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Summary
The present thesis deals with mathematial modelling of the heat transfer inbuildings and building integrated photovoltai modules. One of the purposes ofthis thesis is to extend the knowledge about the performane of building inte-grated photovoltai modules.Due to the limited oil resoures it beomes more and more important to fouson renewable energy. The main purpose of the modules is to produe eletriity,and as a spin-o� the air behind the modules an be heated and used for heatingthe building. This is two ways in whih to produe renewable energy.The point of turn of the mathematial methods applied is stohasti di�er-ential equation, state spae models, maximum likelihood estimation, and theextended Kalman �lter. Subsequent the model estimation various analyses ofthe residuals and tests of the models have been arried out in order to unoverthe reliability and usefulness of the model. The estimated models are both linearand non-linear models. The non-linear e�et to be investigated is the infraredradiation and the wind speed.The thesis emanates from the artile 'Estimation of non-linear ontinuous timemodels for the heat exhange dynamis of building integrated photovoltaimodules'[Jiménez et al. 2006℄. The basis of the applied models of the pho-tovoltai module ensue from the artile. Introdutory models of how to desribethe heat transfer in buildings are outlined and developed. Tehnis and meth-ods suh as RC-modelling and lumping are touhed on. After the desriptionof the applied theory the rest of the thesis is related to the analysis of the pho-tovoltai module. The module temperature is highly negative orrelated withthe e�ieny of the module. This makes it important to be able to predit the



iitemperature of the module in order to determine the prodution of eletriityand to investigate how the temperature of the module an be dereased. Intro-dutorily an in-depth analysis of how to desribe the temperature of the moduleis arried out. This is done both in the sense of identifying the best desribingvariables, and also in order to disover the best �tting models. Both single andmultiple state spae models are estimated. This makes it possible to examine ifit is neessary to split up the module temperature in two states.The results of the thesisThe best desription of the data is obtained by using an extended single statemodel ontaining non-linear in�uenes. The best results are found by applyingthe temperature at the top of the module as the output variable. This �ndingis supported by thermal images taken of the module where the measured toptemperature overs most of the module temperature. The analyses show im-proved performane for applied variables alulated from the eletrial �ow ofthe module ompared to the similar measured variable. One of the main aimshas been to identify the in�uene of the ambient wind speed. It was before-hand expeted that a �ltered version of the wind speed was in�uening the heattransfer between the air and the module. The analyses have revealed that a�ltered wind speed having nearly the same �utuations as the measured winda�ets the module.After identifying the preferable model, data where variations of the set-up havebeen made, are analyzed. The result of the testing reveals that the model is ableto disriminate the variations from eah other. It is identi�ed that higher foredveloity behind the module and obstales turning the laminar air �ow into amore turbulent �ow raise the heat transfer oe�ient between the ambient airand the module. This leads to the desired derease of the module temperature.



Resumé
Denne eksamensopgave omhandler matematisk modellering af varmeoverførelsei bygninger og bygningsintegrerede solellemoduler. Et af formålene med denneopgave er, at opnå en øget viden om, hvordan bygningsintegrerede solellemod-uler fungerer, og hvad der påvirker dem.Det bliver mere og mere vigtigt at fokusere på vedvarende energi grundet, de be-grænsede olieressourer. I denne opgave er et bygningsintegreret solellemodulmed en tvunget luftstrøm bag modulet analyseret. Hovedfunktionen for solelle-modulet er at produere strøm. Som en sidee�ekt kan den tvungne luftstrømbag modulet anvendes til opvarmning af bygningen. På denne måde fremstillesder to forskellige former for vedvarende energi.De matematiske metoder, som anvendes i denne opgave, er stokastiske di�eren-tialligninger, state-spae modeller, maximum likelihood estimation og det udvid-ede Kalman �lter. Efter at have estimeret modellerne gennemføres forskelligeresidualanalyser og test af modellerne. Dette gøres for at afdække, om mod-ellerne er pålidelige og brugbare. De estimerede modeller dækker både lineæreog ikke-lineære modeller. Vind og infrarød stråling undersøges som ikke-lineæreind�ydelser.Denne eksamensopgave udspringer af artiklen: 'Estimation of non-linear on-tinuous time models for the heat exhange dynamis of building integratedphotovoltai modules'[Jiménez et al. 2006℄. De anvendte modeller for solelle-modulet stammer fra denne artikel. Indledende er modeller til at undersøge,hvordan varmeoverførelse kan beskrives skitseret. Teknikker og metoder, såsomRC-modeller og lumpning, er berørt. Efter beskrivelse af den anvendte teoriomhandler resten af opgaven modellering af solellemoduler. Modultempera-



ivturen er negativt korreleret med e�ektiviteten af modulet. Dette betyder, atdet er vigtig at kunne prædiktere modultemperaturen for at kunne bestemmeproduktion af strøm. Ydermere giver dette mulighed for at undersøge, hvordanmodultemperaturen kan redueres. Indledningsvis er en dybdegående analysetil at kortlægge modultemperaturen gennemført. Dette gøres både for at iden-ti�ere de bedst beskrivende variabler, men også for at �nde den bedste model.State-spae modeller med både en og �ere tilstande er identi�eret. Dette gørdet mulig at undersøge nødvendigheden af at opdele beskrivelsen af modultem-peraturen i �ere områder.Opgavens resultaterDen bedste beskrivelse af data fås ved at bruge den mest avanerede ikke-lineærestate-spae model med en tilstand. De bedste resultater opnås ved at anvendeden temperatur, som er målt i toppen af modulet. Dette resultat understøttes afvarmebilleder af modulet, hvor den målte toptemperatur repræsenterer størst-edelen af temperaturen i modulet. Analyser har også vist en øget grad af beskriv-else, når variabler, som er estimeret ud fra den elektriske strøm, anvendes fremfor de tilsvarende målte variabler. Et af hovedformålene har været at identi�-ere udendørsvindens ind�ydelse på modulet. På forhånd var det forventet, aten form for �ltreret vindhastighed ville have ind�ydelse på modulet. Analysenhar afsløret, at den �ltrerede vindhastighed, som påvirker modulet, kun afvigermeget lidt i variation fra den målte vindstyrke.Efter at have identi�eret den foretrukne model, er data, hvor der er varieretpå test-opsætningen, anvendt og analyseret. Resultaterne af dette forsøg viser,at det er muligt for modellen at skelne mellem variationerne i opsætningen. Deter i denne forbindelse fundet, at en øget ventilationshastighed bag modulet ogmodstande, som ændrer strømningen fra laminær til turbulent i luftrummet bagmodulet, øger varmeoverførelseskoe�ientenmellem udendørsluften og modulet.Dette fører til den ønskede reduktion af modultemperaturen, som betyder øgetstrømproduktion.
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Introdution
The bakground of this thesis is the artile 'Estimation of non-linear ontinuoustime models for the heat exhange dynamis of building integrated photovoltaimodules' by M. Jiminez, H. Madsen and H. Bloem. The models treated in theartile are reused and developed futher. Also some of the applied data overlap.In the present thesis more data and ombinations of data are investigated.In order to make this thesis get o� properly a few introdutory items haveto be lari�ed.

• All the models have been estimated by means of the software CTSM.[Kristensen &Madsen 2003b℄ gives a short introdution to the modelling inCTSM. In this guide also images are inluded. This may help understandsome of the statements and explanations in the thesis.
• The x-axis of the plots over time has to be expound. The value is statedin minutes. Value zero is in time aordane with midnight. Observation720 orresponds to 12 a.m. and so forth.
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Chapter 1 Renewable Energy
1.1 Renewable energy methods for dwellings andmathematial modellingToday around one-third to half of the energy onsumption in the industrialisedountries is used for lighting and making the thermal ondition of dwellingsomfortable [Prasad & Snow 2005℄. Furthermore it is estimated that half of theworld's oil resoures have already been used. If no better insulation and new-thinking energy prodution methods are taken into onsideration in a widersense, the remaining oil resoures are estimated to over the energy needs for30 years. For the moment there is no diret substitute for oil. Beside the lim-itation of resoures the renewable energy prodution an also redue the levelof pollution and global warming whih in ertain areas is a large sale problem.The renewable energy soures are not depending on oil ressoures, unless in theprodution phase, and are for this reason less ontaminating.Favourable regulations and taxations are a way to enourage the appliationof renewable energy methods. These ations an take plae on both interna-tional and national sale. For the moment only few ations have been taken.Today the most ommon renewable energy prodution methods are wind en-



2 Renewable Energyergy, solar heating, biofuel, and photovoltai tehnology, whih is the topi ofthis thesis. The �rst step towards a larger proportion of renewable energy is ane�ient further development of equipment and methods. This needs to be fol-lowed up by ontinuously improvements of the equipments, the materials, andthe methods. At present, new thinking photovoltai ells are under develop-ment. It is expensive, both in terms of energy and eonomis, to produe theells made of silion whih are the preferred ones at the moment. Therefore newmaterials suh as organi material are being researhed as a substitute material.Another important issue in onnetion with renewable energy is to obtain aep-tane from the onsumers. It is of great importane to provide reliable informa-tion on the energy-performane as well as the overall preformane of alternativeenergy soures to get a higher aeptane from the onsumer of renewable en-ergies. This is for instane the ase when a onsumer has to deide if a buildingintegration of photovoltai module will be bene�ial. Can mathematis be ofany bene�t in relation to the issue? To obtain a generally better understand-ing of the renewable energy methods, mathematial modelling an be applied.Mathematial modelling an as an example, help to determine whih materi-als are most e�ient. The optimal operational level may also be determined.Furthermore, the mathematial modelling may give an understanding of whihexternal fators, suh as wind speed, are in�uening the equipment. Sometimesit is even possible to reveal former unknown in�uenes.



Chapter 2
The Mathematis BehindHeat Dynamis of Buildings

2.1 IntrodutionThis setion is an introdution to the mathematis and the physial laws behindmodelling of heat dynamis of buildings. Furthermore, the advantages of usingstatistial and physial knowledge simultaneously, alled grey-box modelling,will be disussed. In the models used in this hapter it is assumed that the heattransfer relationships are linear.Sine the mathematial desription of heat dynamis of buildings an be veryompliated, methods to overome this will be disussed. Lumping is used as away to derease the omplexity of the models. The models found are so-alledRC-models. In extension of the lumping method RC-models of four di�erenttypes of houses are outlined. Some of the desriptions and models are alsopresented in [Madsen 1985℄ and [Madsen et al. 1994℄.



4 The Mathematis Behind Heat Dynamis of Buildings2.2 Modelling methodWhen searhing for a representative model for a physial phenomenon it isobvious to use the physial laws. This approah to the problem is alled white-box modelling or the dedutive approah. At the other end of the sale isthe blak-box modelling where only statistial models are used. This way ofanalyzing data is also alled an indutive approah. This approah requires nopreeding knowledge about the data and its nature. This is for instane thease when neural networks are used for modelling data. In between these twomethods is the grey box modelling. This approah uses the knowledge fromboth physis and statistis, resulting in better models. Grey-box modelling inrelation to stohasti modelling is treated in the artiles [Kristensen et al. 2003a℄and [Kristensen et al. 2003b℄. By using grey-box modelling it is possible to testif eah of the parameters in the models applied is signi�ant, and thereby it isoften possible to redue the number of parameters in the �nal model. This alsoimplies that it beomes easier to interpret the model. Another reason why thegrey-box models are preferable is that the �nal models may sometimes showphysial relationships whih were not known in advane, [Andersen 2001℄ and[Madsen 2001℄.Previous researh has shown that the dedutive approah is only able to desribethe long-time variations of the heat transfer, whih implies that it is not possibleto get the short-time variations and �utuations modelled [Madsen 1985℄. Short-time variation is when the heat transfer hanges due to fast hanges in theweather onditions, for instane due to a loud passing by the sun. By usingthe indutive approah with two or more time onstants it is possible to modelboth the short- and the long-time dynamis, whih raises the level of desriptionthe models provides.2.3 Lumped parametersWhen dealing with heat dynamis both the time and the spatial oordinates areseen as stohastially independent variables. This implies that it is neessaryto introdue partial di�erential equations to desribe the orrelations. Sinepartial di�erential equations an often be very ompliated to solve, the lumpedparameterization method will be used to simplify the mathematis. The methodturns the partial di�erential equation into ordinary di�erential equations, whihare muh easier to handle and solve. Lumped proesses are de�ned as: Lumpedproesses are all proesses in whih the spatial dependene of the variables underonsideration an be negleted [Keman 1988℄. The use of lumped parametersis an approximation to the real problem, beause the heat properties are still



2.4 Di�erent kinds of heat transfers 5hanging in the spae dimensions. It is therefore always important to investigateif the method is reasonable to use in the spei� ase. It is well doumented thatthe use of lumping is an aeptable way to model the dynamis of buildings if thebuilding is not in�uened by non-linear phenomena [Madsen et al. 1994℄. Theuse of lumped parameters is most frequently a good way to analyze ases, whihotherwise would beome very ompliated. Figure 2.1 shows an example of howlumped parameterization an be used when modelling a simple wall. This kindof modelling is alled RC-modelling, beause the system is built of resistanesand apaitanes similar to analogous eletrial systems. From Figure 2.1 itan be seen that one of the approximations is that the heat transfer is onlydistributed horizontally. Therefore, this approah is only valid in this ase if itis known that the temperature of the walls are homogeneously distributed. Iftemperatures are measured vertially at several plaes in the wall, the lumpingan be worked out in layers. This approah an be implemented by adding morestate equations to the existing system.
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Figure 2.1: Illustration of a lumped system in a wall [Madsen 1985℄2.4 Di�erent kinds of heat transfersThere are three ways in whih heat an be transferred:
• Condution
• Convetion
• Radiation



6 The Mathematis Behind Heat Dynamis of BuildingsOne de�nition of heat transfer is that it is normally transferred from a highertemperature objet to an objet with a lower temperature [hyperphysis 2006℄.One of the physial reasons why it is di�ult to make an analytial desriptionof the heat transfer is that the three di�erent transmission ways are ontributingto the proess simultaneously.The Equations 2.1-2.8, are found in [Madsen 1985℄.2.4.1 CondutionCondution means energy transmitted through random splie between atomipartiles. In relation to heat dynamis of buildings this kind of energy is ob-served as heat transfer through the walls, �oors, and roof.The mathematial formulation of ondution is built on an empirial law, [Both& Christiansen 2002℄,
dQ

dt
= −λA

dT

dx
(2.1)where dQ

dt is the heat per time unit. λ is the thermal ondutivity onstant whihvaries quite a lot depending on whih materials are used for the onstrution ofthe wall. Physial fators, suh as temperature, have also impat on the thermalondutivity, but sine the there are no large variations in the physial fatorswhen dealing with heating of buildings, only the in�uene of the materials usedis onsidered. A is the ross setion of the ondutive solid, in this ase thewall, perpendiular to the diretion of the heat urrent. dT
dx is the temperaturegradient.If the part of the building onsidered does not ontain neither heat souresnor sinks, it is possible to set up an ordinary di�usion equation whih desribesthe time rate of the temperature

∂T

∂t
=

−λA

cρ
(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
) (2.2)where c is the heat apaity and ρ is the density of the material. x, y, and z arethe spatial oordinates. In the ases where walls onsist of only one material, itis possible to make an approximation to the problem by reduing Equation 2.2to be only one-dimensional:

∂T

∂t
=

−λA

cρ

∂2T

∂x2
(2.3)Equation 2.3 beomes even simpler if the temperature gradient is seen as on-stant whih is the ase if the walls are homogeneous. The thikness of the walls



2.4 Di�erent kinds of heat transfers 7is stated as d.
dT

dt
= λA

T2 − T1

d
(2.4)

T1 and T2 are the temperatures at the boundaries of the layer. To make Equation2.4 valid for the entire thikness of the wall Equation 2.5 an be used. To and Tudenotes the outside and the inside surfae temperature of the wall respetively
dT

dt
= UA(To − Tu) (2.5)where U , the transmission oe�ient, is given as
1

U
=
∑ di

λi
(2.6)

i denotes the number of homogeneous layers. This makes it possible to make theearlier desribed lumped desription. As stated throughout the setion, the wallmust onsist of homogeneous parallel layers if the one-dimensional desription isto be su�ient. In ases where an approximation for an inhomogeneous wall issatisfying the one-dimension method above an be used. Furthermore, it is alsopossible to apply the latter proedure when making approximate alulations ofordinary onstruted walls when onditions are non-stationary.2.4.2 ConvetionThe seond ontributor to heat transfer of buildings is onvetion. This is thekind of heat transfer where a �uid is in motion as a result of di�erene intemperature. The standard equation for onvetion is seen below
dQ

dt
= hA∆T (2.7)where h is the onvetive heat transfer oe�ient whih is depending on fatorssuh as ompressibility, visosity, temperature, the veloity and the pro�le of the�ow in the medium, and the distane between the layers [Both & Christiansen2002℄. Furthermore, this implies that the onvetion oe�ient varies in valuedepending on whether the wall is horizontal or vertial. A denotes the areawhih the heat is passing through. ∆T is the temperature di�erene betweenthe wall and the main body of the �uid.2.4.3 RadiationThe last of the three ways in whih heat transfer an take plae is by radiation,whih is mainly the heat transfer from the sun. Radiation is seen when two



8 The Mathematis Behind Heat Dynamis of Buildingsbodies with di�erent temperatures are in optial ontat with eah other. Thisis typially the situation when the heat transfer is transmitted through windows.The heat is exhanged from for instane the sun to the �ooring on the otherside of the window. In ases where one of the bodies is surrounded by the otherEquation, 2.8 an by applied to solve the problem.
dQ

dt
= Aǫσ(T 4

s − T 4) (2.8)
A is the surfae area of the surrounded body, ǫ is the emissivity, and σ isthe Stefan-Boltzmann onstant, σ = 5.67 · 10−8Wm−2K−4. As in the ase ofonvetion radiation is often di�ult to alulate in pratie. The heat transferby radiation inside buildings is rather limited, but it is neessary to inlude theradiation in the model for rooms with windows. It an be seen from Equation 2.8that the alulations for the radiation are heavily dependent on the temperaturedi�erenes.2.5 RC-modelsTaking the previous setions into onsideration it is obvious that the heat dy-namis desription of entire buildings an be very ompliated. A good approxi-mation of modelling the heat dynamis of buildings is to use lumped RC-models.The hoie of building materials has a great in�uene on the heat balane equa-tions and thereby the ostrution of the models. Four models with di�erentombinations of building materials an be found in the setions 2.5.1-2.5.4. Themodels are simpli�ed sine there is only one room, one window and no variationsin type of walls and �oor in the individual models. In the setions only di�erenebetween light onstrutions and heavy onstrutions is made. This is due to thefat that the heat transfer is transmitted faster through a light onstrutionthan through a heavy onstrution. Previous researh [Hansen 1985℄ has shownthat it is neessary to inlude one or more time onstants to desribe for instanea solid wall. In extension to this it is obvious that it is neessary to use di�erentRC-models to desribe various kinds of buildings ranging from greenhouses tosolid old hurhes. The �rst two models ontain two time onstants whilst thetwo latter examples ontain three time onstants. It is obvious that it is possibleto extend the models made and reate new models. Comments on extentions andimprovements are suggested in a setion after the desribtion of the four models.The most important simpli�ations for all four models are:1. The heat apaity is onentrated in a thin layer inside the wall



2.5 RC-models 92. All surfaes, apart from the window, are onsidered to have the sametemperature3. Radiation transfer as a mehanism for heat transfer between Ti, To, and
Tm is not onsidered.4. The heat apaity of the room air is negleted.The temperatures mentioned in bullet number three above are: Ti is the roomtemperature, To is the temperature of the wall surfaes, and Tm is the temper-ature of the heat aumulating layer. To reate the model the heat balanesfor the room air, the surfae, and the heat aumulating layers need to be iden-ti�ed. Therefore it is neessary to establish individual heat balane equationsonerning eah of the four models. All the general priiples are explained inrelation to the �rst model only.2.5.1 Light walls and solid �oorThe harateristis of this �rst model are that the dominating heat apaity isloated in the �oor and in the ground under the �oor while the walls are ther-mally light. A typial building with these harateristis ould be a buildingonstruted of wooden walls with a onrete �oor. In Figure 2.2 both a modeland the analogous eletrial system for the building are outlined. Tu is a puretemperature soure, r symbolizes the resistane whih is responsible for the ex-hange of heat. C is the apaitane. The φ-values are alled pure heat soures[Davies 2004℄.
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Figure 2.2: Illustration of a building with light walls and the dominating heat apaityin the �oor



10 The Mathematis Behind Heat Dynamis of BuildingsIn the following the heat balane equations for the building desribed abovewill be outlined. From the analogous eletrial system shown in Figure 2.2 itis possible to see how some of the heat balane equations are found. The threeheat balanes are:
• The room temperature

dQk

dt
+
∑

hAh(To − Ti) + Gca(Tl − Ti) = 0 (2.9)
• The surfae

dQr

dt
=
∑

k1A1(To −Tu)+
∑

k2A2(To −Tm)+
∑

hAh(To −Ti) (2.10)
• The heat aumulating layer

cm
dTm

dt
=
∑

k2A2(To − Tm) (2.11)The explanations of the notation are: Tu is the temperature of the outsidesurfae, Tl is the temperature of the ventilation air, Qk

dt is the onvetion partfrom persons, light, radiators, et. Qr

dt is the heat transferred diretly to thesurfae as radiation from the sun, light, radiators et. G denotes the quantityof the ventilation air and ca is the spei� heat of the air. To, Ti and Tm denoterespetively the temperature of the surfae, the room, and the heat aumulatinglayers. A denotes areas. By insulating Tm, T0, and Ti in the three heat balaneequations, Equations 2.9-2.11, it is possible to formulate a deterministi linearstate spae model in ontinuous time with two steady state equations like theone shown in Equation 2.12. It an be seen that only the �rst equation has adynami impat.
dTm

dt = ATm +BU
T0 = C1Tm + D1U
Ti = C2Tm + D2U




 (2.12)U = (Tu Tl
Qk

dt

Qr

dt
)T (2.13)

Tm is the state vetor and U the input vetor. U ontains all the externalfators whih have in�uene on the system, see Equation 2.13. A, C1, and C2are onstants while B, D1 and D2 are vetors onsisting of onstants. Thespei� expression of the onstants an be found by isolating Tm, T0, and Ti inthe heat balane equations.The model formulated above is not su�ient for desribing the heat dynamisof a building, beause it is only able to desribe slow hanges equivalent to long-time dynamis [Hansen 1985℄. It is furthermore known that the heat transfer



2.5 RC-models 11to a building an be in�uened by short time dynamis suh as a loud passingby the sun. Adding one or two time onstant, a model where both long- andshort-time dynamis an be modelled is identi�ed [Hansen 1985℄. Therefore anextra time onstant is added in the model below. When having more than onetime onstant it an be of advantage to express Equation 2.12 by the use ofmatries, whih is done in Equation 2.14
[
cm

dTm

dt

ci
dTi

dt

]
=

[ −1
ri

1
ri

1
ri

−( 1
ru

+ 1
ri

)

] [
Tm

Ti

]
+

[
0 0 AwP
1
ru

1 Aw(1 − p)

]


Tu
dQt

dt
dQs

dt



(2.14)where cm and ci are the total heat apaities of the walls and the air, respetively.
ri is the resistane against the heat transfer between the large heat aumulatingmedium and the room air. ru is the resistane of the heat transfer to the outdoorair. The details of the expressions of these resistanes an again be found bysolving the heat balane equations. Furthermore, the system also ontains theheat supplies for the radiators, dQr

dt , and the sun, dQs

dt . Aw is the area of thewindow, p indiates the e�etive part of the window where the solar radiationis having in�uene on Tm.
2.5.2 Solid walls and light �oorIn this model the dominating heat apaity is found in the outer walls, whilethe �oors are onsidered to be light and well isolated. A typial building withthese harateristis is a brik house with wooden �oors. Sine it was outlinedin the latter setion how to �nd and isolate the balane equations, the equationsfor the heat transfer in this ase are found to be:
[
cm

dTm

dt

ci
dTi

dt

]
=

[ −(−1
ri

+ 1
ru

) 1
ri

1
ri

−1
ri

] [
Tm

Ti

]
+

[
1
ru

0 0 AwP

0 1 Aw(1 − p)

]


Tu
dQt

dt
dQs

dt



(2.15)In �gure 2.3 is a drawing of the building and the onordant analogous eletrialsystem. The models above an be identi�ed on the basis of the analogouseletrial system.



12 The Mathematis Behind Heat Dynamis of Buildings
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Figure 2.3: Illustration of a building having the dominating heat apaity in the outerwalls and a light �oor
2.5.3 Light walls and double solid �oorThis model desribes the situation where the dominating heat apaity is plaedin the �oor. The walls are onsidered to be light. Compared to the formermodels this model has three time onstants. The reason why two time onstantshave been hosen for the desription of the heat transfer in the �oor area aredue to heat sensitivity. This third model has proved to be an exellent way ofmodelling a greenhouse[Nielsen 1996℄. This type of model has proven to be ableto estimate reliable and aurate physial parameters [Nielsen 1996℄. It was alsofound that two time onstants are not su�ient in order to desribe the heattransfer of greenhouses. The model is outlined in Equation 2.16 and in Figure2.4.
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Figure 2.4: A building having the dominating heat apaity in the �oor while theouter walls are light onstrutions
2.5.4 Double solid walls and light �oorThe dominating heat apaities in this ase is inside the building. Two heataumulating layers for the walls are inluded in the model beause of the thikouterwalls. The model is shown in Equation 2.17. Figure 2.5 shows a shemeof the building along with the analogous eletrial system. This model an forinstane be used when modelling old hurhes sine thik walls are often presentin these onstrutions [Madsen et al. 1994℄.
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14 The Mathematis Behind Heat Dynamis of Buildings2.6 Model extentions and data improvementsThe four models give a guideline for how to reate models for heat transfer ofsimpli�ed buildings. By using the RC-modelling it is possible to make extentionswhih suit a partiular ontext. The extentions ould be other ombinations ofthe heat aumulating layers or more ompliated buildings for instane havingmore rooms. However, it is important to keep in mind that it is only possibleto model linear senarios with the RC-models.Besides the development of desribing models improvements ould also be madein relation to the input variables. A ontributor to heat transfer whih is nottaken into onsideration is the temperature of the soil, both underneath thebuilding and in the surrounding area. One reason why the soil temperature inprevious models is not taken into onsideration ould be that the temperatureunderneath the building is onsidered to be approximately onstant. This willnot hange the total heat transfer of the building.It ould be interesting to add the heat transfer aused by the surround soilboth in sense of the di�erene in temperature and the re�etion to the models.The re�etion is of spei� interest for instane in areas where snow is ommon[Tehnologies 2006℄.In relation to re�etion this is a measurement whih is not available in all ases.The software used in this thesis is able to estimate the in�uene of unmeasuredvariables. This is done by adding an extra state in the set of system equationsor by inluding the parameter in the model. Later in the thesis the long-waveradiation to the surroundings is estimated.



Chapter 3Non-linear Heat TransferPhenomena in Buildings
In the previous hapter di�erent RC-models have been examined. As mentionedRC-models an only be used to model heat transfer of buildings that are in�u-ened by linear heat transfer phenomena and in ases where approximations areadequate. The aim of this hapter is to identify non-linear heat transfer phe-nomena that auses the neessity of introduing non-linear modelling methods.Very little researh has been made in the �eld of non-linear heat transfer. Thisan be due to the widespread use of RC-models. Another reason is a low level ofknowledge in general about non-linear in�uenes on heat transfer. In this thesisthe phenomenon is alled non-linear heat transfer, in priniple this kind of heattransfer an be designated by other terms, suh as advaned or unknown waysof heat transfer. This implies the risk that the phenomena atually investigatedwere not disovered in the researh.The researh has shown that radiation and moisture are two of the most well-desribed and best known auses of non-linearities in relation to heat transferin buildings. Another less desribed phenomenon, whih an be assumed toin�uene the heat transfer in buildings with non-linear e�ets is the outdoorwind-load.



16 Non-linear Heat Transfer Phenomena in BuildingsOver time di�erent non-linear terms seem to be important in the modelling,due to the hange in hoie of onstrutions and designs of buildings. Thedominating building materials in the past deades have been briks and on-rete whih are both vulnerable of moisture. One of the new trends of buildingenvelopes is the façades primarily made of glass. These types of façades areexpeted to be more in�uened by the wind onditions and the non-linearitiesin the ase of radiation. Furthermore the double envelopes and shading anontribute to the non-linearities.3.1 Details of the phenomenaThe following setions give some explanations and reasons why the non-linearitiesour and in some ases ways to express the phenomena mathematially.3.1.1 MoistureThe interation between heat transfer and moisture in buildings is an area wherea lot of researh has been done. In spite of the e�ort de�nition of the problem isstill laking [Xiaoshu 2002℄. [Liesen & Pedersen 1999℄ mention moisture as themost non-linear apaitane depending primarily on vapour density and tem-perature.It is possible for the moisture to enter the building envelope sine most buidingenvelopes are made of porous materials suh as briks [Xiaoshu 2002℄. Whenthe moisture enters the briks several ompliated proesses will start. It isdi�ult to desribe the boundary onditions when moisture has perolated intothe briks. All degrees of moisture enompassed from dry to saturated in�uenethe material properties suh as thermal ondutivity, density and heat trans-fer. In [Liesen & Pedersen 1999℄ it is noted that espeially the heat transfer isin�uened. This fat often leads to the neessity of simplifying the desriptionby approximations. When speimens are taken it is very di�ult to determineexperimentally any joint onlusions, sine there is no pattern for the spread ofthe moisture. These irumstanes lead to the nesseity of non-linear modelling.Moisture in the outer walls is not only in�uened by the weather onditions, itis known that walls in new buildings have a higher level of water ontent thanold walls. Furthermore, the moisture is not spread uniformly in the walls[Häuplet al. 1997℄. This is also an indiation that the applied heat transfer oe�ientvaries over time. This is an important aspet in relation to time series analysis.The following artiles treat the topi of moisture in buildings in a non-linearperspetive; [Häupl et al. 1997℄, [Deru & Kirkpatrik 2001℄, [Liesen & Pedersen



3.1 Details of the phenomena 171999℄ and [Xiaoshu 2002℄.3.1.2 Wind speedThe in�uene of wind load has an impat on the heat transfer. In the artile,[Jiménez et al. 2006℄, on whih this thesis is based, it is shown that the ambientwind speed a�ets the heat transfer from the photovoltai module to the ambientair. In the artile the wind speed is raised to an unknown power, W k, whihmakes the in�uene non-linear. In relation to the materials a�eted by the windin a non-linear way, it an only be asertained for ertain for glass, sine thephotovoltai module mainly onsists of glass. This area of researh is interestingin relation to many newly-built buildings having façades dominated by glass. In[Troelsgaard 1981℄ it is stated that the ambient overall oe�ient of the heattransfer, αu, is a funtion of the wind speed raised to the power of 0.78. αudoes only have in�uene in relation to the heat transfer through glass. Empirialresults have proven that the alulation of αu has to be divided in two separateequations, whih are found in Equation 3.1, [Troelsgaard 1981℄.
αu =

{
10.8 + 3.9W W ≤ 5m/s
5.0 + 7.15W 0.78 W ≥ 5m/s

(3.1)Comparing the statement of the nessiity of dividing the alulation of theoverall oe�ient of the heat transfer to the �nding in [Jiménez et al. 2006℄,there is a divergene. From bakground knowledge about the onditions of thewind at the test site it is known that the measured winds are below 5 m/s,and still the non-linear in�uene of the wind is tested to be signi�ant. Thisunderlines the strength of estimation methods where it is possible to determineif it is neessary to apply the in�uene of the wind as non-linear or if it issu�ient to assume linearity.No artiles or analyses have been identi�ed or have desribed this behaviour forfor instane briks or other porous materials.3.1.3 Radiation and the solar angle of inideneThe infrared radiation, f. Equation 2.8, is also a non-linear in�uene whih isneeded to be taken into onsideration espeially, due to the temperature raisedto the fourth power. In the later analyses of this thesis it is shown that severalinfrared radiation ontributors are signi�ant.The relationship between the heat transfer and the angle of inidene is non-linear [Melgaard 1994℄. The researh has shown that not only the heat transferand the angle are non-linear, but the number of glass overs has also an impat



18 Non-linear Heat Transfer Phenomena in Buildingson this non-linear relationship. It has been shown that buildings with mehan-ially ventilated double envelope façades annot be modelled by RC-modellingsine the shading and thereby the inidene angle of the radiation are non-linear[Manz et al. 2004℄.



Chapter 4The Mathematial MethodsUsed in the Modelling
In this hapter the applied mathematial methods will be outlined. The �rstpart desribes theory onerning estimation of models while the seond partdesribes methods of analysis of output data of the model.The strength of the mathematis mathods applied is that it is possible to testthe models and estimate not measured variables. A very important aspet ofthis approah is that the estimation of the models inorporate prior knowlegde,whih inreases the quality of the models.4.0.4 Estimation methodsThe models applied in the thesis are stohasti di�erential models, whih aredi�erential equations where one or more of the therms are a stohasti proess.To estimate parameters in stohasti di�erential models, two essential issueshave to be onsidered in advane. Primarily if there are any prior knowledge theparameters in the model or if all the parameters have to be estimated. Seondlyit is also neessary to deide if the model is going to ontain non-linear terms.These two points have impat on whih mathematial methods are to be usedfor estimating the parameters.



20 The Mathematial Methods Used in the Modelling4.1 Continuous-disrete stohasti state spae mod-elsContinuous-disrete stohasti state spae models are built up by two kinds ofequations: a set of system equations, (4.1), and a set of measurement equations,(4.2). The system equations are stohati di�erential equations and are de�nedin ontinuous time whereas the measurement equations are in disrete time.This re�ets the fat that the measurements are olleted disretely, while thedesription of the data is modelled to be stated in ontinuous time. The funtion
f(xt, ut, t, θ) is alled the drift term and σ(ut, t, θ) is the di�usion term. If thedi�usion term is not inluded in the model it will redue into a state spaemodel based on ordinary di�erential equations. In this ase it is not possible toidentify the unertainty of the system equations. Stohasti state spae modelsenable the possibility to model physial systems where random �utuations inthe states are present.

dxt = f(xt, ut, t, θ)dt + σ(ut, t, θ)dωt (4.1)
yk = h(xk, uk, tk, θ) + ek (4.2)Where xt ∈ X ⊂ R

n is a vetor of state variables, ut ∈ U ⊂ R
m is a vetor ofinput variables, t ∈ R is the time variable, θ ∈ Θ ⊂ R

p is a vetor of parame-ters, yk ∈ Y ⊂ R
l is a vetor of output variables. f(·) ∈ R

n, σ(·) ∈ R
n×n and

h(·) ∈ R
l are possible non-linear funtions; {ωt} is an n-dimensional standardWiener proess, also known as a random walk, and {ek} is an l-dimensionalwhite noise proess with ek ∈ N (0, S(uk, tk, θ)). σ(·) is the gain of the in-rements of the Wiener proess. It is assumed that dωt and ek are mutuallyunorrelated.The stohasti term, dωt, in Equation 4.1 hanges the equation from being adeterministi state spae model to a stohasti state spae model. The appliedmeasurement values may have a deviation from the true values. This deviationwill then be ontained in the noise term. Another reason for introduing thenoise term is that the model an be de�ient due to variables not onsidered inthe model having an in�uene on the system. This an be aused by the follow-ing irumstanes: either due to a lak of knowledge about the variables' e�eton the system, or beause measurements of the variable are not available. Themeasurement error, ek, ontains errors in the output signals whih are ausedby measurement noise [Madsen 2001℄ and [Andersen 2001℄.It is obvious that the aim is to have values of both dωt and ek as low as possiblesine this means that the model desribes the physial system su�iently.



4.1 Continuous-disrete stohasti state spae models 214.1.1 Parameter estimationThe purpose of the parameter estimation is to estimate the optimal set of pa-rameters. This is obtained by maximizing the likelihood funtion of the model.In this thesis two methods of parameter estimation are desribed, namely themaximum likelihood estimation and the maximum a posteriori estimation. Max-imum likelihood estimation is applied when there is no prior knowledge aboutthe parameters whereas maximum a posteriori estimation is perferable if anyprior knowledge on the parameters is available. In this thesis only the maxi-mum likelihood estimation will be applied. The mathematis behind the twomethods are quite similar sine the maximum likelihood estimation is a speialase of the maximum a posteriori estimation. It is therefore deided to outlinethe theory of the maximum a posteriori estimation.Considering a vetor Y ontaining S stohastially independent ontinuous se-quenes, Equation 4.3.
Y = [Y1

N1
,Y2

N2
, . . . ,Yi

Ni
, . . . ,YS

NS
] (4.3)Eah of the Y's is de�ned as in Equation 4.4.

Yi
Ni

= [yi
Ni

, . . . , yi
k, . . . , yi

1, y
i
0] (4.4)Furthermore p(θ) needs to be introdued as the prior probability funtion of theparameters, θ.The point estimates in the state spae model an be found as the vetor of pa-rameters, θ, that maximize the posterior probability density funtion, Equation4.5:

p(θ|Y) ∝
(

S∏

i=1

p(Yi
Ni

|θ)

)
p(θ) (4.5)The expression in the large brakets is the likelihood funtion.When applying Bayes rule, P (A ∩ B) = P (A|B)P (B), and the priniple of prod-uts of onditional probability density funtions, p(Yi

Ni
|θ), in Equation 4.5 anbe written as:

p(Yi
Ni

|θ) ∝
(

Ni∏

k=1

p(yi
k|Yi

k−1, θ)

)
p(yi

0|θ) (4.6)It is neessary to use the onditional densities to form the likelihood funtionsine the residuals of the ordinary di�erential equation part of the stohastidi�erential equations are orrelated.Equation 4.5 and 4.6 lead to the following expression of the posterior probability



22 The Mathematial Methods Used in the Modellingdensity funtion:
p(θ|Y) ∝

(
S∏

i=1

(
Ni∏

k=1

p(yi
k|Yi

k−1, θ)

)
p(yi

0|θ)

)
p(θ)

(4.7)The di�usion term, dωt, in Equation 4.2 is assumed to the independent of allthe state variables, xt, and furthermore it is driven by a Wiener proess. Theinrement of aWiener proess is Gaussian distributed, whih makes it possible toapproximate the onditional probability density funtion by Gaussian densities.This assumption reates the opportunity to apply the Kalman �lter tehniquefor estimating the mean and ovariane of the onditional probability densityfuntion in order to be able to alulate the likelihood funtion. The Gaussiandistribution is ompletely desribed by its mean and ovariane. The tehniquewill be desribed in detail in Setion 4.1.2. The stohasti di�erential equationsare driven by a Wiener proess. The harateristis of the Wiener proess arethat the inrements are Gaussian It is well-known that the density funtion forthe multivariate normal distribution is given as:
f(x) =

exp(− 1
2 (x − µ)T bsΣ−1(x − µ))

√
|2πΣ|

(4.8)
ŷi

k|k−1 is the ondititional mean, Ri
k|k−1 represents the ondititional ovarianeand ǫi

k is the residual. Equation 4.9-4.11
ŷi

k|k−1 = E{yi
k|Yi

k−1, θ} (4.9)
Ri

k|k−1 = V {yi
k|Yi

k−1, θ} (4.10)
ǫi

k = yi
k − ŷi

k|k−1 (4.11)The parameters are assumed to be Gaussian distributed, whih leads to:
µθ = E{θ} (4.12)
Σθ = V {θ} (4.13)
ǫθ = θ − µθ (4.14)When taking these assumptions into aount the posterior probability densityfuntion an be formulated as:
p(θ|Y) ∝




S∏

i=1




Ni∏

k=1

exp
(
− 1

2 (ǫi
k)T (Ri

k|k−1)
−1ǫi

k

)

√
det
(
|2πRi

k|k−1

∣∣∣)





×p(yi
0|θ)

)
× exp

(
− 1

2ǫT
θ
Σ−1

θ
ǫθ

)
√

det (Σθ)
(√

2π
)p

(4.15)



4.1 Continuous-disrete stohasti state spae models 23The last density funtion term shall only be inluded if the there is prior knowl-edge about the parameters. If the term is inluded the parameter estimation is amaximum a posteriori estimation, while an exlusion of the term leads to a max-imum likelihood estimation. The parameter estimates an now be determinedby further onditioning on the initial onditions:
y0 = [y1

0 , y
2
0 , . . . , y

i
0, . . . , y

S
0 ] (4.16)and applying nonlinear optimization to �nd the minimum of the negative loga-rithm of the resulting posterior probability density funtion, i.e.:

θ̂ = argmin
θ∈Θ

{− ln (p(θ|Y,y0))} (4.17)In the general ase the estimation method implied by Equation 4.17 is maximuma posteriori, but, if no prior information about the parameters is available, itdelines to maximum likelihood.4.1.2 The extended Kalman �lterAs stated in the previous hapter the Kalman �lter an be applied to alu-late the onditional mean and ovariane for the assumed Gaussian onditionaldensities. There are two variations of the Kalman �lter. The ordinary Kalman�lter is applied when solving linear systems and the extended Kalman �lteris applied for non-linear systems. Though both linear and non-linear systems,are present in the thesis, only the theory of the extended Kalman �lter will bepresented, sine the extended Kalman �lter dereases into the Kalman �lter forlinear systems.The reursive algorithm of the extended Kalman �lter onsists of two main at-egories of equations: predition and update. The predition equations preditthe state and observations. The update equations update the state preditionswith the last measurement.The review of the theory of the extended Kalman �lter follows the desriptionin [Jiménez et al. 2006℄.The predition equations of the extended Kalman �lter of the output variablesare stated in Equation 4.18 and 4.19
ŷi

k|k−1 = h(x̂i
k|k−1, u

i
k, tik, θ) (4.18)

Ri
k|k−1 = CP i

k|k−1C
T + S (4.19)The residuals are alulated in the innovation equation below.

ǫi
k = yi

k − ŷi
k|k−1 (4.20)



24 The Mathematial Methods Used in the ModellingIn eah iteration of the extended Kalman �lter the Kalman gain is estimated.The Kalman gain determines the level of in�uene of new observations. If themeasurement ovariane of an observation is large, the Kalman gain will notattah importane to the observation, and the updated state will be approx-imately the same value as the predited one. The Kalman gain equation is:
Ki

k = P i
k|k−1C

T (Ri
k|k−1)

−1 (4.21)After estimating the values of the predition, innovation and Kalman gain equa-tions the mean and the ovariane need to be updated applying Equation 4.22and 4.23.
x̂i

k|k = x̂i
k|k−1 + Ki

kǫi
k (4.22)

P i
k|k = P i

k|k−1 − Ki
kRi

k|k−1(K
i
k)T (4.23)where

x̂i
k|k = E{xi

k|Yi
k, θ} (4.24)

P i
k|k = V {xi

k|Yi
k, θ} (4.25)and x̂i

k|k is the onditional mean and P i
k|k ovariane of the state vetor.Aside from the predition equations of the output variables, also preditionequations for the state variable have to be run through. The state predi-tion equations are found in Equation 4.26 and 4.27. Initial onditions for theextended Kalman �lter are x̂i

t|t0 = xi
0 and P i

t|t0 = P i
0 . The extended Kalman�lter is sensitive to nonlinear e�ets and therefore it may be neessary to lin-earize the extended Kalman �lter about the urrent mean and ovariane, equalto the subsampling. This is atually one of the harateristis of the extendedKalman �lter. This linearizing of the �lter makes it possible to obtain a betterapproximation, the time interval [tik, tik+1[ is sub-sampled, [tik, . . . , tij , . . . , t

i
k+1[.In Equation 4.26 and 4.27 the simpli�ed analytial solution to the orrespondinglinearized propagation equations are written.

dx̂i
t|j

dt
= f0 + A(x̂i

t − x̂i
j) + B(ui

t − ui
j) (4.26)

dP i
t|j

dt
= AP i

t|j + P i
t|jA

T + σσT (4.27)for t ∈ [tij , t
i
j+1[, where the notation:
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4.2 Testing of the model 25has been applied. The analytial solutions are:
x̂i

j+1|j = x̂i
j|j + A−1 (Φs − I) f0

+
(
A−1 (Φs − I) − Iτs

)
A−1Bα

(4.28)
P i

j+1|j = ΦsP
i
j|jΦ

T
s +

∫ τs

0

eAsσσT eA
T sds (4.29)where τs = tij+1 − tij and Φs = eAτs , and where:

α =
ui

j+1 − ui
j

tij+1 − tij
(4.30)has been introdued to allow assumption of either zero order hold (α = 0) or�rst order hold (α 6= 0) on the inputs between sampling instants. Zero holdorder is when the value of the input is held onstant, while �rst hold ordermethod estimates a linear interpolation between the inputs.4.2 Testing of the modelWhen a model has been estimated in CTSM, it is possible and neessary to testthe model in order to determine if the model is adequate. The testing an be di-vided into two main areas. First, the model has to be adequate in relation to theCTSM modelling proedure. This implies investigating whether the estimatedparameters are inside the estimation interval, and whether they are signi�ant.Furthermore the orrelation oe�ients of the parameters have to be examined.Seondly, the residuals of the models that ful�l the �rst assumption have tobe analyzed. This analysis will be ompleted in both the time domain and thefrequeny domain.4.2.1 Chek of the estimated model4.2.1.1 T-test of the parametersThe t-test is used to test whether a parameter an be rejeted to be equal tozero. One of the assumptions of applying this test is that the estimators areasymptotially Gaussian distributed. When using maximum likelihood estima-tion the parameter estimations an be assumed to be asymptotially Gaussiandistributed with mean θ and ovariane Σθ̂ in aordane with the entral limit



26 The Mathematial Methods Used in the Modellingtheorem. The use of the maximum likelihood estimation makes it possible to�nd both the predition error estimates of the parameters and the variane. Theovariane is equal to H−1. The matrix H is approximately given by:
hij ≈ −

(
∂2

∂θi∂θj
ln (p(θ|Y,y0))

)∣∣∣
θ=θ̂for i, j = 1, . . . , p. hij is the i,j-element in H . The expression in the equationabove is the Hessian matrix evaluated at the maximum of the likelihood value,in CTSM denoted as the negative objetive funtion. Sine the aim is to identifythe unertainties of the individual estimates of the parameters, it is neessaryto make a deomposition of the ovariane matrix, like in Equation 4.31

Σ
θ̂

= σ
θ̂
Rσ

θ̂
(4.31)

Σ
θ̂
is the diagonal matrix of the standard deviations of the parameter estimatesand R is the orrelation matrix. The asymptoti Gaussianity desribed abovean be applied when testing for signi�ane of the estimated parameters. Thenull hypothesis of the test is:

H0 : θj = 0 (4.32)and the alternative hypothesis is:
H1 : θj 6= 0 (4.33)This kind of hypothesis, where it is tested whether a parameter an be assumedequal to a spei� value, leads to a two-tailed test. This implies that the nullhypothesis is rejeted for values of the test statisti plaed at either tail-end ofits sampling distribution. The Z-value is alulated as:
Z(θ̂j) =

θ̂j

σθ̂j

(4.34)
θ̂j and σθ̂j

are both alulated in CTSM. Z belongs to a t-distribution withthe degree of freedom equal to the number of observations, the length of thetimeseries, subtrated the number of estimate parameters. Having alulatedthe Z-value it is possible to estimate the probability, p-value, of the parameterbeing equal to zero.The theory is also outlined in [Madsen & Holst 2000℄ and [Kristensen & Madsen2003a℄.4.2.2 Stable parameter estimatesWhen CTSM estimates the parameters several values are estimated in parallel.These values make it possible to hek whether the parameters are free of the



4.2 Testing of the model 27limits. In order to estimate the models in CTSM it is neessary to de�ne aninterval by minimum, initial and maximum values. The limits are the minimumand maximum values. If the parameter estimate is well free of the limits, itmeans that the parameters are satisfatorily estimated. The values that have tobe investigated in order to determine if the parameters are adequate, are statedin the three points below [Kristensen & Madsen 2003b℄.
• The value of the penalty funtion has to be signi�ant ompared to thevalue of the objetive funtion
• dF

dPar , the derivative of the objetive funtion has to be lose to zero
• dPen

dPar , the derivative of the penalty funtion has to be signi�ant omparedto dF
dParIf the three points above are not ful�lled it is neessary to loosen the intiallimits. When the new limits are set the model has to be reestimated.Also the orrelation matrix of the parameter estimates gives indiations aboutthe model estimation being appliable. When analyzing the orrelation values inCTSM as a rule of thumb orrelation values up to 0.96 are aeptable. Resultsontaining orrelation values above 0.96 is an indiation of the model beingoverparameterized. In this ase it an be neessary to remove one or more ofthe parameters from the model. Sine the parameters are orrelated it is alwayspreferable to remove one parameter at a time starting with the parameter havingthe highest p-value. In speial ases prior knowledge about the parameters mayleed to another proedure.4.2.3 Analysis of the residualsAfter estimating and testing the parameters the last analysis that has to bearried out to verify the appliability of the model is the residual analysis. Theanalysis of the residuals an be used in two ways:

• To validate a model
• To give input as to how to further develop the model in order to give animproved desription of the dataIn this setion several di�erent analyses of the residuals are examined. Theresiduals are de�ned as the di�erene between the true value and the estimated



28 The Mathematial Methods Used in the Modellingvalue of the output variable, see Equation 4.35.
ǫt(θ) = Yt − Ŷt|t−1,θ (4.35)If the model is adequate the residuals must be white noise. White noise is de-�ned as being random mutually unorrelated identially distributed stohastivariables with mean value 0 and onstant variane, σ2

ǫ [Madsen 2001℄. Di�erentanalyses identify various interpretations of the residuals. This implies that itis not su�ient to perform one or two of the analyses to get a harateristiline of the residuals. If the analysis of the residuals proves that the residualsan be assumed to be distributed like white noise, and it an be onluded thatthe model �ts the data well. In the opposite situation the residuals an giveguidelines of how to expand or hange the model.The initial analysis of the residuals is to plot the residual versus the time. Thisplot may reveal non-stationarities and potential outliers. When analyzing theresiduals further, there are two main approahes: a test in the time domain anda test in the frequeny domain. Di�erent methods in the two domains will beoutlined in the two next setions.4.2.3.1 Residual analysis in the time domainTest of the autoorrelation funtionIn onnetion with the time domain tests the most dominant test is to plot theestimated autoorrelation funtion, ρ̂ǫ, with the approximate 95% on�deneinterval for the time lags. The autoorrelation funtion may reveal if some ofthe variations in data are not desribed in the model, for instane periodialtendenies. The limits are found as the ± 2 standard deviation. The mean andvariane of the autoorrelation are given as:e[ρ̂(k)] ≃ 0; k 6= 0, (4.36)
V [ρ̂(k)] ≃ 1/N ; k 6= 0. (4.37)If the residuals are white noise the autoorrelation funtion is de�ned as:

ρ̂ǫ(k) =

{
1 k = 0
0 k = ±1,±2, . . .In most ases not every value of the estimated autoorrelation funtion, ρ̂ǫ, for

k > 0 is exatly zero. This is the reason why the 95% limit is used for deidingwhether the residuals an be assumed to be white noise. Below is stated how



4.2 Testing of the model 29to alulate the autoorrelation funtion.First the autoovariane funtion needs to be introdued, Equation 4.38.
γ(k) = Cov[X(t), X(t + k)] (4.38)

X(t) is a stationary proess, t is the time indiator and k denotes the time lag.When the autoovariane funtion has to be worked out, Equation 4.39 an beused for de�ning the autoorrelation funtion.
ρ(k) = γ(k)/γ(0) (4.39)From Equation 4.39 it is obvious that ρ(0) = 1, f. the de�nition of the auto-orrelation funtion above.Using the theory above the autoovariane funtion is alulated in the followingway:

C(k) = C(k) =
1

N

N−|k|∑

t=1

(Yt − Y )(Yt+|k| − Y ) (4.40)for |k| = 0, 1, . . . , N − 1. Furthermore, Y = (
∑N

t=1 Yt)/N .Based on the estimated autoovariane funtion the estimated autoorrelationfuntion an be alulated as:
ρ̂(k) = rk = C(k)/C(0), (4.41)Test of the partial autoorrelation funtionSimilar to the autoorrelation funtion the partial autoorrelation funtion anbe used for determining if the estimated models are adequate. The partial au-toorrelation funtion is favourable to unover the neessity of adding an extrastate to the model. The partial autoorrelation an be estimated when fewvalues need to be estimated by using the Yule-Walker equations. A preva-lent numerial method is the reursive method desribed in the Appendix of[Madsen 2001℄.Test of hange in the signsIf the residuals are assumed to be white noise the mean will be lose to zero.On this basis it must be assumed that in average there will be a hange in thesign of the residual every seond time, therefore p = 1

2 . Sine there are only twopossible outomes the hange in sign test is binomially distributed. As men-tioned the probability of hange in sign will be loated lose to 1
2 , and whenthe numbers of residuals are high it is possible to approximate the binomialdistribution by using the normal distribution. As a rule of thumb this approahan be applied when np and n(1 − p) are above 15. When p has to be lose



30 The Mathematial Methods Used in the Modellingto 1
2 , the number of residuals just have to be above 30. The Z-value an bealulated as:

Z =
X − np√
np(1 − p)

(4.42)To rejet the null hypohesis p = 1
2 Z shall either be larger than zα/2 or less than

−zα/2. α is the level of signi�ane. The theory an be found in [Madsen 2001℄.Portmanteau lak-of-�t-test Apart from the test of the autoorrelation fun-tion the Portmanteau lak-of-�t test an reveal if the values of the autoorrela-tion funtion are not omplying with the random error.
Q2 = (

√
Nρ̂ǫ(θ̂)(1))2 + (

√
Nρ̂ǫ(θ̂)(2))2 + · · · + (

√
Nρ̂ǫ(θ̂)(k))2 (4.43)whih an be redued to:

Q2 = N

k∑

i=1

ρ(i)2 (4.44)
N is the number of observations. k is the number of onsidered autoorrelations.Textbooks suggest that the appropriate value of k lies within 15 and 30. Thealulated value of Q2 has to be weighed against the χ2-distribution with m−ndegrees of freedom. It is assumed that the distribution of Q2 is approximately
χ2-distributed. n is the number of estimated parameters in the model [Madsen2001℄.4.2.3.2 Residual analysis in the frequeny domainTest in the umulated periodogramAll the previously mentioned analyses analyze the residuals in the time do-main. The normalized umulative periodogram is used for testing the residualsin the frequeny domain. This test an reveal if there are any spei� ar-eas of the frequeny domain when the residuals are over-represented. Suh anover-representation ould be due to seasonal or periodi skew behavior of theresiduals. The variation of white noise is uniformly distributed, whih impliesthat no frequenies ought to be over-represented. Similar to the autoorrelationfuntion the periodogram ontains are 95% limit band. A straight line from(0,0) to (0.5,1) inside the limit in the periodogram indiates that the residualsare white noise.The periodogram is alulated in the following way: The equation for the peri-odogram for the residuals, I(νi), an be seen in Equation 4.45, having the fre-quenies νi = i

N , where i is de�ned in the following interval; i = 0, 1, . . . , N/2.
N denotes the total number of observations.

Î(νi) =
1

N

[( N∑

t=1

ǫtcos2πνit

)2

+

( N∑

t=1

ǫtsin2πνit

)2] (4.45)
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Î(νi) denotes the amount of variation of ǫt related to the frequeny νi Thenormalized periodogram iŝ

C(νj) = [

j∑

i=0

Î(νi)/

N
2∑

i=0

Î(νi)] (4.46)The on�ndene limits for the periodogram are alulated by ±Kǫ√
q , where q is

q = (n−2)
2 for n even and q = (n−1)

2 for n odd. The approximated oe�ient Kǫfor the probability limit 5% is 1.36 [Box & Jenkins 1976℄.4.3 Filtering methodsOne of the purposes of the thesis is to identify how the outdoor wind in�ueneon the building integrated photovoltai module. An anemometer has measuredthe atual wind speed during the testing. There are sattered opinions as towhether it is the atual wind or a �ltration of the wind that have impat on themodule. Four di�erent versions out of these are three �ltered. The theory ofthe �lters is desribed below.The �rst and simplest �ltration is a moving average based on a ertain lengthof observations. The more observations the alulation of the moving averageis based on, the less of the original variation is found in the �ltered version. Inthis thesis the moving averages are estimated from intervals of 20 observations.Lowpass �ltering is the seond method applied. This �lter provides the oppor-tunity of �ltering away the high frequenies. The lowpass �lter is alulated bythe software tool Splus, whih uses omplex demodulation to identify the low-pass �ltrated variable. This method is outlined in [Bloom�eld 2000℄. In shortit is supposed that the variable ontaining the wind speed an be rewritten as:
Wt = Rtcos2π(f0t + φt)In order to alulate the lowpass �lter it is neessary to determine a uto�frequeny, fc, whih is de�ned as f0/2. Only the frequenies below the uto�value are kept through the �lter. The smaller fc, the less variation is leadthrough the �lter. In agreement with the statements above the lowpass transferfuntion is de�ned as:

H(f) =

{
1 0 ≤| f |≤ fc,
0 fc <| f |≤ 1

2Aside the moving average and the lowpass �lter, it is also attempted to apply aausal �lter. The ausal �lter is applied in the models as an extra state spaeequation, Wf = aWf − aW . This means that CTSM estimates a in suh a



32 The Mathematial Methods Used in the Modellingway that the in�uene of the atual wind speed, W , and the �ltrated windspeed, Wf , is optimal in order to desribe the data. The expression above is therelationship is written in ontinuous time. An easier way in whih to understandthe idea behind the ausal �lter, is by rewriting the expression in disrete time,whih an be written as Wf = aWf + (1 − a)W . This expression shows thatthe objetive of the equation is to weight the in�uene of the �ltered wind andthe measured one. Comparing the ausal �lter with the other �lter and the waythey are applied in the thesis, it is evident that the ausal �lter is able to maththe spei� data, while the other �lters are more stationary.4.4 Model validationThe performane of a model will nearly always inrease when adding more termsto the model. The model validation in this thesis is the likelihood ratio test,whih an larify statistially if the improvement of the model is signi�ant.4.4.1 The likelihood ratio testThe likelihood ratio test makes it possible to test if the full model has a signi�-antly better performane than a sub model. The sub model is a similar modelonsisting of fewer terms. The two hypotheses are:
H0 : θ ∈ M0

H1 : θ ∈ M1

θ represents the parameters. M0 is a subset model of the full model M1. Thelikelihood funtion, L(θ|Yi
Ni

), is given as p(Yi
Ni

|θ). The likelihood ratio is
Λ(Yi

Ni
) =

sup{L(θ|Yi
Ni

: θ ∈ Θ0}
sup{L(θ|Yi

Ni
: θ ∈ Θ}The test statistis of the likelihood ratio test are alulated as:

Lratio = −2 · log(Λ(Yi
Ni

)) = 2 · log(
sup{L(θ|Yi

Ni
: θ ∈ Θ0}

sup{L(θ|Yi
Ni

: θ ∈ Θ} )

= −2 · (log(sup{L(θ|Yi
Ni

: θ ∈ Θ0}) − log(sup{L(θ|Yi
Ni

: θ ∈ Θ}))The value of Lratio is asymptotially χ2-distributed. The degrees of freedom ofthe χ2 distribution are estimated as (dim(M1) − dim(M2)). dim denotes the



4.4 Model validation 33number of estimated parameters in the models. If Lratio is below the χ2 valuethe h0 hypothesis is aepted. In the other ase the test stresses the neessityof the full model [Madsen & Holst 2000℄.CTSM estimates the objetive funtion of the model. The objetive funtion isthe negative log-likelihood funtion.
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Chapter 5 Modelling in CTSM
The parameters for the onstruted models are estimated by using the free-download appliation CTSM, whih is an abbreviation of Continuous TimeStohasti Modelling.This setion is meant to give some hints about how to estimate models in CTSM.A user guide [Kristensen & Madsen 2003b℄ an be downloaded from the CTSMhomepage - www2.imm.dtu.dk/tsm. The work in relation to this thesis has indi�erent situations given rise to some problems. The purpose of this hapter isto avoid di�ulties for future users of CTSM.5.1 Preparations for the modellingIt is important to identify the type of model that is to be estimated. This willin�uene the way the model has to be typed-in in CTSM. If the model is non-linear it is straightforward to type it in, while linear models have to be sortedby a state and an input vetor. This entails that it is not possible to transfer amatrix notation diretly to CTSM.



36 Modelling in CTSMThe dataset to be applied has to be set-up in a .sv-�le in the following way:
• The time variable
• The input variables
• The output variable(s)It is neessary to satisfy all three ategories in order for CTSM to proeed thealulations.In relation to the input variables in the �le for estimation purpose it is veryimportant to mention that the variables need to appear in the same order asthe olumns in CTSM. It is not possible to have headers of the variables forreognition purposes.5.2 The atual modellingThe following gives some advise of how to use CTSM. The advies below haveappeared during the modelling proess and from the CTMS manual.
• It is of great importane not to use too widespread limits for both statesand parameters. If too wide limits are used it is not possible for CTSM to�nd a model. Wide limits an in some ases be in the magnitude of 10−3.The wider the limits are, the longer the alulations will last, beauseCTSM will have a larger set of possible outomes. On the other handit is also important not to tighten the limit too muh, so that CTSM isinable to �nd a feasible solution. It may take a ouple of attempts to �ndworkable limits for the estimation.
• When some workable limits have been found, the p-values and the penaltyfuntions indiate if the initial values are aeptable in order to desribethe data satisfatorily.
• It an be an advantage to use the exponential funtion of the noise, sinethis enables the values of the parameters to be both positive and negative.While doing this it is important to make the limit over both positive andnegative values.



5.3 After the modelling 37
• In CTSM it is not possible to weigh the output variables. A way in whihto solve this problem is by adding extra state spae equations. This isattempted in Chapter 9.
• It is possible to hange the time unit in the estimation. For instane, if thetime interval needs to be hanged from minutes into seonds. This is doneby multiplying the time variable by 60. Somehow this has a signi�antextending in�uene on the estimation time.
• Sometime when a funtion, like the logisti funtion, is added in a modelCTSM is only able to �nd a loal minimum, whih implies that the pa-rameter estimates due to a low number of iterations, are estimated loseto the intial value of the parameter. If this ours new initial guesses anremedy the problem.5.3 After the modellingNo troubles have been identi�ed in this phase of the modelling.
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Chapter 6
Photovoltai in General

6.1 IntrodutionThe following hapter is an introdution to photovoltai tehnology; what is itand how does it work? Photovoltai is often denoted PV. Also test standardsand prior analyses will be disussed. This is done in order to be able to stressthe basis for building up the models. Prior knowlegde and testing may revealimportant issues.PV tehnology has a huge potential even though the e�ieny of the equip-ment today and in general has some limitations. In less than an hour the sundelivers enough energy to over the energy demand of one year of the world'spopulation[Markvart 2000℄. The e�ieny of PV ells today range from 5% to25% depending primarily on the applied materials and methods. The e�ienyexpresses how muh energy is onverted into eletriity. The rest is mostlytransformed into heat in the module or re�eted.From 1992 to 2002 the umulative installed PV apaity in the InternationalEnergy Ageny ountries raised from 109.9 MW to 2596 MW. This indiates amarket on the rise[IEA 2006℄.



40 Photovoltai in General6.2 What is PV tehnology?PV is an abbraviation of photovoltai, whih literally means light-eletriity.'Photo' dates from Greek 'phos' meaning light, and 'Volt' from the Italian si-entist Volta. The most widespread PV solution are the stand-alone solutions,whih are inlined and surrounded by air. These modules an either be in-stalled at the ground or at roofs. PV ells produe eletriity on the basis ofsolar radiation. Another method by whih to produe renewable energy fromthe energy deliverred by the sun is solar heating where for instane water andair are heated. The main purpose of PV modules is to produe eletriity, butthe PV modules an also satisfy other funtions. The PV module analyzed inthe thesis is meant for integration in building façades. BIPV is an abbreviationof building integrated photovoltai.One of the ideas of the building integratedphotovoltai, BIPV, module analysed in this thesis is to generate heated airin the ventilated gap behind the module. This preheated air an be utilizedas heating for the building. Meanwhile the PV module is ooled down. Sinethe e�ieny of the module is negative orrelated with the temperature of themodule a double gain is obtained. This is desribed in [Bazilian et al. 2002℄ and[Andresen 2002℄. A residential-sale ventilated BIPV system is tested in Sydney[Mai et al. 200x℄. Also the omfort of the building has to be taken into aount.This implies that the indoor limate and the in�ow of light to the building donot derease unaeptably due to the installation the modules. Beside heatingthe building, the modules an be installed for shading purposes. This an beseen as a ooling-down fator[Andresen 2002℄. There is a strong negative orre-lation between the e�ieny of the module and its temperature. For this reasonit is bene�ial to have the module ooled down by the ventilation.6.3 The onstrution of a PV moduleBefore having an operational PV module, an extensive proedure has to bearried out. A PV module is omposed by ells. The proedure below is a shortdesription of how a ell is made. The prevailing material for PV ells is silion,whih an be extrated from sand. There are for the moment three dominatingtehnis and �nal produts. At this point of time researh is arried out in orderto identify less expensive PV matrials. The prodution of the PV equipment isexpensive in the perspetive of both �nane and energy. Therefore, fators suhas ost and energy onsumption in the prodution phase, the e�ieny of theells, and the physial �exibility of the ells and modules must be taken intoonsideration in the phase of deision. These fators are listed, for the threeproduts, in the bulleted summary below.



6.3 The onstrution of a PV module 41
• Monorystalline silion� The prodution of the monorystalline silion is the most expensiveand time onsuming proess. This is due to the fat that it takesmore time to grow a mono rystal ompared to a poly rystal. Thelong prodution time and proedure leed to a high level of energyonsumption.� Today the e�ieny of the ommerial monorystalline silion ellsis about 12-16%.� The �exibility is rather limited, beause the ell annot resist evenmedium angles of bending. If the ell is bent too muh it will simplybreak and beome dysfuntional. Furthermore, it is not possible torepair a broken ell.
• Polyrystalline silion� The prodution of the polyrystalline silion ells is faster and lesstime-onsuming than the monorystalline silion. This results inlower eonomial expenses ompared to the monorystalline.� The e�ieny appears in the area of 9-12%.� Polyrystalline has the same limited �exibility as the monorystallinesilion.
• Amorphous silion� Often referred to as thin�lm ell.� The expenses in relation to the prodution of amorphous silion isin the same area as polyrystalline. It is hoped that produtionsan be arried out at far lower expenses.Furthermore, the amount ofmaterial needed is less than 1 µm in thikness. In omparison to thetwo other tehnis the thikness of amorphous silion is about 200times less.� One of the drawbaks of amorphous silion is that the e�ieny isonly in between 3-8%.� Amorphous silion an be sputtered on urved surfaes and also overlarge areas.The fats above are found in [Laukamp et al. 1998℄ and [Andresen 2002℄.To sum up the bullets above the deision proess is a ost bene�t analysis wherethe osts, needs and funtions are weighted against eah other. For the momentthe polyrystalline silion PV modules are desirable due to an aeptable e�-ieny and lower expenses in relation to prodution and investment.For both the mono- and polyrystalline silion the rystals are grown in bloks.



42 Photovoltai in GeneralIn short, the blok is ut into thin slied ells, of 200-300 µm. The ells arethen doped and anti-re�etion oated in order to inrease the e�ieny of theells. Finally the ells have to be sreen printed. After the treatment the mostommon proedure is to onnet the ells in series to onstrut a module. Theseries of ells are plaed between materials that an resist all kind of weatheronditions. The are two dominating materials: glass and tedler. In Figure 6.1the struture of the module analyzed in this report is illustrated. The PV ellsare polyrystalline silion. In the phase of prodution it is important that allair gathered between the sheets of glass is removed, otherwise this would leadto lower e�ieny of the module. Another very important issue is that, in a-ordane basi theory of eletriity, the weakest ell in a series will determinethe e�ieny of the module. Due to this all ells are tested and lassi�ed.
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Glass

PV cells and interconnects

Glass

EVA (Ethyl Vinyl Acetate)

EVA (Ethyl Vinyl Acetate)
Fibre glassFigure 6.1: Illustration of the struture of the PV module

6.4 Standards for PV modulesA survey among the European Members States reveals that standards of al-ulation do not over the area of renewable energy [Bloem n.d.a℄. In di�erentparts of the world di�erent generel standards are appliable, but in an over-allperspetive the standards are rather idential. The standards over both themodule set-up, the testing, and the measuring methods. The data applied inthis report are measured in aordane with the European Standard, IEC61215.The reason why it may be pro�table to investigate the standards is for instanethat guidelines are set out for whih observations are neessary in relation tomodelling or analyzing the performane of a module. It is important to keepin mind that the e�ieny of the module and its temperature are losely linkedtogether. The higher the temperature of the module beomes, the less e�ientthe module. The standards also have regulations of how to arry out testing.The present European standard, IEC61215, is based on the following standard



6.4 Standards for PV modules 43referene environment(SRE), when identifying the nominal operating ell tem-perature (NOCT):
• Tilt angle: At normal inidene to the diret solar beam at loal solarnoon
• 800 W

m2 irradiane
• 20 oC ambient temperature
• Wind speed: 1m

s

• Open-rak mounted moduleThe problem onerning the standard is that operational PV modules, espeiallythe BIPV modules, and the environment rarely satisfy the onditions stipulatedin the standard. For the moment, international standard organisations are de-veloping standards suitable for the growing market of BIPV and on the demandfrom building designers. In relation to BIPV most of the onditions stated inthe present standard is not ful�lled. The irradiane of 800 W
m2 is the irradi-ane at noon for a PV module in the optimal position. BIPV modules willnearly always be plaed vertially in the faade. Furthermore there is no freeair �ow at the rear side as for an open-raked module. The main problem aboutthe BIPV modules not ful�lling the standard, is that the fators listed abovehave onsiderable in�uene on the module temperature. In a Duth alulationnorm for the Energy Performane of dwellings and residential buildings it isestimated that the e�ieny of the modules is redued by 0.7 for roof instal-lations [Bloem n.d.a℄. This is mainly due to the raise in temperature. Thetemperature has impat on the eletrial e�ieny of the module of about 0.5%/oC referring to the onditions at 25oC. In Figure 6.2 two urves show therelationship between the irradiane and the e�ieny at di�erent temperaturelevels. 45oC is not an unusual module temperature. The highest tempera-ture in the top of the module analyzed in this thesis is about 50oC. Withoutthe fored ventilation the module temperature an get even higher [Christ 2001℄.In extension to these obvious deviations a test ontaining four di�erent se-narios has been arried out on a spei� day at JRC in Ispra. The test mapsout the di�erene in e�ieny by examining the temperature di�erene betweenthe module and the ambient temperature. In short, the onstrutions of the fourmodules are: free-rak, façade appliation, insulated and a roof appliation.
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Figure 6.2: This plot shows the in�uene of the module temperature on the e�ienyreferring to the onditions at 25oC and 1000W/m2 irradiane [Christ 2001℄.
In Figure 6.3 both the theoretial notion and the result of the test are illus-trated. The test is desribed in several artiles, e.g. [Jiménez et al. 2006℄ and[Bloem n.d.b℄. It an be seen that the line of the free-raked has the smallestslope. This implies that the module temperature of the free-rak is the lowest ofthe four from the test onstrution. The plots also reveal that the line referringto the façade integrated module is plaed just below the line of the insulatedmodule. This gives a guidane that the BIPV modules have higher module tem-peratures whih leads to a lower e�ieny. The fat that the lines do not followthe same line forth and bak is due to the heating of the module during the dayhours.Apart form relating to the test environment, the standard also ontains guide-lines for how to arry out testing and guiding as to whih variable must bemeasured and olleted. Further, it is stated in the standard what kind ofequipment that has to be used in the testing. The standard rules that the in-terval of the measurement of the variables must be of maximum 60 seonds. Asa minimum irradiane, ambient temperature, ell temperature, wind speed andwind diretion must be olleted.
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Figure 6.3: The relation between the di�erene between the module and the ambienttemperature versus the irradiane [Jiménez et al. 2006℄. ICT denotes the insulationell temperature. The upper plot show the theoretial relationships, while the otherplot arise from measurements.



46 Photovoltai in General6.4.1 Prior researh in the �eld of modelling of PV mod-ulesIn the searh for previous mathematial modelling of BIPV or analysis of similartests of BIPV, it has beome lear that not muh researh has been done. Moreresearh has been arried out on standard PV free-rak mounted modules. Thisresearh an also be of interest, sine the most fundamental di�erene betweenthe PV and the BIPV is the ventilated air-gap behind the module and the devi-ations from the standard. The primary model of interest is the thermal modelsexplaining the e�ieny of the modules.The mathematial method, utilizing stohasti di�erential equations, appliedin this report is only reognized in [Jiménez et al. 2006℄, from whih this thesisarises. In both ases the estimation of the models is arried out in CTSM. Oneof the big advantages of CTSM is that it is possible to estimate models on-taining non-linear terms. This artile presents models for BIPV modules and isbased on the same data as applied in Setion 8. In one artile neural networksand linear regression are applied to estimate a model[TamizhMani et al. 2003℄.Previous researh may give some guidelines as to determining whih variableshave to be onsidered in the models. In [Luque & Hegedus 2003℄, it is mentionedthat the humidity may in�uene the performane of the PV module. Besidesthat, the ambient temperature, the irradiane and the wind speed the humid-ity and the diretion are inluded in the introdutory models in [TamizhManiet al. 2003℄. After reduing the model, it is found that neither the humidity northe wind diretion are signi�ant. The data are measured at the present testsite, but these variables are not inluded in the data sets. In a further analysisit ould be interesting to investigate if the �ndings above an be proven to beorret.



Chapter 7The Applied Variables andthe Measuring Methods
This hapter gives an introdution of the test site and the data olleted andapplied.All data analyzed in the present report have been olleted at the Test RefereneEnviroment, TRE, at the Joint Researh Center, JRC, in Ispra, Italy in 20027.1 The Test Referene EnvironmentThe main idea of TRE is to make the set-up as identially to a building façadeas possible in order to be able to investige the behaviour of module. Thereforethe module is plaed in an insulated box and an air gap between the module andthe wood board ats as the façade. The present test on�guration is inspired byearlier test site, where the PV module was integrated in a test ell[Bloem n.d.b℄.One of the improvements made is that the tubes for the inlet and outlet air aremoved from the front to the rear side of the test set-up. This is done to reduepreheating of the inlet air.Two drawings of the test set-up is shown in Figure 7.1. The drawing to theleft shows the energy �ows in�uening on the module. The overall energy bal-
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Figure 7.1: Overview of the test set-up [Bloem n.d.b℄ane of the BIPV system is very omplex. The models are only based on theonvetive and radiative energy �ows, sine these two heat transfer methodsare the most dominant. The heat transfer through ondution is negleted inaordane to the thikness of the module, whih is only less than two en-timetres thik. TRE is onstruted in suh a way that the heat transfers anbe measured aurately. The ondution through the opaque wall, onsisting ofthe wooden wall and insulation material, have not been taken into onsiderationdue to the fat that the wall is well insulated. On the right side of the �gure is adrawing showing where the variables are measured. In addition to the drawinga Tmoduletop and a Tmodulebottom are measured seven entimetres from the edgeof the module, as in the ase of the top temperature of the wooden board shownin the drawing. Some fats about the Test Referene Enviroment are shownbelow.
• The dimensions of the module are 120x120m
• The module ontains 121 PV ells.
• Ten entimetres mehanially ventilated air bag between the module andthe wooden board.A more detailed desription an be found in for instane [Bloem n.d.b℄.



7.2 Introdution to the measurements 497.2 Introdution to the measurementsThis setion ontains some general remarks on the measurements. All the vari-ables are measured one every minute aording to the maximum interval spe-i�ed in the standard. One of the biggest problems in relation to this test is thatsome of the measurements have systemati errors. For instane some equipmentan be installed in a wrong angle. In the upoming setion the size of the errorsattahed to the di�erent measurements and its in�uene on the results will bedisussed. It is neessary to distinguish between random error and systematierror. Sine the models are based on a large data material, the random errorswill not have a depreiating in�uene on the results. It is more ompliated todeal with the systemati error, sine the same size of error will be applied in theentire model7.3 Output variableThe purpose of this thesis is to model and predit the PV module temperature.The module temperature is therefore the only output variable.7.3.1 The module temperatureThe measurement of the module temperature is rather triky. The �rst reasonas to the di�ulties of measuring the aurate temperature of the module is dueto absene of the possibility of plaing a thermo ouple inside the ell to measurethe temperature. To make the best possible measurements two thermo ouplesare plaed seven entimetres from the plate edge at the bottom and the top ofthe module in between the two glass plates. The measured temperatures andthe average temperature are found in Figure 7.2. At �rst thought, the obvioustemperature of the module to apply in the models from a statistial point ofview is the average of the bottom and the top temperature. By analysing thetwo thermal images shown in Figure 7.3, it beomes lear that the measuredtop temperature represents between 50-90% of the module temperature. Themodule temperature is lower in the bottom of the module due to the foredventilation in the air gap behind the module. The alulated average temper-ature therefore is not in any sense a representative temperature, but more anarti�ial temperature whih is unlikely to present in the module. Unfortunatelyno thermal images have be taken in the period 16th-18th of August, whih isthe data the models are based on. Figure 7.3 reveals that the heat distribution
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Figure 7.2: Plot of the temperature of the moduleof the module varies muh.The thermal images were disovered during the estimation of the models. Theintrodutory analyses will therefore be based on both the average and the toptemperature. The intention is to investigate whih of the temperatures deliversthe best results.

Figure 7.3: Two thermal images of the module from di�erent days
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Figure 7.4: Plot of the ambient temperature7.4 Input variablesAll the remaining variables in the analysis are input variables. The use ofthese variables will make it possible to predit the module temperature. Theanalyses will help to identify the in�uene from di�erent variables on the moduletemperature.7.4.1 The ambient temperatureIt is obvious that the ambient temperature has an in�uene on the performaneof the PV module, sine the whole front area of the module is in ontat withthe ambient temperature. In Figure 7.4 the temperature measurements areshown. Like the past variables there is a lear 24 hours periodiity. The ambienttemperature has a low variation ompared to the measured wind speed shownin Figure 7.7. Around noon the largest �utuations are found.The ambient air temperature is measured by using a ventilated double shieldedPT100 sensor It is onstruted in suh a way that the temperature is measuredinside the equipment. This implies that the temperature is not a�eted bypreheating or movements in the air.
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Figure 7.5: Plot of the inlet and outlet temperature7.4.1.1 The temperature of the air �ow behind the moduleBetween the PV module and the opaque wooden board is a mehanially drivenair �ow. This entails that the �ow an be ontrolled and measured aurately,sine it is possible to get a onstant �ow in ontrast to naturally ventilatedsystems. The air �ow an be set at four di�erent onstant veloity levels. Figure7.5 shows the two temperatures, the in- and outlet temperatures, on whih thealulation of ∆T is based. In the data set both a alulated and a measured
∆T is available. The two variables are plotted in Figure 7.6.To measure the air �ow a Swemair 300 instrument is applied.The air �ow behind the PV module ools down the module. The thermal systemand thereby the eletrial system of the PV module beomes more e�ient thehigher the fored air �ow beomes [Gandini et al. n.d.℄.7.4.1.2 The measurement of the wind speedIn Figure 7.7 a plot of the measured wind speed an be seen. The �gure revealsthat the wind onditions at the site �utuate. A moving average wind speedwith measurement intervals of 20 minutes is present. The reason why this trans-formation of the wind speed is taken into onsideration is that the PV module,in theory, might be more in�uened by the more onstant wind onditions. Alow-pass �ltration of the wind speed is also presented in Figure 7.7.
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Figure 7.6: Plot of the temperatures of the ventilated air gap behind the moduleAn anemometer has been used to measure the wind speed. The anemometerwas plaed on the roof of the pent just above the module. When measuringwind it is important to plae the equipment lose to the site, sine the windonditions �utuate over short distanes.One major problemati nature of the test site is that the wind in Ispra is ratherlimited. The wind speed is seldom above 2 m/s. This an be a limitation of thesope of the models.7.4.1.3 The irradiane on the PV moduleThe most important variable when dealing with PV modules is the irradiane.The irradiation is represented in the data set in two versions. A pyranometeris applied to ollet the irradiane data. The pyranometer is plaed about 20entimetres from the module. There is a risk that a systemati error is attahedto this measurement. The pyranometer is plaed on a wooden pillar at a hinge.If the srews are not fastened properly, a twist of the equipment may lead toan inorretly measured irradiane ompared to the irradiane of the module.A more preise way to desribe the irradiane is by alulation, sine the shortiruit urrent, Isc, of the module over a wide range is proportional to the solarradiation. In the models both measures are applied in order to �nd the bestdesribing variable. In Figure 7.8 the two variables are plotted.
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Figure 7.7: Plot of the measured wind speed, a alulated moving average ver-sion of the wind and a lowpass �ltration of wind speed
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Figure 7.8: The measured and alulated irradiane of the module



Chapter 8
Single State Models -Model identi�ation

8.1 Thermal modelsThe purpose of this hapter is to identify the best model to predit the moduletemperature. All the models are onstruted in aordane with the three heattransfer priniples deribed in Setion 2.4. Introdutorily a desription of themodels is outlined. All the models in this hapter are estimated both for a 24-hour period, the 16th of August 2002, and for the three-day period, 16-18th ofAugust 2002. This o�ers a basis for omparing the in�uene of the number ofobservations on the residuals, the unertainties of the model and the parameterestimates. In the searh for a satisfatory model several di�erent models, bothlinear and non-linear, have been estimated and tested. Subsequently the resultsof the models will be analysed and ompared in order to determine whih modelor models will suit the data the best. The best model will also be applied insome of the following hapters.The models applied in this hapter is developed in onnetion to the artileby [Jiménez et al. 2006℄.



56 Single State Models - Model identi�ation8.2 The applied dataThe applied data of this setion are gathered at the test site - TRE - during athree day-period, 16th-18th of August 2002, at JRC in Ispra, Italy. The mea-suring started at midnight the 16th of August. TRE is desribed in Chapter 7.The fored ventilation in the air gap was unfortunately hanged from velo-ity level 7 to level 10 at 8.00 a.m. the 16th of August. During the rest ofthe period the fored veloity was kept at level 10, whih is equal to 2.49 m/s.Assessment of the plots of the variables and the predition of the module tem-perature reveal no onspiuous deviation due to the hange in veloity. On theother hand it is later proven that it is possible for the models to di�erentiatebetween veloities of the fored ventilation. The divergenes are however mostvisible in relation to the heat transfer oe�ients.8.3 The design of the modelsIn order to predit the dynami temperature of the module it is required toinvestigate whih energy �ows, and thereby heat transfers, are having in�ueneon the module. The in�uene from ondution is insigni�ant in relation to theBIPV set-up, due to the thikness of the module. For this reason ondution isnot inluded in the models. Equation 8.1 and 8.2 represents the full model, or-responding to the extended non-linear model, inluding the units of the terms.This is done in order to justify the struture of the models.
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Tm = T + e (8.2)The terms ontaining temperatures raised to the fourth power are radiative heattransfer. The remaining terms holding temperature di�erenes are the onve-tive heat transfers. Last terms represent the absorption of the vertial solarradiation a�eting the module.As it an be seen the �nal unit and all the terms in equation 8.1 are stated



8.4 Why use heat transfer models? 57in Watts, the SI-unit for energy. On the left side of the equation one of theunit measures is given as K
s , but sine the measurements are arried out atone-minute intervals, it is neessary to multiply all the terms on the right sideby 60. The model ould also be estimated in CTSM by using the time intervalin seonds, but this leads to signi�antly extended estimation time.

8.4 Why use heat transfer models?Aording to the Institute of Eletrial and Eletronis Engineers former stan-dard, IEEE PAR 1479 "Reommended Pratie for the Evaluation of Photo-voltai Module Energy Prodution" it is neessary to know the temperatureof the PV module to predit the prodution of energy from the PV module[TamizhMani et al. 2003℄. It is also outlined in [Bloem n.d.a℄. To support thereasonability of the standard Figure 8.1 shows the relationship between the en-ergy prodution and the average temperature of the module. The two varablesare positively orrelated. This plot only shows that the variables vary together,but it does not support the knowledge that the e�ieny of the module dropswhen it beomes warmer. The plot shows that if it is possible to predit thetemperature of the module, it is also possible to obtain knowledge about theprodution of eletriity of the module. Not surprisingly both variables followa 24-hour period. Furthermore it an be seen that the delivered energy variesquite a lot. This is a result of hange in the short time variations of the weatheronditions, for instane due to louds passing by the sun. Moreover the plotreveals a slight delay of the average temperature of the module ompared tothe delivered amount of energy. By using stohasti di�erential equations thisirumstane is taken into onsideration.It is important to be aware of the interonnetion between module tempera-ture and produed energy. An inrease in the temperature of PV ells results inredution in the open iruitvoltage, whih in turn redues the power output.In [Jiménez et al. 2006℄ it is stated that there is a negative temperature e�et ofabout 0.5%/oC on the maximum power. This shows the neessity of modellingthe prodution of energy based on the temperature of the module, whih is alsooutlined in [Born 2001℄.
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Figure 8.1: Plot of the average temperature of the module and the deliveredenergy8.5 The proedure for the modelling andthe analysisTo investigate whih physial fators are in�uening on the temperature of thePV module, di�erent model on�gurations are applied. There are two maintypes of models in this analysis, linear and non-linear state spae models. It ishosen to estimate one linear model and two non-linear models. Several of thevariables, both input and output, are available in more than one version. Tominimize the number of possible model ombinations it is deided to alulatethe possible ombinations for the linear models �rst. This is due to the knowl-edge that the majority of the variation from the data in the non-linear modelsis desribed by the linear terms. In addition the linear models an be estimatedfaster in CTSM than the non-linear models. Both the number of alulationsand the alulation time are more omprehensive in the ase of non-linearities.In the applied data set four of the variables are present in several variations;either by measurement, alulation or �ltration. The original data set the tem-perature di�erene in the ventilated air gap and the irradiane provides bothas a measured and a alulated variable. The alulations are made on basis ofthe eletrial �ow measurements. The �ltration is only relevant in relation tothe wind speed. The wind speed is only present in the non-linear models. The



8.5 The proedure for the modelling andthe analysis 59analysis will for this reason ontain the possible di�erent ombinations of thevariables in order to investigate whih of the variables represents the temper-ature of the BIPV module the best. The variables found most suitable in thelinear ases will also be applied in the non-linear models. During the analysisphase it has beome lear that the �rst thought as to applying the alulatedaverage temperature of the module as the output variable is probably not thebest hoie, aording to the thermal images in Setion 7.3.1. It is thereforedeided to estimate all the models using both the average and the measuredtop temperature as the output temperature. One of the purposes of the hapteris to make an in-depth analysis to �nd the most representative variables andmodels to apply in the oming hapters. Above only the temperature in thetop of the module is mentioned. In the preliminart analyses it has also beentested if the temperature measured at the bottom of the module ould produebetter preditions. Both the results and the thermal images on�rm that thishoie gives the models a worse performane. When interpreting the thermalimages a solution for a better estimation ould be to apply weigthing on basisof alulations of the area of the module in aordane to the heat distributionin the module registrated at the thermal images. This has also been attempted,by a 80/20 distribution between the top and the bottom temperatures. Theanalysis of the residuals reveals a slightly poorer result ompared to the modelswhere the temperature in the top is applied. Two arguments for not using thisapproah are that the heat distribution of the module hange over time, due toexternal fators suh as the wind and the irradiation and that CTSM does notpossess the possiblity of estimating a weighted output variable.The method to determine how well the output variable of the model �ts thedata, is an analysis of the values from CTSM expressing the goodness of �t andthe residuals of the model.Eah of the estimated models will be analyzed individually. First the valuesfrom CTSM explaining the goodness of �t will be evaluated. Subsequently theaverage and the standard deviation of the residuals of the models will be ana-lyzed. The residuals are alulated on the basis of the one-step predition error.Eventually the values of the estimated parameters will be ompared to eahother. The omparison is not only between the di�erent models but also for themodels estimated on data for one day and three days.It is hosen to ompare the autoorrelation, the partial autoorrelation, theumulated periodogram of the residuals for the best linear models, and the bestof eah of the two di�enrent non-linear models. Furthermore a hange in signand the portmanteau lak-of-�t-test will be arried out. This will be done inseparate setions at the end of this hapter.



60 Single State Models - Model identi�ation8.6 The linear modelsThe �rst and simplest of the state spae models, Equation 8.3 and 8.4, ontainsthe onvetive in�uene from the ambient temperature and the onvetive in�u-ene by the temperature di�erene in the air gap. Furthermore the onvetivein�uened from the temperature of the wooden board and the radiation is in-luded. In the model it is presumed that the insulation behind the wooden boardis dense. This implies that the hosen heat balane system is not in�uened bythe ambient air temperature from the rear side.
dT = kair(Tair − T )dt + kdelta∆Tdt + kwood(Twood − T )dt + kiIdt + dw (8.3)

Tm = T + e (8.4)In order to perform the following analyses it is neessary to investigate whetherthe estimation in CTSM is adequate. In Table 8.1 and 8.2 it an be seen thatthe models based on the alulated delta temperature, ∆Tcalc, and irradiation,
Icalc, and the top temperature of the module have p-values equal to 0.0000.P-values lower than 0.05 means that the parameter estimates an be onsideredto be di�erent from zero. For some of the other models the p-values are higherthan 0.05 assuming a 95% on�dene interval, whih means that some of theestimations of the parameters ould be equal to zero. This needs to be investi-gated if it is hosen to further apply suh models. If a term is insigni�ant it anbe assumed to be equal to 0. The term an then be removed from the model,and after that the models need to be reestimated. In order to maintain the heatbalane system it is hosen to avoid this kind of onsiderations in relation to thelinear models. It is also hosen to inlude the derivatives of the penalty funtionin the analysis, sine this value gives an indiation of whether the parameter iswell inside the �xed interval limits. All the derivatives of the penalty funtionvalues shown in Table 8.1 are aeptably low, indiating that the parametersare well de�ned.The orrelations between the parameters are listed in Table 8.2. Prior esti-mations have shown that orrelation values up to around 0.96, do not in�uenehow adequate the model is. It an therefore be onluded that most of thevalues are satifatorying. The model based on the alulated variables has toohigh orrelation value, 0.9753.



8.6 The linear models 61Table 8.1: Summary of the highest p-value and the derivative of the penalty funtion of thelinear models16th of AugustThe model p-value dPen.fun
Tmoduleavg Tmoduletop Tmoduleavg Tmoduletop

∆TmeasImeas 0.0166 0.0551 0.0007 0.0006
∆TmeasIcalc 0.0099 0.1677 0.0007 0.0006
∆TcalcImeas 0.1114 0.2911 0.0006 0.0006
∆TcalcIcalc 0.0000 0.0000 0.0006 0.0006
∆Tdivided 0.2991 0.1297 -0.0158 0.023916th-18th of August
∆TmeasImeas 0.0000 0.0000 0.0007 0.0006
∆TmeasIcalc 0.0765 0.3092 0.0007 0.0006
∆TcalcImeas 0.1202 0.0177 0.0007 0.0006
∆TcalcIcalc 0.7860 0.0000 0.0005 0.0006
∆Tdivided 0.8200 0.8980 -0.2677 0.0494Table 8.2: Summary of the highest orrelations between the parameter estimates of thelinear models16th of AugustThe model Correlation

Tmoduleavg Tmoduletop

∆TmeasImeas 0.8983 (kair − kdelta) -0.8496 (kwood − kirrad)
∆TmeasIcalc 0.9037 (kair − kdelta) 0.9394 (kair − kwood)
∆TcalcImeas 0.9678 (kair − kdelta) 0.9678 (kair − kirrad)
∆TcalcIcalc 0.9690 (kair − kdelta) 0.9753 (kair − kwood)
∆Tdivided -0.9878 (kair − kout) -0.9908 (kair − kout)16th-18th of August
∆TmeasImeas -0.8666 (kdelta − kwood) 0.8527 (kair − kwood)
∆TmeasIcalc 0.8877 (kair − kdelta) 0.9189 (kair − kwood)
∆TcalcImeas 0.9550 (kair − kdelta) 0.9615 (kair − kwood)
∆TcalcIcalc 0.9666 (kair − kdelta) 0.9752 (kair − kwood)
∆Tdivided -0.9854 (kair − kout) -0.9922 (kair − kout)In most ases the ∆T and kair are highly orrelated, see Table 8.2. ∆T is thedi�erene between the inlet and the outlet temperatures. The inlet and theambient temperatures must be onsidered to be orrelated in a physial sense,sine the inlet air is taken from the ambient air. It is therefore deided tointrodue an extention of the linear model, whih an eliminate potentially the



62 Single State Models - Model identi�ationproblem that the orrelation between the inlet and the ambient temperatureseems to reate. This model represents the same heat balane system, but inthe design of this model, named divided in the table, it is deided to divide the
∆T -term into an inlet and an outlet temperature. Furthermore Tin is set equalto Tair. This divided model an be seen in Equation 8.5 and 8.6.

dT = kair−inTairdt + kT Tdt + koutToutdt + kwoodTwooddt + kiIdt + dw (8.5)
Tm = T + e (8.6)Table 8.1 and 8.2 reveals that the divided models have higher p-values, deriva-tives of the penalty funtion values and orrelations ompared to the formermodel.Table 8.3: Averages and standard deviations of the residuals for the di�erent modelsalulated on basis of data from the 16th of August and 16th-18th of August16th of August

Tmoduleavg TmoduletopThe model Average Std.dev Average Std.dev
∆TmeasImeas 2.445 · 10−4 7.162 · 10−2 2.500 · 10−3 7.171 · 10−2

∆TmeasIcalc −8.251 · 10−3 4.645 · 10−2 −6.860 · 10−3 4.211 · 10−2

∆TcalcImeas 3.070 · 10−3 7.052 · 10−2 6.260 · 10−3 6.976 · 10−2

∆TcalcIcalc −6.979 · 10−3 4.631 · 10−2 −5.039 · 10−3 4.136 · 10−2

∆Tdivid −2.876 · 10−5 4.400 · 10−2 −2.265 · 10−5 4.064 · 10−216th-18th of August
Tmoduleavg TmoduletopThe model Average Std.dev Average Std.dev

∆TmeasImeas 3.328 · 10−3 7.014 · 10−2 5.868 · 10−3 7.014 · 10−2

∆TmeasIcalc −7.609 · 10−3 4.800 · 10−2 −6.159 · 10−3 4.136. · 10−2

∆TcalcImeas 5.336 · 10−3 6.787 · 10−2 7.839 · 10−3 6.740 · 10−2

∆TcalcIcalc −2.337 · 10−4 4.617 · 10−2 −5.603 · 10−3 4.059 · 10−2

∆Tdivid −3.462 · 10−4 4.643 · 10−2 −1.567 · 10−4 4.047 · 10−2In order to determine whih of the models desribes the data the best, theresiduals have to be analyzed. The averages and standard deviations of residualsfor the linear models are presented in Table 8.3. By omparing the averages andthe standard deviations of the residuals the di�erent models the following trendsare identi�ed:
• In all ases the standard deviation is lower when the alulated irradiane,

Icalc, is applied instead of the measured irradiane



8.7 Introdution to the non-linear models 63
• The alulated temperature di�erene, ∆Tcalc gives the lowest standarddeviations for all models
• In the majority of the ases the use of the temperature measured at thetop of the module results in lower standard deviations, whih indiates abetter �tting model.
• The divided model has the lowest standard deviations for the three-dayperiod, but not for the one-day estimations. Sine all the CTSM estimatedvalues are higher for this more ompliated model, it is deided not to takethis model into aount.
• There is a small redution in the standard deviation values when the mod-els are based in three-day data ompared to the one-day data.When taking all the fats above into aount, the models based on the alu-lated variables show through. On the basis of these observations the non-linearmodels in next setion will only be estimated applying the alulated variables ofthe temperature di�erene in the air gap and the irradiation. From a physiist'spoint of view it does make sense that the alulated variables generate betterresults. The alulated variables are based on data olleted inside the modulevia knowledge about the eletrial �ows. This way of estimating the variablesminimizes the amount of noise in the variables and thereby the estimated models.In general for the results of the linear models it an be onluded that theorrelations of the parameter estimates need to be redued in order to �nd anadequate model. Therefore a natural progress is to extend the linear model toa non-linear model.8.7 Introdution to the non-linear modelsAs mentioned earlier the wind is the only new variable in the non-linear models.The non-linear models, a simple and an extended one, in this setion are exten-sions where the in�uene of the wind speed is added to the linear model design.The original data set ontains both a measured wind speed and a moving averageversion of the measured wind speed. In the analysis phase di�erent �ltrationsare applied to the wind speed variable. This is due to prior knowledge indiatingthat the high frequenies of the wind do not in�uene the performane of theBIPV. A �ltration an also be advantageous in situations where the plae of themeasuring is not loated next to the module. In this ase the anemometer isplaed at the roof above the test site. The loal variation in the wind speed anbe relatively �utuating, but the average or �ltered wind speed is more onstant



64 Single State Models - Model identi�ationin a bounded area.Like the linear model, the variations of the non-�ltered and �ltered wind speedwill be tested in order to �nd the most suitable model for the BIPV module.8.8 Simple non-linear modelEquations 8.7 and 8.8 represent a state spae model for the �rst non-linearmodel. As distint from the linear model the in�uene from the wind speedraised to an undetermined power, whih is estimated along with the other pa-rameters.
dT = kairW

k
airwind(Tair − T )dt + kdelta∆Tdt + . . .

kwood(Twood − T )dt + kiIdt + dw (8.7)
Tm = T + e (8.8)In the ase of both the simple and the extended non-linear model it is attemptedto make CTSM estimate the optimal �lter of the wind. The optimal �lter is aausal �lter, whih estimates how muh of the variation has to be removed inorder to get the best desription of data. The ausal �lter is inorporated inthe model by adding an extra state spae equation. The system is outlined inequation 8.9-8.11. dw2 is put equal to 0, sine there should be no noise attahedto the �ltered wind.

dT = kairW
kairwind

filter (Tair − T )dt + kdelta∆Tdt + . . .

kwood(Twood − T )dt + kiIdt + dw1 (8.9)
dWfilter = aWfilter − aW + dw2 (8.10)

Tm = T + e (8.11)First it is neessary to investigate the value from CTSM indiating the adequate-ness of the models. Table 8.4 shows that all the p-values of the model basedon the temperature at the top of the module are signi�ant. All the derivativesof the penalty funtion values are aeptably low. A ommon feature for theorrelation oe�ients, Table 8.5, is that they are still remarkably high, sinemost of the orrelation values are above 0.96. Furthermore it an be seen thatthe highest orrelations are between kair and kdelta, just as was the ase inthe linear models. The high orrelations are an indiation that the model isnot adequate. But in order to map the development from the linear model to



8.8 Simple non-linear model 65Table 8.4: Summary of the p-value and the derivative of the penalty funtion for thesimple non-linear model16th of AugustThe model p-value dPen.fun
Tmoduleavg Tmoduletop Tmoduleavg TmoduletopWind 0.0047 0.0007 0.0016 0.0013Causal wind 0.0000 0.0000 0.0068 0.0046Lowpass wind 0.0000 0.0000 0.0112 0.0095MA wind 0.5122 0.0000 0.0100 0.008916th-18th of AugustWind 0.0000 0.0000 0.0004 0.0004Causal wind 0.0237 0.0000 0.0432 0.0018Lowpass wind 0.0041 0.0000 0.0016 0.0004MA wind 0.0000 0.0000 0.0154 0.0004the simple non-linear model, it is deided to analyze the best of these simplenon-linear models in the setion of results. Table 8.6 reveals that the standarddeviations are the lowest for the ausal lowpass �lter of the wind for both mod-ule temperature measurements. The seond lowest standard deviations refer tothe models where the measured wind is applied. There are no patterns in thevalues of the orrelations of the parameters in order to determine whih of thetwo output variable, Tmoduleavg and Tmoduletop, perform the best. It is the samesituation onerning the number of observations on whih the models are basedon. Table 8.6 learly shows that the standard deviation of the models havingthe temperature at the top of the module as an output variable are lower thanthe model estimating the average temperature of the module. Regarding theone day ausal �lter model the standard deviation drops from 4.389 · 10−2 to

3.803 · 10−2. It is similar for the three-day data model. In order to investigateif there is any relation between the measured wind and the ausal lowpass �l-teration of the wind the model predition of these two are plotted in Figure 8.2.The plot shows how lose CTSM estimates the ausal wind, represented by thegrey line, to the measured wind, represented by the blak line. This means thatthe ausal �lter removes only very little of the �utuation of the measured wind.Figure 8.2 gives a lear indiation that the BIPV module is atually sensitiveto fast hanges in the wind speed. This ould easely be di�erent at loationswhere higher speed and �utuations of the wind our.



66 Single State Models - Model identi�ationTable 8.5: Summary of the orrelations for the parameter estimates for the simplenon-linear model16th of AugustThe model Correlation
Tmoduleavg TmoduletopWind 0.9893 (kair − kdelta) 0.9662 (kair − kdelta)Causal wind -0.8300 (Wfilter − kwood) 0.9051 (kair − kwood)Lowpass wind 0.9782 (kair − kdelta) 0.9862 (kair − kdelta)MA wind 0.9756 (kair − kdelta) 0.9825 (kair − kdelta)16th-18th of AugustWind 0.9712 (kair − kdelta) 0.9754 (kair − kdelta)Causal wind -0.9866 (Wfilter − a) -0.9486 (kdelta − kwood)Lowpass wind 0.9689 (kair − kdelta) 0.9793 (kair − kdelta)MA wind 0.9706 (kair − kdelta) 0.9787 (kair − kdelta)Table 8.6: Averages and standard deviations of the residuals for the di�erent simplenon-linear models alulated on basis of data from the 16th of August and 16th-18thof August. In the table both the results for average and top module temperature asoutput variables are displayed16th of August

Tmoduleavg TmoduletopThe model Average Std.dev Average Std.devWind −6.819 · 10−3 4.482 · 10−2 −4.546 · 10−3 3.932 · 10−2Causal wind −7.540 · 10−3 4.389 · 10−2 −5.774 · 10−3 3.803 · 10−2Lowpass wind −7.849 · 10−3 4.589 · 10−2 −6.355 · 10−3 4.043 · 10−2MA wind −7.806 · 10−3 4.598 · 10−2 −6.264 · 10−3 4.044 · 10−216th-18th of August
Tmoduleavg TmoduletopThe model Average Std.dev Average Std.devWind −7.640 · 10−3 4.652 · 10−2 −6.433 · 10−3 3.842 · 10−2Causal wind −7.838 · 10−3 4.611 · 10−2 −6.878 · 10−3 3.748 · 10−2Lowpass wind −7.557 · 10−3 4.784 · 10−2 −6.970 · 10−3 4.017 · 10−2MA wind −7.817 · 10−3 4.784 · 10−2 −7.143 · 10−3 3.985 · 10−2
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Figure 8.2: The measured and optimal �ltered wind in the three-day period.The model used for predition is based on the Tmoduletop. It an be seen howsimilar the measure wind and the ausal �lter are predited.



68 Single State Models - Model identi�ation8.9 Extended non-linear modelSine high orrelations were found for the simple non-linear state spae model,it is determined to extend the model further. The state spae model is outlinedin Equation 8.12 and 8.13. Now it is presumed that the wind speed also hasin�uene on the irradiation. Again the wind speed is raised to an unknown powerwhih is estimated. The long wave radiation to the surrounding is onsideredto be relative to a mean radiant temperature, Trad, whih is estimated as anunknown parameter in CTSM. Moreover the heat transfer between the woodenboard and the PV module is onsidered a radiative e�et instead of a onvetiveas in the two previous models. Physially this in�uene is radiative, so thisterm in the two previous models an be viewed as a simpli�ation. Due tothe temperatures raised to the fourth power it is neessary to use absolutetemperatures in the modelling.
dT = krad(T

4
rad − T 4)dt + kairW

kwindair (Tair − T )dt + kdelta∆Tdt + . . .

kwood(T
4
wood − T 4)dt + kiW

kwindirradIdt + dw (8.12)
Tm = T + e (8.13)Two notable observations are made after estimating the models on the basisof the model desribed above. For the main part of the models the parameterestimates of the in�uene from the wind on the irradiation, kwindirrad, andthe temperature di�erene in the air gab behind the module, kdelta, are notsigni�ant, see Table 8.7. Looking at the models from a physial point of viewthe most reasonable is to remove the in�uene of the wind on the irradiationthat anels the in�uene in the models from the temperature di�erene in thegap behind the module, sine this is one of the main ideas behind the testing.When reviewing Table 8.7 it is noted that kwindirrad also has high p-values. Itshall be added that kdelta is signi�ant in the simple non-linear models. Theinsigni�ane of kwindirrad means that the applied irradiation measure is nota�eted by the wind. This also makes sene sine the irradiation is alulatedon basis of measurement inside the module, and therefore not a�eted by theambient wind. Seondly it has beome lear that the �utuation in the windleads to very unstable parameter estimates of the wind in the models. Toompensate for this unertainty it is determined to replae the estimation ofthe parameter of for the wind with a �xed parameter equal to the average wind.The p-values for the parameters are orrelated, whih means that �xing oneparameter an lead to hange of the p-values in the reestimation. This an alsobe seen in Table 8.7 where the p-value of kdelta has hanged in values. Some ofthe p-values of kdelta are still insigni�ant, but it has to be kept in mind that

kdelta is signi�ant for the models based on the measured and the ausal wind.These two variants of the wind were analyzed as the best in the ase of the



8.9 Extended non-linear model 69Table 8.7: P-value of the non signi�ant parameters of the extended non-linear modelwith Tmoduletop as output variable
kwindirrad kdelta before kdelta afterremoving kwindirrad removing kwindirrad16th of AugustWind 0.0000 0.0000 0.0000Causal wind 0.1875 0.0156 0.0132Lowpass wind 0.2749 0.8160 0.5484MA wind 0.9880 0.9275 0.801816th-18th of AugustWind 0.0000 0.0000 0.0000Causal wind 0.2951 0.0000 0.0000Lowpass wind 0.8449 0.1456 0.2664MA wind 0.8080 0.0204 0.0286simple non-linear model. On the basis of the �ndings above all the modelshave been reestimated with kwindirrad is equal to 0 and Wf �xed to the averageof the measured wind. All the results below derive from the reestimation. Table8.8 shows that most of the models have rather high p-values. Some of theorrelations, Tabel 8.9, are still too high, when keeping in mind that the value0.96 an be used as a rule of thumb. In relation to the models based on eitherthe measured wind or the ausal �ltered wind all the orrelations are below 0.93.The averages and the standard deviations of the model are stated in Table 8.10,where the kwindirrad is �xed at the value zero, whih results in no in�uenefrom the wind on the irradiation. From the table it an be seen, as for thesimple non-linear model, that the lowest standard deviations are to be foundin the model where the measured wind and the ausal �lter is applied. It analso be seen that the standard deviation of the residuals are lower when thetemperature at the top of the module is applied. No further analyses will bemade on basis of the models where the average temperature of the module hasbeen applied. When omparing the standard deviations of the residuals shownin Table 8.10 where the temperature at the top of the module is applied as theoutput variable, it is lear that the measured wind speed or the ausal �lter ofthe measured wind have the lowest values. This means that the temperatureand the e�ieny of the module are sensitive to the �utuations in the wind.It shall be taken into aount that the test site is rarely a�eted by high windspeed. For this reason the onlusions annot be transferred diretly to otherloations where higher speed and �utuations are present.



70 Single State Models - Model identi�ationTable 8.8: Summary of the p-value and the derivative of the penalty funtion for theextended non-linear model16th of AugustThe model p-value dPen.fun
Tmoduleavg Tmoduletop Tmoduleavg TmoduletopWind 0.0000 0.0000 0.0536 0.5441Causal wind 0.0000 0.0132 0.0068 0.2466Lowpass wind 0.0043 0.5484 0.0616 0.1996MA wind 0.2431 0.8018 0.434 0.193916th-18th of AugustWind 0.0018 0.0000 0.0404 0.2566Causal wind 0.0037 0.0000 0.1790 0.1744Lowpass wind 0.9577 0.2644 0.1518 0.1758MA wind 0.7015 0.0286 0.4592 0.1345Table 8.9: Summary of the orrelations of the parameter estimates for the extendednon-linear model16th of AugustThe model Correlation

Tmoduleavg TmoduletopWind 0.9730 (kair − kdelta) -0.9000 (kair − kdelta)Causal wind -0.8300 (Wfilter − kdelta) -0.8899 (kair − kdelta)Lowpass wind 0.9183 (Trad − kwindair) -0.9068 (kair − kdelta)MA wind 0.9726 (kwindair − kwindirrad) 0.9092 (krad − Trad)16th-18th of AugustWind 0.9325 (kwindair − kwindirrad) 0.8991 (krad − Trad)Causal wind 0.9070 (krad − Trad) 0.9264 (krad − Trad)Lowpass wind 0.9006 (kair − kdelta) 0.0.9783 (krad − Trad)MA wind 0.9317 (krad − Trad) 0.8989 (kair − kdelta)



8.10 Analysis of the parameter estimates 71Table 8.10: Averages and standard deviations of the residuals for the extended modelsalulated on basis of data from the 16th of August and 16th-18th of August16th of August
Tmoduleavg TmoduletopThe model Average Std.dev Average Std.devWind −9.128 · 10−5 4.076 · 10−2 −1.329 · 10−4 3.485 · 10−2Causal wind −1.933 · 10−4 4.096 · 10−2 −3.032 · 10−5 3.583 · 10−2Lowpass wind 2.606 · 10−5 4.243 · 10−2 8.371 · 10−5 3.782 · 10−2MA wind −3.094 · 10−5 4.261 · 10−2 −1.253 · 10−5 3.805 · 10−216th-18th of August
Tmoduleavg TmoduletopThe model Average Std.dev Average Std.devWind −4.181 · 10−4 4.417 · 10−2 −1.514 · 10−4 3.656 · 10−2Causal wind −3.341 · 10−4 4.393 · 10−2 −4.509 · 10−5 3.540 · 10−2Lowpass wind −2.599 · 10−4 4.528 · 10−2 −5.605 · 10−5 3.783 · 10−2MA wind −3.270 · 10−4 4.529 · 10−2 −7.904 · 10−5 3.763 · 10−28.10 Analysis of the parameter estimatesAll the preeding analyses have been made in order to determine the adequayof the models. The models are estimated for both one day data and threeday data. When omparing the standard deviations for a model based on one-day data and three-day data respetively no lear piture of the values appear.In general the standard deviations of the models based on three-day data areslightly lower. The data olleted at di�erent days vary. The objetive of thissetion is to investigate the stability of the parameter estimates in the sense ofthe variation in the parameter estimates. Parameters of two di�erent one-daymodels and one model based on three day observations. In Table 8.11 parameterestimates of two one day models and the three-day model are listed.In order to transform the value of a from ontinuous to disrete time the expo-nential funtion, eaτ is estimated. τ is equal to 1 sine the time interval is inminutes.In Table 8.11 the parameters of the extended non-linear model are found. For thepurpose of omparison two one-day data based models are estimated. Moreover,the parameter estimates of the model based on three-day data are also repre-sented in the table. Aross the models the parameter estimates are raised tothe same power. The omparison of the models shows that the model based ondata from the 16th of August and model based on the three-day period are most



72 Single State Models - Model identi�ationTable 8.11: Parameterestimates and the assoiated standard deviations in brak-ets for the extended non-linear model where the ausal �lter is appliedParameter 16th of August 17th of August 16 − 18th of August
k̂trad 2.539 · 10−9 1.514 · 10−9 2.114 · 10−9

(3.002 · 10−10) (3.376 · 10−10) (1.819 · 10−10)

T̂rad 284.96 285.96 284.40
(8.676 · 10−1) (1.464 · 100) (7.013 · 10−1)

k̂air 1.869 · 100 1.474 · 100 1.923 · 100

(1.714 · 10−1) (1.389 · 10−1) (1.596 · 10−1)

k̂windair 1.345 · 10−1 1.685 · 10−1 1.383 · 10−2

(1.309 · 10−2) (1.576 · 10−2) (8.283 · 10−3)

k̂delta −1.387 · 100 −2.733 · 100 −1.545 · 100

(5.594 · 10−1) (5.069 · 10−1) (3.188 · 10−1)

k̂wood 4.844 · 10−9 2.515 · 10−9 4.074 · 10−9(5.330 · 10−10) (4.799 · 10−10) (3.246 · 10−10)

k̂irradiance 1.213 · 10−1 1.011 · 10−1 1.191 · 10−1

(1.186 · 10−3) (2.299 · 10−3) (8.574 · 10−4)
â 0.242 0.084 0.353

(2.613 · 10−1) (5.593 · 10−1) (1.331 · 10−1)similar, whereas the model based on data from the 17th of August in most aseshas lower parameter estimates. Futhermore, is an be seen from the standarddeviation of the parameters that the parameters are quite stable. The fous ofthis thesis is not to evaluate the size of the parameter estimates. In general itan be onluded that in broad outline the estimated models agree, but whenlooking into the spei� values of the parameter estimate, it an be seen thatthe models are sensetive to the input and output variables.8.11 Analysis of the residualsIn aordane with the preeding setions it is deided to further analyze theresiduals of the best of eah of three types of models. The basis of deision is thealulated standard deviations of the residuals. It is deided to analyze only theresiduals of the models where the output variable is the temperature measuredat the top of the module. This deision is made based on the knowledge thatthe average temperature applied does not in any way represent the temperaturein the module and the fat that the di�erent analyses arried out previouslyin this hapter gave better results. In the linear ase the model ontaining the



8.12 Comparison of the models 73alulated temperature di�erene in the air gap and the alulated irradianegave the best results. For both of the non-linear models it is deided to arryout further analyses on the models where the ausal �ltered wind is applied, inorder to get the most steady results.In the following setions the autoorrelation funtion, the partial autoorre-lation funtion and umulated periodogram of the residuals for the models willbe plotted and analyzed. Furthermore, the results of the hange in sign test andPortmanteau lak-of-�t-test will be evaluated.When estimating models it is always an advantage to apply as many data aspossible, sine this provides a more stable desription of the data. One majorproblem about having 1439 and 4320 observations, as in the ase of this anal-ysis, is that it is di�ult to test the residual. It is well-known that the moredata applied, the narrower the on�dene limits beome. This entails that itis di�ult to rejet or aept the trend plots and values shown. The ut-o�between rejeting and aepting beomes very sharp.8.12 Comparison of the modelsThe average and the standard deviation of the residuals of three most adequatemodels found in the previous setions are stated in Table 8.12. The followingtrends in the standard deviations are noted:
• There is a lear pattern that the standard deviation of the residuals be-omes smaller the more extended the model beomes.
• The omparison of the average temperature and the top temperature asoutput variables respetively reveals that the temperature in the top ofthe module gives the model the best performane.
• The models based on three day data have lower standard deviations of theresidauls ompared to the one-day data models.These trends seem very reasonable, sine model extensions and more data mostfrequently provide better results.Due to the statement saying that an extension of a model will lead to a higherdegree of desription, it an be of bene�t to perform a likelihood ratio test. Thistest may reveal whether the improvement is signi�ant. The basis for arryingout the test is that the redued model is a submodel of the full model. Held up



74 Single State Models - Model identi�ationTable 8.12: Summary of the harateristis of the best models16th of AugustThe model Average Std.devLinear ∆TcalcIcalc −5.039 · 10−3 4.136 · 10−2Simple non-linear −5.774 · 10−3 3.803 · 10−2Extended non-linear −3.031 · 10−5 3.585 · 10−216th-18th of AugustThe model Average Std.devLinear ∆TcalcIcalc −5.603 · 10−3 4.059 · 10−2Simple non-linear −6.878 · 10−3 3.748 · 10−2Extended non-linear −4.509 · 10−5 3.540 · 10−2against the three models in this thesis, it is only possible to test the linear modelagainst the simple non-linear model. The two latter models are not submodelsof the extended non-linear model, due to the hange from a onvetive heattransfer to a radiative heat transfer from the wood board behind the module.The analysis is arried out in setion 8.17.8.13 Plot of residualsThe plot of residuals generally show a the lak of ability to predit the moduletemperature in the daytime. This is problemati, sine it is in these hours thePV module produe eletriity, and it is therefore in these hours it is mostimportant to be able the predit the temperature of the module. The residualplot an be found in Figure 8.3. A loser look at the plots reveals that the sizeof the highest residual values dereases along with the model extension. Theplot of the three-day period models shows that the models have the greatestdi�ulties prediting the �rst day ompared to espeially the seond day. Thisis an indiation that the model predition is sensitive to the weather and theoperating onditions the spei� days.
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Figure 8.3: The plots of the residual resulting from the models. From the topthe linear model and in the bottom the extended non-linear model. The plotsat the left-hand side are one-day data and the right-hand side the models basedon three-day data.



76 Single State Models - Model identi�ation8.14 ACF and PACFThe autoorrelation funtion, ACF, and partial autoorrelation funtion, PACF,plots may help determine two issues. The plots an show if the model an beregarded adequate. Moreover the plots an reveal what to do if the model hasa lak of �t. As mentioned the 95% on�dene interval in the plot may not betaken too seriously due to the large number of observations. The plots of theautoorrelation funtion and the partial autoorrelation are respetively foundin 8.4 and 8.5. The autoorrelation funtion plot of the residuals of the one-day data models seems to be more random than the similar models based onthree-day data. A ommon trend of the autoorrelation funtion plot is thatthe plot of the extended non-linear model has the smallest and most randomorrelation values. This supports the trends seen from the standard deviations.The partial autoorrelation plot is favourable with a view to deteting if themodel order is adequate. Signi�ant stiks in �rst and seond lag indiate thatit an be an advantage to add an extra state in the model. Model extensions andadditional terms in the models an also remove signi�ant stiks from the partialorrelation funtion plot. This is the ase from the simple to the extended non-linear model. The plots of the extended non-linear model seems to be aeptablerandom sine only the stik in third lag is signi�ant. This an be a motivationfor extending the model even further as it will be done in the next hapter,where an extra state is added.
8.15 PeriodogramsThe only test arried out in the frequeny domain is the umulative peri-odogram, whih may reveal if the residuals are over-represented in spei� areasof the frequeny domain. A straight line in the periodogram represents whitenoise and the residuals are then evenly spread. The two periodograms presentone-day and three-day models respetively. The periodograms strengthens thepiture drawn by the previous analyses. This implies that the residuals of theextended non-linear models form the straightest lines. Though the on�deneinterval are very tight, the residuals of the extended non-linear model almostmanage to stay inside the interval.
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Figure 8.4: Autoorrelation funtion plot of the residuals of the models. Fromthe top the linear model and at the bottom the extended non-linear model. Theplots at the left-hand side are one-day data and the right-hand side the modelsbased on three-day data.
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Figure 8.5: Partial autoorrelation funtion plot of the residuals of the models.From the top the linear model and at the bottom the extended non-linear model.The plots at the left-hand side are one-day data and the right-hand side themodels based on three-day data.
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Figure 8.6: This �gure shows the umulated periodograms of the residuals ofthe models. The plot in the top of the �gure is for the models based on one-dayobservations and the other is for the three-day models



80 Single State Models - Model identi�ation8.16 Tests of the residuals8.16.1 Change in sign test and Portmanteau lak-of-�t-testA hange in sign test has been arried out in order to support whether the resid-uals an be assumed to have mean zero. The only way the residuals are ableto hange sign approximation every seond is by having mean zero. The theoryis desribed in Setion 4.2.3.1. The number of hanges in sign is normally dis-tributed, N(N−1
2 ,N−1

4 ) due to the large number of observations. The on�deneintervals for the models of one, N=1439, and three days, N=4320, respetivelyare:
N
(1439 − 1

2
,
1439 − 1

4

)
= N(719, 356.5), σ = 18.96 ⇒ [700, 738]

N
(4320− 1

2
,
4320− 1

4

)
= N(2159.5, 1079.8), σ = 32.86 ⇒ [2127, 2192]The results are presented in Table 8.13. It an be onluded that the hangein sign test of both the linear and the simple non-linear model turns out to beinsigni�ant, meaning that the assumption above is not ful�lled. The extendednon-linear model passes the test for both the model based on one-day and three-day data. The hange in sign test has also been arried out on the residuals ofthe extended non-linear models based on the average module temperature. Thetest showed a tendeny of the residuals to have too many hanges in sign, 766and 2237 respetively. This is yet an indiation that the average temperatureof the module is not representative.The results of the Portmanteau lak-of-�t-test are not very useful, due to thelarge number of observations upon whih the models are estimated. For this rea-son it is hosen to have the sum of the autoorrelation funtion values squaredand the Q-value in the table. The Portmanteau lak-of-�t-test is χ2-distributedwith the degrees of freedom (m-n). m is the number of autoorrelation the

Q-value is based on and n is the number of parameters in the model. In thetheory it is suggested that m is between 15 and 30. Due to the large numberof observations m=30 is seleted. The level of signi�ane is α=0.05. The χ2-values:



8.16 Tests of the residuals 81# of parameters χ2Linear model 4 38.885Simple non-linear model 5 37.652Extended non-linear 8 33.924Table 8.13: Summary of the hange in sign test and the Portmanteau lak-of-�t testof the residuals for the best models# hange Signi�ant Residual Portmanteauin sign sum Q-valueOne dayLinear ∆TcalcIcalc 622 No 0.325 466Simple non-linear 616 No 0.195 280Extended non-linear 732 Yes 0.0657 95Three daysLinear ∆TcalcIcalc 1827 No 0.358 1548Simple non-linear 1849 No 0.284 1225Extended non-linear 2177 Yes 0.058 251Comparing the χ2-value with the Q-values, in Table 8.13, it annot be rejetedthat there is a lak-of-�t for the models. One positive trend in the test valuesis that the Q beomes small when extending the models. If for instane theextended non-linear model had been based on about less than 500 observations,the test would have proven that there was no lak-of-�t between the data andthe model. Based on these onsiderations it is noted that the Portmanteaulak-of-�t-test has di�ulties of be appropriate for testing models based on alarge amount of data. When this irumstane was unovered it was researhed ifother similar test were resistant to a large number of observations. In the searhfor a more suitable method, the Ljung-box test was disovered but similar to thePortmanteau lak-of-�t-test the number of observations has impat on the Q-value when the number of observations inreasest. The equation for estimatingthe Q-value of the Ljung-Box test is given in Equation 8.14.
Q2

ljung−box = (N(N + 2))

k∑

i=1

ρ(i)2

(N − i)
(8.14)The Q-value of the Portmanteau lak-of-�t test as alulated as:

Q2 = (
√

Nρ̂ǫ(θ̂)(1))2 + (
√

Nρ̂ǫ(θ̂)(2))2 + · · · + (
√

Nρ̂ǫ(θ̂)(k))2 (8.15)It an be seen from the two equations too that there is no di�erene in the twotest when having many observations.



82 Single State Models - Model identi�ationTable 8.14: Likelihood funtion values and the assoiated test statistisLikelihood Test statistisfuntion LratioOne day Three days One day Three daysLinear 2.553 · 103 7.722 · 103 240 636Simple non-linear 2.673 · 103 8.040 · 103Ad. simple non-linear 2.668 · 103 7.951 · 103 238 864Extended non-linear 2.787 · 103 8.383 · 1038.17 Model validationTo validate the model dimensions the likelihood ratio test is onsistent. It is onlypossible to ompare the linear model to the simple non-linear model when takeninto onsideration that the simplest model has to be a subset model of the fullmodel. Due to the fat that the extended non-linear model in all the preedinganalyses has shown through, it is hosen to ompare the extended model againstan adapted simple non-linear model. As mentioned earlier it is doubtful whetherthe heat transfer from the wooden board transmits through onvetion as statedin the simple non-linear model. It is therefore deided to estimate the simplenon-linear model where the heat transfer from the wooden board is transmittedthrough radiation as it is done in the extended non-linear model. The valuesof the likelihood funtion and the alulated Lratio is shown is Figure 8.14. Inboth ases the χ2-distribution has two degrees of freedom, applying a 5% levelof signi�ane the χ2(2) = 5.991. By omparing the Lratio from the table itis evident that the model extension in both ases give a signi�antly betterdesription of the data. This means that it is neessary to apply the full modelto get the best desription.



8.18 Disussion 838.18 DisussionAs a short sum-up it an be onluded that the variables alulated on the basisof the measurements of the eletrial �ows give the best preditions. A veryimportant �nding is that the measured temperature at the top of the modulegives the best desription to the module temperature. Having in mind thatthe performane of the module derease when the temperature raises, it makessense to apply the top temperature whih represents the highest temperaturesin the module ompared to the temperature at the bottom of the module. Thelimitation of the e�ieny of the module is the lowest performing ell. Due tothe orrelation between the temperature of the module and the e�ieny, theworse ase e�ient is modelled by having the top temperature of the model asthe output variable. Furthermore, it is evident that the extended non-linearmodel is deisive better than the two other models attempted.Comparing the performane of the similar models in this hapter and in theartile [Jiménez et al. 2006℄, the performane is improved. The primary reasonis the hange of output variable from the average to the top temperature. Fur-thermore it does also in�uene that the alulated irradiane is applied insteadof the measured.The residual analysis reveals that none of the models give a perfet desrip-tion of the data. A general onlusion from the analysis of the residuals is thatthe residuals of the extended non-linear model has the best performane. Toname only a ouple of the indiations that the extended non-linear model hasthe best performane: the lowest standard deviations, signi�ant hange in signtest, and the most straight line in the umulated periodogram One of the majordi�ulties for all the estimated model is to obtain aeptable predition duringthe day hours. Non of the models got rid of the bulge of high residuals duringthe day hours.Another �nding in this hapter is that ahieved by adding an extra state, wherethe ausal �ltered wind is estimated, the best results are attained. The analysishas revealed that only very little of the variation in the wind is removed. Due tothis irumstane, it an be disussed if it is neessary to have this extra state.Furthermore a likelihood ratio test of the three-day models based on either themeasured wind and the asual �ltered wind on�rm that the improvement ofthe model is signi�ant. Lratio is equal to 262. This value has to be omparedto χ2
0.05%(1)=3.841. When taken into aount that the wind speed at the siteis relatively low it an be assumed that the ausal �lter an be of even greaterimportane at loations where the wind is faster and more �utuating.



84 Single State Models - Model identi�ationThe �ndings above demonstrate that the extended non-linear model has anaeptable performane, but it is still possible to improve the desription of themodule temperature, whih will be attempted in the following hapter.



Chapter 9Multiple State Models - Topand Bottom Divided Model
In the previous hapter it has beome lear that it is di�ult to obtain a sat-isfatory modelling of the temperature of the module. In this hapter therewill be attahed importane to the fat that some of the measured variables areolleted both at the top and at the bottom of the module. The models in thishapter have two system equations: one for desription of the temperature atthe top and one for the bottom temperature. This makes it possible to estimatethe two temperatures separately. This is alled a multiple state model. Thisapproah of analyzing the module in several separate setions has been usedin earlier analyses. In [Christ 2001℄ a trisetion solution is hosen for the pur-pose of simulation. The main reason for making this further development is toinvestigate if it is possible to get a better predition of the module temperature.9.1 The modelIn the previous hapter it was found that the model where the ausal �lter wasapplied to the wind resulted in the best predition. Unfortunately, despite nu-merous attempts, it has not been possible to estimate the ausal �lter for themultiple state models. This an either be the result of too ompliated alula-



86 Multiple State Models - Top and Bottom Divided Modeltions or unsuessful initial guesses of the parameter values. The results shownin the previous hapter revealed that in the ase of these data the models basedon the ausal �ltered wind and the measured wind generated quite similar re-sults. It is therefore deided to estimate these models based on the measuredwind. This will still indiate fairly whether the multiple state models have bet-ter or worse performane ompared to the single state models.When taking the available data into aount and also the wish for generatingmodels of similar struture to the extended model in the previous hapter, twofeasible solutions are identi�ed. The �rst model is very similar to the extendednon-linear model in the previous hapter. The other model is a more advanedone, where CTSM estimates the temperature halfway up the gap. The modelswill be desribed in furhter details in the next two setions.It is neessary �rstly to introdue the onept of modelling the top and bot-tom temperatures of the module separately. A sheme of the estimation set-upis shown in Figure 9.1.
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Figure 9.1: Sheme of the set-up with the dotted line indiating the plae of lumpingThe dotted dividing line between the top and the bottom parts an be viewedas the lumping point. Sine the mean radiant temperature, the ambient airtemperature and the irradiation are a�eting the top and the bottom of themodule equally, these ontributors are idential in the two system equations inEquation 9.1. ∆T is the temperature di�erene in the air gap. Two senariosare oneivable in relation to ∆T . The simplest assumption is to apply the ∆Testimated over the entire height of the gap. In this ase ∆T below the dividing



9.1 The model 87line will be larger ompared to the ∆T of the top of the gap. This means that themodel is approximative onerning ∆T . In the seond senario it is attemptedto estimate the temperature halfway up the air gap. The terms estimating theinfrared radiation from the wooden wall to the module are di�erent in the twostate spae equations. This is done sine a temperature at both the top and thebottom of the wooden board is measured. This is an opportunity to eliminatea possible soure of error, sine there is up to a 5oC di�erene between the topand the bottom of the board.
dTbottom =

(
1 − 1

1 + exp(−f)

)(
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bottom)dt + . . .
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bottom)dt + kirradIirraddt
)

+ dw1

kwoodtop(T
4
wood,top − T 4

top)dt + kirradIirraddt
)

+ dw2 (9.1)
Tmbottom = Tbottom + e1

Tmtop = Ttop + e2 (9.2)Inspired by the thermal images it is onsidered neessary to be able to weightthe in�uene of the top and the bottom temperatures of the module respetively.This weighting is denoted f , and is estimated in CTSM. f and (1 − f) denotehow muh in�uene the top and the bottom system equations respetively shallbe have in order to obtain the best desription of the module temperature. Itis deided to apply f and (1 − f) in all the terms in the state equations. Thefrations an be seen as indiations as to where the dividing line needs to beset. At the introduing stages of estimation, f was entered in the model as aonstant parameter. When thinking about how �utuating the data and therebythe estimated models are, f is not su�iently dynamial. This an also be on-luded from the thermal images presented ealier. It was deided to reestimatethe models, where f was applied as a state, only desribed by a noise term. Inthis way it is possible to let f vary during the entire period.The logisti funtion, 1
1+exp(−f) , is applied in order to assure that f is lim-ited to be between 0 and 1. Unfortunately it beomes even more intensive forCTSM to estimate, when the logisti funtion is applied to the model. CTSMdoes estimate a model, but surprisingly the number of estimations drops from



88 Multiple State Models - Top and Bottom Divided Modelabove 150 to less than ten. CTSM uses iteration to �nd the solution. The num-ber of iterations is one of the output values in CTSM. This leads to a situationwhere the estimated parameters are lose to or equal to the initial parametervalues. The reason for the low number of iterations an be that CTSM hasfound a loal minimum of the objetive funtion instead of the global minimum.In order to �nd the global minimum it an be attempted to hange the initialparameter values in CTSM. This has been attempted by using several di�erentinitial values. It has been possible to raise the number of iterations from lessthat 10 to about 60. Still some of the estimates are lose to the intial values,whih leads to less trustworthy results.A general problem in relation to all the models estimated in this hapter isthat they are very sensitive to variations in data and hanges in the de�nitionof the estimation parameters. This implies that one minor hange in the set-uphas detetable in�uene on the rest of the model. The estimation of the modelsis very time onsuming, therefore it is not possible to investigate all possibilities.In the setions below, argumentation for the deisions will be given.The data applied in the oming analyses are dating from the 16th of August.The previous analyses revealed only very little di�erene between the resultsbased on one-day and three-day data respetively, whih justi�es for applyingone-day data in the analysis below.9.2 Simple multiple state modelThe model estimated in this setion is idential with Equation 9.1 and 9.2.This simple model is a rough approximation in aordane with the ∆T term.The approximation is rough as ∆T is not idential at the top and bottom partsof the module, sine it must be expeted that the old entering air is heated upfaster than the preheated air in the upper part of the air gap. Before estimatingthe residuals it was insured that the estimations in CTSM were adequate. Theaverages and standard deviations for the residuals of the temperature at the topand the bottom of the module respetively stated in Table 9.1.



9.2 Simple multiple state model 89Table 9.1: The averages and standard deviations of the residuals of the simple multiplestate model Average Std.dev.
Tmoduletop 2.23 · 10−2 9.74 · 10−2

Tmodulebottom −2.14 · 10−2 8.51 · 10−2

Compared to the standard deviations of the single state models these values aremore than double their size. In Figure 9.3 are the two residual plots. It an beseen that the model has essential di�ulties in prediting the temperature dur-ing the day hours. Predition di�ulties during the day hours are also presentin relation to the single state models. The residuals seem to be not random inregions of the plot. When omparing the behaviour with the single state modelsthe residuals are larger, whih is also stated in the table above. In order tolarify if it is possible to obtain a better desription of the module, the auto-orrelation and partial autoorrelation plots of the residuals are reated. Thevalues of both of the autoorrelation funtions are remarkably high. This anindiation that the models are not adequate to desribe the data. The partialautoorrelation plot, Figure 9.3, related to the temperature at the top of themodule indiates that an extra state an inrease the level of the desription.The rest of the autoorrelation and partial autoorrelation plots show that themodel has big di�ulties in desribing the data.The plot of f plotted against the time is found in Figure 9.2. It an be seenthat f lies between 0 and 1. The urve �utuates. Surprisingly the temperatureat the bottom of the module gives the majority of the desription. This is aninteresting �nding sine the single state modelling showed that the temperaturein the top provided the best results. In the ase of the single state spae modelsthe relationship between the top and the bottom temperatures was stationary,whih makes it di�ult in this situation to ompare the performane of themodels. When the sun is not in�uening the module, the temperature at thetop obtains more in�uene.As an overall onlusion of the simple multiple state model it is determinedto rejet further use of the model due to the high standard deviation omparedto the more simple single state model. Seondly the lak of stability is also anargument for no further appliation of the model.
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Figure 9.2: The variation in the estimated fration indiator, f , of the simple multiplemodel
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Figure 9.3: The residual, autoorrelation and partial autoorrelation plots of thesimple multiple state model. Left-hand side of the plot is plot for the Tmoduletop andright-hand side is related to the Tmodulebottom



92 Multiple State Models - Top and Bottom Divided Model9.3 Advaned multiple state modelInstead of applying ∆T in both system equations it is attempted to divide theonvetion heat transfer in the air gap into two parts. In the system equation ofthe temperature at the bottom of the module ∆T is rewritten as (Tin− T̂middle).In relation to the temperature at the top of the module ∆T is replaed by
(T̂middle −Tout). Sine T̂middle is not measured the idea is to estimate the valuein CTSM. When estimating the model it beomes lear that this is not possiblesine the estimated value of T̂middle, 18.7oC, is lower than the average of Tin,whih is 22.5oC. An alternative possibility is then to �x Tmiddle to the averagetemperature of Tin and Tout. This is an approximation due to the knowledgeabout the distribution of heata in the air gap, where the old air in the be-ginning of the gap is heated faster than at the top of the gap. Furthermore,it is expeted that the distribution will hange over time due to temperaturehanges. Therefore it is deided to use a simple average between the Tout and
Tin as an approximation. In Table 9.2 the averages and standard deviations ofthe residuals are listed. The standard deviations reveal that the model is betterin prediting the temperature at the top of the module than the bottom tem-perature. Comparing the values with the prior result the model is performingbetter than the previous multiple state model. Still the performane is worsethan the performane of the extended single state model. As for the simplemultiple state model the di�erent residual plots are ombined in Figure 9.5.The residual plots show more random tendenies ompared to the latter model.To substantiate the standard deviation values the plots of residuals reveal thatthe model has big troubles in prediting the temperature at the bottom of themodule. The plots of the autoorrelation funtions and the partial autoorrela-tion funtions of the residuals show a need of adding an extra state in order toobtain a better predition. The added state has to desribe a temperature loseto the present bottom temperature. In Figure 9.4 the fration determining thein�uene of the top and the bottom temperatures respetively appears. For thismodel the temperature in the top of the module desribes the module best. Inpartiular around noon f is very �utuating. This gives room for speulationsif the noise added to f has too large in�uene. In a further investigation itan be tested if for instane f shall be de�ned in another way. One methodto ontrol the in�uene of the noise is by �xing the variane of the noise term.Another method is estimating f depending on the previous observation times aoe�ient, a, and the noise term. See Equation 9.3 where the equation is statedin ontinuous time. In Equation 9.4 the equation is written in disrete time.This will extend the omplexity of the model and the estimation proess.

df = a · f + dw (9.3)
f(t + 1) = φf(t) + e (9.4)



9.3 Advaned multiple state model 93Table 9.2: The averages and standard deviations of the residuals of the advanedmultiple state model Average Std.dev.
Tmoduletop −2.50 · 10−3 4.56 · 10−2

Tmodulebottom −2.31 · 10−2 9.88 · 10−2
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Figure 9.5: The residual, autoorrelation and partial autoorrelation plots of theadvaned multiple state model. Left-hand side of the plot is plot for the Tmoduletopand right-hand side is related to the Tmodulebottom



9.4 Summation 959.4 SummationThe analyses and results in the setions above show that the tested models havea worse performane ompared to the single state models investigated in theprevious hapter. It is of no bene�t to extend a model and attain a worse result.As mentioned in the beginning of the hapter the model estimation is unstable.Some of the reasons for this are identi�ed. The models are very sensitive to theinput data. This was experiened when data of the following day were applied.Furthermore the CTSM estimation has an in�uene on the unstable results,due to the low number of iterations before a model is identi�ed. However, if itis assumed that the results make sense, the analysis reveals that extra statesadded to the models ould be favourable. On basis of the available data it isnot possible to make suh extension of the models. The results point towardsundertaking more measurements of the module temperature. This is not an easytask sine thermo ouples have to be plaed inside the module. If it is possible,the extension of measurement an be done at two levels. First it ould be anadvantage to arry out more horizontal measurements in order to get a betterdetermination of the top and the bottom temperatures respetively. Anotherimprovement ould be to measure more temperatures vertially. This will allowsto extend the number of state equations and thereby the level of desription.When keeping the thermal images in mind this would probably inrease the levelof desription. On the other hand these extensions will inrease the omplexityof the models in relation to the estimation in CTSM.It must be onluded that the models estimated on the basis of the availabledata are not performing satisfatorily ompared to the single state models. Inthe following analysis the extended single state model will therefore be applied.
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Chapter 10Analysis of the ForedVentilation in the Air Gap
The main purpose of the previous hapters was to identify the best �tting model.In this hapter the aim is to investigate how various onditions in the air gapbehind the PV module in�uene the heat transfer and in general the estimationsof the models. This is also an opportunity of testing the reliability of the model.Changes in the onditions an reveal strength and weaknesses of the model.The applied model in this hapter is the extended non-linear single state modelprediting the temperatures at the top of the module. This model has provento be the overall best desribing model though it has troubles prediting duringthe day hours.10.1 The set-up and the dataThe model applied for estimation is the extended non-linear single state modelfrom in Chapter 8. While estimating the models it has beome lear that, dueto �utuation in the wind, the ausal �ltered wind, Wf , needs to be �xed. If Wfis not �xed the standard deviation of the state parameters beomes too high. Itis therefore hosen to �x Wf to the average of the measured wind of the spei�data set.



98 Analysis of the Fored Ventilation in the Air GapThe parameters of the models are very sensitive to variations in the wind speed.This means that the models have to be estimated from data where the averagewind is quite similar.Two fators are hangeable in relation to the air gap: the fored veloity andthe air resistane. The fats of the hangeable fators are listed below.
• The fored veloityJust as in the prior analyses the fored ventilation is held onstant in a24 hour period. In the analysis three veloities are examined. For thepurposes of omparison the ambient wind speed is in general below 1 m/s.� 1.38 m/s (Level 6)� 2.49 m/s (Level 10)� 3.43 m/s (Level 13)
• The air resistaneThere are two set-ups in order to hange the air resistane in the gap:� No �ns results in a free laminar �ow� Fins reating a turbulent �ow
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Figure 10.1: Left: A photo of the �ns inside the air gap in the BIPV module[Christ2001℄. Right: A sheme showing the fored air �ow in the gap.The transversal �ns, see Figure 10.1 to the left, are plaed in the gap in orderto make the laminar air �ow turbulent. On the right hand side in Figure 10.1 isa sheme of how the �ow is expeted to behave in the air gap. There is a lak of



10.1 The set-up and the data 99theory onerning the behaviour of the air �ow in the gap. Prior researh hasfoused on air �ow in gaps where the �ns are present at both sides of the gap.In the artile by [Chin-Hsiang & Wen-Hsiung 1990℄ the �ow patterns in a gapwhere the �ns are in staggered positions at eah side of the gap are disussed.Others have made researh having the �ns plaed exatly opposite one another.These studies reveal that the inoming laminar �ow beomes more turbulent.The �ow in the gap behind the PV module is expeted to be less turbulent sinea ertain amount of the air will sueed in moving along the PV module. In thease of the BIPV module it is not possible to plae �ns at both sides of the gap,sine the �ns should then be mounted at the rear side of the module. If �nswere mounted at the rear side this might lead to an unwanted in�uene on themodule temperature. In this situation also the heat transfer oe�ient, whihhas to be estimated, will be a�eted in an unfavorable way. The mounting oulda�et the funtionality of the fragile module.The set-up ontaining the �ns inreases the e�etive heat transfer area in theair gap. This an lead to an inrease of the heat transfer from the PV moduleto the air in the gap behind the PV module[Christ 2001℄ and [Bazdidi-Tehrani& Naderi-Abadi 2004℄. Compared to the set-up without �ns the set-up with �nswill lead to a higher air temperature in the gap and moreover a derease in themodule temperature. This e�et is favourable, sine a derease in the moduletemperature raises the eletrial performane of the module. The transfer of theheat from the module to the ventilation air is also desirable, if the air is meantto heat the building.The applied data are all 24-hour data. It is examined that the fored velo-ity is held onstant in 24-hour periods. In the original data there was also afored ventilation Level 7, but no 24-hour periods were measured. Under theseirumstanes it was deided not to apply these data. In the light of the pre-vious analyses it is found that 24-hour data are aeptable in order to obtainstable and useful models. The data are measured during a one-month period.In Appendix A.1 a table ontaining information as to when the information isolleted. This may lead to deviation in the external onditions suh as temper-ature and wind speed. Aording to the logbook of the testing, [Gandini n.d.℄,all the days were sunny days. The irradiation is one of the important onditionswith a view to having equal testing onditions, when dealing with PV modules.



100 Analysis of the Fored Ventilation in the Air GapTable 10.1: Averages and standard deviations of the residuals for the models havingdi�erent veloities in the air gap with and without �nsFins Veloity Average (std.dev.)6 −6.301 · 10−4(3.091 · 10−2)Yes 10 −2.292 · 10−4(3.144 · 10−2)13 2.206 · 10−4 (3.423 · 10−2)6 3.477 · 10−5 (3.091 · 10−2)No 10 −1.162 · 10−4(3.332 · 10−2)13 −4.397 · 10−5(3.673 · 10−2)10.2 The results of the analysis10.2.1 The residualsInitially the averages and the standard deviations for the six models are al-ulated. These values are found in Table 10.1. Compared to the averages andstandard deviations of the extended non-linear models, Chapter 8, the valuesare at the same level; Averages are of the magnitude of 10−4 − 10−5 and thestandard deviations are in both ases about 3 · 10−2. The omparison of thepresent models reveals that the standard deviations of the model based on data,where the �ns were installed, have the lowest standard deviation of the entirethesis. Moreover the standard deviation value in general appreiates along withinreased level of veloity.In Figure 10.2 the residual plots an be seen. When omparing the left andright hand side, respetively no �ns and �ns, of Figure 10.2 the residuals ofthe entral samples, orresponding to noon, are smaller for the model based ondata where the �ns were plaed in the air gap. The bulge, whih has been seenthroughout the entire thesis, is nearly erased. In general these plots indiatethat the model is better to predit the energy �ows of the module, when the �nsare applied to the set-up. In the plots of the autoorrelation funtion, Figure10.3, a very di�erent piture appears. It is neessary to keep in mind that theon�dene limits only an be used as indiations due to the large number of ob-servations. The autoorrelation funtion plots representing data where no �nswere plaed in the air gap indiate that the models are adequate, whereas theplots representing the data where the �ns were plaed in the air gap show thatthe model has a lak of �t in relation to desribe the input data. The plots ofthe partial autoorrelation funtion, Figure 10.4, supports the �ndings above.Espeially the plot in the upper right orner indiates the neessity of addingtwo extra states to the models with the �ns in the gap. This ould be arried
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Figure 10.2: Residual plots. To the left the residual of the model based on data,where no �ns were plaed in the gap. On the right hand side the residual ofmodels where the �ns were plaed in the gap.
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Figure 10.3: The autoorrelation funtions of the residuals of the estimatedmodels
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Figure 10.4: The partial autoorrelation funtions of the residuals of the esti-mated models



104 Analysis of the Fored Ventilation in the Air Gapout if for instane it was possible to divide the estimation of the module intothree individual areas. Unfortunately, a su�ient amount of measurements isnot available. Some of the other partial autoorrelation plot gives weaker indi-ations of the neessity of adding one or two extra states.In order to analyze the residuals both in the time domain and the frequenydomain the umulated periodograms of the models have been estimated andplotted. The plots are found in Appendix A.3. The plots reveal that the modelswhere no �ns were plaed in the gap form nearly straight lines, whereas theother models have a lak of �t for low frequenies.To make sense out of the results above it seems as if the models based onthe set-up with �ns an be very powerful if more measurements are available,sine the standard deviations of these models are already lower ompared to theset-up without �ns. An extra state is likely to improve the performane of themodel. Suh as extension an be tested by the likelihood ratio test in order todetermine if the improvement is signi�ant.
10.2.2 Analysis of the parameter valuesIn Table 10.2 and 10.3 the estimated parameters and the average wind arelisted. In the left olumn signs indiate the trend of the parameters of thedi�erent models. ; denotes that no lear trend is disovered while ց and րindiate delining or rising tendenies of the parameter values. The reason forthe two stars in Table 10.2 is that is has been neessary to estimate this modelby �xing Wf to an average of the winds of the other models. This deision istaken sine the measured wind speed during the trial with no �ns and veloity13 was higher than on the other two days. The tables show that the parametervalues are highly dependent on the spei� day measurements. It shall be notedthat a ompared to the other models is very low, 0.085, in the model where thefored veloity is at level 10 and no �ns are plaed in the air gap. No reason forthis has been disovered. In this situation it would have been an advantage ifmore similar data were available in order to estimate an extra model to verifythe result. A ommon trend of the two tables is that kair rises when the foredveloity is inreased and kwindair drops aordingly with rising fored veloityin the air gap. These two parameter estimates outline the heat transfer fromthe module and the ambient air. This relationship will be analyzed in the nextsetion. In the previous setion it was mentioned that the heat transfer betweenthe module to the air in the gap would be inreased when �ns were added. Theparameter estimate, kdelta, reveals a dominating tendeny.
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Table 10.2: The parameters of the models without �ns in the air gapNo FinsVeloity 6 10 13 Trend

µwind 0.775 0.714 0.891 ;

krad 8.672 · 10−10 1.519 · 10−9 3.994 · 10−9 ր
(1.588 · 10−10) (3.484 · 10−10) (3.908 · 10−10)

Trad 263.42 285.95 287.12 ր
(6.556 · 100) (1.748 · 100) (4.703 · 10−1)

kair 8.651 · 10−1 1.478 · 100 1.869 · 100 ր*
(1.505 · 10−1) (1.491 · 10−1) (1.457 · 10−1)

kwindair 2.634 · 10−1 1.683 · 10−1 1.349 · 10−1 ց*
(4.265 · 10−2) (1.885 · 10−2) (3.947 · 10−2)

kdelta −3.259 · 100 −2.715 · 100 −5.024 · 100
;

(3.295 · 10−1) (4.829 · 10−1) (6.564 · 10−2)
kwood 6.288 · 10−10 2.509 · 10−9 7.199 · 10−9

;

(5.423 · 10−10) (4.838 · 10−10) (4.342 · 10−10)
kirrad 1.080 · 10−1 9.895 · 10−2 1.131 · 10−1

;

(3.740 · 10−3) (2.573 · 10−3) (1.766 · 10−3)
a 0.335 0.085 0.327 ;

(1.305 · 10−1) (9.143 · 10−2) (1.650 · 10−1)

Table 10.3: The table ontains the parameters of the models with �ns in the air gapFinsVeloity 6 10 13 Trend
µwind 0.800 0.899 0.851 ;

krad 2.688 · 10−9 2.116 · 10−9 2.557 · 10−9
;

(1.479 · 10−10) (1.607 · 10−10) (2.447 · 10−10)
Trad 281.72 280.20 286.32 ;

(3.405 · 10−1) (1.127 · 100) (9.324 · 10−1)
kair 5.853 · 10−1 1.338 · 100 1.882 · 100 ր

(6.750 · 10−2) (1.465 · 10−1) (1.601 · 10−1)
kwindair 4.565 · 10−1 2.577 · 10−1 1.561 · 10−1 ց

(4.456 · 10−2) (2.493 · 10−2) (1.454 · 10−2)
kdelta −2.757 · 10−1 −3.330 · 100 −8.661 · 10−1

;

(1.952 · 10−1) (4.951 · 10−1) (5.290 · 10−1)
kwood 2.816 · 10−9 1.262 · 10−9 1.883 · 10−9

;

(3.268 · 10−10) (4.099 · 10−10) (4.283 · 10−10)
kirrad 8.734 · 10−2 9.806 · 10−2 1.009 · 10−1 ր

(1.912 · 10−3) (3.088 · 10−3) (3.508 · 10−3)
a 0.392 0.345 0.305 ց

(7.541 · 10−2) (1.090 · 10−1) (1.858 · 10−1)



106 Analysis of the Fored Ventilation in the Air Gap10.2.3 The heat transfer of the BIPV moduleThe heat transfer between the module and the air in the gap is not analyzeddue to no lear tendeny of the parameter estimates.The heat transfer oe�ient, hc, between the ambient air and the module is ex-peted to vary when hanging the veloity and the type of �ow. The heat trans-fer oe�ient from the module to the air is given as (kairCBIPV /A). CBIPV isthe e�etive heat apaity of the module and A denotes the area of the module.Both CBIPV and A are onstant sine the same module is applied in all the tri-als. Due to the lak of knowledge as to the value of CBIPV both onstants arenot removed in the oming analysis. This means that the values are not diretlythe physial expressions, but the saled dimensions of the results of the di�erentmodels are orret. The saled heat transfer oe�ient from the PV module tothe ambient air is from now on denoted the ambient onvetive oe�ient.In Figure 10.5 two plots are showing the ambient onvetive oe�ient, kair,plotted against the wind speed raised to the power of the estimated oe�ient,
kwindair . The plot at the top presents the relations in the interval of the mea-sured ambient wind. The other plot is an extrapolation to illustrate the rela-tionship in the broader interval. There is a risk that the relationships found inthis broad interval are arti�ial. The applied parameter estimates are identialto the values in Table in 10.3 and 10.2. The wind speed raised to an estimatedoe�ient is not part of the heat transfer oe�ient, but the two parametersare losely linked together. In the hapter treating the single state models it isproven that the wind does have an in�uene on the performane of the module.The upper plot learly shows that the veloity of the air in the gap has a strongin�uene on the heat transfer. The higher the fored veloity is, the higher theheat transfer to the ambient air beomes. The in�uene of the �ns ompared tothe veloity level is very small. The plot atually reveals that the heat transferfor the low veloities is better when the �ns are not in the set-up. There may bea link due to the fat that the low veloity levels and the ambient wind speedare very lose to eah other, whih neglet the in�uene. There is signi�antdi�erene between �ns and no �ns in relation to the fored veloity level 6. Thisdi�erene beomes smaller the higher the fored veloity gets. At the veloitylevel 13 the ambient onvetive oe�ient is about the same.The analysis of the models revealed that the models based on the data with�ns yielded better preditions. This may have an in�uene when omparing theparameter estimates of the models with or without �ns.Due to the preeding researh showing that the �ns should have an inreas-ing impat on the heat transfer it is investigated if other onditions in the trialand the data have in�uened the heat transfer of the module. The ambient on-



10.2 The results of the analysis 107vetive oe�ient desribed the relationship between the ambient temperatureand the module temperature. Therefore the di�erene between the ambient airand the temperature at the top of module is plotted against time. This donefor both the models with or without �ns in the air gap. The reason why it ishosen to plot the di�erene between the temperature of the ambient air andthe module is that part of the variation of the ambient temperature is removed.
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Figure 10.5: The relationship between the ambient wind and the ambient onvetiveoe�ient for set-ups with or without �ns. Also the fored veloity is varied. Theupper plot is the relationships in the interval of the measured wind, while the plot inthe bottom is an extrapolation



108 Analysis of the Fored Ventilation in the Air GapThe plot where the fored veloity is at level 13 is shown in Figure 10.6. Itis seen that the di�erene is smaller in the ase of the set-up where the �nsare applied. This gives an indiation that the �ns in the air gap have removedheat from the module. This removed portion of heat may lead to lower ambientonventive oe�ients. In Appendix A.2 similar plots for the fored veloity 6and 10 are found.These plots underline that the largest temperature di�erene between the am-bient air and the module is for the fored veloity level 13. The bottom plotof Figure 10.5 is an extrapolation whih may show a possible behaviour of theambient onvetive oe�ient for a broader interval of the ambient wind speed.At all three di�erent levels of fored veloity there is a trend that the �ns havemore in�uene along with higher ambient wind speeds.For all three veloities there is a point where the lines representing with orwithout �ns respetively interset. This means that at a ertain point the set-up with �ns obtains a larger ambient onvetive oe�ient and thereby a largerheat transfer oe�ient. This e�et has to be added to the e�et that the tem-perture in the module has already been redued. The trend is furthermore thatthe higher the fored veloity is, the faster a hange takes plae.
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Figure 10.6: The di�erene between Tmoduletop and Tair plotted against time forset-ups with and without �ns in the air gap.



10.3 Summary 10910.3 SummaryThis hapter has revealed that the extended non-linear single state model isable to show the di�erene when the fored veloity and the onditions in theair gap are hanged. The residual analysis has shown that the model where the�ns are applied in the set-up gives lower standard deviations of the residuals.The important �nding is that the predition in the day hours is improved. Thisis an essential disovery sine the majority of the eletriity is produed duringthese hours, whih means that it is of speial importane to be able to preditthe temperature in these hours. The partial autoorrelation moreover indiatesthat by adding an extra state to the model an even better desription is possible.Due to the lowest alulated standard deviations and the improve preditionsduring the day hours, it an be onluded that the model where the �ns areapplied to the set-up are the best performing models of the entire thesis. It hasto be added that the performane of the model inreases the higher the foredveloity in the air gap is.The dissimilarities of the model predition between the two set-ups an be dueto either the variations in the measured data or an atually better ability forthe model to predit the set-up where the �ns are plaed in the gap.The models reveal that the heat transfer is inreased when the fored venti-lation level is inreased. The e�et of the �ns is not just as ontributing, butit was disovered that the di�erene between the ambient temperature and thetemperature of the module were redued due to the �ns. The �ndings point inthe diretion that both the �ns and a high-fored veloity in the air gap altoge-hter ontributed to an inreased heat transfer from the module.The analysis shows that it is possible to inrease the heat transfer from themodule. The implementation and the operation of a fored veloity behind themodule are energy onsuming. In order to determine the gain of the set-up aost-bene�t analysis of the ost referring to the operation of the fored ventila-tion versus the e�ieny gain of the module has to be arried out in order toevaluate if the �nal output is inreased.
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Chapter 11 Future Work
When working on a thesis like this, there will always be areas and ideas whihannot be further investigated due to lak of time. In the setions below someof my thoughts are outlined.The multiple state models are evaluated to be less workable than the singlestate models, due to high residual values and, in general, the instability of themodels. In a future analysis it ould be interesting to investigate how to attaina funtional and reliable multiple state models. The residuals of the extendednon-linear single state model reveal that the worse preditions are found duringthe day hours, whih is the most important period to get a good predition ofsine the most eletriity in produed in this period. This indiations that thereis still room for improvements of the model.The primary fous of the thesis has been to identify models whih are ableto desribe the olleted data in a satisfatory way. The analysis of the valuesand the size of the parameters have been given lower priority. In some futurework it ould be of great interest to investigate and understand the estimatedparameters. This shall be seen in the light of the model type, namely grey-boxmodelling, where the estimated parameters should atually estimate true phys-ial parameters.One major stop blok in order to extend the models further is the amount of



112 Future Workmeasured variables. If for instane more measurements of the module tempera-ture were available, it would be possible to onstrut a multiple model onsistingof three states.With regard to the thermal images it would also be of advantage if thermalimages from the spei� days of the applied data were taken. Also the state-ments about the possibly in�uene of humidity and the angle of the wind speedould be intersting to test in the models.In relation to the set-up with �ns in the air gap a further analysis where the re-sults are ompared to the omplex empirial equations ontaining the Reynoldsnumber or the Nusselt oe�ient ould be arried out. These numbers are anthe help desription the when dealing with turbulent wind and di�erenies intemperature, whih is the ase with these data.It ould also be exiting to arry out a ost-bene�t analysis, whih determinesin energy and eonomis terms whether there is a beni�t of applying the foredveloity of the air gap.



Chapter 12 Conlusion
The analyses of this thesis have proven that it is possible to model the tem-perature of the module. It is found that the photovoltai module is omplex inmany ways. The improvements and �ndings of this thesis will be disussed inthe setion below. Due to the subdisussions and onlusions at the end of thehapters, this hapter will appear as a ombined disussion and onlusion.The stohasti state spae models have proven to be exellent with a view to han-dling the �utuations of the measured data. Compared to the RC-models �rstdesribed, the stohasti state models applied are able to model non-linearities.In the modelling proess it is proven that the non-linear in�uene of the windand the infrared radiation are signi�ant.The analyses of the models have revealed that the extended single state modelhad the overall best performane. The likelihood ratio test stressed the �nd-ing. Also the analyses of the residuals strengthened that the extended modelhas the most quali�ed way of desribing the data. Sine the analysis of theresiduals shown signs of possible improvements, it has been attempted to ex-tend the model from being single state to onsist of multiple states. Due to theknowledge as to the hanging heat distribution, the dynamial parameter f wasimplemented in the model to determine the degree of in�uene of the measuredtop and bottom temperatures respetively. The results of these models are veryunstable. The omplexity of the models has great in�uene on CTSM's ability



114 Conlusionto estimate the model. Espeially the ausal and logisti funtion give risesto problems, whih were hard to solve despite many attempts. It an also bedisussed whether f is de�ned appropriate. Even though the residual valuesgot worse ompared to the single state models it is presumed that there is apotential in moving from single to multiple state models. This is stated in thelight of the indiations of the partial orrelations plot for the neessity of extrastates in the model. Also the fat that the worse preditions of the moduletemperatures our during the day hours, where the most amount of eletriityis produed. This makes it essential to improve the model performane. It hasto be mentioned that the models where �ns turn the fored air �ow into a turbu-lent air �ow, do not have the same di�ulties of prediting during the day hours.It an be determined that the performane of the estimated single state modelsis improved ompared to the similar models in the artile [Jiménez et al. 2006℄,whih gave raise to this thesis. The primary reason is the hange of output vari-able from the average temperature to the top temperature. Furthermore it doesalso in�uene that the alulated irradiane is applied instead of the measured.In the ase of the single state models both the data onsisting of one-day andthree-day measurement were estimated. When the performane was omparedthe three-day models had only a little lead. In relation to the residual analysisit was disovered that for some of the tests, e.g. the portmanteau lak-of-�tand the on�dene intervals in general, it was a di�ult fator that the modelswere based on that many observations. The analyses of the parameter estimatesreveal that the individual set of data has great in�uene on the size of the pa-rameters.There are several irumstanes in relation to the module temperature thatmakes it di�ult to obtain a satisfatory desription. The thermal images werea breakthrough to realize that the heat distribution of the module is omplex.The variation over time is signi�ant. Initially the desription of the moduletemperature was an average between the measures at the top and the bottomof the module. Comparing the average temperature with the thermal imagesit was disovered that the tongues in the heat distribution render the averageimpossible. In aordane with the thermal images the temperature at the topresulted in the best preditions. It also makes great sense to apply the temper-ature at the top of the module, sine the highest temperatures are found hereand thereby the worse performane of the module is desribed. The tempera-ture of the module, that has to be predited, is the most important variable tobe orret, but also the desribing variables an help improve the desription ofthe temperature of the module. The analysis revealed that the models based onthe alulated ∆T and on the irradiane obtained the best results. Before thisanalysis it was believed that a �ltered version of the ambient wind speed wasin�uening the performane of the module. The estimated models learly show



115that the �utuations of the ambient wind do have in�uene. The ausal �lterwhih estimates the optimal �ltration of the wind revealed that only very littleof the measured wind has to be removed in order to obtain the optimal desrip-tion of the module temperature. It an be disussed if it is neessary to applythe �lter if only very little improvement is disovered. One strong argument forkeeping the ausal �lter in the model, denoted as the best, is that the wind atthe test site in Ispra is limited. It an therefore be expeted that the ausal�lter will be of higher appliability at sites where the wind speed is higher andmaybe more �utuating.The statements above underline the advantages of the abilities of testing theperformane and the �tting of these grey-box models. Introdutorily the non-linear in�uene of the wind was added in both the term of the onvetion fromthe ambient air to the module and the irradiane term. CTSM learly show thatthe wind does not in�uene the irradiane into the module. In the investigationit beame evident that the irradiane was measured inside the module whihmeans that the ambient wind speed should not in�uene the irradiane. Thisentails a redution of the model, whih ould also be determined on the basis ofphysial knowledge. This is one of the strength of grey-bpx modelling.The last and heering �nding in this thesis is that the model is able to dis-riminate di�erent veloity levels and set-up, with or without �ns in the gap,from eah other. The analyses have revealed that the fored veloity in the airgap has a signi�antly inreasing in�uene on the heat transfer oe�ient be-tween the ambient air and the module. Furthermore, the di�erene between theambient air temperature and the module temperature was higher for the set-upwith �ns, where the former laminar air �ow is turned into a more turbulent�ow. This underpins the theory of the in�uene of �ns in air gaps known inadvane. For the set-up with �ns in the air gap the predition problems duringthe day are nearly removed. This an be seen from the plot of the residuals andstandard deviations of the residuals whih are the most smooth and the lowestin the entire analysis.Above several improvements for inreasing the level of desription of the pho-tovoltai module are stated. The analyses have proved to be adequate as toto modelling the measure data, though there is still room for further improve-ments. As an overall onlusion of the models it an be pointed out that, themodels based on data where �ns are plaed in the air gap gave the best results.The standard deviations are the lowest identi�ed, and the residuals are random.Furthermore, the desired inrease in the performane of the module is obtaineddue to the inreased heat transfer and the derease of the temperature of themodule.
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Appendix A
Appendix to the ChapterAnalysis of the ForedVentilation in the Air Gap

A.1 The dates of the data olletion
Table A.1: The dates of the data olletion. - denotes that 24 hours data is notavailable Veloity of the fan No �ns Fins6 14th of August 12 of August7 - -10 17th of August 7th of August13 28th of August 30th of July
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Figure A.1: The di�erene between Tmoduletop and Tair plotted against time for set-ups with and without �ns in the air gap.
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Figure A.2: Cumulated periodograms of respetively models with and without �nsadd in the gap
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