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Abstract 
      

Abstract 
 
Effective prediction of highway travel time is essential to many advanced traveler information and 
transportation management system. This thesis proposes 3 different prediction schemes to predict 
highway travel time in certain stretch of Denmark, using a linear model where the coefficients vary 
as smooth functions of the departure time, also the principle components and partial least squares 
regression. The methods are straightforward to implement and applicable to different circumstances. 
 
Key words: Travel Time Prediction, Linear Regression, Time-Varying Coefficients, Time Series 
Analysis, Principle Components, Partial Least Squares. 
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Chapter 1 Introduction 
 

Chapter 1

Introduction 
 
Congestion has become a serious problem on many of the urban freeways around the world. The 
dynamic nature of the congestions makes trip planning difficult and subject to unpredictable 
consequences due to unknown or unforeseeable traffic events. In recent years, many strategies 
based on advanced transportation technologies have been proposed to promote more efficient use of 
the existing roadway networks in order to ease congestion. Many of these systems require, directly 
or otherwise, reliable prediction of travel times. Dynamic route-guidance, in-vehicle information, 
congestion management and automatic incident detection systems can all benefit from accurate and 
implementable travel time prediction techniques [1]. 
 
Not surprisingly, there has been a considerable amount of work on the subject of traffic forecasting, 
which show different prediction performances and explanation powers. The focus of this thesis is to 
compare several widely used modeling methods of the issue and propose insightful suggestions 
according to different conditions. Those methods include: Linear Regression with Time-Varying 
Coefficients, Principal Component and Partial Least Squares. 
 
In this thesis, numeric data are obtained by double loop detectors on vehicle speed, and traffic flow 
aggregated over 30 seconds intervals. These equipments are properly installed over all highways in 
Denmark and such data are also called Automated Vehicle Identification (AVI) data. Although we 
have double loop detector data in mind when developing the methodology, the technique can be 
used for other forms of sensor data as long as reliable speed estimates can be derived from the direct 
sensor measurements. Data from probe vehicle or AVI technologies can also be seamlessly 
incorporated into the framework. Note that the travel time prediction here is based on any two 
subsequent points of a freeway network for any departure time.  
 
The rest of the thesis is organized as follows. Chapter 2 presents the descriptive statistics of 
obtained data, which is helpful to identify statistical characteristics in order to select a suitable 
model. Chapter 3 describes the theory of prediction methods used here. Chapter 4 then states how 
we implement those methods to travel time prediction and build suitable models. Chapter 5 focuses 
on comparison among those methods with a collection of training dataset and test dataset as well as 
consequent conclusions. Finally, suggestions of future works will be addressed subsequently. 
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Chapter 2 Descriptive Statistics 
 

The names of loop detectors and their relative distances (from a certain starting point which is not 
on this map) are marked on the map; from which one can directly calculate the distance between 
any two loop detectors by taking the absolute value of subtraction of those relative distances. 
 

2.1.1 Structure 
 
The first several lines of original data are shown below: 
 

Time PN2_Count PN2_Velocity … M0_Count M0_Velocity 
01-09-2005 06:00:00 7 101 … 6 97.67 
01-09-2005 06:00:30 3 84 … 14 97.29 
01-09-2005 06:01:00 4 99.5 … 11 98.55 
01-09-2005 06:01:30 5 102.6 … 7 88.71 

… … … … … … 
Table 2.1: Original data structure 

 
The first column is the recording time and date for the data obtained from those 34 loop detectors, 
and the subsequent ones are traffic flows (count) and vehicle velocities corresponding to certain 
loop detector. Generally, there are 29883 rows and 69 columns data gathered through 63 weekdays 
of 3 consecutive months. 
 
Not surprisingly, detector malfunction was always existed during the data collection process, which 
caused a large amount of missing data. The following table shows its description: 
 

Month Completely Missing Rows Number of Missing Values Denoted as ‘-1’ 
September 22nd from 08:56 to 09:00 9664 

October The whole day of 14th 35965 
November 18th from 09:36 to 10:00:30 35936 

Table 2.2: Missing data description 
 
Approximately 6% missing data are found from the original data, which suggests more 
sophisticated handling method. 
 

2.2 Original Data Preprocessing 

2.2.1 Determination of Training Set & Test Set 
 
The so called ‘training set’ data used in this chapter and the following sections of model formulation 
are from September and October 2005 of first 17 induction loops, which are located at nearly half of 
the stretch. Meanwhile, the remaining data will be separated into two parts of test set compared to 
training set: one is from the other 17 induction loops of September and October, denoted as data of 
‘same period but different part of stretch’; another is from first 17 induction loops of November, 
denoted as data of ‘same part of stretch but different period’. Those test sets are used for formulated 
model validation.  
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Chapter 2 Descriptive Statistics 
 

2.2.2 Analysis of Missing Data 
 
Missing or corrupted loop data are unavoidable in practice and causes problems [1]. Since it causes 
lack of information and violation of the statistical assumption, it could be a potential threat to the 
validity of our research study. Therefore, it is necessary to use certain method to reach a minimum 
effect. 
 
There are many of missing data handling methods, from simplest listwise deletion to complicate 
Hot – deck imputation; of which deletion methods are primarily not recommended, due to large 
amount of data lost and statistical power reduction [2]. As for the imputation approach, considering 
the missing data here are substantial, combined with the principles of avoiding subjective (Hot - 
deck) and biased estimation (Regression imputation), the so-called ‘Expectation Maximization 
(EM)’ is used here to overcome the problem. This is done by following procedures: 
 

• E step – Find the initial predicted values from a linear regression method; 
• M step – Substitutes the missing data with the predicted values from E step to produce a 

covariance matrix and using maximum likelihood function, repeatedly estimate missing 
values; 

• Repeat the above two steps until convergence between successive covariance matrices 
obtained [3].  

 

2.2.3 Calculation of Response Variable 
 
This thesis project is concentrating on prediction of highway travel time. Therefore, it is naturally 
that the response variable of the prediction model lies in travel time in appropriate scale.  
 
The loop detector data recorded are number of passing vehicles (flow) and harmonic mean of 
velocities, both of which are aggregated over 30 seconds intervals. For simplicity, the time interval 
is increased up to 5 minutes, by taking harmonic mean of recorded velocities and summating flows 
within each 5 minutes, respectively: 
 

                                          
∑
= +

= 9

1 5.0,

1
10),,(

k kjV

tldV  ),,( TtLlDd ∈∈∈                                           (2.1) 

                                      ∑
=

+=
48

0
5.0,),,(

k
kjNtldN ),,( TtLlDd ∈∈∈                                     (2.2) 

 
where and denote the harmonic mean of velocities and flow aggregated over 5 
minutes interval that was measured on day at loop l at time t ;  and  denotes the 
recorded velocity and flow aggregated over 30 seconds, respectively.  

),,( tldV ),,( tldN
d 5.0,kjV + 5.0,kjN +

 
We then could also consider as a matrix with entries  that was measured on day at 
loop l at time . Therefore, the variable denoting travel time from loop a to b starting at 
time t on day d can be calculated from V [4]: 

),,( tldV ),,( tldV d
t ),,( tbaTTd
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Chapter 2 Descriptive Statistics 
 

 
Next, we define the current status travel time ) as follows: ,,( tbaCSTd

 

                                              ∑
−

=

+

++
=

1
1,

),1,(),,(
),,(

b

ai

ii
d tidVtidV

d
tbaCST                                         (2.3) 

 
where denotes the distance from loop i to loop1, +iid 1+i  and it should be calculated by known flow 
and velocities. This is the travel time that would have resulted from departure from loop at time  
on day when no significant changes in traffic occurred until loop  was reached. The important 
difference between those travel time variables is that  requires information across all the 
stretch between loop  and loopb ; whereas emphasizes available information on hand 
when starting at point a that could not reflect the varying conditions of the road[4]. 

a t
d b

),,( tbaTTd

a ),,( tbaCSTd

 
According to the past observations, the purpose is to predict ),,( δτ +baTTe for a new day  and 
nonnegative ‘lag’ δ. This is the travel time between loop  and loopb  departing at time 

e
a δτ +  where 

τ  is the current time. However, the AVI data can only provide information to calculate , 
and then we will use it as response variable for model formulating. This is practically useful, since 
the general on-hand information is enough for the driver regardless of some following changing 
road conditions.   

),,( tbaCSTd

 

2.3 Explanatory Variables Relationships 
 
It is necessary to discuss relationships between explanatory variables from training set, from which 
one might obtain some important hints and results for future modeling and analysis.  
 

2.3.1 Velocity VS Flow 
 
The following figures are made in order to investigate the relationship between the velocity and 
flow of vehicles (amount of passing vehicles per unit time). By analyzing the figures for each of the 
consecutive loop data, one could locate the corresponding information of road conditions for 
different parts of the stretch, e.g. congested time of day or high-occupancy part of the road. Note 
that each of the flow data is aggregated over 5 minutes, whereas the speed statistics are harmonic 
means of observed velocities during every 5 minutes. 
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Chapter 2 Descriptive Statistics 
 

 

 
Figure 2.2: The relationship between the velocity and flow of vehicles observed in 42 weekdays during September 

and October 2005, using loop PN2 to PN7, in direction from South to North 
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Chapter 2 Descriptive Statistics 
 

 

 
Figure 2.3: The relationship between the velocity and flow of vehicles observed in 42 weekdays during September 

and October 2005, using loop M13 to PN11, in direction from South to North 
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Chapter 2 Descriptive Statistics 
 

 

 
Figure 2.4: The relationship between the velocity and flow of vehicles observed in 42 weekdays during September 

and October 2005, using loop M9 to M7, in direction from South to North 
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Chapter 2 Descriptive Statistics 
 

According to the figures obtained above, first one can realize a free-flow regime, where the flow 
rapidly increases with only a modest decline in velocities. This is the upper part of the sickle-shaped 
figure, whereas the protruded part of the figure could be considered as the best condition for 
highway travel, with most flow and almost fastest velocity. Next, a marked drop in velocity and 
flow is observed and their values are highly variable and attain very low levels, named congested 
regime which is more between 7 am and 9 am. Finally, the situation recovers with a return to higher 
flows and an improvement in velocities [5].  
 
However, the observation from loop M9 is an exception one needs to carefully investigate, probably 
because it is an easily congestion part of the whole stretch, e.g. due to important intersection or 
under construction during those two months of the year. Therefore, when one is building the 
prediction model, one probably should not consider data from this loop and implement a new one.  
 
In addition, all the figures have some data points which are some distance away from the 
remarkable ‘sickle’. Obviously, those points are almost from time interval after 9 am with high 
velocities and very low flow, which indicates a low-occupancy period and probably waste of 
resources. This reminds authorities to balance highway occupancy during rush hours, e.g. use ramp 
metering to control flow of each time unit.   
 

2.3.2 Current Status Travel Time VS Its Lagged Values 
 
The purpose of this comparison is to present the proposed linear relationship between the current 
status travel time (CST) and the exact travel time in this thesis, where the latter statistic can be 
estimated by certain lagged values of the former one. Since the computation of such statistic only 
requires information available at time , which means that it would be an accurate predictor only 
when there is a short lag. This is taken into account in the following plots and the lag does not 
exceed 30 minutes limit. 

t
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Chapter 2 Descriptive Statistics 
 

 
Figure 2.5: The form of linear relationship between the current status travel time and the estimated exact travel 

time of journeys from PN2 to M7, 6am of 42 weekdays on September & October 2005 
 

 
Figure 2.6: The form of linear relationship between the current status travel time and the estimated exact travel 

time of journeys from PN2 to M7, 7am of 42 weekdays on September & October 2005 
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Chapter 2 Descriptive Statistics 
 

 
Figure 2.7: The form of linear relationship between the current status travel time and the estimated exact travel 

time of journeys from PN2 to M7, 8am of 42 weekdays on September & October 2005 
 

 
Figure 2.8: The form of linear relationship between the current status travel time and the estimated exact travel 
time of journeys from PN2 to M7, 9am of 42 weekdays on September & October 2005 
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Chapter 2 Descriptive Statistics 
 

Clearly seen, the estimated exact travel time and the current status travel time (the predictor) has a 
linear relationship, but there is a twist: they have parameters which themselves vary in 
parameterized ways-they are functions of the time of day and of the lag between the time at which 
you want start your journey. This leads to a weighted least squares (WLS) regression problem, the 
effect of which is to produce smooth estimates of the regression parameters, and hence a journey 
time predictor [5].     
 

2.3.3 Time of Day VS Current Status Travel Time 
 

 
Figure 2.9: Current Status Travel Time per 5 minutes for 42 weekdays on half of the stretch 

 
The purpose of this plot is to show the rush hours for each weekday during the two months. As one 
can see, the shadow grey lines stand for the raw values of CST aggregated over 5 minutes according 
to corresponding time interval; whereas the black line stands for the means of CST for 42 days 
according to corresponding time interval. Typically, the distinctive congestion and the huge 
variability of travel times are presented between 7am and 9 am, which could also be referred to the 
results of section 2.3.1. These could remind that 9 am is the common working starting time in 
Denmark and people are trying to reach their office before this time. Of course, their take-off time 
from home is starting from 7am. 
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2.4 Autocorrelation Function 

2.4.1 Theory 
 
Autocorrelation function (ACF) is the expected value of the product of a random variable or signal 
realization with a time-shifted version of itself. With a simple calculation and analysis of the 
autocorrelation function, we can discover a few important characteristics about our random process. 
These include [6]: 
 

• How quickly the random signals or processes change with respect to the time function; 
• Whether the process has a periodic component and what the expected frequency might be; 

 
According to section 2.3.2, since a linear relationship is found between CST and its lagged values 
(estimates of exact travel time), we could conclude that it is an autoregressive (AR) process. Also 
we want to see which lags are been putting on significant weights by the process itself, in order to 
determine the lagged explanatory variables in the linear model later on. Therefore, ACF will give 
the hint. 

2.4.2 Results 
 
The ACF for the time series CST is plotted below: 

 
Figure 2.10: The plot of autocorrelation function of series CST5 (current status travel time per 5 minutes) up to lag 

49 
 

We first investigate the lags up to 49, which is exactly the CST5 from the day before at the same 
time of the day. From what Figure 2.10 presents above, it is probably suitable to use an AR(2) or 
AR(3) model to fit the process. We keep looking into the lags up to 98 for day-to-day variation. 
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Figure 2.11: The plot of autocorrelation function of series CST5 (current status travel time per 5 minutes) up to lag 

98 
 
From lag 50 (more time steps ahead), there is no obvious strong relationship between them and 
CST5 compared to previous ones. Thus, those lagged values should not be considered into model 
formulation.  

 

2.5 Impulse Response Function 

2.5.1 Theory 
 
The autocorrelation typically present in observed time series makes direct use of the cross 
correlation function (CCF) to study lagged relationships problematical. Essentially, the questions 
asked of the CCF are 1) how strongly is one series related to another, 2) is the relationship 
simultaneous or distributed over several time steps, and 3) if distributed, how many lags are 
involved and what is their relative importance [7]? 
 
These questions can be addressed by a systems approach in which the series are regarded as input to 
and output from a linear dynamic system. Dynamic refers to the possible dependence of the output 
at time t on the input signal at many previous times. For such a system, the hypothetical response to 
a unit pulse of input at time t =0 is given by the impulse response function (IRF) [7]. 
 
The system ideally has the following properties: 
• time invariant: response to an input signal does not depend on absolute time 
• linear: output response to a linear combination of inputs is the same as the linear 
 combination of the output responses to the individual inputs 
• causal: output at a certain time depends on the input up to that time only [7] 
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The process is described by the following equation 
 

                                                                                                    (2.4) ∑
∞

=

+−=
1

)()()()(
k

tvktukgty

                 Where 
                          = output in time t  )(ty
                      = input in time  )( ktu − kt −
                      = impulse response function at lag k  )(kg
 
The summation as written does not allow a response at time t to an input at time t. This can be 
remedied with no loss of generality by shifting the input one time step relative to the output 
(realigning the series) so that the summation effectively starts with k = 0. Realignment can also 
insure that for a nominal input and output the output response does not precede the input 
stimulously [7]. 
 
The model gives the output as a linear combination of past (and possibly current) input. The 
numbers { } are called the impulse response function (IRF). Of course, usually the IRF is 
unknown, and must be estimated from the data -- the input signal 

)(kg

 
                                                         Nttu ,...,1),( =                                                          (2.5) 
and the output signal 
                                                         Ntty ,...,1),( =                                                          (2.6) 

2.5.2 Estimation of the IRF by Correlation Analysis 
 
The method used here for estimating the IRF is based on reducing one of the series to white noise 
before computing its correlation with the other series. The need for this “prewhitening” results from 
the complicating effects of autocorrelation on the estimated CCF and its standard deviations [7]. 
 
The method amounts to passing the input and output series through a filter before computing the 
CCF. The filter is chosen such that it reduces the input series to white noise (removes the 
autocorrelation). The filtered input series is therefore called the “prewhitened” input. The filtered 
output will generally not be white noise because the filter has been designed specifically to 
prewhiten the input, not the output. The CCF between the prewhitened input and filtered output is 
an estimate of the IRF of the system [7]. 
 
The IRF or the CCF between the prewhitened input and filtered output describes the lagged 
correlation structure disentangled from the influence of autocorrelation. A constant 99% confidence 
interval (CI) is more appropriate for this IRF than for the CCF of the original series, however, 
because one of the series is now approximately white [7]. 
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2.5.3 Implementation for the Problem 
  
As mentioned before, there are 34 induction loops located all the way along the stretch which are 
analyzed in this thesis. Technically, the loop data provide information concerning vehicle amount 
and velocity due to certain time interval (every 30 seconds) and point (loop where it locates on the 
stretch). Such information could be compiled to road condition (free-flow or congestion) at that 
time or that point of the road. 
  
Considering information gathered from different loops as different time series (also each series 
stand for information from one certain loop), IRF is implemented here to describe time (lag) and 
space-related (different parts of the stretch) information among those series, especially looking into 
what the road condition varies and how it affects subsequent points of the stretch at certain time 
step. 
 
Below here are plots of IRF for harmonic mean of velocities between starting point PN2 and other 
16 points (exactly the data from training set), which is aggregated over 1, 2 and 5 minutes (per lag), 
respectively.  
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Figure 2.12: The plots for impulse response function of harmonic mean of velocities between PN2 and subsequent 

16 loops on Sept. & Oct. 2005, aggregated 1 minute 
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Figure 2.13: The plots for impulse response function of harmonic mean of velocities between PN2 and subsequent 

16 loops on Sept. & Oct. 2005, aggregated 2 minutes 
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Figure 2.14: The plots for impulse response function of harmonic mean of velocities between PN2 and subsequent 

16 loops on Sept. & Oct. 2005, aggregated 5 minutes 
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Chapter 2  

Descriptive Statistics 

2.1 Original Data Description 
 
This thesis project concentrates on data collection of 34 double loop detectors, with corresponding 
code numbers (e.g. M7), distributed into an approx. 16 km long’s stretch. The road map is  
As follows:   

Figure 2.1: The road map of traffic system in the researched motorway 
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If one assumes that the road condition starting from one point (where certain induction loop locates) 
could be moving forward along with the road through point by point, the characteristic of which is 
pretty much close to that of a wave. The main difference probably is just one single direction vs. all 
around. Actually, what happens is surely the case. 
 
During a certain interval of time, there will be certain amount of vehicles entering some point of the 
road. After a while (some specific lags), same amount of vehicles will arrive at other points of the 
road. Imaginably, those vehicles are carrying on ‘road condition’ more or less along with their 
movement. The above plots are IRF between the first loop and subsequent loops for the training set, 
which can be referred to the ‘movement’ of road condition from first point to others according to 
certain time steps (lags). For example, the vertical lines in the plots which surpass the confidence 
interval horizontal lines (both directions) mean the condition happened in the starting point (in this 
case it is where loop PN2 locates) moment ago would happen again after some time steps (lags) 
where such vertical line is in accordance with (the X axis). Obviously, the more distant away from 
the starting point, the more lags necessary for the rebound of the road conditions. Also of course, 
due to local phenomena, some points will not happen anything at all like the previous ones even 
though the subsequent ones do happen. 
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Chapter 3 

Theoretical Methods 

3.1 Linear Regression with Time-varying Coefficients 

3.1.1 Introduction 
 
Since a time series is an outcome of a stochastic process and thus an observation of a dynamic 
phenomenon, methods which normally are related to the analysis and modeling of static 
phenomena, are often applied. A class of such methods is closely related to the ordinary regression 
analysis [8].  
 
Regression analysis is any statistical method where the mean of one or more random variables is 
predicted conditioned on other (measured) random variables. In particular, there is linear regression, 
logistic regression, Poisson regression, supervised learning, and unit-weighted regression. 
Regression analysis is more than curve fitting (choosing a curve that best fits given data points); it 
involves fitting a model with both deterministic and stochastic components, where the deterministic 
one is called the predictor and the stochastic one is called the error term [9]. 
 
Regression analysis is probably the most widely used form of analysis of dependency, which is used 
to explore the static relationship between a set of independent variables (X’s) and a single dependent 
variable (Y). A regression model is a linear combination of independent variables that corresponds 
as closely as possible to the dependent variable, whose purposes are description, inference and 
prediction [10]. Within time series analysis the observations occur successively in time and most 
frequently with equidistant time delay. Therefore an index t is introduced to denote the variable at 
time origin . We can take a look at the most general form the regression model is written: t
 

ttt tXfY εθ += );,(                                                                                                                        (3.1) 
 
where );,( θtXf t  is a known mathematical function of the 1+p  independent variables 

 and ; but with unknown parameters ( T
pttt XXX ,...,1= ) ( )Tmt θθθ ,...,1=t . The independent 

variable  is introduced to indicate that the model class described by (3.1) contains models where 
 is a function of t. 

t
[ ] 0=tE ε [ ] 2

ttV σε = is a random variable with  and tεf . Furthermore it is 
assumed that  i.e. . Finally [ ] ijtktiCov Σ= 2, σεε iit Σ= 22 σσ tε  and  are assumed to be 
independent [8]. 

tX

 
For the general solving procedure, regression is usually posed as an optimization problem as we are 
attempting to find a solution where the error is at a minimum. The most common error measure that 
is used is the least squares estimates: this corresponds to a Gaussian likelihood of generating 
observed data given the (hidden) random variable. In a certain sense, such method is an optimal 
estimator (according to Gauss-Markov theorem). 
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3.1.2 General Algorithm 
 
According to section 2.3.2, there exists linear relationship between the current status travel time and 
the exact travel time. Here the lagged values of current status travel time are used to estimate the 
exact travel time. Thus, linear regression analysis is the primary consideration in this thesis. Note 
that such relationship varies with the choice of current time t  and lag δ .   
 
If the unknown parameter (or coefficient) θ  is varying along with the time, which means that 
observations in the past should be given less weight than present observations in the least squares 
criterion. Therefore, a forgetting factor or a discount factor λ  should be considered to measure the 
weight under the Weighted Recursive Least Square (WRLS) estimates as described below. 
 
Consider the following model of a linear system with discrete time [11]: 
 

                                (3.2)                                         tmtmtptptt UUYYY εωωφφ +++=+++ −−−− ...... 1111

 
where  is the output signal, }{ tY }{ tε  is white noise, uncorrelated with the external signal . The 
model (3.2) may now be written as a linear regression form [11]: 

}{ tU

 
                                                                                                                                                    (3.3) t

T
tt XY εθ +=

 
where  and time varying unknown parameters 

. 

),...,,,...,( 11 mttptt
T
t UUYYX −−−− −−−=

),...,,,...,( 11 sp
T ωωφφθ =

 
For weighted least squares, the parameter estimates at time origin t  are: 
 
                                                          )(minarg θθ

θ
tt S=

)
                                                                (3.4) 

where  

[ ]∑
=

−=
t

s

T
sst XYstS

1

2),()( θβθ                                                                                                        (3.5) 

 
Assume that the sequence of weights satisfies 
 

11 −≤≤ ts;                                                  (3.6)                                              ),1()(),( sttst −= βλβ
                                

                                                                             1),( =ttβ                                                        (3.7)      
 

                 

which means that 

                                                          (3.8) 

 
The weight in the computation of the parameter estimate at time  of the squared residual at time 

 

∏
+=

=
t

sj

jst
1

)(),( λβ                                                                 

s   t
is computed as the product all the intermediate weighting factors. 
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Since this WLS problem is solved by the criterion of 3.4, we can obtain the following solution: 

                                                                   
 

 ttt hR 1−=θ
)

                                                                   (3.9) 
 

where  
                 

                                           
s

t YXs
=1

), .                                       (3.10) 

 
Then the recursive formulas can be calculated as ollows by using the previously computed values 

                                                                                                                (3.11) 

T
ss

t

s
t XXstR ∑

=

=
1

),(β ; 
t

th ∑= (β ss

f
[11]: 
 

 T
tttt XXRtR += −1)(λ  

 
tttt YXhth += −1)(λ                                                                                                                      (3.12) 

 
The updating equation for the estimate of the parameter vector θ  may be found by using the 
updates of tR  and th  
 

 [ ]ttttttt YXhtRhR +== −
−−

1
11 )(λθ

)
              

                                                           [ ]ttttt YXRtR += −−
−

11
1 )( θλ

)
 

[ ]1
1

1 −
−

− −+= t
T
ttttt XYXR θθ
))

                                                                                                          (3.13) 

hus, combining with equation (3.11) and (3.13), we have the WRLS method with a forgetting 

s called forgetting factor, it is here assumed that

 
T
structure [11].  
 
A λλ == constt)( . It determines the exponential 

 which satisfie 0
getting fac

3.2 Principle Component Analysis  

3.2.1 Introduction 

rinciple component analysis (PCA) is a method for re-expressing multivariate data by rotating the 

discount of past observations, the choosing value of 95.070. << pλ , where p is the 
number of parameters in the model. However, it is natural to choose a for tor according to 
some criterion, e.g. the value which gives the minimum variance of the prediction error [8]. Once 
the optimum forgetting factor is determined, it should be used again in equation 3.13 recursively to 
find out the time-varying parameters of the regression model 3.3.  
 

s

 
P
original coordinates system to a new coordinates system so that the first few dimensions account for 
as much of the available information as possible [12]. Normally the information of a data set is 
expressed by the total variance of the variables in the data set, and PCA is concerned with 
explaining the variance – covariance structure of a set of variables through a few linear 
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combinations of these variables [13]. 
 
Although p components (equal to the number of variables in the original data set) are required to 

he principle components solution often reveals relationships that were not previously suspected 

3.2.2 General Algorithm 

rdinarily, a data set obtained comprises p variables and k observations, and different variables 

                                                                        (3.14) 

 zero mean and unit variance, and in the space the data set 

Figure 3.1: A data set in the space (first two dimensions) 

reproduce the total system variability, often much of this variability can be accounted for by a small 
number k of the principle components. If so, there is almost as much information in the k 
components as there is in the original p variables. The k principal components can then replace the 
initial p variables, and the original data set, consisting of n measurements on p variables, is reduced 
to a data set consisting of n measurements on k principal components [13]. 
 
T
and thereby allows interpretations that would not ordinarily result [13]. And it has the property that 
each component is uncorrelated with all others, which has the advantage of eliminating 
multicollinearity when using the results in an analysis of dependence, such as multiple regression 
[12]. 
 

 
O
have different scales, so that variables with large scales capture most variability of the data set and 
largely impact the results of analysis. In order to avoid this problem, all the variables are 
standardized first, that is, the values of each variable are centered and divided by the standard 
deviation of each variable. 
 
 
  
       
    
In this way each variable is normalized to
in the first two dimensions may look like below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

sdev

mean
scale X

XXX −
=

 

x1

x2
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The shape of data set in the space commonly likes a hyper-ellipsoid. Geometrically, the first 

Figure 3.2: The possible direction of PC1 and PC2 
 

lgebraically, principal components are particular linear combinations of the original variables X = 

                                                          

principal component (PC1) represents the direction of the data set with the largest variation, the 
second principal component (PC2) with the second largest variation, etc., and actually they are the 
directions of longest axis, second longest axis, etc. of the hyper-ellipsoid respectively, which also 
means that principal components are orthogonal to each other. 
 
 

x1

x2
PC1PC2

x1x1

x2x2
PC1PC2
PC1PC2

 

 
 
 
 
 
 
 
 
 
 
 
 
 

A
[x , x , … , x1 2 p]. For PC1 the purpose is to find the linear combination u = (u , u1 11 12, … , u1p)’ to 
maximize the variance of the elements of z1 = X u1, which may be written as follows [12]: 
 

111 ''
)1(

1)var( XuXu
n

z
−

=
                                                   (3.15) 

ecause X is standardized, the term 1/(n-1)X’X is just the sample correlation matrix R. Substituting 
 
B
yields [12] 
 

111 ')var( Ruuz =                                                                                                         (3.16) 

or the sake of making var(z1) meaningful, a constraint is imposed on the length of u1 vector, which 

Choose u to maximize u ’R u
                                                     S                                            (3.17) 

rom the knowledge of linear algebra, this problem can be referred to as an eigenvalue - 

                   

 
F
is stated as u ’ u1 1 = 1. The problem thus modified can be described as follows [12]: 
 

1 1 1 
ubject to the constraint u ’u  = 11 1

 
F
eigenvector problem. 
 

111 uRu λ= 0)( 11 =− uIR λ  or                                                 (3.18) 

The vector u is called an eigenvector and 
 

1λ  is called an eigenvalue. Provided the matrix R is of 1 

full rank, then the solution will consist of p positive eigenvalues and associated eigenvectors [12]. 
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It is easy to verify that postmultiplying the original data X = [x1, x2, … , xp] by the eigenvectors U = 

                                                         

[u , u , … , u ] yields the matrix of principal component scores    Z = [z1 2 p 1, z2, … , zp] [12]. 
 

ppppppp

pp

pp

uxuxuxXuz

uxuxuxXuz

uxuxuxXuz

+++==

+++==

+++==

...

...

...

2211

222221122

112211111

M
                                   (3.19) 

 
Eigenvalues 1λ 2λ> > … > are exactly the variances of the associated principal components by pλ
 

iiiiiiiiii uuuuRuuz λλλ ==== ''')var(   i = 1, 2, …, p                    (3.20) 
 

The associated eigenvectors u1, u2, … , up denote the direction of the corresponding principal 

he principal components are mutually uncorrelated so that the covariance between any two 

    i, j = 1, 2, …, p                        (3.21) 
 

he total variance of the data set is simply the sum of the variances of the individual components, 

                       (3.22) 

 
.,, pσσσ are the variances of original variables respectively. For the standardized date set, 

variables. 

                     (3.23) 
 

onsequently, the proportion of total variance explained by the ith principal component is [13] 

                

component in X space. The scores z , z1 2, … , zp is the projections of the original data on the principal 
components, and an alternative explanation is the new coordinates of the data in a coordinates 
system with axes of principal components. 
 
T
principal components is equal to zero, which leads to eliminating multicollinearity. 
 

0),( =ji zzCov

T
which equal to the sum of variances of the original variables. 
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1 ,...,, pσσσ are all equal to 1, thereby this sum of variances is also the same as the number of 
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    i = 1, 2, …, p                      (3.24) 

 
 most (≥70%) of the total variance of the data set can be attributed to the first one, two, or several If

components, then these components can replace the original p variables without much loss of 
information for subsequent analysis [13]. This is the Simplification & Dimension Reduction of the 
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data set. 
 
Another useful application of PCA solution is the principal component loadings. Simply said, the 
loadings are the projections of original coordinates’ axes on the principal components. They can be 
calculated by the correlation matrix of the principal component scores (Z) with the original data set 
(X), and help to interpret the relationships between the principal components and the original 
variables [12]. The correlation matrix is given by the expression below. 
 

sZX
n

ZXcorr '
)1(

1),(
−

=                        (3.25) 

 
here X is the matrix of the original standardized data set, and Zs is the matrix of standardized 

                                           (3.26) 
 

here D is the diagonal covariance matrix of the principal components and denoted 

w
principal components given by [12] 
 

2/1−= ZDZ s  

w
as ),...,,( 21 pdiagD λλλ=  [12]. From equation 3.19 we know Z = XU, then after these 
tra  3.25 yields 
 

nsformations equation

2/1'
)1(

1),( −

−
= XUDX

n
ZXcorr                                                          (3.27) 

 
ecause 1/(n-1)X’X is just the sample correlation matrix R and we know from equation 3.18 that R 

                     (3.28) 
 

ecause U’U=I [12]. Thus, we have the result of the principal component loadings calculated by the 

                      (3.29) 
 

hich are determined by the eigenvectors and the square root of eigenvalues. It maybe more clear 

B
can be re-expressed as UDU’ [12], then substituting into the above to obtain 
 

2/12/1)'(),( UDUDUDUZXcorr == −  

b
correlation matrix between the principal components Z and the original variables X, and the 
loadings denote as 
 

2/1UDF =  

w
to be denoted in an equivalent form. 
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here iiju λ is the loading of the ith original variable on the jth principal component. By the 

of load
w
matrix ings, the relationships between the original standardized data set X and the principal 
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component scores Z can be expressed as follows. 
 

'ZFX =                        (3.31) 
 
r in an equivalent form o
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                      (3.32) 

If the first m principal components are retained to describe the original variables, the equation above 
 

is transformed into 
 

EFZX mm += '                        (3.33) 
 

here Fm is a matrix of the first m columns of loadings matrix F, Zm is a matrix of the first m w
columns of scores matrix Z, and E is the errors. Or it can be equivalently expressed as 
 

pmmpmppp
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mmm
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here 1ε , 2ε , …,w pε  stand for the error of variable x1, x2, …, xp respectively.  

rom the principal component loadings, we can determine the amount of variance of each original 
 
F
variable accounted for by any number of principal components [12]. The general expression for the 
variance accounted for in variable xi by the first m retained principal components is [12] 
 

∑
=

m

j
jjiu

1

2)( λ                           (3.35) 

 
hen all the principal components are retained, the result of above equation is 1. This can be a W

potential method for variable selection which will be discussed in the following chapter. 
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3.3 Partial Least Squares Regression 

3.3.1 Introduction 
 
Partial Least Squares (PLS) regression is a multivariate data analysis technique which can be used 
to relate several response (Y) variables to several explanatory (X) variables. The method aims to 
identify the underlying or latent factors or linear combination of the X variables, which account for 
most of the variation in the response (the Y dependent variables) [14]. Note that the emphasis of 
PLS is on predicting the responses and not necessarily on trying to understand the underlying 
relationship between the variables. 
 
In PLS, one set of latent variables is extracted for the set of manifest independents and another set 
of latent variables is extracted simultaneously for the set of manifest response (dependent) 
variables. The extraction process is based on decomposition of a cross-product matrix involving 
both the independent and response variables. The X-scores of the independent latent(s) are used to 
predict the Y-scores or the response latent(s), and the predicted Y scores are used to predict the 
manifest response variables. The X- and Y- scores are selected by PLS so that the relationship of 
successive pairs of X and Y scores is as strong as possible [15]. 
 
PLS regression is probably the least restrictive of the various multivariate extensions of the multiple 
linear regression models. This flexibility allows it to be used in situations where the use of 
traditional multivariate methods is severely limited, such as when there are fewer observations than 
predictor variables. Furthermore, such method can be used as an exploratory analysis tool to select 
suitable predictor variables and to identify outliers before classical linear regression [16]. 

3.3.2 PLS & Other Multiple Regression Techniques 

As in multiple linear regressions, the main purpose of partial least squares regression is to build a 
linear model: 

                                                                   Y=XB+E                                                                    (3.36) 

where Y is an n cases by m variables response matrix, X is an n cases by p variables predictor 
(design) matrix, B is a p by m regression coefficient matrix, and E is a noise term for the model 
which has the same dimensions as Y. Usually, the variables in X and Y are centred by subtracting 
their means and scaled by dividing by their standard deviations.  

Both principal components regression (PCR) and partial least squares regression produce factor 
scores as linear combinations of the original predictor variables, so that there is no correlation 
between the factor score variables used in the predictive regression model. For example, suppose 
we have a data set with response variables Y (in matrix form) and a large number of predictor 
variables X (in matrix form), some of which are highly correlated. A regression using factor 
extraction for this type of data computes the factor score matrix T=XW for an appropriate weight 
matrix W, and then considers the linear regression model: 

                                                                      Y=TQ+E                                                                  (3.37) 
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where Q is a matrix of regression coefficients (loadings) for T, and E is an error (noise) term. Once 
the loadings Q are computed, the above regression model is equivalent to model 3.36, where 
B=WQ, which can be used as a predictive regression model.  

PCR and PLSR differ in the methods used in extracting factor scores. In short, the former produces 
the weight matrix W reflecting the covariance structure between the predictor variables, while the 
latter produces the weight matrix W reflecting the covariance structure between the predictor and 
response variables. The structure of PLS can be shown below: 

 

Figure 3.3: Schematic representation of PLS 

Tk is a linear combination of the predictor X’s, which plays a role as a ‘bridge’ between predictors 
and response Y’s. 

For establishing the model, PLS regression produces a p by c weight matrix W for X such that 
T=XW, i.e., the columns of W are weight vectors for the X columns producing the corresponding n 
by c factor score matrix T. These weights are computed so that each of them maximizes the 
covariance between responses and the corresponding factor scores. Ordinary least squares 
procedures for the regression of Y on T are then performed to produce Q, the loadings for Y (or 
weights for Y) such that Y=TQ+E. Once Q is computed, we have Y=XB+E, where B=WQ, and the 
prediction model is complete.  

One additional matrix which is necessary for a complete description of partial least squares 
regression procedures is the p by c factor loading matrix N which gives a factor model: 

                                                                      X=TN´+F                                                                (3.38) 

where F is the unexplained part of the X scores [17].  

Generally, PLS regression combines features from PCR and other multiple regression techniques. 
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3.3.3 One Classical Algorithm Description 
 

NIPALS Algorithm  

The standard algorithm for computing PLS regression components (i.e., factors) is nonlinear 
iterative partial least squares (NIPALS). There are many variants of the NIPALS algorithm which 
normalize or do not normalize certain vectors. For given two data blocks, X, N times (observations) 
P matrix (variables), and Y, N times M matrix, the algorithm reduces to [17]: 

1. Select a P-weight vector w, e.g., a non-zero row of X. Normalize it to length 1.  
2. Compute a score vector t = Xw.  

 T3. Compute a Y-loading vector q = Y t.  
4. Compute a Y-score vector u = Yq.  
5. Compute a new weight vector w =XTu. Scale w  to length 1.  1 1
6. If |w-w1|<eps, the convergence is obtained, otherwise w=w  and start at 2.  1

The results of the iterations are two score vector, one for X, t, and one for Y, u. Assuming that these 
results are good choices, the question was now how to get the next pair of (t,u) score vectors. 
Svante suggested that X should be adjusted for the score vector and regression of Y onto t should be 
computed and Y adjusted for the results found. This gives 

    7. Compute the loading vector n = XTt/(tTt) 
    8. Adjust X for what has been found: X T

new = X-tn  
    9. Compute regression of Y onto t: b=(YTt)/(tTt) 
    10. Adjust Y for what has been selected: Ynew=Y-t bT 
    11. If more pairs (t,u) are needed go to 1, with X=Xnew and Y=Ynew  

The X loading matrix N is made up of n-vectors, and because of the assumption that the original X 
matrix comprises p variables, therefore 
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where the first column represents the first X loading vector on the first PLS component, the second 
column represents the second X loading vector on the second PLS component, etc., and nij is the 
loading of the ith original variable on the jth PLS component.  
 
By the loading matrix N, the relationship between the original standardized data set X and the PLS 
component scores matrix T = (t , t , … , t1 2 p) can be expressed as equation 3.16. 
 
or in an equivalent form 
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Normally we choose first k PLS components to do the regression as the final model, and also 
choose the first k ones when doing the data analysis by a combination method of PLS and for 
example LDA. Therefore, the equation 3.38 is transformed into 
 

X = TkN´k+E                       (3.41) 
 

 is a matrix of the first k columns of loadings matrix N, Twhere N kk  is a matrix of the first k columns 
of scores matrix T, and E is the error term which also could be referred as unexplained part of the X 
scores, or it can be equivalently expressed as 
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1ε 2ε  stand for the error of variable x , x , …, xwhere , , …, pε 1 2 p respectively. 

 
From the X loadings N, we can determine the amount of variance of each original variable 
accounted for by any number of PLS components. The general expression for the variance 
accounted for in variable x  by the first k retained PLS components is i
 

∑
=

k

j
jin

1

2)(                           (3.43) 

When all the PLS components are retained, the result of above equation is 1 and it is also a potential 
method for variable selection [16]. 

3.3.4 Determination of Number of Components 
 
It is quite essential to find out how many components are necessary for the subsequent regression 
model as PCA. The following statistics are important for such evaluation: 
 

Mean Square Error 

y)Technically, the mean square error (MSE) of a predicted value  of an observation y in a 
statistical model is defined as: 

( )[ ]2)( yyEyMSE −= ))                                                                                                                  (3.44) 
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Equation 3.44 is calculated for each observation. Since PLS regression model concerns substantial 
observations, the MSE is expanded as a performance evaluation statistic by summing the squared 
differences and taking their means over all observation: 
 

( )

n

yy
MSE

n

i
∑
=

−
= 1

2)

                                                                                                                       (3.45) 

 
Note that, the smaller value of MSE it calculates, the better performance of the model one obtains. 
 
The NIPALS algorithm mentioned in the previous section, it is also referred as the classical 
orthogonal scores algorithm (OSCORESPLS). The first iteration of such algorithm does the 
regression using the first PLS component, and each subsequent iteration adds one more PLS 
component to build the model till the last iteration which uses entire PLS components to build the 
model. If one assume that the X (explanatory) matrix consists of p variables, so that there are p 
models with 1, 2, …, p components respectively, and correspondingly p MSE values are calculated. 
In addition, one should calculate the MSE for a model with zero components. Each MSE is an 
uncertainty value, and its standard error determines the uncertainty and is calculated by [18]:  
  

( )
n

sd 2Error Modelling                                  (3.46)                                                       Standard Error = 

 
where the numerator of equation 3.46 is the standard deviation of squared modeling error of n 
observations. Below is an example plot for MSE values and their corresponding standard errors of 
all possible models [18]:  

 
 

Figure 3.4: MSE curve and its standard errors 
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In a common sense, the model with the least MSE value is to be chosen, however due to the 
uncertainty of MSE values and the criterion for choosing the model as less complex as possible, we 
choose the model with the least components within one standard error of the best, therefore the 
model with two components for the example above is chosen [18]. 
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Chapter 4 

Statistical Implementation of the Theoretic Methods 

4.1 Linear Regression with Time-varying Coefficients 

4.1.1 Determination of Minimum Adequate Model 
 
According to section 2.4, i.e. the estimation of autocorrelation function (ACF), the response series 
current status travel time per 5 minutes (CST5) is more close to an AR(2) or AR(3) process. Thus, it 
suggests that we may consider first 2 lagged values as well as the exact 1 day after lagged value to 
predict the response. Initially, the model could be the following form: 
 

)2(5)1(5)49(5)2(5)1(5)(5 −+−+−+−+−= tmcounttmcounttCSTtCSTtCSTtCST                              
                             ε+++−+ weekdayTODtmcount )49(5                                                                    (4.1) 
 
with corresponding model parameters and prediction error ε . TOD and mcount5 stand for time of 
day and mean of number of passing vehicles per 5 minutes. As for the lagged explanatory variables 
of CST5 and mcount5, other than past observations of one and two time difference, observations of 
same time of past one day is included as well. In addition, ‘weekday’ is considered as the only 
factor in the model.  
 
First, one needs to decide the function forms of covariates in the initial model 4.1. Sometimes the 
relationship between response and certain covariate is not specified by some explicit function form 
coming from any theory or mechanistic model. Under this circumstance, the Generalized Additive 
Models (GAMS) is used by fitting non-parametric smoothers to the data without specifying any 
particular mathematical model to describe the non-linearity [19]. Note that smooth terms are 
represented using penalized regression splines with smoothing parameters selected by GCV/UBRE 
or by regression splines with fixed degrees of freedom (mixtures of the two are permitted). Multi-
dimensional smoothes are available using penalized thin plate regression splines or tensor product 
splines [20].  
 
After formulating the GAMS, the following plots are generated to evaluate certain relationships 
between response and covariates:  
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Figure 4.1: The plots of non parametric spline smoothers for each covariate (continuous) of initial model 4.1 

 
Clearly seen linearly explained, there is no need to make non-parametric splines for other covariates 
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except for ‘TOD’ and ‘mcount5lagged2’. Note that the following outliers are taken away according 
to the above figure: 
 
                                                   (4.2) 30495&25&15&5 ≥laggedCSTlaggedCSTlaggedCSTCST
                                 (4.3) 50495&25&15&5 ≤laggedmcountlaggedmcountlaggedmcountmcount

 
After updating the initial GAMS, the coefficients and other statistics for the new model is shown 
below: 
 

 

Family: gaussian  
Link function: identity  
Formula: 
CST5 ~ CST5lagged1 + CST5lagged2 + CST5lagged49 + mcount5lagged1 + 
s(mcount5lagged2) + mcount5lagged49 + weekday + s(TOD) 
Parametric coefficients: 

 Estimate Std. Error t  value Pr (>| |) t
(Intercept) -3.257e-01 6.822e-01 0.477 0.633140 

CST5lagged1 9.938e-01 3.519e-02 28.237 < 2e-16 *** 
CST5lagged2 -1.063e-01 3.519e-02 -3.021 0.002552** 

CST5lagged49 3.519e-02 1.456e-02 2.417 0.015728 * 
mcount5lagged1 6.730e-04 2.854e-03 0.236 0.813626   
mcountlagged49 -3.512e-05 1.951e-03 -0.018 0.985642 
weekdayMonday 8.795e-02 1.078e-01 0.816 0.414840 

weekdayThursday 1.334e-01 1.080e-01 1.235 0.216897   
weekdayTuesday 4.342e-01 1.167e-01 3.722 0.000204 *** 

weekdayWednesday 4.525e-02 1.089e-01 0.415 0.677948 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
Approximate significance of smooth terms: 

 edf Est. rank F  p -value 
s(mcount5lagged2) 1.000 1.000 0.516 0.473 

s(TOD) 7.889 9.000 5.227 4.76e-07 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
R-sq.(adj) =  0.822   Deviance explained = 82.4% 
GCV score = 2.   Scale est. = 2.0014    n = 1883 

Table 4.1: Some statistics for the initial model 4.1 
 
Here it shows the 3 lagged value of mcount5 and weekday should be removed from the model. By 
several steps of analysis of covariance, the minimum adequate model is formulated as the following 
form: 
                                     )()2(5)1(5)(5 TODstCSTtCSTtCST +−+−=                                                   (4.4) 

 
The corresponding statistics are as follow: 
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Family: gaussian  
Link function: identity  
Formula: 
CST5 ~ CST5lagged1 + CST5lagged2 + s(TOD) 
Parametric coefficients: 

 Estimate Std. Error t  value Pr (>| t |) 
(Intercept) 0.65267 0.10112 6.455 1.38e-10 *** 

CST5lagged1 1.00614 0.03281 30.664 < 2e-16 *** 
CST5lagged2 -0.09111 0.03283 -2.775 0.00558 ** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
Approximate significance of smooth terms: 

 edf Est. rank F  p -value 
s(TOD) 8.071 9.000 9.569 2.20e-14 *** 

--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
R-sq.(adj) =  0.821   Deviance explained = 82.2% 
GCV score = 2.0306.   Scale est. = 2.0186    n = 1883 

Table 4.2: Some statistics for minimum adequate model 4.4 
 
In model 4.4, there is one spline term, which can be referred to the following figure: 

 
Figure 4.2: Plot for the non-parametric fit of TOD (time of day) 

 
Thus, it is necessary to find a function form to estimate such relationship presenting in figure 4.2. 
We use 3 important points in the figure, which are the peak, the starting and ending point, to 
determine such estimate. There are two ways: 
 

• Straight line estimation; 
• Combination of curve & straight line estimation. 

 

 38



Chapter 4 Statistical Implementation of The Theoretical Methods 
 

The following table can be referred as a short description of the methods:  
 

Method Straight line estimation Combination of curve & straight line 
estimation 

Formula 

 

       

1033.7
49.031.4

33.7
58.054.3

≤≤
−=

<
+−=

TOD
TODy

TOD
TODy

 

( )

109
24.061.2

9
54.485.3

43.0)85.3(99.2
2

≤<
+−=

≤
−−

×−−×=

TOD
TODy

TOD
TOD

TODy

 

Fitting 
plot 

 
Variance 

of 
estimation 

error 

9.6432 5.8691 

Table 4.3: The estimation summary of two different methods for non-parametric fit of covariate TOD 
 
Results show that the second method is preferred for the formulation of non-linear term ‘TOD’ in 
minimum adequate model 4.4.  
 

4.1.2 Implementation of WRLS and Variables Selection 
 
According to section 2.2.2, the parameters for the regression model 4.1 are time varying. After the 
model simplification described in previous section, the so-called algorithm weighted recursive least 
square (WRLS) is used here on model 4.4 to obtain varying values of parameters and optimum 
forgetting factor. The theoretic algorithm is presented in section 3.1.2. 
 
Note that in model 4.4, due to the non-linear relationship between response variable CST5 and 
explanatory variable TOD, we use its (TOD) combination of curve & straight line estimation of 
non-parametric fit to replace its original data. According to table 4.3, the replacing formula is as 
follows: 
 
      ( ) 54.485.343.0)85.3(99.2 2 −−×−−×= TODTODy 9≤TOD  
                                     TODy 24.061.2 +−= 9>TOD
 

(4.5) 
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First we have a look at one-step prediction, which is used one time step (5 minutes) ahead to predict 
the travel time. Normally, the criterion for optimum forgetting factor lies in the value which gives 
the minimum variance of the residuals (prediction error) [8]. The following plot can be the 
reference for such variable selection: 

 
 Figure 4.3: The plot for selection of optimal forgetting factor λ according to minimum variance of prediction 
error (residuals) 
 
As the plot shows, when λ=0.77 the minimum variance of residuals could be obtained approx.:    
                 

668229.22
min =σ  

 
for one-step prediction, and the varying parameters for model 4.4 are shown in the following figure: 
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Figure 4.4: The time varying parameters per 5 minutes of 41 weekdays from 6:00~10:00 on Sept. & Oct. 2005 for 

the initial RLS regression model, when forgetting factor lambda is optimized 
 
The numbers of X-axis mean the model parameters’ corresponding time in chronicle order.   The 
model seems not so stable, since the ranges of parameters are not strictly within some small enough 
intervals. This is probably due to the following reasons: first, almost 10% of missing values in the 
training set made the imputation process unstable and come out effective outliers; second, imprecise 
estimation of non-parametric fit of explanatory variable ‘TOD’ results bigger variances of 
prediction errors.  
 
Next, we look further into k steps prediction and their corresponding optimal forgetting factors λ, 
which is important to know when we should implement such factor. As before, λ is determined by 
minimum variances of prediction errors.  
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Prediction Step k Optimum Forgetting Factor λ 
1 0.77 
2 0.75 
3 0.75 
5 1 
8 1 
10 1 

Table 4.4: Optimum forgetting factor λ for different prediction steps of RWLS algorithm, each step 5 minutes 
 
Table 4.4 shows that forgetting factor will not be necessary when the prediction step is more than 3, 
which means that it only works on 15 minutes (3 steps) afterwards prediction. When calculating 
furthermore steps, RWLS turns to recursive ordinary least squares (ROLS). 
    

4.2 Principle Component Analysis 

4.2.1 Calculation of Principle Components & Their Related Statistics  
 
If we consider that the whole stretch is divided into small parts one after another by points where 
certain loop detectors locate, the total traveling time is just the summation of such between each 
point. Ideally, it would be a perfect regression model when also brings certain lagged values of each 
partly traveling time to predict the total one. However, one would say this is extremely violating the 
rule of ‘parsimony’. To overcome the trick, PCA is probably a good option. 
 
According to the theory described in section 3.2.1, the first few principle components account for as 
much of the available information from all the explanatory variables as possible. Thus, it greatly 
functions as model simplification and dimension reduction. In addition, it is good for explaining 
correlation structures in the explanatory matrix.         
 
After calculation of PCs by the algorithm presented in section 3.2.2, one needs to determine the 
least number of them to be used for model formulation. This is achieved by looking into their 
explained cumulative variance of all explanatory variables.  
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Figure 4.5: Cumulative portion of PCs explained variance for original trainset 

 
There are totally 16 consecutive parts of the stretch from original training set, which outcome 16 
PCs corresponding to 16 variables. The above figure shows that the information from first 3 PCs is 
enough, because they explain cumulatively 70% of the total variance. Next, we take a look into the 
scores of those 3 components to extract outliers. The following bi-plots are referred: 

 
Figure 4.6: Scatter bi-plots of first 3 PCA scores for original trainset 

 
Obviously, there are some points which are far away from the remaining large part of the 
observations. They are statistically defective and then could essentially result in bias estimation. 
Thus, such points are considered as outliers and should be taken away from the training set before 
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subsequent analysis. The description of those outliers and the scores’ bi-plots of components after 
removing them are as follow: 
 

Outlier Row Names Weekday Time of Day Date 
172 Tuesday 08:00am 6th Sept. 
173 Tuesday 08:05am 6th Sept. 
174 Tuesday 08:10am 6th Sept. 
175 Tuesday 08:15am 6th Sept. 
180 Tuesday 08:40am 6th Sept. 
559 Friday 07:35am 16th Sept. 
560 Friday 07:40am 16th Sept. 
562 Friday 07:50am 16th Sept. 
605 Monday 07:20am 19th Sept. 
1150 Tuesday 07:50am 4th Oct. 
1343 Monday 07:35am 10th Oct. 
1345 Monday 07:40am 10th Oct. 
1409 Tuesday 09:00am 11th Oct. 
1505 Thursday 08:50am 13th Oct. 
1572 Tuesday 06:15am 18th Oct. 
1844 Tuesday 08:30am 25th Oct. 
1849 Tuesday 08:55am 25th Oct. 
1851 Tuesday 09:05am 25th Oct. 

Table 4.5: Outliers extracted from training set by PCA 

 
Figure 4.7: Scatter bi-plots of first 3 PCA scores for trainset.out 

 
As discussed before in section 3.2.2, PCL is very useful to explain the correlation of X variables as 
well as identification their features on principle components. At first, one should look into the 
loading plots below: 
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Figure 4.8: Scatter plots of variable loadings on first 3 PCs for trainset.out 

 
Then we can draw following conclusions from those plots: 
 

• The first PC does not show much difference for features inherited from most of the 
variables, since their loadings on it just range from -0.23 to -0.28; 

• The second and third PC could identify some of the important variables which have 
comparatively significant loadings on them. Those variables exactly stand for certain points 
of the road where corresponding loops locate. Therefore, the above plot tells that the 3rd, 
6th, 9th, 10th and 14th variables, which are actually data from loop M15, PN7, M11, PN10 
and PN12, should be paid solid attention.  

 
Note that the second conclusion is the basis for an alternative simplified PCR which will be 
described in the subsequent section. 
 

4.2.2 Analysis of Variance-Using Principle Components Regression for 
Prediction 
 
According to last section, the first 3 PCs are enough to interpret the information contained in all the 
X variables. Here their scores are used to predict the response CST5 by a regression model, also 
certain lagged values of them are taken into account  because the response is more close to an 
AR(2) or AR(3) process: 
 

)49(2)2(2)1(2)49(1)2(1)1(15 −+−+−+−+−+−= tPCtPCtPCtPCtPCtPCCST  
                             ε+−+−+−+ )49(3)2(3)1(3 tPCtPCtPC                                                                 (4.6) 
 
Then analysis of variance is implemented as before in section 4.1.1 to obtain the following 
minimum adequate model:  
 

)49(2)2(2)1(2)49(1)2(1)1(15 −+−+−+−+−+−= tPCtPCtPCtPCtPCtPCCST  
                          ε+−+−+ )49(3)2(3 tPCtPC                                                                                        (4.7) 
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4.2.3 An Alternative Simplified PCR Model 
 
The second conclusion from the PCL plots draws our attention to few important X variables, which 
show significant loadings on 2nd and 3rd PC. Since such components contain most of the X variables 
information, those few variables could also bear enough information to predict the response. Thus, 
the new dataset is extracted from those important variables of the original training set (outliers 
away). Only data from loop M15, PN7, M11, PN10 and PN12 are considered, the number of total 
components is then five. 
 
Likewise, at first the necessary number of components is determined by the following plot:   
 

 
Figure 4.9: Cumulative portion of PCs explained variance for simplified trainSet.out 

 
The first 2 PCs cumulative proportion of explained variance reaches over 70%, which proves they 
contain enough information for the subsequent analysis. 
 
In order to identify the possible new outliers, it is also necessary to look into the components scores 
bi-plot: 
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Figure 4.10: Scatter bi-plots of first 2 PCA scores for simplified trainset.out 

 
The outliers are still existed. For remaining the majority of points, the criterion is defined by the 
following 2 inequalities: 
 
                                                                    61 −≥Comp                                                                 (4.8) 

                                                            525 ≤≤− Comp                                                           (4.9) 
 

Thus, any point that does not conform the above inequalities are considered outliers and then 
removed away.  

 
Figure 4.11: Scatter bi-plots of first 2 PCA scores for outliers removed simplified trainset.out 

 
Similarly, the initial simplified PCR model has the following form as model 4.6: 
 

)2(2)1(2)49(1)2(1)1(15 −+−+−+−+−= tsPCtsPCtsPCtsPCtsPCCST  
                 ε+−+ )49(2 tsPC                                                                                                             (4.10) 
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The same process of ANOVA is performed to reach the following minimum adequate model: 
 

)2(2)1(2)49(1)2(1)1(15 −+−+−+−+−= tsPCtsPCtsPCtsPCtsPCCST  
                ε+−+ )49(2 tsPC                                                                                                                         (4.11) 
 
which is exactly the same as model 4.10. This is due to the equal significance of each X variable. 

4.3 Partial Least Square Regression 
 
For the initial regression model 4.1, the PLS finds the best orthogonal linear combinations of X 
variables for predicting response variables. The question still is: how many of PLS components are 
necessary to sufficiently explain the response without breaking the rule of ‘parsimony’? 
 
As it referred to section 3.3.4, a research for the combination of cross validation MSE and their 
corresponding standard errors is implemented to answer the above question. We interpret it by the 
following plot:   

 
 Figure 4.12: MSE of CV and their corresponding standard errors according to certain number of PLS 

components  
 
The numbers in the above plot stand for number of components. When considering only first 3 PLS 
components, it will have the best combinative results:  
 

• It has the least MSE value of all and such value increase largely if looks into any other 
bigger number of components; 

• It has a very much acceptable low value of standard error, which is an important merit 
comparing to its right neighboring point. Though less number of components and close 
value of MSE, such point has a much bigger value of standard error. 

 
A clear comparison is made for these 2 points in the table below:  
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No. of Components MSE Standard Error 
3 2.766245 0.021749 
2 2.773952 0.026568 

Table 4.6: Comparison of some statistics for 2 possible values of the number of PLS components 
 
Next, the performance of model is initially evaluated by the scores and loading plots as it below:  
 

 
Figure 4.13: Scatter bi-plots of first 3 PLS components scores for PLSR model 
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Figure 4.14: Scatter bi-plots of X & Y variables loadings on first 3 PLS components for PLSR model 

 
From the loading plots above, one can conclude that such PLSR model is not a bad one for 
predicting the response, since the loadings of response variable ‘CST5’ on those PLS components 
are comparatively bigger enough compared to most of the explanatory variables in most cases. 

4.4 Brief Summary  
 
The above methods are proved to be statistically feasible and have their corresponding pros and 
cons during the modeling process. 
 
Further researches will be carried out in the later section to compare each method’s prediction 
performance and then conclude certain use of methods under different circumstances 
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Chapter 5

Performance Evaluation & Conclusions 

5.1 Prediction Performance Comparison 
 
This thesis presents 3 different methods to predict the travel time for the certain stretch. In order to 
evaluate their corresponding prediction performance, some statistics of prediction errors (residuals) 
are calculated according to certain prediction steps: 
 
                                                                iikiki XY ⋅−= + θε ,                                                           (5.1) 

 
where i is the index of certain variable, k is the prediction steps which means k lags,  stands for 
the (i+k)th observation,  stands for the ith matrix of explanatory variable and 

kiY +

iX iθ  stands for its 
corresponding coefficient. 
 
Those statistics of errors (equation 5.1) will be presented later in this section according to certain 
method, both implemented through training set and test set. Thus, those datasets are again described 
as follows: 
 

Dataset Loops incl. Time No. of observations 
Training set From PN2 to M7 Sept. & Oct. 2005 20244 

testset.sametime From PN14 to M0 Sept. & Oct. 2005 20244 
testset.difftime From PN2 to M7 Nov. 2005 10122 

Table.5.1 Description of training set and test set used in this thesis 
 
The loops are all allocated from south to north and can be referred one by one through the road map 
of Figure 2.1. As for the test set, it is split into two parts referring to training set: 
 

• Same time period but different part of stretch, as testset.sametime; 
• Same part of stretch but different time period, as testset.difftime. 

 
 Before comparing model performances, we should take a look at the fitting residuals plots (by 
training set) for each method: 
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Figure 5.1: Fitting residuals plots of RWLS for different prediction step k 

 

  
Figure 5.2: Fitting residuals plots of PCR for different prediction step k 

 

  
Figure 5.3: Fitting residuals plots of simplified PCR for different prediction step k 
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Figure 5.4: Fitting residuals plots of PLSR for different prediction step k 

 
One can obtain the following information from the above plots: 
 

• The fitting residuals from each prediction method in the Q-Q plots are all shown marked S-
shape, indicative of non-normality. This proves that the models are not fully adequate.  

• Theoretically, a good model must account for the variance-mean relationship adequately and 
produce additive effects on the appropriate scale. A plot of residuals against fitted values 
should look like the sky at night (points scattered at random over the whole plotting region), 
with no trend in the size or degree of scatter of the residuals [18]. Typically, within 
prediction step k=2, the variance of errors is constant; when getting larger steps, an slight 
expanding and fan-shaped pattern is shown which indicates the variance increases with the 
mean. 

   
Next, the tables below list the means and UCL/LCL of prediction errors calculated from different 
statistical methods, both implemented in training set and test set.  
 
Note that ordinary least square is also included due to clearer comparison and better interpretation. 
In addition, the simplified principle component regression is denoted by ‘PCR*’. 
 

Mean of Errors Ek,ε (by different prediction steps k) UCL/LCL of Errors ±2σk,ε (by 
different prediction steps k) Method 

k=1 k=2 k=3 k=5 k=1 k=2 k=3 k=5 
OLS -1.5354e-05 4.8895e-05 0.0002 0.0004 3.8835 4.4805 5.0158 5.8680 

RWLS -0.0115 -0.0079 -0.0076 0.0047 3.2827 4.0263 4.7055 5.7806 
PCR 0.0001 0.0002 0.0005 0.0010 2.8064 3.5460 4.1659 5.1305 
PCR* 0.0002 0.0003 0.0005 0.0009 3.0719 3.6053 4.0939 4.9798 
PLSR -0.0002 -0.0002 -5.9292e-5 5.9797e-5 3.8175 4.3970 4.9053 5.7550 

Table 5.2: Comparison of prediction errors from different methods for trainset.out 
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Mean of Errors Ek,ε (by different 
prediction steps k) 

UCL/LCL of Errors ±2σk,ε (by different 
prediction steps k) Method 

k=1 k=2 k=3 k=5 k=1 k=2 k=3 k=5 
OLS 0.1738 0.1740 0.1742 0.1752 8.0506 8.3185 8.6417 9.3253 

RWLS -0.0590 -0.0568 -0.0566 -0.0674 7.5640 7.9978 8.3378 8.2084 
PCR 1.8557 1.8558 1.8565 1.8580 6.8316 7.1089 7.4644 8.2418 
PCR* 1.7097 1.7125 1.7152 1.7200 14.5296 14.3714 14.1533 13.7152
PLSR 1.7187 1.7191 1.7197 1.7210 7.4709 7.6667 7.9178 8.4476 

Table 5.3: Comparison of prediction errors from different methods for testset.sametime 
 

Mean of Errors Ek,ε (by different 
prediction steps k) 

UCL/LCL of Errors ±2σk,ε (by 
different prediction steps k) Method 

k=1 k=2 k=3 k=5 k=1 k=2 k=3 k=5 
OLS 0.0257 0.0260 0.0261 0.0265 1.9993 2.5004 2.9197 3.6029

RWLS -0.0066 -0.0048 -0.0040 0.0102 1.4928 1.1791 2.1717 3.6504
PCR 0.3535 0.3540 0.3539 0.3539 2.9457 3.4240 3.8674 4.5243
PCR* 0.3623 0.3624 0.3623 0.3625 2.9418 3.3656 3.7466 4.4648
PLSR 0.2780 0.2776 0.2772 0.2766 2.5349 3.0998 3.5773 4.3813

Table 5.4: Comparison of prediction errors from different methods for testset.difftime  
 
The conclusions for those results are drawn below according to certain circumstance: 
 

• For the training set, each method is statistically feasible due to the acceptable values of 2σk,ε  
(variances of prediction errors) in corresponding prediction step k. Also can be referred by 
the values of Ek,ε (mean of prediction errors) which are very close to 0, they are unbiased for 
fitting. In addition, RWLS shows some benefit compared to OLS, but is inclined to have 
similar performance when k≥5.  Among all of them, PCR is the best fitting method. 

• For the test set of same time period but different part of stretch, the prediction performance 
for each method is very bad. Thus, it is difficult to predict travel time on a different stretch, 
probably due to big changes of road conditions, geographic conditions or any factor which 
could affect. 

• For the test set of same part of stretch but different time period, the prediction performance 
for each method is even better than that of fitting performance. This is possible because of 
the following 2 reasons: first, the data collection in November is probably more accurate 
than that of previous two months; second, substantial amount of missing data for both of the 
datasets could potentially make the imputation process biased, which resulted in better 
imputation for November. On the other hand, the predictions turn to be biased for PCR, 
PCR* and PLSR due to values of Ek,ε which stay far away from 0. Also one can see PLSR is 
better than any of the PCR method. This proves that PLS finds linear combinations of the 
predictors that better explains the response than that of PCA. Generally, RWLS is the best 
for prediction almost without bias and again, it turns into OLS when prediction step k≥5. 

• The fitting and prediction performance of PCR* is very close to that of PCR, in some cases 
it is even better.  

5.2 Ideas & suggestions for future works 
 
The previous section presents the fitting and prediction results of different methods and the 
corresponding conclusions. Not surprisingly, each method has its own pros and cons, which need 
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future improvement of the analysis. Here are some ideas: 
 
• It is necessary to reduce bias when using PCR and PLSR for prediction. 
• It is quite willingly to acquire homogeneity of residuals, i.e. improve the models when 

predicting travel time long steps behind.  
• Use prediction model that is fitted by same stretch of the road because of variations of local 

phenomena. 
• Recursively updating is beneficial, but mostly for small prediction steps. 
• Simplified PCR (only considering critical points of the stretch) is more recommended when 

compared with normal PCR, due to similar prediction performances and principle of 
‘parsimony’. 

• Probably beneficial from combination of models: using information of PCR or PCR* and 
make the RWLS simplified. 
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Appendix  

R Codes of Main Functions 

1. Data Preprocessing & Descriptive Statistics  

# Missing Data Imputation   

Imp <- function(dataset){ #dataset: dataframe which has missing data 

    library(norm)  

    dt1 <- .code.to.na(dataset,-1) 

    dt2 <- dt1[,3:70] 

    dt2 <- as.matrix(dt2) 

        for (k in 1:68)     { 

                     s <- prelim.norm(dt2[,k])                        

                     thetahat <- em.norm(s) 

                     rngseed(1234567) 

                     ximp <- imp.norm(s,thetahat,dt2[,k])                                     

                       dt1[,k+2] <- ximp 

                                  } 

          return(dt1) 

                            } 

# Response Calculation 
 
CST <- function(D,V,a,b)   {   

      Tstar <- 0 

           for (i in a:(b-1))  { 

                T <- 2*D[i]/(V[i]+V[i+1])       

                Tstar <- sum(T+Tstar) 

                                   } 

      Tstar <- Tstar*60 #transform to minute              

           return(Tstar) 

                               } 

#D:a vector containing distances between loops;  

#V:a vector containing velocities from loops at certain time;  

#a: index for the starting point of journey;  

#b:index for the ending point of journey 

# Harmonic Mean of Velocities and Summation of Count Number in 5 Minutes for 
Data from Each Loop 
 
VlCt <- function(i,j,inv)     { #inv: time interval by second scale 
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     time1 <- 4*3600/inv+1      #i: index of starting point of loop 

     hm <- 0                    #j: index of ending point of loop 

     amount <- 0 

     hm1 <- matrix(0,time1,61) 

     amount1 <- matrix(0,time1,61) 

for(n in c(1,2,5:9,12:16,19:23,26:30,33:37,40:43,47:51,54:58,61))   { 

     for (m in 1:time1)  { 

         if (n < 60) {#summer time           

            g <- SO3[SO3[,1]>SO3[1,1]+(m-1)*inv+(n-1)*24*3600 &                

                 SO3[,1]<=SO3[1,1]+m*inv+(n-1)*24*3600,i:j]          

                     }  

         else if (n >= 60)   { #winter time   

           g <- SO3[SO3[,1]>SO3[1,1]+(m-1)*inv+(60*24+1)*3600  

                & SO3[,1]<=SO3[1,1]+m*inv+(60*24+1)*3600,i:j]               

                             }              

         hm[m] <- length(g[,2])/sum(1/g[,2]) #harmonic mean 

         amount[m] <- sum(g[,1]) 

                         }                                                  

     hm1[,n] <- hm 

     amount1[,n] <- amount 

                                                                    } 

hm2 <- hm1[,c(1,2,5:9,12:16,19:23,26:30,33:37,40:43,47:51,54:58,61)]   

amount2 <-       

amount1[,c(1,2,5:9,12:16,19:23,26:30,33:37,40:43,47:51,54:58,61)]        

     hmv <- as.vector(hm2) 

     mat <- as.vector(amount2)                   

        list(hmv = hmv,mat = mat) 

                              } 

# Plot of Harmonic Mean of Velocities in 5 minutes VS Time of Day 
 

MT <- SO3[1,1] #SO3: imputed dataframe of September & October 

for (i in 1:49) { 

    MT[i] <- SO3[1+10*(i-1),1] 

                } 

plot(MT,CST5[1:49],ylim=c(4,22),xlab='time of day',ylab='current  

      status travel time (each 5 mins)',col='grey',type='l') 

for (k in 2:42) { 

lines(MT,CST5[(49*(k-1)+1):(49*k)],col='grey') 

                } 

# Impulse Response Function 
 

IRF <- function(X,Y,t) {     #X: input series 

   library(MASS)             #Y: output series 

   library(tseries)          #t: length of series 
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   a <- ar(X,order.max = 6) 

   Alfa <- a$resid 

   Alfa <- na.omit(Alfa) 

   AR <- a$ar 

   Yhat <-0 

   Beta <-0 

      for (i in 7:t)  { 

       Yhat[i-6] <- 

Y[i-1]*AR[1]+Y[i-2]*AR[2]+Y[i-3]*AR[3]+Y[i-4]*AR[4]+Y[i-5]*AR[5]+Y[i-

6]*AR[6] 

       Beta[i-6] <- Y[i]-Yhat[i-6] 

                      } 

 CCV <- ccf(Alfa,Beta,lag.max = 20,type = 'covariance',plot = F) 

   va <- var(Alfa) 

   IR <- CCV[[1]]/va 

   IR <- as.vector(IR) 

 plot(-20:20,IR,xlab = 'lag',ylab = 'impulse response function 

(IRF)',type = 'h') 

    abline(h=0) 

                       } 

# Preparation of Dataframe Including X and Y Variables 
 

DataFrame <- function(dataset,n)  { 

                         #dataset: original training or test dataset 

TOD <- matrix(0,49,42)            #n: number of days for the dataset 

wd <- matrix(0,49,42) 

t1 <- dataset[,1] 

t1 <- as.character(t1) 

t1 <- substr(t1,12,19) 

for (m in 1:n) { 

   for (k in 1:49) { 

      wd[k,m] <- as.character(wd[k,m]) 

      wd[k,m] <- dataset[(482*(m-1)+(1+10*(k-1))),2] 

     TOD[k,m] <- as.character(TOD[k,m]) 

     TOD[k,m] <- t1[482*(m-1)+(1+10*(k-1))]             

                   }     
TOD <- strptime(TOD,"%H:%M:%S") 

wd <- as.vector(wd) 

TOD <- as.vector(TOD) 

for (i in 1:(49*n))      { 

   if (wd[i]=='1') { 

      wd[i] <- 'Friday' 

                   } 

   else if (wd[i]=='2')  { 
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      wd[i] <- 'Monday' 

                         } 

   else if (wd[i]=='3')    { 

      wd[i] <- 'Wednsday' 

                           }                     

   else if (wd[i]=='4')  { 

      wd[i] <- 'Tuesday' 

                         }                     

   else if (wd[i]=='5')    { 

      wd[i] <- 'Thursday' 

                           }                     

                       } 

wd <- as.data.frame(wd) 

TOD <- as.data.frame(TOD) 

wt <- cbind(wd,TOD) 

names(wt)[1] <- 'weekday' 

wt <- wt[50:(49*n),] 

d1 <- ts(CST5) 

d2 <- ts(mcount5)  #CST5 and mcount5 calculated by previous function CST    

                   # and VlCt 

for (i in c(1,2,49))    { 

      d1 <- ts.union(d1,lag(CST5,-1*i)) 

      d2 <- ts.union(d2,lag(mcount5,-1*i))           

                           } 

d1 <- na.omit(d1) 

d1 <- as.data.frame(d1) 

d2 <- na.omit(d2) 

d2 <- as.data.frame(d2) 

names(d1)[1] <- 'CST5' 

names(d1)[2] <- 'CST5lagged1' 

names(d1)[3] <- 'CST5lagged2' 

names(d1)[4] <- 'CST5lagged49' 

names(d2)[2] <- 'mcount5lagged1' 

names(d2)[3] <- 'mcount5lagged2' 

names(d2)[4] <- 'mcount5lagged49' 

Regdata <- cbind(d1,d2[,2:4],wt) 

tod1 <- seq(6,10,by=1/12) 

tod2 <- rep(tod1,(n-1)) 

Regdata[,9] <- tod2 

  Return(Regdata) 

                                  } 
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2. Linear Regression with Time-Varying Coefficients 

 
#Recursive Weighted Least Squares 
   
TVP <- function(lambda,k,dataset,n)        { #lamuda: forgetting factor  

   library(MASS)                                #k: number of prediction step 

   dimension <- dim(dataset)  #dataset: prepared dataset including X & Y    

   mdq <- dataset[,c(1:3,9)]                #n: number of rows of outliers 

   nd <- dimension[1]/49  #nd:number of days 

   for (i in 1:nd)  { #result of non-paramatric fit of GAMS 

     mdq[(1+49*(i-1)):(37+49*(i-1)),4] <-    

     2.99*(dataset[(1+49*(i-1)):(37+49*(i-1)),9]-3.85)-0.43* 

     (dataset[(1+49*(i-1)):(37+49*(i-1)),9]-3.85)^2-4.54 

     mdq[(38+49*(i-1)):(49+49*(i-1)),4] <-  

     -2.61+0.24*dataset[(38+49*(i-1)):(49+49*(i-1)),9] 

                        } 

     a <- dimension[1]-n #remaining rows for d1 

     b <- matrix(1,1,a) 

     X <- rbind(b,t(mdq[,2:4])) 

     Y <- matrix(0,a,1) 

     Y[,1] <- mdq[,1]  

     Thetahat1 <- 0 #estimates of parameters 

     Thetahat2 <- 0 

     Thetahat3 <- 0;Thetahat4 <- 0; 

     CSThat <- 0 #predicted travel time  

     re <- 0 #residuals between observed travel time and predicted travel  

               time 

   for (i in 98:(a-k))  { 

         if (i==98)      {   

            R <- X[,1:98]%*%t(X[,1:98]) #make initial estimates from first  

                                              2 days 

            h <- X[,1:98]%*%Y[1:98,] 

            Thetahat <- ginv(R)%*%h 

            Thetahat1[1] <- Thetahat[1,1]; Thetahat2[1] <- Thetahat[2,1];  

            Thetahat3[1] <- Thetahat[3,1]; Thetahat4[1] <- Thetahat[4,1];  

            CSThat <- t(X[,1:98])%*%Thetahat 

            re <- Y[1:98,]-CSThat                                

                            }       

         else if (i>98)      { 

            R <- lambda*R+X[,i]%*%t(X[,i]) 

            h <- lambda*h+X[,i]*Y[i,]                

            Thetahat <- ginv(R)%*%h 

            j <- i-97 

 61



Appendix R Codes of Main Functions 
 

            Thetahat1[j] <- Thetahat[1,1]; Thetahat2[j] <- Thetahat[2,1];  

            Thetahat3[j] <- Thetahat[3,1]; Thetahat4[j] <- Thetahat[4,1]; 

            CSThat[i] <- t(X[,i])%*%Thetahat 

            re[i] <- Y[i+k,]-CSThat[i]                 

                                } 

                              }  

     va <- var(re[99:(a-k)]); me <- mean(re[99:(a-k)])    

  list(Thetahat1 = Thetahat1,Thetahat2 = Thetahat2, 

        Thetahat3 =  Thetahat3,Thetahat4 = Thetahat4,  

        va = va, re = re, me = me,CSThat = CSThat) 

                                        }  

# Ordinary Least Squares 
 
OLS <- function(k,dataset)      {  #k: prediction steps 

       a <- dim(dataset)             #dataset: training or test dataset 

       b <- matrix(1,1,a[1]) 

       X <- rbind(b,t(dataset[,c(2:3,9)])) 

       Y <- matrix(0,a[1],1) 

       Y[,1] <- dataset[,1]  

       thetahat <- ginv(X%*%t(X))%*%X%*%Y 

       CSThat <- 0      

       re <- 0 

     for (i in 1:(a[1]-k)) { 

       CSThat[i] <- t(X[,i])%*%thetahat 

       re[i] <- Y[i+k,]-CSThat[i] 

                           } 

      va <- var(re); me <- mean(re) 

     list(thetahat = thetahat,va = va, re = re, me = me)                

                                        }  

#Prediction Errors of RWLS of Different Prediction Steps 

 

RlsPE <- function(k,dataset,coeff)  { #k: prediction steps 

       a <- dim(dataset)                  #dataset: training or test dataset 

       b <- matrix(1,1,a[1])           #coeff: calculated RWLS model  

                                             #coefficients from training set 

       X <- rbind(b,t(dataset[,c(2:3,9)])) 

       Y <- matrix(0,a[1],1) 

       Y[,1] <- dataset[,1]  

       CSThat <- 0      

       re <- 0 

       Thetahat <- rbind(coeff[[1]],coeff[[2]],coeff[[3]],coeff[[4]]) 

     for (i in 1:(a[1]-k)) { 

       CSThat[i] <- t(X[,i])%*%Thetahat[,i] 

       re[i] <- Y[i+k,]-CSThat[i] 
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                                } 

      va <- var(re); me <- mean(re) 

     list(va = va, re = re, me = me)                

                                             }  

 

3. Principle Components Analysis 

 
#Components Calculation & Regression Analysis 
 

library(stats) 

aSegCST5 <- matrix(0,2058,16) 

     #CST5 for first 16 segments of the road stretch  

for (j in 1:16) {     

     for (k in 1:2058)    { 

           aSegCST5[k,j] <- CST(D,Nspeed5[k,],j,j+1) 

                              } 

                    } 

PCA1 <- princomp(aSegCST5,cor=T,scores=T) 

names(PCA1); variance <- PCA1[[1]]^2 

Cuvar <- 0 #cumulative proportion of variance 

for (i in 1:16) { 

     Cuvar[i] <- sum(variance[1:i])/sum(variance) 

                   } 

barplot(Cuvar,names.arg=1:16,col='blue',main='Cumulative PCs 

proportion of variance for original trainSet',xlab='No. of 

components',ylab='Variances') 

abline(h=0.7,lty=2) 

text(3,0.95,'critical point:Var=0.7') 

bSegCST5 <- aSegCST5[-c(172:175,180,559,560,562,605,1150,1343,1345, 

                         1409,1505,1572,1844,1849,1851),]  

y <- CST5[-c(172:175,180,559,560,562,605,1150,1343,1345,1409,1505, 

            1572,1844,1849,1851)]  

y <- as.matrix(y) 

PCA2 <- princomp(bSegCST5,cor=T,scores=T)  

PC1 <- ts(PCA2$score[,1]); PC2 <- ts(PCA2$score[,2]);  

PC3 <- ts(PCA2$score[,3]);         

   for (i in c(1,2,49))    { 

      PC1 <- ts.union(PC1,lag(PCA2$score[,1],-1*i)) 

      PC2 <- ts.union(PC2,lag(PCA2$score[,2],-1*i)) 

      PC3 <- ts.union(PC3,lag(PCA2$score[,3],-1*i)) 
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                                } 

PC1 <- na.omit(PC1); PC1 <- as.data.frame(PC1);  PC1 <- PC1[,-1] 

PC2 <- na.omit(PC2); PC2 <- as.data.frame(PC2); PC2 <- PC2[,-1] 

PC3 <- na.omit(PC3); PC3 <- as.data.frame(PC3); PC3 <- PC3[,-1] 

y1 <- y[-(1:49),]; y1 <- as.data.frame(y1) 

names(y1) <- 'CST5' 

names(PC1)[1:3] <- c('PC1lagged1','PC1lagged2','PC1lagged49') 

names(PC2)[1:3] <- c('PC2lagged1','PC2lagged2','PC2lagged49') 

names(PC3)[1:3] <- c('PC3lagged1','PC3lagged2','PC3lagged49') 

PCA3 <- cbind(y1,PC1,PC2,PC3) 

PCR1 <- lm(CST5~PC1lagged1+PC1lagged2+PC1lagged49+PC2lagged1+ 

  PC2lagged2+PC2lagged49+PC3lagged1+PC3lagged2+PC3lagged49,data=PCA3) 

summary(PCR1) 

PCR11 <- update(PCR1,~.-PC3lagged1) 

summary(PCR11) 

#Prediction Errors 
 

PE <- function(dataset,model,k)   {       

#dataset:new dataset,null if calcilates training set's prediction errors;  

    a <- dim(dataset)[1]          #model: formulated model for prediction; 

                                      #k: number of prediction steps 

    re <- 0 

    ftv <- predict(model,dataset) 

    for (i in 1:(a-k))   { 

      re[i] <- dataset[i+k,1]-ftv[i] 

                             } 

    va <- var(re) 

    me <- mean(re) 

    list(va = va, me = me, re = re, ftv = ftv[1:(a-k)])                               

                                          }  

 

4. Partial Least Squares Regression 

 
#PLSR & Components Selection 
 

PLSR <- function(dataset,x,y,Ndata) {#dataset: dataset to do regression 

library(pls)   #x: explanatory matrix y: response matrix  

                #Ndata: new dataset for testset validation 

n <- dim(x)[[2]] #number of whole PLC components 

pm <- mvr(y~x,data=dataset,ncomp=n,method='oscorespls',scale=T, 

            validation='LOO',model=T,x=T,y=T) 

MSE <- MSEP(pm,estimate='all',newdata=Ndata);  
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cvMSE <- 0 

for (i in 0:n) { 

cvMSE[i+1] <- MSE[[1]][4*i+2]               

                  } 

  return(pm) 

                                            }  
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