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Abstract

In this thesis, a trial of modelling a manikin face using SwissRanger SR-3000
is implemented. The process includes acquiring data, range data restoration,
registration and surface reconstruction.

Several tests are done to evaluate the camera’s performance. Then, the noisy
and low-resolution range images are restored by MRF by designing intensity
information into the prior so that the restored range measurements obtain the
high contrast property of the intensity information.

The range images are registered by ICP algorithm. To improve the performance
of ICP according to the data, several variants are introduced.

A new surface reconstruction and super-resolution algorithm called 2.5D MRF
is originated to combine multiple registered surfaces. This high dimensional
MRF merges surfaces by trying to move locally smooth patches together and
keep the original values for details. The algorithm is proved to be robust to
noise and registration errors.

Finally, a face model combined by 15 registered views via simple averaging and
super-resolution of the face combined by 3 views via 2.5D MRF are displayed

as the result.
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CHAPTER 1

The Technology of 3D
Modelling from Scan

This chapter is to introduce 3D modelling from scan technology. The usage and
the steps of this technology, the scan method classification and the applications
are illustrated respectively.

1.1 What This Technology Can Be Used for?

The techniques and hardware for scanning the surface of real object is develop-
ing very fast in the recent years, which brings flourish in the related research
areas. One of the most prospective areas is 3D surface modelling. Especially,
loyally construct the computer readable shape data of object in reality chal-
lenges and attracts a large number of people working in the Computer Vision
area. Scanning can provide the most direct and automatic measurement of the
object’s surface. The 3D modelling from scan proves to be very helpful in the
following fields:

e Computer Animation
The 3D animation movie has created billions of US dollars’ market. But
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the budget of such movie is also enormous. A big part of it is to simulate
the details of every thing in the scene to let them look real (See Figure
1.1) which is always the nightmares for the computer engineers.

Figure 1.1: A computer created scene full of models.

e Digital Archiving
Doing many experiments may damage the precious fragile relics. The
digital archiving aims at moving most of the researches and studies on
accurate models of the relics to a computer. Of course, the digital model

has infinite durability. Some created digital relics can be seen in Figure
1.2.

Figure 1.2: Some examples of digital relics. The figure is from [10]

¢ Quality Control
Quality control is important in industry. Sometimes, the flaw of the prod-
uct is hardly perceivable by eyes, but automatic detection from a 3D digital
model is feasible for a computer (See Figure 1.3a).

e Medical Diagnosis
The doctors tend to like watching 3D organs more now. It is reasonable
to display real 3D rather than the 2D slices when doing disease diagnosis
or surgery plan (Figure 1.3b).

¢ Home Entertainment
Just by imagining how many PCs in the world and how favorite the 2D dig-
ital cameras are, one can conclude that the home entertainment is maybe
the most exciting application of this technology. In this area, demanding
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Figure 1.3: (a)An computer model for quality control. (b)An 3D cardiac
model created by a 3D CT.

a cheaper, faster and smaller equipment is always the first thing. There
are some trials, for example, structured light method using a video cam-
era and a projector, Stereo Vision using multiple 2D cameras, but none of
them full fills the requirements. Is it possible to build all instruments in
just one small low energy cost camera so that it could work as one of the
standard computer Accessories? This question interests the researchers
and manufacturers, who are making some progress and keeping this field
very active.

Depending on the devices, the 3D modelling from scan would be an accurate and
efficient tool for the above areas. It is bringing a revolution to the traditional
methods.

1.2 General Steps to Construct 3D Model from
Scan

To construct a 3D model in the computer, the following steps are generally
needed:

1. Data Acquisition
The range information of a real 3D object input into a computer is nor-
mally positions of a point set sampled from the surface. A position detec-
tion machine can be a laser scanner, an optical camera or some position
sensors.
Under high resolution, cost insensitive case (e.g. some large medical and
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industrial CT system) the positions of source and sensor is fixed so that the
position of the detected event can be precisely determined. This method
is less likely used when a certain amount of flexibility is required. In that
situation, a free hand system is preferred.

To obtain a freehand system, like most of the modern medical ultrasound
imaging system, the movement of the source/sensor must be detect. To
achieve this, one can assume constant velocity of the probe, or use a posi-
tion sensor, but the most flexible solution is to use image registration and
motion estimation method.

2. Registration

As stated above, the registration may provide flexible scanning solution.
Normally, the range detection machine can only get part of the details of
the object. The positions of these pieces of information should be calcu-
lated so as to be integrated together to get a whole view the user desired.
The global or local position identification is achieved by registration. The
registration can be done manually, where the user should tell the system
how the two images are exactly related; or automatically, where the sys-
tem will determine the relationship by itself; or semi-automatically, where
the user help the system find the best relation.

3. Merging
After registration, the whole model can be patched up by the pieces of
scans. The redundant measurement should be removed so that the whole
data set will not infinitely increase during continuously scanning. More-
over, the deviated measurement should be deleted as outliers. It could
be also plausible to use extra data to produce a super-resolution of the
model.

1.3 Scanning Method Classification

The scanning method can be divided into passive and active acquisition [21].

1.3.1 Passive Acquisition

The passive acquisition refers to the sensor which detects the light reflection from
the object of ambient light source in passive acquisition mode. Shape-From-
Shading[23] and Stereo Vision[17] are two famous passive acquisition methods.
The passive acquisition usually suffers by sparse and inaccurate data compared
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with the active acquisition, so it is hard to be utilized in the high requirement
conditions.

1.3.2 Active Acquisition

The active acquisition system generally has its own source. The contact active
system use probe sensor like Coordinate Measuring Machine (CMM). The non-
contact system emits a serial of signals and the signal is influenced by the target.
The influenced signal is then received by the sensor to calculate the target’s
shape. Some of the successful scanning systems include:

e Transmit/Emit Computerized Tomography: X-ray CT (Computer-
ized Tomography), PET (Positron Emission Tomography) are well-known
medical instruments.

e Active Stereo Vision: In stead of capturing the ambient light, this
system can project a light pattern onto the object to help finding the
correspondents.

e Structured Light: The structured light methods observe the illumi-
nation of the light pattern projected by the system on the object and
calculates the shape accordingly.

e Radar System: Large system is like SAR (Synthesis Aperture Radar).
For the common application, the laser is more popular because it is very
accurate and with high discrimination in a limited range. Furthermore,
the laser instrument becomes smaller and cheaper.

If the system emits pulses and calculate the time interval between the
emission and reception of these pulses, the technology is called time-of-
flight (TOF). Some of the radar systems are based on TOF technology.

1.4 Application of the 3D Modelling from Scan

Although the 3D scanning and modelling system has not been developed for
long, there are some industrial and academic successes:

e The motion capture using contact probe is widely used in computer ani-
mation and games creation. More complicated product includes TRITOP
developed by GOM.
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¢ 3D CT/ultrasound medical imaging systems are more acceptable by the
doctors to improve the diagnosis.

e Passive and active Stereo Vision have been researched for many years,
this human-eye-like system is simple and can produce very high resolution
images due to the maturity of the 2D camera manufacture. Point Grey’s
Bumblebee serial is an example of this method in industrial quality control.

e Large Laser equipment is very suitable for some accurate measurement
conditions. The high-resolution laser scanned faces are adopted by some
of the 3D face database. ”Michelangelo Project”[10] which aims at digital
archiving the Michelangelo’s large statues is also a great attempt for laser
scan and modelling. The problems of these systems are that the scanning
process is usually long and the system is quite expensive.

e The newly invented range camera SwissRanger and CanestaVision cam-
eras are fast, small and low energy consumption equipments. These cam-
eras are very promising to construct a potable real-time 3D modelling
system. However, the accuracy and SNR (Signal to Noise Ratio) of these
cameras still need to be improved. More deep research should be involved
in the future.

1.5 Outline of This Thesis

In the next part of this thesis, I will tell something about my experiment instru-
ment — SwissRanger. Then, the core parts of this thesis follow, which are Range
Image Restoration, Range Image Registration and Surface Reconstruction. In
these parts, a general knowledge and related work is first introduced, then the
method I use and experiment result are illustrated. The last part of this thesis
is the outcome for real manikin face modelling and super-resolution, and the
end remarks for future work and conclusion will finish this thesis.

Most of the 2D figures in the this thesis are created by Matlab, and most of
the 3D figures are by VTK. The registration is programmed with VITK C++
library 5.0, and the restoration and surface reconstruction are done in Matlab
7.0.
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CHAPTER 2

SwissRanger: A TOF Camera

The SwissRanger is a TOF technology based range detection camera developed
by CSEM Zurich Center. The newly invented model SwissRanger SR-3000 has
tiny size (see Figure 2.1) and high frame rate up to 50 fps, which is designed to
provide a personal use, free hand scanning method.

Figure 2.1: The SwissRanger SR-3000

The SwissRanger emits a sinusoidally modulated light wave. The reflected wave
front is received and sampled, thus the distance of the object can be measured.
Each time, two images are produced by SwissRanger. One is the calculated
depth information image, the other is the reflected light intensity information
image. Both of them are in QCIF format (176 x 144). The intensity image has
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higher contrast to distance but it is also highly affected by the material and
structure of the object.

The details of the SwissRanger SR-3000 will be described in this chapter. The
questions of how this camera measures depth and intensity, how to convert the
measurement, into Cartesian coordinate, how the integration time affects the
output images, and what the advantages and disadvantages are compared with
stereo vision will be answered.

2.1 TOF Technology

The time of flight technology counts the light traveling time between emission
and reception. The measured time is twice of the distance to travel for light
speed.

Instead of directly measuring the time, the SwissRanger uses the modulated
infra-red light, and calculate the phase shift.

Assume the emitted signal is
e(t) =1+ cos(wt) (2.1)
and the detected signal is
5(t) = 26(1 + cos(wt — ¢)) (2.2)

where t is time, w is the modulated frequency, ¢ is the phase delay and 3 is the
attenuation factor of the signal.

The modulated signal is demodulated by g(t) = cos(wt), so that the demodu-
lated sample at time 7 is

/2
o(r) = 5(t) @ g(t)|t=r = limn—m% /7/2 s(t) - g(t + 7)dt (2.3)

If select the sample point p with 90° phase difference, for example, 79 = 0°,
71 = 90°, 7o = 180°, 73 = 270°, then the phase delay

p(Tg) _p(Tl) (24)

7= ) = p(n)

The amplitude

Vp(73) — p(11)]? + [p(10) — p(72)]?

A= 5

(2.5)
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The offset
p(70) + p(11) + p(72) + p(T3)

B:
4

The physical meaning of ¢, A and B can be seen from Figure 2.2.

Figure 2.2: The sample process and physical meaning of ¢, A and B. The figure
is from [1]

The phase delay ¢ is directly proportional to the distance D:

¢ P

where f,, is the modulation frequency and c is the speed of light. From equation
2.7, we can see the theoretic distance limitation for SwissRanger is 0 ~ 2; ,
which is approximately 0 ~ 15m for 20MHz modulation frequency.

For more details of the SwissRanger imaging principle and physical structure,
one can refer to [27].

2.2 Camera Calibration

In SwissRanger camera, the CCD cells are equally spaced. Each cell measures
the distance from the point on the target to the focus of the camera. The
measured distances can be easily transformed to 3D positions in Cartesian co-
ordinate. From Figure 2.3 the measurement D from a CCD cell with horizontal
angle 6, can be transformed to the 2D Cartesian coordinate (z, z) by:

x = Dsin(f,) and z= Dcos(f,) (2.8)
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and we have the similar result for the 3D:
x = Dsin(8;) y = Dsin(f,) z = D cos(0,) (2.9)

where the 6, is the vertical angle and 6, is the 3D angle of the CCD cell.

e, o

Tipgat surfuce

Centrol ling

Figure 2.3: Illustration of 2D Cartesian coordinate transform, f is the focus,
the measurement D from a CCD cell with horizontal angle 8, can be transformed
to Cartesian coordinate (z, z).

Since 0,, 0, and 60, is fixed for each cell, the transform can be done by multi-
plying the measured depth image with constant correction factor images for x,
y and z (see Figure 2.4), so that the conversion is very fast.

¥

ose
oo
1
N
o
o2
_ J i

Figure 2.4: From left to right, the correction factor images for z, y and z

2.3 Camera Measurement Test

Like other digital cameras, the image quality produced by SwissRanger is also
affected by the size of the CCD cell and the noise which plus the accuracy of
the range measurement. They determine the output image resolution.
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The iid (independent and identically distributed) noise can be decreased by av-
eraging several images of the same measurement, which can be also controlled
by changing the integration time of the camera. However too long time will
cause motion blur and data overflow. Figure 2.5 shows the depth images of a
manikin face captured by integration time 1ms, 4ms and 8ms. The cold color
represents near the camera focus, while the warm color represents far from the
camera focus. For 1ms integration time, the noise is prominent in the image.
For 8ms integration time, we can see the wrong measurements on the manikin
face, which are caused by the data overflow. This experiment shows 5ms around
is suitable for measuring an object in the range about 0.5m.

|

Figure 2.5: From left to right, the integration time is with 1, 4 and 8ms. The
noise is prominent for 1ms, the wrong measurement appears for 8ms

Because the CCD cell doesn’t have infinite small size, the output of each cell
is the average of the signal within the cell. After interpolation, the image is
blurred in space. The blurring effect can be described by convoluting a psf
(point spread function) to the desired sharp image. To estimate this function,
an experiment similar with the one used for 2D camera [6] is implemented. An
edge between two planes with different distances becomes the measured object
in the depth image. The image is shown in Figure 2.6.

In the idea case the line crossing the edge should be a step signal. Assum-
ing the psf is Gaussian function, the standard deviation of this function can
be estimated by convoluting with the ideal step signal and comparing with the
measured points. Figure 2.7 shows the measured points and Gaussian convo-
luted curve. The result shows that 0.4 pixel is a good approximation of the
standard deviation.

2.4 TOF vs. Stereo Vision

Stereo Vision especially for two photo cameras is another popular way to detect
range and has been studied for a long time. Like TOF camera, some Stereo
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T T T T
+  Measurements
Gaussian 04 |+

Depth(m)

87 875 88 885 89 895 90 905 91 915 92
Pixel

Figure 2.7: The psf measurement.
Figure 2.6: The depth image of an The original points are red stars, the

edge. The points on the dark line on blue curve is a Gaussian psf with stan-
the center of the image is used for psf dard deviation 0.4 pixel which is a
estimation. good fit.

Vision industry products are also available. A comparison between these two
systems are listed below. Similar comparison can be found in CSEM’s technical
report[20].
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Table 2.1: A comparison between TOF and 2 camera Stereo Vision 3D systems

Stereo Vision SwissRanger

Portability Two photo cameras is | The camera with in-
needed and they should | tegrated illumination
be placed by a distance | source has comparable
to ensure the resolution. | size with a normal
An additional illumina- | photo camera.
tion source is maybe
needed.

Computation | Need to search for core- | Phase and intensity cal-
spondents usually com- | culation are very simple
putationally heavy even | which can be directly
for a modern PC. integrated onto silicon.

Maximum 50 fps is pos-
sible.

Accuracy Sub-millimeter  depth | Has no problem for uni-
resolution can  be | form scenes but may
achieved if high | affected by the reflec-
contrast images are | tion angle, material and
available, but may fail | colors, generally sub-
when detecting uniform | centimeter can be pro-
scenes. vided.

Price Depending on what | Expensive, but cheaper
quality the cameras | than a high resolution
are, could be very | laser scanner. €5000
cheap for family or | is for the prototype

expensive for industry
applications.

in IMM. However, the
relatively simple struc-
ture makes the price
have very good po-
tential to reduce after
mass-produced.
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CHAPTER 3

2D Image Restoration
Methods

The depth image captured by SwissRanger is low-resolution, and suffered by
error measurement as well as noise. Although the target object is 3D, the single
depth image is 2D. So, some of the well-developed 2D image restoration methods
may have their stages now. In this chapter, the restoration methods based on
just one image is first generalized. Then, when multiple views are available, the
situation of resulting in a super-resolution image is described.

3.1 Single View Based Restoration

Single image restoration has been researched for a long time. The theory and
methods can be found in most fundamental image processing textbooks.
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3.1.1 Image Model

In single view image restoration, the degradation process can be simply modelled
by a convolution process in spatial domain.

3(i,) = h(i, §) * (i, 9) + (i, ) (3.1)
where (i, ), h(i, ) and 7j(i, j) are the 2D degraded image, spatial degradation
function and noise respectively. * means the spatial convolution.

The convolution in Equation 3.1 can be also written as multiplying a matrix H:

g=Hf+n (3.2)

In Equation 3.2, g, f and n are vectors generalized by serializing g, f and 7).

3.1.2 Noise Removal Approaches

If the noise is iid, the simple mean or order-statistics filter (for example median
filter) usually has good performance. Adaptive filter is a more complicated
filter, which may change the parameter so as to change the filtering property
according to the statistical measure of a local area.

Bandreject filters like bandpass filters or notch filters are the classic methods
used in frequency domain.

3.1.3 Filters Counteracting the Degradation Function

To counteract the effect of degradation function, the most direct approach is
using the inverse of the degradation function, so called the inverse filtering. The
inverse filtering may amplify the noise since it does not take it into consideration.
The Wiener filter can adjust the inverse process according to the statistical
characteristics of noise. Both of these famous approaches can be generalized in
one form, so-called geometric mean filter [12].

-«

. [ H*(u,v) H*(u,v) G(u,v) (3.3)

F(u,v) = }
[H(w,0) 2] || H (u,0)[2 + 5[ 34w]
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In this equation:

F (u,v) = Fourier transform of the estimated undegraded image
G(u,v) = Fourier transform of §(3, j)

H(u,v) = Fourier transform of h(i, j)

H*(u,v) = complex conjugate of H(u,v)

S,(u,v) = |N(u,v)|* = power spectrum of the noise

S¢(u,v) = |F(u,v)|* = power spectrum of the undegraded image

and the a and (§ being positive, real constants which control the property of
this filter. Some of the common settings of these parameters are:

the inverse fiter

parametric Wiener filter
and § =1, standard Wiener filter
and 3 =1, spectrum equalization filter

o= O O =

3.2 Multiple Views Based Super-resolution

Besides restoration from single image, computer vision researchers began to
focus on multiple view based restoration. These views, related by geometric
transforms, provide more than one measurements of the target. If the transforms
are known, it is possible to use these extra measurements to restore an image
with higher resolution than any of the single one. This technique which is called
super-resolution [19], can surpass the limitation of the hardware and thus is very
promising. Super-resolution for the 2D photos is well investigated [6] which will
be summarized in this section.

3.2.1 Image Model

Suppose the n x n high-resolution image is serialized as a nn x 1 vector f and the
serialized m x m observed low-resolution image is mm x 1 vector g (m < n). The
observed image is affected by the position of the camera which is modelled by a
nn X nn geometric transform matrix 7'; the spatial blurring which is modelled
by a nn x nn convolution kernel matrix H; the limited number of pixels which
is modelled by an mm x nn decimation operator matrix D and the noise is
modelled by an mm x 1 additive vector term 7. So that the mathematical
expression between f and one of the observed image g, is

gn = My [ + 1 (3.4)
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were M,, = D,,H,,T,, which is a mm X nn matrix.

3.2.2 Interpolation Method

The interpolation method is simplest and straightforward for multiple-view
super-resolution. In this method, the repeated measurements are interpolated
to recover the wanted point grid. One of the usages is to calculate the average
1mage. To get an average image, all the points in the observed images are trans-
formed back to the high-resolution grid. Since this will result that each grid
point may have multiple values around, a smooth kernel is used to compute a
weighted average that can reduce the noise.

Fov9 — Zj W; g
’ Zj W

where w; is the weight which relates the transformed measurement g; to f; and
its value determined by the smooth kernel.

(3.5)

If choosing the smooth kernel the same as the psf function, the mathematical
expression of the interpolation method is

fzwg = kilMTg (36)

where k is a diagonal matrix and k;; = ) j Mj; is the sum of the columns of
M. From Equation 3.6 we can see that the average image can not result in a
shaper image because M7 has the same blurring effect as the psf. Experiment
shows the average image is robust to the noise and can be used as a good initial
of other super-resolution algorithm/[6].

3.2.3 Maximization Method

The exact solution of the problem is to calculate the inverse of the M matrix,
so that

f=M"yg (3.7)

but normally this inverse is difficult or impossible to be calculate due to the
existence of noise and ill-posed situation of the matrix.

Instead, one can try to maximize the likelihood of an observed low-resolution
image g, given by the estimated high-resolution image P(g,|f). If assume the



3.2 Multiple Views Based Super-resolution 25

noise is Gaussian distributed with variance o2, the likelihood function can be
written as

exp (_ (Gn(2,y) — gn(=, y))2> (3.8)

202

P(.gnlf) = H
Vz,y

1
oV2r

where g, = M, f

The log likelihood of 3.8 is

Ugn) = =Y (Gn(@,9) = gu(@,9)* = ~llgn — 9n® (3.9)

Va,y

the maximum of ), ¢(g,) is found when the first derivative is zero, so that

fonte = (MTM)*MTg (3.10)

Since MTM is sparse and diagonal symmetric, it is efficient to use conjugate
gradient algorithm|[26] to find the solution.

3.2.4 Bayesian Method

The maximum likelihood method stated above is to find the maximum of the
likelihood function P(g,,| f) Whereas if we know some information of f, it
would be helpful to find a more desired solution. The way to do that is using
Bayesian law to maximize the posterior function.

P(flg) = W (3.11)

where P(g|f) is our likelihood function as before, P(f) is the prior function
which cooperates the prior knowledge of the f, P(g) is the scaling factor which
can be omitted during calculation.

Compared with the maximum likelihood method, the only changes for the
Bayesian method is the additional prior term in 3.11. The construction of this
term determines how well the Bayesian method can perform. The most popular
mathematical model used to describe the prior information of the desired image
is MRF (Markov Random Field) which will be described below.
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3.3 Markov Random Field

The MRF assumes that an individual pixel in an image is only affected by
a subset or clique of the pixels in the image. If these pixels are directional
organized, the relationship can be expressed by a N dimensional Markov chain,
where N is the number of orientations used in the subset.

P(filfizi) = P(filfr: k € Ni) (3.12)

Here, N; is the subset, normally chosen as the adjacent spatial neighborhood
of the pixel f; and usually invariable homogenous meaning that all the pixels
have the same neighborhood structure regardless of the positions of these pixels.
For simplicity, 4 or 8 adjacent neighbor structure (Figure 3.1) is utilized in 2D
image analysis.

Figure 3.1: A point with four and eight neighbors.

3.3.1 Gibbs Random Fields

A Gibbs distribution takes the form

P() = pesp(— 3 Velf) (313)

vCeC

where Z is a normalize factor called partition function, T is a constant called
the temperature which is normally assumed to be 1, U(f) = > yeoee Vo(f) is
the energy function, C is one of the pixel clique, C is all the cliques in the image.
Ve is called potential function which defines how the pixels are related. The
potential function is often chosen as pair-pixel related, meaning that Vo (f;) =
V(fla f])

If all the f obey Gibbs distribution then they are called Gibbs Random Field
(GRF).
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Hammersley-Clifford theorem states that F' is an MRF on S with respect to N
if and only if F' is a GRF on S with respect to N. One of the proof can be
referred in [16].

The MRF describes the local property while the GRF focuses on the global.
Both on them can be used to provide an easy interpretation of the prior.

3.3.2 Some Common Priors

The best prior can contain as much accurate information of the desired result
as possible. So designing a prior which is suitable to the current problem is
the best choice. However, sometimes designing a specific prior is not that easy.
Some of the priors are proved to be useful for most of the circumstances and
being widely accepted. Some of them are:

¢ Gaussian Model
When the Gibbs distribution is a multivariate Gaussian function, the Prior
is called Gaussian MRF (GMRF). In this model

V(C,) = dz, V(Cy) = Vdi

V(Cyy) = ’Yd.»zcya V(Cye) = ’derc
where v is a constant controlling the smoothness. For the first derivative
dy = fot1,y — foy dy = foyr1 — fay
1

dxy = %(ferl,erl - fz,y)a dyx = ﬁ(foﬁl,yfl - fac,y)
The second derivative of this model could be
di - fmfl,y - fm,y + ferl,yv di = f:v,yfl - fm,y + fx,y+1
2 1 1 2 1 1
dry = 5fe-1y-1 = foy + 3 forr1yrr, dyp = §fx—1,y+1 — fay + §fx+1,y—1'
The GMRF encourages a smoother result.

e Generalized Gaussian Model
The Generalized Gaussian MRF (GGMRF) introduces a factor p in the
GMRF to make it more flexible. The Gibbs distribution of GGMRF is

P(z) = - exp(——) (3.14)

GGMREF has heavier tail than GMRF when 1 < p < 2.
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e Huber Model
The Huber MRF (HMRF) uses Huber function so that the Gibbs distri-
bution has the form:

1

_ exp (—yz?) if |z| < «
P(z) = { gexp (—v(2alz| + a?)) otherwise (3.15)

HMRF encourages Gaussian smoothness when the pixels have the dif-
ference within |a|, whereas less penalty for the large difference so as to
preserve the edges. So that, the HMRF is also called Edge-preserving
MREF.

o Auto-Model
The Auto-MRF (AMRF) provides more flexibilities to control the smooth-
ness along any specific direction.

P(filfn,) = leXp (fiGi(fi)+ > Bufifi) (3.16)

VA .
i’EN;

Where G; is an arbitrary function and the orientation smoothness is con-
trolled by parameter §;. If f; € {0,1} or f; € {—1,1} the auto model
is said to be an auto-logistic model. Furthermore, if four-neighborhood
structure in Figure 3.1 is selected, the model is reduced to the Ising Model.

3.3.3 Model Optimization Method

The optimal pixel value is found by maximizing the posterior function 3.11.
If the function has the quadratic form, it would be efficient to use Conjugate
Gradient Ascent method[26]. Otherwise, a general gradient ascent method may
be used. It could be also possible to use Iterative Constrained Modes (ICM)[3]
or Simulated Annealing (SA) method.



CHAPTER 4

Range Image Restoration via
MRF

Due to the limitation of the hardware, the depth image is relatively low resolu-
tion and noisy. In another hand, the intensity image is with high contrast and
contains some information of depth (See Figure 4.1). Furthermore, the Swiss-

Depth Image

Intensity Image

Figure 4.1: The depth (left) and intensity (right) images. The values have been
scaled.

Ranger has very fast frame rate. It is possible to acquire multiple images at a
very short time interval. Both of the situations can be utilized to increase the
resolution of the single depth image.
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There are very few researches on multiple view super-resolution of depth image
because although we know the 3D objects are related by 3D rigid transform
and they are projected onto the 2D plane, it is very difficult to find a transform
between two 2D depth images. That will prevent us to write a formula like 3.4.

In reference [9], the authors proposed a method that utilized a normal high
resolution photo as prior to make a single super-resolution depth image. The
method is based on designing a new MRF. In this chapter, I will show the
structure of this MRF and how to use this structure to restore our depth image.

4.1 Forming MRF

The idea in reference [9] is to exploit the information in a high resolution image
to restore low resolution depth image. The assumption of this high resolution
image is that the depth discontinuities will also be reflected in this image. The
authors use the conventional 2D camera photos because the depth difference
may bring the brightness to change. The log likelihood function called depth
measurement potential is:

U= "k(y — =) (4.1)

i€l
where y is the restored image that we want to estimate, z is the original depth
measurement, k is a positive constant weight, L is all the depth measurements.

The log depth smoothness prior is of the form
=3 > wilyi—y)’ (42)
i JEN(3)
here N is the neighbor clique and w is the weight connecting the high resolution
information:
w;j = exp(—cu;;) (4.3)
c is a positive constant and

uij = lloi — ;3 (4.4)

here x is the high resolution image point, so that the small difference of x will
result in large w and smooth estimation. Whereas small w will decrease the
functionality of the prior.

Then the normalized posterior probability is

L (4.5)

1
p(ylz, z) = - exp(*g
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4.2 Optimization Method — ICM

The maximum of equation 4.5 can be optimized by a general gradient descend
method. Furthermore, the quadratic form of ¢ 4.1 and ¢ 4.2 makes the Conju-
gate Gradient descend be an efficient choice. In my experiments, I use another
simple optimization method — ICM [3].

In order to use ICM, each time the pixel value is only determined by its four

neighbor pixels (Figure 3.1). This is shown in Figure 4.2 where the red and
green pixels are neighbors between each other.

Figure 4.2: An illustration of updating rule of ICM

In each iteration, there are two passes. The first pass is fixing all the red pixels
and updating the green pixels according to the red pixel value. The second pass
is vice versa, fixing the green pixels and updating the red ones. The updating
rule for my application is:

i = kzi + ZjeN(i) WijYj
' k42 ene) wis

(4.6)

4.3 Restoring Range Images

In order to use formulae 4.1 ~ 4.5, a high resolution information is needed.
No doubt, the intensity image is a good candidate. The intensity image has
sharp jumps at depth discontinuities and low noise at smooth surfaces. Most
important, it is produced with depth image as a byproduct, no other equipment
is required.

Figure 4.3 shows how the constant parameter k and ¢ influence the result. If k
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and c are large the result image has almost no difference with the depth image.
On the contrary, the small k£ and ¢ will result in over-smoothing.

Large k ¢ Srall k ¢

Figure 4.3: The depth (left) and intensity (right) images. The values have been
scaled.

Figure 4.4 shows the restored depth image using suitable parameters. The
blowups around the nose and top part of the head before and after restoration
tell the improvement. The edge becomes sharper and the noise is depressed
after restoration.

Before Restoring After Restoring

E— m H

bl F. -

Befare Restoring After Restoring
‘ ‘
Figure 4.4: The depth image restored with suitable parameters (left). The

blowups (right) of the top and central part of the head indicate that the edge
becomes sharper and the noise is depressed after restoration.

The noise reduction is more obvious when displaying in 3D. Figure 4.5 is the
restorations of three faces.

The plot of iteration vs. sum of absolute changes of restoring Figure 4.4 is
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Figure 4.5: The 3D display of the restoration result. The first row is original
depth measurements and the second row is the restored measurements.

plotted in Figure 4.6. From this curve, we can conclude that the ICM converges
very fast. A bit over 20 iterations seems enough, which is not a problem for the
image having QCIF (176 x 144) format.

4.4 Summery

An experiment of restoring range images is successfully implemented here. The
restoration is based on MRF. The prior knowledge is selected from the corre-
sponding intensity images. This low cost solution is proved to be very suitable
for the application.
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Tatal Absolute Changes

40 a0 =] 70 an a0 100
Iteration

Figure 4.6: The sum of absolute changes for all the iterations when restoring
Figure 4.4. The plot shows that the ICM converges very fast.
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Range Image Registration






CHAPTER 5

Registration Overview

” Registration is the determination of a geometrical transformation that aligns
points in one view of an object with corresponding points in another view of
that object or another object.” [2]. Registration is widely used in medical image
analysis and computer vision areas. The relationship among different poses of
the object is described by geometric transforms. The geometrical transformation
can map points from space F' ((x,y,...... )’) of one view to points from space V
of a second view. The transformation of points in F written as 1 X n vectors
can be expressed by a transformation operator 7 :

G =1(F) (5.1)

The result G is the estimation of V.

If the object is rigid, the registration is named rigid registration and the motion
of the object can be expressed by a rigid transform. If the object is deformable,
the registration should apply nonrigid transform.

In this chapter, some 2D geometric transform and registration methods are first
introduced, which is believed to be heuristic to higher dimensions. Then, the
mathematical expression of 3D rigid transform is shown followed by the 3D rigid
object registration algorithm — ICP.
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5.1 2D Geometric Transform

2D image like a painting, a photo, a CT slide is the most common form to
represent object in life. The concept of the 2D geometric transform can be
easily extended to higher dimensions. Some of the frequently used geometric
transforms for 2D include:

5.1.1 Rigid Transformation

The rigid transform preserves all distances, straightness and parallelism of lines
and all nonzero angles. The rigid transform only allows rotation and translation
(see Figure 5.1).

Figure 5.1: The rigid transform

The operator can be expressed as:
G=RF+b (5.2)

where R is a n x n orthogonal matrix, meaning that R'R = RR' = I. Thus
R~ = R!. If forcing det(R) = +1, the reflection is not allowed.

5.1.2 Nonrigid Transformation

The nonrigid transformation can compensate nonrigid shape distortions in the
image. Each transformation has its physical meaning and different complexity
of the mathematical property.

e Scaling transformation
The scaling transform is similar to the rigid transform, except it allows
scaling (see Figure 5.2). It is useful to describe unchanged shapes in
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Figure 5.2: The scaling transform

different scenes. The transform equation is:
G =RSF+b (5.3)

or

G = SRF +b (5.4)

where S is a n x n diagonal scaling factor matrix. If S is isotropic, the
transformation is called similarity transform.

G =sRF +b (5.5)

o Affine transformation
The Affine transform preserves the straightness and parallelism of lines,
but allows angles between lines to change (see Figure 5.3). It is useful

- &

Figure 5.3: The affine transform

to describe the shearing shape in different scenes. The formula of affine
transformation is:

G=AF+b (5.6)

where A is a transformation matrix with element a;; which has no restric-
tions. We can see that the scaling transforms are special cases of affine
transform.

e Projective transformation
The projective transform preserves the straightness of the lines but not the
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Figure 5.4: The projective transform

parallelism. The parallel lines converge toward vanishing points (see Fig-
ure 5.4). It is useful to describe "tilted” scenes. The formula of projective
transform is:

G = (AF + b)/(pF + @) (5.7)

where p is a n x 1 projection vector. « is usually set to 1.

Other nonrigid transforms

The scaling, Affine and projective transformations keep the straightness
of lines and hence the planarity of the surface. Other transformations like
curved transformations do not. Usually they have more complex mathe-
matical formula, which make the parameter estimation hard to converge,
and more likely over-fit to the selected control points.

5.2 2D Image Registration Method

The common 2D registration methods include:

e Point-based methods

In point-based method, the correspondents of the points belonging to two
images are needed to compute the transformation. These correspondents
can be discovered manually or automatically.

Intensity-based methods

This method uses the information theory. If two images are well regis-
tered, then their normalized mutual information should be the maximum.
By maximizing the normalized mutual information, the transformation
parameter is calculated.[2]
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5.3 3D Rigid Transform

If the object to be registered is rigid in 3D, a 3D rigid transform is needed to
describe its movement. This transform is with at least 6 degrees of freedom:
three rotations along z, y, z axes: 8, 0, 0.; and three translations: ¢, t,, ¢,

Each rotation will result in a left multiplication of the rotation matrix 5.8 to
the whole translation matrix.

1 0 0
0 S, C;
c, 0 S,
R, = 0 1 0
-S, 0 C,
c, =S5, 0
R.,=| s, cC. o (5.8)
0 0 1

with Cy = cosfy, Sy = cosby, k € {z,y,z}. If assuming the object rotates
along z,y and x axes orderly,the whole rotation matrix has the form:

c,C. ~C,S. S,
R=| C.S.+8,5,C. C.C.-8,5,S. —S.C, (5.9)
S,S, — CpS,C.  SuC. + CpS,S
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5.4 Iterative Closest Points Registration

The ICP algorithm is an automatic 3D surface registration method first pro-
posed by [4] and [7]. The basic idea of this algorithm is to find pairs of closest
points between two meshes as the correspondents; then calculate and apply a
3D rigid transform to decrease the total distance of the correspondents. The
process is iterative until convergence or the distance is small enough. The ICP
algorithm works well when the initial positions of the two meshes are close. This
algorithm is fast, simple and accurate when the initial is good which make it
the most popular algorithm in the 3D registration field nowadays.

5.4.1 Basic ICP Procedure

nput target

The key steps of the ICP are: mesh and

source mesh

e Finding the correspondents: If the FiRding The
ICP wuses point-to-point distance, the correspondents for all

oint on source mesh has the corre- points on source mesh on

p Ds . : target mesh
spondent point p; on target mesh which !
has smallest Euclidean distance to p;. CEil) e S Rl
transform according to the

correspondents and

e Applying the transform: It is effi- applying it to all source
cient to use quaternion (see Appendix mesh points
A) or SVD method to calculate a 3D ¥
ridge transform according to the corre- B R LORNL L 2

. distance for all the
spondents. This transform, when apply- correspondent pairs

ing to the points on source mesh, can de-
crease the average distance between all the
pairs of correspondents.

teration converge or
distance small enough’

e Iterative implementation: The above v
. . . Output the result
two steps can be implemented iteratively e L p——

until convergence or the desired average source mesh and exit
distance is achieved.

This process is easily understand by a flowchart Figure 5.5: The
in Figure 5.5 flowchart of basic
ICP process



5.4 Iterative Closest Points Registration 43

5.4.2 A 2D Curve Registration Example

An illustration of registration two 2D curve using ICP can be seen from Figure
5.6. The blue points are the source, the red points are the target which is a 2D
rigid transform of the source and added some Gaussian noise. The colorful lines
indicate the correspondents found in each iteration.

Initial [teration 1 [teration 2
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lteration 3 [teration 5 [teration 10
g 1 g a3
+4 F4 4
[ _*_tzit— B _?*—*—;?;pt- B a?*ﬁ“
T AR
* #+
2 f‘t\« 1 2Py 5
g 1 0 0
0o 2 4 B 8 o2 4 6 8 2 4 B B8

Figure 5.6: An illustration of the ICP registration of two curves, where the blue
points are the source, the red points are the target and the colorful lines indicate
the correspondents found in each iteration

This experiment shows that the basic ICP algorithm works well for the simple
shape. It is robust and converges fast.
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CHAPTER 6

ICP Implementation for Face
Registration

The purpose of this chapter is to try to register a simulated face via ICP. I will
tell what are the problems to use original ICP and how to introduce the variants
to overcome the deficiencies of the algorithm. The experiment result is at the
final part.

6.1 Some Problems of Original ICP

As stated in the previous chapter, the concept of ICP algorithm is finding corre-
spondents according to the distance measure, calculating and applying the 3D
rigid transform and iterating. It works well for some simple shapes.

Before we proceed to register a simulated face, some of the problems should be
first looked at:

e The data size for the normal face application is usually thousands of ver-
tices per face model, finding the correspondents for all these points will
be very time consuming.
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e The correspondents should only exist on the overlapping part of the source
and target mesh. The points on non-overlapping part of the source mesh
will find wrong correspondents on the edge of the target mesh, which will
introduce registration mistakes.

e The data sometimes is quite noisy that will decrease the performance of
the ICP.

Due to these problems, the original ICP may take long time to converge and
can be expected to fail to produce the best result.

6.2 ICP with Variants

The solution is to introduce some variants[25] to the original ICP. According to
the problems, they could be:

e Only randomly use part of the points from source mesh in each iteration.
Too many points will increase computational complexity. Too few points
can not capture the feature and will make the result fluctuate. The exper-
iments indicates about 1% ~ 10% points is a good compromise to speed
and accuracy.

e If one of the correspondents is on the edge of the target mesh, this pair
of correspondents will not be used in computing the transformation. This
process will ensure most of the correspondents are from the overlapping
part of the two meshes.

e For each iteration, the average distance of the correspondents is calcu-
lated. If the correspondents have relatively large distance comparing to
the average distance from previous iteration, this correspondents will not
be used.

e Another remedy is to compare the normals of the correspondents, and
discard the ones beyond a threshold. This is for not to incorporate the
noise points which usually have large distance and irregular normals.
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6.3 Simulation Results

The experiments to investigate how the ICP with variants can track the rotation
of the face are implemented below. The translation of the face will not affect
the registration result because the centers of the target and source mesh can be
matched up before registration.

6.3.1 Model I: part of a face

The first 3D model for simulation is a 3D laser high-resolution scan of a part of
the face with 6252 vertices (see Figure 6.1).

Figure 6.1: The first model for simulation. The left is rendered 3D display. The
right is the triangulation of all the vertices.

The target mesh is produced by projecting the model along the z axis into a
71 x 100 equally spaced grid. The value of the grid points are interpolated by
Barycentric coordinate transform(see Appendix B) and then plus some Gaussian
noise. This will simulate a depth image (Figure 6.2) with about 3500 vertices.

The source meshes are generated by rotating the model along x,y and z axes from
—30° ~ 30° with step 10° and then projecting at the same way as producing
target mesh. Some of the source meshes are shown in Figure 6.3
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Figure 6.2: The simulated depth image which is produced by projecting the
model along z axis to a 2D 71 x 100 plane then plus Gaussian noise. The target
mesh is read from this depth image which have about 3500 vertices.

alolc

Figure 6.3: Some of the source meshes generated by rotating the model and
projecting at the same way as producing the target mesh. From the first row to
the last, left to right, are the depth images rotating along =, y and z axes with
—30°, —10°, 10° and 30° respectively.
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Figure 6.4: The registration result of rotated meshes. The result shows the
algorithm has no problem to handle 30° rotation in this case.

Now register the source meshes to target mesh via ICP with variants. The result
shows how this algorithm can track the rotation of the face (See Figure 6.4).
The rotation angle is calculated according to 3D rigid transformation matrix
5.9. The algorithm has no problem to handle 30° in this case.

Figure 6.5 shows the registration process with the source face having 30° rotation
plus a bit translation. The target face is shown in skin color and the source is
in blue. The interlaced appearance of the two colors in the final result tells a
good match.

6.3.2 Model II: a full face

The second 3D model for simulation is a 3D laser high-resolution scan of a full
face with 20904 vertices (see Figure 6.6).

The same processes are made. The 73 x 100 target depth image resulting about
4500 vertices. Some translated source images and the tracking results are in

Figure 6.7 6.8 and 6.9.

As before, a source face with rotation 30° plus some translation is created. The
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Figure 6.5: The registration process for source face with 30° rotation plus some
translation of Model I. The target face is shown in skin color and the source face

is in blue. From left to right, top to bottom: the initial positions, iteration 5, 10,
20, 30 and 50.

registration process is plotted in Figure 6.10. Although the model is quite noisy,
it converges to a good result eventually.

6.4 Summery

According to the property of our data, several variants of ICP are added. The
experiments prove these improvements make the ICP robust to noise. In sim-
ulation, there is no difficulty to register objects within 30° rotation and con-
siderable translation. The drawback of current algorithm is the slowness of the
convergence.
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Figure 6.6: The second model for simulation. The left is rendered 3D display.
The right is the triangulation of all the vertices.

Figure 6.7: The target depth image which produces the target mesh with about
4500 vertices.
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Figure 6.8: Some of the rotated source meshes.
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Figure 6.9: The registration result of rotated meshes. There is a little deviating
for the y axis rotation, but in all the result is good enough.
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Figure 6.10: The registration process for source face with 30° rotation plus some
translation of Model II. The target face is shown in skin color and the source face
is in blue. From left to right, top to bottom: the initial positions, iteration 5, 20,
40, 60 and 80.
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Part V

Surface Reconstruction






CHAPTER 7

From Point Cloud to Surface

The registered points are still separated before merging them to one model.
Since the scanner discussed in this report can only measure surface of the target,
the merged model will be the target’s surface. The concept of reconstructing
surface from measured points and the previous research will be the content of
this chapter.

7.1 Current Situation

The SwissRanger and other laser scanner produce sampled range of the surface
to the camera. These samples, forming unorganized point cloud, represent the
target’s surface. Unfortunately, due to the inaccuracy of the measurement and
the registration error, the simple triangulation of all the points will result in
bumps and zigzag on the surface. Actually, reconstructing the precise surface
from unorganized point clouds, in case of incomplete, sparse and noisy data, is
difficult and still not been completely solved [11].

Luckily, with the rapid development of the scanning device, more and more
attentions are received in this area during recent years. Some of the previous
research will be addressed in the following section.
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7.2 Some Popular Algorithms

7.2.1 Averaging Method

e Simple Averaging
The point set can be simply consolidated by replacing the repeated mea-
surements with their mean values. This simple averaging is not robust,
and easily produces jumps (see Figure 7.1).

e Weighted Averaging
If assigning different weight to each repeated point, then the averaging
process may produce desired result. For example, someone can make the
outliers have zero weight so as to remove them. In Dorai’s article [5], the
author use the formula

Wsps + tht

avg = 7.1
Pave = W, (1)

to keep a smooth boundary. In this formula, p,.4 is the averaged point, ps,
p¢ are the repeated measurements from source and target meshes and W,
W, are the weights related to the distance between point and boundary.
The distance is found iteratively, and the weight is increased with the
distance. Figure 7.1 shows the result of merging the same surfaces.

o o o

Figure 7.1: The averaging methods. (Left)The simple averaging which produces
jumps at boundary. (Right)The weighted average by Dorai’s method. Figure is
from [5]

7.2.2 Moving Least Squares

The goal of reconstruct surface is usually to find an optimal 2D or 3D curve
from point set. This optimization can be done locally, for example, drawing a
curve fitting the neighbors of a point and then update the point according to
this curve. This method is called Moving Least Squares (MLS). In reference
[18], the author defines a smooth manifold surface approximated by the MLS.
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In his method, to construct the surface around point r, a reference plane H =
{z| <n,z>—D =0,x € R3} is first computed by minimizing

N
Z(< n,pi > —=D)*0(||pi — qll) (7.2)

i=1

where n is projection direction for r to H, q is the projection point, p; is the
neighbor point of r and 6 is a smooth, positive, monotone decreasing function.
Once the reference plane is determined, the height of p; over H can be calculate
as f; =< n,(p; — ¢q) >. Then the coefficients of a polynomial approximation g
is computed by minimize the weighted least squares error

N

Z(Q(Cﬂi,yi) — fi)*0(|lpi — all) (7.3)

i=1

The symbols in the Equation 7.2 and 7.3 are plotted in Figure 7.2.

Figure 7.2: The graphic illustration of the symbols used in equation 7.2 and
7.3. The figure is from [18].

If choose 6 as a Gaussian
O(d) =e nZ

then, the ability of the surface to reveal details can be controlled by h.

7.2.3 Volumetric Method

The volumetric method describes the surface by voxels in the volume. In ref-
erence [8], the author introduced a simultaneous updating scheme. Each voxel
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has a cumulative signed distance function D(z) and a cumulative weight W (z),
which is updated by 4’s input range image with
Wi—1(z)Di—1(z) + w;(x)d; (x)

Wi—1(x) + w;(x)

DZ(J?) =

Here, d(z) is the signed distance from x to the nearest surface along scan line
and w(x) is the weight which is computed by linear interpolation of the weights
stored at neighboring range vertices (See Figure 7.3).

Wolume

f:\r»}'_mg Womel Range surice

Sensor

Figure 7.3: The signed distance and weight. Figure is from [3]

The isosurface is extracted from D(z) = 0.

7.3 Other Possibilities

If the intrinsic topology of the data is known, reconstruct a parametric surface
might be much more accurate and easy. Unfortunately, the details of the date
is usually not acquirable in advance. The curve fitting process may partly esti-
mate the structure of the data. For some special usages, where the selection of
target objects is limited, then a model recognition process may provide sufficient
knowledge. Some of the related works can be found from [15] and [24].

Another possibility is to use high dimensional MRF. In the previous chapters, it
has been proved that the MRF is a very powerful tool for 2D image restoration.
However, its applications on higher dimension are very rare. This is partly
because the difficulties to define neighbors in high dimensional space and the
optimization procedure might be very complicated. In the next section, I will
briefly introduce an application of MRF to refine surfaces.



CHAPTER 8

Surface Refinement by 2.5D
MRF

In chapter 4, the experiments indicate that restoration result of the depth image
using MRF is with low noise and high contrast. Chapter 6 shows the ICP with
variants is suitable to find a 3D ridge transform. In this chapter, I will intro-
duce a new method to merge two or more surfaces. These surfaces are at the
assumption of having small alignment error and low level of noise. The method
is based on high dimensional MRF. This MRF may called Surface Combining
MRF or 2.5D MRF. For high dimensional MRF, the most difficulties include
defining neighbors, designing suitable mathematical form of the prior and ap-
plying optimization approach. My trials of solving these obstacles will be stated
below.

8.1 Some Definitions

Before write the mathematical formulae, let me start with introducing some
terms used to form my MRF.

¢ Overlapping
The overlapping parts are the parts of two meshes covering the same area.
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In my implementation, the points belonging to overlapping part of one
mesh are the ones having closet corespondents of another mesh and their
corespondents are not on the edge of that mesh.

Self Neighbor

A point A’s self neighbors are the points belonging to the same mesh with
A and at the self neighbor positions of the A. In my implementation,
the mesh is first triangulated by Delaunay triangulation. All the vertices
being in the same triangle with A are A’s self neighbors. In Figure 8.1, all
the green points are the self neighbors of red point.

Figure 8.1: An illustration of self neighbor. All the green points connect-
ing the red point by Delaunay triangulation are the self neighbors of red
point.

e Alien Neighbor

A point B’s alien neighbors are the points belonging to the different meshes
with B and at the alien neighbor positions of the B. In my implementa-
tion, only when B belonging to the overlapping part with another mesh
have alien neighbors on that mesh. All the meshes not having B are first
triangulated by Delaunay triangulation. The vertices at the closest trian-
gle to B in one mesh is the alien neighbors of B in that mesh. Finding
the closest triangle is simplified by finding the closest middle point of each
triangle. So, in my experiment, a point B will have no alien neighbors in
another mesh if it is not on the overlapping part of that mesh, otherwise
will have three alien neighbors. In Figure 8.2, the yellow point finds its
three alien neighbors.



8.2 Mathematical Expression 63

Figure 8.2: An illustration of alien neighbor. The purple points are the
middle points of the triangles. The three vertices of the triangle having the
nearest middle point to yellow point are the alien neighbors of the yellow
point.

8.2 Mathematical Expression

The mathematical expression of my 2.5D MRF is inspired by the MRF used in
Chapter 4 (4.1 ~ 4.5).

To restore a surface with point y;, the depth measurement potential has the
same form with 4.1 except that L is all the points on the surface needed to

restored.
U = Z k‘(yl — ZZ‘)2 (81)
icL
k is called proportion factor, which adjusts whether the result is more determined
by original measurements or prior.

For the log depth smoothness prior, the difference with 4.2 is that N () here is
only the clique of alien neighbor, so that all g;’s in 8.2 are alien neighbors of y;.
For one point, there will be none or there alien neighbors as stated above.

=" > wily — ) (82)
i jEN()
If choose the weight w;; as in 4.3, and c positive, V; ju;; > 0, then w is in the
range exp(—cmax (V; ju;;)) ~ 1
w;j = exp(—cu;;) (8.3)

At this situation, the ¢ can be called as discrimination factor, which adjusts the
appearance caused by the difference of u.
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The formation of u is important to decide what the prior will be in this MRF.
Based on the assumption of our depth measurement, I expect the locally smooth
part of a mesh can combine with other overlapping part seamlessly, because
mostly they are separated by registration error. Whereas the part with details
should be more likely to keep the origin measurements, because it helps to
increase the resolution.

To evaluate the local smoothness at a point y;, I choose the maximum angle
difference between the normal of the measurement z; with the normals of its
self neighbors z;. So that

Ujj = Uy = %%X < ﬁziaﬁzj > (84)

here, 7 is the normal vector and

wi; = w; = exp(—cu;)

P ZwiZ(yi —i5)°

Finally, the log posterior probability is the summation of —¥, —® and a con-
stant.

logp(yle,z) = -V — &+ (8.5)

8.3 Optimization by 2.5D ICM

One of the advantages of separating alien and self neighbors is that the 2D ICM
algorithm can be easily extended into 2.5D. In stead of updating odd and even
grid consecutively, the 2.5D ICM updating points from one mesh to another
with the updating rule

y. _ kzi+wi ZjeN(i) ﬂj (8 6)
' k 4+ wynum(N (7)) '

here, num(-) means the number of. If the errors between the meshes are small,
the alien and self neighbor cliques and the weight can be thought to be fixed
during iterations. Then, they can be computed in advance, so that the total
computational complexity of this 2.5D ICM is QO(N). Here @ is the number of
iterations and NV is total number of points. This is not a very big computation
amount.
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8.4 Experiments

To display the surface of a combined point set, four methods are provided here.

1. Direct Display
Each sub-point set is triangulated and rendered in the same view. This
method can not provide an integrated 3D model, but feasible to observe
the difference between the point sets. The displayed surface is the patches
of the outermost ones for each point set which generally is not the correct
result. We have met this method in Chapter 6 before.

2. Display Appended Point Set
This method is just simply appending all the points, and triangulating as
a whole. It is ok for error free situation, but usually suffered by zigzag
pattern on non-ideal cases.

3. Simple Averaging
As described in the previous chapter, this method can partly consolidate
the points, but not very robust.

4. 2.5D MRF
This is the method I derived in this chapter. It is designed to remove noise
on smooth part and recover details on rough part.

8.4.1 Noise Robustness Test

First I transform one of the image in Figure 6.3 back with correct parameters.
Figure 8.3 shows the target, correctly registered source, and direct display of
the both.

Figure 8.4 shows the appended display, simple averaging and 2.5D MRF. Clearly,
compared with original face in Figure 6.1, 2.5D MRF removes most of the noise
and partly recovered the mouth which is hard to see in any other image.

The test on Model II for more prominent noise (See Figure 8.5 and 8.6) proves
that 2.5D MRF ensures a reasonable solution even if a disastrous scanner is at
hand.
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Figure 8.3: Noise robustness test for Model I figure I. From left to right, the
target, registered source and direct display of both faces where the registered
source is in blue.

8.4.2 Registration Error Robustness Test

Now the noise-free Model I has been applied with a registration error of one de-
gree and small translations for x, y and 2z axes. From Figure 8.7 we can see that
even a small error will ruin the appended display. Both simple averaging and
2.5D MRF are robust for the small errors. It is hard to increase the resolution
by simple average, but 2.5D MRF can generate finer grid (see Figure 8.8) so as
to make a super-resolution when the error is tolerable.

When the registration error is enlarged for Model II. The 2.5D MRF seems
more suffered by the misalignment of the details (see Figure 8.9). It is expected,
because the algorithm can not discriminate where is the misalignment to remove
or where is the additional useful details. The misalignment should be handled
as much as possible in the registration process.

8.5 Summery

An 2.5D MRF is proposed and implemented here. This MRF aims to combine
multiple surfaces with low noise and small mis-registration error. The basic idea
is to move the point as close as possible to its alien neighbors if it is considered
to be locally smooth and keep the original value when it is a detail. The local
smoothness is evaluated by the maximum angle difference between the normals
of the point and its self neighbors’.
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Figure 8.4: Noise robustness test for Model I figure II. From left to right, the
appended display, simple averaging and 2.5D MRF. Clearly the last one is the
best which removes most of the noise and recovers part of the mouth.

The experiments show that this surface combining MRF is very powerful to
handle noisy situations and can make super-resolution when the registration
error is small.
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Figure 8.5: Noise robustness test for Model II figure I. From left to right, the

target, registered source and direct display of both faces where the registered
source is in blue.

Figure 8.6: Noise robustness test for Model II figure II. From left to right, the

appended display, simple averaging and 2.5D MRF. The 2.5D MRF ensures a
reasonable solution even when the noise is prominent.

Figure 8.7: Registration error robustness test for Model I. From left to right,
the direct display, appended display, simple averaging and 2.5D MRF.
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Figure 8.8: The blowups of the nose for Model I. From left to right, the original
low-resolution surface, the simple averaging and 2.5D MRF. The 2.5D MRF can
generate finer grid than simple averaging, so as to make a super-resolution.

Figure 8.9: Registration error robustness test for Model II. From left to right,
the direct display, appended display, simple averaging and 2.5D MRF. The 2.5D
MRF is more suffered by the misalignment of the details.
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CHAPTER 9

Manikin Face Modelling and
Super-Resolution

Based on the techniques stated in the previous chapters, an experiment to create
a manikin face model and super-resolution surface are implemented here. The
process includes scanning the model, extracting the face, restoring the image
via MRF, registering the depth measurement via ICP, modelling face via simple
averaging and creating super-resolution surface via 2.5D MRF.

9.1 Data Acquisition

The target object is a manikin head placed on a rotation table (see Figure 9.1).
The head is about 0.5m far from the camera, which have the depth resolution
2.5 ~ 6mm according to the manual [1], resulting losing many details of the
face.

The SR-3000 is fixed and captures depth images while the head rotates with the
rotation table. Each time the head rotates approximately 1 degree. 150 images
are captured which cover the whole face and most part of the head. Appendix
C shows some of the depth and corresponding intensity images.
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Figure 9.1: Photos of the front and side views of the real manikin head.

9.2 Face Extraction

Before registration, the preprocessing to extract the manikin face from the noisy
depth image must be done first, which can be divided into the following steps:

e Cutting Rotation Table
The rotation table is connected to the manikin head, but it is not in-
terested. In this experiment, the rotation table is always located at the
bottom of the image. It can be easy removed by cutting part of the image.

e Separating the background
The background is supposed to be far from the camera, so a threshold
applying to the range image will be sufficient.

¢ Removing the Isolated Noise
When the integration time is not long, there will be some noise. The
pattern of the noise is usually isolated or forms small patches. The removal
algorithm is similar with the one used in reference [5]. The size of each
connected regions in the image is computed, and the ones less than 20%
of the largest one will be removed as noise part.

¢ Restoring the Measurement
The high-resolution and low noise depth measurement is restored by MRF
which is detailed described in Chapter 4.

¢ Solving Edge Extension
As stated in Chapter 2, the psf function of the camera is about 0.4 pixel
standard deviation Gaussian function. The psf function will make smooth
descents around sharp edges causing the object stretch toward the back-
ground. My solution is deleting 3 pixels’ thick edge from the outermost of
the object which seems a good compromise between removing the exten-
sion and keeping the information.
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Figure 9.2 shows a preprocessed face, which is also used as the target in most
of the succession experiments.

Figure 9.2: The front and side views of one of the preprocessed depth measure-
ment of the manikin images used as target in most of the succession experiments.

9.3 Depth Registration via ICP

The method of registration of the multiple views is based on the ICP algorithm
with variants as stated in Chapter 6. To accelerate the speed of searching the
nearest correspondents, KD tree [14] is used.

Although optimal results have been got for simulation in Chapter 6, the exper-
iment here shows the registration error is likely to increase dramatically when
the rotation is more than 10 degree. Furthermore, the side views are much
harder to be matched than the front views because of the lack of features.

Figure 9.3 and 9.4 are the processes of two views with about 5 and 10 degrees
registered together. The mismatch on the noise is obvious in Figure 9.4.

9.4 Face Modelling

Now 15 views with 5° rotation difference are registered and synthesized into a
face model covering a broader part of the face. The points of this model are
generated by simple averaging, which are displayed in Figure 9.5. In order to
ensure the combining process incremental and order independent which means
the updating is simultaneous and unbias to each scan, every point is assigned a
weight w with initial value 1 and the updating of a point P is following the rule
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Figure 9.3: The registration process of front views with about 5 degree rotation.
From left to right: the initial positions, 10, 20, and 50 iterations.

Figure 9.4: The registration process of front views with about 10 degree ro-
tation. From left to right: the initial positions, 10, 20, and 50 iterations. The
mismatch around the nose is obvious.

9.1 where the 7 is the scan number.

(wi P + PPe)

P.avg =
! wij—1 + 1

and w; = w;_1 +1 (91)

To render and display this point set, one may need to use volumetric method
as mentioned in Chapter 7. For simplicity. the Matlab functions for volumetric
rendering is used. From Figure 9.5 and 9.6, we can see the deadly accumulation
of errors.
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Figure 9.5: Face model synthesized by 15 registered views, each with 5° rotation.
The points are generated by incremental simple averaging method.

Figure 9.6: The volumetric rendering in Matlab for the point set of Figure 9.5
9.5 Face Super-Resolution

In Chapter 8, the super-resolution of the simulated face is generated by 2.5D
MRF when the registration error is small enough. To achieve this, two views
with about 3 degree rotations are registered to the target view. Figure 9.7 shows
the 2.5D MRF combining result, in which, more details are recovered when k
and c are large and more smoothness when k and ¢ are small.

9.6 Summery

Finally, the real manikin face is on its stage here. The depth information of
the face is first extracted by a series of preprocessing procedures. Then, the
different views are registered by the ICP algorithm with variants. Based on
the registration result, we can concatenate views so as to cover a broader part
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Figure 9.7: The super-resolution from 3 views by 2.5D MRF. The left is gener-
ated by large k and c resulting in more details and the right is generated by small
k and c¢ showing more smoothness.

of the face, or utilize the repeated measurements in the same part for super-
resolution. The result of concatenation shown in this report from 15 views is
done by incremental simple averaging, and the super-resolution is achieved by
2.5D MRF from 3 views.

This chapter also expresses how different between the real and ideal cases in
computer vision. The good property of ICP tested in simulation is greatly
deteriorated here, and the registration error is propagated when connecting
multiple views. The main reason is maybe the inconsistency of the measurement
in different views. The algorithm tries to match the majority smoothness part
of the face like the forehead and cheek but omits the details. However, these
smoothness parts may change their shapes a bit during the rotation in the depth
image captured by SwissRanger.



Part VII

End Remarks






CHAPTER 10

Future Work and Conclusions

This report shows a trial to modelling and super-resolution a manikin face from
range images. These images are captured by SwissRanger SR-3000, a newly
invented range detection camera. The trial mainly includes an analysis of the
camera, restoration of the range images by a recent proposed MRF scheme, uti-
lization of the widely accepted ICP algorithm with some variants to registration
and originating a surface super-resolution method — 2.5D MRF. Due to the time
and knowledge limitation of the author, the final result is not fully satisfactory.
This also makes more spaces to the future research, so that the future work as
far as I can see and conclusions from my previous work may help the succession
researches in IMM. The following statement will be arranged by camera test,
range image restoration, registration method, surface reconstruction and system
consideration.

10.1 Camera Test

SwissRanger is a newly invented range detection camera based on TOF tech-
nology. It has the advantages of portable size, low energy consumption, fast
frame acquisition rate and the measurements can be easily converted to Carte-
sian coordinate. However, it also suffers to the low resolution, inaccurate and
inconsistent measurement. The characteristics and applications of this camera
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are still uncertain to the researchers. Simple experiments reveal that it has
a sharp spatial psf having 0.4 pixel deviation if fitted to a Gaussian and the
integration time should be carefully selected to ensure low noise non-overflow
data.

The most annoying thing is that the measurement may be affected by the reflec-
tion angle, the material and the colors of the object. This is obvious by looking
at the manikin’s eyes, which are black and concave and result in two deep holes
on the measured face. These physical problems may cause the major limitations
of the applications and more or less exist on other laser equipments.

To understand and full utilize SwissRanger, a serial of analytic tests need to
be designed to evaluate the performance of this camera. For example, the tests
should partly answer the following questions

- How does the illumination affect the measurement?

- How do the reflection angle, material and color affect the measurement?
Could it be corrected, maybe by using intensity information or additional
instruments like a colorful photo camera?

- Does the psf change with the depth of object? If it does, how?

- What is the deviation of the measurement in different range?

10.2 Range Image Restoration

The depth image produced by SwissRanger is spatially low resolution and noisy,
but the byproduct intensity image has high contrast and low noise level. The
initial goal is to use the intensity information to restore depth information. This
is best achieved by MRF, with designing the intensity information in the prior.
Paper [9] introduces a MRF structure for this. By using this structure, the
range images are well restored with obtaining the good property of the intensity
information.

Although using intensity image is the best low cost solution, it can not be
beyond the physical limitations of SwissRanger. One can use an additional
photo camera as a new source of prior. This is what the author did in paper
[9]. A high quality colorful photo can help to create a super-resolution depth
image. Furthermore, it can provide natural color texture.
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10.3 Registration Method

The ICP algorithm has dominated the 3D automatic registration applications.
This algorithm is relatively fast, simple and accurate if the source is good initial-
ized. Depending on specific problems, some variants of ICP can be introduced
to improve the registration performance. In my experiments, the variants are
randomly picking part of the points, removing correspondents on edge, delet-
ing outliers with large distances and selecting correspondents having compatible
normals. The algorithm is good enough for simulation, but greatly deteriorated
when applying on real data.

The problem is maybe caused by the inconsistency of the measurement due to
the physical limitations of the SwissRanger. Besides doing corrections on the
camera part, an convenient way is to design more variants to ICP. Currently
the matches is mainly decided on the smooth part of the surface, so as to omit
the details. Then one can first extract the details and align them along. The
source initialization is always a big problem. Bad initialization may cause the
matching easily trapped into a local minimum. The solution can be matching
from low to high resolution, so called multi-resolution registration, or trying
different initials then selecting the best one. Most directly and efficiently, let the
user place the source to an approximate initial. Every successful 3D modelling
system nowadays has this machine-user interaction interface. No systems can
be purely automatic under considerable errors whatever how good the data they
can acquire.

10.4 Surface Reconstruction

Reconstruct a surface from point set is not a new problem, but attracts more and
more attentions with the development of scanning techniques. For the differ-
ent application, new problems may arise. For the data from surface scanning,
an robust point consolation algorithm both to noise and registration error is
required. Up to now, no algorithms have fully satisfactorily done it.

Some of the widely accepted algorithms include averaging, moving least squares
and volumetric method. I proposed a 2.5D MRF to combining surfaces, which is
inspired by the one used in 2D range image restoration. In this high dimensional
MREF, the neighborhood of a point is divided into alien neighbors which are the
vertices of the closest triangle in another mesh and self neighbors which are
the vertices in the same triangles of the point. The combination policy is that
the smooth part should be moved as close as possible and the details kept the
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original value. The local smoothness of a point is evaluated by the maximum
angle difference between the point and its self neighbors’. This 2.5D MRF
can produce super-resolution surface. The simulation also proves the noise and
registration robustness of this algorithm. However, it is computationally heavy
when handle more than two surfaces and the considerable registration error in
the real case is detrimental to the final result.

Except for simple averaging, there is no comparison between 2.5D MRF and
other surface reconstruction algorithms. This is necessary to evaluate the ad-
vantage and disadvantage for each one. Somebody can create a new assumption
to change the form and working procedure of this MRF. Some small revisions
could be using gradient to evaluate local smoothness, incorporating different
neighbors or optimizing the model other than 2.5D ICM.

10.5 System Consideration

The error and time control is always the major obstacle to the applications of 3D
modelling systems. The experiment indicates the dominating error of the system
is the registration error. This error will affect the final surface reconstruction
process and can not be efficiently reduced after registration step. Several sug-
gestions to reduce pairwise alignment have been stated in the previous section.
The accumulation error can be minimized by evenly diffusing the error when all
the multi-views are acquired[22].

An 3D modelling systems should be real-time or near real-time, so that the user
can simultaneously found the error and correct it by the machine-user inter-
action interface. The ICP has been proved to be suitable in such systems[25].
However the MRF is usually not. The MRFs implemented in this report are
Matlab programmed. They should be converted and optimized. And the suit-
able rendering method for the point set is also needed. The volumetric rendering
result in Matlab is too rough.



APPENDIX A

Compute 3D Rigid Transform
from Correspondents

Given target point set C' and source point set P, where any point p; in P has one
correspondent ¢; in C in order to finding a rotation matrix R and translation
matrix ¢ applying on P, so that they minimize

N,
1 P

D llei = Rpi — ¢ (A1)
P =1

where NN, is the number of points in P, one could use unit quaternion or SVD
method.

A.1 Unit Quaternion

The unit quaternion method is proposed in reference [13]. The following de-
scription of its detailed usage in ICP algorithm is based on the reference [21].

First finding the mean of two point sets:

N,
1 L 1
C:—g ; :—E ; A2
m N, 2 C; Me N, 2 C; (A.2)
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Make the two point set zero mean:
¢ = —me P =pi—my (A.3)

Compute a 3 X 3 matrix:

NP
Moo= ) pid”
i=1
S11 Sz Sis
= Sa1 S22 Sa3 (A4)
S31 S32 Sa3
Then construct a 4 x 4 matrix:
S11 + Saz + Ss3 Sa3 — 32 S31 — S13 S12 — S
N — Sa3 — S32 S11 — Sa2 — Ss3 S12 + S0 S31 + S13
S31 — S13 S12 + Sa1 —S11 + S22 — Sa3 Saz + Ss2
S12 — Sa1 S31 + S13 Sa3 + Sa2 —S11 — S22 + Sa3

If the largest eigenvalue of N corresponding to the normalized eigenvector e =
[€o, €1, €2, e3]’, the rotation matrix R will be

eg+el—es—e3  2(erex —epes) 2(e1e3 — egez)
R= 2(e1ea +egez) €3 —ef+e3—e3  2(ezez —epeq)
2(e1e3 — eges) 2(ezes +ege1) €5 — el — ek + €3

and the translation matrix
t=mc.— Rm, (A.5)

A.2 SVD

It could be also possible to apply SVD to matrix M in A.4 and compute the R
and t.
X=U8v"

R=vUT

The translation is the same as in A.5.
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Interpolating Points in
Triangles

The most common interpolation approach is inverse distance weighted (IDW)
interpolation. In IDW an estimated point value is only decided by the weighted
average of a subset of known points. The points having large relative distances
will have small weights while small distances have large weights.

Since three 3D points can determine a 2D plane, the following illustration will
be in 2D. Now suppose we want to estimate the value of a point (x,y) in a
triangle with vertices 4, j and k. The estimation is only based on the value of
these vertices Q;, @;, Qr and the relative position of this point to the vertices.
There will be several things to be done when applying IDW.

B.1 Is This a Triangle?

This problem, in another word, is that the three points are not in a line or the
area enclosed in this three points are not zero. In area measure, it will be

A Tl + 2y + TrYi — Yi%; — YTk — YT

5 >0




88 Interpolating Points in Triangles

where 2, Y, w € {1, j, k} are 2D (z,y) Cartesian coordinate of w, and A is the
area of the triangle.

B.2 Is the Point in the Triangle?

We only care about interpolating a point within the triangle or on the edges
of the triangle. If given three vertices and a point position, how can we know
whether this point satisfies the condition? This condition can be tested by the
convex property of the triangle, in which all the points in triangle should be at
the same side referring the line containing any of the edges of the triangle (See
Figure B.1).

Figure B.1: All the points in the triangle belong to the same side of any of the
elongated edges.

Suppose e;, e; and ey are the three edges opposite to the vertices ¢, j and k
respectively. The side, indicated by three sign values S;, S; and Sj of a point
to these edges are

Si = sign((zr —x;)y — (Y — vj)r — (Tryj — TjYx))
S = sign((xr — 2y — (yr — vi)v — (Tryi — Tiyr))
Sk = sign((vi —x;)y — (vi — yj)7 — (viy; — 5¥:))

The known point inside the triangle can be selected as the middle point, so that
its coordinate is

- Ttz tT
3

- Yty Ty
vyom Ty
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and the side of information of the middle point is

3

.

= sign ((vx — ;)7 — (Ye — ¥5)% — (ThY; — T5Yr))
G — (yr — ¥i)T — (Tryi — Tiyk))
= (yi —yj)T — (wiy; — 25vi))

t

= sign ((xg — ;)

<.

Y
Y

U
>

= sign ((zi — ;)

Now we have the criterion of a point within a triangle or on the edges of it,
which is ) B 3

B.3 What Is the Weight Should Be?

If a point is in a triangle, this value can be interpolated by the vertices of triangle
according to the relative position of this point. The weights are determined by
the Barycentric coordinate of this point. The Barycentric coordinate b;, b; and
b of a point is computed by

a; ag
bi =L bp=—
TTA P A
where a;, a; and ay are area of three triangles divided by the estimated point
(See Figure B.2). And

TY; + Ty + TkY — YTj — YTk — YT

a; =

2
0, = Tyt Tyk TRy — Yl — YTk — YR
;=
2
ap = Ty + x5y + TY; — YiTj — YT — YT
2

Figure B.2: A point divides the triangle into three sub-triangles which have the
area a;, a; and ay
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If choose cubic S-shape function as the weight distribution function, the weights
are computed as

b2b, by
bib; + biby, + b;by

[ (22— 241203
L k J

b2biby
3
bibj + bbby, + b]b}.C

[z -2 B+i2-13
bi J k % b i J k

b2b;b,
bibj + b;by, + bjbk

L+02-17 B+R-0
|f)i (ljg + b; 7112 2

in which, l,, w € {i,j, k} are the length of the edge opposite to vertex w.

w; = b?(3—2b;)+3

w; = b3(3—2b)+

wy, = b3(3—2by)+3

Finally, the interpolation value Q is computed as

Q = wiQi +w;Q; + wrQx



APPENDIX C

Sample Depth and Intensity
Images Used in Experiment
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Figure C.1: Some sample depth images with about 5° rotation difference used
in experiment.
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Figure C.2: Some sample intensity images corresponding to the depth images
in Figure C.1 used in experiment
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Sample Depth and Intensity Images Used in Experiment
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