
Science of Computer Programming 57 (2005) 275–294

www.elsevier.com/locate/scico

A portable virtual machine target for proof-carrying
code

Michael Franza,∗, Deepak Chandraa, Andreas Gala,
Vivek Haldara, Christian W. Probsta, Fermín Reigb,

Ning Wanga

aDonald Bren School of Information and Computer Science,University of California, Irvine, CA, United States
bSchool of Computer Science, University of Nottingham, United Kingdom

Received 12 December 2003; received in revised form 27 June 2004; accepted 28 September 2004
Available online 20 June 2005

Abstract

Virtual machines and proof-carrying code provide two techniques that have been used
independently to provide safety for mobile code. Both these techniques have strengths and
limitations. Existing virtual machines, such as the Java VM, have several drawbacks. First, the effort
required for safety verification is considerable. Second, and more subtly, the need to provide such
verification by the code consumer inhibits the amount of optimization that can be performed by the
code producer. This in turn makes just-in-time compilation surprisingly expensive. Proof-carrying
code, on the other hand, has its own set of limitations, among which are the size of proofs and the
fact that the certified code is no longer machine independent. By combining the two techniques, we
are able to overcome these limitations. Our hybrid safe-code solution uses a virtual machine that has
been designed specifically to support proof-carrying code, while simultaneously providing efficient
just-in-time compilation and target-machine independence. In particular, our approach reduces the
complexity of the required proofs, resulting in fewer proof obligations that need to be discharged at
the target machine.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Virtual machines; Proof-carrying code; Safe mobile code; Dynamic (just-in-time) compilation

∗ Corresponding author.
E-mail address:franz@uci.edu (M. Franz).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.09.001

http://www.elsevier.com/locate/scico

276 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

1. Introduction

A considerable amount of effort has recently been invested in mobile code safety. The
general idea is simple: rather thantrustinga piece of code because it came from a specific
provider (for example, because it was purchased in a box in a reputable store or because it
was digitally signed), the code consumerverifiesthe code prior to execution. Verification
means determining the code’s safetyby examining the code itselfratherthanwhere it came
from.

Over the past few years, three main approaches to safe code1 have been developed.
They are, in turn,virtual machines with code verification[12], proof-carrying code[13],
andinherently safecode formats[2,9,3].

In virtual machines (VMs) with code verification, the code is examined to ensure that
the semantic gap between the source language and the virtual machine instruction format
is not exploited for malicious purposes. For example, virtual machines have generalgoto
instructions that in principle allow jumping to an offset that is the middle of an instruction.
Some control flows, including the aforementioned, are deemed illegal by the Java virtual
machine (JVM) specification.2 Therefore, in the JVM a verifier needs to make sure that
the target of a jump is the beginning of an instruction. As another example, the language
definition of Java requires every variable to be initialized before its first use—unless control
flow is strictly linear, this property cannot be inferred trivially from the virtual machine
program but requires the verifier to perform data flow analysis.

In proof-carrying code solutions, the code producer attaches asafetyproof to an
executable. Upon receiving the code, the recipient examines it and calculates averification
condition from the code. The verification condition relates to all the potentially unsafe
constructs that actually occur in the executable. It is the task of the code producer to supply
a proof that discharges this verification condition, or else the code will not be executed.

In the third approach, aninherently safe code formatis used to transport the mobile
program, making most aspects of program safety a well-formedness criterion of the mobile
code itself. Checking the well-formedness of such a format is much simpler than verifying
bytecode. The disadvantage is that a much more complex and memory-intensive machinery
is required at the code recipient’s site, as inherently safe formats are based on compression
using syntax and static program semantics. As a consequence, this approach is less well
suited for resource-constrained client environments.

In the following, we describe our hybrid approach that combines the first two solutions
and applies elements of the third. The aim of our research is to find the “sweet spot”
reconciling high execution performance of the final code, high dynamic compilation
efficiency, small proof size of the proof-carrying code component, and limited resource
consumption on the client computer.

1 We much prefer the termsafecode to the termmobile code, for two reasons. First, all code is becoming
“mobile”, with program patches and whole applications increasingly being distributed via the Internet. Second,
we believe that in the not so far future,all code resident on desktop computers (outside of a small hardware-
secured trusted computing base) will be verified prior to every execution.

2 Wenote that code obfuscators often work by producing irreducible control flows that, while verifiable, do not
easily map back onto the control structures of the source language.

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 277

class Test1 {
int test(boolean b) {

int i;
try {

if (b) return 1;
i=2;

} finally { if (b) i=3; }
return i;

}
}

Fig. 1. A legal Java program that is compiled to bytecode that is rejected by the verifier. The verifier is not able to
determine that the variablei is initialized along all paths that reachreturn i, and thus rejects it. This is caused
by the fact thatreturn 1 executes thefinally block before returning. Thus, the verifier enters thefinally
block along a path wherei is not defined. Then, the rest of the code is verified and thefinally block is reached
along the path that definesi=2. Sincethe assignmenti=3 is only executed conditionally, the verifier determines
thatreturn i might be reached with an undefined variablei.

The article is structured as follows. First, we discuss the Java virtual machine, not only
because it is a good example of a VM, but alsobecause it is the de-facto standard for
transporting mobile code. Then, we give an overview of proof-carrying code (Section 3).
Section 4presents the case for a new virtual machine specifically designed for proof-
carrying code.Section 5gives a sketch of the architecture we are currently implementing.
This section also contains several examples.Section 6expands on the proof-carrying code
aspects of our work and continues the examples from the previous section. After presenting
related work inSection 7, we give an outlook to future work and conclude the article.

2. The Java virtual machine

The Java virtual machine’s bytecode format(Java bytecode) has become the de-facto
standard for transporting mobile code across the Internet. However, it is generally
acknowledged that Java bytecode is far from being an ideal mobile code representation—
a considerable amount of preprocessing is required to convert Java bytecode into a
representation more amenable to an optimizing compiler. In a dynamic compilation context
this preprocessing takes place while the user is waiting. However, there are additional
limitations, some of which wepresent in this section.

First, it has been shown that the rules for bytecode verification do not exactly match
those of the Java language specification, so that there are certain classes of perfectly legal
Java programs that are rejected by all compliant bytecode verifiers [15]. This happens
because the Java bytecode verification algorithm used is expected to compute a unique
abstraction for each instruction but is unable to do so for complex control flows that are,
e.g., side-effects of thejsr instruction.Fig. 1shows the code for an example (from [15])
of a legal Java program that is compiled to bytecode that is rejected by the verifier. Here,
the verifier is not able to determine that the variablei is initialized along all paths, and thus
rejects it.

278 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

Second, due to the need to verify the code’s safety upon arrival at the target machine, and
also due to the specific semantics of the JVM’s particular security scheme, many possible
optimizations cannot be performed in the source-to-Java bytecode compiler, but can only
be done at the eventual target machine—or at least they would be very cumbersome to
perform at the code producer’s site.

For example, information about the redundancy of a type check may often be present
in the front-end (because the compiler can prove that the value in question is of the correct
type on every path leading to the check), but this fact cannot be communicated safely in the
Javabytecode stream and hence needs to be re-discovered in the just-in-time compiler. By
communicated safelywe mean in such a way that a malicious third party cannot construct
a mobile program that falsely claims that such a check is redundant.

Another example is common subexpression elimination, which due to verification can
only be performed at the code consumer. A compiler generating Java bytecode could in
principle perform common subexpression elimination and store the resulting expressions in
additional, compiler-created local variables. However, this approach is incomplete because
it cannot factor out address calculations (for arrays etc.)—since verification requires
preserving the language abstractions, such optimizations for the JVM can be performed
only after the code has been verified (i.e., on the target machine).

Another problem is that just-in-time compilation occurs while interactive users may be
waiting for execution to commence. If dynamic compilation time were unbounded, one
would be able to perform extensive optimization and obtain a high code quality. Because
of their interactive setting, however, just-in-time compilers often need to make a trade-
off between(verification + compilation) timeon the one hand, andcode qualityon the
other—for example, by employing faster linear-scan register allocation instead of slower,
but better, graph-coloring algorithms.

3. Proof-carrying code

Proof-carrying code (PCC) is a framework for ensuring that untrusted programs comply
with a safety policy defined by the system where the programs will execute. Typical
policies are type, memory, and control-flow safety, but in the framework originally
described by Necula [13], any property of the program that can be expressed in first order
logic constitutes a valid safety policy.

Upon reception of an untrusted program, the code consumer examines the code and
computes a proof obligation for every operation that is potentially unsafe with respect to
the safety policy. For instance, we might require a proof that a memory write lies within the
bounds of a certain array allocatedin the stack. Proof obligations are traditionally called
verification conditions, or VCs.

The provider of an untrusted program must supply a proof for all the VCs. If a proof
is missing, or the code consumer determines that it does not constitute a proof of the VC,
the program is determined potentially unsafe and will not be executed. All this is done by
examining the program and the proofs alone, without dependence on digital signatures or
other mechanisms based on trust.

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 279

An important practical aspect of PCC is the size of proofs and the time spent in proof
checking. It has been shown that proofs for Java type safety can be compressed to 12%–
20% of the size of x86 machine code (a reduction of factor 30 with respect to a previous
scheme), but unfortunately this increases the proof checking time by a factor of 3 [14].
While this work compresses the proofs, it does not reduce the number of facts that need to
be proven.

However, in some mobile code contexts, 20% space overhead or long checking times
are too much of an overhead. Our work aims at reducing both the size of proofs and the
proof checking time by generating smaller VCs. For instance, having a separate register file
for basic types, no VCs are required to state the type of values contained in such registers.

Also, PCC hasonly been demonstrated in the context of machine code. Our work carries
over the same ideasto a target machine independent format, with all the advantages that
this represents.

4. The case for a virtual machine for supporting proof-carrying code

One of the reasons that proofs in PCC are often large is that the level of reasoning is very
low, i.e. at machine code level. At this level, registers and memory are untyped and, worse
still, there is no differentiation between data values and address values (pointers). A large
portion of each proof typically re-establishes typing of data, for example, distinguishing
Integers from booleans and from pointers.

Interestingly, current research on PCC (such asfoundational proof-carrying code[4])
appears to be directed solely at reducing the size of the trusted computing base on the target
platform. Unfortunately, this increases the size of the proofs that are required even further.
We believe that it is much more promising to go the other way: by raising the semantic
level of the language that proofs reason about, proofs can become much smaller. Facts that
previously required confirmation by way of proof can then be handled by axioms. Our goal
is to find such a higher semantic level that is at once effective at supporting proof-carrying
code in this manner, and that can also be translated efficiently into highly performing native
code on a variety of target platforms.

The framework we introduce in this paper works on this “higher semantic level”. The
enabling technology is a virtual machine that supports the concept oftagged memory,
areas of memory that have an immutable tagthat identifies the type of the data stored
in this area. The virtual machine guarantees this property, i.e. the regular memory access
instructions can access only locations that liewithin the data areaof a memory block—
accesses are verified to lie within the range (beginning of block-end of block), which does
not include the tag. Such an architecture greatly simplifies certain proofs: after the memory
area has been initialized, instructions can no longer change the tag. Since at a higher level
the tag relates to the (dynamic) type of a memory object, that implies that the type remains
constant.

Using tagged memory, our framework creates a software defined layer at which proof-
carrying code and dynamic translation can meet effectively. Hence, we also need to
demonstrate the second half of the equation: how to make such a virtual machine efficiently
implementable. The key issues here are type separation and referentially safe encodings on

280 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

Fig. 2. Compiling high level languages (HLL) to machine code in proof-carrying code frameworks. Everything
above the dashed lines is machine independent. Compared to current PCC implementations, our framework
requires shorter proofs and is machine independent. Compared to current VMs, dynamic compilation is
simpler because the semantic distance to actual target machines is smaller. Also, we are able to perform more
optimizations ahead of time.

the one hand (as previously demonstrated in the safeTSA project [2]), and an intricate
memory addressing scheme on the other hand.

5. Architecture

The central element of our architecture is adivision of concerns between the proof-
carrying code mechanism and the virtual machine layer (Fig. 2).

As described in the previous section, the virtual machine layer is designed to reduce
the burden of proof by providing a number of inherently safe operations. As such safe
operations often involve a runtime overhead, the safe vs. the non-safe properties of the VM
have been carefully balanced. We chose to include only those inherently safe mechanisms
that will have little or no overhead compared toequivalent non-safe operations. The proof-
carrying code mechanism only has to provide proofs for the safety of the remaining parts
of the VM architecture.

The rest of this section introduces different architectural aspects of our framework,
namely typed register sets for scalar data types, object layout, accessing objects and arrays,
dynamic guards, and runtime type identification.

5.1. Typed register sets for scalar data types

Our VM architecture provides a finite number of scalar data types and complete
separation between these types, except for explicit conversion operations. The VM has
a separate register set(of unbounded size) for eachof the basic types:

i n: integer registers

bn: boolean registers

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 281

datatype T = Int of int | Pair of int * int
fun sum (l : T list) =

let
fun foldr f nil a = a

| foldr f (h::t) a = foldr f t (f(a, h))
in

foldr (fn (acc, Int i) => acc + i
| (acc, Pair (i, j)) => acc + i + j)

l 0
end

Fig. 3. The Standard ML example program from [13]. The program defines a union typeT and a functionsum
that adds all the integers in aT list.

pn: pointer registers

an: address registers

. . .

The typed register sets in our architecture play a key role in reducing the complexity
of proofs while maintaining safety at the same time. As the register sets are disjoint, type
integrity of scalar values isenforced syntactically.

Some high level types, such as enumerations, can be implemented as integers at the VM
level. However, constraints on these types (e.g., no arithmetic allowed on the corresponding
VM integer) cannot be enforced by the VM. Instead, such constraints must be enforced at
the proof-carrying code level.

Being a registerarchitecture, our VM can perform more ahead-of-timeoptimizations
than stack-based code representations such as Java bytecode [12] or IL [10]. For example,
constant folding, common subexpression elimination and copy propagation can all be
performed ahead of time in our architecture.

5.2. Object layout

In addition to the separation of basic type register files, the architecture of our VM aims
to ease the task of providing proof of safety for memory access operations by offering an
instruction set that guarantees memory integrity. There is a single instruction to allocate
memory:

pj = new(tag, i k)

new allocates an array of objects of lengthi k. Single objects are arrays with only one
element. Allocated objects are tagged with the type that they represent. The VM layer
ensures that the tag can only be written by thenew instruction, but is immutable after
object creation. Additionally, the VM offers instructions to read and check the object tag.

Objects are divided into two sections: one section for values and one section for pointers.
The size of each of these sections is derived from the type information sent along with the
mobile program.Fig. 3 shows the Standard ML example program from [13]. The type

282 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

type tag layout structure
T list 1 [0,8] 〈{2, 3}, {1}〉
Int of int 2 [4,0] 〈〉
Pair of int*int 3 [0,4] 〈{4}〉
int*int 4 [8,0] 〈〉

Fig. 4. Type information that is computed for the example program inFig. 3. High-level information is provided
for the part of the object that stores references only. Access to the object area storing scalar values is permitted
without strict type checks as this does not pose a safety risk.

Fig. 5. Possible heap layout for the example program. Thelist elements (lowest line) contain a pointer to the
actual data object and a pointer to the next list element. The data objects (middle line) either contain an integer
or a pointer to an object (top line) containing two integers. All objects are tagged with their type (dashed box) as
given inFig. 4. Thebold vertical bars indicate the border between the value and the pointer section.

representation generated from this program is shown inFig. 4. For each type we compute
the aforementionedtype tag, theobject layout(sizev, sizep), and thestructureof the pointer
section.sizev (respectivelysizep) is the sizeof the values (respectively pointers) section.
The VM guarantees that pointers and values are not intermixed. The pair(sizev, sizep) is
also referred to as thecharacterizing tupleor ctuple. Finally, for each entry in an object’s
pointer section the structure represents a set of possible run time types. For example, for
the typePair of int*int the only entry in thepointer section must have tag 4, that is
be of typeint*int.

To guarantee safe access to an object’s contents, all memory accesses via a pointer must
use the same type tag as was used to allocate the object. This must be enforced by the
proof-carrying code layer. This mechanism can be understood as a rudimentary static type
checking.

The value of type tags has no meaning for the VM layer, it is only interpreted by the
PCC layer and is used to establish that an object has a certain layout without relying on a
dynamic layout guard.

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 283

5.3. Accessing objects

Separate instructions are provided to access values and pointers stored inside objects.
To read and write value types from an object, either itsctupleor tag has to be specified.
The ctuple allows the VM to properly access the object according to its layout and to
(statically) check the specified offset.It is also permissible to specify atag instead of a
ctuple, in which case the PCC will substitute for thetag with the correspondingctuple
before execution. There are read and write operations for the value register types:

i j = iload([sizev, sizep] | tag, pk, offset)

istore([sizev, sizep] | tag, pk, offset, i l)

bj = bload([sizev, sizep] | tag, pk, offset)

bstore([sizev, sizep] | tag, pk, offset, bl)

. . .

Pointers are read and written using the pointer access instructions that also exist in two
versions—one using the layout of objects, and the other using thetype tag:

pj = pload([sizev, sizep] | tag, pk, offset)

pstore([sizev, sizep] | tag, pk, offset, pl)

For thepload instruction that uses atag, the PCC layer can derive the type of the
object thatpj will point to by using the structure computed for the type tagged withtag.
For example, using the information fromFigs. 4and5, for an instruction pj = pload(3,
pk, 0), the systemcan derive thatpj will point to an object of typeint*int. For the
tag version of thepstore instruction, the PCC layer can check that the object pointed
to by pl has a tag that complies with the structure of the object pointed to bypk. For
the instructions that use thelayout, the code producer must provide additional proof that
ensures these properties.

Additionally, the PCC layer has to ensure that the base pointerpk was allocated with
exactly the same allocation layout (expressed bysizev andsizep) as was specified for the
load or store operation, and that theoffsetdoes not exceedsizev or sizep respectively. The
proof-carrying code layer also has to ensure that pointer registers are always defined before
their use.

An object may also be accessed using a ctuple that isconsidered safewith respect to the
ctuple that the object has been created with (cf.Fig. 6). A ctuple(s′

v, s′
p) is considered safe

Fig. 6. Safe access to an object. For an object that was created with a ctuple(sv, sp), access to the shaded part
of the object is prohibited by the PCC layer—the left part contains the type tag that can only be written during
object creation; access to the right part is prohibited since the ctuple used for accessing the object is undefined
for this region.

284 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

with respect to a ctuple(sv, sp) if s′
v ≤ sv ∧ s′

p = � or s′
v = sv ∧ s′

p ≤ sp. An access based
on (s′

v, s′
p) may only access those parts of the object that can be guaranteed to match the

original ctuple. In the case of(s′
v, �) this means that only offsets less thans′

v into the value
part of the object are allowed. Accordingly,(sv, s′

p) allows one to access the whole value
part and offsets less thans′

p into the pointer part.
Using the mechanisms described, memory integrity can be implemented with little

runtime overhead, while dynamically guaranteed type safety is usually much more
expensive in terms of runtime cost.

5.4. Accessing arrays

Pointer registers always point to the beginning of arrays. To access other array members,
there is an instruction taking a pointerpk and an array indexi l and returning an address:

aj = adda([sizev, sizep] | tag, pk, i l)

As for pointers, the proof-carrying code layer has to guarantee that address registers
are defined before their use. Furthermore, proper memory layout has to be provided and
ensured by the PCC layer. Theadda instruction does not perform a mandatory array
bounds check. If the proof-carrying code layer cannot provide a static proof of the index
being within array bounds, a dynamic guard has to be inserted using theCHECKLEN

instruction:

CHECKLEN(pk, i l)

When the virtual machine encounters aCHECKLEN instruction, it will perform a
dynamic runtime check of the indexi l against the length of the array referenced bypk.
To implement this, the VM stores the array length of every allocated memory block in a
memory block header. For the proof-carrying code layer, each occurrence of aCHECKLEN

instruction establishes that at that point in the control flow the index ini l will be appropriate
for being used as an array index forpk, because the PCC layer can rely on the fact that this
very runtime check will be performed by the VM layer.

Similarly to the CHECKLEN instruction, which is used to check an index against the
array length, thegetlen instruction can be used to load the length of an array into a
register:

i l = getlen(pk)

Unlike pointer registers, which point only to the start of arrays, address registers may
point inside an allocated memory block. This has implications for garbage collection.
Consider the following example:

1: p0 = new(tag, i length)

2: a0 = adda([sizev, sizep], ioffset)

3: p0 = null

An array of objects is allocated and a reference to the array is assigned into the pointer
registerp0. adda is used to gain access to a member of the allocated array. A garbage

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 285

collection cycle might be triggered after line 3, where the original reference to the array (in
p0) is no longer live, buta0 is. a0 is aderived pointerthat keeps the array reachable [5].
If an accurate garbage collector is used, it either must be able to mark objects as reachable
starting from derived pointers, or we must make sure that base pointers are considered part
of the root set where the derived pointers are still live.

Since the regular memory access operations do not accept an address register as base
address, the specialized address access instructions have to be used instead:

i j = iloada([sizev, sizep], ak, offset)

istorea([sizev, sizep], ak, offset, i l)

bj = bloada([sizev, sizep], ak, offset)

bstorea([sizev, sizep], ak, offset, bl)

pj = ploada([sizev, sizep], ak, offset)

pstorea([sizev, sizep], ak, offset, pl)

The rationale for this split is that the regular pointer-based memory access operations
have to take the memory block header into account when calculating the target address
while address access operations do not. Note that the address generation instructionadda
cannot be applied to address registers, but only to pointer registers, and that memory access
through address registers always requires one to specify a concretectuple. Using address
registers in conjunction with tags is undefined because only pointer registers, not address
registers, allow access to the tag field, which is required by dynamic guard instructions as
described next.

5.5. Dynamic guards

The VM offers two more forms of dynamic guards in addition toCHECKLEN, which can
be placed into the instruction stream if no staticproof of certain properties can be provided.
The PCC layer will treat these instructions as proof that the associated condition will be
true at runtime, because it canrely on the virtual machine layer to actually perform these
runtime checks.
CHECKNOTNULL ensures that a pointer register does not contain anull value:

CHECKNOTNULL (pi) →? fail

CHECKTAG verifies that apointer points to a memory block with the specified memory
layout or tag and fails otherwise:

CHECKTAG(pi , [sizev, sizep] | tag) →? fail

To support theCHECKTAG instruction, the VM stores thetagof every allocated memory
block along with the array length in the memory block header. As the location of the
memory block header is unknown for addresses in address registers,CHECKTAG only takes
pointer registers as input. Instead, for address registers,CHECKTAG has to be applied to the
base pointer used to generate the address in question.

In simple data flow scenarios, dynamic guards (CHECKLEN, CHECKNOTNULL , and
CHECKTAG) can be avoided by supplying sufficient proof that the property in question

286 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

was already true at an earlier point in the control flow. For more complex data flow
scenarios, where for example a certain codelocation can be reached from several points
in the program, it is up to the code producer to decide whether to use a static proof that a
dynamic guard is not necessary or to actuallyemit a dynamic guard. The use of dynamic
guards instead of static proofs is in particular beneficial in slow paths, because the proof
size is minimized without significant runtime overhead.

5.6. Runtime type identification

Theiftag instruction is used for runtime type identification. For the VM layer,iftag
is a simple conditional branch depending on the value of the object tag. Along the taken-
path of aniftag (andCHECKTAG) instruction, the proof-carrying code layer associates
thepointer register with the supplied tag and allows certain assertions to pass, depending
on high level type information.

Using the type information computed for the example program (Figs. 3and4), type
Pair of int*int has the tag 3, the layout[0, 4], and the structure 〈{4}〉. The type
int*int has the tag 4. Using this information, the PCC is able to verify the code fragment
given inFig. 7. When the PCC layer encounters the firstCHECKTAG instruction, it assumes
for the remainder of the basic block that the tag ofp0 is 3, becauseCHECKTAG will cause
the VM layer to perform a dynamic check at this point that would fail ifp0 would point
to an object with a different layout or tag. The secondCHECKTAG instruction is a dynamic
guard to ensure that the pointer read from the object of typePair of int*int is in fact
of type int*int, that is has tag 4. However, this dynamic guard is actually redundant
because the tag forp0 has already been established in this basic block andp1 has been
read at offset 0 from the pointer section ofp0, which is known to have tag 4 according to
the structure information〈{4}〉 computed for typePair of int*int.

For the PCC layer to be able to maintain tag associations across basic block boundaries,
all predecessor basic blocks must either contain an explicit instruction that performs the
check dynamically (guard) or asserts it, or the basic block itself must be annotated with a
typemap that contains the proof needed.

To ensuresafety, the VM layer and the PCC layer are mutually dependent. The VM
layer regards assertions accepted by the PCC layer as truth, and guarantees that all
dynamic guards are performed at runtime. The PCC layer on the other hand relies on
the VM to perform dynamic checks and takes theassociated conditions for granted during
verification.

6. Proving type safety in our VM

Our VM provides memory safety as well as type safety for primitive types such asint,
float andbool. Given these, the proof burden of a code producer is greatly reduced in
comparison to the case for traditional PCC approaches. Since memory safety and primitive
type safety are taken care of by the virtual machine, only proofs of type safety for non-
primitive types are needed.

Consider, for example, the code for a simple factorial procedure, and the VM code
for it as shown inFig. 8. Note that since this procedure only uses primitive types,it is

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 287

...
checktag(p0, 3)
p1 = pload(3, p0, 0)
checktag(p1, 4)
...

Fig. 7. Code fragment that uses the type information fromFig. 4. Using theCHECKTAGinstruction, the PCC layer
is able to prove that after the fragmentp1 points to an object with typeint*int.

procedure fact (n : int) : int
begin

f : int;
f := 1; iconst 1, i0
while (n > 0) do loophead:

iconst 0, i3
bls i3, i1, b0
brfalse b0, loopend

f := f * n; imul i0, i1, i0
n := n - 1; iconst 1, i3

isub i1, i3, i1
end; goto loophead

loopend:
fact := f; % return value in i0

end

Fig. 8. High level language code and corresponding virtual machine representation of a simple factorial procedure.

type safe by construction. The instruction set does not allow any type unsafe operations
(such as assigning integers to addresses). This further reduces the proof burden of the code
producer, since type safety proofs need only be produced for non-primitive types such as
pointers, arrays, and records. Since substantial fractions of even object-oriented programs
manipulate primitive types,this implies smaller proofs.

This is in sharp contrast to the Java bytecode instruction set. Java bytecode instructions
do indicate the type of the operand being used (for example,iload for loading an integer,
fload for loading a float). However, bytecode verification, as well as the technique of using
stackmaps [16], must prove type safety for bytecodes operating on values of primitive types
as well. This is because of the Java virtual machine’s stack-based memory model. The stack
is a typeless entity, and once a datum is pushed onto the stack, information about its type is
lost, and must be inferred again at the point when data is read from the stack. Thus, every
load from the stack has to be proven type safe, even for primitive types. We have shown
that the complexity ofJavabytecode verification can be exploited for denial-of-service
attacks [6], and have proposed an alternative, efficient verification technique [7].

288 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

We measured the fraction of Java bytecodes that operate on primitive types (int, float,
double, andlong) in Section 3(large scale applications) of the JavaGrande benchmark.
Between 5% and 56% (with an average of 24%) of all bytecodes were of this type. For
specJVM98, the range was between 22% and43%, with an average of 29%. This is a
crude measure of how much proof burden our virtual machine saves right away compared
to the Java virtual machine.

So proofs are only needed for pointers and records. For every instruction that
manipulates an address, we need to make sure that the resulting pointer

(1) points to the beginning of an array, or record, or value (e.g., pointers must not point
into the middle of an integer),

(2) points to an object of the correct type (e.g., a pointer to an integer must not be allowed
to point to a boolean).

For field accesses (using theadda instruction), condition 1 can be checked because offsets
are known at compile time. For condition 2 and all pointers, our type safety proofs take
the form oftypemaps. A typemap is a mapping from pointer and address registers to a set
of their possible runtime type tags. Additionally, registers that have been proven to contain
a null (respectively notnull) value are annotated withNULL (respectivelyNN). At
procedure entry, the typemap initially contains the declared types of the formal parameters
and local variables. For each basic blockin a procedure, the code producer can generate
an annotation indicating what type tags a register will have at the basic block entry. From
that annotation the proof-carrying code layer can derive the corresponding type tag at the
basic block exit by sequentially inspecting theeffect of each instruction in the basic block
on the register in question.

Before allowing the VM to execute code, theproof-carrying code layer has to make sure
that the code is type safe. For basic blocks that have been annotated as described above,
this can be done as follows3:

• At the beginning of a basic block, set the derived typemap to the annotated typemap.
• Visit each instruction in the basic block in execution order, simulating its effect on the

derived typemap and checking that the verification conditions for each instruction are
discharged by the computed typemap.

• At the end of the block, for every successorSof this block,matchthe derived typemap
with the annotated typemap at the beginning ofS. This matching procedure checks
that every type in the successor’s annotated typemap is either more general than the
corresponding type in the derived typemap or the successor’s typemap does not contain
the variable in question.

An example is shown inFig. 9. The code allocates two memory blocks with identical
layout along different paths. The blocks are both assigned to variablep. To prove thatthe
register holdingp has a unique layout after theif statement, the code is annotated with
typemaps as shown inFig. 10. Using the information from Fig. 4, the type Int of int
has the tag 2 and translates to a characterizing tuple of[4, 0] in the VM, since it has4 bytes

3 Notethat this takes one linear pass over the code.

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 289

p: Int of int;
i: int;
...
if (i > 0) then

p = new(Int of int);
else

p = new(Int of int);
end;
...
i = *p;

Fig. 9. A program snippet that allocates memory with typeInt of int along two different paths and assigns
both to variablep. When this code fragment is translated to our VMrepresentation, the register holdingp will
have to be annotated with additional layout information along each basic block associated with theif statement.
This is done to prove that the object pointed to by this register has a certain unique layout after theif statement,
namely[4, 0] associated with type 2.

Fig. 10. Control flow graph annotated with typemaps for the example fromFig. 9. The entry basic block is
annotated with an empty typemap assuming that the codebefore this fragment doesnot contain operations on
pointers or objects. Each outgoing edge is annotated with the typemap as derived by our checker.

in the data section and none in the pointer section. The derived typemap at the end of a
block is compared with the annotated typemap of its successors. In this case, the two are
the same, and thus checking succeeds. In the final basic block, the verification condition
for theiload instruction is thatp has been initialized, points to an object with type 2 and

290 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

Fig. 11. Necula’s example from [13] using the mvm instruction set and runtime tag checks. For runtime type
identification, a singleiftag is used per iteration to distinguish between objects with typeInt of int and
Pair of int*int. Additionally, CHECKNOTNULL and CHECKTAG instructions are used to establish that all
pointer access instructions are safe.

is notnull. All these conditions can be discharged using the information in the annotated
typemap.

Before we conclude this section, we revisit Necula’s example from [13] as given
in Fig. 3. As noted above, the code producer in our framework has several choices for
proving type safety for non-basic types. The one extreme is to enforce type safety purely
dynamically by means of runtime checks. In this case, the code consumer would derive that
before each pointer access the type of the pointer is checked dynamically. The resulting
mvm code is shown inFig. 11. For each basic block, the code producer must provide
enough proof that the code consumer can prove all pointer access operations to be safe.
For example, before the first access top0, the CHECKNOTNULL instruction ensures that
the incoming object is notnull, and theCHECKTAG instruction ensures that it has the
correct type. As can be seen inFig. 11, the checker derives typemaps for each basic block,
but since every successor block is annotated with an empty typemap, all tests for typemap
matches succeed.

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 291

Fig. 12. Control flow graph annotated with typemaps for the example fromFig. 11. As before, the light boxes
are the annotated typemaps and the darker boxes are thetypemaps derived by the checker at the code recipient.
In contrast to the 11 guards in the first solution (cf. Fig. 11), only 4 dynamic guards are needed.

The other extreme would be to solely rely on static checks. However, this approach is
usually not feasible since some tests can only be performed at runtime. Therefore, the code
producer usually will have to choose a combination of static typemaps and dynamic checks.
Fig. 12 shows the control flow graph for the example fromFig. 3, with the typemaps that
have been annotated by the compiler and those that have been derived by the type-checker.
In contrast to the case forFig. 11, only four dynamic guards have been inserted by the
compiler. In the basic block reached via the taken-path of theiftag, the PCC layer can
derive thatp1 points to an object with type 2 simply by evaluating the arguments to the
iftag. This is not possible for the path not taken. Instead, on inserting theCHECKTAG,
the PCC layer is enabled to derive thatp1 points to an object with type 3—otherwise, the
execution would fail at this point. Additional guards are only needed to ensure that pointers
read from objects are notnull.

As can be seen in the annotated typemaps, the only fact that is known in the whole
program is the type ofp0. All other information is computed and proven locally but
forgotten immediately, since it is not referenced in the annotated typemaps of successor
basic blocks.

292 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

7. Related work

There are several VM designs that use a low level instruction set similar to the one we
are proposing. Keeping instruction sets close to real machines not only makes translation
to real machine code fast and efficient but also makes it an attractive compilation target.
However, the primary focus of most of theseVMs is code optimizations rather than safe
code.

The LLVM project [11] proposes to optimize the program not only at compile time
but also during link and run time. To achieve this, they use a strongly typed static single
assignment (SSA) based intermediate representation. Being SSA based and having type
information makes optimizations fast and efficient. However, it supports some type unsafe
cast operations for unsafe languages like C; hence for programs that use these operations
few safety guarantees can be given.

The Dis virtual machine [17] provides an execution environment for the Inferno system.
It is a CISC-like architecture with support for some high level data structures like lists and
strings and operators to manipulate them. It allows for type unsafe operations and hence
does not provide any type safety guarantees.

The Omniware system [1] was designed to provide an open system for producing and
executing mobile code. The system was designed so that it is language and processor
architecture neutral. It has aninstruction set based on RISC architecture with several CISC-
like functionalities. It uses Software Fault Isolation to provide module level memory safety.
It does not provide any type safety and supports unsafe languages. Since the VM is very
close to the real architecture it is able to achieve near to native speeds.

Typed assembly language (TAL) [8] is another framework for verifying the safety of a
program for a low level representation. TAL uses the type system of the source language to
prove the safety of the program. It achieves this by annotating the assembly code generated
with high level type information available in the source code. These annotations are easily
verifiable and are used as proofs of safety. Before translation of the assembly code into
a binary executable, the code is verified for safety using these annotations. An important
point to note here is that there is no trust relationship between the compiler and the proof
checker. The proof checker does not trust the compilation process or the annotations. At
the time of compilation it will check for the correctness of the annotations.

Unlike PCC, which can use any safety policy expressible in first order logic, TAL only
uses the typing rules of the programming language to express safety. This loss in generality
of safety policies however leads to simpler, more compact and easy to generate proofs. It is
not obvious how to automate the proof generation for policies more complex than memory
and type safety.

Our system is in ways close to TAL as it also only supports type safety proofs. Our VM
instruction set is strongly typed and has primitive types likeint andboolean. Type safety
for higher order types has to be proven using verifiable proofs. Since our VM provides a
higher level of abstraction than machine assembly code and also provides some memory
safetyguarantees we claim that proofs will be shorter and even faster to verify. In the case
of segments of programs that use only primitive types, proofs are implicit in the instruction
set anddo not need any additional proofs.

M. Franz et al. / Science of Computer Programming 57 (2005) 275–294 293

SafeTSA [2] is a type safe intermediate representation based on SSA. SafeTSA solves
the problem of making SSA easily verifiable so that it can be used as a safe software
transportation format. It does so by a combination oftype separation and introducing a
referentially safenaming scheme for SSA values. As a consequence, the type and reference
safety of SafeTSA can be verified in linear time. Like the Java virtual machine itself,
SafeTSA is tightly coupled to the Java type system and does not easily support languages
with highly different type systems. SafeTSA is semantically further removed from the
machine layer than the VM we have described in this article, and hence requires more
substantial dynamic translation machinery at the target machine.

8. Conclusion and outlook

We are exploring the design space of hybrid solutions between virtual machines and
proof-carrying code. Our goal is to find the “sweet spot” that reconciles high execution
performance and just-in-time compilation speed on the one hand, and small and efficient
type safety proofs on the other hand. In this article, we have reported on our first solution
for populating this design space. Undoubtedly, there will be further candidates to follow.
By combining virtual machines and proof-carrying code, we have been able to overcome
the main limitations of these two techniques, namely cumbersome verification on the one
hand and lengthy proofs on the other. We are currently extending the set of properties that
proofs in our framework can reason about by, e.g., values of index variables to avoid array
bounds checks.

Acknowledgements

Parts of this effort were sponsored by the National Science Foundation (NSF)
under grantCCR-TC-0209163, by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Material Command, USAF, under
agreement number F30602-99-1-0536, and by the Office of Naval Research (ONR) under
grant N00014-01-1-0854. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and should not be interpreted as
necessarily representing the official views, policies or endorsements, either expressed
or implied, of the Defense Advanced Research Projects Agency, the National Science
Foundation, or any other agency of the U.S. Government.

References

[1] S.L.A. Adl-Tabatabai, G. Langdale, R. Wahbe, Efficient and language-independent mobile programs,
in: Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and
Implementation, 1996, pp. 128–136.

[2] W. Amme, N. Dalton, M. Franz, J.V. Ronne, SafeTSA: A type safe and referentially secure mobile-
code representation based on static single assignment form, in: Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, Snowbird, Utah, May 2001, SIGPLAN
Notices 36 (5) (2001) 137–147.

[3] W. Amme, N. Dalton, P.H. Fröhlich, V. Haldar, P.S. Housel, J. von Ronne, C.H. Stork, S. Zhenochin,
M. Franz, Project transPROse: Reconciling mobile-codesecurity with execution efficiency, in: DARPA
Information Survivability Conference and Exposition, 2001.

294 M. Franz et al. / Science of Computer Programming 57 (2005) 275–294

[4] A. Appel, Foundational proof-carrying code, in: 16th Annual IEEE Symposium on Logic in Computer
Science, LICS 2001,IEEE,2001, pp. 247–258.

[5] A. Diwan, J.E.B. Moss, R.L. Hudson, Compiler support for garbage collection in a statically typed
language, in: Proceedings of the ACM SIGPLAN 1992 Conference on Programming Language Design
and Implementation, PLDI, July1992, SIGPLAN Notices 27 (7) (1992) 273–282.

[6] A. Gal, C.W. Probst, M. Franz, A denial of service attack on the Java bytecode verifier, Tech. Rep. 03-23,
University of California, Irvine, School of Information and Computer Science, November 2003.

[7] A. Gal, C.W. Probst, M. Franz, Proofing: An efficient and safe alternative to mobile-code verification,
Tech. Rep. 03-24, University of California, Irvine, School of Information and Computer Science, November
2003.

[8] K.C.G. Morrisett, D. Walker, N. Glew, From system F to typed assembly language, in: The ACM
Symposium on Principles of Programming Languages, POPL 1998, San Diego, CA, USA, 1998, pp. 85–97.

[9] V. Haldar, C.H. Stork, M. Franz, The Source is the Proof, in: The 2002 New Security Paradigms Workshop,
ACM SIGSAC, ACM Press, Virginia Beach, VA, USA, 2002.

[10] ISO/IEC 23271, Common Language Infrastructure (CLI), Partition III, CIL Instruction Set, December 2002.
[11] C. Lattner, LLVM: An infrastructure for multi-stage optimization, Master’s Thesis, University of Illinois,

Urbana Champaign,Urbana, Illinois, 2000.
[12] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 2nd edition, in: The Java Series, Addison

Wesley Longman, Inc., 1999.
[13] G.C. Necula, Proof-carrying code, in: The ACMSymposium on Principles of Programming Languages,

POPL 1997, Paris, France, 1997, pp. 106–119.
[14] G.C. Necula, S.P. Rahul, Oracle-based checking of untrusted software, in: The ACM Symposium on

Principles of Programming Languages, POPL2001, London, United Kingdom, March 2001, SIGPLAN
Notices 36 (3) (2001) 142–154.

[15] R.F. Stärk, J. Schmid, E. Börger, Java and the JavaVirtual Machine: Definition, Verification, Validation,
Springer-Verlag, 2001.

[16] Sun Microsystems Inc., Connected, Limited Device Configuration, April 2000.
[17] P. Winterbottom, R. Pike, The design of the inferno virtual machine, in: Hot Chips IX: Stanford University,

24–26 August 1997, Stanford, California, IEEE Computer Society Press, 1997.

	A portable virtual machine target for proof-carrying code
	Introduction
	The Java virtual machine
	Proof-carrying code
	The case for a virtual machine for supporting proof-carrying code
	Architecture
	Typed register sets for scalar data types
	Object layout
	Accessing objects
	Accessing arrays
	Dynamic guards
	Runtime type identification

	Proving type safety in our VM
	Related work
	Conclusion and outlook
	Acknowledgements
	References

