The eyes remain flashing until
the response gathering time window terminates (incidentally, users may alter
this as they wish). The system then performs its feature extraction and deci-
sion making procedures as it enters a thinking state (figure 5.3). Once it has
come to a decision there are two scenarios which may present themselves.

1) The secretary has determined that the captured sample sound is SPAM.
2) The captured sample audio does not pertain to SPAM and in fact a sugges-
tion for who it may be is given.
In both cases, the main secretary window expands to present two further options
to the user:
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Figure 5.1: Greeting/Challenge Window

Figure 5.2: Caller Response Capture Window
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Figure 5.3: Data Processing Window

• Submit Model : This commences the process of actually writing the code-
book (which the secretary has just extracted and used in comparisons)
to a new model file in the appropriate model directory. User parameters
(in particular the feature extraction method used) determine the exact
directory but not before the user has been prompted further to ascertain
whether the new model should be added to the Whitelist or Blacklist and
what identity it should be given (shown in figure 5.4). In the above it

Figure 5.4: Submitting a new speaker model

can be seen clearly that the user has 3 different naming options:

1. the suggestion which the system has come up with after the compar-
isons

2. an already existing model (listed) (the user may wish to update a
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certain identity).

3. a new identity, the naming of which is offered to the user.

• Show the Graphics of the captured Sound. (see next section - ”Graphics
and Visualisation”)

• Close the program.

If the captured sound data has been determined as SPAM a popup alert appears
immediately offering the user more options (figure 5.5).

Figure 5.5: Spam Prompt

• Another Submit Model Query. In this case, if the user chooses ”Yes”
then the extracted codebook model is added to the designated blacklist
directory (which accords to the feature extraction method used).

• Playback all of the captured sound from the calling party. This allows a
further user verification step.

5.3.2 Graphics and Visualisation

Displaying the findings of the feature extraction and decision making is not
aided by the graphical display. In fact, it plays no part in any of the real pro-
cessing of the system. It just regurgitates what has been extracted from the
initial sound objects in a more tangible and human readable way.
The captured sound information can be displayed on a larger canvas window
upon the activation of the ”Show Graphics” button from the main secretary
interface:

DIAGRAM TO BE INSERTED HERE
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The graphics window contains the following:

• A Spectrogram of the period of the caller’s speech during the greeting
phase.

• A Spectrogram of the period of the caller’s speech during the response
phase.

• A plot of the power spectrum of a certain window (including any filtered
power spectrums carried out).

• A plot of the dB power spectrum of a certain window.

• A plot of the normalised coefficients extracted from the window

• Statistical Information about the window concerned and the overall cap-
tured response.

• Buttons to show the noisy frames of the response capture.

By including both a spectrogram for the vocal activity of the calling party both
during the greeting and response phases it is possible to visually observe just
how much (or how little) the calling party says.
The buttons at the bottom of the screen are useful when one wishes to see
which parts of the response speech are being included in the normalisation and
subsequent codeword creation (since noisy frames are effectively discarded from
this process). Windows estimated as noisy are effectively blanked out from the
captured response spectrogram, on the display. This also provides the user with
some kind of visual feedback on how well the noise estimation settings are work-
ing.
The caller response spectrogram also has an event handler attached to it whereby
a mouse click results in the x coordinate being used to determine a window from
the entire sound.(the x coordinate is effectively a fraction of the spectrogram
width. The window from the collection of frames corresponding to this x po-
sition in the graph is then set as the window of interest). In other words, the
user clicks on the spectrogram and the corresponding window in the sequence
lights up and immediately the power-spectrums and extracted coefficients are
displayed on separate regions of the canvas. A section of the statistical infor-
mation display also updates with respect to the selected window.
This is only achieved by keeping track of all the frames created with the win-
dowing process, and also their respective filtered equivalents, gleaned coefficients
and statistics. This is all merely a case of overall record-keeping during the fea-
ture extraction process. Once feature extraction is performed then, all these
collections of windowed data may be sent straight to the graphics functions for
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this very purpose.
The same is true for the noise display upon the spectrogram. The noise mask
array from section 3.5.2 is calculated in advance and then is passed on to the
implementation of the graphics.

5.3.3 Whitelist/Blacklist Management

When speaker models are compared against existing models from the systems
knowledge base, it is imperative that the two parties in any comparison were
created using the same parameter settings. Different settings may be used in the
calculation of feature vectors, different methods may be used to calculate feature
vectors. Different numbers of codewords may be used to represent the clusters of
a model. Different settings may be used to estimate noise. Therefore, there must
be consistency across the entire range of speaker models under consideration.
The process by which the models were arrived at must be identical if they are
to be compared in a fair manner.
An aim of the project in general was to see how different feature extraction
techniques might fare in comparison to one another. Therefore, the only variable
which was allowed to change with the speaker modeling was the actual feature
extraction method itself. Of course, a model created from the PLP coefficients
of a certain sound sample is going to be different from an MFCC model created
from the same source. Therefore, provision must be made to store and handle
models according to their feature extraction technique. It would be beneficial
that for a given captured sound sample, models are created independently using
the three feature extraction techniques.
It then follows that when a captured sound sample is analysed, the chosen
feature extraction technique should be kept in mind when deciding with which
portion of the knowledge base to perform comparisons - ie only those existing
models created in the same fashion.
It was decided that models be stored in a simple directory structure according
to how the model was fabricated and also whether the model itself is a Whitelist
or Blacklist model. The chosen structure is best described in figure 5.6.

5.3.3.1 Codebook Model structure

Each model is stored as a basic file. With the Whitelist models the files are
merely named after the identity of one who’s voice has been recorded. More
than one model may be created of the same person. This is totally acceptable
so long as the name of the model filename is unique. In such a case, multiple
models of the same person could have numbers appended to their titles, for
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models

white� black

MFCC� LPCCPLP MFCC� LPCCPLP

Models named after identities Models named "black" 
followed by a unique 
number

Figure 5.6: Blacklist/Whitelist directory structure

example, dave1, dave2, etc....
The Blacklist by its very nature is an open set problem - the identity of the
nearest model is not important; what is important is the measure of how well
the sampled speaker fits into the group as a whole. Therefore the naming of the
Blacklist models is an automated process, done entirely arbitrarily.
The structure of any model however is entirely consistent across the whole sys-
tem. Any model will consist of K codewords each of length N (where N is the
size of an extracted feature vector). Within the model files, each individual
feature vector value is a floating point number separated from its neighbours by
a new line and each codeword is separated by a single ”.” character on a new
line. The end of file marker is simply ”END” on a new line. This simplifies the
task of reading from and writing to model files. This structure is exemplified
in figure 5.7. This all means that when the secretary system needs to become
aware of existing models, it merely needs to go to the appropriate model di-
rectory based on the chosen feature extraction method and whether it is the
Whitelist or Blacklist. It then can read from these model files, populating its
own codebooks by reading from the model files in accordance with their given
structures.
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.
0.3456...
0.3265...

0.9321...
.
0.5246...
0.7632...

first codeword

codewords separated by "."

K codewords

END Denotes end of codebook

N Coefficient
Points 

Figure 5.7: Example Codebook Model File
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Chapter 6

Testing

6.1 Introduction

The system would only give out useful responses if was trained with the voices of
people. A small number of trained samples offered the advantage of a low time
cost in terms of training, and for those who’s identities were already trained
to the system, correct designation would be probable given the relatively high
inter-speaker variation present in smaller sets. A large training group would
take longer to train but would afford the system greater selectiveness in terms
of the number of people it could recognise - even though the inter-speaker vari-
ation reduces as the training group enlargens. The final number was also partly
determined by availability and willingness of individuals to take part. Initially
21 people agreed to offer their voices as sample data and it was generally though
that this would provide a basis from which reasonable deductions could be made.
In terms of the training data itself, the 21 identities said their own name 10
times. The microphone on a Dell Axim X50 Pocket PC was used to record each
individual. (The author frequently uses this hand-held device with the VOIP
application Skype - with good results due to its quietness and lack of hard disk
noise). This allowed the convenient procurement of voice samples in WAV form
and afforded portability which enabled as many as 21 voices to be captured.
Once the voices were obtained, each was resampled to 8Khz, the target format
of the system. Extracting each utterance for each voice then allowed speaker
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models to be created using the methods discussed in chapters 3 and 4.
The secretary system provided its own interface to train new models into the
system. The user could train more than one WAV sample at once as figure
6.1 demonstrates. The user inserts each WAV sample to be trained into the
”to train” folder and the trainModel.py class is called which provides the in-
terface. The fact that the speakers name was chosen as the text was because

Figure 6.1: The Training Window

it was uncomplicated and offered something reasonably individualistic for each
speaker to say. Although the system should support text-in-dependency, the
quoting of one’s own name provided an inherent individualism.
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6.2 Test 1 - Optimal Configuration

More than one type of model was created for each voice utterance using the
different feature extraction methods in conjunction with different codebook
lengths. PLP, Mel Frequency and Linear Predictive coefficients were extracted
from each utterance and then moulded into models with codebook lengths of
10, 15 and 20. This gave 9 speaker model permutations.
The first set of tests was design to ascertain the strength of each of these 9
configurations in regard to merely identifying a speaker from the system. Those
permutations which performed badly in this way could be discarded thus saving
time for future testing with the effective configurations.
Each of the 21 identities was tested by selecting at random 2 models from each,
removing those from the systems knowledge base and then observing the sys-
tems ability to identify the speaker based on the remaining models. Each time
a test was run, the system would make a decision as to the identity of the
sample based on the AQD / similarity scores described in Section 4.2. Repeat-
ing this for each Feature Extraction/Codebook Length configuration provided
the results found in figures C.1 to C.9 in Appendix C. A summary of these
results is shown in figure 6.2. It was clear to see that the LPCC feature extrac-

Figure 6.2: Summary of different codebook lengths

tion was largely ineffective regardless of whatever codebook length was chosen.
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Both MFCC and PLP performed better with MFCC improving as the code-
book length increased. Changes in codebook length were less influential with
the PLP coefficients. Therefore, for the remaining tests, LPCC was discarded as
a feature extraction method. It was decided that the MFCC and PLP methods
should be retained with codebook lengths of 20 and 10 respectively.

Furthermore, by analysing these two configurations in greater detail it was pos-
sible to obtain a picture of how well each performed in regard to correct vs.
incorrect designations. By creating a histogram of the performance of each (fig-
ures 6.3 and 6.3), it was possible to make an estimation of good threshold values
for later tests. The MFCC configuration would appear to provide a more clear

Figure 6.3: MFCC performance with 20 codewords

cut scenario when determining a reliable threshold for designations. From figure
6.3 threshold values of 1.23 (standard value) and 1.3 (pessimistic) were chosen
for future tests.
The PLP configuration was less clear cut in this respect, and threshold values
of 0.95 (standard) and 1.05 (pessimistic) were settled upon, though with less
confidence.
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Figure 6.4: PLP performance with 10 codewords

6.3 Test 2 - Blacklist/Whitelist Trials

In order to mirror the intended whitelist / blacklist operation detailed in sec-
tion 4.4 the stored identities were then split arbitrarily into two groups. Half
of the identities were designated as the blacklist contents whilst the remainder
were placed on a whitelist. The system was tested again, using the two retained
configurations and by using the model removal principle employed previously.
The system was monitored for its ability to designate utterances based on its
now split knowledge base. The results of this may be viewed in figures C.10
and C.11 in Appendix C and are summarized in the following tables. The afore-
mentioned standard and pessimistic threshold values were used in each instance.

STANDARD
THRESHOLD

(PLP / 10)

Percentage Description
4.55 Incorrectly Blacklisted
18.18 Incorrectly Whitelisted
9.09 Grey
68.18 Correct
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PESSIMISTIC
THRESHOLD

(PLP / 10)

Percentage Description
18.18 Incorrectly Blacklisted
18.18 Incorrectly Whitelisted
9.09 Grey
54.55 Correct

STANDARD
THRESHOLD

(MFCC / 20)

Percentage Description
22.73 Incorrectly Blacklisted
4.55 Incorrectly Whitelisted
13.64 Grey
59.09 Correct

PESSIMISTIC
THRESHOLD

(MFCC / 20)

Percentage Description
77.27 Incorrectly Blacklisted
4.55 Incorrectly Whitelisted
9.09 Grey
9.09 Correct

6.4 Test 3 - Spoofing

In a bid to see how well the system performed purely in terms of its resilience to
text-in-dependency, 3 of the blacklisted speakers were recorded saying each of
the names of the other whitelisted participants, twice. The MFCC/20 codeword
and PLP/10 codeword configurations were retained as before. The standard
threshold values were used, after the experiences of Test 2. The results (figures
C.12 to C.17, Appendix C) are summarized in figure 6.5.

6.5 Test 4 - Unknown Speakers

The previous tests demonstrate how the system copes with identities which are
known to it. However, they demonstrate nothing in relation to how the system
reacts to new identities with whom no contact has been made in the past. In an
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Figure 6.5: Spoofing results

effort to learn more in this regard, 3 new identities were presented to the system.
Each identity was then tested 4 times with each test run resulting in Blacklist
and Whitelist similarity score and corresponding suggested identities. Since the
standard threshold values were retained, each test also meant that each new
speaker was given a designation. Figure 6.6 shows the collected results.

6.6 Test Case limitations

In order to obtain as many training samples as was possible, the actual recording
could not occur under laboratory conditions. Often, significant background
noise was present depending on where the sample was taken and it was notable
during the testing that those samples which contained less noise, were much
more easily identified on the basis of their peers.
Unfortunately some of the training identities whose voice samples were recorded
under noisier conditions, simply did not train. The implemented clustering
methods appeared to become stuck in an infinite loop. It was assumed that this
was due to the noise in the sample which masked the extracted feature vectors
to the extent that it was not possible to create 10, 15 or 20 cluster centroids.
Certainly the problem became more prevalent with the noisier samples as the
codebook length increased. The cleaner identity samples did not have this
problem in training.
All of the training and test samples used in the project were recorded using
the same microphone setup. Had time allowed, an examination of the systems
performance using different recording equipment would have been a worthwhile
pursuit.
But generally, the test scheme described in section 6.2 seemed to be the only
practical one, given that voice samples are much more easily captured than
human subjects (in person!).
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Figure 6.6: Test Results - Tests with unknown identities
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6.7 Test Conclusions

Test 1 demonstrated that with low bandwidth audio samples, MFCCs and PLP
Coefficients are reasonably effective at verifying the identity of a known speaker.
LPCCs grossly underperformed. Increasing the codebook length was beneficial
when using MFCCs but marginally detrimental with PLP coefficients.
Test 2 showed that MFCCs had the capacity of performing as well as PLP
Coefficients when a Blacklist / Whitelist scenario was created. However, the
former is much more sensitive to threshold settings - when the more pessimistic
setting was used around half of all samples became re-designated from being
correct to blacklisted. The PLP method appeared to be more stable in this
regard and maintained a correct designation success rate of 54-68% (whereas
MFCCs at best was 59%).
Test 3 demonstrated one advantage of using MFCCs over PLP, namely that it
was less easily fooled by spoofing callers. Several additional interesting things
came out of test 3. Upon closer inspection of the results in in Appendix C,
it is apparent that each time the blacklisted identity spoke a different name,
the closest name on the whitelist remained fairly constant. Even though it
is of course incorrect, there was some consistency. In addition, from all the
names on the blacklist, more often than not, the correct once was chosen as
the closest from that set. The value of placing the blacklist check before the
whitelist check (see section ??) was demonstrated also. Often the whitelist score
was qualitatively better than the blacklist score, even though the blacklist score
actually referred to the test model.
The results of Test 4 were largely inconclusive. Really the only conclusion
was that the methods used in this project, given the context could not procure
models which had enough inter-variability from which accurate designations
could be reached.

6.7.1 General Conclusions

The importance of obtaining clean training samples could not be underesti-
mated. The ease of which these could be identified in relation to the more noisy
samples emphasised this. It gave cause for satisfaction that the feature extrac-
tion mechanisms on their own could reduce the voice data into an effective and
compressed acoustical representation. The success ratings of MFCC and PLP
in relation to speaker identification in this project show that they are viable fea-
ture extraction options for lower bandwidth applications like VOIP telephony.
The results suggest that it is possible to construct such a voice spam filter, akin
to a normal email filter. However, on the basis of the tested system, the benefits
are limited and by no means guarantee as effective an operation as the email
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equivalent. The feature extraction techniques can produce feature sets which
are robust to an extent but are still prone to mis-designation of both SPAM
and non-SPAM identities, and have great difficulties when unknown identities
present themselves.
It would appear that the MFCC / 20 codeword combination was better employed
in Blacklist identification - it performed better at closed-set threshold distance
based designations. The PLP / 10 codeword configuration on the other hand
appeared more effective at open-set comparisons between known identities. In
each of these, the setting of threshold values is highly influential and should be
reviewed as any such system adds to its knowledge base. Some consideration
could be given towards decision making based on aggregated scores of a group
of most similar identities.

Whilst not directly examined through the other test initiatives, it was noticed
that when the speaker model under consideration was included in the knowledge
base, it nearly always produced the correct identification from the system and
in a most unambiguous way - the resultant similarity score by doing this was
always far out on its own in terms of closeness. This apparent ”resonance” when
an exact known sample is observed provides hope in countering more intelligent
spammers who might try to artificially create responses to the challenge this
system gives out. If a spammer sends out crafted responses from a database
of his own examples - they could probably be easily detected if the secretary
system has heard them before.
But herein lies the problem for the secretary model - that is the natural vari-
ability of credible, cognisant callers. The tests run here show that whilst an
individual may be easily recognised in relation to others, difficulties occur when
the number of speakers in the knowledge base becomes larger. There are also
problems when unknown speakers try to pass through the system. Much there-
fore depends on the quality and selectiveness of the training phase itself. Ad-
mittedly, the methods for designation were limited to rather coarse thresholding
but their implementation was all that was possible in the time provided. Future
improvements could undoubtedly include methods to weight observed identities
in relation to their similarity to both whitelisted and blacklisted models (like
those used in the Bayesian filtering of email).
Possible use of pitch values in tandem with the other techniques may enhance
the system. Such information was available through the TkSnack interface but
was not used due to time restraints. They would certainly aid situations where
a male speaker is mis-identified as female or vice versa.
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Review and Conclusions

7.1 Overall Conclusions

It was felt that the experiments performed were fraught with subjectivity. The
testing part of the project was probably of more use in seeing the objective
merits of the feature extraction techniques in relation to each other. It was a
disappointment that the Self Organising Maps could not be incorporated into
the system, as it would have provided an interesting counter procedure to the
Vector Quantization approach of Pattern Recognition.
The full implementation of the Weiner Filter as a counter measure to noise was
also not possible due to time. In the future this could be used in both the train-
ing procedure to improve noisy samples or just prior to the feature extraction
stage to ensure a higher quality spectral representation is available.
Somewhat bewildering was the sheer scope for which parameters could be tweaked
and tuned, the author really felt forced to just choose arbitrarily on a number
of occasions. The inherent variability of voice data, recording conditions and
recording equipment further added to the subjectivity.
The choosing of test scenarios was also limited to a certain context and could
not possibly cope with the multitude of likely scenarios which could be presented
to such a system in practice.

On the positive side, it was clear that the implemented techniques functioned
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adequately as a whole. They didn’t provide much evidence that a robust solu-
tion to VOIP spam was in the offing, at least not in the same way that email
filters function today. They did however show that some intelligent verification
of known entities was possible. However, great care was needed in relation to
the setting of threshold values. This is again highly dependent upon the nature
of the model knowledge base.
The challenges which remain were demonstrated well in the testing section. Per-
haps the main one is coaxing such a system into a way of operation where it
is able to weigh up positive and negative evidence and make a better informed
decision. There must be better methods available for categorisation than those
used in this project and had time allowed. This would certainly have been a
primary area for improvement.

7.2 Personal Reflections

The project as a whole provided a most interesting insight into Voice Recogni-
tion and Artificial Intelligence technologies. It certainly built upon the author’s
experience of signal processing and pattern matching techniques. The biggest
challenge the project presented was really the sense that it was being built from
the ground up - related material was not especially easily available. Much time
as required just to inform oneself on the subject matter so that subsequent ex-
periments were at all possible.
Once the learning material had been found, the need to digest complicated math-
ematics and then make an informed judgment on the direction of the solution
was crucial.



Appendix A

VOIP Context

A.1 VOIP Technology Overview

The contents of this Appendix are a summary of existing VOIP technologies
drawn from [25] and [16].

A.1.1 SIP - Session Initiation Protocol

Probably the most simple variant of VOIP is the SIP protocol which is an
application layer protocol using basic textual commands. It is possible to run
it over both UDP and TCP, however the former is more often used.
SIP endeavours to make use of the following ideals:

• User Location: Association of end users with an end point which is
identified via technical parameters (eg. IP address)

• User Availability: Can the end user be reached and are they willing to
participate in a conversation?

• Endpoint capabilities: Determination of media types and system func-
tions which can be used with them



106 VOIP Context

• Session setup: The prospect of being able to call a remote device and
be able to set up a session at both points.

• Session Management: Session parameters could be managed, other
services invoked, and sessions terminated or transferred.

From an overall Perspective the system consists of a SIP Network server whose
job is to perform name resolution. It may consist of the following 3 components:

1. Proxy Server - Acting as a kind of firewall with security and authenti-
cation capability, the job of the proxy server is to manage SIP requests
from an internal network and pass them onto other proxy servers through
which internetworked SIP communication can take place.

2. Redirect Server - Simply redirects users to help them find the sought
after address.

3. Registrar Server - Registers users and maintains an internal directory
of telephone numbers and other internal addresses mapped to actual IP
addresses.

The call setup uses a three way handshake - The caller will send an INVITE
request to try and setup a connection. Within the INVITE message there will
exist a ”To:” field which will identify the callee, usually in the form of an email
address. The request arrives at the SIP network server which, through its reg-
istrar component will try to resolve the provided identifier to an internal IP
address.
The registrar server may not be up to date with its mappings. In which case
the INVITE message is passed on to the mapped IP regardless, but the actual
recipient is able to reply with a transitive response demanding some form of
redirect to the appropriate recipient. This helps the registrar server maintain
its mappings and thereafter, the INVITE message is resent to the correct in-
ternal recipient. The recipient is then able to send an indirect response via
the proxy to the initial caller, signifying that the request for correspondence
has been accepted (or rejected). If the invitation has been accepted, then a
final confirmation from the caller to the callee is sent. A direct channel is then
opened, independent of the proxy and audio communication can flow back and
forth within. Figures A.2, A.3 and A.4 provide an illustration of what is
actually happening.

The advantages of SIP over H.323 are in its simplicity and efficiency. The
setting up of calls is a less arduous process, therefore it should be easier to pin-
point areas of interest for SPAM detection techniques. Unfortunately because
PSTN networks have become more complicated, SIP lacks many of the features
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Figure A.1: SIP Proxy Network:Overview

Figure A.2: SIP Network: Calling Party Invite
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Figure A.3: SIP Network: Called Party Acknowledgement

Figure A.4: SIP Network: RTP Protocol Established
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needed to incorporate it. Therefore, whilst SIP is becoming more and more
popular due to its ease of use, H.323 is much more widespread because it has
been more easily adapted for PSTN networks.
Thus SIP is more likely to gain popularity when considering communication
between computers.

A.1.1.1 Implementation Details

Endpoints are typically identified by a URL or URI for example

sip : mike@192.34.53.4

There are many possible types of SIP addresses but generally they look sim-
ilar to web addresses, only that the scheme is either ”sip:” or ”sips:” (a secure
variant) followed by a hostname. The hostname can be either in dotted IP for-
mat or its DNS name equivalent.
SIP uses a kind of client/server model where the caller becomes the client and
callee the server. Communication messages between the two are seen as trans-
actions where the client makes a request from the server and then receives an
acknowledgement describing in what way the request was processed.

A basic example of a SIP call is shown in figure A.5. The contact between

Figure A.5: SIP Dialogue Communication Pattern

the two parties extending over the period of time between a call is requested
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and the same call is cleared is called a SIP dialogue. Each dialogue has three
Transaction phases.

1. In the first transaction phase, the caller tries to establish a connection with
the callee. Once the callee receives the INVITE request a 180 response
message is sent back from the callee to signify that the INVITE message
has arrived and that the caller must now wait for a further response from
the callee, signifying if the call is to be accepted. A 200 OK message is
subsequently sent if the call is to be accepted. This is the end of the First
Transaction Phase and the caller should now be aware of whether or not
their request for a conversation has arrived and the callee has accepted it.

2. The second transaction is a more simple affair and consists only of an
ACK message from the caller back to the callee to signify that the caller
acknowledges the wishes of the callee and is ready to send the media, if
the call is to be accepted.
A Media Session is then set up where the voice conversation is sent back
and forth between the two parties.

3. This ends (and the third transaction phase begins) when one of the parties
sends a BYE message which means the call is to be terminated. The other
party on receipt of the BYE message then returns a response message to
acknowledge the BYE and the call is cleared.

None of this of course takes into account that messages may be lost in transit
because it is assumed that SIP is using the UDP protocol for transport. How-
ever, this perhaps goes beyond the scope of interest since the purpose here is
not to explain in full the technical permutations of the system - rather perform
an analysis of the architecture involved from the point of view of the recipient,
since it is here where any SPAM filtering of any kind will occur.

A.1.1.2 The Invite Message

As well as alerting the callee to the presence of a caller, the INVITE message
contains information which will allow the callee to see what media capabilities
the caller has. A typical INVITE message might resemble the following:

INVITE sip : john@192.190.132.31SIP
V ia : SIP/2.0/UDP10.11.12.13; branch= z9hG4bK776asdhds
Max− Forwards : 70
To : ”John” < sip : john@192.190.132.31>
From :: ”Mark” < sip : mark@10.11.12.13>; tag = 1928301774
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Call − ID : a84b4c76e66710@10.11.12.13
Cseq : 314159 INVITE
Content− Type : application/sdp
Content− Length : 228

v = 0
o = mark11441414112214INIP410.11.12.13
s = −
c = INIP410.11.12.13
t = 00
m = audio49170RTP/AVP0
a = rtpmap : 0PCMU/8000
m = video51372RTP/AVP31
a = rtpmap : 31H261/90000
m = video53000RTP/AVP32
a = rtpmap : 32MPV/90000

As can be seen, the message is split into two parts - Firstly the typical mandatory
SIP headers are listed, then there is a blank line followed by a media descrip-
tion using the Session Description Protocol (SDP) which is used to describe the
media capabilities of the sender.

The first line of the INVITE message indicates the type of message (in this
case, INVITE) followed by a URI identifying the user to which the message is
addressed. Finally comes the SIP version being used.

The second line is the ”Via” header which (for the purposes of this example) is
used to signify the address to which responses should be sent. If the message
was sent directly from the client to the server, then this will be the same as the
actual address of the sender. However, requests like this may be sent via one or
more proxies. In which case the address of the most recent proxy will be given.
When SIP proxies are used, each proxy adds its own via header to the received
request before forwarding it on. This allows the route of the SIP request to be
traced.

The third line is related to the second in that it contains the maximum number
of times a message can pass through a proxy on its way to the destination. This
is useful to prevent routing loops.

The fourth line contains the From: header which identifies the caller. It is quite
similar to an email address format with a display name given in quotes and the
actual email address/URI enclosed within ”<” and ”>”. If no display name is
to be used then the ”<” and ”>” are not required. Alternatively, the sender can
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also used the keyword ”Anonymous” if they wish to remain just that. There
is also a mandatory Tag identifier which identifies the relevant existing dialogue.

The fifth line is the To: field which identified the party to whom the request
is being sent. It uses the same syntax as the From: field but without the Tag
identifier.

The sixth line is the CallID header which is a globally unique identification
value for that particular call. Line seven is the CSeq value which is a sequenc-
ing value used to match the Request and Responses. (this is important due to
the unreliability of the underlying UDP transport layer and the consequent non
consecutiveness this may induce.).

Finally, the Content Type and Content Length headers follow, which describe
the type of content the SIP message is carrying (in this case SDP data) and its
size in bytes.

The SDP content is in human readable form and defines the media carrying
capabilities for the whole session. It always begins with a ”v=” part (which
defines the SDP version) and is followed by various other global fields. Finally
there are several media description sections (beginning with ”m=”).
The following table describes the meaning of each field, plus several others of
interest.

Session
Level Field
Types

Description Example Format

v = Protocol Version ”v = 0”
o = Owner/Session identifier o=<username><sessionid>

<version><networktype>
<address type><address>

s = Session Name s=<session name>
c = Connection Information c=<free text description>
t = Time the session is active t=<starttime><endtime>
e = Email address e=<email address>
p = Phone Number p=<phone number>
b = Bandwidth Information b=<modifier>

<bandwidth(kbits)>
z = Time Zone Adjustments
u = URI Description u=<URI>
m = Media Name m=<media><port>
(zero or
more)

<transport><formatlist>
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Media Description Description
Level Field Types

i = Media Title
c = Connection Information
b = Bandwidth Information
k = Encryption Key
a = Other Media Attribute

From the header fields, the To:, From:, Via and Call Id tags together iden-
tify a particular dialogue. They are sent with the initial INVITE message and
subsequent Server/callee Responses, ACK and BYE messages. In general the
format of each SIP message passed back and forth between two parties does
not really change that much. The 200 OK message sent from the callee back
to the caller will be nearly the same, other than having the From: and To:
fields reversed and the SDP section will contain the callee’s capabilities. The
ACK will be almost identical to the INVITE apart from having no SDP pay-
load and being labelled ”ACK” rather than ”INVITE” in the appropriate places.

The BYE message, which signals the termination of the media correspondence,
will also contain the same headers as the INVITE and ACK, but of course the
From: and To: fields will depend on which party has taken the decision to end
the call.

Perhaps of particular interest here is how does the callee reject a call? For
example, should any SPAM detection system glean from the INVITE that the
calling party is undesirable, what are the options for dismissing the attempted
call?

When a call is accepted, the callee returns a ”200 OK” response back to the
caller. However, if something should appear to be amiss or suspicious about
the INVITE message, there are a number of other responses which are possible
and ensure that the session goes no further. Similar to other high level proto-
cols, a 3xx response may be given which indicates some kind of re-direction (in
which there would be included an alternative address if the callee had moved
temporarily or permanently or if a PROXY needed to be used). A 4xx response
notifies an error on the part of the client (caller) and some examples are:

400 BAD REQUEST
401 UNAUTHORIZED
403 FORBIDDEN
404 NOT FOUND
406 NOT ACCEPTABLE
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410 GONE
485 AMBIGUOUS
486 BUSY HERE

It would really be up to the callee’s discretion, which of the above should be
used as a SPAM detected response.

A.1.1.3 Concluding Remarks

Due to the simplicity of SIP, any analysis of headers for suspicious contents
can really only be done in 2 places - the INVITE message and the ACK. Both
of these should be very similar, with the INVITE containing the SDP payload
describing the media session options. These media options may give clues as to
SPAM characteristics, particularly after some learning by any filter.
It is likely that many of previously mentioned textual techniques used for Text
Spam may be implemented with SIP, because of the textual nature of the SIP
messages. It would be easy to carry across many of the header checking mech-
anisms, together with various keyword searches, blacklists and whitelists.

Aside from this, the only other option is to filter based on content of the stream
between the two parties. This will take place through the ports and protocols
(for voice conversation, likely RTP and RTCP) included in the SDP description.
Therefore, the contents can begin to be analysed as soon as RTP packets are
received after the second transaction phase is complete.

A.1.2 H.323

An earlier implementation than SIP, the ITU-T standard is more of an effort
towards transmission of multimedia in general as opposed to just a voice conver-
sation. Around 95% of all VOIP messages at the moment use this protocol and
most VOIP phones and other equipment support H.323. The standard specifies:

• terminals

• Gateways between a H.323 network and other voice networks.

• Gatekeepers which are the control servers of the H.323 network. They
take care of registration and admission procedures.
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The Standard includes the use of the Real-Time Transport Protocol and Real-
time Control Protocol (RTP and RTCP respectively). These allow for the in-
clusion of timestamps and sequence numbers together with the other standard
TCP/IP provisions so that jitter and packet loss can be easily detected.

Its latest version (5) is the most reliable, and flexible yet, although there is
no support for QoS. The single biggest difference between H.323 and SIP is,
where SIP uses a textual approach, the H.323 standard is implemented using
the ASN.1 (Abstract, Syntax, Notation One) scheme which is a binary protocol.
Furthermore, where SIP is an application level protocol in its own right (similar
to HTTP ), H.323 is more of a suite of other protocols each fulfilling a different
purpose (as shown in figure A.6). Those which are relevant to this project are:

Figure A.6: H.323 Block Diagram (www.iec.org)

• H.225.0 (Q.931) - This is the part which controls call signalling and
setup. (The Q.931 standard used here is also used in ISDN call signalling.).

• H.225.0 (RAS) - The Registration, Admission and Status channel is used
for communication with a gatekeeper. Through it is passed registration,
admission, address resolution and status messages.
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• H.245 - Known as Conference Control, this channel is the means through
which the actual multimedia is passed from one host to the next. As has
been mentioned, H.323 is used to transfer multimedia of all kinds, however
this thesis is only concerned with the transfer of vocal communication via
this channel. The H.225 protocol negotiates the call setup, and H.245
negotiates the communication transfer which includes the setting up of
the vocal compression to be used.

These protocols may be used together in different modes, depending on the
application. As with the proxy server in SIP, the gatekeeper is performing a
kind of intermediary role, aiding the setting up of calls and registering of users.
However, the extent of its involvement is determined by the chosen mode.
Direct Signalling Mode dictates that only the H.225.0 RAS messages are passed
through the gatekeeper, while everything else is passed directly back and forth
between caller and callee.
Gatekeeper routed call signalling mode means that only the H.245 messages are
passed directly between caller and callee (more similar to SIP).
Gatekeeper Routed H.245 Control Mode goes further in that the only thing which
is passed directly between the two terminal end points is the media stream with
H.245 control messages going through the gatekeeper.
With Direct Signalling Mode, load is taken off the gatekeepers as they only play
the minimal role of call admission. In other words, they have little part to play
and are largely ignorant of the connected communications. For the purposes of
this project, this would therefore suggest that SPAM would have to be effec-
tively handled at the client rather than at the gatekeeper. It could be assumed
that whilst the gatekeeper might have some control over who is allowed to reg-
ister through it, this is really of little protection. Some kind of blacklist could
be used at this point, but anything more than that would possibly be of little
use and more of an encumbrance upon users on the network.
With Gatekeeper Routed Call Signalling, the gatekeeper could perhaps become
more involved because of its capacity to handle the call signalling messages.
Information could definitely be gleaned as to not only the identification of the
calling party but of calling habits and behaviour over a period of time.
The Gatekeeper Routed H.245 Control Mode would perhaps add slightly more
extended opportunities for filtering at the gatekeeper dues to the gatekeeper’s
ability to monitor connection and media usage stats with this mode.
However, as has been said it would probably be more unhelpful to use a one-size
fits all SPAM detection approach due to varying usage by registered users.
Therefore, probably the most effective positions in the network to have the
SPAM detection mechanisms would be at the client.

A general overview of a H.323 system is shown below in figure A.7. As with the
SIP example, one is only concerned with those components and singles withing
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Figure A.7: H.323 Overview with selected region of interest (solinet.com)
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the red box. Client side filtering is what is being developed here so background
knowledge of the entire structure may be useful but not always relevant.
As can be seen, with the Direct Signalling Mode, the responsibility of dealing
with SPAM is moved away from the Registering Authorities, since the setting
up of the call and transferral of information happens directly between caller
and callee. Therefore effective white-listing/black-listing would need to be per-
formed on the client’s own system, together with content filtering.

A.1.2.1 Implementation

An example of an H.323 call will now be introduced. Two users wish to es-
tablish a voice call from two separate locations, each with fixed and known IP
addresses. The communication will require 2 TCP channels between the two
terminal endpoints. One is for call-setup and the other for media control and
capability exchange.
The initial call-setup messages are sent over the first TCP connection between
the caller and a port at the callee endpoint (the standard port is 1720). Over
this connection flows all the H.255.0 Q.931 call-signalling messages.
Once this phase is complete the second connection is opened carrying H.245
messages which deal with the multimedia capabilities of both sides. This phase
also deals with the parties establishing separate logical channels through which
the audio/video streams are to flow.

Part 1 - Establishing the connection: In figure A.8, Steve wishes to call
Brian. He knows Brian’s IP address and sends an H.225 SETUP message on
port 1720 (the Call signalling channel port defined in H.225). It contains various
fields and those of most interest are:

• The message type eg H.225: SETUP

• The call reference value. This is a locally unique number used to identify
all further messages relating to each individual call. Eg. 10

• Call identifier. This is set by the calling party and will be a globally unique
number. It is used to associate the call signalling messages with the RAS
messages. Eg. 23849567

• An H.323 PDU which itself can contain

– A source address field containing the aliases of the sender. Eg. H.323
ID of Y: Steve@Somewhere.com
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Figure A.8: H.323 Call Signalling 1

– A source information field showing the nature of the calling equip-
ment. Eg. Source Type: PC

– A Destination address which is the called alias address - ¿ this can
be a regular phone number, an H.323-ID which is a unicode string, a
normal URL, a transport ID (eg. 10.5.3.6:1720) or an email ID. Eg.
Destination Address: Brian@Someplace.net

Upon receipt of the SETUP message by Brian, he must return either a CALL
PROCEEDING, ALERTING, CONNECT, or RELEASE COMPLETE message
immediately back to Steve. Steve has to receive it before his setup timer expires
(around 4 seconds).
In the example, ALERTING is sent to Steve to indicate that Brian’s phone
is ringing. Brian now has 3 minutes to either accept or reject the call. If he
accepts it then a CONNECT message is immediately sent back to Steve. The
CONNECT message contains the following information:

• The Message type (as before). Eg. H.225: CONNECT

• The Call reference value (as before) Eg. 10

• The Call identifier value (as before) Eg. 23849567
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• Destination information allowing Y to know if Z is connected to a gateway
or other hardware. Eg. EndPointType: PC

• The IP address/port for which Z would like to be used for the H.245
communication. Eg. H.245 Address (Ex: 10.5.3.6:8935)

Part 2 - Creating the control channel (Figure A.9): When the CON-
NECT message arrives back with the caller (in this case Steve), he can now open
his H.245 control channel. This will stay open for the duration of the entire call
and its purpose is to allow both parties to find out which codecs the other is
capable of using.
Because Steve has received the callee IP number and port address from the
CONNECT message (8935 in the example), he can now send a TERMINAL-
CAPABILITYSET message over this control channel. This message contains
the following information:

• A sequence number

• A Capability table, containing an ordered list of the codecs the terminal
can support.

• A Capability Descriptor Structure. This is a more detailed structure which
described which combinations of codecs the terminal can and can not
support. It effectively details the configurations of codecs the terminal is
capable of dealing with.

Both parties actually send out the TERMINALCAPABILITYSET message si-
multaneously. To Acknowledge Reception of the capabilities of the other, both
send a TERMINALCAPABILITYSETACK message.

Part 3 - Opening of the media channels: By this stage, both caller and
callee should have agreed that the conversation is to go ahead and will be aware
of what each other is capable of making sense of, with respect to multimedia
formats. Separate, unidirectional, logical channels now must be opened to allow
transport of the actual streams.
For Y to open a logical media channel with Z, it must first send an OPEN-
LOGICALCHANNEL message along to the same port as before (8935). This
message will contain a number identifying the logical channel to be used, the
encoding type of the media to be sent, the UDP address and port for RTCP
reports to be received, a session number, the type of the RTP payload and the
capacity to suppress silences in the communication. The type of codec to be
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Figure A.9: H.323 Call Signalling 2

used will have been selected from the capability lists previously sent in Part 2.
If there exist previous logical channels of communication then any new coders
should be checked against the list of capabilities.
When the OPENLOGICALCHANNEL message has arrived at Z, and Z is ready
to receive communication along this channel, it will reply with an OPENLOGI-
CALCHANNELACK which contains the IP and port where Y should send the
RTP data as well as the port where RTCP reports should be sent.
At the same time Z tries to open a logical channel to Y using the same proce-
dure. Figure A.10 explains the overall situation.

Part 4 - Dialogue: Both parties are now both content that

a) the conversation may take place
b) the codecs have been agreed on
c) the appropriate logical channels (ports and addresses) have been set up to
facilitate communication.

The media/voice conversation is now sent from Y to Z and back again via RTP.
Dual RTCP channels (one for the sender and the other for the receiver) report
on network conditions, jitter, packet arrival and sequence number progress.
Figure A.11 continues on from figure A.10, showing the establishment of the
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Figure A.10: H.323 Call Signalling 3

logical channels through which communication occurs. Note how the commu-
nication is taking place across several ports this time. In actual fact the RTP
flow can be replicated in the opposite direction, as Z seeks to respond to Y.

Part 5 - Ending the call: For one of the parties to end the call their as-
sociated terminal must send an H.245 CLOSELOGICALCHANNEL message
for each logical channel which has been opened. The other party should then
acknowledge this with a CLOSELOGICALCHANNELACK acknowledgement.
The channel is then officially closed and when all the logical channels have been
closed, both parties send an H.245 ENDSESSIONCOMMAND to each other.
This closes the H.245 control channel, but the H.225.0 call signalling channel
may still be open. In which case, each party sends an H.225 RELEASECOM-
PLETE message to each other and the H.225.0 channel is closed on reception.

A.1.2.2 Concluding Remarks

It is necessary to consider how the system works to be able to establish any
junctures during the chain of events at which some kind of filtering could be
achieved. In other words, what information is gleaned from the caller at what
stage and how may this be used to identify the credibility of the caller?
From the previous simple overview of how the system works the callee is pro-
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Figure A.11: H.323 Call Signalling 4

vided with information about the caller from several kinds of messages:

1)H.225 SETUP message (on port 1720)
The caller can be identified uniquely by either the calling party number and
sub-address (if included) or the Call Identifier field. There is also the possibility
of gleaning IP information from the TCP fields. The included source informa-
tion field which lets the callee know about the calling equipment may be useful
in determining patterns of credible or SPAM callers.

2)H.245 TERMINALCAPABILITYSET message (on call-signalling port
decided by callee) It may be possible of build up capability set profiles of known
SPAM callers. Whilst this should not automatically disqualify a caller, it may
give clues as to their credibility.
The source address of this should be verified in relation to the previous SETUP
message. Differences or inconsistency would arouse suspicion.

3)H.245 TERMINALCAPABILITYSETACK message (on call-signalling
port decided by callee) Again, the source should be compared against previous
messages.

4)H.245 OPENLOGICALCHANNEL message (on call-signalling port de-
cided by callee) It may be possible to build up profiles of what known voice
SPAMMERs tend to use with regards to the RTCP Receiver Report Port, se-
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lected codec and payload type. Again, whilst not leading to automatic disqual-
ification, it may hint at the caller’ts credibility.

5)H.245 OPENLOGICALCHANNELACK message (on call-signalling
port decided by callee) In the same way as before, SPAMMERs may tend to
choose familiar ports for their RTCP and RTP communication.

6)RTCP Sender Report message (on logical channel port decided by callee)

7)RTP flow packets (the conversation content) (on logical channel port de-
cided by callee) This is really the last opportunity for the callee to discover if
the packets sent are Voice SPAM. Up to this point, the callee will have been
satisfied that the caller is genuine. The only remaining checks therefore are
content-analysis checks of the RTP flow packets. In other words these are the
packets which need to be collected in order to perform such checks.

If any of the above opportunities results in the successful detection of SPAM,
then the callee should not be burdened with having to take the call. Instead,
the call finishing sequence (shown previously in Part 5) should be immediately
invoked. It would also be useful if some kind of statistical log be kept of the
calling party so as to aid future detection of their species.

A.1.3 Review

The purpose of this short document was to familiarise the hardware and ar-
chitecture of popular VOIP systems, namely SIP and H.323. This was so as
identify points in the chain of events during a call setup where checks may take
place in relation to SPAM filtering.
This has all been addressed very much from the point of view of the client, since
it is there that any filtering will need to be taken care of. Therefore, compli-
cated implementations of the two systems can be effectively ignored, since they
are not especially relevant - in any event the client must deal with the same
mandatory steps during which filtering may happen.

It has been described where about filtering based on headers and text key-
words can occur. This is of course akin to the previously discussed methods
used with email. This project is more interested in the actual content-based
filtering options. Therefore, because both of the main VOIP systems are using
RTP/RTCP for the transfer of voice data back and forth between the two end-
points involved, it is surely now necessary to understand this protocol and how
packets of data sent back and forth are reconstructed into data forms which can
be read via a given codec. Particular attention should be given to the sequenc-
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ing of packets and any issues in the temporal realm.
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Appendix B

Implementation Details

B.1 General Code structure

All of the code is basically divided into 3 main classes -

• Secretary.py - This is the main class which contains all of the graphics
and interface code, together with the main method.

• ExtractFeatures.py - This contains all the methods related to extracting
features and other information from the captured Sound() object.

• DecisionMaker.py - This contains everything which contributes to the
”intelligent” decision making process, subsequent to feature extraction.

An overall, general view of the system implementation model is shown in figure
B.1.
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Secretary.py
ExtractFeatures.py

DecisionMaker.py
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Methods
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Figure B.1: System Overview

B.2 Programming the parts

Every single ”cog in the wheel” will not be discussed because once wishes to
stay within the bounds of relevance and appropriateness. Most of the technical
calculations have been covered in the design section and a large amount of the
implementation of the prototype system was merely a case of converting this to
code.

B.2.1 Basic Sound recording/playback/handling/timing

B.2.1.1 Introduction

The TkSnack Sound() object is at the heart of all audio handling. One of the
primary advantages of using it is that many of its real-time methods (record-
ing, playback) are threaded procedures. In this way it is possible to record and
playback at the same time, which was crucial in the detection of whether caller
voice activity was happening simultaneously with the calling party greeting.
The Sound object can be created as an empty container and then filled subse-
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quently.

mySound = TkSnack.Sound()

Once the Sound object has been created, stored data may then be read into
it. Alternatively a Sound object may be created directly with the filename of
the audio file.

mySound = TkSnack.Sound(file= ”myfile.wav”)
mySound2 = TkSnack.Sound()
mySound2.read(”myfile2.wav”)

A Sound() object is essentially TkSnack’s own representation of audio data
held in memory. In order to write the audio contents of a sound object to a
permanent file, a write function is included.

mySound.write(file = ”myfile.wav”)

Normally the audio from a source may be recorded directly into an empty
Sound() object by using the record method:

mySound = TkSnack.Sound()
mySound.record()

The recording continues until the stop() function is called.

mySound.stop()

The possibility of playing back some recorded content is also desirable given
that the Secretary system plans to issue a challenge or greeting to the calling
party. The Sound() object provides for this by including a play() function. Of
course, the Sound() object must contain some audio data prior to playback.

mySound.play()

B.2.1.2 Timing

Combining these ideas allows the creation of the kind of playback/recording
mechanism which will emulate the desired timing behaviour. A high level de-
scription of this in terms of the TkSnack techniques is as follows.

//Time allowed for the calling party to give a response



130 Implementation Details

timeForResponse = 3

//read in the greeting file and get its length in seconds
greeting = tkSnack.Sound(file = ”greeting1.wav”)
timeForGreeting = greeting.length(unit=′ seconds′)

//Set up the recording parameters
inputSource =′ Mic′

capChannels =′ mono′ //no of channels
capRate = 8000 //frequency rate
encType = ”Lin16” //Encoding type

//Sound objects to catch the stream
//capture while greeting
newStream1 = tkSnack.Sound(rate = capRate, channels = capChannels, encoding =
encType)
//capture after greeting
newStream2 = tkSnack.Sound(rate = capRate, channels = capChannels, encoding =
encType)

//begin recording
newStream1.record(input = inputSource, fileformat =′ RAW ′)
//simultaneously playback greeting
greeting.play()

//Timer function - calls ”delayEnding1” after timeForGreeting sec-
onds
timer1 = threading.T imer(timeForGreeting, delayEnding1)
timer1.start()

...................................

The final pair of commands in the above sequence begin a timer object which
has the effect of calling the function delayEnding1() after the number of sec-
onds indicated by the first enclosed parameter. Just prior to the introduction of
the timer, the greeting sound is left to play and this needs no monitoring - the
sound audio from the greeting Sound object just plays back until its finished.
However, the simultaneous recording which occurs will begin recording and only
stop when the Sound() object’s stop function is called. Therefore, the stop()
function is placed at the beginning of the called procedure from the timer object
and is consequently brought into play after the appropriate time gap.
But this only ensures the procurement of the audio data from the caller during
the greeting. The actual response to the greeting must also be captured. This
concept of starting a Sound() object recording and then stopping after a set
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time period using a timer device is replicated once more in the delayEnding1()
method:

def delayEnding1() :
newStream1.stop()

//start recording caller response
newStream2.record()

//thread delays then stops the record
t2 = threading.T imer(timeForResponse, delayEnding2)
t2.start()

defdelayEnding2() :
newStream2.stop()

//...Feature extraction begins on newStream2....

Similarly to before, the timer object in delayEnding1() calls the function delayEnding2()
after the determined interval, which in turn calls the appropriate stop() func-
tion. By this stage, the two Sound() objects, newStream1 and newStream2 will
hold all the sufficient audio data required for the rest of the system’s calcula-
tions to be made.
Further information regarding the TkSnack sound object and its full range of
methods and functions may be found at.

B.2.2 Mel Frequency Cepstral Coefficients

The Mel Frequency Cepstral Coefficient computation is set in motion through
the calling of the getMFCCs() method.

features = getMFCCs(mySound,winLength, overLap,WINTYPE, PREEMP,
NOOFCOEFFS,ALPHA,B, capRate,DELTA =′ false′,
DELTADELTA =′ false′)

the parameters included in the function call are explained as follows:

• mySound : the TkSnack Sound() object to be scrutinised.

• winLength : window length specification in samples
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• overLap : window overLap length specification in samples (used with ”win-
Length” to designate window boundaries for short term power spectrum
determination).

• WINTYPE : the windowing function used (eg ”hamming”)

• PREEMP : the pre-emphasis value

• NOOFCOEFFS : The number of coefficients to be calculated.

• ALPHA : Noise calculation parameter (see section B.2.4)

• B : Noise calculation parameter (see section B.2.4)

• capRate : the largest frequency to be represented in the power spectrum
(8000hz)

• DELTA : flag designating calculation of delta coefficients

• DELTADELTA : flag designating calculation of delta delta coefficients

B.2.2.1 Power Spectrum calculation

According to the Design of this procedure (section 3.2) the first three steps of the
process are pre-emphasis, windowing and Fourier transform. Then from this, the
squared magnitudes constitute the power spectrum of the recorded sound. Con-
veniently, the TkSnack Sound() object provides a method, powerSpectrum()
which will return the very same directly whilst performing the pre-emphasis and
windowing in the process.

mySound.powerSpectrum(start = st, end = en, windowtype = WINTY PE,
preemphasisfactor = PREEMP )

In this implementation the windowtype parameter is set as ”hamming” and
the preemphasisfactor parameter set to 0.95. The only other used parameters
are the start and end points (”start” and ”end”) in the sound object delimiting
the scope of the operation. The precision of the powerSpectrum, or in other
words, the number of Fourier Transform points is 256 by default and this is left
as an acceptable value.
The number of times this power spectrum calculation is to be calculated in a
short term fashion depends on the number of windows, which itself is in ac-
cordance with the window length and overlap periods in relation to the overall
length of the captured sample. It becomes necessary to compute the ”start”
and ”end” parameters for the powerSpectrum() method, prior to operation
and these are calculated from the particular window number via the method
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computeWindowParams(). For example,

startpoint = computeWindowParams(i,′ start′, NO OF WINDOWS,
NO OF SAMPLES,winLength, overLap)

The above example returns a single point in the Sound object as a sample
number. This is calculated from the parameters:

• i : the window number

• ’start’ OR ’end’ : flags if the point to calculate is a start or end point of
the window.

• NO OF WINDOWS : The number of windows

• NO OF SAMPLES : The number of samples

• winLength : the length of the window in samples

• overLap : the length of the overlap in samples

NO OF WINDOWS is calculated in advance from winLength, overLap and
NO OF SAMPLES. The window length and overlap length in samples are also
calculated from an initial designation in ms by multiplying by the frequency
range (the top frequency in this case) in khz.
It should be noted that this procedure of looping through the entire Sound ob-
ject to obtain the windowed power spectrum for each designated internal is not
unique to just the Mel Frequency Cepstrum calculations. It is used through-
out the code to obtain the same desired result for Noise Examination, LPCC
computations and PLP operations.

B.2.2.2 Mel Filterbank incorporation

The Mel Filter banks must first be created and then applied. Section 3.2.4 gave
a detailed account of how they are structured. The method makeMelF ilters()
constructs the shape of the filterbank with a y axis scaled/normalised between
0 and 1 and an x axis representing the spectral partition (from 1 to 256)

This method is called in the following way:

melF ilters = makeMelF ilters(NoSpectralP ts,Nofilters, topF, wideningFactor)

where
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NoSpectralP ts : The Number of pts in the Fourier Transform
Nofilters : The number of Mell filters to construct (24 is the chosen value)
topF : The top Frequency represented (in this case 8000hz)
wideningFactor : an approximation used to construct the ever widening trian-
gular filters after the 1000hz mark. This approximation is used as a factor to
multiply the current triangular width to get the width of the next one. It was
found that 1.098 produced a pleasing result for the desired filterbank creation.

The filter bank created according to the above scale is then applied to each
short term power spectrum window. Because the same set of filter banks is
applied and then re-applied it need only be created once, at the outset, and
then subsequently used to do the filtering. Each time a new power spectrum
window is considered, the mel frequency banks are actually applied using the
applyMelBanks() method. For example:

melBanks = applyMelBanks(melF ilters, FOURIERED)

wheremelF ilters is the filterbank window created bymakeMelF ilters() (above)
and FOURIERED is the current short term power spectrum array. The return
value is a 2 Column array, the first column consisting of the total energy for
the filtered window whilst the second holds a list of the log magnitude sums for
each filter bank (24).

B.2.2.3 Coefficient Creation

The cepstral coefficients are created from the logged filterbank outputs, and
python itself provides the Inverse Discrete Fourier Transform as a means of do-
ing this via its FFT library:

Coefficients = FFT.inverserealfft(LOGMAGS,NOOFCOEFFS)

where LOGMAGS are the logged magnitude outputs of the filter banks, and
NOOFCOEFFS is the number of coefficients one wishes to obtain (12). This
also corresponds to the length of the return array.
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B.2.3 Linear Prediction Cepstral Coefficients/Perceptual
Linear Prediction

The calculation of the coefficients from the PLP method essentially shares many
of the same techniques as the LPC method, therefore, both procedures are con-
tained within the same getLPCCs() method. One of the input parameters then
acts as a switch so that the appropriate program flow can be selected according
to the chosen method. The getLPCCs() method is called as follows:

features = getLPCCs(PLP,mySound, winLength, overLap,WINTYPE,
PREEMP,NOOFCOEFFS,ALPHA,B, capRate,DELTA =′ false′,
DELTADELTA =′ false′)

the parameters included in the function call are explained as follows:

• PLP : boolean flag determining PLP or LPC as the selected mode of
operation.

• mySound : the TkSnack Sound() object to be scrutinised.

• winLength : window length specification in samples

• overLap : window overLap length specification in samples (used with
”winLength” to designate window boundaries for short term power spec-
trum determination).

• WINTYPE : the windowing function used (eg ”hamming”)

• PREEMP : the pre-emphasis value

• NOOFCOEFFS : The number of coefficients to be calculated.

• ALPHA : Noise calculation parameter (see section B.2.4)

• B : Noise calculation parameter (see section B.2.4)

• capRate : the largest frequency to be represented in the power spectrum
(8000hz)

• DELTA : flag designating calculation of delta coefficients

• DELTADELTA : flag designating calculation of delta delta coefficients
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B.2.3.1 Creating the PLP filter bank

On the designation of the PLP method the PLP filter bank described in section
3.4.3 is created at the outset via the constructPLPFilter() method, as follows:

plpF ilter = constructPLPFilter(NoFFTpts, topF,NoF ilters)

NoFFTpts refers to the number of points to be contained in the short term
power spectrum computation. topF is the maximum frequency represented in
the power spectrum and NoFilters is the number of filters one wishes to have,
in this case 20 is sufficient.
The calling of the constructPLPFilter has the effect of combining the proce-
dures outlined in section 3.4.
The following subprocesses are called:

1. makeBarkScale(): This returns an array of the points represented in the
standard frequency power spectrum as the alternative bark scale.

2. equalLoudness(): This returns the approximated equal loudness curve
according to section 3.4.3.

3. eqToBark(): This is used to convert the equal loudness curve (created in
accordance with the frequency scale) into the bark scale realm.

By normalising the product of 1 and 3 (above) between 0 and 1, it is then
possible to obtain the filterbank suggested by Hermansky (see section 3.4.3).

B.2.3.2 Applying the Filterbank

The iterative part of the over-arching process of course includes the applica-
tion of this created filterbank to each short term power spectrum window.
These short term spectrum frames are created in the same way as with the
getMFCCs() method (section B.2.2). The applyPLPFilters() method then
applies the filter to the frame, returning the summed magnitudes of each filter-
bank output. After these undergo cubic compression, the cepstral coefficients
are obtained by using the same inverse Fourier transform as before.
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B.2.3.3 Extracting the Cepstral Coefficients - LPC

Under normal LPC conditions where the PLP flag is negative, the getLPCCs()
process will not calculate or apply any filterbanks. Instead the autoLevDurb()
function is called, returning the linear predictive parameters of the base power-
spectrum:

params = autoLevDurb(FOURIERED,NOOFCOEFFS, ”a”)

where the parameters are :

• FOURIERED : the short term power spectrum window in question

• NOOFCOEFFS : the number of parameters to be calculated

• ”a” or ”k” : ”a” returns the prediction parameters, ”k” returns the reflec-
tion parameters.

The returned array contains whichever group of parameters (predictive or re-
flection) is specified, and then the cepstrum is calculated from these using the
getLPCepstrum() function.

B.2.4 Noise Calculations

The reason that both getMFCCs() and getLPCCs() include noise relevant pa-
rameters in their procedure calls is because it was thought it would be efficient
if noise calculation was done in-line with the actual feature extraction. The
reasoning here is that both noise calculation and feature extraction require the
breaking up of the sound data into windows. So, why the need to perform the
same division into frames more than once?
Therefore, once the extraction of the cepstral coefficients is complete, the calcu-
lated power spectrum windows are retained and used for the frame-wise noise
estimation procedure. Regardless of which method is used to extract the cep-
strals from the sound data, the calculation of noisy and non-noisy frames will be
necessary anyway because subsequent frame selection and normalisation require
the input of a noise mask array in their calculations.
Using the ALPHA and B parameters supplied then, a noise mask array is cal-
culated using the method in section 3.5, where a noisy frame is denoted as ”1”
and ”0” otherwise. This noise mask array forms one of the return values from
the getLPCCs() and getMFCCs() methods.



138 Implementation Details

B.2.4.1 AQBNE and QBNE

These enhanced methods for estimating the total noise and the noise spectrum
itself are calculated using the enhancedNoiseEst() method. A typical call of this
method is as follows:

noise = enhancedNoiseEst(FRAMES,NOISE, selective, q, qmin, r)

The parameters used here are:

• FRAMES : the array of all the frame power spectrums divided out from
the Sound() object

• NOISE : a mask array of 1s and 0s defining a frame-wise noise estimation.

• selective : a boolean flag determining if the advanced noise estimation
should apply to all frames or only those previous determined as noise by
the frame-wise technique.

• q : the q-line parameter for the QBNE formula in section 3.5.3 (set to
0.5).

• qmin : the qmin parameter for the AQBNE formula in section 3.5.4(set
to 0.45).

• r : the r parameter for the AQBNE formula in section 3.5.4(set to 15).

B.2.5 Pitch Calculations

Whilst not mentioned in the Design part of this thesis, pitch information may
also be extracted as a feature of the analysed speech sample. The actual calcu-
lations rely on the AMDF estimation of pitches in the Sound() object. However,
very little explanation is required for this because the TkSnack toolbox pro-
vides this calculation (much like the power spectrum) as a built in operation.
So, in practise, to obtain the pitch data for an entire Sound() object ”mySound”
the command would be:

pitches = mySound.pitch()

This returns an array of pitch values where the interval length included in the
AMDF calculation is 10ms by default.
Much like the enhanced noise level ratios there are no plans as yet to pass this
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information through to any decision making logic, however there is no reason to
suggest that collected pitch values could not be used in the future to perhaps
influence decisions where any overall analysis proves inconclusive.
It was still considered useful to use the extracted pitch values in conjunction with
the other gleaned information as part of the visual verification of the captured
samples through the system’s graphics interface (section 5.3.2)

B.2.6 Frame Selection/Normalisation

The process of normalising the extracted coefficients prior to clustering/SOM
entry is performed by the NormaliseV ector() function in the DecisionMaker
class. It accepts as input a list of feature vectors. If there are N feature vectors
then this list will take the form of N rows of M elements (where M is the number
of feature values in each vector). The normalisation to be performed needs to be
a column-wise normalisation so that corresponding feature values in each vector
are normalised in respect to each other.
Python’s standard list processing does not handle such a situation very well at
all - it is much better suited to row-wise normalisation. However, it is possible to
convert the entire 2D Feature Vector list into a matrix using Python’s MatPy
library. Once this is completed row-wise normalisation can be performed on the
transpose of the matrix, effecting the initial goal. For example:

inputV ectorMatrix = Matrix.toMatrix(inputV ector)
inputV ectorMatrixTranspose = inputV ectorMatrix.T

for each row in inputVectorMatrixTranspose:
normalised[row] = normalise(inputV ectorMatrixTranspose[row])

return normalised.T

The normalisation itself is performed by the normalise sub-procedure and is
merely a case of mapping the range of original values to the range 0...1.

B.2.7 Self Organising Maps

A separate class is used to represent the Self Organising Map since it is effectively
an object in itself. A closer examination of this class will now be given since it
was not provided as a standard resource.
The Self Organising Map is made up of two subclasses - SOMLattice and
SOMNode. SOMLattice is concerned with the basic, high-level node-related
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view of the map. It is made up of SOMNodes and its methods are concerned
with calculating distances between nodes and finding the Best Matching Unit
node from a given input vector. SOMNode is concerned with the lower level
node operations such as setting and adjusting individual node weights, and
setting the actual grid position of a node.

B.2.7.1 SOMLattice Methods

• SOMLattice(noWeights, height, weight) : This is the constructor. The
height and weight parameters set the dimensions of the grid which is pop-
ulated by SOMNodes appropriately. The number of weights per node is
set by noWeights.

• getNode(x, y) : returns the Node object at coordinate point (x,y) on the
SOMLattice.

• getWidth() : returns the width of the SOMLattice.

• getHeight() : returns the height of the SOMLattice.

• euclideanDist(v1, v2) : returns the euclidean distance between 2 vectors,
v1 and v2. This is used by the getBMU() method (below) to calculate
the distance between a certain node and any input vector.

• getBMU(inputV ector) : returns the point on the grid whose weights
are closest (according to the euclidean distance measure above) to the
inputVector parameter.

B.2.7.2 SOMNode Methods

• SOMNode(noWeights) : Constructor. The number of weights is set by
the noWeights parameter and is passed from the SOMLattice constructor
at initial setup. The weights themselves are initialised to random numbers
between 0 and 1 at the beginning.

• setX(x) : sets the x-coordinate of the node on the grid.

• setY (y) : sets the y-coordinate of the node on the grid.

• getX() : returns the x-coordinate of the node on the grid.

• getY () : returns the y-coordinate of the node on the grid.

• distanceTo(otherNode) : returns the distance to otherNode on the grid
- used in the calculation of node neighbourhoods.
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• setWeight(wNo, value) : sets the nodes weight at index wNo to value.

• getWeight(wNo) : returns the node weight at index wNo.

• getV ector() : returns the node’s entire weight array.

• adjustWeights(inp, learningRate, distanceFalloff) : Adjusts all of the
weights of a node according to an input vector inp. The extent of which
is dependant on the other parameters learningRate and distanceFalloff
which define the learning rate of the SOM and the compensation based on
how far the node in question lies from the best matching unit. Of course
this method will only be called if the node in question has been found to
rest within the neighbourhood of the Best Matching Unit.

B.2.8 LBG Clustering/Enhanced LBG

Like the SOM in the previous section, the LBG and Enhanced LBG clustering
algorithms had to be implemented directly, and so will now be discussed in more
detail.
As could be seen by the design of the algorithm in section 4.3.2.1 the general
method for LBG is essentially combined with some notable extensions for the
ELBG implementation. The programmed system uses 2 separate methods for
the two procedures though much common ground is shared in each. To begin
with the LBG algorithm will be considered. It is contained within the LBG()
function in the DecisionMaker class.

B.2.8.1 LBG

The overall method is an iterative one, which continues until an efficiency value
calculated from the distortions of the current and previous iterations is is less
than an efficiency threshold ε. This is then made the exit condition to the main
loop. The first step in the iteration is to calculate the Voronoi Partition for the
given suggested codebook. The following pseudo-code explains its implementa-
tion in more detail:

while (maximumEfficiencyReached == "false")

{
// Step 1: Calculate the Voronoi partition

for each i in inputVectors:

{
//Find the closest codeword and subsequent distortion
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thisMin=euclideanDistance(inputVectors[i],codewords[0])

for each codeword in range(1,K):

//find the distance between the current input vector

//and the current codeword

thisdist=euclideanDistance(inputVectors[i],codewords[j])

//update the minimum if necessary

if (thisdist is the minimum thus far):

thisMin=thisdist

index=j

//record index of closest codeword

Voronoi[index].append(i)

}
}

.............................................

On the first iteration of the method, there will have been no previous mea-
sures of the distortion of the previous codebook in relation to the input vectors.
Therefore, the current distortion measurement is merely recorded and the next
codebook is calculated from the first Voronoi partition. Of course, although un-
likely, the distortion of the codebook on the initial iteration may be sufficiently
small so as to warrant no further iterations. In this case, an exit condition is
inserted appropriately:

if (first iteration)

{
efficiency=Distortions[0]

if abs(efficiency) < ε
{
maximumEfficiencyReached = true

return codebook

}

//Otherwise calculate new codebook

for each codeword j in codebook

{
if Voronoi[j] != emptyset

{
//codeword[j] is equal to the centroid of the input vectors

//referenced by the index values contained within Voronoi[j]

total=0
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for each i in Voronoi[j]

{
total = add(inputVector[i],total)

}
codeword[j] = total / length(Voronoi[j])

}

}
}

.....................................................

On subsequent iterations then, the previous iterations distortion measure from
its Voronoi partition is available. The method then calculates whether to exit
or not based on how the current distortion measurement relates to the previous.
If the method does not exit at this point, then the new codebook is calculated
in the same way as before.

else if iteration>0

{
efficiency =

(Distortions[iterationNo]-Distortions[iterationNo-1])/ Distortions[iterationNo]

if abs(efficiency) < ε
{
maximumEfficiencyReached = true

return codebook

}

//Otherwise calculate new codebook

for each codeword j in codebook

{
if Voronoi[j] != emptyset

{
//codeword[j] is equal to the centroid of the input vectors

//referenced by the index values contained within Voronoi[j]

total=0

for each i in Voronoi[j]

{
total = add(inputVector[i],total)

}
codeword[j] = total / length(Voronoi[j])
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}
}

}
increment iterationNo

}
//end of outer While

The ε value used to denote the threshold against which the current distortion
is measured in relation to the previous is originally set to 0.01.

B.2.8.2 ELBG

As detailed in section 4.3.2.1 the implementation of the ELBG Algorithm is just
the same as the standard LBG but with the inclusion of the ELBG block just
prior to the calculation of the new codebook for the subsequent iteration. The
method for calling the ELBG function is merely called ELBG() and it resides
in the DecisionMaker class. Two parameters are included in the function call:

• inputV ectors : the list of normalised feature vectors extracted from the
captured sound

• K : the number of codewords/centroids to produce.

ELBG requires the grouping of more information than the standard LBG algo-
rithm. When the Voronoi partition is calculated, the following is also kept for
use later in the ELBG block:

• The sum of all the distortions.

• The individual distortions for each codeword

• The Voronoi partition information itself.

• The actual feature vectors referenced from the Voronoi partition - V oronoiV ectors.

This appears to be similar to the standard LBG implementation, however the
final entity in the above list must be retained since the feature vectors referenced
by the Voronoi Partition are going to be used in the re-calculation of centroids.
The getDistortions method in DecisionMaker was created to calculate each
of the above.
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Skipping directly to the ELBG block implementation, the block itself inherits
the current codebook and its calculated Voronoi partition, and then attempts
to reposition some of the codewords. Integral to the procedure is the calculation
of the Utility values which are calculated as follows (example in pseudo-code):

highUtilitySum = 0

for each codeword i in codebook

{
//Get the Utility Values and p and i areas

if Voronoi[i]==[] //Voronoi set empty - isolated codeword, needs moved

{
temp=0.0

}
else

{
temp= sum(distortions[i])/float(len(distortions[i]))

temp= temp/float(Dmean)

}
// record the utility value

Utilities.append(temp)

//sort out candidates from non-candidates

if temp<1

{
//store index of a low utility value

lowUtilities.append(i)

}
else

{
//store index of a high utility value

highUtilities.append(i)

//sum up high utility values for use later

highUtilitySum = highUtilitySum+temp

}
}

The Utility values themselves are recorded and their indexes stored in 2 arrays,
one for utility values less than 1 (lowUtilities) and the other for utility values
greater than 1 (highUtilities). lowUtilities is sorted in ascending order. The
first index value of lowUtilities is then chosen as the candidate region for mov-
ing. The candidate region for a destination is then chosen from highUtilities
as follows:
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//Sum up the corresponding utility

//values for each index in the highUtility array

Sum=0

for each k in highUtilities

{
Sum = Sum + Utilities [highUtilities[k]]

}

//Find the index of the chosen high utility

//region using the probability formula

maxProbIndex=0

for each i in highUtilities

{
tmp=Utilities[highUtilities[i]]/Sum

if tmp>maxProb

{
maxProbIndex=i

}
}

chosenIndex=highUtilities[maxProbIndex]

//remove the chosen high utility index

//from the array in preparation for subsequent iterations

highUtilities.remove(highUtilities[maxProbIndex])

The final element returned by the getDistortions() function is the array of fea-
ture vectors associated with each codeword according to the Voronoi partition
- V oronoiV ectors. Now that the index of the high utility region has been cal-
culated, access to the associated feature vector constituents is now available.
This ”cluster” of points is now split by calculating the two new points from
the cluster’s principal diagonal. The aforementioned array of cluster points is
passed as a parameter to the getDiagP ts() method which returns the two new
candidate centroids. Thus:

newCWs = getDiagPts(VoronoiVectors[chosenIndex])

newCW1 = newCWs[0]

newCW2 = newCWs[1]

The old, low utility cluster centroid is now removed and the nearest cluster to
it re-calculated to cater for its now en-widened constituent base:
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oldClusterIndex = lowUtilities[0]

nearestCluster = nearest(oldClusterIndex,lowUtilities,codebook)

lowUtilities.remove(nearestCluster)

if length(lowUtilities)>1

{
//get the new Cluster from the VoronoiVectors

newCluster= midWay(c[nearestCluster],c[oldClusterIndex])

lowUtilities.remove(oldClusterIndex)

else

{
//No more low utility clusters left to try

searching="false"

}

In the above, midWay() is an auxiliary method which will find the mid point
between two vectors. It is used in this case as an approximation, to recalculate
the new centroid of the previously vacated low utility cluster region in relation to
its closest neighbour which would have shared the same proximity. The method
nearest() is used to find this closest neighbour with respect to the codebook as
a whole.
With the positions of the new cluster set decided the overall distortion is then
recalculated to see if the proposed changes are going to make a positive difference
to the overall scenario. The proposed new codebook is retained if they do and
rejected otherwise.
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Appendix C

Test Results
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Figure C.1: Test Results - MFCC with 10 codewords
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Figure C.2: Test Results - MFCC with 15 codewords
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Figure C.3: Test Results - MFCC with 20 codewords
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Figure C.4: Test Results - LPCC with 10 codewords
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Figure C.5: Test Results - LPCC with 15 codewords
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Figure C.6: Test Results - LPCC with 20 codewords
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Figure C.7: Test Results - PLP with 10 codewords
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Figure C.8: Test Results - PLP with 15 codewords
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Figure C.9: Test Results - PLP with 20 codewords
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Figure C.10: Test Results - Blacklist/Whitelist tests - MFCC/20
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Figure C.11: Test Results - Blacklist/Whitelist tests - PLP/10
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Figure C.12: Test Results - Spoof test - Identity 1 with plp
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Figure C.13: Test Results - Spoof test - Identity 1 with mfcc
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Figure C.14: Test Results - Spoof test - Identity 2 with plp
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Figure C.15: Test Results - Spoof test - Identity 2 with mfcc
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Figure C.16: Test Results - Spoof test - Identity 3 with plp
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Figure C.17: Test Results - Spoof test - Identity 3 with mfcc
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Figure C.18: Test Results - Tests with unknown identities
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