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Abstract

This thesis aims to developing a model that describes the dependency of the
Actual Upward Regulating power, referring to the Danish Electric Energy Mar-
ket, on the Wind Forecasts, in order to predict the needs of ancillary services
at least one day in advance.

The model is based on Nonparametric Regression Quantiles Methods and the
softwares used in the thesis are R (to implement the nonparametric regression
quantile model) and Matlab (to plot the results in three dimensions).

The use of nonparametric regression quantile methods allows us to better model
the data, introducing spline smoothers, in order to get a more adaptable model.
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This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Mc degree in mathematic. The work started January 2, 2006.

The thesis deals with different aspects of mathematical modeling of the Elec-
tricity Power Market in Denmark using data and partial knowledge about the
structure of the systems.
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Chapter 1

The Scandinavian Electric
Power Exchange Market

1.1 Introduction

Energinet.dk is the transmission system operator in Denmark. Energinet.dk,
and its two wholly owned subsidiaries − Eltransmission.dk A/S and Gastrans-
mission.dk A/S − operates and maintains the electricity and gas transmission
grids.

The main aim of this thesis arises from the necessity for Energinet.dk of effi-
ciently incorporating the wind power into the overall energy system.

In 2004 the total costs of ancillary services and regulating reserves were DKK
392 millions. Hence the necessity of developing a upward regulating power model
(see section 1.4).

Energinet.dk has worked with IMM (the Department of Informatics and Mathe-
matical Modelling at the Technical University of Denmark (DTU)), on a number
of different projects concerning electricity, wind power and the electricity market
in general.
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In this thesis the studies on developing a upwars regulating power model are
referred to the Quantile Reggression Theory, first developed by R.Koenker and
G.Bassett in 1978 [16].

Energinet.dk has provided data and other useful information, on which this
thesis has mainly been based.

The informations about the Scandinavian Electricity Market, contained in this
chapter, mostly come from the Energinet.dk website [14] and the NordPool
website [3].

1.2 Nord Pool

Nord Pool ASA - The Nordic Power Exchange - is the world’s only multinational
exchange for trading electric power.

Nord Pool was established in 1993, and is owned by the two national grid compa-
nies, Statnett SF in Norway (50%) and Affärsverket Svenska Kraftnät in Sweden
(50%).

Nord Pool has two marketplaces: Elspot and Eltermin.

Elspot is a market where physical kilowatt hours are traded in the same manner
as shares are traded for example on a stock exchange. Elspot is the spot market
for power.

Eltermin is a marketplace for financial futures trading, where price hedging
contracts are traded.

Market participants who desire to purchase power via Nord Pool’s Elspot mar-
ketplace must submit their bids to Nord Pool no later than 12 noon the day
before they desire delivery. Correspondingly, the market participants who desire
to sell power via Elspot must send their bids to Nord Pool the day before they
desire to make delivery.

The sale of electrical power takes place in various arenas. A producer may sell
directly to consumers, or power companies may buy electrical power from a
producer or power exchange (Nord Pool) and then resell the power. Brokers
help establish contracts between buyers and sellers, while traders buy and resell
power.
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A power company can decide whether it wants to:

• buy all its power on the market

• buy some power on the market and generate the rest itself

• generate precisely the power required to meet the customers’ expected
consumption during this hour

• generate more power than their customers’ expected consumption and sell
thus power on the market

The bids to buy and sell for each hour of the following day are compiled by Nord
Pool into an overall curve for the demand and an overall curve for the supply.
The system price is read from where the two curves intersect (see Figure 1.1).

Nord Pool sets a system price for each hour during the following day. The price
can vary from hour to hour, but it is fixed for one hour at a time.

When Nord Pool has made its calculations, it releases the prices for the following
day and tells the market participants how much power they have purchased or
sold for the various hours of the following day, and the transmission system
operators are notified of the contracted purchase and sales volumes. This can
be entered then in the balance accounting for various market participants.

Situations may of course arise where too little power is supplied in an area at
the system price, and bottlenecks in the grid may make it impossible to supply
an adequate volume of power to this area. In this case it will become a high
price zone: an area where the price is higher than the system price.

Correspondingly, situations may arise where too much power is supplied in an
area at the system price, and the grid cannot transport enough power out of
this area. In such cases this zone becomes a low price area: an area where the
price is less than the system price.

Norway can be divided into several price zones (three zones this winter), while
Finland, Sweden and Western Denmark (Jylland/Fyn) cannot be divided into
more than one price zone internally.
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Figure 1.1: Intersection between Demand curve and Production curve.
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1.3 Denmark

The Kingdom of Denmark (Danish: Kongeriget Danmark) is the geographi-
cally smallest and southernmost Nordic country in addition to being the oldest.
It locates north of Germany (its only land neighbourgh), southwest of Sweden,
and south of Norway, in Scandinavia.

• Denmark Area: 43,094 square kilometres - of which:

– Land: 42,394 km2

– Water: 700 km2

• Population: 5,432,335 (July 2005 est.)

• Electric consumption: 35 TWh (2003)

• Electric generation: 44 TWh (2003) - of which:

– Other thermal power (gas/coal): 87 per cent

– Other renewable power (wind): 13 per cent

The Danish climate is temperate, humid and overcast: mild, windy winters and
cool summers.

Denmark’s energy production is mainly based on imported coal, oil and natural
gas from the Danish sector of the North Sea, and wind energy. In addition
there are straw and other biological fuels, solar energy and geothermal energy,
which together constitute a small proportion. This is, however, increasing with
technological developments.

1.3.1 Energinet.dk

Electricity is mainly produced in regional power stations by burning coal sup-
plemented with natural gas, oil, biological fuel and waste products. Natural
gas plays an increasingly important role, while the use of oil is decreasing. The
regional power stations supply is distributed throughout the country by one
electricity company: Energinet.dk.

Energinet.dk is formally established as a merger between Eltra, Elkraft Sys-
tem, Elkraft Transmission and Gastra. Two subsidiaries, Eltransmission.dk A/S
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Figure 1.2: Denmark



1.3 Denmark 7

Figure 1.3: Energinet.dk transmission lines.
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and Gastransmission.dk A/S were established at the same time. The merger
was effected with retrospective effect as from 1 January 2005.

Energinet.dk is a result of a broad political compromise, which was made in
March 2004. The bill on Energinet Danmark was passed on 14 December 2004.

As system operators, Energinet.dk and its two subsidiaries have four main re-
sponsibilities:

• Ensuring the physical of the system in the short and long term.

• Administering market access and planning market function.

• Planning, developing and operating the overall transmission grid and the
international connection.

• Ensuring that the electricity and natural gas systems live up to the energy
policies pursued in Denmark.

A special challenge for Energinet.dk is the efficient incorporation of wind power
into the overall energy system.

Being responsible for ensuring that the electricity and natural gas systems live
up to the energy policies pursued in Denmark involves, among other things, the
implementation of sophisticated systems for system operation, monitoring and
control, allowing the handling of considerable volumes of wind power.

In October 2004 Eltra was placed on ”positive outlook” by Standard and Poor’s,
one of the world’s preeminent providers of credit ratings and globally recognized
financial-market indices.

However, Standard and Poor’s also highlights a weakness: a risk of losses on
counterparties in the real-time market.

Energinet.dk must ensure a balance between consumption and production at
the moment of operation. The balancing is achieved via the regulating power
market in which generators offer to change their production relative to the plan
against payment.
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Figure 1.4: The electricity grid.
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1.4 Regulating Power

A transmission system operator, like Energinet.dk, is also responsible for keeping
the power system in balance, and thus it is responsible for the overall physical
management and control of the national power system. Technically this means
that the frequency is maintained at 50 Hz.

The frequency of the power system can be considered a measure of the balance
or imbalance between production and consumption: for the NordPool market
the frequency has to be between 49.9 Hz and 50.01 Hz.

If the consumption exceeds the production, then the frequency of the system
will drop to less than 50 Hz(⇒ upward regulating power). If the production
is too great and it exceeds the consumption, then the frequency of the system
will increase to over 50 Hz (⇒ downward regulating power).

The volume of power that the transmission system operator trades in this man-
ner is called regulating power. The transmission system operator chooses who
will change their production or consumption based on a price offer that the
producers and consumers have given for this. The producer or consumer who
has given the lowest price for the change that is required will be chosen.

Energinet.dk (Eltra in Western Denmark) collaborates with the other Nordic
system operators on the delivery of regulating power. However, due to conges-
tion on the transmission lines to Norway and Sweden, there are times where is
physically impossible to obtain regulating power in the Nordic region. The large
share of wind power in Western Denmark requires flexible solutions to ensure
the necessary balance between production and consumption.

During the operational day, Eltra maintains the system balance by purchasing
regulating power from producer in Western Denmark, via the system operators
in Norway and Sweden or under bilateral agreement players south of the Danish-
German border. Eltra sells the regulating power to players which are seeing
deviation between their planned and they actual production/consumption.

The players’ imbalance are settled under a dual-price system, giving rise to a
surplus:

• Imbalances which go in the same direction as the system imbalance and
which thereby contribute to an increased imbalance are settled at the price
of manual regulating power.

• Imbalances which go against the system imbalance and which thereby help
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Figure 1.5: Market balance for 1 day
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the system are settled at spot price.

The surplus is used to cover other costs in the system accounts. The surplus from
the dual-price system has primarily fallen because there has been a significant
narrowing of the difference between the prices for upward downward regulating
power. The narrowing is primarily due to the fact that in 2004 Eltra improved
the scope for buyng regulating power in the other Nordic countries. This has
resulted, especially, in increases in the price of downward regulating power.
Eltra has thus been able to sell surplus power at a higher price abroad.



Chapter 2

The Quantile Regression
Theory

2.1 Introduction

In this chapter, we describe the theory about quantiles and Quantile Regression.

Koenker and Bassett [16] proposed an original approach in regression analysis
in order to permit estimating quantile functions of a conditional distribution.

After a brief introduction concerning quantiles and conditionals quantiles, in
section 2.3 we describe Quantile Regression as linked to Optimization, as seen
in [17], mostly, and [19], [10], [16].

In section 2.4 we describe the method of Quantile Regression [17] and in sec-
tion 2.5 we introduce the Nonparametric Regression Models and the smoothing
splines [13], with some guidelines in order to choose the smoothing parameter.

In Section 2.6 we summarize the foremost features of the Local Regression The-
ory.

In the last section, Section 2.7, we briefly introduce the splines theory [9].
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2.2 Quantiles and Conditional Quantiles

The τth quantile of FY , given a random variable Y with the distribution func-
tion FY , denoted as qY (τ), is the solution to FY (q) = τ , i.e.

qY (τ) = F−1
Y (τ) = inf{y : FY (y) ≥ τ}. (2.1)

where τ ∈ (0, 1).

Example 2.1 The most important quantiles have a ”name”:

• q0.25 −→ First quartile

• q0.5 −→ Second Quartile

• q0.75 −→ Third Quartile

• q0.01 −→ First Percentile

• q0.02 −→ Second Percentile

• . . .

• q0.99 −→ 99th Percentile

and, more in general, τ th quantile or the τ% quantile.

Example 2.2 In Figure (2.1) it is possible to see the 90% quantile of a Gaus-
sian distribution.

Now, let X be a random variable and let FY |X be the conditional distribution
of Y conditioned by X.

It is possible to define the τ th quantile of FY |X(y) similarly to (2.1) in the
following way:

qY |X(τ) = F−1
Y |X(τ) (2.2)

Example 2.3 Again, important conditional quantiles are
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Figure 2.1: 90th percentile for a N(0,1): the colored area corresponds to the
10% of the total area.
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• qY |X(0.5), the conditional median, represents the center (point of symme-
try) of FY |X .

• qY |X(τ), with τ → 0, describes the left tail of FY |X .

• qY |X(τ), with τ → 1, describes the right tail of FY |X .

2.3 Quantiles Regression and Optimization

Now, let Y1, . . . , Yn be independent and identically distributed random variables.
We introduce the following

Definition 2.1 A decision function δ is a measurable function defined on Rn

into R. The value δ(y1, . . . , yn) of δ at (y1, . . . , yn) is called a decision.

Definition 2.2 For estimating a parameter τ , a loss function is a nonnegative
function which expresses the (financial) loss incurred when τ is estimated by
δ(y1, . . . , yn):

L[τ ; δ(y1, . . . , yn)] = |τ − δ(y1, . . . , yn)|, (2.3)

or, more generally,

L[τ ; δ(y1, . . . , yn)] = v(τ)|τ − δ(y1, . . . , yn)|k, (2.4)

where k > 0;

or L[·; δ(y1, . . . , yn)] is taken to be a convex function of τ .

The most convenient form of a loss function is the squared loss function, i.e.

L[τ ; δ(y1, . . . , yn)] = [τ − δ(y1, . . . , yn)]2. (2.5)

In our discussion, it’s important to define the following
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Definition 2.3 The risk function corresponding to the loss function L(·; ·) is
denoted by R(·; ·) and is defined by

R(τ, δ) = EτL[τ ; δ(y1, . . . , yn)] (2.6)

i.e. the risk corresponding to a given decision function is the average loss in-
curred if that decision function is used.

We suppose now that τ is a random variable itself with probability distribution
function λ, to be called a prior probability distribution function. Then we set

R(δ) = EλR(τ, δ) =
∫

R(τ, δ)λ(τ)dτ. (2.7)

R(τ) is the average, with respect to λ, risk over the entire parameter space Ω
when the estimator δ is used.

If the observed value of Yi, is yj , j = 1, . . . , n, we determine the conditional
probabiliy distribution function of τ , given Y1 = y1, . . . , Yn = yn. This is called
the posterior probability distribution function of τ (Fτ (y)).

We look for an estimator which minimizes the maximum (over τ) risk. Our
attention is restricted to the class of all estimators for which R(τ ; δ) is finite for
all τ ∈ Ω.

We consider the following loss function

L[τ ; δ] = δ(τ − I(δ < 0)), (2.8)

where δ = δ(y1, . . . , yn), for some τ ∈ (0, 1).

So, we want to minimize the risk function, i.e. the expected loss function:

R(τ ; δ) = EL[τ ; δ] = E[δ(τ − I(δ < 0))]. (2.9)

Let it be δ = Y − ŷ. Then
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τ −1

 τ

Lτ(δ)

Figure 2.2: Lτ (δ) for τ = 0.3
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R(τ ; δ) = ELτ (Y − ŷ)

=
∫

(Y − ŷ)(τ − I{(Y−ŷ)<0})dFτ (y)

= (τ − 1)
∫ ŷ

−∞
(y − ŷ)dFτ (y) + τ

∫ +∞

ŷ

(y − ŷ)dFτ (y)

(2.10)

Now, deriving (2.10) with respect to ŷ, we obtaine:

∂R(τ ; δ)
∂ŷ

= −(τ − 1)
∫ ŷ

−∞
dFτ (y)− τ

∫ +∞

ŷ

dFτ (y)

= −τ

∫ +∞

−∞
dFτ (y) +

∫ ŷ

−∞
dFτ (y)

= −τ + Fτ (ŷ)
(2.11)

Thus

τ = Fτ (ŷ). (2.12)

and (2.1).

As we have seen, an optimization problem naturally arises from solving a quan-
tile regression problem.

2.4 The Method of Quantile Regression

Given the data xt for t = 1, ..., n, we consider the following linear model:

yt = x′tβ + εt (2.13)

In order to approximate a particular conditional quantile of yt, β must be esti-
mated properly.
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βτ , i.e. the τth conditional quantile regression estimator of β, can be obtained
by minimizing, with respect to β, the following problem:

Rn(β) =
1
n

[
τ

∑

t∈T1

|yt − x′tβ| + (1− τ)
∑

t∈T2

|yt − x′tβ|
]

(2.14)

where T1 = {t : yt ≥ x′tβ} and T2 = {t : yt < x′tβ}.

We set τ = 1
2 in (2.14) :

Rn(β) =
1
n

[
1
2

∑

t∈T1

|yt − x′tβ|+
1
2

∑

t∈T2

|yt − x′tβ|
]

=
1
2n

n∑
t=1

|yt − x′tβ|

(2.15)

thus

RLAD
n (β) = 2Rn(β) =

1
n

n∑
t=1

|yt − x′tβ| (2.16)

where LAD method, Least Absolute Deviation method, is a alternative method
to the OLS method, Ordinary Least Squares method.

In OLS the goal is minimizing the Sum of Squared Residuals

RSSR(β) =
n∑

t=1

(yt − x′tβ)2 (2.17)

as in LAD the function to be minimized is the Sum of Absolute Residuals

RSAR(β) =
n∑

t=1

|yt − x′tβ| (2.18)
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The regression estimated by the LAD method (τ = 0.5) is in effect a particular
case of conditional quantile regression (0 < τ < 1) and is usually referred to as
a median regression.

Example 2.4 In figure (2.3) it is possible to see the OLS function and the LAD
function for a sample of 1000 data from the following model:

yt = βxt + εt (2.19)

where εt ∼ N(0, 1)

The (2.14) can then be written in a compact form:

Rn(β) =
1
n

n∑
t=1

(τ − I{yt−x′tβ<0})(yt − x′tβ) (2.20)

where I{yt−x′tβ<0} is the indicator function of the event {yt − x′tβ < 0}.

The first order condition of minimizing (2.20) is

1
n

n∑
t=1

xt(τ − 1yt−x′tβ<0) = 0 (2.21)

except at yt = x′tβ where the derivative is not defined.

The solution of (2.21), solved for β, is β̂τ , the τ th quantile regression estimator
of β.

2.5 Nonparametric Regression Models

A nonlinear regression model is given by the equation

Y = f(β, X) + ε (2.22)
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Figure 2.3: OLS and LAD functions for an example of a linear model
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where β = (β1, ..., βp) is a vector of parameters to be estimated, and X =
(X1, ..., Xk) is a vector of predictors; the errors ε = (ε1, ..., εs) are assumed to be
normally and independently distributed with mean 0 and constant variance σ2.
The function f() usually is specified in advance, as it is in a linear regression
model.

The nonparametric regression model, as the nonlinear regression model, is writ-
ten in a similar way, but the function f is left unspecified:

Y = f(X) + ε = f(X1, X2, ..., Xk) + ε (2.23)

The object of nonparametric regression is to estimate the regression function
f() directly, rather than to estimate the parameters. Most methods of nonpara-
metric regression implicitly assume that f() is a smooth, continuous function.

As in nonlinear regression, it is usually assumed that ε ∼ N(0, σ2).

Nonparametric simple regression is often called scatterplot smoothing because
an important application is to tracing a smooth curve through a scatterplot of
Y against X.

One of the most important and most used model is the additive regression
model,

Y = α + f1(X1) + f2(X2) + . . . + fk(xk) + ε (2.24)

where the partial-regression functions fj() are assumed to be smooth, and are
to be estimated from the data.

Each of the functions can be approximated by linear combinations of known
basis functions of the corresponding explanatory variable, i.e.

fj(Xj) =
nj∑

k=1

φjk(xj)θjk (2.25)

where φjk(xj) are the basis functions and θjk are unknown coefficients.

The resulting model, i.e. the model consisting of (2.24) and (2.25), is a linear
regression model. However, the resulting estimates of the functions generally
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have larger bias than those based on non-parametric approximations.

A restriction must be imposed on (2.24) (and (2.25)) in order to obtain unique
estimates and the resulting basis functions must be derived.

Example 2.5 If it must be that fj(0) = 0, it follows from (2.25) that

θj1 = −
nj∑

k=2

θjk
φjk(0)
φj1(0)

(2.26)

Setting τj1 as in (2.26) into (2.24) results in the expression

fj(Xj) =
nj∑

k=2

(φjk(Xj)− φjk(0)
φj1(0)

φj1(Xj))θjk (2.27)

where the term in front of the coefficients θjk defines the nj − 1 new basis
functions.

If some of the functions in (2.25) are known to be periodic, this restriction can
be imposed on the basis functions.

Using cubic spine basis functions, the functions in (2.25) have continuous deriva-
tives up to order two. This property should also be imposed when constructing
the periodic basis.

This model is substantially more restrictive than the general nonparametric
regression model, but less restrictive than the linear regression model, which
assumes that all of the partial-regression functions are linear.

Also semiparametric models are kinds of additive regression model, in which
some of the predictors enter linearly.

Example 2.6

Y = α + β1X1 + f2(X2) + ... + fk(xk) + ε (2.28)

Other useful kinds of additive model are models in which some predictors appear
as higher-dimensional terms in the model, as we can see in Example 2.7.
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Example 2.7

Y = α + f12(X1, X2) + f3(X3) + ... + fk(Xk) + ε (2.29)

2.5.1 Approximation by Smoothing Splines

We consider the Sobolev space W k
p of real functions on [0, 1] with k − 1 abso-

lutely continuous derivatives and kth derivative existing almost everywhere as
a function in Lp[0, 1]. Let it be k, k ≥ 2, an integer and p, p ∈ [1,∞).

Given the function

|f |p = (|f(x)|p) 1
p , (2.30)

our aim is finding the smoothest interpolating function of the points (xi, yi), i = 1, ...n
in the sense of solving

inf{‖g(k)‖p : g ∈ W k
p , g(xi) = yi, i = 1, ...n}. (2.31)

For p = 1, (2.31) has no solution for f ∈ W 1
k .

If we let W k
1 include functions whose kth derivatives are measures, the expanded

problem has a solution: a spline s of degree k−1 with measures s(k) concentrated
on n or fewer points.

Any solution, f̂ , must interpolate itself at the observed {xi} and must minimize
the roughness penalty, subject to a given fidelity constraint [13].

Given that,in order to determine the form of the solution to the smoothing
problem it suffices to consider the interpolation problem.

We have the interesting result in the case k = 2.

Theorem 2.4 Let it be

U2 = {g : g(x) = a0 + a1x +
∫ 1

0

(x− y)+dµ(y), V (µ) < ∞, a1 ∈ R, i = 0, 1}
(2.32)

The function g ∈ U2 minimising
∑

ρi{yi − g(xi)}+ λV (g′) (2.33)
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is a linear spine with knots at the points x1(i = 1, ...n).

Demonstration.

Let f be any interpolator of the points {(x1, yi) : i = 1, ..., n} with an absolutely
continuous first derivative.

The total variation of an absolutely continuous function is the integral of the
absolute value of its derivative. Thus, it is possible to choose ui ∈ (xi, xi+1)
such that

f ′(ui) =
yi+1 − yi

xi+1 − xi
(2.34)

where i = 1, . . . , n− 1.

Then,

V (f ′) ≥
n−1∑

i=1

|
∫ ui+1

ui

f ′′(x)dx |≥
n−1∑

i=1

| f ′(ui+1)− f ′(ui) |= V (f̂ ′), (2.35)

where f̂ is the piecewise linear interpolator with knots at the xi.

For any continuous piecewise linear g exists a sequence of functions {gn} with
absolutely continuous first derivative such that limV (g′n) = V (g′), and it is
possible to demonstrate that f̂ minimises V (g) for all such g.

Consider the simple-regression problem consisting in finding the function f(x)
with two continuous derivatives that minimizes the penalized sum of squares

SS(λ) =
n∑

t=1

[Yt − f(Xt)]2 + λ

∫ Xmax

Xmin

[f ′′(X)]2dX (2.36)

where λ is a smoothing parameter.

The parameter λ controls the smoothness of the objective function.
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When λ is sufficiently large, the solution will be the bivariate linear quantile
regression fit (f̂(x) will be selected so that f̂ ′′(x) is everywhere 0).

When λ is sufficiently small, all the n observations will be interpolated if all the
X-values are distinct, otherwise the τth quantiles at each distinct design point
are interpolated. This is similar to a local-regression estimate with span = 1

n
(see Section 2.6).

The first term in (2.36) is the residual sum of squares.

The second term in (2.36) is a roughness penalty, which is large when the inte-
grated second derivative of the regression function f ′′(X) is large; i. e., when
f(X) is rough (with rapidly changing slope).

The function f̂(X) that minimizes (2.36) is a natural cubic spline with knots at
the distinct observed values of X as seen in [13].

2.5.2 Selecting the Smoothing Parameter

The adjustable smoothing parameter may be selected by visual trial and error,
picking a value that balances smoothness against fidelity to the data. More
formal methods of selecting smoothing parameters typically try to minimize
the mean-squared error of the fit, either by employing a formula approximating
the mean-square error (e.g., so-called plug in estimates), or by some form of
crossvalidation.

For quantile smoothing splines, the problem of computing a family of solutions
for various λ, i. e. the smoothing parameter, is greatly eased by the fact that
the problem is a parametric linear program in the parameter λ, because the
objective function is linear in λ. As λ changes, the orientation of the linear
function changes.

The suitable solutions, ĝτ,λ, are those functions, piecewise constant in λ, such
that ĝτ,λ solves (2.36) ∀λ ∈ [λi−1, λi], with 0 = λ0 < λ1 < ... < λj .

The number of distinct solutions, J, in λ, may be thought in the order of
Op(nlogn) [Portnoy 1991, for the problem of the number of distinct solutions
for the linear quantile regression problem]. An important consequence of this is
that initially the much smaller linear quantile regression problem corresponding
to λ = ∞ can be solved and gradually the roughness penalty can be relaxed in
order to avoid, as much as possible, a direct solution of a large problem.
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As it has be said, the solutions of (2.36) depend upon the penalty parameter λ
and involve the number of interpolated points. If no two observations share the
same design point, the number pλ of interpolated xt’s must be at least 2 and at
most n. Actually, the number of actives knots can be pλ, i. e. depending on λ.

As seen in [13], the criterion

SIC(pλ) = log[n−1
n∑

t=1

ρτ{yt − ĝ(xt)] +
1
2
n−1pλlogn (2.37)

which may be interpreted as the Schwarz (1978)criterion for the quantile smooth-
ing spline problem, seems to perform well in some limited applications. Machado
(1993) considers similar criteria for parametric quantile regression and more gen-
eral M-estimators of regression.

A valid method to choose the smoothing parameter is crossvalidation : the
data are divided into subsets (possibly comprising the individual observations),
the model is successively fit omitting each subset in turn, and then the fitted
model is used to predict the response for the left-out subset. Trying this proce-
dure for different values of the smoothing parameter will suggest a value that
minimizes the crossvalidation estimate of the mean-squared error. Because
crossvalidation is very computationally intensive, approximations are often
employed.

2.6 Local Regression

One of the most common smoothing methods is Local Regression.

Local Regression estimation is based on the principle that a smooth function
can be well approximated by a low degree polynomial in the neighborhood of
any point. It was introduced in the statistical literature in the late 1970’s.

Example 2.8 A local linear approximation of the function f is

f(xi) ≈ α0 + α1(xi − x)

for x− h ≤ xi ≤ x + h.

Moreover, a local quadratic approximation of the function f is

f(xi) ≈ α0 + α1(xi − x) +
α2

2

2
(x1 − x)2
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for x− h ≤ xi ≤ x + h.

The interval x − h ≤ xi ≤ x + h is called smoothing window, and h is a fixed
parameter known as the bandwidth. The span is the parameter which controls
the degree of smoothing.

The local approximation can be fitted by locally weighted least squares. In the
case of local linear regression, coefficient estimates are chosen to minimize

n∑

i=1

W (
xi − x

h
)(Yi − (α0 + α1(xi − x)))2. (2.38)

where W (·) is a weight function.

The weight function is chosen so that most weight is given to those observations
close to the fitting point.

The following function is a common choice for the weight function,

W (x) =
{

(1− x2)2, −1 ≤ x ≤ 1
0, x < −1 ∨ x > 1

Each local least squares problem defines the local linear regression estimate f̂
at one point x; if x is changed, the smoothing weights W (·) change, and so the
estimates α̂0 and α̂1 change.

2.7 Splines

Let x0, ..., xn be n + 1 distinct nodes of [a, b], with a = x0 < x1 < ... < xn = b.

The function sk(x) on the interval [a, b] is a spline of degree k relative to the
nodes xj if

sk ∈ Pk([xj , xj+1]), ∀j = 1, ..., n− 1 (2.39)

sk ∈ Ck−1([a, b]) (2.40)
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Figure 2.4: The figure shows the local regression model for AUR depending on
WF.
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Consider the space of splines sk on [a, b] relative to n + 1 distinct nodes and
denote it by Sk , then dim Sk = n + k.

Any polynomial of degree k on [a, b] is a spline.

In the practice a spline is represented by a different polynomial on each subin-
terval and for this reason there could be a discontinuity in its k − th derivative
at the internal nodes x1, ..., xn − 1. The nodes for which this actually happens
are called active nodes.

Easily, it can be seen that a spline may be represented in the following way:

sk,j(x) =
k∑

i=1

si,j(x− xj)i, (2.41)

if x ∈ [xj , xj+1]

A spline can be conveniently represented using k + n spline basis functions.

Interpolatory cubic splines are particularly significant since they are the splines
of minimum degree that yield C2 approximations and they are sufficiently
smooth in the presence of small curvatures.

Let x0, ..., xn be n + 1 ordered nodes of [a, b], with a = x0 < x1 < ... < xn = b
and fi, i = 0, ..., n the corresponding evaluations. Since the spline wanted
to interpolate those values is of degree 3, its second-order derivative must be
continuous.

Often the spline is prolonged outside the end points of the interval [a, b] and
a and b are treated as internal points. This strategy produces a spline with a
”smooth” behavior.

In order to generate s3 it may be provided a basis {φi} for the space S3 of cubic
splines, whose dimension is equal to n + 3. The n+3 basis functions {φi} may
have global support in the interval [a, b] or local support.

The functions φi, for i, j = 0, ..., n, are defined through the following interpola-
tion constraints

φi(xj) = δij (2.42)
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and

φi(x0)′ = φi(xn)′ = 0 (2.43)

and two splines, φn+1 and φn+1, must be added.

For instance, if the spline must satisfy some assigned conditions on the derivative
at the end points, the two added splines must be such that

φn+1(xj) = 0j = 1, ..., nφn+1(x0)′ = 1φn+1(xn)′ = 0 (2.44)

φn+2(xj) = 0j = 1, ..., nφn+2(x0)′ = 0φn+2(xn)′ = 1 (2.45)

In this way the spline becomes

s3(x) =
n∑

i=0

fiφi(x) + f ′0φn+1(x) + f ′nφn+2(x) (2.46)

where f ′0 and f ′n are two given values. The resulting basis {φi, i = 0, ..., n + 2}
is called a cardinal spline basis.
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Figure 2.5: The figure shows an interpolation spline between the average heights
and weights for American women aged 30-39, i.e. the piecewise polynomial
representation of a univariate spline function. The red points are the knots of
the spline.
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Chapter 3

Extreme Value Theory

3.1 Introduction

In this Chapter we introduce the Extreme Value Theory (EVT) in general and
we propose a formulation for the EVT.

In section 3.3 we describe the Extreme Value Distribution and in Section 3.5
we briefly summarize the results regarding the Extreme Value Theory for the
Nonparametric Extreme Regression Quantiles.

3.2 Introduction to Extreme Value Theory

Extremes are unusual or rare events. In classical data analysis tasks extremes are
often labeled as outliers and even ignored. Cutting off extreme data might not be
relevant if the aim is to estimate parameters about frequent events. Otherwise,
Extreme Value Theory should be applied in order to correctly analyze the data.

Speaking about Extreme Value Theory (EVT) means considering the limiting
distributions for the minimum or the maximum of a very large collection of
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random observations from the same arbitrary distribution.

Emil Julius Gumbel, a German mathematician, pacifist and anti-Nazi cam-
paigner, developed new distributions in the 1950s. He was a pioneer in the
application of extreme value theory. The first application of the extreme value
distributions (the Gumbel distribution, the Generalized Extreme Value distri-
bution and the Generalized Pareto Distribution (GPD)) was to answer environ-
mental questions, quickly followed by the finance industry.

It has been showed by Gumbel that for any initial distribution (well-behave
distribution, i.e., F (x) is continuous and has an inverse), only a few models
are needed, depending on whether you are interested in the maximum or the
minimum, and also if the observations are bounded above or below.

We often encounter extreme value distribution s for the minimum in the context
of reliability modeling.

The potential of Extreme Value Theory applied to financial problems has only
been recognized recently. The end of the last decade has been characterized by
significant instabilities in financial markets worldwide. This has led to numerous
criticisms about the existing systems for risk management and motivated the
search for more appropriate methodologies able to cope with rare events of heavy
consequences.

The problem is to model very rare phenomena, which mainly lie outside the
range of available observations. EVT provides a confirmed theoretical founda-
tion on which we can build statistical models describing extreme events.

3.3 Extreme Value Distributions

The family of extreme value distributions can be subsumed under a single
parametrization known as the Generalized Extreme Value distribution (GEV).
The d.f. of the standard GEV is

Hξ(x) =

{
e−(1+ξx)

− 1
ξ
, ξ 6= 0

e−e−x

, ξ = 0

where x is such that 1− ξx > 0 and ξ is known as the shape parameter (see [8]).
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Three well known distributions are special cases of the ones above, as follows
(see [11]).

If ξ > 0 we have the Frechet distribution (for the maxima) with shape parameter
α = 1

ξ , given by

F (x) =
{

e−( x−λ
δ )α

, x ≥ λ
0, otherwise

where λ and β are constants known as the location and the scale parameter,
such that δ > 0 and β > 0.

If ξ > 0 we have the Weibull distribution (for the maxima) with shape parameter
α = − 1

ξ , given by

W (x) =
{

e−( λ−x
δ )α

, x ≤ λ
1, otherwise

where, again, the location parameter λ and the scale parameter δ are such that
δ > 0 and β > 0.

If ξ = 0 we have the Gumbel distribution (for the maxima), given by

G(x) = e−e( λ−x
δ

)
, −∞ < x < +∞; δ > 0

3.4 Extreme Value Theory: formulation

Given a sequence of i.i.d. random variables X1, X2, . . . , Xn from an unknown
distribution F , we consider

Mn = max(X1, X2, . . . , Xn) (3.1)

Recall that two distributions, F1 and F2 belong to the same family of distribu-
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tions if there exist two constants c and d such that

F2(cx + d) = F1(x) (3.2)

Suppose further that there exist two sequences of real numbers an > 0 and bn

such that, if n → +∞,

Pr

(
Mn − bn

an

)
→ G(x) (3.3)

for some non-degenerate distribution function G(x). If this condition holds
we say that F is in the maximum domain of attraction of G and we write
F ∈ MDA(H).

Further, G belong to one of the family distributions defined above:

• Frechet

• Weibull

• Gumbel

This was shown by Fisher and Tippett (1928):

F ∈ MDA(G) ⇒ G is of the type Gξ for some ξ.

Distributions in the maximum domain of attraction of the Gumbel (MDA(G0))
include the normal, exponential , gamma and lognormal distributions.

In this work, we are interested in exponential distribution with two parameters.

3.5 Nonparametric Extreme Regression Quan-
tiles

We consider the the nonparametric model

y = gτ (x) + ε (3.4)
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Figure 3.1: The three GEV distributions: the Gumbel (with a light upper tail
and positively skewed); the Frechet (with a heavy upper tail and infinite higher
order moments) and the Weibull (with a bounded upper tail).
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where gτ (x) is the condizional τth quantile function of y given x, g(x) = inf{z :
P (y > x̄|x = x̄) > 0}, and ε ≥ 0.

As seen in Chapter 2, the τth quantile regression estimator of gτ (x) is defined
as a solution to the optimization problem (see Section 2.3).

Naturally, we aim to view the extreme quantiles as a limit of the non extreme
quantiles, and hence

g1(x, β) = lim
τ→1

gτ (x, β) = lim
τ→1

F−1
y (τ |x = x̄) (3.5)

We consider again

y = g(x) + ε (3.6)

g is an unknown smooth function. The task is to estimate g and its derivatives
for the extreme cases.

Usually the estimator is the locally polynomial estimator (see Section 2.6). In
[25] it has been shown that, under certain regularity conditions, the estimator
is a consistent pointwise estimator. Moreover, under similar global regularity
conditions, the global estimator of g and its derivatives is a consistent estimator
in the Lq, q ∈ [1,+∞], norm.



Chapter 4

Nonparametric Quantile
Regression with R

4.1 Introduction

R is a system for statistical computation and graphics. Since 1997 there has been
a core group (the ”R Core Team”) who can modify the R source code archive.
The group currently consists of Doug Bates, John Chambers, Peter Dalgaard,
Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich Leisch,
Thomas Lumley, Martin Maechler, Duncan Murdoch, Paul Murrell, Martyn
Plummer, Brian Ripley, Duncan Temple Lang, Luke Tierney, and Simon Ur-
banek.

R consists of a language plus a run-time environment with graphics, a debugger,
access to certain system functions, and the ability to run programs stored in
script files. R is an integrated suite of software facilities for data manipulation,
calculation and graphical display.

The core of R is an interpreted computer language which allows branching and
looping as well as modular programming using functions. Most of the user-
visible functions in R are written in R. The R distribution contains function-
ality for a large number of statistical procedures. Among these are nonlinear
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regression models and non parametric regression model.

R is very much a vehicle for newly developing methods of interactive data anal-
ysis. It has developed rapidly, and has been extended by a large collection of
packages. However, most programs written in R are essentially written for a
single piece of data analysis.

The development model is similar to that of the Linux operating system. Like
Linux, R is an ”open source” system. Source-code is available for inspection
or for adaptation to other systems.R provides a language environment that is
attractive for the development of new scientific computational tools. The R
system may struggle to handle very large data sets. R can process a data set
containing one hundred thousand observations and twenty variables.

In this Chapter we briefly introduce the R tools used in this thesy. All the
information are available on The Comprehensive R Archive Network (CRAN)
at http://cran.r-project.org/.

The information about the packages and the functions implemented in this thesy
come by the online documentation.

4.2 The R software in the project

The R packages used in the project are:

• SparseM

• splines

• tripack

• quantreg

• akima

• rgl

The first four packages are needed to implement the function rqss. The last two
packages are graphic tools required to plot contour curves in 2 and 3 dimensions.

The splines packages includes regression spline functions and classes.
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The akima package implements linear or cubic spline interpolation functions for
irregular gridded data.

The rgl package includes a 3D visualization device system.

To install a package from R one simply types, once that R is running,

> install.packages(”packageName”)

and, then, it is possible to make the package accessible to the current R session
by the command

> library(”packageName”)

4.2.1 The SparseM package

A sparce matrices is a matrices with a high percentage of zero entries.

In particular, in using smoothing splines (as in Nonparametric Quantile Regres-
sion) design matrices are extremely sparse often with less than 1% of nonzero
entries. Developments in sparse linear algebra have produced efficient methods
for handling unstructured sparsity in an efficient way.

The package SparseM provides some basic linear algebra functionality for sparse
matrices as coercion, basic unary and binary operations on matrices and linear
equation solving.

The Cholesky factorization and backsolve routines are based on Ng and Peyton
(1993).

This packages admitte more than twenty different storage formats for sparse
matrices. The primary storage mode for SparseM is the one named compressed
sparse row (csr) format. An n by m matrix A with real elements aij , stored in
csr format consists of three arrays:

• ra: a real array of nnz elements containing the non-zero elements of A,
stored in row order. Thus, if i < j, all elements of row i precede elements
from row j. The order of elements within the rows is immaterial.

• ja: an integer array of nnz elements containing the column indices of the
elements stored in ra.
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• ia: an integer array of n+1 elements containing pointers to the beginning
of each row in the arrays ra and ja. Thus ia[i] indicates the position in
the arrays ra and ja where the ith row begins. The last (n + 1)st element
of ia indicates where the n + 1 row would start, if it existed.

Obviously, the chosen of the smoothing parameter λ for the Nonparametric
Regression Quantile influences the sparsity of the matrix.

4.2.2 The quantreg package

The package quantreg is an implementation of statistical methods, named Quan-
tile Regression, for estimating and plotting inferences about conditional quantile
functions.

In order to implements Nonparametric Regression Model and Smoothing Spline
(see Chapter 2, Section 2.5), it is available the rqss function of the quantreg
package. This is based upon total variation penalty methods for fitting univari-
ate and bivariate functions.

The most general class of models that the function rqss can manage is the
following

Y = f(β, X) + ε (4.1)

where f is an unknown function (i.e. the dependence of the Y on X = X1, ..., Xk

is not known) and ε represents independent identically distributed errors with
mean zero and variance σ2.

It is possible to estimate f by using an additive models. Models of this type
can be expressed as

Y = α + f1(X1) + f2(X2) + +̇fk(xk) + ε (4.2)

Again, the Additive Quantile Regression Smoothing is explicated in R by the
function rqss. This function fitting additive quantile regression models with pos-
sible univariate and bivariate nonparametric terms estimated by total variation
regularization.
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In order to use this function, we write a command line in the following way

rqss(formula, tau = 0.5, . . . ,method = ”fn”) (4.3)

formula is a object with the response on the left of a ∼ operators and terms,
separated by + operators, on the right. The terms may include qss terms that
represent additive nonparametric components. These terms can be univariate
or bivariate.

qss(x, constraint = ”N”, lambda = 1) (4.4)

lambda represents the smoothing parameter governing the tradeoff between fi-
delity and the penalty component for this term.

tau represents the quantile to be estimated, this must be a number between 0
and 1. By default, tau is set to be equal to 0.5.

There are currently two algorithmic methods to choose between in order to
compute the fit. Both are implementations of the Frisch-Newton interior point
method described in detail in Portnoy and Koenker(1997). They are imple-
mented using sparse Cholesky decomposition as described in Koenker and Ng
(2003) Option ”sfnc” is used if the user specifies inequality constraints. Option
”sfn” is used if there are no inequality constraints. Linear inequality constraints
on the fitted coefficients are specified by a matrix R and a vector r, specified
inside the qss terms, representing the constraints in the form Rb ≥ r.

Qualitative constraints may also be specified for the qss terms (”N”,”I”,”D”,”U”,”C”
”UI”,”UD”,”CI”,”CD” for none, increasing, decreasing, convex, concave, convex
and increasing, etc). By default, there are no constraints set in the model.

The function returns a fitted object representing the estimated model specified
in the formula.
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Chapter 5

The Model

5.1 Introduction

After a brief description of the data to be analyzed, we start modeling them
with a linear quantile regression model, seeing that it’s not enough in order
to describe precisely the dependency of Actual Upward Regulating power and
Wind Forecasts.

Applying the nonparametric quantile regression theory, we model the data,
choosing a good smoothing parameter. We show how much the smoothing
parameter choice affects the resulting model.

5.2 Data Description

The data used in this thesys were provided by Energinet.dk. Those data, refer-
ring to the the period since the 1th of January 2005 until the 31th of January
2005, include

• Wind Forecasts (WF) (MWh/h)



48 The Model

The wind power forecasted one day in advanced by simulation programs
developed by Energinet.dk.

• Actual Upward Regulating power (AUR) (MWh/h)
The right quantity of ancillary services and regulating power that should
have been bought by Energinet.dk.

• Upward Regulating power (UR) (MWh/h)
The quantity of ancillary services and regulating power that have been
actually bought by Energinet.dk.

Moreover, we used in this project the data regarding the actual electric energy
Consumptions (C) (MWh/h) in Denmark, obtained by the NordPool website
(http://www.nordpool.com/).

The data, divided per month, were collected in a ”one year file” and then elab-
orated.

The former timetable included five minutes AUR, UR and C data for all the
2005. In order to make the calculus and the analysis smoother, the data were
moved from the five minutes (5M) schedule to the one hour schedule (1H) pro-
cessing them by the sample mean.

Given a sample of size n, we consider n random variables X1, X2, ·, Xn, each cor-
responding to one randomly selected observation. The sample mean is defined
to be

x̂ =
1
n

(X1 + X2 + ·+ Xn) (5.1)

In our case n = 12 and we consider, to calculate the sample mean, all the 5M
observations per 1 hour.

The AUR, UR, WF and C data regarding the wind storm on January 2005,
the 8th, in Denmark, were deleted (from 12.00 am to 12.00 pm) from the file in
order to avoid to bias the results.

As we can easily see from the first plot in figure (5.1), there was a ”peak”
corresponding to the 8th January data.

In the second plot in figure (5.1) we can see the AUR power data without the
8th January data.
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Figure 5.1: Above: AUR data before the corrections. Below: AUR data after
the correction.
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Figure 5.2: Above: scatterplot of AUR data versus WF data before the correc-
tions. Below: scatterplot of AUR data versus WF data after the corrections.
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The AUR, UR, WF and C data, regarding the hour changing on the 31st of
October, were deleted as well in order to avoid duplication of the data.

Then, the data were divided in three main periods:

• January - February - March - April

• May - June - July - August

• September - October - November - December

5.3 Linear Quantile Regression

The first guess, in order to model the data, was to consider a linear quantile
regression model to illustrate the dependency between the wind forecasts and
the actual upward regulation.

We considered the linear quantile regression model

QYi(τ |xi) = xiβ(τ) (5.2)

where there are only a finite set of distinct covariate settings {xi : i = 1, . . . , N}
and one measurement of the response Yi at each xi.

In the case-studying we set xi = WFd, Yi = AURd, ∀d = 1, . . . , N , where
N = 8747 and d is the index indicating the day and the hour of the measurement.

In order to univocally indicate the day and the hour of the measurements (for
the actual upward regulation) and the forecasts (for the wind power) we used
a number between 732313 (1st January 2005, 00:00) and 732677.958 (31st De-
cember 2005, 23:00), as used in the software Matlab.

We have implemented in R the function rq setting the parameters in the follow-
ing way

> fit = rq(y ∼ x, tau = taus)

where taus = {0.05, 0.1, 0.25, 0.75, 0.9, 0.95}.
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Figure 5.3: Scatterplots of the AUR data versus the WF data after being divided
in three main periods. Starting on the left: data referring to the I period
(January - February - March - April), data referring to the II period (May -
June - July - August), data referring to the III period (September - October -
November - December).
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Moreover we implements the function lm (used to fit linear models) and, again,
rq with tau = 0.5.

As we can see in figure (5.5), a linear regression model can’t fully illustrate the
dependency between the explanatory variable, WF, and the response variable,
AUR. The effects on the response variable are not linear, so in this case the
linear quantile regression model fails.

5.4 Nonparametric Additive Quantile

As second step, the quantiles have been modeled as a sum of non-linear smooth
functions of the explanatory variables: WF (wind forecasts), D (time index
corresponding to the the day and the hour of the measurement) and C (con-
sumptions), following the methodology seen in [19].

We consider the model

y = α + f1(x1) + f2(x2) + . . . + fp(xp) + ε (5.3)

where fi and α can be estimated based on data. The estimated function f̂i(xi)
can reveal possible nonlinearities in the effect of the xi on the response variable.

Moreover, in this kind of models, it is possible to mix linear terms and nonlinear
terms in a very flexible way, as seen in [21], approximating each of the smooth
function as a linear combination of basis functions depending only on known
quantities (using splines bases with 10 degrees of freedom).

We imposed the functions to be zero at the lower boundary knots by using nat-
ural spline bases without intercept. We placed the boundary knots at the limits
of the data and the internal knots according to the quantiles of the individual
explanatory variables. As said in [19], in this way the model allows for more
flexibility where the observations are relatively dense.

In Figure 5.5 we can see the resulting model for the 90% quantile. The figure
shows the effect of each variable. We can easily see that the consumption has the
smallest effect on the model (the curve is flatter than the other ones). Indeed,
in Figure 5.6, where the quantile is estimated after excluding the consumptions
from the model, it’s sufficiently possible to see the small changes in the estimated
quantile without the consumptions in the model.
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Figure 5.5: Estimated 90% quantile (top row) and histograms (bottom row) of
the explanatory variable. The red bullet in the top row of plots indicate the
placement of knots
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Figure 5.6: Estimated 90% quantile when excluding the consumptions C from
the model. The red bullet in the top row of plots indicate the placement of
knots
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Figure 5.7: Estimated 90% quantile when excluding the consumptions C and
the time index D from the model. The red bullet in the top row of plots indicate
the placement of knots
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In other respects, in Figure 5.7 we can easily see how the model changes after
excluding the explanatory variable D (time index) from the model itself. The
curve is much ”flatter” and less significant than the previous one, in which the
time index was part of the model as one of the explanatory variables.

After these considerations we decide to keep in the model, as explanatory vari-
ables, the Wind Forecasts (WF) and the Time Index (D).

In the next Chapters, we will describe the following models:

• a basic model in which the only explanatory variable is Wind Forecasts
(WF)

• a full model in which there are all the explanatory variables seen earlier:
the Wind Forecasts (WF) and the Time Index (D).



Chapter 6

A Basic Model with one
explanatory variable: the

Wind Forecasts

6.1 Introduction

We analyze the data modeled on a nonparametric regression model with one
explanatory variable, the Wind Forecasts. The response variable is the Actual
Upward Regulating power.

6.2 The Model

First, we consider the following model

AUR = α + f(WF ) + ε (6.1)

Using the function rqss in R, we want to estimate the quantile smoothing spline
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which minimise

Rτ,λ(fP ) =
n∑

i=1

ρτ{auri − fP (wfi)}+ λ

∫ 1

0

|g′′(wf)|dwf (6.2)

The knots for the optimal spline coincide with the observed wfi (see [13]).

The rqss function automatically removes the repetitions in the vector of the
observed value. In this way from a vector of length 8747 the function obtain a
vector of length 4991 for the observed wf.

Remember that λ is a non-negative smoothing parameter that must be chosen
by the data analyst, as we said in Subsection 2.5.2. λ governs the tradeoff
between the goodness of fit to the data and smoothness of the function (see
[21]). Larger values of λ force f to be smoother. In fact, the interpolating curve
corresponds to λ = 0 at one extreme, and the straight line fit is the limit as
lambda →∞, as we can easily see in the plots in Figure 6.1.

Anyway, for any value of λ, the solution to (6.2) is a linear spline (see [13]).

The problem of computing a family of solutions for various values of λ is a
parametric linear program in the parameter λ, in fact, the objective function,
solution of the minimising problem in (6.2), is linear in λ.

As said in [13], as λ changes, the orientation of the linear function changes, and
we move from one adjacent vertex of the constraint polytope to the next. The
solutions ĝτ,λ(·) are thus piecewise constant in λ; that is there exists a mesh
0 = λ0 < λ1 < . . . < λj , such that ĝτ,λ(·) solves the minimising problem for all
λ ∈ [λi−1, λi].

In Figure 6.2 we can see the estimated 80% quantile of the WF for very different
value of the smoothing parameter λ. For value of λ too small, the estimated
quantile function is not enough smooth. Otherwise, for bigger values of the
smoothing parameter the estimated quantile function is too smooth and, as we
can see in the last plot, for λ = 20000 the estimated quantile function is a line,
loosing in this way many relevant informations.

In order to keep a good balance between the influence of the penalty term and
the influence of the fidelity term, we choose the smoothing parameter in the
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Figure 6.1: Estimated 80% quantile of WF for two different values of the
smoothing parameter lambda.
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Figure 6.2: Estimated 80% quantile of the WF for different value of the smooth-
ing parameter λ.



6.2 The Model 61

following way:

λ = 650 (6.3)

In Figure 6.3 we can see the 80% estimated quantile on the scatterplot of points
(wfi, auri), set λ = 650.

In Figure 6.4 we fit the model for the following values of τ :

τ = (0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95) (6.4)

6.2.1 Introducing the time index D in the basic model

In order to better understand the influence of the time index D on the depen-
dency of AUR on WF, we divided the data referring to all the year 2005 in
three periods. Then, we added the time index to the model rewriting the model
in (6.1) as follows:

AURP = αP + fP (WF ) + ε (6.5)

where P refers to either the I, the II or the III period.

As we can see in Figure 6.5 the three periods estimated quantile function present
some regularities. To better understand that, we plot all the three periods curves
together in Figure 6.6.

The first and the third period presents similarities with the all year data plot.
The second period presents lightly differences.

Again, we see that the time index is an explanatory variable that has to me
added to the model, in order to make it more coherent with the real situation.

6.2.2 Days of the week

Looking for regularities depending on the Time Index, we split up the data by
the days of the week.
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Figure 6.3: The plot on the left is a scatterplot of AUR plotted against the
predictor WF. In the plot on the right, we added a linear smoothing spline
(estimating the 80% quantile, with λ = 650) to describe the trend of AUR on
WF.
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Figure 6.4: Scatterplot of AUR plotted against the predictor WF in which we
added linear smoothing splines estimating different τ% quantile. λ = 650.
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Figure 6.5: The plot on the top is a scatterplot of AUR plotted against the
predictor WF referred to the I period, where we added the estimated 80%
quantile. The plot in the middle is a scatterplot of AUR plotted against the
predictor WF referred to the II period, where we added the estimated 80%
quantile. The plot on the bottom is a scatterplot of AUR plotted against the
predictor WF referred to the III period, where we added the estimated 80%
quantile. In each plot λ = 650
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In Figure 6.7 we can see that actually there are some regular features recurring
for each day of the week, even if the small number of data (the number of the
2005 data divided by seven is around 1200 data for each day of the week) doesn’t
allow us to get several conclusions.

Anyway, we can say that the similar features are more evident for small value
of the Wind Forecasts, while, for higher values of the Wind Forecasts, the reg-
ularities are less evident, this fact probably due to the rqss model estimation,
not so reliable with such a small number of data.

In Figure (6.8) we can see all the estimated regression quantile functions for
each day of the week on the same plot, for the estimated 80% quantile and the
estimated 90% quantile.

6.2.3 Dependency of the smoothing parameter on the num-
ber of data

Consider again (6.2), if we increase the number of the data from n to N, we can
rewrite the equation in the following way:

Rτ,λ(fP ) =
N∑

i=1

ρτ{auri − fP (wfi)}+ Λ
∫ 1

0

|g′′(wf)|dwf (6.6)

where

Λ = Nλ (6.7)

thus

λ =
Λ
N

(6.8)

In this way, it is possible to obtain the new value of the smoothing parameter λ
when we want to increase or decrease the dimension of the sample that we are
working on.
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Figure 6.6: On the left: scatterplot of AUR plotted against the predictor WF
referred to all the 2005 data, where we added the estimated 80% quantile for
the I, II and III period. On the right: scatterplot of AUR plotted against the
predictor WF referred to all the 2005 data, where we added the estimated 80%
quantile for the I, II and III period and for all the 2005 data. In each plot
λ = 650 for the 2005 data estimation, λ = 650

3 for each period estimation.



66 A Basic Model with one explanatory variable: the Wind Forecasts

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Monday Data 2005

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Tuesday Data 2005

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Wednesday Data 2005

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Thursday Data 2005

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Friday Data 2005

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Saturday Data 2005

0 500 1000 1500

0
2

0
0

6
0

0
1

0
0

0

WF

A
U

R

Sunday Data 2005

Figure 6.7: Scatterplot of AUR plotted against the predictor WF referred
to each weekday data, where we added the estimated 80% quantile and the
estimated 90% quantile.
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Figure 6.8: On the left: scatterplot of AUR plotted against the predictor
WF referred to all the 2005 data, where we added the estimated 80% quantile
functions referring to each day of the week. On the right: scatterplot of AUR
plotted against the predictor WF referred to all the 2005 data, where we added
the estimated 90% quantile functions referring to each day of the week.
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Chapter 7

A Full Model: Wind
Forecasts, Time Index and

Consumption

7.1 Introduction

We analyze the data modeled on a nonparametric regression model with two
explanatory variable: the Wind Forecasts and the Time Index. The response
variable is, again, the Actual Upward Regulating power. Then we analyze the
data modeled on a nonparametric regression model with three explanatory vari-
able: the Wind Forecasts, the Time Index and the consumptions, dividing the
data in the three periods, as previously described.

7.2 Estimation of the extreme quantile value

The main task of this thesis is to estimate a model that explains the dependency
of the upward regulating power on the wind forecasts. In order to do that in
a way as good as possible, we would like to have a model that can forecast the
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upward regulating power needed with a good precision, let us say corresponding
to one ”risk situation” per month.

In other words, we want to estimate the following quantile:

((1− 12
8760

)× 100)% (7.1)

where 12 is the number of the hour, at most, in which the model is accepted to
fail in a year and 8760 is the number of hour in all the year.

From (7.1) we have

τ̄ = 0.9986 (7.2)

We want to estimate the τ̄th quantile, q̂τ̄ .

Seen Figure 7.1, we assume that the distribution of the response variable right
tail is an exponential distribution with density:

fAUR(x) = ae−bx (7.3)

where a, b ∈ R, a, b > 0.

Thus, the corresponding probability distribution function (p.d.f.) is

FAUR(x) = 1− a

b
e−bx, x ≥ x̄ (7.4)

In order to determine the value x̄, we apply the normalization condition

∫ +∞

x̄

fAUR(x)dx = 1 (7.5)

Since (7.4), we have
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FAUR(+∞)− FAUR(x̄) = 1− 1 +
a

b
e−bx̄

=
a

b
e−bx̄

(7.6)

thus

a

b
e−bx̄ = 1 (7.7)

and

x̄ = −1
b
log

b

a
(7.8)

if a > b, otherwise x̄ = 0.

In order to determine the parameters a, b we consider the estimated quantile
regression functions Q̂(τ1) and Q̂(τ2) where

τ1 = 0.8
τ2 = 0.9

In any point of the function we proceed as follows.

Recalling that

qτ (x) = F−1
X (τ) = inf{x : FX(x) ≥ τ}. (7.9)

we have that
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a

b
e−bq90 = 0.1

a

b
e−bq80 = 0.2

(7.10)

Given q̂τ1 and q̂τ2 , ensuing from the nonparamatric quantile regression, from
(7.10) we have

â =
1
10

b̂eb̂q̂τ2

b̂ =
log2

q̂τ2 − q̂τ1

(7.11)

such that

FAUR(x) = 1− â

b̂
e−b̂x, x ≥ x̄ (7.12)

Using the results regarding the nonparametric quantile regression, got by the
R function rqss, we estimate the parameters a and b in a number of values
sufficient to fit the estimated functions Q(0.95) and Q(τ̄). In order to do that,
we remember that, for any τ ∈ (0, 1),

FAUR(qτ ) = 1− â

b̂
e−b̂qτ

= τ

(7.13)

Thus,

qτ = −1

b̂
log[

b̂

â
(1− τ)] (7.14)



7.3 The Model: WF and D 73

7.3 The Model: WF and D

We consider, now, the following model

AUR = f(WF ) + g(D) + ε (7.15)

The constant presents in the basic model has been absorbed into one of the
function.

Using the function rqss in R, we want to estimate the quantile smoothing splines
which minimize

Rτ,λ(f) =
n∑

i=1

ρτ{auri−(f(wfi)+g(Di))}+λf

∫ 1

0

|f ′′(wf)|dwf+λg

∫ 1

0

|g′′(D)|dD

(7.16)

The knots for the optimal splines coincide with the observed wfi and Di respec-
tively (see [13]), considered only once.

In Figure 7.2 we can see the estimated quantile regression functions for τ = 0.80
and τ = 0.90, estimated by R using the function rqss. We introduced the second
explanatory variable, the time index D.

As described above, using the 80% and the 90% estimated quantile functions,
we simulated the 95% and the 99.86% estimated quantile functions. The second
one, the 99.86% quantile function correspond to the τ̄ quantile function that we
were looking for, i.e. the situation in which we allow one error per month in the
model.

In Figure 7.3 we can see the conditional quantile function corresponding to
the 95%. The 95% quantile function has been obtained by the Extreme Value
Theory as explained above. We plotted, in the graph, the values of the Actual
Upward Regulating power as well.

In Figure 7.4 we can see the conditional quantile function corresponding to
the 99.86%, i.e. the quantile we were looking for. Again, the 99.86% quantile
function has been obtained by the Extreme Value Theory as explained above.
We plotted, in the graph, the values of the Actual Upward Regulating power as
well.
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Figure 7.1: Histogram of the right tail of the response variable AUR
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Figure 7.2: The figure illustrates the relationship between Actual Upward Reg-
ulation (AUR) and two explanatory variables, Wind Forecast (WF) and Time
index (D), for the 80% and 90% quantile.
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Figure 7.3: The figures show the surface corresponding to the 95% conditional
quantile function.
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Figure 7.4: The figures show the surface corresponding to the 99.86% conditional
quantile function.
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Figure 7.5: The figure shows the scatterplot of AUR versus WF, with D fixed
for each of the three periods, where we added the conditional quantile function
corresponding to the 95%.
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Figure 7.6: The figure shows the scatterplot of AUR versus WF, with D fixed
for each of the three periods, where we added the conditional quantile function
corresponding to the 99.86%.
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Figure 7.7: The figure shows the scatterplot of UR versus WF, with D fixed
for each of the three periods, where we added the conditional quantile function
corresponding to the 99.86%.
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Figure 7.8: The figure shows the scatterplot of UR versus WF and D, where we
added the conditional quantile function corresponding to the 99.86%.
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In Figure 7.8 we added to the graph the values of the Upward Regulating power.
As we can see, the suggestion of this work would allow Energinet.dk to better
forecasting the need of regulating power, in order to avoid losses of important
and expensive assets like the ancillary services and the regulating reserved.

7.4 The Model: WF, D and C

We consider, now, the following model

AUR = f(WF ) + g(D) + h(C) + ε (7.17)

The constant presents in the basic model has been absorbed into one of the
function.

Using the function rqss in R, we want to estimate the quantile smoothing splines
which minimize

Rτ,λ(f) =
n∑

i=1

ρτ{auri−(f(wfi)+g(Di))}+λf

∫ 1

0

|f ′′(wf)|dwf+λg

∫ 1

0

|g′′(D)|dD+λh

∫ 1

0

|h′′(C)|dC.

(7.18)

The knots for the optimal splines coincide with the observed wfi, Di and Ci

respectively (see [13]), considered only once.

In Figures 7.9, 7.10, 7.11 we can see the estimated quantile regression functions
for τ = 0.80 and τ = 0.90, estimated by R using the function rqss with three
explanatory variables (WF, D, C), for each of the three periods, obtained by
fixing the value of the explanatory variable D.

Again, using the 80% and the 90% estimated quantile functions, we simulated
the 95% and the 99.86% estimated quantile functions. The second one, the
99.86% quantile function correspond to the τ̄ quantile function that we were
looking for, i.e. the situation in which we allow one error per month in the
model.

In Figures 7.12, 7.13, 7.14 we can see the conditional quantile function cor-
responding to the 95% for each period. The 95% quantile function has been
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Figure 7.9: The figure illustrates the relationship between Actual Upward Reg-
ulation (AUR) and the explanatory variables, Wind Forecast (WF), Consump-
tions (C) and Time index (D) (fixed, value chosen in the I period), for the 80%
and 90% quantile.
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Figure 7.10: The figure illustrates the relationship between Actual Upward Reg-
ulation (AUR) and the explanatory variables, Wind Forecast (WF), Consump-
tions (C) and Time index (D) (fixed, value chosen in the II period), for the 80%
and 90% quantile.
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Figure 7.11: The figure illustrates the relationship between Actual Upward Reg-
ulation (AUR) and the explanatory variables, Wind Forecast (WF), Consump-
tions (C) and Time index (D) (fixed, value chosen in the III period), for the
80% and 90% quantile.
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Figure 7.12: The figures show the surface corresponding to the 95% conditional
quantile function for the I period.
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Figure 7.13: The figures show the surface corresponding to the 95% conditional
quantile function for the II period.
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Figure 7.14: The figures show the surface corresponding to the 95% conditional
quantile function for the III period.
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obtained by the Extreme Value Theory as explained above. We plotted, in the
graph, the values of the Actual Upward Regulating power as well.

In Figures 7.15, 7.16, 7.17 we can see the conditional quantile function corre-
sponding to the 99.86%, i.e. the quantile we were looking for, for each period.
Again, the 99.86% quantile function has been obtained by the Extreme Value
Theory as explained above. We plotted, in the graph, the values of the Actual
Upward Regulating power as well.

In Figures 7.18, 7.19, 7.20 we added to the graph the values of the Upward
Regulating power. As we can see, again the suggestion of this work would allow
Energinet.dk to better forecasting the need of regulating power, in order to
avoid losses of important and expensive assets like the ancillary services and the
regulating reserved.
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Figure 7.15: The figures show the surface corresponding to the 99.86% condi-
tional quantile function for the I period.
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Figure 7.16: The figures show the surface corresponding to the 99.86% condi-
tional quantile function for the II period.



7.4 The Model: WF, D and C 89

0

500

1000

1500

1000

2000

3000

4000
0

500

1000

1500

wf

τ = 0.9986 − III period

c

a
u

r

Figure 7.17: The figures show the surface corresponding to the 99.86% condi-
tional quantile function for the III period.
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Figure 7.18: The figures show the surface corresponding to the 99.86% condi-
tional quantile function for the I period.
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Figure 7.19: The figures show the surface corresponding to the 99.86% condi-
tional quantile function for the II period.
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Figure 7.20: The figures show the surface corresponding to the 99.86% condi-
tional quantile function for the III period.



Chapter 8

Conclusions

8.1 Results

8.1.1 Linear Quantile Regression

The Quantile Regression method is a very powerful method in order to model
the dependency of Actual Upward Regulating power on the Wind Forecasts.
Anyway, it has been seen the weakness of linear regression analysis in under-
standing the model and the need of using smoothing functions to accurately
estimate that dependency.

8.1.2 Nonparametric Quantile Regression

Introducing Nonparametric Quantile Regression we have seen that the accuracy
of the model has noticeably grown, even if the rqss function, function used in R
to fit the model, is not really stable and often it needs re-setting of the param-
eters used, mostly re-setting of the smoothing parameter λ. This parameter, in
the current version of the software has to be chosen by the user, and it is desir-
able that, in the next version, the parameter will be chosen by the R Software
itself, in order to make the model more reliable. Otherwise, we suggest to use a
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method like cross-validation to choose the smoothing parameter. In this Thesis
it hasn’t been possible because of the paucity of the number of data. The num-
ber of the data, referred just to the 2005 year, didn’t allow us to use methods
like cross-validation in choosing the smoothing parameter λ and, moreover, it
has been the reason because of we couldn’t admit less then one error per month
in the model. In order to fulfill the demands of Energinet.dk and the Electricity
Market in general, we should have admitted at most one/two errors per year,
but, to do that, it is mandatory having more data, i.e. data referring to a larger
number of years.

8.1.3 The Model

As seen in Chapters 6 and 7, the model that better fit the data is a Generalized
Additive Model with two explanatory variable: the Wind Forecasts and the
Time Index.

It has been seen that the Time Index must be carefully considered in fitting the
model, both the case of the model with one explanatory variable and, obviously,
the case of the model with two explanatory variables. Especially if we consider
recurring seasonal features (as seen for the data split in the three periods).

8.2 Conclusion

It has been seen that the Actual Upward Regulating power depends on the
Winds Forecasts. Moreover it has seen that it has a seasonal component. Apply-
ing the Regression Quantile theory in general, and specifically the Nonparamet-
ric Extreme Regression Quantile, allowed us to better understand the behavior
of the model in the tail and in extreme cases.

Moreover, it has been possible to model the 99.86% quantile for the Actual
Upward Regulating power, and, with a larger number of data, it will be possible
to predict the behavior of the response variable with a good margin of safety,
also for higher quantiles.
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8.3 Further Study

Further studies may include more stochastic approaches in finding the smoothing
parameter λ, and, with a larger number of data, they may help to fit models for
higher quantiles.
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