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Abstract

Several source separation techniques use binary masking on spectrograms
to separate two or more speakers from each other. In this thesis, the pos-
sibilities for obtaining the best quality signal, reconstructed from masked
spectrograms through vector quantized models of speakers, is investigated.
The advantages and disadvantages of such an approach are examined. Ad-
ditionally, the task of signal reestimation from a spectrogram is investigated
using several algorithms.

Vector quantization of speakers can be used to improve on binary masked
spectrograms but the approach is not shown to produce high quality speech.
It is also concluded that phase information is very important for high qual-
ity speech reconstruction, and parameters for optimal phase reestimation are
suggested.

Keywords:
signal processing, data clustering, mel filtering, voiced unvoiced detection,
k-means, vector quantization, signal estimation, phase reconstruction, spec-
trogram reconstruction.
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Resumé

Flere teknikker til adskillelse af tale fra to eller flere talere anvender binære
masker p̊a spektrogrammer. I denne opgave undersøges mulighederne for at
opn̊a den bedste kvalitet for et signal, rekonstrueret fra binært maskerede
spektrogrammer ved brug af vektor kvantiseringsmodeller af talere. Fordele
og ulemper ved denne fremgangsmåde vil blive undersøgt. Desuden behan-
dles opgaven med reestemering af et signal fra et spektrogram gennem flere
algoritmer.

Det vises at vektorkvantisering kan anvendes til at forbedre p̊a maskerede
spektrogrammer, men det er ikke lykkedes at f̊a fremgangsmåden til at pro-
ducere tale i høj kvalitet. Det konkluderes desuden at faseinformationen er
meget vigtig i forbindelse med rekonstruktion hvis tale i høj kvalitet er et
mål, og parametre for optimal fasegendannelse foresl̊as.

Nøgelord:
signalbehandling, data gruppering, k-means, mel filtrering, voiced unvoiced
genkendelse, vektor kvantisering, signal estimation, fase rekonstruktion, spec-
trogram rekonstruktion.
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Chapter 1

Introduction to Auditory
Signal Analysis

“One of our most important faculties is our ability to listen to,
and follow, one speaker in the presence of others. This is such
a common experience that we may take it for granted; we may
call it “the cocktail party problem.” No machine has been con-
structed to do just this, to filter out one conversation from a
number jumbled together.”

- Colin Cherry, 1957

Many hearing impaired people, however, seem to have completely lost this
ability, making it very difficult for them to have a conversation with another
person if multiple speakers are talking at the same time, or a lot of back-
ground noise is present.

Seperating speakers from a complex acoustic environment requires auditory
scene analysis (ASA) as described by Bregman [1]. Research in this field of
signal processing has been extensive in the last 10 years, using two forms
of ASA: One form uses the predictability of cues like pitch and spatial lo-
cation, such as the beam-forming technique, widely used in newer hearing
aids, where multiple micropohones make it possible to amplify sound from
the direction in which the hearing impaired person is facing. The other form
uses stored sound patterns as a supplement.
This leads us to the motivation of our project. Many elderly people only have
daily contact with a small handful of different speakers. Suppose we had prior
information about a speech signal from a certain speaker. Would it then be
easier to extract this particular speaker from a noisy auditory environment?



2 Introduction to Auditory Signal Analysis

The hearing aid could be trained to know this handful of speakers by conver-
sations in a noise free environment. Such a technique would not be totally
dependent on the location of the speaker, and almost any type of noise would
be possible to attenuate if the hearing aid knows exactly what to “listen for”.

There are many ways to analyse a signal for a certain speaker and equally
many ways to separate speakers. In this project, we have turned our attention
to a fairly recent type of source separation technique that uses spectrograms,
a method often used to visually show frequency changes over time, to sep-
arate speakers. Sam Roweis [22] described how it is often possible to see a
pattern in the spectrogram of two simultaneous speakers and how the two
speakers can almost be distinguished by the human eye. Several approaches
have been used to extract only the data of a single speaker from the spectro-
gram of a complex auditory environment, using vector quantization [7] [22]
as well as neural networks approaches [27] [11]. None of the methods are
perfect, however, and they thus need some form of restoration of the missing
data, to be considered useful in a hearing aid application. This restoration of
a speech signal from a masked spectrogram is what we will focus on during
the length of this report.



Chapter 2

Speech Reconstruction From
Binary Masked Spectrograms

We have chosen to model a speaker using vector quantization (VQ), since
this seems like an intuitive, fast, and not too complicated way of modelling
spectrograms of a speaker. In essence, our approach would be to recognise a
speaker, subtract him or her from the mixed spectrogram (using ideal binary
masking) and try to repair the masked spectrogram using the prior informa-
tion about a certain speaker stored in the VQ.
A similar approach has been implemented by Dan Ellis in [7], where he uses
k-means vector quantization and mel-filter weighting to separate a speaker
of interest from another simultaneous speaker. He does not, however, use the
already existing information in the mixed spectrogram, but tries to project
the mixed spectrogram onto the trained VQ, and then overwrites the mixed
spectrogram data with pure VQ information, which in effect is separation by
speech synthesis. We will also use the k-means algorithm, but as opposed to
Dan Ellis [7], we will try to maintain as much information as possible and
only try to repair the masked parts.

We intend to go into depth on how to reconstruct good quality speech signals
from repaired spectrograms, and evaluate several algorithms on the critical
task of estimating the lost phase information from the spectrogram. For the
vector quantization itself we intend to investigate use of the k-means algo-
rithm for clustering speech data, and different methods for reconstruction.
Also we examine if this approach can be improved by extensions such as
mel filter bank weighting or splitting spectrograms into portions of voiced,
unvoiced, and silence regions.
The results for each experiment will be compared by both a subjective eval-
uation of sound quality, and a calculation of signal to noise ratio.
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CHAPTER 2. SPEECH RECONSTRUCTION FROM BINARY

MASKED SPECTROGRAMS

2.1 Previous research in this field

There has been a considerable interest in researching areas of ASA since the
concept was published by Albert Bregman in 1990 [1]. Much of this work
has revolved around segregation of speech. Such systems often consist of a
segmentation stage where a signal is decomposed into segments each origi-
nating from a different source, and a synthesis where the segmented data is
reconstructed into intelligible speech. This is also the case for our approach,
only the binary masking has already ocurred.
The following are systems for sound segregation based on computational au-
ditory scene analysis (CASA). These present tools used within the area of
our problem, and some even define the foundation for our approach.
Ephraim et.al. (Ephraim et al., 1989) modeled speech using a statistichal ap-
proach of Hidden Marchov Modeling (HMM) and noise using an AR model.
With this model they inferred approximate clean speech by alternating be-
tween Wiener filtering to find the noise and Viterbi decoding in the HMM.In
this way they managed to enhance corrupted speech. Several later studies
including a large body of work in the subject of speech recognition [ling],
[31], [25] incorporate the use of HMM to model speech. HMM could be used
in conjunction with VQ to perform a less primitive and more schema-driven
reconstruction.
DeLiang Wang and Guy Brown [27] did seperation of speech using a neural
networks approach based on oscillatory correlation, which belongs to the
category of primitive segregation [1]. Later Guoning Hu and DeLiang Wang
[11] did speech segregation using a neural networks approach again, but this
time with a schema-driven model based on pitch tracking and amplitude
modulation. In both of these studies, speech seperation is done by creat-
ing binary masks to remove noisy parts of log spectrograms and so these
approaches look like the basis for our project of reconstructing speech spec-
trograms with missing data.
An approach closely related to our intended approach is used by Dan Ellis
in 2004 [7], where a vector quantization and HMM model approach is used
for seperating two speakers and for resynthesising the speech of the speaker
of interest. Dan Ellis reported that an extreme amount of data would be
required in order for the approach to achieve good percieved quality of the
reconstructed speech.

The following are systems which focus on spectrogram reconstruction based
on computational auditory scene analysis (CASA). These are alternative ap-
proaches to solving our problem with different advantages.
Deliang Wang and Soundararajan Srinivasan [25] did spectrogram recon-
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struction for corrupted phonemes, by storing phoneme templates and insert-
ing these into corrupted patches of speech using HMM and lexical knowledge
for choosing which phoneme to insert. They reported good results for restora-
tion of single corrupted phonemes, and also for reestimating and smoothing
corrupted pitch information.
Reyes et. al. 2005 [19] drew inspiration from successful applications in com-
puter vision, and used a layered generative graphical model that describes
two components in seperate layers. One layer is for the excitation harmon-
ics, and another is for formants and such resonances. This approach exploits
the high correlation between adjacent frames to model successive spectra as
transformations of their immediate predecessors. They reported outstand-
ing results in the reconstruction of harmonics as well as formants of voiced
speech where border-areas where well defined.





Chapter 3

Motivation and Objectives

What if hearing aids could recognize the voice of a friend or a family mem-
ber in complex noisy environments, and, based on stored knowledge of that
voice, were able to transmit it without any of the noise?

Then hearing aid users would be able to comfortly communicate with their
loved ones, and be more at ease in almost any environment. But even state
of the art hearing aids are far from performing that task, so much work has
to be done. The hearing aid should be able to construct a model of speech
for a given speaker, it would have to be able to use this model to seperate
the speech of this speaker from that of different speakers or other forms of
complex noise, and it would have to synthesise the speech before being able
to transmit it to the user.

Methods have already been developed for seperating speech from different
speakers present in an environment, using a spectrogram based approach.
These methods are designed to produce a binary masked spectrogram, which
contain only the spectrogram bins thought to belong to the speaker of inter-
est. Speech directly synthesised from such a spectrogram, however, suffers
from poor perceived quality and naturalness.

Thus, the main objective was to:
Investigate means of reconstructing a speech signal from a binary masked
spectrogram, with high percieved quality and naturalness as the goal.
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3.1 Thesis overview

It became evident in the early stages of our project, that the main objective
was best met through two main parts - Signal Estimation, which is used
to synthesise a speech signal from a spectrogram, and Vector Quantization
which is used to model speech and consequently to reconstruct spectrograms
of speech.
To accomodate these two main parts and additionally some general theory
and conclusion, this thesis is structured into four parts, where each part re-
quires knowledge from the preceeding parts.

Part I Presents some foundational theory of speech as well as tools for signal
analysis used throughout this report. Here, the concept of a spectrogram is
explained.

Part II Presents several methods for estimating the speech signal from a
spectrogram where knowledge of phase is limited.

Part III Presents a vector quantization approach to reconstructing spec-
trograms, and also investigates key components of doing vector quantization
on speech spectrograms.

Part IV Finally, the thesis work is concluded, and possible expansions of
the work are discussed.
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3.2 Nomenclature

To ease the understanding of coming theory, variables without an explicit
denotation conform to the following nomenclature:

x(n) or xn Signal x defined by sample n.
w(n) Window w defined by sample n.
Xw(kS, ω) or Xk Fourier transform of the k’th segment of a signal.
X A spectrogram.
Y A modified spectrogram.
yw(kS, n) IFFT of a column in the modified spectrogram.
xk k’th segment of a signal, x.
xw(kS, n) windowed k’th segment of a signal, x.
ω frequency index of the Fourier transform
S Segment stepsize.
M Number of segments in a signal / number of frames in a spectrogram.
N Number of samples in a signal.
kS Starting sample of k’th segment.
F Signal defined by sample n.
L Window length.
Ω FFT length.
S A spectrogram.
prand Random phase.
K Amount of clusters in a codebook.
Ji Amount of members in the i’th cluster.
f Frequency.

f̂ Mel based frequency.

3.3 Abbreviations

Here, the abbreviations used in this thesis are listed:

VQ Vector Quantization.
ASA Auditory Scene Analysis.
CASA Computational Auditory Scene Analysis.
ERB Equivalent Rectangular Bandwidth.
FFT Fast Fourier Transform.
HMM Hidden Markov Model.
MSE Mean Squared Error.
VUS Voiced / Unvoiced / Silence.
SFM Spectral Flatness Measure.
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SNR Signal to Noise Ratio.
MFCC Mel Filter Cepstral Coefficients.
HFCC Human Factor Cepstral Coefficients.
IFFT Inverse Fourier Transform.
STFT Short-Time Fourier Transform.
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Speech Theory and Tools





Chapter 4

Speech and speech signals
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Figure 4.1: A speech signal. The words “Lay red by R5 please” are uttered.

Since speech is the sound source we focus on throughout the project, we
will shortly go through the basic theory behind speech and speech signals,
and thereby introduce some of the terms used in this thesis.
Speech is produced as air from the lungs is forced through the vocal cords
and along the vocal tract.

The vocal tract is the path all the way from the opening of the vocal cords
(latin: glottis) to the mouth. The vocal tract can be thought of as a filter
being able to produce different sounds with resonances. The sound produced
depends of the shape of the vocal tract and can be changed by moving the
tounge and jaw.
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4.1 Voiced and unvoiced sounds

Figure 4.2: Illustration of the human speech apparatus. Figure from [36]

Speech sounds can be broken up into three different classes. Voiced, Un-
voiced and Plosive [32].

Voiced sounds occur when the air from the lungs passes the vocal cords
(latin: glottis) which vibratingly opens and closes (by the vocal folds). This
produces the quasi-periodic pulses of air also seen in figure 4.3 (right), the
rate of this vibration gives what is known as the pitch of the sound. Ex-
amples of voiced sounds are the “A” sound or the “O” sound. If we look
at figure 4.3 we see that the pitch period in this example is about 10 ms.
The pitch is changed by changing the tension on the vocal cords or the air
pressure behind them.

Unvoiced sounds occur when air is forced out of the open vocal cord at
high velocities while constricting the vocal tract. An example of this could
be when the tounge is pressed against the aveolar ridge (see Figure 4.2), as in
an “S” sound, or the teeth against the lower lip, as in an “F” sound. These
types of sounds do not show the same length of periodicity as voiced sounds.
In stead, they are often similar to noise. They do however still have some
short-term correlations due to the vocal tract.

Plosive sounds occur when the vocal tract closes completely, pressure builds
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up and is then suddently released. An example of a plosive sound is the first
part of the P sound (without the “ee” sound), as in the word “pop”.

As we shall see later, these types of sounds distinguish themselves clearly
when doing Fourier analysis.

4.2 Stationarity of speech signals
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Figure 4.3: Example of the quasi-stationarity of speech signals at small seg-
ments of time. To the left is the entire speech signal, which does not look
very periodic. To the right is a 30 ms segment of the same speech signal.
We clearly see that in this part of the signal, the speech signal looks almost
periodic.

Speech signals are non-stationary. This means that the statistical prop-
erties of the signal change over time. In contrast, a sinusoid never changes
statistical properties but remains the same (periodic). As explained in the
previous section, speech is a result of changing the shape of the vocal tract
while exciting the vocal chord. Because this movement does not happen at
an instant, but in relatively “slow” continuous movements, the speech signal
has what is called quasi-stationarity in small segments of time. This means
that the signal is “nearly stationary” and only changes very little in a short
span of time.
In most litterature [7], [17], a speech signal is assumed quasi-stationary in seg-
ments of around 20-40 ms. This is important because many signal processing
tools, like the Fouier transform, assumes the signal to be stationary. With
nature giving us a 20-40 ms window, we can analyse speech signals almost
as we would any other signal, but in small segments at a time. In figure 4.3
we see a close up of a speech segment of 30 ms. It clearly shows the near
periodicity of the signal.





Chapter 5

The Short Time Fourier
Transform

As explained earlier, if a signal is non-stationary, a normal Fourier transform
will not give usable information, since stationarity is assumed when applying
a Fourier transform. Some non-stationary signals however, can be assumed
stationary over small periods of time, including speech signals, and a Short
Time Fourier Transform (STFT) can then be used.

A signal x(n), ex. a speech signal, can be divided into small segments
each with a length of L samples called the window length. Due to the nature
of the Fast Fourier Transform (FFT) the window length is often chosen as
a power of 2, ex. 256 or 512. A segment corresponds to multiplying a
square window of length L on a part of the signal. Applying the Fourier
tranform on a segment created with a square window causes a ringing effects
which severely degrades the resolution of the magnitude spectrum. To avoid
ringing effects, a smoothing window function, such as the hamming window
function (see figure 5.1), is often used instead of a square window. Figure
5.1 is an illustration of the process of obtaining the windowed segments. The
windowed signal in a segment can be described as:

xw(kS, n) = w(kS − n)x(n) (5.1)

Where w(n) is the window function that is L points long and non-zero
for 0 5 n 5 L − 1. k ∈ [0..M ] is the segment number, S is the number
of samples between each segment, also known as the step-size. kS can be
viewed as an indicator of the starting sample of segment k. Equation 5.1 can
be thought of as running a signal through a window in steps of S and saving
the windowed segments. In other litterature, eq. 5.1 is sometimes written as
running a window over the signal, the result is the same. After segmentation,
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Figure 5.1: Illustration of the window multiplied to the signal to form the
segmented part of the signal (frame or segment). The part of the segment
that is beyond the boundaries of the window is normally not included in the
Fourier transform that is applied after.

the individual segments are Fourier transformed revealing:

Xw(kS, ω) = Ft [xw(kS, n)] =
∞∑

n=−∞
xw(kS, n)e−jωn (5.2)

Where Ft is the Ω point Fourier transform, and ω is the frequency index in
segment k. The segments can now be treated as normal Fourier transforms,
but only contain information on a small part of the signal. For speech, this is
usually around 30 ms. The STFT can also be done with overlapping regions,
which means that S is smaller than the window length L. This way, small
parts of the signal are stored in two or more segments, instead of only one.
This is often done to increase resolution and will be explained further in later
sections.

5.1 The Inverse STFT

The STFT is fully reversible using the inverse STFT to regenerate the signal.
The signal is reconstructed by taking the inverse Fourier transform (IFFT) to
each of the segments and combining these. The overlapping of the segments
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and the windowing function that was done before the Fourier transform on
the segments, must be taken into account when combining the IFFT of the
individual segments. This is done as follows:

To obtain the individual windowed segments, the inverse Fourier trans-
form is applied to each segment.

xw(kS, n) =
1

2π

∞∑
n=−∞

X(kS, ω)ejωn for all k ∈ [0, ..., M − 1] (5.3)

To place the segments at the correct location of x(n), the individual
segments are delayed to match the place where the segment was taken, and
divided by the synthesis window. Remembering equation 5.1 we get:

x(n) =

M−1∑

k=0

xw(kS, n)

M−1∑

k=0

w(kS − n)

=

M−1∑

k=0

w(kS − n)x(n)

M−1∑

k=0

w(kS − n)

(5.4)

using equation (5.4) we can obtain the exact signal from the STFT if it
has not been modified. Not all modified STFT’s are “valid” STFT’s, in that
some patterns are not possible signals, especially if the STFT has overlaps.

5.2 The spectrogram

A spectrogram is a way of looking at the frequency content of a 1D signal over
a given timelength. If the magnitude of the short time Fourier transformed
segments are placed as columns in a matrix, this matrix can be displayed
as an image, with a color scale indicating the magnitude at the different
frequencies (see Figure 5.2) . The magnitude of the STFT is written as:

|X(kS, ω)| (5.5)

Note that some people use the squared magnitude |X(kS, ω)|2 to describe
the spectrogram [37]. In this thesis, the magnitude will be used, unless noted
otherwise. The length of the Fourier transform when doing the STFT de-
termines the spectral/frequency resolution (resolution of the y-axis). If the
length of the FFT, Ω, is longer than the window length, L, which can be
achieved through zero padding, a more smooth spectral resolution can be
obtained. The window length L determines the temporal/time resolution



20 CHAPTER 5. THE SHORT TIME FOURIER TRANSFORM

Time [s]

Spectrogram constructed using the parameters:
L = 512, Ω = 512, S = 256

0 1 2 3
0

1000

2000

3000

4000

5000

6000

7000

8000

−90

−80

−70

−60

−50

−40

−30

−20

−10

Time [s]

F
re

qu
en

cy
 [H

z]

Spectrogram constructed using the parameters:
L = 256, Ω = 256, S = 128

0 1 2 3
0

1000

2000

3000

4000

5000

6000

7000

8000

−90

−80

−70

−60

−50

−40

−30

−20

−10

Figure 5.2: Spectrograms made from the same speech signal, using differ-
ent sets of parameters. The increased resolution as a result of increased
FFT, window length and step size can easily be verified. Note that the
color scale used to show amplitude is in dB, so what we plot is in fact
20 · log10(|X(kS, ω)|)

(resolution of the x-axis). If the signal is not very long, it can be hard to ob-
tain both a good spectral and temporal resolution. The temporal resolution
can be improved however, by using overlapping windows. So instead of split-
ting the signal in steps of L, it would be possible to use steps of step size, S,
so L−S would be the number of overlapping samples between neighbouring
segments.

The Fourier transform consists of complex numbers containing a real and
an imaginary part which together contain information of the frequency con-
tent as well as the phase of the corresponding audio signal. In detail, the
magnitude of the real and imaginary parts of the Fourier transform accounts
for the frequency content of the signal, while the angle between the real and
imaginary parts of the Fourier transform accounts for the phase.
As we have just explained, however, a spectrogram only contains the mag-
nitude of these complex numbers, which means that is holds no phase infor-
mation. Therefore, when we seek to modify a signal by making changes in
the spectrogram, we need to either:

1. Adjust the phase in the original Fourier transforms according to the
changes in the corresponding frames of the spectrogram and then re-
combine it with the spectrogram to form the Fourier transforms needed
to make the modified signal. This is difficult and not always possible.
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Figure 5.3: “She had your dark suit in greasy washwater all year”

2. Entirely estimate the phase from the frames in the spectrogram.

5.3 Speech in spectrograms

If we look at figure 5.3 we see voiced and unvoiced parts of the speech as
discussed earlier. In the voiced parts we clearly see the harmonics as the red
lines on top of each other. Looking at the harmonics we can see patterns of
concentrations of energy called formants. This is a very distinct characteris-
tic, or spectral cue, of human speech [1]. The unvoiced parts are clearly seen
as almost noise, covering a large portion of the spectrum. Periods of silence
is shown as blue areas indicating low values. Note that there are periods of
silence in speech too, although we do not hear them. Also note that almost
all the speech information is contained within 4 kHz, which is why normal
landline phones are sampled at 8 kHz.





Chapter 6

Signal and spectrogram
evaluation

6.1 Signal-to-noise ratio

It is important to define the signal-to-noise measure that will we be using
in the experiments. During the experiments of signal reconstruction from
the unmodified spectrogram, it makes sense to use the power signal-to-noise
between the original signal x0 and the reconstructed xr:

SNRsignal = 20 · log10

( ‖ x0 ‖2

‖ x0 − xr ‖2

)
(6.1)

Equation 6.1 was also used in [2] to evaluate signal quality when recon-
structing the signal from the spectrogram. The SNRsignal can be thought of
almost as a sample by sample comparison.

If the spectrograms are modified, 6.1 will not be a good measure for
the signal-to-noise ration since the original time-signal will sometimes not be
available. In those cases, the difference between the spectrograms themselves
are used:

SNRspectrogram = 20 · log10

Ω−1∑
ω=0

M−1∑

k=0

|Xw(kS, ω)|2

Ω−1∑
ω=0

M−1∑

k=0

(|Xw(kS, ω)| − |Rw(kS, ω)|)2

(6.2)
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where |Xw(kS, ω)| are columns in the original spectrogram and |Rw(kS, ω)|
are columns in the reconstructed spectrogram. Equation 6.1 was also used by
[12] to evaluate the quality of the spectrogram reconstruction. [10] uses an-
other error measure, a distance measure, to evaluate the error in “distance”
between two spectrograms. This error will also be shown for comparative
purposes as the mean square error:

MSE = 20 · log10

Ω−1∑
ω=0

M−1∑

k=0

(|Xw(kS, ω)| − |Rw(kS, ω)|)2

M · Ω (6.3)

Where M ·Ω is the total number of bins in the spectrogram, as M is the
total number of frames in the spectrogram, and Ω is the Fourier transform
length. When comparing the different algorithms for signal reconstruction,
the three error functions will be presented. Note that the MSE error may
not say more than the SNRspectrogram, but can be used to compare directly
with [10] that use this measure.

6.2 Peceptual sound quality evaluation (PQE)

Since we have no special algorithm dedicated for the measurement of percep-
tual sound quality, we introduce a grade system from 1-5 with the definitions
as follows:

1. The reconstructed speech is not intelligible and it is even difficult to
hear if someone is talking.

2. The reconstructed speech sounds like speech but is not intelligible due
to heavy noise.

3. The reconstructed speech is intelligible but is affected by irritating noise
or artifacts.

4. The reconstructed speech is intelligible and may contain only weak
noise or artifacts. It is still distinguishable from the original.

5. The reconstructed sound is indistinguishable from the original.



Part II

Signal Estimation





Chapter 7

Introduction

In this part we will first describe some of the previous research in Signal
estimation, and proceed to set up the theory used in the signal estimation
experiments. We will then carefully describe each of those experiments in
detail in terms of use of programs, data, and variables. Following this, there
is a results section where we will present our results and explain them, and
finally we will interpret and discuss our results in the discussion section. A
summary of main conclusions from this part of the thesis can be found in
section 11.7

7.1 Previous research in signal estimation

As a result of only using the magnitude of the Short Time Fourier Transform
(STFT), i.e. the spectrogram, for our VQ approach, the phase information in
the synthesised spectrogram is more or less lost. In order to reconstruct the
time signal from the spectrogram alone, the phase (or the original signal)
must therefore be estimated. Research in this area has been fairly sparse
since the first practical algorithm for signal estimation by Griffin & Lim us-
ing alternate convex projections between the time-domain and the STFT
domain, was introduced in 1983 [10], which however was similar to an earlier
algorithm by Fienup’82 [9]. In the last few years, research has picked up due
to the growing popularity of using time-frequency masking for source separa-
tion, noise removal and time-scaling, and this has resulted in more advanced
algorithms such as the probabilistic inference approach by Kannan’04 [12] or
the very recent algorithm by Bouvrie’06 [2] which treats the solution to the
problem as a solution to a system of non-linear equations.

Although research in entirely new ways to estimate a signal from its STFT
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magnitude did not receive much attention until recently, a great amount
of research and several algorithms have been created over the years to im-
prove on the algorithm by Griffin & Lim or find new ways to reconstruct a
changed STFT. These include among others the Syncronized Overlap and
Add (SOLA), Roucos ’85 [21], Pitch Syncronized Over and add (PSOLA),
Valbret ’95 [26], Waveform Overlap and Add (WOLA), Verhelst ’93 [20].
Allthough it is intuitive to seek an improved version of Griffins & Lims al-
gorithm among these, almost all the algorithms are concerned with ways to
improve quality of time-stretched signals. This means copying segments of
the STFT to artificially extend the duration of the sound, causing the over-
lapping segments to start “off phase” and not aligning when simply using
the step-size (overlap) of the initial STFT. As the number of overlapping
segments and the time between frames in our experiments are the same both
before and after the spectrogram modification, very little, if anything, is
gained from using these algorithms on our problem of masked spectrogram
reconstruction. Ellis’06 [7] suggests a phase vo-coder approach, that uses a
combination of techniques from sinusoidal modelling and phase-vocoder al-
gorithms to obtain a better initial estimate to the algorithm by Griffin. The
inital estimate, however, was showed to be only a small improvement in SNR
after a few iterations of the algorithm by Griffin.

In the following, the background theory for three of these very different ap-
proaches ([12], [10] and [2]) will be described in detail. We will start with
the algorithm by Griffin & Lim.
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Theory

8.1 Signal estimation using Overlap and Add

The algorithm proposed by Griffin & Lim in [10] is an iterative optimization
which tries to minimize the squared distance between the modified spectro-
gram that we are trying to estimate the phase for, and the resulting spectro-
gram from a STFT of the inverse STFT (i.e. time signal) with an estimated
phase. Since the phase of each frequency index in the STFT causes contruc-
tive and destructive interference in the time signal when doing an inverse
STFT, a signal with a wrong phase will have a very different spectrogram
from the desired. Using the distance measure between these two spectro-
grams is therefore a good indicator for a good phase estimate.

As explained in chapter 5, the short time Fourier transform (STFT) is defined
as:

Xw(kS, ω) = Ft [xw(kS, n)] =
∞∑

n=−∞
xw(kS, n)e−jωn (8.1)

Where xw (kS, n) = w(kS − n)x(n). The magnitude of equation 8.1 is
|Xw(kS, ω)|, which placed as the columns in a matrix for all k ∈ [0..M − 1],
forms the spectrogram. If we define |Yw(kS, ω)| as the columns in the modi-
fied spectrogram, or magnitude STFT (MSTFT), then the distance measure
between the timesignal x(n) and |Yw(kS, ω)|, can be described as:

D [x(n), Yw(kS, ω)] =
∞∑

k=−∞

1

2π

∫ π

ω=−π

|Xw(kS, ω)− Yw(kS, ω)|2 (8.2)
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Where Xw(kS, ω) is the STFT of x(n). Equation 8.2 being a function of
x(n) emphasizes that Xw(kS, ω) is a fully valid STFT, while |Yw(kS, ω)| may
not be valid, i.e. no real signal may exist that matches the magnitude STFT
|Yw(kS, ω)|. Using Parseval’s theorem, eq. 8.2 can be rewritten as:

D [x(n), Yw(kS, ω)] =
∞∑

k=−∞

∞∑
n=−∞

[xw(kS, n)− yw(kS, n)]2 (8.3)

[10] notes that since 8.3 is in the quadratic form of x(n), the gradient
with respect to x(n) can be calculated:

0 =
∞∑

k=−∞
2 · [x(n)w(kS − n)− yw(kS, n)] · w(kS − n) (8.4)

and solving for x(n) reveals:

x(n) =

∞∑

k=−∞
w(kS − n)yw(kS, n)

∞∑

k=−∞
w2(kS − n)

(8.5)

Equation 8.5 can then be used in an iterative scheme descibed as followed:
An initial guess for the phase is made (random phase or zero phase is

often used) and x(n) is derived from Eq. 8.5 after an inverse STFT. The
STFT of x(n) is then obtained and the phase of this is now used for the next
estimation. The new estimated phase is applied to the modified spectrogram
to obtain the estimated STFT:

X̂ i
w(kS, ω) = |Yw(kS, ω)| · ej∠Xi

w(kS,ω) (8.6)

Where i is the iteration number. The inverse STFT is now performed
on X̂ i

w(kS, ω) and the signal is regenerated using eq. 8.5. The process is
repeated until the desired number of iterations is reached. Figure 8.1 shows
a flowchart of the algorithm. Griffin & Lim [10] notes that they obtained
good quality sound on test speech signals for 25-100 iterations. They also
note that, although the algorithm is guarrenteed to decrease the squared
error between the spectrograms, it is not a guarantee of a global minimum.
In other words, local minima are possible and running the algorithm for
a very high number of iterations does not guarantee to reveal the original
signal.
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Figure 8.1: Flowchart of the signal estimation from STFT magnitude by
Griffin & Lim. Starting from the top at 1. Given a modified spectrogram
|Y (kS, ω)| we make an inital phase guess by constructing a STFT, X0

w(kS, ω),
with the initial phase, or obtain the STFT from the signal guess x(n). 2.
We apply the phase guess to the modified spectrogram, obtaining the STFT
X̂ i

w(kS, ω). 3. We apply the inverse Fourier transform to all the segments
of the STFT. 4. We insert the segments into the Overlap and Add equation
by Griffin & Lim that ensures a decrease in the distance between |Y (kS, ω)|
and |X̂ i

w(kS, ω)|, obtaining xi+1(n). 5. We obtain the STFT of xi+1(n) and
repeat steps 2-5 until the desired number of iterations has been reached.
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8.2 The probabilistic model for signal estima-

tion

A different approach to estimating the timesignal from the spectrogram alone,
is to use a probabilistic model. [12] uses a conjugated gradient optimizer to
maximize the likelihood of an estimated speech signal x(n), given a spec-
trogram Y. To make the notation easier and more clear, we will use xn to
describe the signal in this section.

P (x,Y) = P (x)P (Y|x) (8.7)

Where P (Y|x) is the likelihood of Y given the signal x, and P (x) is the
prior. For the prior, a uniform distribution can be used, but as suggested
by [12] an autoregressive (AR) model can be used to apply prior information
about a certain speaker and to try to minimize discontinuities at window
boundaries due to phase mismatch between frames. [12] Introduces the prior
as:

P (x) ∝
N∏

n=1

exp



−

1

2ρ2

(
R∑

r=1

arxn−r − xn

)2


 (8.8)

where R is the model order, ar is the AR model coefficients, N the total
number of samples and xn the sample at sample number n. ρ2 is a constant
referring to the variance of the noise in the signal. Since this is a minimization
problem, this constant can be omitted. The likelihood can be described as:

P (Y|x) ∝
∏

k

exp

{
− 1

2σ2
‖|X̂k| − |Yk|‖2

}
(8.9)

where |X̂k| is the magnitude spectrum of the estimated signal xn at segment
k. and |Yk| is the magnitude spectrum of the modified spectrogram at frame
k. The idea (if using the AR model) is that the described likelihood will
favor signals that are close to the modified spectrogram, and the prior will
favor solutions that match the AR model.

In order to be able to optimize on the estimated speech signal using the
conjugate gradient optimizer, the speech signal xn must be explicitly de-
scribed in the model. For the likelihood, using a Fourier transform matrix
F and using the squared magnitude (power) spectrograms instead of plain
magnitude (as discussed in section 5.2), we can use the fact that c · c∗ = |c|2,
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where * denotes complex conjugation. This means that the power spectrum
can be described as:

|X̂k|2 = Fxk ◦ F∗xk (8.10)

Where ◦ indicates element-wise product, and the vector xk is the samples
of the k’th segment of the windowed signal. Note that Fxk is the same as
a simple Fourier transform of xk. F∗ is however not the same as an inverse
Fourier transform but only the conjugated version of the Fourier matrix, the
inverse Fourier transform would require a division by the length of the Fourier
transform. Using the facts from above, expanding the norm, and taking the
logarithm [12] rewrites equation 8.9 to:

log P (x,Y) ∝ − 1

2σ2

∑

k

∑
i

(
Ω∑

j=1

Ω∑
j=1

Fijxk(Ω/2)+jF
∗
ilxk(Ω/2)+l − |Yki|2

)2

(8.11)
Where i is the frequency index and j the length index of the Fourier

matrix and Ω is the length of the Fourier transform (usually set to the length
of the window in the STFT). To apply a gradient optimizer like the one
by Carl Rasmussen [30], we need to have the first order derivatives for the
samples xn. The derivative of eq. 8.11 with respect to sample number u
is derived from eq. 8.11. Eq. 8.11 was however modified to be able to
use window functions different from a simple boxcar window. The window
function is noted as w. Please see Appendix A for in detail calculations and
optimization considerations for Matlab. The derivates obtained with respect
to sample xu were:

∂ − logP (Y|x)

∂xu

∝ 1

2σ2

∑

k

∑
i

2

(
·

Ω∑
j=1

Ω∑

l=1

Fijxk(Ω/2)+jw(j)F ∗
ilxk(Ω/2)+lw(l)− Y 2

ki

)

·
Ω∑

j′=1

Ω∑

l′=1

Fij′w(j′)δj′=u−k(Ω/2)F
∗
il′xk(Ω/2)+l′w(l′)

+ F ∗
il′w(l′)δl′=u−k(Ω/2)Fij′xk(Ω/2)+j′w(j′)

(8.12)

A better overview can be obtained by looking at the equation as vectors:

∂logP (Y|x)

∂xu

∝− 1

2σ2
· 2

∑

k

∑
i

(
Fxkw ◦ F∗xkw− |Yk|2

)

· (Fwδu ◦ F∗xkw + F∗wδu ◦ Fxkw)

(8.13)
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where δu is a vector with a 1 at the place where the sample u is located
in frame k. If sample u is not present in frame k, then δu is a vector of pure
zeros. xk is a vector containing all the samples that corresponds to frame k
of the short time Fourier transform.

If we are careful about what k’s to sum over, we can optimize the equation
a little to reveal:

∂ − logP (Y|x)

∂xu

∝ 1

2σ2
· 2

∑

ku

∑
i

(
Fxkw ◦ F∗xkw− |Yk|2

)

· (fuwi ◦ F∗xkw + f∗uwi ◦ Fxkw)

(8.14)

Where f∗u = F∗δu and fu = Fδu are vectors consisting of the column that
corresponds to the location of sample u (xu) in xk. Since the right parathesis
in the equation will be zero at frames where xu doesnt exist, we only sum
over ku which are all the frames where xu exist.

Further optimization can be done by realising that the term:

fuwi ◦ F∗xkw + f∗uwi ◦ Fxkw = 2 · < {fuwi ◦ F∗xkw} (8.15)

Where <{} is the real part of the resulting complex vector. This, in turn
gives us the equation for the gradient as a function of vectors and matrixes:

∂logP (Y|x)

∂xu

∝ − 1

2σ2
·2

∑

ku

∑
i

(Fskw ◦ F∗xkw − |Yk|) (2 · < {fuwi ◦ F∗xkw})

(8.16)
In the same fashion, we can calculate the gradient of the prior with respect

to the sample xu. From Appendix A we get:

∂ − logP (x)

∂xu

∝ 1

2ρ2

∑
n

2
(∑

a · xn−r − xn

) (
R∑

r′=1

ar′=t−u − δr′=u

)
(8.17)

where a is a vector containing the AR coefficients of the AR model and
xt−r is a vector with the elements [xt−1, ..., xt−R].

Equation 8.17 and equation 8.16 can be used as gradient evaluation for
the conjugated gradient optimizer by [30] which was also used by Kannan
[12]. The gradient optimizer uses linesearch and variable step-size which
means that the algorithm will have to evaluate the function values and gra-
dients several times before taking the next step towards a minima. For more
information about the gradient optimizer we refer to [30].
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8.3 Root-finding approach to signal estima-

tion

Bouvrie et al. [2] suggests another approach to estimating the signal from the
STFT magnitude alone. The problem is looked upon as a system of nonlinear
equations. If we look at the first column in the spectrogram matrix, with
frequency spanning the rows, and time spanning columns, the signal segment
that we seek to estimate is:

x̃w(k0S, n) = w(k0S − n)x(n) (8.18)

If we define |Y (k0S, ω)| as the magnitude spectrum column k0 of the
desired modified spectrogram, then we can write the equation:

|Y (k0S, ω)| = |
L−1∑
n=0

x̃w(k0S, n)e−jωn|, ω = 0, ..., Ω− 1 (8.19)

Where L is the length of the analysis window, and Ω the length of the
Fourier transform. To make the notation easier, we can write 8.19 in a similar
form to what was used in the last subsection as:

|Yk| = |Fx̃k| (8.20)

where F is the Ω × L Fourier transform matrix and |Yk| is the magnitude
spectrum at column k in the spectrogram matrix. If we move |Yk| to the
other side of the equality sign in eq. 8.20, we get:

G(x̃) ≡ |Fx̃k| − |Yk| = 0 (8.21)

As we can see in 8.21, finding x̃ is the same as solving the numerical root-
finding problem. Since we need L linearly independent equations to solve the
L unknowns in x̃, and the Fourier transform only provides Ωindependant = Ω/2
points (since the Fourier transform is symmetric for real signals), the length
of the Fourier transform in the original STFT must be at least Ω = 2 ∗ L.
We will then only be using the positive frequency part of the spectrogram for
solving the equations, since for any real signal, the spectrogram is symmetric.

Although we now have the number of equations needed for a solution to the
system of non-linear equations, there are many possible solutions, including
a great deal that does not obtain the original signal. To constrain the al-
gorithm from diverging, two smoothing constraints is suggested by [2]. The
first is the fact that using overlapping windows means that part of the signal
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in segment k, must also be in segment k+1. This means that we should only
estimate the samples that are not overlapping with the last segment, and
keep the overlapping samples fixed. The next constraint is the inital guess of
the non-overlapping samples to be estimated. [2] suggests linear extrapola-
tion (prediction) from the last p points of the part of the overlapping samples.
As the step size S between segments become larger, a linear model begins to
give poor estimates of the remaining part of x̃k+1. Another possibility is to
use zero-order hold, that is, copying the last sample of the overlapping part
to the entire h elements of the initial estimate. A good estimate would most
likely be to use both methods, predicting the first few values, and holding the
last one for the rest of the values. As a last constraint, the signal is assumed
possitive to avoid phase sign errors. This means adding a constant factor to
the DC elements of the spectrogram, or simply working with a non-negative
version of the signal x(n) by: x(n) = x(n)−min(x(n))

Since we only solve for a subset of the samples in the segment x̃k we need to
solve a non-square system of nonlinear equations, as the number of unknowns
are smaller than the number of equations. As described by [2], the problem
of solving p nonlinear equations of q unknowns can be solved by treating it
as a locally linear squares problem. [2] arrives at the linear minimization
problem:

xk+1 = argminx∈R{f(xk)
T f(xk) + 2(x− xk)

T J(xk)
T f(xk)

+ (x− xk)
T J(xk)

T J(xk)(x− xk)}
(8.22)

Where J(xk) is the Jacobian matrix of the samples in segment k, and
f(xk) can be substituted with equation 8.21. Setting the derivative of this
to zero gives us the recursive solution:

xk+1 = xk − (J(xk)
T J(xk))

−1J(xk)
T f(xk) (8.23)

8.23 is also known as the Gauss-Newton solution to the nonlinear least-
squares problem. The Jacobian need not be evaluated analytically, but can
be estimated numerically [3].

The algorithm can now be explained as follows. The algorithm steps through
the STFT magnitude matrix column by column first in the forward direction,
then in the backward direction:

1. Set the first initial guess of the overlapping samples for the first segment
to x̃ol = rand(U [0, 1])
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Figure 8.2: The halfsquares all noted by x̃k to x̃k+3 indicate the windows of a
windowed signal with 50% overlap. x̃ol is the overlapping points between x̃k

and x̃k+1. x̃0 initial guess for the remaining S points to be estimated. After
the points in x̂est have been estimated from x̃0 , the algorithm moves on to
x̃k+2 and now uses x̃est as the overlapping points x̃ol for the next segment
and so on.

2. Let x̃ol be the L− S overlapping points that overlaps with x̃k+1 (If at
first segment see step 1)

3. Compute the elements of the S long x̃0 by extrapolation (Linear or zero-
order hold or combination) from the last p points of the overlapping
points in x̃k

4. Find solution x̂est to |Fx̃k+1|−|Yk+1| = 0 using Gauss-Newton iteration
with initial condition x̃0. Keep overlapping points fixed so that x̃k+1 =[
x̃T

ol x̂T
est

]T

5. Set x̃k+1 = x̃k+1 −mean [x̃k+1] + |Yk+1(0)|
L

6. Repeat step 2-5 for all columns in the STFT magnitude matrix, |Yk|, k =
1, ..., M − 1

7. Repeat step 2-5 going backwards through all the columns |Yk|, k =
M, ..., 2 STFT magnitude matrix. Extraplolate in the opposite direc-
tion so that x̃k−1 = [x̂T

est x̃T
ol]. Where x̃ol now are points in x̃k−1 that

overlap with segment x̃k

8. Reconstruct signal by overlap-adding segments {x̃k}M
k=1





Chapter 9

Methods

9.1 Test data

For the signal estimation experiments we used speech data from two data-
bases, the NIST TIMIT corpus and the Interspeech 2006 source separation
challenge database [35]. The NIST TIMIT corpus consists of high quality
speech sampled at 16 kHz. From TIMIT we mainly used two randomly cho-
sen speakers, a female voice uttering the words “She had your dark suit in
greasy washwater all year” (sa1.wav from the fpad0 folder in the dr6 dialect
folder), and a male voice uttering the same words (sa1.wav from the mabc0
folder in the dr6 dialect folder). This way we can see if gender has any effect
on the reconstruction. To make sure that the main conclusions made from
our experiments are not database dependant, we also used a male speaker
from the Interspeech 2006 source separation challenge database. This also
high quality speech signal is sampled at 25 kHz, and the words “bin blue F
two now” are uttered. Before use, all the signals were normalized with zero
mean and scaled to unity. For the most of our experiments we will mainly
be using an analysis window of 32 ms and an overlap of 16 ms. This is done
to capture the harmonic structure of the sound in the spectrogram. Since
we need to do vector quantization on the spectrogram itself, we need a good
quality spectrogram. The same analysis window length was also used in [7]
for the same reasons. We will be evaluating the performance on other analy-
sis window lengths and overlaps to see if this choice is an advantage or a
disadvantage.
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9.2 Signal estimation from a spectrogram

In the following sections and subsections, we will go through the details of
our experimental setups for each of the three signal estimation algorithms.
To get a good overview of the performance of the algorithms, all three will
be evaluated on the following:

• Reconstruction performance as a function of inital signal estimate.
(Random, or zero inital phase)

• Reconstruction performance on unmodified spectrogram. Evaluated on
the SNR’s as well as visual and auditory percieved appearance

• Reconstruction performance as a function of different overlap- and
STFT analysis window length.

Since the setup is a little different for each of the three algorithms, we
will go through each of the three performance considerations displayed above
for every signal estimation algorithm. In the following sections each of the
experiments carried out are described in detail.

9.2.1 Inverse STFT with Zero and Random phase

These experiments will show the effect of simply using the inverse short time
Fourier transform (eq. 5.4) to reconstruct signals while using random phase
and zero phase for the missing phase information in a spectrogram. They
will also help to give an indication of the performance of the three signal
estimation algorithms, as we we will examine the SNR’s and perceptual sound
quality (PQE) in both cases. The experiment will also give an illustration of
how important the phase information in the STFT is for intelligibility andfor
the quality of the reconstructed sound.

The result will be shown as a comparison of the three signals for original-,
zero- and random-phase. To illustrate the changes that occur in the spectro-
gram when changing the original phase in the STFT, a spectrogram will be
presented from the recontructed signal of the TIMIT female speaker.

The experiments that follow will use the same random phase estimate that
was used for reconstructions in this experiment (unless noted otherwise) in
order to be able to directly compare the signals. Due to the fact that different
choices of random phase leads to different SNR values, we will also make a
small statistical analysis on the SNR’s for the three different signals. The
random phase estimate is repeated for 500 runs, and we will then present the
mean, minimum and maximum values of the SNR’s and show the standard
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deviation. This way we can show that our random phase choices are not very
different from the mean, and show how high SNR’s can get by just guessing
at a random phase. The experiment is carried out as follows:

Zero Phase

For the zero phase, we will simply do the inverse Fourier transform of the
spectrogram itself.

Random Phase

For the random phase, we will create a random phase Prand from uniform
white noise and add this to the positive frequency part of the spectrogram
by:

S(kS, ω+) = |S(kS, ω+)| · ej^prand (9.1)

This positive part of the STFT is then flipped around ω = 0 and con-
jugated. If we had used random phase on the entire positive and negative
spectrogram, the resulting STFT would not have been symmetric and the
signal would be complex. After applying the new phase to the spectrogram
by eq. 9.2.1, the inverse short time Fourier transform (eq 5.4) is used to
obtain the reconstructed signal.

9.3 Signal Estimation using Overlap and Add

The algorithm by Griffin & Lim was implemented in Matlab (STFTmest.m),
and the script uses the matlab files spectro.m and invspectro2.m for creating
the STFT and the inverse STFT.

9.3.1 Performance as function of initial phase estimate

This experiment will show the effect of using different inital signal estimates
for the algorithm by Griffin & Lim. This is done in order to determine
whether random or zero phase is the best starting estimate for the recon-
struction. We will try to obtain the best possible reconstruction by using
the unmodified spectrogram, applying zero or random phase, obtaining the
signal and using it as inital estimate for the algorithm. We will be using the
TIMIT female and male signals, and the experiment will be carried out as
follows:
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Zero phase

We simply feed the zero phase signal (spectrogram only) to the Griffin algo-
rithm.

Random phase

The random phase is applied by:

S(kS, ω+) = |S(kS, ω+)| · ej^Prand (9.2)

and the spectrogram is mirrored and conjugated to get the right sym-
metry. The results will be presented as the the number of iterations of the
algorithm as a function of the error functions, SNR on the reconstructed sig-
nal (SNRsignal, SNR on the spectrograms (SNRspectrogram), and MSE on the
spectrograms. Since the random phase estimate is a uniform random vari-
able, the results will be averaged over 200 runs of different random phases
and furthermore the results will be plotted for 500 iterations.

9.3.2 Performance on unmodified spectrogram

We intend to evaluate the performance of the algorithm by comparing the
reconstructed spectrogram to the original, and by evaluating the perceptual
sound quality of the reconstructed speech signal. Since the spectrograms
that need to be reconstructed in the end part of this thesis, are masked
spectrograms that have been patched by a clustering algorithm, we want the
reconstructed spectrogram to look as close to the modified (or original) as
possible. In this experiment we examine the visual and audial perceptual
quality of the result of using the algorithm by Griffin & Lim to reconstruct
a signal from the spectrogram only.

We will be evaluating on all three test signals. An analysis window of 32
ms with an overlap og 50% will be used. For initial phase we will use the
random phase estimate from the zero and random phase experiment in sec-
tion 9.2.1. The algorithm will be run for three different iteration lengths, 10,
100 and 500. To show the visual changes on the signal and on the spectro-
gram of the reconstructed signal, we will be evaluating these on the TIMIT
female signal. The perceptual sound quality will also be evalutated for all
three signals, shown as PQE (see section 6.2).
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Artifacts

We will show an example of the algorithm diverging when using a zero phase
estimate on a sine wave. This example is discussed in the discussion chapter.

9.3.3 Performance at different overlaps and window
lengths

In order to evaluate at which overlap and with which analysis window the
algorithm performs the best, we will perform an experiment where we ad-
just the overlap and window length and run the algorithm for each. We
will do these two experiments for the TIMIT female speaker signal, and the
Interspeech male speaker signal. The experiments will be carried out in the
following way:

Overlap

The TIMIT female signal will be analysed with a 512 sample window (32
ms) and the overlap will be adjusted from 10 to 500 samples for each run
with 100 iterations. The result will be plotted as the number of overlapping
samples, as a function of the three error functions, SNRspectrogram, SNRsignal

on the reconstructed signal, and MSE on the spectrogram. To evaluate the
perceptual sound quality, we will do reconstruction at 25%, 50% and 75%
overlap and evaluate on these signals. The algorithm will be started with
the random phase estimate from section 9.2.1. The perceptual sound quality
experiment will be repeated for the Interspeech male signal using an 800
sample window (32 ms).

Analysis window length

In this experiment we will use the same signal as above. The overlap will
be fixed at 50% and the analysis window size will be adjusted from 64 to
1024 samples (4 to 64 ms). The SNRsignal and SNRspectrogram will then be
shown, and the signals will be perceptually inspected. The same discussion
on SNRspectrogram from above applies here.

9.4 Signal estimation using Probabilistic In-

ference

The signal estimation algorithm by Kannan was implemented in Matlab.
The source code, along with a description of the functions can be found
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in Appendix B (kannan.m). Kannan.m calculates the function values and
derivatives given a signal estimate. We used the conjugated gradient opti-
mizer by Carl Rasmussen [30] to optimize the initial signal estimate, this can
be found in minimize.m. Since the derivatives were derived and optimized by
hand, we checked our implementation numerically against a small example
using Matlab’s symbolic calculator. The check confirmed that the derivatives
and function values were correctly implemented.

9.4.1 Performance as function of initial phase estimate

This experiment will show the effect of using different initial signal estimates
for the algorithm by Kannan et al. [12]. We will obtain the reconstruction by
using the unmodified spectrogram, applying zero and random phase, obtain
the signal and using it as initial estimate for the algorithm.

The test will be performed on the female and male signal from the TIMIT
database, using an analysis window of 512 samples with a 50% overlap. The
algorithm will then be run for 200 iterations and the results in form of the
SNRspectrogram and MSE will be plotted for a random phase initial estimate
and a zero phase initial estimate. The random phase plot will be an average of
200 runs. The perceptual sound quality will be evaluated after 200 iterations
on the zero or random phase estimates to see if there is any difference between
the two.

9.4.2 Performance on unmodified spectrogram

In this experiment we will evaluate the quality of the reconstruction, both vi-
sually by looking at the spectrograms, by perceptually evaluating the sound
quality and by the error functions. There are two ways of running the al-
gorithm by [12] i.e with and without a pretrained AR model. We will be
evaluataing on all three signals without the AR model. The initial signal
estimates will be the random phase signals obtained in the experiment in
section 9.2.1. To evaluate the AR model we used a small part of the male
TIMIT signal due to the extreme time duration of the algorithm when using
the AR model. The experiments were done in the following manner:

Without AR model

Here we will show the quality of the algorithm without using the AR model.
The SNR’s will be shown for all three test signals at different numbers of
iterations (10, 200, and 500) and the perceptual sound quality will be evalu-
ated.
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With AR model

We trained a 12th order AR model (as used by [12]) on a different part of
the signal than the part that we were recontructing. Since this is a computa-
tionally very expensive algorithm (which will be shown later), the AR model
test will be performed on a smaller part of the speech file (TIMIT male). We
have cut out “Dark Suit” and will use this to evaluate the quality. We will
also show the difference on the convergence curves with and without the AR
model. Due to the variance in the random phase estimate, the curves will be
plotted as an average over 50 runs. The AR model was downweighted by a
factor of 10 at the boundaries as described in [12], in order to try to minimize
phase discontinuities at the boundaries of the segments in the reconstructed
signal. The AR model was trained using the Yule-Walker method on the
part of the signal with the utterance “Greasy Washwater”. The following
AR coefficients were obtained:

Table 9.1: AR model coefficients

Coefficient (delay) (x-1) (x-2) (x-3) (x-4) (x-5) (x-6)
Value -0.9339 0.1154 -0.2391 -0.1415 0.4873 0.09853

Coefficients (x-7) (x-8) (x-9) (x-10) (x-11) (x-12)
Value 0.0247 -0.1617 -0.04109 -0.04929 0.1361 0.03083

The difference in perceptual sound quality will also be commented on.

Artifacts

The probabilistic algorithm proposed by Kannan shows some artifacts in the
reconstructed signal. A discontinuity in the signal can be observed at every
location of a boundary to a new window in the STFT. An example of this
will also be shown.

9.4.3 Performance at different overlaps and window
lengths

To evaluate the effect on reconstruction quality as a function of analysis
window size and overlap, we will plot the error measures as a function of
overlap to show the tendency on the error, as was done with the Griffin &
Lim algorithm. In these experiments we will be using the TIMIT female and
Interspeech male signal. The two experiments are descibed as follows:
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Overlap

The overlap graphs will be shown as an overlap from 10 to 500 samples using
a 512 sample window, and 100 iterations for the TIMIT female speaker. The
goal is to see a tendency in the SNR’s of the reconstruction, and since this
algorithm is very computationally expensive, the algorithm was only run up
to 100 iterations and the last part of the graphs were only evaluated for 350
400 and 500 sample overlaps.

The sound quality will be evaluated on both the Interspeech male signal
and the TIMIT female at 25%, 50% and 75% overlap.

Window length

We will also try out different analysis window length, evaluate the sound
quality and comment on the signal-to-noise ratio values. This is done for
both the Interspeech male signal and the TIMIT female signal. The window
size will be tested using windows from 4 to 128 ms and the overlap will be
fixed to 50%.

9.5 Signal Estimation using Non-linear Equa-

tions

The signal estimation algorithm by Bouvrie was implemented in Matlab,
bouvrie.m. The script further uses funk2.m and funk3.m to calculate the
function values of the error function.

9.5.1 Performance as function of initial phase estimate

The algorithm by Bouvrie does not use an initial signal estimate with zero
or random phase. Since it is reconstructing the next segment of the STFT
based on a previous segment, the first segment requires a guess. Bouvrie [2]
uses uniform random noise. This gives rise to artifacts that we will further
discussed in the discussion chapter.

9.5.2 Performance on unmodified spectrogram

Since the algorithm by Bouvrie does not estimate the entire signal at each
step in the algorithm, it is not possible to create a graph that displays the
error function as a function of iterations. Bouvrie’s algorithm is a recursive
algorithm going from frame to frame in the spectrogram. The iterative part
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of the algorithm is the estimation of the missing samples in each segment
(solving the non-linear equations) which needs to be done in an iterative ap-
proach. We used the Gauss-Newton solver fsolve in Matlab to iterate to a
solution, the max number of iterations was set to the default value of 100,
but the algorithm often found a good solution in very few iterations. We
used zero-order hold from the last overlapping samples as a initial guess for
the Gauss-Newton solver.

In this experiment we will be evaluating the three test signals and compare
the perceptual sound quality. We will further visually inspect the result-
ing signal and spectrogram of the signal from a spectrogram of the female
speaker in the TIMIT database. The algorithm requires the spectrogram to
be oversampled x2 to obtain the correct amount of equations to the number
unknown samples. We did this by doing a L × 2 Fourier transform of the
speech signal, where L is the length of the analysis window. In this case,
we used 512 sample analysis window with a 50% overlap. We also forced
positivity in the signal, by adding the largest negative value in the signal
to the entire signal. The algorithm by Bouvrie is only described for boxcar
(square) windows. We intend to show what effects this has and discuss it
later in the discussion section.

In order to be able to compare the reconstruction of the spectrograms with
the reconstruction done by the two other algorithms, the SNRspectrogram

will be based on the difference between the spectrogram of the original sig-
nal with a 32 ms analysis window with 50% overlap (the Fourier transform
length equal to the window length), and a spectrogram of the reconstructed
signal with the same parameter values.

9.5.3 Performance at different overlaps and window
lengths

The paper by Bouvrie et al. [2] had a single graph showing the SNRsignal

as a function of step-size. Since this is a very time consuming graph to do
for larger window sizes (Bouvrie uses a window length of only 100 samples
in the paper) we refer to [2] for an overlap graph which shows the same
tendencies as out experiments for the Griffin and Kannan algorithm. Since
our window length is very different, however, we will evaluate the sound
quality at different overlaps.
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Overlap

In this experiment we show the SNR’s and evaluate the perceptual sound
quality at 25%, 50% and 75% overlap. We evaluated on all three signals
with the window length constant at 512 samples (32 ms) for the TIMIT
speech signals, and at 800 samples (32 ms) for the Interspeech signal.

Window length

The effects of using different analysis window length in the STFT will also
be shown for the algorithm. The window sizes will again be varied from 4 to
64 ms and the perceptual quality and signal-to-noise ratios will be evaluated.
The experiment will be performed on the TIMIT female and Interspeech
male signal. The overlap will be kept constant at 50%.

9.6 Run times of the different algorithms

To evaluate the computational requirements of the different algorithms we
will show the time it takes to run the three algorithms on different lengths of
signals. We will furthermore also evaluate the run time for different lengths
of overlap (25%, 50% and 75%).

The result will of course be dependent on the amount of processing power
on the computer the algorithm is run on, and on implementation style and
programming language. For our implementation we used Matlab and made
sure to try to implement the code as optimally as possible, using fast matlab
commands and matrix evaluations instead of for-loops and other structures
not suited for matlab. These results may not show the most optimal timing
of the algorithms (which would require real time processing) but will be a
rough guide as to the amount of calculations needed in each algorithm.

The machine used was an AMD64 3500+ 2.2 GHz, with 1024 MB of RAM,
running Windows XP SP 2. All time-graphs will be shown in seconds as a
function of the signal length in samples.

9.7 Algorithm Comparison

As a final comparison, we will compare the results from all three methods
side by side.

The aim is to obtain the best possible perceptual quality from all three
algorithms in this reconstruction. We will use the 500 iteration reconstruc-
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tions from the algorithms by Griffin & Lim and Kannan et. al which will also
include a 12th order AR model trained on a different signal with the same
speaker. We will compare the signals and spectrograms from the TIMIT
female speech signal, and all three algorithms will be evaluted visually by
inspecting the signals and spectrograms, and graded using our perceptual
sound quality evalutation scale (PQE). The results will be discussed and
concluded on in the discussion chapter.





Chapter 10

Results

10.1 Signal estimation from a spectrogram

In the following we show the results of the experiments described in the
methods chapter. We will decribe in detail what we see in every result, and
discuss the results and our oppinions to what may cause these results in the
discussion chapter that follows.

10.1.1 Zero and Random Phase

As we see in figure 10.1, the signals have been greatly distorted by using a
phase that is not the same as the original. Perceptually, it is very difficult to
say which is better, random phase may sound more human-like but is more
distorted than the zero phase signal.
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Figure 10.1: This figure shows the effect of doing an inverse short time Fourier
transform on the STFT after replacing the original phase with zero- (left
column) and random (middle column) phase. Both estimates seem to have
some similarity with the original signal. For the zero phase estimate, the
signal seems to have almost captured the positive envelope of the original
signal, while the variance is wrong. It almost looks as if looking at the
absolute values of the signal. Looking at the random phase estimate, we
see that this time, the variance of the reconstructed signal is similar to the
original. It does however not caputer the finer details in the original signal.
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Figure 10.2: This figure shows the spectrograms of the TIMIT female signal
shown in figure 10.1 (top). We clearly see differences between the spectro-
grams with the wrong phase (top right and top left) and the original spectro-
gram (bottom left). The spectrogram with zero phase seems very smeared.
The harmonics, that appear clear on the original spectrogram, can however
still be spotted. The random phase spectrogram is also smeared, but the
resolution seems a little higher and the spectrogram captures some of the
finer details in the original spectrogram.
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Table 10.1: Timit Female - Random and Zero phase signals, window length
512, 50% overlap

Phase SNRsignal SNRspectrogram MSEspectrogram PQE
Random -5.14 dB 17.33 dB 37.16 dB 3
Zero -0.88 dB 4.13 dB 50.36 dB 3

Table 10.2: Timit Male - Random and Zero phase signals, window length
512, 50% overlap

Phase SNRsignal SNRspectrogram MSEspectrogram PQE
Random -4.77 dB 16.63 dB 33.03 dB 3
Zero -1.68 dB 4.55 dB 45.11 dB 3

Table 10.3: Interspeech Male - Random and Zero phase signals, window
length 800, 50% overlap

Phase SNRsignal SNRspectrogram MSEspectrogram PQE
Random -4.61 dB 17.38 dB 34.45 dB 3
Zero -1.75 dB 4.45 dB 47.38 dB 3

Table 10.1, 10.2 and 10.3 show the signal to noise ratios of the different
signals with random and zero phase reconstructions. In all cases, zero phase
obtained the highest SNRsignal, while the random phase obtained the highest
SNRspectrogram. PQE was 3 in all cases. We were able to understand what
was said, but sometimes with difficulty due to noise and artifacts.
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Table 10.4: Timit Female - Random phase statistics, window length 512,
50% overlap, 500 runs

SNRsignal SNRspectrogram MSEspectrogram

Mean -5.09 16.94 37.54
Max -3.49 18.65 39.57
Min -6.55 14.92 35.84
Std. 0.56 0.61 0.61

Table 10.5: Timit Male - Random phase statistics, window length 512, 50%
overlap, 500 runs

SNRsignal SNRspectrogram MSEspectrogram

Mean -5.07 17.07 32.59
Max -3.26 18.67 34.75
Min -6.46 14.91 30.99
Std. 0.53 0.60 0.60

Table 10.6: Interspeech Male - Random phase statistics, window length
800, 50% overlap, 500 runs

SNRsignal SNRspectrogram MSEspectrogram

Mean -5.09 17.92 33.91
Max -2.20 20.18 36.71
Min -7.26 15.12 31.66
Std. 0.78 0.91 0.91

Tabel 10.4, 10.5 and 10.6 show the statistics of choosing different random
phases. All signals had a standard deviation of less than 1 dB, and the high
and low values seem to be around 2 dB on each side of the mean for the
SNRspectrogram and 2-3 dB for the SNRsignal.

10.2 Signal Estimation Griffin

This section presents the results for the experiments using the algorithm by
Griffin & Lim [10] to reconstruct the speech signal from a spectrogram. The
experiments are described in detail in the methods section.
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10.2.1 Performance as function of inital phase estimate
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Figure 10.3: This figure shows the error functions as a function of iterations
of the algorithm by Griffin & Lim, and as a function of initial signal estimates
with random or zero phase. The result is different for the two different signals
(left and right). If we look at the SNR on the spectrograms, we see that for
the female speech signal (top left), the curves for the zero and random initial
phase estimates are very close. They stay close to each other all the way to
500 iterations, with the random phase estimate on top, and the difference
between to two curves are 0.7 dB. For the male signal (top right) on the
other hand, the initial estimates are close in the begining but the zero phase
estimate gets higher values after a few iterations. The two curves then run
almost parallel and ends up at 500 iterations with a difference of 4.18 dB,
this time with the zero phase estimate giving the best SNR. If we look at the
MSE function for the two signals, we see the same tendency, but the crossing
of the curves, happens at different iterations. Another thing to note is that
at the first 10 iterations the zero phase estimate always gives lower SNR than
the random phase estimate (this can be difficult to se on the figures). The
reconstructed sound was indistinguishable between the two phase estimates
after 100 iterations.
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10.2.2 Performance on Unmodified Spectrogram
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Figure 10.4: This figure shows the reconstructed signals after 10, 100 and
500 iterations of the signal estimation algorithm by Griffin and Lim together
with the original signal. We see that all reconstructed signals, even for 10
iterations, has clear similarities to the original signal. An improvement on
the reconstructed signal can be seen from 10 iteration to 100 iterations. From
100 to 500 iterations, improvement can still be spotted but is a little difficult
to see.
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Figure 10.5: This figure shows the corresponding spectrograms to the signals
in figure 10.4. We see that the spectrogram of the reconstructed signal comes
closer to the original as more iterations are performed. The improvement on
the spectrogram as the number of iterations increases is clear. The difference
from 10 to 100 iterations is large, compared to the difference between 100
and 500 iterations. We also see that after 500 iterations the spectrogram is
close to the original spectrogram, but not an exact match.
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Table 10.7: Timit Female Speaker - Quality of different number of itera-
tions (512, 50% overlap, random phase)

Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
10 -6.06 dB 29.27 dB -2.49 dB 3
100 -6.49 dB 46.42 dB -19.64 dB 4
200 -6.48 dB 53.57 dB -26.79 4
500 -6.41 dB 65.87 dB -39.09 dB 4

Table 10.8: Timit Male Speaker - Quality of different number of iterations
(512, 50% overlap, random phase)

Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
10 -5.12 dB 30.69 dB -8.0 dB 3
100 -5.01 dB 43.94 dB -25.34 dB 4
200 -4.65 dB 50.38 dB -31 dB 4
500 -4.56 dB 59.11 dB -37.8 dB 4

Table 10.9: Interspeech Male Speaker - Quality of different number of
iterations (800 50% overlap, random phase)

Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
10 -5.84 dB 31.70 dB -6.94 dB 3
100 -6.30 dB 59.23 dB -20.19 dB 4
200 -6.47 dB 61.65 dB -26.63 dB 4
500 -6.53 dB 64.44 dB -35.36 dB 4

Tables 10.7, 10.8 and 10.9 shows the signal to noise ratios of the different
signals after a different number of iterations. The SNRsignal drops from 10
to 100 iterations in Table 10.7 but then rises a little after more iterations.
In Tabel 10.8 the SNRsignal generally rises over all iterations, and in Tabel
10.9 the SNRsignal generally drops over all iterations. For all the signals, the
SNRspectrogram kept rising for each iteration and the MSEspectrogram dropped.
The sound quality was poor for all signals after 10 iterations. It did improve
very slightly from 100 to 500 iterations, but all signals contained artifacts
that made it clear that this was not the original signal.
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10.2.3 Performance at different overlaps and window
lengths
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Figure 10.6: Error as function of overlap using 100 iterations, (analysis win-
dow size of 512) on male TIMIT speaker. We see that for small overlaps,
less than 100 samples (20%), the SNR on the reconstructed signal (top left)
is very low. The SNR is fairly constant (very small climb) as we go past the
200 sample overlap (40%). If we look at the SNR on the spectrograms we see
high values for small overlaps, and the SNR in this case drops as the number
of overlapping samples is increased. If we look at the MSE error, we see the
same tendency, a low error at small overlaps, which increases as the overlap
increases.
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Table 10.10: Timit Female Speaker - Varying the overlap (200 iterations,
window length = 512)

Overlap (samples) 128 256 384
Overlap (%) 25 50 75
SNRsignal -6.83 dB -6.48 dB -6.69 dB

SNRspectrogram 61.4 dB 53.57 dB 46.05 dB
PQE 3 4 4

Table 10.11: Interspeech Male Speaker - Varying the overlap (200 itera-
tions, window length = 800)

Overlap (samples) 200 400 600
Overlap (%) 25 50 75
SNRsignal -6.11 dB -6.47 dB -5.01 dB

SNRspectrogram 76.40 dB 59.23 dB 50.42 dB
PQE 3 4 4

Tables 10.10 and 10.11 shows the signal-to-noise ratios and the evaluation of
perceptual sound quality at different overlaps. In Table 10.10 . Going below
50% overlap decreased the sound quality. At a 128 sample overlap the sound
was rated a 3. At 50% overlap and above, the sound quality only changed
slightly, at an overlap of 384 samples (75%), the sound was still rated a 4.
The same applied to the Interspeech male signal for the perceptual quality.
The SNRspectrogram followed the tendency shown in Figure 10.6 for both sig-
nals. The SNRsignal was also fairly constant in both cases.
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Table 10.12: Timit Female Speaker - Varying the analysis window size
(200 iterations, 50% overlap)

WindowSize(samples) 64 128 256 512 1024
WindowSize(ms) 4 8 16 32 64

SNRsignal(dB) -6.06 -5.82 -5.40 -6.48 -6.27
SNRspectrogram (dB) 49.23 53.37 46.78 53.57 50.12

PQE 3 3 3-4 4 4

Table 10.13: Interspeech Male Speaker - Varying the analysis window
size (200 iterations, 50% overlap)

WindowSize(samples) 100 200 400 800 1600
WindowSize(ms) 4 8 16 32 64

SNRsignal(dB) -4.46 -5.65 -5.24 -4.20 -6.73
SNRspectrogram (dB) 40 47.6 51,29 55.7 59.49

PQE 3 3 3 4 3-4

If we look at Tables 10.12 and 10.13 we see that the sound quality changes
as the analysis window is changed from a 4 ms to a 64 ms window. The per-
ceptual quality was best at a 32 ms window in both the TIMIT female speaker
signal and the Interspeech male speaker signal. Looking at the SNRsignal we
see that they do not seem to follow a special pattern. The SNRspectrogram

rises in the Interspeech male signal, but show no general improvement in the
TIMIT female signal. The signals would sound very distorted at the small
window lengths, with irritating noise, while being fairly pleasant at 512 and
1024 sample windows. A window length of 1024 did however contain very
small artifacts.
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Figure 10.7: Result of doing signal reconstruction using the algorithm by
Griffin & Lim. This figure displays the difference of the different initial
phase guesses when working on a sine wave.

On Figure 10.2.3 we see a sine wave with a random phase applied to its
STFT. The random phase estimate seem to have gotten closer to the original
signal after 100 iterations. Starting from zero phase, however, the signal did
not improve beyond 60 iterations, but maintained the same estimate (bottom
right) after 100 iterations, where the random phase estimate continued to
improve.

10.3 Signal Estimation using Probabilistic In-

ference

In this section we will present the results of our tests using the algorithm
by Kannan et al.[12]. The details of these experiments can be found in the
methods chapter.
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10.3.1 Performance as function of inital phase
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Figure 10.8: Signal reconstruction using probabilistic algorithm by Kannan
at different initial phase guesses, without using a pretrained AR model. Ran-
dom phase displayed is averaged over 200 runs. In this figure we see the
SNRspectrogram and MSEspectrogram of the reconstructed spectrograms. The
curves are not entirely smooth because the errors were evaluated at each
function evaluation, and not at the current minimum of the algorithm. This
was done to maintain a feeling of the number of iterations (in this case func-
tion evaluations) needed. If we look at the SNRspectrogram on the male speech
sample, we see that the random phase initial estimate starts at a higher value
than the zero phase estimate. Although the zero phase estimate seems to
climb faster in the beginning, the gap is still 4.5 dB after 200 iterations. The
same tendency can be seen on the female signal as well. Here the gap ends up
being 2.3 dB. Looking at the MSE curves, the tendency is also the same, the
zero phase estimate never comes really close to the random phase estimate.
The sound quality was also different for the two initial signal estimates, with
random phase being better than the zero phase.
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10.3.2 Performance on unmodified spectrogram
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Figure 10.9: Reconstructed signals for different number of iterations. As we
can see, it looks as if there are small improvement from 10 iterations to 100,
and from 100 to 200. After 200 iterations the signal still has spikes that is
also present on the 10 iteration signal.
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Figure 10.10: Reconstructed spectrograms for different number of iterations.
After 10 iterations, the spectrogram looks coarse and smeared. We clearly
see an improvement from 10 to 100 and from 100 to 200 iterations, but we
also see what appears to be artifacts as the number of iterations increase.
We see dark or bright lines through voiced parts of the spectrogram after 100
iterations. These lines are also present after 200 iterations, but not quite as
clear.
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Table 10.14: Timit Female Speaker - Quality of different number of iter-
ations (512 window, 50% overlap)

Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
10 -5.15 dB 17.33 dB 37.6 dB 3
100 -6.71 dB 26.34 dB 28.15 dB 3
200 -6.51 dB 30.03 dB 24.45 dB 3
500 -6.46 dB 32.81 dB 21.68 dB 3

Table 10.15: Timit Male Speaker - Quality of different number of itera-
tions (512 window, 50% overlap)

Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
10 -4.77 dB 16.63 dB 33.03 dB 3
100 -5.16 dB 27.49 dB 22.17 dB 3
200 -4.8 dB 30.34 dB 19.32 dB 3
500 -4.78 dB 34.45 dB 15.21 dB 3

Table 10.16: Interspeech Male Speaker - Quality of different number og
iterations (800 window, 50% overlap)

Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
10 -5.08 dB 16.94 dB 34.91 dB 3
100 -7.24 dB 30.83 dB 21.02 dB 3
200 -7.53 dB 33.61 dB 18.24 dB 3
500 -7.44 dB 36.58 dB 15.21 dB 3

Table 10.14, 10.15 and 10.16, show the evaluations after different number
of iterations. For the SNRsignal we see no special tendency. The TIMIT
female signal and the Interspeech male signal seems to have dropped a little
in SNRsignal, while the TIMIT male signal stays about the same. In all
three signal reconstructions, the SNRspectrogram improved over all iterations.
The MSEspectrogram also improved, by dropping at every iteration. The per-
ceptual sound quality was not very good, with artifacts plaguing the signals.
There was also only a small improvement in sound quality from 100 iterations
to 500. This showed to be true for all of the three signals.
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Figure 10.11: Convergence curves with and without the AR model. We see
that running the algorithm with the AR model does make a difference in the
convergence curves. The curve with the AR model rises faster than the curve
without the AR model. This means that the error between the original and
the reconstructed spectrogram is less if 200 iterations are used. Note however,
that the AR model curve seems to flatten more after 200 iterations, than the
curve without the AR model. The reconstruction was run at random phase,
and the curves shown were averaged over 25 runs.
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Figure 10.12: Reconstructed spectrograms with and without the AR model.
This figure shows the spectrogram after 200 iterations with and without the
AR model on the small TIMIT male signal clip with the utterance “Dark
Suit” . As we can see, without the AR model, the spectrogram is more
coarse than with the AR model. The artifacts also noted in 10.10 are clearly
visible in this case. The AR model spectrogram looks more smeared, but
seems to have made the harmonics more visible.
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Figure 10.13: This figure shows a zoom-in of the discontinuity in the recon-
structed signal. We see a clear discintinuity in the signal on this figure at
around 0.136 seconds. The discontinuity appears at the location of every
beginning of a new window in the STFT throughout the signal and vary
in size. The discontinuity is clearly audible when playing the reconstructed
signal. Note that it is not just two points out of place, there are 2-4 points
on each side of the two peaks, that seem to go towards the peaks.
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10.3.3 Performance at different overlaps and window
lengths
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Figure 10.14: This figure shows the error functions as a function of overlap-
ping samples. We see the same tendency as for the same graph for the Griffin
algorithm. The curves are more coarse due to the fact that we only used 100
iterations to show the tendency. The SNRsignal rises with increasing number
of overlapping samples, and the SNRspectrogram drops, while the MSE rises.
The perceptual sound quality was also following the same tendency as in the
Griffin graph. Low SNRsignal at low overlaps gave very poor quality sound,
while the quality improved with higher overlaps.
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Table 10.17: Timit Female Speaker - Varying the overlap (200 iterations,
512 sample window

Overlap (samples) 128 256 384
Overlap (%) 25 50 75
SNRsignal -7.20 -6.51 -5.75

SNRspectrogram 41.88 30.03 33.92
PQE 3 3 3-4

Table 10.18: Interspeech Male Speaker - Varying the overlap (200 itera-
tions, 800 sample window

Overlap (samples) 200 400 600
Overlap (%) 25 50 75
SNRsignal -5.23 -7.53 -7.89

SNRspectrogram 41.88 33.61 38.88
PQE 3 3 3-4

Table 10.17 and 10.18 shows the effects of different lengths of overlap. The
signals still had artifacts with a 75% overlap, but seemed to have improved
slightly in quality. The SNRsignal seems to rise from the 25% to the 75%
overlap on the TIMIT female signal, while dropping on the Interspeech male
signal. The SNRspectrogrm does not seem to follow a special pattern and
notice that it is not possible to evaluate the sound quality from these to SNR
measures.
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Table 10.19: Timit Female Speaker - Varying the analysis window size
(200 iterations, 50% overlap)

WindowSize(samples) 64 128 256 512 1024
WindowSize(ms) 4 8 16 32 64

SNRsignal(dB) -5.83 -5.75 -7 -6.51 -6.6
SNRspectrogram (dB) 34,97 38.62 30.3 30.03 29.7

PQE 3 3 3 3 3

Table 10.20: Interspeech Male Speaker - Varying the analysis window
size (200 iterations, 50% overlap)

WindowSize(samples) 100 200 400 800 1600
WindowSize(ms) 4 8 16 32 64

SNRsignal(dB) -5.93 -5.87 -3.95 -7.53 -7.57
SNRspectrogram (dB) 22.41 30.37 33.74 33.61 33.02

PQE 3 3 3 3 3

Table 10.19 and 10.20 shows the performance as we change the analysis
window length. It is difficult to see a pattern in the signal to noise ratios.
The perceptual sound quality, although all experiments were rated a 3 due
the noise in the reconstructed signals, did improve from 64 to 512 samples,
and worsened at 1024 samples. The tendency in quality is thereby similar to
the one in Table 10.12 for the Griffin algorithm. Note that it is not obvious
from the SNR’s that the 32 ms window gave the best quality reconstruction.
The quality of the reconstruction had the same tendency for both signals.
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10.4 Signal estimation using Non-linear Equa-

tions

In this section we will present the results of our tests using the algorithm
by Bouvrie et al.[2]. The details of these experiments can be found in the
methods chapter.

10.4.1 Performance on unmodified spectrogram
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Figure 10.15: Reconstructed signals (Timit Female) after using [2]. As we
can see the signals looks very similar. The reconstructed signal though seem
to have a few extra small spikes compared to the original signal.



10.4. SIGNAL ESTIMATION USING NON-LINEAR EQUATIONS 75

Spectrogram inserted into the algorithm

Time [s]

F
re

qu
en

cy
 [H

z]

0 1 2 3
0

2000

4000

6000

8000

−80

−60

−40

−20

0

20

40

Time [s]

F
re

qu
en

cy
 [H

z]

Spectrogram of reconstructed signal

0 1 2 3
0

2000

4000

6000

8000

−80

−60

−40

−20

0

20

Time [s]

F
re

qu
en

cy
 [H

z]

Original Spectrogram

0 1 2 3
0

2000

4000

6000

8000

−100

−80

−60

−40

−20

0

20

Figure 10.16: Reconstructed Spectrograms (TIMIT Female) after using the
algorithm by Bouvrie et al. [2]. In the first spectrogram (top left), we see the
the spectrogram being fed to the algorithm by Bouvrie. As we can see, the
spectrogram seems more dark and smeared due to the fact that it was created
with a square analysis window, and a Fourier transform length which was
double the length of the analysis window. If we analyse the reconstructed
signal by obtaining the spectrogram and compare it to the spectrogram of
the original signal, we get the two spectrograms (top right and bottom left).
As we can see, these two spectrograms look very similar.
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Table 10.21: Speakers and Errors. Timit analysis window length 512,
Interspeech window length 800, 50% overlap.

SNRsignal SNRspectrogram MSEspectrogram PQE
Timit Female 16.28 dB 35.19 dB 27.32 dB 3-4
Timit Male 21.56 dB 42.60 dB 15.12 dB 3-4

Interspeech Male 20.53 dB 38.32 21.51 dB 3-4

Looking at table 10.21 we see the evaluation results for the three different
signals. We see very high values for the SNRsignal and good values for
the SNRspectrogram. The perceptual quality is good, but the signals contain
artifacts. The first part of the reconstructed signal contains noise, while the
last part is almost indistinguishable from the original signal. We will go into
depth on this in the discussion section. The noise is present in all the three
signals, but most noticable with the TIMIT female signal. Due to the noise,
the signals all recieve a 3-4 PQE grade.
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10.4.2 Performance at different overlaps and window
lengths

Table 10.22: Timit Female Speaker - Varying the overlap (512 sample
window)

Overlap (samples) 128 256 384
Overlap (%) 25 50 75
SNRsignal 3.89 16.28 50.03

SNRspectrogram 34.67 35.19 60.59
PQE 3 3-4 4-5

Table 10.23: Timit Male Speaker - Varying the overlap (800 sample win-
dow)

Overlap (samples) 128 256 384
Overlap (%) 25 50 75
SNRsignal 6.98 21.56 156.43

SNRspectrogram 39.30 42.60 156.91
PQE 3 3-4 5

Table 10.24: Interspeech Male Speaker - Varying the overlap (800 sample
window)

Overlap (samples) 200 400 600
Overlap (%) 25 50 75
SNRsignal 6.64 20.53 121.02

SNRspectrogram 30.05 38.32 125.08
PQE 3 3-4 5

Table 10.22, 10.23 and 10.24 show the effects of using different overlap on
all three signals. All the signals followed the same tendency in both the
SNR’s and the PQE’s. At 25% overlap, the algorithm performed poorly, the
reconstructed speech was contaminated with heavy artifacts and noise. With
a 50% overlap it improved, but still had noise in parts of the reconstructed
signal. With a 75% overlap, perfect reconstruction was achived on both the



78 CHAPTER 10. RESULTS

TIMIT male speaker, and the interspeech signal. The TIMIT female signal
was also very close to the original, with only very slight noise.

Table 10.25: Timit Female Speaker - Varying the analysis window size
(200 iterations, 50% overlap)

Window Size (samples) 64 128 256 512 1024
Window Size (ms) 4 8 16 32 64

SNRsignal(dB) 23.67 dB 14.5 dB 17.5 dB 16.28 dB 3.91 dB
SNRspectrogram 35.64 dB 37.38 dB 41.68dB 35.19 dB 31.23 dB

PQE 3-4 3-4 3-4 3-4 3

Table 10.26: Interspeech Male Speaker - Varying the analysis window
size (200 iterations, 50% overlap)

Window Size (samples) 100 200 400 800 1600
Window Size (ms) 4 8 16 32 64

SNRsignal(dB) 32.73 dB 21.35 dB 43.37 dB 20.53 dB 3.91 dB
SNRspectrogram 44.60 dB 32.22 dB 62.57 dB 38.32 dB 31.23 dB

PQE 4 4 4-5 3-4 3

Table 10.25 and 10.26 show the effects of using different analysis win-
dow lengths, while maintaining the 50% overlap. All of the reconstructed
signals for different window lengths contained noise in the beginning of the
reconstructed signal, and the noise seems to get worse with larger window
lengths. The noise apeared a bit worse on the female signal, and we seem to
get better reconstruction on the Interspeech signal. The SNRsignal seem to
go up and down, but became very low at the 64 ms window which also lead
to the poorest quality sound. The best quality sound was at 16 ms for the
Interspeech male speaker. Here the SNRsignal and SNRspectrogram are both
high compared to the results for the other window lengths.
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10.5 Run times of the different algorithms

These are the results of the analysis of complexity of the three different signal
estimation algorithms. The signal length experiments were carried out on the
TIMIT female speaker signal at different lengths, using a 512 window with
a 50% overlap.
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Figure 10.17: This figure shows duration of the algorithm by Griffin & Lim
as a function of the number of samples (100 iterations). As we can see, the
time duration of the algorithm is fairly linear. The curve stretches from 0.69
seconds for 1000 samples, to 16.2 seconds for 60.000 samples
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Figure 10.18: This figure shows duration of the algorithm by Kannan as a
function of the number of samples using 100 iterations. As we can see, the
time duration of the algorithm is fairly linear without the AR model. The
curve stretches from 321 seconds for 1000 samples, to 2000 seconds for 60.000
samples. With the AR model the run time increases dramatically, ending at
around 9000 seconds for 60.000 samples.
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Figure 10.19: This figure shows duration of the algorithm by Bouvrie as a
function of the number of samples. As we can see the run time is also fairly
linear for this algorithm. The algorithm has a run-time of around 600 seconds
for a 10.000 sample signal and stretches all the way to around 2500 seconds
for 60.000 samples.
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Table 10.27: Time Comparison Different overlaps (200 iterations, 512 win-
dow)

Overlap (samples) 128 256 384
Overlap (%) 25 50 75

Griffin et al. (time) 21.7 sec 31.8 sec 62.5 sec
Kannan et al. (time) 3140 sec 3920 sec 19200 sec
Bouvrie et al. (time) 9116 sec 2659 sec 550 sec

If we look at Table 10.27 we see the run-time of the algorithms at different
overlaps. 200 iterations was used for the Griffin and Kannan algorithm.
As we can see, both the Griffin and Kannan algorithm increases a great
deal in run time at larger overlaps, while the Bouvrie algorithm run time is
dramatically decreased.
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10.6 Comparison of signal estimation algo-

rithms
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Figure 10.20: Reconstructed signals for each of the three algorithms using
500 iterations on the TIMIT female speaker signal (512 window with 50%
overlap). We see that the Griffin algorithm and the Bouvrie algorithm gets
closest to the original signal, with Bouvrie being very close to the original.
The algorithm by Kannan resembles the original signal, but has certain spikes
that are not present on the original signal. These spikes are also to some
extent present on the result obtained with the algorithm by Griffin & Lim,
but not to the same extent
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Figure 10.21: Reconstructed spectrograms for each of the three algorithms
using 500 iterations on the TIMIT female speaker signal (512 window with
50% overlap. We see that the best match to the original spectrogram is
obtained by the Griffin (bottom left) and Bouvrie algorithm (top right). The
Bouvrie algorithm, however, seem to have some difference from the original
at the voiced parts at about 0.25 and 0.9 seconds and at 2.1 seconds. These
difference can be heard as noise in the reconstructed signal. The spectrogram
(top left) by the Kannan algorithm does not seem to capture all of the finer
details in the original spectrogram and appears less sharp at the voiced parts.
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Table 10.28: Timit Female Speaker - Reconstruction Comparison (512
window, 50% overlap)

Algorithm Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
Random Guess - -5.14 dB 17.33 dB 37.16 dB 3
Zero Guess - -0.88 dB 4.13 dB 50.36 dB 3
Griffin et. al. 500 -6.41 dB 65.87 dB -39.09 dB 4
Kannan et. al 500 -6.38 dB 33.78 dB 20.7 dB 3
Bouvrie et al. - 16.28 dB 35.19 dB 27.32 dB 3-4

Table 10.29: Timit Male Speaker - Reconstruction Comparison (512 win-
dow, 50% overlap)

Algorithm Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
Random Guess - -4.77 dB 16.63 dB 33.03 dB 3
Zero Guess - -1.68 dB 4.55 dB 45.11 dB 3
Griffin et. al. 500 -4.56 dB 59.11 dB -37.8 dB 4
Kannan et. al 500 -4.58 dB 35.65 dB 16.41 dB 3
Bouvrie et al. - 21.56 dB 42.60 dB 15.12 dB 3-4

Table 10.30: Interspeech Male Speaker - Reconstruction Comparison
(512 window, 50% overlap)

Algorithm Iterations SNRsignal SNRspectrogram MSEspectrogram PQE
Random Guess - -4.61 dB 17.38 dB 34.45 dB 3
Zero Guess - -1.75 dB 4.45 dB 47.38 dB 3
Griffin et. al. 500 -6.53 dB 64.44 dB -35.36 dB 4
Kannan et. al 500 -7.41 dB 33.58 dB 18.3 dB 3
Bouvrie et al. - 20.53 dB 38.32 21.51 dB 3-4

If we look at Tables 10.28, 10.29 and 10.30 we see that the Griffin algo-
rithm obtained the best SNRspectrogram while the Bouvrie algorithm obtained
the best SNRsignal. We also see that all algorithms have improved much over
both the zero phase guess and the random phase guess when observing the
SNRspectrogram. The zero phase guess showed higher SNRsignal than both
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the Griffin algorithm and the Kannan algorithm, but had much worse qual-
ity sound that any of the reconstruction algorithms. The best perceptual
sound quality, when using the 32 ms window with a 50% overlap was found
using the Griffin algorithm, since both the Bouvrie and Kannan algorithm
had noise that was unpleasant.

Table 10.31: Timit Female Speaker - Comparison (512, 75% overlap)
Algorithm Iterations SNRsignal SNRspectrogram PQE
Griffin et. al. 200 -6.69 dB 46.05 dB 4
Kannan et. al 200 -5.75 dB 33.92 dB 3
Bouvrie et al. - 50.03 dB 60.59 dB 4-5

Table 10.32: Interspeech Male Speaker - Comparison (800, 75% overlap)
Algorithm Iterations SNRsignal SNRspectrogram PQE
Griffin et. al. 200 -5.01 dB 50.42 dB 4
Kannan et. al 200 -7.89 dB 38.88 dB 3
Bouvrie et al. - 121.02 dB 125.08 dB 5

Tables 10.31 and 10.32 shows the side-by-side comparison of the three
algorithms with a 32 ms window and a 75% overlap. In both signals, the
Bouvrie gets both the highest SNRspectrogram and SNRsignal. While the
Griffin and Kannan algorithm only improved very little by the extra overlap,
the Bouvrie algorithm now produced almost perfect reconstruction. Note
that these results are for 200 iterations.



Chapter 11

Discussion

In the following we shall discuss and interpret the results of each of the
signal estimation experiments. In order to easily refer to the three different
algorithms, we will use the terms Griffin algorithm, Kannan algorithm and
Bouvrie algorithm to denote the algorithms by Griffin & Lim, Kannan et al.
and Bouvrie et al. respectively.

11.1 Zero and Random phase

Applying a different phase than the orignial to a spectrogram and then re-
constructing the original signal with an inverse short time Fourier transform
showed to have great concequences on the sound quality of the signal. In
some research fields, like automatic speech recognition [8], phase is often
not considered to be important. As our perceptual sound quality evalua-
tion grade shows, all reconstructed speech was indeed intelligable. It was,
however, not very pleasant to listen to. Phase information is obviously very
important for the sound quality of the reconstructed signals. The human
auditory system iseasily irritated or stressed by even a slight change in the
original phase. On the other hand, a computer trying to recognise speech
may be almost unaffected by a wrong phase. This only goes to show that
the phase information is valued differently in different research areas.

We noted in Table 10.1, 10.2 and 10.3, that the two phase guesses yielded
different values on both SNRsignal and SNRspectrogram. A random phase sig-
nal seems to achieve a spectrogram that is closer to the original than a zero
phase signal, and a zero phase signal estimate achieved a signal which was
closer to the original signal in terms of SNRsignal than a random phase esti-
mate. Since the Griffin and Kannan algorithm optimize on the spectrogram,
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this might already be an indication that a random phase estimate is better
than a zero phase estimate for these two algorithms.

Table 10.4, 10.5 and 10.6 showed that taking a random guess at the phase,
could lead to a difference between maxium and minimum SNRspectrogram of
around 4-5 dB, with the same applying to the SNRsignal. The standard de-
viation of 0.91 however showed that these random guesses was often close to
the mean. The mean values also show that our stored random phase signals
which were used in most experiments (Table 10.1, 10.2 and 10.3) are close
to what is normally obtained with a random phase guess. This ensured that
our experiments were carried out with the “typical” random guess for the
phase, and that most guesses lie in this area.

11.2 Signal estimation using Overlap and Add

11.2.1 Performance as a function of initial phase

Section 10.2.1 showed the performance of the Griffin algorithm using zero
and random phase signals as initial estimates for the algorithm. Figure 10.3
showed that using random- or zero phase gave different results for different
signals. The female signal had a higher SNR on the reconstructed signal,
when using the random phase initial estimate, while the male speaker had
a higher SNR on the zero phase signal. This clearly shows that the choice
of zero or random phase seems dependant on the signal. The perceptual
sound quality was however almost indistinguishable between zero and ran-
dom phase on both signals after 100 iterations. The conclusion of this ex-
periment is therefore that a random phase estimate is just as good as a zero
phase estimate as long as the number of iterations are over 100. We did, on
the other hand, see an example of the algorithm ending in a local minimum
in Figure 10.2.3 when starting with a zero phase estimate. This result was
however obtained on a perfect sinusoidal signal, which may be more prone to
local minima. To be safe, it seems resonable to use random phase as initial
phase for all signals.

11.2.2 Performance on unmodified spectrogram

The algorithm by Griffin & Lim generally obtained good quality recontruc-
tion. We saw that the reconstructed signals looked close to the original in
Figure 10.4, and that signal did improve after an increasing number of it-
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erations. If we look at Table 10.7, 10.8 and 10.9 we see that the algorithm
achieved good quality sound after 100 and 200 iterations. We used 200 iter-
ations for most of our experiments because this number of iterations ensured
good quality reconstruction on all the signals we tested.

The SNRsignal did not change much over the 500 iterations on the TIMIT
female speaker. It fluctuated a little up and down before landing at -6.41
dB. On the TIMIT male speaker, the SNRsignal steadily increased at the dis-
played iterations. The Interspeech male speaker on the other hand steadily
decreased at the displayed iterations. This rise and fall in SNR can be ex-
plained by an overall phase difference between the recontructed and the origi-
nal signal. A 90 degree phase shift on the entire signal would cause a decrease
in the SNRsignal at every iteration. This also shows that SNRsignal mat not
be a very good indicator of the quality of the reconstruction, since all three
signals had the same perceptual quality.

Looking at the spectrograms in Figure 10.5, we saw visual improvements
for increasing number of iterations. The reconstructed spectrograms looked
very close to the original, and also caputures some of the finer details of the
original spectrogram. The close match of the reconstructed spectrograms to
the original spectrogram was also noted in Table 10.7, 10.8 and 10.9. The
SNRspectrogram increased at each iteration, and the MSE kept decreasing.
This was all a good indication that the algorithm was working properly and
converged to a solution where the difference between the original and the
estimated spectrogram got closer to each other. It was also shown that 10
iterations with the Griffin algorithm does not generally lead to a good recon-
struction, but suffers from more severe artifacts which were beginning to be
unpleasant.

Even though we could recieve very high SNRspectrogram on all the test sig-
nals, the reconstructed speech, even after 500 iterations, still contained small
artifacts which made it clear that this was not exactly the same as the orig-
inal speech. The artifact sounded like a very fine reverb effect (like talking
inside a box), but was not unpleasant. Since the sound quality of the re-
construction did not improve significantly from 200 to 500 iterations, even
though the SNRspectrogram increased to higher values, we concluded that 200
iterations was enough to obtain close to, if not the best reconstruction, the
Griffin algorithm could provide.
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11.2.3 Performance at different overlaps and window
lengths

In Figure 10.6 we saw the changes in the error functions SNRsignal, SNRspectroram

and MSE as we changed the number of overlapping samples. The SNRsignal

was low up until a overlap of 40%, and the sound quality seemed to follow
this curve well. The quality was very low up to 40%, and kept improving
with a larger overlap. We felt, however, that the difference between 50%
and 90% overlap was not very significant. We also saw high SNRspectrogram

and low MSE at the overlaps from 1 to 150 samples. This does not indicate
good quality sound, but is rather an image of how the algoithm can get a
good match to a very low quality spectrogram. We believe that a low quality
spectrogram makes it “easier” to find a signal to match the spectrogram,
but as we saw in the SNRsignal graph, the reconstructed signal was very
different from the original signal. This is also an example of SNRspectrogram

not always being a good measure of the general quality of the reconstructed
signal. SNRspectrogram together with SNRsignal may say more about the sig-
nal than either alone. A very high SNRsignal and a very high SNRspectrogram

would probably indicate a good reconstruction, while a very low SNRsignal

and high SNRspectrogram would indicate a poor reconstruction.

We displayed the results of testing the quality at 25%, 50% and 75% overlap
in Tables 10.10 and 10.11, and there were no difference between the Inter-
speech male and TIMIT female speech signal. Both obtained a poor result
at 25% overlap. At 50% overlap the quality was very close to that with 75%
overlap. This means that the extra calculations needed to do a 75% overlap
in stead of 50% is maybe not justified when considering the sound quality.

The length of the analysis window proved to be important for the quality
of the reconstruction. Tables 10.12 and 10.13 showed that at the 50% over-
lap, an analysis window of 32 ms gave the best quality signal. The result
was clear for both the signals from the two different sound databases, the
TIMIT with the female speaker, sampled at 16 kHz, and the male speaker
from the Interspeech database sampled at 25 kHz. It seems that the best
reconstruction is obtained with the spectrogram that has the best resolution
in both the frequency and time axis. 512 samples with a 50% overlap yields
a good resolution on both frequency and time axis with the TIMIT database.
Since we need a high resolution spectrogram for the vector quantization, it is
fortunate that the Griffin algorithm also performs best on high spectrogram
resolution. Generally we did not notice any difference on reconstruction of
the three different speech signals, which implies that neither gender or sam-
pling frequency affects the reconstruction.
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11.3 Signal estimation using Probabilistic In-

ference

11.3.1 Performance as a function of initial phase

Looking at Figure 10.8 the algorithm by Kannan gave a similar result for
both the male and female signal. The experiment suggests that a random
phase signal is the best initial signal estimate to start the algorithm with.
The perceptual sound quality between using zero and random phase was also
different, with random phase giving better quality. The test was also run on
a signal with a male speaker from the interspeech database, with the same
result. Compared to the algorithm by Griffin & Lim we clearly see from
Figure 10.8 that this algorithm converges much slower.

11.3.2 Performance on unmodified spectrogram

In Figure 10.9 we saw that the signal improved as the number of iterations
went from 10 to 200. In Table 10.14, 10.15 and 10.16 the SNRsignal is dis-
played for different number of iterations. It is difficult to see any pattern
in the SNRsignal’s . The perceptual quality did improve over an increasing
number of iterations, but still carried artifacts which caused the lower grade
in PQE. The improvement however small after 100 iterations, however, and
this is another example of the SNRsignal not being a solid indicator for the
perceptual quality. The signal improves, but the SNRsignal does not. Again,
an overall phase error could contribute to the low SNRsignal. In any case,
this shows that this algorithm, as with the Griffin algorithm, obtains a re-
construction that does not have the exact same starting phase as the original.

The spectrograms in figure 10.10 clearly showed improvements with increas-
ing number of iterations. Table 10.14, 10.15 and 10.16 also showed that the
SNRspectrogram kept rising for increasing number of iterations. This is a good
indication that the algorithm is functioning correctly. The sound quality also
improved with increasing number of iterations, but it did also show artifacts.
Those artifacts are especially clear in the top right spectrogram (after 100
iterations) at the voiced areas in figure 10.10. They can be seen as lines
spanning the entire frequency band which suggests a discontinuity in the sig-
nal. Figure 10.13 shows the discontinuity that occurs at the boundaries of
the segments in the STFT. The discontinuities are also very noticable in the
reconstructed signal.

The AR model was tested on a small part of the male speaker signal from
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the TIMIT database (due to the high run time of the algorithm with an AR
model, also shown in Figure 10.18). The reconstruction with the AR model
made the algorithm converge faster, as we saw in figure 10.11. The artifacts,
however, are still there, and are also clearly visible in the spectrograms on
Figure 10.12. We tried to do multiple tests on different signals. Sometimes
the AR model would help a little, and other times it would not do much. A
reason why the AR model may not give good results could be that the AR
model did not capture a tendency in the signal on which it was trained, that
could be used to improve the signal being reconstructed.

The artifact that plagued all of the reconstructions, shown in figure 10.13
is difficult to explain. It seems to have something to do with how the al-
gorithm updates the individual samples, since the discontinuities are still
present, and sometimes even worse, after many iterations. We tried applying
a lowpass filter to the estimated signal in order to remove the discontinuities,
but the cut-off frequency needed to make a significant difference, was so low
that the quality of the speech signal was affected to a degree where the unfil-
tered signal was better. We also tried running the algorithm with a randomly
scaled version of the original signal to see if the problem occured if there were
no phase mismatch. The reconstructed signal had no discontinuities.

Kannan et al. [12] did note the problem with the discontinuities indi-
rectly, and suggested the AR model to compensate by smoothing the signal
at the boundaries of each segment. Their SNR result show that the AR
model improved the reconstruction by 0.27 dB, but did not remove the dis-
continuities entirely. This is evident, as [12] also note that they tried using
spline smoothers along the boundaries to further improve the sound quality
of the reconstruction. Using a spline smoother does not necessarily improve
the signal on every boundary unless different spline smoothers are used at
every boundary. We refrained from using a spline smoother, because we did
not think that this could be done automatically and at the same time ensure
improved sound on all speech or sound reconstructions. We also noted that
[12] contains the same artifact lines in their spectrograms as we saw in ours.

The general sound quality of the algorithm was not what we had expected,
and our conclusions are different from the ones shown in [12]. Kannan et
al. [12] reaches the conclusion that the probabilistic model has far superior
sound quality to the algorithm by Griffin [10]. Disregarding the artifact de-
scribed above, we found it possible to obtain a fair reconstruction when using
many iterations, but not better than the Griffin algorithm using the same
number of iterations. [12] show time signals and the spectrograms of recon-
structed signals from both the suggested algorithm and the one by Griffin &



11.4. SIGNAL ESTIMATION USING NON-LINEAR EQUATIONS 93

Lim. Neither the reconstructed signal nor the spectrogram obtained from the
Griffin algorithm, match the quality that we obtained in our experiments. It
is difficult to say how these results in [12] were produced, since there is no
mention of the number of iterations used or how many is needed to obtain
good quality reconstruction with the suggested algorithm. But even after
100 iterations (as suggested by [10]), the quality of the spectrogram pro-
duced by the Griffin algorithm is much higher than the one portrayed in [12].
We further noted that [12] used utterances not only from the Wall Street
Journal corpus, but also from the TIMIT database which we used. They,
however, used a window length of 256 samples (16 ms) with a 50% overlap.
As we showed in Table 10.12, a 16 ms window gives a poorer sound quality
compared to a 32 ms window. This could maybe, to some extent, explain
some of the poor results they obtained for the Griffin algorithm.

11.3.3 Performance at different overlaps and window
lengths

Both the overlap experiment (Figure 10.14) and the window length experi-
ment (Table 10.19) showed the same tendency as for the Griffin algorithm.
Although the PQE grade was 3 for all window lengths, we found that the
best sound quality was at a window length of 32 ms (512 samples) for a 50%
overlap. For the overlaps shown in Table 10.17 and 10.18 we also saw the
same tendency as with the Griffin algorithm. A 75% overlap gave a very
slight increase in sound quality. This proved to us that only very little is
gained by using a 75% overlap with these two algorithms. It was not obvious
from the SNRspectrogram and SNRsignal that a 32 ms window would give the
best result. This again shows that the SNR’s are not good indicators of the
quality of the reconstructed sound in this algorithm either.

11.4 Signal estimation using Non-linear Equa-

tions

11.4.1 Performance on unmodified spectrogram

Figure 10.15 showed the reconstructed signal compared to the original. The
reconstructed signal is almost an exact match to the original. Looking at the
spectrograms of the reconstructed and the original signal we also saw a very
good approximation to the original spectrogram. In Table 10.21 the SNR’s
for all three test signals were shown. We saw an impressive SNRsignal on
all signals. This indicates that the reconstructed signal is indeed very close
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to the original, and that this algorithm achieves a good sample-by-sample
match to the original signal in the reconstruction. The SNRspectrogram was
not very high compared to the values of the Griffin algorithm, but the recon-
structed spectrogram still looked close to the original. This shows that the
algorithm was functioning correctly.
The sound quality was also very high, except for the fact that there were noise
in the beginning of the reconstructed signal. This noise can be explained by
the random guess needed for the first S samples of the first segment (see sec-
tion 8.3). The noise was most noticeable on the female speaker signal, and
could cause some stress to the listener. The reason why the noise sounded
less severe with the Interspeech signal, could be that the noise was lower in
frequency, and this male speaker had a very “dark” voice. It was difficult to
grade the signals that had noise in the beginning and were otherwise almost
perfect. In these cases, the grade was set to 3-4 due to the noise.

Looking at the spectrogram in Figure 10.16 (top left) we see the effects of
using an FFT length of two times the window length, and the effect of using
a boxcar (square) analysis window. The zero padded extra length in the
Fourier transform may artificially increase the resolution on the frequency
axis, but the use of a boxcar window causes the spectrogram to be fuzzy and
obtain a “ringing effect” which appears when a Fourier transform is applied
to a square window. The use of a boxcar window is not an option in our
case, since we need a high quality spectrogram with good resolution forn
our vector quantization algorithms. The algorithm was unfortunately only
described for boxcar windows, and due to time constraints, only a few failed
attempts were made to extend the algorithm for use with other window types
as well.

11.4.2 Performance at different overlaps and window
lengths

Table 10.25 and 10.26 showed the effects of using different analysis window
lengths on the TIMIT female speaker signal and the Interspeech male sig-
nal. What captured our eyes at first, was the fact that the perceptual sound
quality did not change significantly at any window lengths from 64 to 512
samples. The SNRsignal showed that the reconstructed signal gets closer to
the original signal even if small window lengths are used. The perceptual
quality was fairly constant over the different window lengths, but with dif-
ferent noise in the first part of the signal, due to the mentioned random signal
guess. Again the Interspeech signal had a more pleasant sound, due to the



11.5. RUN TIMES OF THE DIFFERENT ALGORITHMS 95

low frequency voice of the speaker and the low frequency noise. The best
quality signal was obtained by the Interspeech speaker at a 16 ms window.
We also saw that both the SNRsignal and SNRspectrogram was high in this
case. This could suggest that these two error measures may provide a good
hint as to the quality of the reconstructed speech by this algorithm.

Table 10.22, 10.23 and 10.24 showed the effect of changing the overlap size.
The algorithm performed much better with a larger overlap. At 75% overlap
the result was as good as perfect with only very slight noise in the TIMIT
female signal. With the TIMIT male and Interspeech male signals, the re-
constructed signal was not distinguishable from the orignal.

11.5 Run times of the different algorithms

In the results section 10.5 we showed the run time of the different algorithms
using different signal lengths. It was very clear, that using algorithms which
rely on the 1. order derivatives of the problem, increases the amount of cal-
culations needed, and thereby the run time of the algorithm. 100 iterations
with the Griffin algorithm only took 16 seconds, while the same number of
function evaluations lasted about 2000 seconds (33 mins) with the Kannan
algorithm. Both algorithms were linear with regard to the length of the
signal. The time consumption of using the AR model in the Kannan algo-
rithm was also very high, which was why we chose to do our experiment on
a smaller part of the signal when a very large number of reconstructions was
needed (a 50 run mean for instance). Notice that these times are for only 100
iterations. The Bouvrie algorithm took nearly 2500 seconds to reconstruct a
60.000 sample signal using a 512 sample window with a 50% overlap and the
curve was almost linear for smaller signals.

Table 10.27 showed some very interesting results. Both the Griffin and
Kannan algorithm run time increased as the overlap was made larger. This
is due to the fact that the spectrogram becomes larger as a result of the
increase in overlap, and more calculations are therefore needed. For the
Kannan algorithm this also means longer calculations for the derivatives,
since the samples are included in more frames of the spectrogram. This is
why we see the dramatic increase in run time for the Kannan algorithm. The
Bouvrie algorithm shows quite the opposit. Using a 75% overlap decreased
the running time to 550 seconds. This is due to the fact, that as more
segments overlap, less iterations are needed to get a good solution to the
equations (using the Gauss-Newton method) in the Bouvrie algorithm.
Bouvrie et al. [2] describe the algorithm as being comparable in run time
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to the Griffin algorithm for small window sizes. This is true if the goal is to
obtain the same amount of error in the spectrograms for both algorithms,
but since our results showed that the perceptual quality of the algorithm by
Griffin, does not improve much above 200 iterations we do not agree entirely.
The Griffin algorithm can give a fairly good result in a fraction of the time
needed by the other two algorithms.

11.6 Comparison of the signal estimation al-

gorithms

The results section 10.6 showed a side by side comparison of the three al-
gorithms. Figure 10.20 showed the visual comparison of the reconstructed
signals. It is clear that the Bouvrie algorithm obtains the best sample by
sample match to the original spectrogram. The algorithm by Griffin also
captures the details in the signal well, but with noticable differences. The
signal from the Kannan algorithm also resemble the original signal, but with
more noticable differences, especially the small peaks that are not present
on the original signal. This figure tells us, that the best sample by sample
match to the orignal signal is obtained with the Bourvrie algorithm.

The spectrograms in Figure 10.21 showed, that the Griffin and Bouvrie algo-
rithms both gave very close matches to the original spectrograms, with the
fine details in the orignal spectrogram being captured very well. We also
see the noise in the Bouvrie algorithm spectrogram which was explained ear-
lier. The Kannan algorithm produced a spectrogram that did not capture
all of the finer details in the original spectrogram. Looking at table 10.28
we see that at a 512 window with a 50% overlap, the Griffin algorithm gets
a higher SNRspectrogram than any of the two other algorithms. The Bouvrie
algorithm, however, obtains the highest SNRsignal. Due to the noise in the
reconstructed signal using the Bouvrie algorithm, we felt that the reconstruc-
tion by the Griffin algorithm gave a more pleasant sound, although it did not
sound as “correct” as the Bouvrie signal. Tables 10.31 and 10.32 told a dif-
ferent story.

At 75% overlap the Bouvrie algorithm was the best by a great margin, creat-
ing perfect reconstructions of the original signals. The results were consistent
for both test signals. The random and zero guess shown in Tables 10.28, 10.29
and 10.30 are the simple inverse STFT on the signal with a different phase.
As we can see, all of the algorithms yielded a much better result on the
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SNRspectrogram and also achieved much better sound quality. This was also
for the Kannan algorithm, even though the same grade of 3 is given.

The different algorithms have their advantages and disadvantages. The Grif-
fin algorithm is very fast and obtains fairly good quality estimates in a very
short time. It is however clear when comparing the original sound to the
reconstructed, that the Griffin algorithm does not obtain the original signal.
It can be discussed if this is that important in speech, but listening to music
may be an entirely different matter.

The Kannan algorithm proved to have very slow convergence and the recon-
truction we obtained was plagued by artifacts. The algorithm does however
have a very interesting aspect; the prior. The prior can be changed to not
only contain an AR model, but other information about the speaker being
reconstructed. This is an interesting point that could be beneficial when
working on a problem such as ours i.e. reconstructing speech from a known
speaker. Unfortunately, we did not get the sound quality we had hoped for,
and the results leave much to be desired. We still believe, however, that this
algorithm holds great potential.
The Bouvrie algorithm is very effective in getting reconstructions that are
very close to the original, sample by sample. The results were impressive, but
the algorithm is very slow compared to the Griffin algorithm. Even at 75%
overlap, we get a run time which is almost ten times as long as with Griffin.
The algorithm is new (will be published at Interspeech 2006 nov.14.) and
seems to hold a great deal of potential. The noise issues may be improved by
post processing and the ideas for the Bouvrie algorithm may help to improve
other algortihms, as for instance the Kannan algorithm, by using overlap
information in the same way. The algorithm also needs to be modified to be
able to use other windows than a square (boxcar) window for it to be usable
in a vector quantization scheme such as ours.
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11.7 Summary of Main Conclusions

The main conclusions of part II (Signal Estimation) were:

• Phase information proved to be very important for good perceptual
sound quality.

• Random phase is the best inital phase estimate for both the algorithm
by Griffin et al. and the algorithm by Kannan et al.

• A window length of 32 ms leads to the best reconstruction when using
the Griffin or Kannan algorithm.

• At a 50% overlap with a 32 ms window, the Griffin algorithm achieves
the most pleasant reconstructed sound.

• At a 75% overlap with a 32 ms window, the Bouvrie algorithm achieves
almost perfect reconstruction.

• The Bouvrie algorithm is not affected by changes in window length and
takes less time to run at larger overlaps

• The Griffin algorithm is much faster than the two algorithms that use
the 1.st derivative

• The Kannan algorithm proved to be the slowest of the three algorithms
when using the AR model, and had the poorest reconstruction

• The signal-to-noise measurements used were not sufficient to describe
the sound quality of the reconstructed signals.
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Vector Quantization





Chapter 12

Introduction

Using binary masking to remove unwanted noise or a speaker from a spectro-
gram, results in a spectrogram with large holes as seen in the data on Figure
14.1, which has been masked with simulated masks.
Vector quantization (VQ) is a mapping of training vectors from a vector
space to a finite number of areas within that space. These areas are called
clusters and are represented by their center vectors or centroids. A collection
of centroids, which represents the whole vector space, is called a codebook.
VQ can be a useful tool for resynthesizing the missing data and one of the
most popular VQ algorithms is k -means clustering [6].

In this part we will first describe some of the previous research in vector
quantization, and proceed to set up the theory used in the data clustering
and spectrogram reconstruction experiments. We will then carefully describe
each of those experiments in detail in terms of use of programs, data, and
variables. Following this, there is a results section where we will present our
results and explain them, and finally we will interpret and discuss our results
in the discussion section. A summary of main conclusions from this part of
the thesis can be found in section 16.3.

12.1 Previous research in vector quantization

of muti-dimensional data

Many different variations of the k -means algorithm have been proposed. In
fact ever since the mid 1960’s an overwhelming body of work has been the
subject of studies, either strengthening ease of use, precision, or speed. They
all spring from the same principal steps usually attributed to a paper written
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by Lloyd in 1964 (published in 1982) [13]. These are summarised in section
13.1 and a graphical example can be seen in Figure 13.1. They can usually
be divided into two major categories. Exact k -means algorithms and approx-
imate k -means algorithms.
The exact k -means algorithms apply geometric reasoning to reduce the num-
ber of necessary distance calculations in the clustering process. Many papers
in this category have been published on speeding up the algorithm using in-
equalities that are specific for Euclidian distance [28], [15], [18], but another
well explored approach is to use triangle inequalities to eliminate unnecessary
distance calculations [16], [6].
Approximate k -means algorithms, as the title would suggest, uses approx-
imations to reduce the number of calculations and thereby speed up the
process. Algorithms in this category will not be treated in this thesis, since
clustering quality is of importance in our application, and since the exact
algorithm proposed by Elkan promises to be very fast [6].



Chapter 13

Theory

13.1 Simple k-means algorithm

The principal steps of the k -means algorithm are summarised in the following,
and a graphical example can be seen in Figure 13.1. For the purpose of
visualisation of the algorithm, we will go through the theory as it would be
applied to data in the form of points in a two dimensional space, however it
is trivial to expand the approach into a form with the amount of dimensions
of the spectrogram training frames.

Step 1 Begin with a decision on the value of K = number of clusters

Step 2 Select any initial partition that classifies the Mtrain training points
into K clusters. The training points can be assigned randomly, or
systematically using the “furthest first” method [4] in the following
manner:

1 Assign the first centroid to be the mean of the dataset, X.

2 Assign the rest of the centroids by continually choosing the train-
ing vector farthest from any of the already chosen centroids. Or,
considering C to be the set of already chosen centroids, max
{min {d(x, c) : c ∈ C} : x ∈ X}.

3 Assign each of the Mtrain training points to the cluster with the
nearest cluster centroid. After each assignment, recompute the
centroid of the gaining cluster.

Step 3 Take each point in sequence and compute its distance from the centroid
of each of the clusters. If a point is not currently in the cluster with
the closest centroid, switch this point to that cluster and update the
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centroids of the cluster gaining the new point and the cluster losing the
point.

Step 4 Repeat step 3 until convergence is achieved, that is until a pass through
the training points causes no new assignments.

Furthermore, for the specific case where the number of training points is less
than the number of clusters, we assign each training point as a cluster cen-
troid. Each centroid will have a cluster number.

matlab has a generic function, kmeans, for performing data clustering,
which is easy to use, and by doing more than one reinitialisation step similar
to Step 2 it is quite effective at avoiding poor cluster quality. Simpler, faster
algorithms without this feature will some times end up in poor local minima.
However, it takes a long time to run the matlab generic function with large
numbers of K and Mtrain mainly due to the amount of distance calculations.
Therefore we will use an accelerated k-means algorithm proposed by Elkan
since it is effective for datasets with up to 1000 dimensions and high num-
bers of K [6]. And for K ≥ 20 it is many times faster than other known
accelerated K-means methods [6].

13.2 Accelerated k-means algorithm

The central operation in the k -means algorithm is to find the nearest centroid
for each training vector. [6]. One approach for accelerating this operation
is to use triangle inequalities to eliminate unnecessary distance calculations
[6]. There has been several earlier attempts at this but here we will focus on
the promising version proposed by Elkan in 2003[6].
Again, like in the previous section, for the purpose of visualisation of the
algorithm, we will go through the theory as it would be applied to data in
the form of points in a two dimensional space.

The triangle inequality illustrated on Figure 13.2 states that for any three
points x, y, and z:

d(x, z) 5 d(x,y) + d(y, z) (13.1)
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(a)
Select a k number of clusters

k = 3

(b)
Choose random points as preliminary cluster centroids

(c)
Assign points to nearest centroid

(d)
Recompute centroids

(e)
Reassign points to nearest centroid

(f)
Recompute centroids

(g)
No reassigning necessary. Algorithm finished.

Figure 13.1: A two dimensional example using the k -means algorithm to
divide a 12 point data set into 3 clusters. The events are ordered alphabeti-
cally from (a) to (g). o is used to mark a training point, while a * marks a
centroid.
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Triangle Inequality illustrated

[−−−−− d(x , y2) −−−−−][−−−−− d(y2, z) −−−−−−]

[−−−−−−−−−−−−−−− d(x , z) −−−−−−−−−−−−−−−]

d(x , y1) d(y1, z)

x z

y1

y2

Lemma 1 illustrated

½d(b , c)

b c

Figure 13.2: Triangle inequality (right) using two examples of a possible
point y and an illustration for Lemma 1 (left)

Equation 13.1 is used for proving the following:

Lemma 1: Let x be a point and let b and c be centroids. If d(b, c) ≥ 2d(x,b)
then d(x, c) ≥ d(x,b). This means, that on Figure 13.2 we know a
point located within the blue circle is closer to b than to c

Proof: We know that d(b, c) ≤ d(b,x)+d(x, c). So d(b, c)−d(x,b) ≤ d(x, c).
Consider the left-hand side: d(b, c) − d(x,b) ≥ 2d(x,b) − d(x,b) =
d(x,b). So d(x,b) ≤ d(x, c).

Lemma 2: Let x be a point and let b and c be centroids. Then d(x, c) ≥max{0, d(x,b)−
d(b, c)}.

Proof: We know that d(x,b) ≤ d(x, c)+d(b, c). So d(x, c) ≥ d(x,b)−d(b, c).
Also, d(x, c) ≥ 0.

It follows from Lemma 1, that if the distance between any data point x and
its designated centroid c is less than or equal to half the distance from the
centroid c to a new centroid c′, then the data point will be closer to, or
equally close to c as c′. That is: If 1

2
d(c, c′) ≥ d(x, c) then d(x, c′) ≥ d(x, c).

In this case it is not necessary to calculate the distance from x to c′.

Suppose that we do not know d(x, c) excactly, but we do know an upper
bound u such that u ≥ d(x, c). Then we need to compute d(x, c′) and
d(x, c) only if u > 1

2
d(c, c′).

If u ≤ 1
2
min(d(c, c′)), for all c′ 6= c, then x must remain assigned to c,

and all distance calculations for x can be avoided.

Lemma 2 is applied as follows. Let x be any data point, let b be any centroid,
and let b′ be the same centroid as it was in the previous iteration. Suppose
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that we in the previous iteration knew a lower bound l′ so that d(x,b′) ≤ l′.
Then we can infer a lower bound l for the current iteration:

d(x,b) ≥ max{0, d(x,b′)− d(b,b′)} ≥ max{0, l′ − d(b,b′)} = l

Suppose u(x) ≥ d(x, c) is an upper bound on the distance between x and the
centroid c to which x is currently assigned, and suppose l(x, c′) ≤ d(x, c′)
is a lower bound on the distance between x and some other centroids c′.
If u(x) ≤ l(x, c′) it is not necessary to calculate d(x, c) or d(x, c′) since
d(x, c) ≤ u(x) ≤ l(x, c′) ≤ d(x, c′).

The accelerated k -means algorithm is outlined as follows:

1. For all centers c and c′, compute d(c, c′). For all centroids c, compute
s(c) = 1

2
minc′ 6=c d(c, c′).

2. Identify all points x such that u(x) ≤ s(c(x)).

3. For all remaining points x and centroids c such that

i c 6= c(x) and

ii u(x) > l(x, c) and

iii u(x) > 1
2
d(c(x), c):

(a) If r(x) then compute d(x, c(x)) and assign r(x) = false. Other-
wise, d(x, c(x)) = u(x).

(b) If d(x, c(x)) > l(x, c) or d(x, c(x)) > 1
2
d(c(x), c) then compute

d(x, c). If d(x, c) < d(x, c(x)) then assign c(x) = c.

4. For each centroid c, let m(c) be the mean of the points assigned to c.

5. For each point x and centroid c, assign

• l(x, c) =max{l(x, c)− d(c,m(c)), 0}.

6. For each point x and centroid c, assign

• u(x) + d(m(c(x)), c(x)).

• r(x) = true.

7. Replace each centroid c by m(c).
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13.3 Pre-emphasis

Pre- and de- emphasis are necessary with regard to data clustering because
in the spectrum of a human speech signal, the energy in the signal decreases
as the frequency increases as shown on Figure 5.3 [14]. Pre-emphasis in-
creases the energy in parts of the signal by an amount inversely proportional
to its frequency. Thus, as the frequency increases, pre-emphasis raises the
energy of the speech signal by an increasing amount. This process serves to
flatten the signal spectrum, and the flatter spectrum allows the data analysis
to model the speech segment more accurately. Without pre-emphasis, any
comparisons in k-means would incorrectly focus on the lower frequency com-
ponents of speech, losing important information about certain sounds.

The pre-emphasis filter where x is the original speech signal, y is the fil-
tered speech signal and n denotes the sample number:

y(n) = x(n)− α · x(n− 1) (13.2)

The inverse filter for de-emphasis is then

x(n) = y(n) + α · x(n− 1) (13.3)

The pre-emphasis factor α is computed as

α = e−2Ft (13.4)

Where F is the frequency above which the spectral slope will increase by 6
dB per octave and where t is the sampling period of the sound [14].

13.4 Voiced - unvoiced - silence detection

To reduce the size of the k -means codebook after training, we wish to auto-
matically remove the silence periods from the training set, and distinguish
between unvoiced and voiced training vectors. A simple method for deter-
mining voice-unvoiced-silence regions (VUS) with good performance on clean
speech is the spectral flatness measure, SFM [24]. SFM is defined as [24],

SFM(k) =

(
Ω∏

ω=1

Xk(ω)

) 1
Ω

1
Ω

Ω∑
ω=1

Xk(ω)

(13.5)
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The SFM is the ratio between the geometric mean and the arithmetic
mean of windowed speech. The value is bound between zero and one, where
unity SFM means the spectrum is flat, while an SFM close to zero means it
is a peaky spectrum [24]. To improve the robustness of this VUS detection
method a two level Schmidt trigger is used to decide the state based on the
previous state. Quite simply, if the SFM value is in the uncertain range
between the trigger levels, the state is set equal to the previous state.

13.5 Mel filterbank

A popular speech feature extractor used in ASR applications is the mel fre-
quency cepstral coefficient algorithm (MFCC). Basically it is a filterbank
approach first presented by Davis and Mermelstein [5]. They proposed a fil-
terbank comprised of triangular filters of equal height with 10 linearly spaced
centers below 1 KHz and 10 log-spaced filters above 1 KHz. They determine
the base width of each filter by using the center frequency of the previous
filter, as shown in Figure 13.3. Since then, improved variations of this al-
gorithm has been proposed with different or variable number of filters [29],
[31], [23], with equal area filters [29], variable frequency range [31], [24] and
filter bandwidth related to filter center frequency [23].
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Figure 13.3: The MFCC filterbank as proposed by Davis and Mermelstein [5],
but with 24 filters to accomodate a 16 kHz sampling rate. Center frequencies
of filters 1-10 linearly spaced between 100 and 1000 Hz, and filters 11 - 24
are log-spaced at 5 filters per octave.

In this report we will focus on two filterbank approaches. The MFCC
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filterbank used in HTK [31], and the one used by Skowronski [23] which he
terms HFCC or Human Factor Cepstral Coefficients.

13.5.1 HTK MFCC

The HTK MFCC is based on the following formula for relating linear fre-
quency, f , to mel frequency, f̂ :

f̂ = 2595 log10

(
1 +

f

700

)
(13.6)

The filter centers are then equally spaced between f̂min and f̂max (typically
assumed to be 0 and the Nyquist rate respectively):

∆f̂ =
f̂min − f̂max

I − 1

f̂ci
= f̂min + i∆f̂ i = 1, ..., I (13.7)

where I is the number of filters. Since our sample data has a sampling rate
of 16 kHz, we construct our filterbank with I = 32 to retain ∆f̂ ≈ 85.84
Hz, which was used by Young [31] and Skowronski [23]. Filter bandwidth
is determined in the same fashion as for Davis and Mermelstein [5], and all
filters are triangular with unity heigth. The MFCC filterbank used in this
report can be seen in Figure 13.4.
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Figure 13.4: The MFCC filterbank used in this report. Similar to the one
used by Young in his HTK [31], but with 32 filters to accomodate a 16 kHz
sampling rate without changing the original bandwidth or spacing between
filters.
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Figure 13.5: The HFCC filterbank with 32 filters. Notice the increased
overlap between adjacent filters compared to those of the MFCC filters in
Figure 13.3. The height variations are due to round-offs adjusting to the
integer indexing of the x -axis.

13.5.2 HFCC

For his HFCC algorithm Skowronski determines filter bandwidth through
equivalent rectangular bandwidth (ERB), which is defined by the following
formula attributed to a paper by Moore and Glasberg in 1983, but described
by Skowronski [23] since we were unable to retrieve the original paper:

ERB =

∫ |H(f)|2df

|H(f)|2 (13.8)

where |H(f)| is the amplitude of the filter transfer function.

Also we know [23]:

ERB = af 2
c + bfc + c (13.9)

where center frequency fc is in Hz with the curve fit between 100 and 6500
Hz, and:

a = 6.23 · 10−6 (13.10)

b = 93.39 · 10−3

c = 28.5

With these formulas in place we proceed to construct the filterbank as follows:
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1. In the implementation of the HFCC algortihm, Skowronski does not
simply place the first and last filter center frequencies at f̂min and f̂max

since there is no benefit from an overlap outside the frequency range.
The calculation of f̂c1 and f̂cN

, the first and last filter center frequencies,
is placed in Appendix B, section B.1.

2. Additional filter centers are then equally spaced in mel frequency, so
using f̂c1 and f̂cN

in Equation 13.7 it yields:

∆f̂ =
f̂cN

− f̂c1

N + 1

f̂ci
= f̂c1 + (i− 1)∆f̂ i = 2, ..., N − 1 (13.11)

3. The actual center frequencies fci
are then calculated by the inverse of

Equation 13.6:

fci
= 700 · (10

(
f̂ci

2595
) − 1) (13.12)

4. ERBi is then calculated for fci
from Equation 13.9.

5. fli and fhi
, the low and high frequencies of the i’th filter is then calcu-

lated.
The calculation is placed in Appendix B, section B.2.

6. Construct the filters in the frequency domain by connecting straight
lines between fli and fci

, and between fci
and fhi

. The triangle has
zero height at each end, and unity height at fci

.

The resulting HFCC filter bank is shown in Figure 13.5.



Chapter 14

Methods

In this section we will go through our experiments and describe in detail the
setup for each experiment, and why the experiment was performed. For all
experiments, we used Matlab Version 7.0.1.24704 (R14) Service Pack 1, run
on Microsoft Windows XP Professional SP2. The machine used in this part
was a AMD64 3700+ 2.2 GHz, with 1024 MB of RAM.
Due to the complexity of windows based systems, we do not have complete
access to distributing system resources, and for instance algorithm run time
experiments will be subject to fluctuations in allocated CPU and memory
for any given task. We try to reduce this effect by increasing the priority of
such tasks, which should be enough to show the run time tendencies.

14.1 Test data

All the test spectrograms for reconstruction are made with FFT-length =
512, Window length = 512, overlap = 256 unless it is stated otherwise.

The TIMIT database [33] was initially selected for use, but along the way it
became clear we would need more speech data from each individual person
to be able to do some of the tests properly, and so we started using the elsdsr
database [34] in these cases. The Timit data, however, is a better quality
than the elsdsr data, which is why we retaing using Timit for any experiment
that does not require as large amounts of data from each person.
We mainly use speech from fpad0 from the dr6 folder in Timit, and the fmev
and mkbp from elsdsr. Others may be used for experiments needing data
from multiple people.

The speech spectrograms for reconstruction using VQ will be submitted to
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the following set of masks to remove data.

1. Ideal binary mask: This is constructed as described in section 14.1.1,
to approximate the effect of speech segregation by binary masking.

2. Random mask: This is constructed with the matlab rand function to
randomly remove close to 70% of the pixels in a spectrogram, which
we use to supplement the ideal binary mask, since this one will remove
some of the high energy pixels.

3. Box mask: This simply removes a rectangular patch of data in a spec-
trogram, which we also use to supplement the ideal binary mask, since
this one will remove some of the high energy pixels, as well as sur-
rounding pixels in a larger area than for random mask. This mask also
captures the effect of removed noise which was completely disrupting
an entire frequency band.

For reproduceability, the “random mask” presented here has been produced
and stored beforehand, and so will be the same one used each time. On
Figure 14.1 the test data spectrograms with applied masking are shown.
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Figure 14.1: Types of missing data applied in reconstruction experiments.
Note, that the random mask has been saved, and the exact same one will be
used every time. The speech signal is the mkbp Sr22.wav which will be used
in several experiments.

Almost all reconstructions will be performed on the masked signals shown
in Figure 14.1, except the female codebook reconstruction which will be done
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on the masked signals on Figure 14.2.
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Figure 14.2: Types of missing data applied in female reconstruction experi-
ments. Note, that the random mask and box masks are the exact same ones
as used in the data on Figure 14.1. The speech signal is the fmev Sr9.wav
which will be used in female reconstruction experiments.

The fact that we use clean speech data recorded in near noise-free envi-
ronments, makes it easier for our algorithms to work on the relevant data
without introducing artifacts in the speech signals based on noise, and fur-
thermore, it allows us to better be able to notice noise originating from our
reconstruction algorithms since these will not be drowned out by noise in the
original signals.

14.1.1 Ideal binary masking

To simulate speech seperation by binary masking and to produce spectro-
grams of seperated speech data in a simple fashion, “ideal binary masking”
can be used [27]. It is based on starting out with two seperate speech sig-
nals and calculating their respective log spectrograms XA and XB, which
are then added together. The resulting log spectrogram XMix corresponds
to one found, had the two signals been recorded together [27].
If we consider the speaker from the log spectrogram XA to be the speaker
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of interest, the seperated log spectrogram is made from XMix by inserting
zeroes at each bin where XA contributed less energy than XB. That is:

• XA + XB = XMix and

• If |XA(k, ω)| < |XB(k, ω)|, then assign XMix(k, ω) = 0.
k ∈ [1, ..,M − 1], ω ∈ [1, .., Ω− 1]

The reason that this is a good simulated segregation of speech signals, is
that the log spectrogram of the mixture is almost exactly the maximum of
the individual log spectrograms, with the maximum operating over small
time-frequency regions. This is verified visually in Figure 14.3.
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Figure 14.3: A spectrogram made by elementwise addition of two spectro-
grams of seperate speech signals (top). And a spectrogram made from the
elementwise maximum values of two seperate speech signals. As we see, the
two spectrograms are very similar, even in this extreme case where both sig-
nals are actually made by the same speaker. The speech signals used are
from the test signals ‘sa2.wav’ and ‘sa1.wav’ from fpad0 in the dr6 test data
folder of the TIMIT database.

The Ideal binary mask shown in Figure 14.1 is made from the speech
signals mkbp Sr22.wav, corresponding to XA), and mkbp Sr21.wav, corre-
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sponding to XB.
The Ideal binary mask shown on Figure 14.2 is made from the speech signals
fmev Sr9.wav, corresponding to XA, and fmev Sr10.wav, corresponding to
XB.

14.2 Data clustering

14.2.1 Pre-emphasis

Since for a human speech signal, the energy in the signal decreases as the
frequency increases [14], any comparisons in k-means would incorrectly focus
on the lower frequency components of speech, losing important information
about certain sounds. So to allow the data analysis to more accurately model
the speech segment we:

1. Flatten the spectrum through pre-emphasis filtering before doing the
analysis

2. And recalculate the actual spectrum through de-emphasis, after doing
the analysis

We do the pre-emphasis filtering directly on the original speech signal, before
constructing the spectrogram, with the command:

filter([1,−15/16], 1, si);

where si is the signal. To revert back using de-emphasis, we filter the result-
ing reconstructed speech signal with the command:

filter(1, [1− 15/16], sir);

where sir is the reconstructed signal.
To better appreciate the filtering effect, the spectrogram and a spectrum are
plotted from a speech signal before and after pre-emphasis. These plots can
be seen in section 15.1.1.

14.2.2 Generic Matlab kmeans function versus accel-
erated k-means

In this section we wish to show the advantages and disadvantages of using
the accelerated k -means algorithm compared to using the generic Matlab
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kmeans function.
We will compare the algorithms with regard to both run-time and quality,
while changing the parameters for amount of training data points, Mtrain,
codebook size, K, and initialization. For this purpose we need a large train-
ingset from a single person, so we choose to use a person from the elsdsrs
database. The mkbp set was chosen randomly.

Clustering run-time

We compare the run-time by plotting it as functions of K and Mtrain re-
spectively, for both algorithms. Since we expect the mel filtered version
(see section 14.2.3) to have an impact on run time, due to both reduced di-
mensionality for distance calculations, and additional multiplications while
applying the filter, we choose to plot this as well.

The run-time is captured by using the tic and toc commands just before
and after the respective k -means function is run. For comparison purposes
both the functions are initialized to a fixed clustering using the furthest first
method [4] as described in Section 13.1.
However, the initialisation is a part of the function for accelerated k -means
and is therefore included in its run time, whereas it is calculated beforehand
for the generic Matlab kmeans function. Rather than changing the original
code, though, or risking additional time penalties added due to internal mat-
lab issues when running several functions within the tic, toc commands, we
simply disregard the initialization time for the generic function. We expect
that this will present no problems given that the generic function is likely to
have the highest run times regardless.

Run-time is data-dependant since different data sets, and the sizes of the
data set will play a role in both the amount of distance calculations in each
iteration, as well as the amount of iterations performed before convergence is
achieved. This means, that it is not possible to compare the exact run times
of clusterings using different data sets, and to some extent that is what we are
doing when we perform experiments with an increasing amount of training
frames. However, we should be able to show a general trend for increasing
Mtrain.
The nature of complex computer systems makes it difficult to have a con-
stant amount of processing power, and so the run-time for either algorithm
is not the same for each run. Not even with the exact same initialisations.
This is expected to have little effect on the comparison between the dif-
ferent algorithms, though, so to reduce the already considerable overall run
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time for the plots, we decide not to do multiple runs with each parameter set.

The Matlab code for plotting run time as functions of K and Mtrain is
ktime.m. The functions for doing accelerated k -means made by Elkan [6]
are downloadable from http://www-cse.ucsd.edu/ elkan/fastkmeans.html and
have only been slightly modified to allow for random initialisation.

Clustering quality

In this section we wish to show how close to optimal solutions the two algo-
rithms offer, and how dependant this is to initialisation and to the number of
clusters, K. The quality of a solution is based on the mean summed cluster
distances, MSCD, which is calculated as follows.

If K is the number of clusters, Ji is the number of members in the i’th
cluster, and d(xi(j), ci) is the distance between ci, the centroid of the i’th
cluster, and xi(j), the j’th member of the i’th cluster. Then MSCD is defined
as:

MSCD =

K∑
i=1

Ji∑
j=1

d(xi(j), ci)

K
(14.1)

We use this particular measure to asess quality, mainly due to practical rea-
sons, since it is one of the outputs of the generic matlab kmeans function.
The measure, however is highly dependant on the average amount of mem-
bers per cluster, we will not be able to compare clusterings using different
amounts of training vectors, Mtrain. We do not think this is a big issue how-
ever, since we want to avoid any comparison of clustering performance using
different data sets, because it would also be very dependant on the homo-
geneity of the respective data.

Graphs showing MSCD with respect to the number of clusters for clustering
the full set of training vectors provided by mkbp from the elsdsr database
are plotted. This is to gain insight into what settings may provide good data
clustering.
Also we compare the clustering results visually by plotting histograms show-
ing the distribution of members for each cluster. After viewing some of these
histograms, we realise that there usually is a dominant cluster with a lot of
members, which leads us to plot a few codebooks along with the correspond-
ing histograms to analyse the members of this particular cluster.
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The Matlab code for calculating and plotting quality as functions of K
is plotqual2.m and calcQual.m. Generating histograms is trivial in Matlab
using the hist function.

14.2.3 Mel filtering used in clustering

As stated by Dan Ellis [7] the full spectra of speech may not be suited very
well for efficient data clustering or for good reconstruction of missing data in
speech. And in any case, half of the FFT length is a very high dimensionality
to perform clustering on. Dan Ellis [7] suggests the use of the mel frequency
based feature vectors. Two different feature extractors have been used in
our tests, the MFCC filterbank described in section 13.5.1 and the HFCC
filterbank described in section 13.5.2. The reason we have both filterbanks
implemented is also to compare the older more used MFCC to the newer
HFCC.

The Matlab code for calculating and plotting the MFCC filterbank is MFC-
CFilterMatrix.m. The original function for creating the HFCC filterbank can
be downloaded from http://www.cnel.ufl.edu/∼markskow/software/HFCC.zip,
the file used in our case is fbInit.m

It would be nice to be able to just calculate the mel filtered spectrogram
and then do clustering on the mel feature vectors and in turn use these to
reconstruct a flawed mel spectrogram. Unfortunately it is not possible to re-
calculate the speech signal from a mel spectrogram, without paying a heavy
toll on the speech quality. So instead of using nothing but mel filtered data,
it has been used for mapping the clustering process.
We could have done this by modifying the distance calculation from standard
squared euclidian distance between vectors, to squared euclidian distance be-
tween mel filtered vectors. This, however, would mean that a multiplication
between the filter and the vector(s) would have to take place each time a dis-
tance is calculated, which we would like to avoid. So, in stead, we perform
the clustering by running k -means on mel filtered data, and then afterwards
we calculate the full cluster centroids from the map of cluster members in
each cluster.

An example of clustering performed with mel filtering is plotted and shown
in section 15.1.3, as well as comparisons of run time in section 15.1.2 and
clustering quality in section 15.1.2. Note, that clustering quality is still cal-
culated for the full cluster centroids in the same manner described in section
14.2.2.



14.2. DATA CLUSTERING 121

The Matlab code for applying a mel filterbank to the data, clustering it,
and calculating the full cluster centroids, can be seen in kmain.m.

14.2.4 Voiced / unvoiced detection

In this section we exploit the fact that voiced and unvoiced sounds have
distinctly different spectra as explained in section 5.3. This should allow
for dividing the clustering codebook into two seperate codebooks. One for
voiced and one for unvoiced speech. Such a division should help speed up the
k -means algorithm, even though it would be run in two seperate instances,
since it allows for less training vectors, Mtrain, and smaller amounts of clus-
ters, K.
Also, we would expect the quality of the clustering to improve since we can
be sure we do not have clusters sharing voiced as well as unvoiced members.
An example of such a cluster might be low energy voiced frames grouped
together with silent clusters.
Finally, the ideal binary mask will in some places leave the harmonics in a
voiced part of the spectrogram, while removing the lower value bins in be-
tween. Then, when we calculate the euclidian distance between the remaining
(high value) bins and possible templates, we may find that the match best to
a remplate that has a flat spectrum of high values like some unvoiced spectra.
But with seperate voiced / unvoiced codebooks, this should not be an issue.

We perform the voiced / unvoiced decision based on the SFM measure as
described in section 13.4. One thing we have to do, however, when using
spectral flatness to distinguish between voiced and unvoiced, is to make sure
we do not filter the data with pre emphasis before calculating the SFM, since
this will lead to flatter spectra and poor results.

The Schmidt trigger levels used are 0.36 and 0.47 respectively, which was
found to work well for Skowronski [24], and seem to perform quite well on
our data.

The method has been tested on a few files, and a resulting SFM and voiced /
unvoiced decisions have been plotted. Also, the method has been attempted
on a pre-emphasis filtered spectrogram as well as an ideally masked spectro-
gram.

The Matlab code for calculating SFM and for making the voiced / un-
voiced decision is sfm.m.
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14.2.5 Speaker dependancy

In this section we wish to show the data clustering performance when we
use speaker independant codebooks. Here we will present clustering quality
graphs for gender-specific codebooks as well as a non-gender-specific code-
book. This will give us a hint as to whether gender-specific codebooks are
better than non-gender-specific codebooks. The graphs will be made accord-
ing to the calculation of quality introduced in section 14.2.2.

We use as much speech as possible from up to 6 speakers (it has prooved
impossible to go beyond this number due to the memory limitations of our
available computer systems). For the quality measure to be comparable to
each other we need to have an equal amount of training vectors, so each of
the training sets are cropped to the size of the smallest one.

Due to the nature of the quality measure, we cannot directly compare the
clustering quality graphs made here, to the graphs made for single speakers,
without reducing the multiple speaker training sets to the same size as for
the single speaker. Rather than doing that however, we will later investigate
the performance during reconstructions in section C.4 which will be more
readily comparable.

14.3 Spectrogram reconstruction using clus-

tered data

In this section we basically want to try and reconstruct the data shown on
Figure 14.1, with different settings, to determine the potential of the vector
quantization approach. We mainly use a method for reconstruction, where
only the remaining bins in a frame is used to select a template from. But,
alternatively, we suggest and perform a few reconstructions using two other
approaches. Each of these three approaches are explained in detail in sections
14.3.1, 14.3.2, and 14.3.3. After the description of the reconstruction meth-
ods, the different approaches regarding the handling of voiced / unvoiced
codebooks in reconstruction are explained in section 14.3.4.

In common for each of the reconstruction methods are:

• That for ideal binary masked spectrograms, complete vectors of data
can have been removed, and too few values for the comparison can
easily result in very bad template decisions. To deal with this, we
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exploit the fact that an entirely removed vector is likely to have had
low energy for all frequencies (ex. silence), and therefore we use the
codebook centroid with the least energy as a template if there are below
10 values for comparison.

• That after each spectrogram reconstruction is complete, the phase is
reconstructed using Griffin & Lim as described in section 9.3 with 200
iterations. The purpose of this is that we will then be able to perform a
subjective evaluation of percieved speech quality using the grade system
defined in section 6.2.

The Matlab code for handling the vector quantization and calling the cor-
rect reconstruction function is kmain.m.

14.3.1 Remaining Bins Spectrogram Reconstruction

In this section we describe our main reconstruction method of using only the
bins that were not affected by the masking process. This method assures us
that we select a template based on knowledge we know to be true, which is
an asset. However, it has the drawback of not being very reliable in cases
where most of the bins in a frame have been removed in the masking process.

We perform this type of reconstruction one frame at a time as follows:

• The squared euclidian distance between the frame and each centroid
in the codebook is calculated, using only the bins that were not set to
zero in the masking process.

• The centroid with the shortest distance is chosen to be the template.

• The missing bins in the frame being reconstructed are filled out so they
match the corresponding bins in the template.

For each of the three masked spectrograms shown on Figure 14.1 the following
tests have been made using the remaining bins method, and the resulting
SNRspectrogram as well as the PQE of the reconstructed speech signals have
been noted in Appendix C.

• Overfitted reconstruction experiments where the number of clusters,
K, is equal to the number of training vectors, Mtrain. Also for the case
where the test signal itself is included in the training set. This will
show the performance of the reconstruction method in itself, when the
codebooks contain either perfect data, or at least data that has not
been averaged over several frames respectively.
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• Reconstruction experiments using a codebook with 500 clusters. The
clustering process as well as the reconstruction will independantly be
employed using HFCC-, MFCC- and a non-filtered approach to test all
combinations of filter settings. This will show a more realistic perfor-
mance of the reconstruction method than the overfitted experiments
and should be able to hint at a good setting for mel filters.

• Reconstruction experiments using training sets for more than one speaker.
For these cases, all training will be carried out using MFCC filtering,
and the reconstruction will be done without any mel filter. We perform
experiments with 3 types of codebooks. One for female speakers, one
for male speakers, and one for a mix of the two.
For varying complexity in the codebooks, we construct a set of them
for 2, 4, and 6 people, remembering of course to balance the amount
of male and female speakers in the mixed experiments. Each codebook
is constructed with 500 clusters for the purpose of comparison with
the single speaker experiments. Female codebook reconstruction, of
course, should not be reconstructed using the three masked spectro-
grams shown on Figure 14.1, and so they will be done on the masked
signals on Figure 14.2 in stead. These experiments will hint at how
speaker dependant the vector quantization approach is.

When we use mel filtering in the reconstruction, we simply choose what tem-
plate to use based on the squared euclidian distance between mel filtered
frames and centroids, in stead of the regular full frequency frames. This
will reduce the dimensionality and may be better at selecting templates that
“sound” correctly.

Of these mentioned reconstruction experiments, the results, when using 500
clusters and MFCC filtering during training on each of the masks shown on
Figure 14.1, are also to be found in section 15.2 for comparison with the
other two reconstruction methods.

The Matlab code for doing remaining bins reconstruction is recon rembin.m.

14.3.2 Linear Interpolation Spectrogram Reconstruc-
tion

In this section we reconstruct the data shown on Figure 14.1 using linear
interpolation to initially guess at the missing bins before we choose which
codebook centroid to use for a template.
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We use this method mainly as an attempt of working around the problems
of using the remaining bins method on frames where few bins survived the
masking process.
We perform this type of reconstruction one frame at a time as follows:

• A dummy vector is made by filling out missing bins through linear
interpolation between remaining bins in the frame which is to be re-
constructed.

• The squared euclidian distance between the dummy vector and each
centroid in the codebook is calculated, using all the bins in the entire
frequency range.

• The centroid with the shortest distance is chosen to be the template.

• The missing bins in the frame being reconstructed are filled out so they
match the corresponding bins in the template.

Reconstructions with this method were performed for each of the masks
shown on Figure 14.1. For these experiments we cluster the data to 500 clus-
ters. We use MFCC filter during clustering but the reconstruction in itself
is performed using only full length vectors and centroids.

The Matlab code for doing remaining bins reconstruction is recon interp.m.

14.3.3 Weighted Predecessor Spectrogram Reconstruc-
tion

In this section we basically want to try and reconstruct the data shown on
Figure 14.1 in a less primitive way.

This reconstruction method seperates itself from the one used in section
14.3.1 by selecting a centroid from the codebook as a template using not
only the remaining bins in the frame being reconstructed, but also data from
its immediate predecessor. This approach, though grossly simplified, draws
inspiration from the deformable spectrograms approach [19], where the high
correlation between adjacent frames in a speech spectrogram is also exploited.

We perform this type of reconstruction one frame at a time as follows:

• A dummy vector is made from a weighted sum of the frame under re-
construction and its predecessor. This process is described by Equation
14.2.
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• The squared euclidian distance between the dummy vector and each
centroid in the codebook is calculated, using all the bins in entire fre-
quency range.

• The centroid with the shortest distance is chosen to be the template.

• The missing bins in the frame being reconstructed are filled out so they
match the corresponding bins in the template.

The first frame is reconstructed in the same way as described in section 14.3.1
since it has no predecessor.

If |Xk| is the k’th frame in a spectrogram, |Xk−1| its predecessor while w1

and w2 are their respective weights, then the dummy vector, d is calculated
in the following way:

d = w1 · |Xk|+ w2 · |Xk−1| (14.2)

where
w1 + w2 = 1

Reconstructions with this method were performed for each of the masks
shown on Figure 14.1, with w1 = w2 = 0.5. For these experiments we cluster
the data to 500 clusters. We use MFCC filter during clustering but the re-
construction in itself is performed using only full length vectors and centroids.

The Matlab code for doing remaining bins reconstruction is recon weight.m.

14.3.4 Voiced / unvoiced reconstruction

Reconstruction experiments using voiced / unvoiced codebooks are performed
in three ways since we do not have a reliable method for making voiced /
unvoiced decisions on the masked spectrograms:

Merged One way is simply the best match centroid from either codebook, in
much the same way as had there only been one complete codebook.
This will still have the advantage that the voiced and unvoiced parts
were not mixed in the clustering.

Ideal Another way, is to do a voiced / unvoiced decision based on the original
test signal before masking. This of course is impossible in a real scenario
where we would not have the original signal, but it goes to show what
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benefits might come from divided codebooks, if a reliable method for
deciding between voiced and unvoiced for a masked spectrogram can
be made.

Linear interp. The last way, is to do a voiced / unvoiced decision based on the masked
spectrogram after the bins which did not survive the masking process
have been filled out using linear interpolation in each frame.

Reconstructions with each of these three methods were performed for each of
the masks shown on Figure 14.1 using the remaining bins method described
in section 14.3.1. For these experiments we cluster the data to 500 clusters,
300 voiced and 200 unvoiced. We use MFCC filter during clustering but the
reconstruction in itself is performed using only full length vectors and cen-
troids.

The Matlab code for voiced / unvoiced reconstruction is kmain.m with
sfm.m and recon rembin.m.





Chapter 15

Results

In this chapter we show the results of the experiments described in Chapter
14. We will decribe in detail what we see in every result, and discuss these
results and our opinions to what may cause them in the discussion chapter
that follows.

15.1 Data clustering

15.1.1 Pre-emphasis

In this section we simply wish to visually verify that a speech spectrogram
becomes more “flat” through pre emphasis filtering. For this purpose, a
spectrogram as well as a spectrum from before and after pre emphasis have
been plotted in Figure 15.1.

15.1.2 Generic matlab kmeans function versus accel-
erated k-means

In this section we wish to show the advantages and disadvantages of using
the accelerated k -means algorithm compared to using the generic matlab
kmeans function.
We will compare the algorithms with regard to both run-time and quality,
while changing the parameters for the amount of training data frames, Mtrain,
codebook size, K, and initialisation.

Clustering run-time

In this section we wish to compare the run-time by plotting it as functions
of K and Mtrain respectively. This is done for both algorithms with and
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without mel filtering. Figure 15.2 and Figure 15.3 show this.

Clustering quality

In this section we wish to show how close to optimal solutions the two algo-
rithms offer, and how this depends on initialisation and number of clusters,
K. The quality of a solution is based on the mean summed cluster distances
(MSCD), calculated as described in section 14.2.2, and will also be visualised
with histograms showing cluster sizes in terms of amount of members.
For a general idea on the difference between the performance of the algo-
rithms, as well as the effect of initialisation differences, cluster histograms,
and the corresponding values of MSCD are shown on Figure 15.4. Note that
high quality is indicated by a low value of MSCD.
On Figure 15.5 the mean summed cluster distances of results from the ac-
celerated k -means algorithm are plotted with respect to different amounts of
clusters for two different initialisation methods. Hereby we wish to gain in-
sight into which initialisation to choose, as well as investigate the behaviour
of random initialisation.
On Figure 15.6 a few of the resulting codebooks are plotted to explain the
behaviour of the dominant cluster noticed on Figure 15.4.
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Figure 15.1: Spectrogram of TIMIT database speech signal from a female
speaker before and after pre emphasis. File used is ’sa2.wav’ from fpad0 in
the dr6 test data folder.

On Figure 15.1 we see that the pre emphasis has negated the spectral slope
and thereby made the spectra more “flat”, which is what we expected it to
do. The selected spectrum is from a voiced speech section, and we see that
after pre emphasis the peaks (harmonics) are more level with each other.
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Figure 15.2: Time consumption with increasing amount of cluster centers
K, and training data points Mtrain. The data used are the fmev recordings
from the elsdsr database (Mtrain = 6178). The generic function has been
run with the furthest first initialisation input, in addition to the required
inputs (training data and desired amount of clusters). The run times for
the algorithms are shown with mel filtering toggled on and off, since this is
expected to affect run-time.

On Figure 15.2 it can be seen that the accelerated k -means algorithm has a
significantly lower run-time than that of the generic matlab function. It
can also be seen that in most cases it is faster to perform clustering on the
mel filtered data. Finally it can be seen that especially the run-time for the
generic matlab function does not increase in a monotonous fashion. Due
to the amount of time it takes to run the generic algorithm with high
numbers of K, we have limited this graph to K = 48 and plotted extended
graphs of the fast k -means run times on Figure 15.3.
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Figure 15.3: Time consumption with increasing amount of cluster centers K,
for accelerated k -means. This is an extension of the graph on Figure 15.2,
without the time consuming matlab generic function. The data used are
the fmev recordings from the elsdsr database (Mtrain = 6178)

On Figure 15.3 it can be seen that using mel filtering for training the
codebook with accelerated k -means generally decreases run time compared
to the unfiltered version.
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Figure 15.4: k -means clustering quality, defined as the mean of the sum of
distances from each data point in a cluster to its cluster center (mean D on
the figure). Since the random based initialisation will tend to have varying
end results, it has been run 5 times with both the accelerated algorithm and
the matlab generic function, and the best results have been selected for
the bottom right hand and left hand examples respectively. The histograms
allow us to view the amount of members in each cluster. The data used are
the fmev recordings from the elsdsr database. Training was performed on
the full set (Mtrain = 6178)

On Figure 15.4 an example of clustering for different initialisations of the
generic Matlab kmeans function, as well as a comparison example of a
clustering performed by the accelerated k -means algorithm, is shown . The
histograms show the amount of members of each cluster, and the calculated
MSCD. From the histograms we see that the resulting clustering depends
on the initialisation, and that there are several local minima for the
algorithms to end up in. Each of these local minima yields a different
MSCD.
The smallest MSCD is achieved by running k -means with several random
initialisations, and it is seen that the largest MSCD stems from the
accelerated algorithm. It can also be seen that the resulting clusterings
done by the generic function and the accelerated algorithm while using the
same furthest first initialisation are not identical as expected.
Another thing noted from Figure 15.4 is that every clustering has a
dominant cluster in which a large part of the training frames are members.
On Figure 15.6 this is investigated further.
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Figure 15.5: k -means clustering quality, defined as the mean of the sum of
distances from each data point in a cluster to its cluster center (D on the
figure). The data used are the mkbp recordings from the elsdsr database.
Training was performed on the full set (Mtrain = 4367).

The dependance of the MSCD, on number of clusters, K, is plotted on
Figure 15.5. It can be verified that increasing the number of clusters
decreases the MSCD, which is to be expected since the mean amount of
frames per cluster will have decreased. It is seen that random initialisation
yields a lower MSCD than furthest first initialisation with fewer than 100
clusters, while the opposite is the case for more than 100 clusters, and that
the random initialisation does end up in different local minima, which are
however very close, with a maximum deviation from the mean of 6.78% and
an average deviation of 1.56%. For the Mel filtered version, the maximum
deviation from mean is 1.74%, and the average deviation is 0.42%.
It is also seen that the graphs all decrease significantly until K reaches a
certain point, and then stabilise with the addition of more clusters. The
vertical line marks that K.
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Figure 15.6: Codebooks sorted by frame energy and corresponding his-
tograms for furthest first initialised training with 20, 50 and 200 clusters,
K. The data used are the fmev recordings from the elsdsr database. Train-
ing was performed on the full set (Mtrain = 6178)

It can be seen on Figure 15.6 that the centroid of the cluster with the most
members in each training instance is low in energy across the entire
frequency spectrum, as the case is with silence. This is what we expected,
since the silent parts of any of our speech signals constitute a significant
portion and the fact that they are all low across the entire frequency
spectrum make them very much alike.
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15.1.3 Mel filtering

In this section we wish to show the basic visualisation of what mel filtering
actually does to a spectrogram.
Figure 15.7 shows a spectrogram together with a MFCC and a HFCC filtered
version, and Figure 15.8 shows an example of a mel filtered codebook.
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Figure 15.7: Spectrogram of a TIMIT database speech signal from female
speaker before and after mel filtering. File used is ’sa2.wav’ from fpad0 in
the dr6 train data folder. HFCC and MFCC filters can be seen in section
13.5

It can be seen on Figure 15.7 how the spectrogram is affected by mel
filtering. The filtering reduces the vector length, and the lower frequency
parts of the spectra become more dominant in that they take up a larger
percentage of space.
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Figure 15.8: Example of training performed with HFCC filtering and K =
200. The data used are the fmev recordings from the elsdsr database. Train-
ing was performed on the full set (Mtrain = 6178).

An example of training with HFCC filtering can be seen on Figure 15.8. We
can visually verify the reduced dimensionality of each frame in the
codebook, and to some extent we can visually verify that the low frequency
content takes up a larger percentage of bins in the mel filtered codebook.

15.1.4 Voiced / unvoiced detection

In this section we wish to show the performance, of the SFM measure in
determining voiced and unvoiced parts of a speech signal.
Figure 15.9 shows an example of a divided voiced / unvoiced codebook.
Figure 15.10 shows the calculated SFM for a speech signal together with
the corresponding voiced / unvoiced decision and the spectrogram. Similar
plots are shown on Figure 15.11 and Figure 15.12 for a pre-emphasis filtered
spectrogram and an ideal binary masked spectrogram respectively. Also on
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Figure 15.13 the calculated SFM for the ideal binary masked spectrogram,
which has been linearly interpolated is compared to the SFM calculated for
the original spectrogram.
Figure 15.14 and 15.15 shows run time and quality respectively as a compar-
ison of using one overall codebook or a divided voiced / unvoiced codebook.
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Figure 15.9: Example of training performed with Kvoiced = 100 and
Kunvoiced = 50. The data used are the fmev recordings from the elsdsr
database. Training was performed on the full set (Mtrain = 6178)

An example of a training divided into voiced and unvoiced codebooks can
be seen on Figure 15.9. It is seen that some unvoiced speech is represented
in the voiced codebook, and some voiced speech is likewise represented in
the unvoiced codebook.
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Figure 15.10: Spectrogram of TIMIT database speech signal from female
speaker with calculated SFM and voiced/unvoiced decisions. File used is
’sa1.wav’ from fpad0 in the dr6 train data folder. In the voiced unvoiced
classification plot, the dark areas correspond to voiced frames in the spectro-
gram.

It can be seen on Figure 15.10 that the schmidt trigger on SFM performs
the voiced / unvoiced decision reasonably well, however there are
misclassifications such as the prolonged voiced decision in the end of the
signal.
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Figure 15.11: Spectrogram of pre emphasis filtered TIMIT database speech
signal from female speaker with calculated SFM and voiced/unvoiced deci-
sions. File used is ’sa1.wav’ from fpad0 in the dr6 train data folder. This
is basically the same as Figure 15.10, but with pre emphasis filtering. In
the voiced unvoiced classification plot, the dark areas correspond to voiced
frames in the spectrogram.

It can be seen on Figure 15.11 that the schmidt trigger on SFM performs
the voiced / unvoiced decision quite poorly. The calculated SFM has
become less robust and is not suited to the trigger levels.
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Figure 15.12: Spectrogram of ideal binary masked TIMIT database speech
signal from female speaker with calculated SFM and voiced/unvoiced deci-
sions. File used is ’sa1.wav’ from fpad0 in the dr6 train data folder, which
has been masked from a mixture with ’sa2.wav’ from the same folder. In
the voiced unvoiced classification plot, the dark areas correspond to voiced
frames in the spectrogram.

It can be seen on Figure 15.12 that the schmidt trigger on SFM performs
the voiced / unvoiced decision very poorly. The calculated SFM is zero
most of the time, and low in the entire span of masked data.
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Figure 15.13: Spectrogram of TIMIT database speech signal from female
speaker with calculated SFM of the original spectrogram as well as of the
ideal binary masked version which has had the missing bins filled out using
linear interpolation. File used is ’sa1.wav’ from fpad0 in the dr6 train data
folder, which has been masked from a mixture with ’sa2.wav’ from the same
folder.

It can be seen on Figure 15.13 that the calculated SFM of a masked and
linearly interpolated spectrogram resembles that of the original
spectrogram, especially compared to the SFM shown on Figure 15.12.
However there are intervals where they each fall on different sides of the
Schmidt trigger levels.
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Figure 15.14: Graphs showing run time for the accelerated k -means algorithm
for either a single codebook, or the divided voiced / unvoiced codebooks. For
any given K on the x-axis, the voiced and unvoiced codebooks are run with
K
2

for a better comparison between the graphs. The data used are the mkbp
recordings from the elsdsr database. Training was performed on the full set
(Mtrain = 4367, divided as Mvoiced = 3260, and Munvoiced = 1107.)

On Figure 15.14 is is seen, that dividing the data clustering into two
seperate runs decreases the overall run time significantly for the same
complete amount of codebook clusters and that the higher the amount of
clusters get, the more time is saved by using seperate voiced / unvoiced
codebooks.
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Figure 15.15: Graphs showing resulting clustering quality for the accelerated
k -means algorithm for either a single codebook, or the divided voiced / un-
voiced codebooks. The data used are the mkbp recordings from the elsdsr
database. Training was performed on the full set (Mtrain = 4367, divided as
Mvoiced = 3260, and Munvoiced = 1107). Note that a low value for D (MSCD),
means a high clustering quality.

On Figure 15.15 is is seen that dividing the data clustering into two
seperate runs does not reduce the quality of the clustering. In fact for fewer
than 500 clusters it can be verified that seperating into voiced / unvoiced
codebooks with 250 clusters in each would yield higher quality.
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15.1.5 Speaker dependancy

In this section we wish to show the data clustering performance when us-
ing speaker independant codebooks. Here we will present clustering quality
graphs for gender-specific codebooks as well as a non-gender-specific code-
book.
Due to the nature of the quality measure, we cannot directly compare the
clustering quality graphs made here to the graphs made for single speakers,
without reducing the multiple speaker training sets to the same size as for
the single speaker. Rather than doing that however, we will later investigate
the performance during reconstructions in section 15.2 and C.4.
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Figure 15.16: Graphs showing resulting clustering quality for speaker inde-
pendant codebooks. The data used are the male and the female recordings
from the elsdsr database. Training was performed on the alphabetically first
6 speakers cropped to the same length. (Mtrain = 24317). Note that a low
value for D (MSCD), means a high clustering quality.

On Figure 15.15 is is seen that the mixed codebook has a poorer quality for
any given K, however with high amounts of clusters, the difference between
the graphs is very small. The female and male codebooks are very close to
being of the same quality.
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15.2 Spectrogram reconstruction using clus-

tered data

In this section we show results from trying to reconstruct the speech shown in
the top left of Figure 14.1 from the different masked versions. The purpose
of this is to be able to evaluate the performance of the algorithms used,
and what effect the different settings for filtering, and codebook type have.
The amount of data generated by doing reconstructions with all the different
settings, however, is substantial, so for the pupose of organising the results
in a comprehensible way, the bulk of the reconstruction results have been
placed in Appendix C as stated in section 14.3.1, while a set of results with
the most successful filter settings is presented here as well.
The reconstruction results are evaluated through SNRspectrogram as well as
PQE as described in Chapter 6, and these values are noted in tables in
Appendix C for the following experiments performed on each of the three
masks:

1. Overfitted reconstruction experiments where the number of clusters,
K, is equal to the number of training vectors, Mtrain. Also for the case
where the test signal itself is included in the training set.

2. Reconstruction experiments using a codebook with 500 clusters. The
clustering process as well as the reconstruction will independantly be
employed using HFCC-, MFCC- and a non-filtered approach to test all
combinations of filter settings.

3. Reconstruction experiments using training sets for more than one speaker.
We perform experiments with 3 types of codebooks. One for female
speakers, one for male speakers and one for a mix of the two.
The test data for male and mixed codebook reconstructions are the
ones shown on Figure 14.1, while the test data for female codebook
reconstructions are the ones shown on Figure 14.2.

Except for the speaker dependancy reconstruction experiments, training has
been carried out with the full set of training data from mkbp recordings from
the elsdsr database.
After each spectrogram reconstruction, the phase was estimated using Griffin
& Lim with 200 iterations. This is also the case for the masked spectrograms
themselves.

The results in this section are organized as follows:
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• First in the following subsection, for the purpose of comparison, there
are the results of using the masked spectrograms themselves to make
the speech signal from, so that we can better analyse the reconstruction
results.

• In the same subsection, we will present the performance of the different
types of reconstructions. We use the remaining bins, linearly interpo-
lated frames, and weighted predecessor methods, for a fixed filter and
codebook setting.

• In the end of same subsection, we will present the performance of the
different ways of determining VUS in the masked spectrogram. Recon-
struction is done, using remaining bins method for a fixed filter and
codebook setting.

• Then, in subsection 15.2.2 we will show a selection of reconstructed
spectrograms along with their respective original and masked spectro-
grams.

• Finally, in subsection 15.2.3, there will be a summary of the reconstruc-
tion results, including the ones drawn from the results in Appendix C

15.2.1 Reconstruction tables

The tendencies noticed in the tables of this section are summed up in sub-
section 15.2.3.

Table 15.1: Masked spectrograms - Masked spectrograms for comparison
purposes

Type of mask Ideal binary mask Random mask Box mask
SNRspectrogram 18.65 dB 2.98 dB 15.71 dB
PQE 3 3 3
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Table 15.2: Spectrogram reconstruction methods - Reconstructions,
where K = 500, MFCC filtering was used in training and the methods de-
scribed in sections 14.3.1, 14.3.2, and 14.3.3 respectively, were used to do
reconstruction.

Type of mask Ideal binary mask Random mask Box mask
Remaining bins
SNRspectrogram 11.85 dB 8.61 dB 20.07 dB
PQE 3 3 3
Linear interpolation
SNRspectrogram 16.62 dB 8.94 dB 19.13 dB
PQE 3 3 3
Weighted predecessor
SNRspectrogram 19.24 dB 6.33 dB 19.38 dB
PQE 3 3 3

Table 15.3: Reconstruction VUS methods - Reconstructions, where
Kvoiced = 300, Kunvoiced = 200, MFCC filtering was used in training and
VUS was done in the different ways described in section 14.3.4.

Type of mask Ideal binary mask Random mask Box mask
Ideal VUS
SNRspectrogram 12.85 dB 8.80 dB 19.59 dB
PQE 3 3 3
Merged codebook
SNRspectrogram 10.80 dB 8.89 dB 19.55 dB
PQE 3 3 3
Linear Interp. VUS
SNRspectrogram 7.28 dB 7.10 dB 17.34 dB
PQE 3 3 3

15.2.2 Reconstruction examples

In this section we show selected examples of reconstructions, to support
visual understanding of the reconstruction process. The examples have been
chosen to cover mainly experiments with rather good performance, since
these provide the best insight. No mel filtering was used in the reconstruction
part for any of the examples in this section, and unless otherwise stated, 500
clusters have been used, and training was performed using MFCC filtering.
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Figure 15.17: Reconstruction of the test signal with ideal binary masking
using the remaining bins methods. Training was performed on the full set of
mkbp training recordings from the elsdsr database.

On Figure 15.17 an example of a reconstruction from a signal that has been
masked with the ideal binary mask is seen. After the reconstruction the
spectrogram has regained some resemblance to the original spectrogram,
but a lot of the details have been lost, and much of the inserted data seems
to contain a higher energy level than that of the original spectrogram.
On Figure 15.18 examples are shown of reconstructions of the masked
spectrogram on Figure 15.17, using alternative methods. We see that for
each of the reconstructions the spectrogram has regained alot in
resemblance to the original spectrogram shown on Figure 15.17.
With the VUS reconstruction, however, we see that a few of the former low
energy areas have been reconstructed with high energy content, and though
it has better SNRspectrogram it resembles the remaining bins reconstruction
shown on Figure 15.17.
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Figure 15.18: Reconstruction of the test signal with ideal binary masking us-
ing the alternative reconstruction methods including ideal VUS reconstruc-
tion. Training was performed on the full set of mkbp training recordings
from the elsdsr database. This original and masked spectrogram for these
reconstructions can be seen on Figure 15.17.

On Figure 15.18 with the Linear interpolated reconstruction we see that it
has a tendency in some places to “draw vertical lines” in the spectrogram,
meaning that in some instances of voiced speech, where all the high
frequency bins have been removed by the mask, the linear interpolation
method may choose an unvoiced template with high energy content for
most of the high frequency bins. Other than that, the reconstruction using
the linear interpolation method looks more like the original than the
remaining bins reconstruction shown on Figure 15.17 does. It also has a
higher SNRspectrogram.
With the weighted predecessor method we plainly see a closer resemblance
to the original spectrogram shown on Figure 15.17 than for any of the other
reconstructions on Figure 15.18 as well as for the one on Figure 15.17.
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Figure 15.19: Reconstruction of the test signal with random masking using
the remaining bins methods. Training was performed on the full set of mkbp
training recordings from the elsdsr database.

On Figure 15.19 an example of a reconstruction from a signal that has been
masked with the random mask is seen. After the reconstruction the
spectrogram has regained some resemblance to the original spectrogram,
but a lot of the details and structure have been lost. The harmonics for
instance seem not to have survived the masking and reconstruction process.
Generally the same tendencies are seen in the related reconstructions using
alternative methods in Figure 15.20. None of the methods have been able
to perform a good reconstruction of the harmonics, allthough they have
certainly improved on the masked spectrogram.
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Figure 15.20: Reconstruction of the test signal with random masking using
the alternative reconstruction methods including ideal VUS reconstruction.
Training was performed on the full set of mkbp training recordings from the
elsdsr database. This original and masked spectrogram for these reconstruc-
tions can be seen on Figure 15.19.

On Figure 15.20 we notice that the only method which visually stands out
with reconstruction of the random masked spectrogram is the weighted
predecessor method. It has an even poorer performance than the rest of the
methods, and we see that almost no detail has been achieved.
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Figure 15.21: Reconstruction of the test signal with box masking using the
remaining bins methods. Training was performed on the full set of mkbp
training recordings from the elsdsr database.

On Figure 15.21 an example of a reconstruction from a signal that has been
masked with the box mask is seen. After the reconstruction the
spectrogram has regained some resemblance to the original spectrogram,
but a lot of the details and structure have been lost. The harmonics for
instance seem not to have survived the masking and reconstruction process.
Generally the same tendencies are seen in the related reconstructions using
alternative methods in Figure 15.22. None of the methods have been able
to perform a good reconstruction of the harmonics, allthough they have
certainly improved on the masked spectrogram.
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Figure 15.22: Reconstruction of the test signal with box masking using the al-
ternative reconstruction methods including ideal VUS reconstruction. Train-
ing was performed on the full set of mkbp training recordings from the elsdsr
database. This original and masked spectrogram for these reconstructions
can be seen on Figure 15.21.
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15.2.3 Summary of reconstruction results

The following tendencies are showed by Tables C.1 through C.9 in Appendix
C:

• Spectrogram reconstructing without any mel filtering clearly achieves
the best SNRspectrogram. This is seen in every experiment conducted.

• Employing mel filtering for doing data clustering generally achieves the
best SNRspectrogram. This was the case for all the experiments, except
for the box masked reconstructions using no filter.

• The ideal binary masked spectrogram was generally made poorer by
the reconstruction. This was the case for all experiments except for
the ideal case of overfitting with testdata included in training, and the
weighted experiment in Table 15.2.

• Both the random masked signal and the box masked signal were gener-
ally improved upon by the filterless reconstruction. This was the case
for all experiments.

• In more cases than not the MFCC achieves better SNRspectrogram than
HFCC for reconstruction purposes. For training purposes they each
achieve the better SNRspectrogram an equal amount of times.

• Speaker independant codebooks, have allowed for much larger training
sets, but achieve poor SNRspectrogram in our ideal binary masked signal
experiments, and in general for the male codebooks. For the female
random and box masked signal experiments, the SNRspectrogram seems
to increase with the amount of speakers which relates to the size of the
training set.

• In general, the mixed gender codebooks achieve a higher SNRspectrogram,
the more speakers are added, but for the ideal masked signal experi-
ments as well as the random masked signal experiments, even a large
6 speaker training set achieves poorer SNRspectrogram than the single
speaker reconstructions. The box masked signals, however, get excel-
lent SNRspectrogram, but casual listening reveals that the speaker voice
has been warped.

The following tendencies are shown by the tables in subsection 15.2.1:

• The remaining bins reconstruction improved on the masked spectro-
gram SNRspectrogram in the case of random and box masks, whereas it
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actually reduced the SNRspectrogram of the ideal binary masked spec-
trogram.

• The interpolated reconstruction did well in the ideal binary masked
spectrogram example, as well as in the random masked spectrogram
while it did rather poorly for the box masked spectrogram in compari-
son with the remaining bins method.

• The weighted reconstruction also did well in the ideal binary masked
spectrogram example, while it did rather poorly for the box masked
and random masked spectrograms in comparison with the remaining
bins method.

• The voiced / unvoiced divided codebooks have poor SNRspectrogram

with no knowledge of which codebook to use, however, with reliable
knowledge of which codebook to use, it achieves very close to the same
SNRspectrogram as the regular codebook does. A little bit better in the
ideal binary mask and random masked cases, even.
We also see that the VUS decision based on SFM calculated on inter-
polated frames in no way performs as well as the ideal case, and not
even as well as the merged codebook approach.





Chapter 16

Discussion

16.1 Data clustering

We see on Figure 15.5 that for the maximum amount of training vectors
with the mkbp training data (4367), a reasonable amount of clusters to use
is K = 250, but to be on the safe side, we have chosen to include even more
of the cluster quality improvement, which is why we mainly use K = 500
throughout the reconstruction experiments. The amount of clusters is data
dependant, and we cannot say anything about the optimal amount of clus-
ters for any other dataset, especially if they consist of more or less training
vectors.
We see by the histograms on Figure 15.4, that we get some clusters with
extremely few members, even for low numbers of K. This is not optimal,
but while we use a relatively large amount of clusters to seperate the training
vectors, it is bound to happen. Rather than reducing the amount of clusters,
which would lead to poor ability for the resulting codebook to capture the
details of a speech spectrogram, we would have liked to be able to increase
the amount of training vectors, Mtrain. Unfortunately we do not have that
large sets of training data for single speakers, and we have been unable to
find any with good quality speech. So we will make do with the elsdsr data-
base.
We notice that a single cluster is always very large compared to the others.
This cluster always contains the low energy silence or near-silence frames,
since these are all so similar.
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16.1.1 Generic matlab kmeans function versus accel-
erated k-means

As can be seen on Figure 15.2 the accelerated k -means algorithm is, as ex-
pected, very fast compared to the generic matlab function. In fact, even
for small amounts of clusters the generic takes many times the run-time of
the accelerated algorithm. The more clusters you divide into, and the more
training vectors you cluster, the more time is gained from using the acceler-
ated algorithm.
With respect to quality we see on 15.4 that the generic k-means is better than
the accelerated version for both random initialisation as well as when using
furthest first initialisation, however multiple random initialisations work well
to fix this issue. Of course, with random initialisations there is no guarantee
you at any given time will end in a good local minima, but this is the case
for both of the algorithms. We notice on Figure 15.4 that the two algorithms
end up in different local minima even though they are initialised the same,
which is not what we expected. Elkan has stated that the end result as well
as any iteration step would be the same for the accelerated algorithm as for
a standard k -means algorithm [6]. The reason they do not get the same
end result is that the generic function does some further processing when it
reaches a local minima.
Since the accelerated k-means algorithm is so much faster than the generic
function, that it can conceivably be run with a large number of random ini-
tialisations and still reduce run-time, we feel that it is better suited for our
project.

16.1.2 Mel filtering used in clustering

On Figure 15.2 and Figure 15.3 we see that mel filtering actually reduces
the run time of the accelerated k-means algorithm even though there are
additional calculations of multiplying the filter on the data, and computing
the full filter cluster centroids as described in section 14.2.3. This is because
of the reduced dimensionality of the distance calculations in the algorithms
which is especially reducing the run-time of the generic function since this
one does many more of those calculations.
On Figure 15.5 we see that mel filtering generally reduces the quality (higher
MSCD), but we expected that to be the case. We implemented the mel filter
in order to group vectors that sound alike in stead of just vectors that have
the shortest distance to each other, and it is therefore natural that the quality
measure, which is based on the distance between full vectors, shows a poor
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result. The spectrogram reconstruction part of this report will help clarify
if using mel filtering for data clustering in speech is a good idea despite the
increased MSCD.

16.1.3 Voiced / unvoiced

On Figure 15.10 we see that the schmidt trigger on SFM performs voiced
/ unvoiced reasonably well in the shown example. For our use a flawless
classification is not necessary, since we only seek to roughly divide the data
to show if improvements can be gained in this fashion. We use the same
voiced unvoiced decision for most of our VUS reconstruction experiments,
and therefore the misclassified data used in the codebooks will likely end up
being used for reconstructing misclassified data in the reconstruction part.
On Figure 15.14 we see that the overall run-time decreases significantly for
the same complete amount of codebook clusters using the same training set.
In fact, the more clusters wanted in the codebooks, the more time is saved
by using divided data. The reduction in run-time does not only come from
a reduction in number of clusters but also from the reduction in training
vectors for each clustering. That this would yield a reduction in run-time
can be verified on Figure 15.2.
On Figure 15.15 we see that the for a low amount of clusters a seperation
of voiced and unvoiced data into two different codebooks would decrease the
MSCD and therefore increase clustering quality. This is important since it
shows us that even though there are misclassifications in the VUS decision,
it does not have a significant negative effect on the clustering.

On Figure 15.11 we see that when a speech signal has been pre emphasis
filtered, we do not get as good voiced / unvoiced classifications. One could
argue that a new set of schmidt triggers would be able to account for the
generally flatter spectra, but we also see that the calculated sfm has become
less robust in that it spikes up and down a lot for both states, and so better
for us to simply limit the voiced / unvoiced classification to signals that have
not yet been pre emphasis filtered.

On Figure 15.12 we see that when a speech signal has been masked, we
do not get useful voiced / unvoiced classifications. This is because of the
sharp transitions between the remaining data and the data that has been
removed by the mask. It might help to insert random white noise of a energy
level suited for silent areas, though this would be a problem when high energy
content has been removed. Also, it might help to do a linear interpolation
between the remaining data points, though this might make the spectrum
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flatter when for instance the areas between harmonics have been removed.
On Figure 15.13, however, we see that when a speech signal has been masked,
and then linearly interpolated we get a much more useful voiced / unvoiced
classification than for SFM on the masked spectrogram in itself. Based on
this, we have tried to do VUS reconstructions based on an SFM calculated
in this manner.

16.1.4 Speaker dependancy

On Figure 15.15 is is seen that the mixed codebook has a poor quality for
any given K, however with high amounts of clusters the difference between
the graphs is very small. The female and male codebooks are very close
to being of the same quality. Due to the dependancy between the data set
and the MSCD measure, it is not certain that the graphs would show the
same tendencies for all data sets. However, the tendencies we do see in this
example correspond well with what we would expect from the differences of
the voices represented in the training data sets; that the more different the
voices represented are, the larger the MSCD value for any given number of
clusters would be, and the more clusters would be needed in order to obtain
the same quality as for data sets of only speech from a single speaker.

16.2 Spectrogram reconstruction

16.2.1 Mask type issues

In the result tables in Section 15.2.1 and C.1 we see that the ideal binary
masked signal was generally made poor by the reconstruction. This was the
case for all experiments except for the weighted predecessor method and for
the ideal case of overfitting with testdata included in training. We expected
this to be the case, since in ideal binary masking we almost only remove
data with low energy, and as such the masked spectrogram is actually a close
approximation. Therefore any data inserted with high energy is likely to
decrease the SNRspectrogram and the percieved quality of the speech.
We knew beforehand that it would be hard improving on a signal masked
with this type of mask, since it is an ideal case, where much of the energy
content of the original speech was untouched by the mask. We expect to get
a better picture of the performance of the reconstruction when important
speech data has been removed, as the case is with random and box masks,
which are used to remove data regardless of energy level.
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Both the random masked signal and the box masked signal were generally
improved upon SNR-wise by the filterless reconstruction. This was the case
for all experiments in Section 15.2.1 and Section C.2 and Section C.3, which
goes to show that the vector quantization approach can restore some of the
data removed from a spectrogram. However, the reconstruction failed to
produce any speech signals with a PQE of more than 3, for non-overfitted
experiments, and therefore failed to produce speech signals without artifacts
percieved as annoying.

16.2.2 Mel filtering

In the result tables in Section C.1 and in Section C.2 we see that doing data
clustering using either mel filter results in better values of SNRspectrogram.
This was not the case in the tables in Section C.3 where a box mask was used
to remove much of the information of the harmonics in the speech. Also we
note that for all the experiments in those 3 sections, mel filtering used in re-
construction had very poor results compared to reconstruction without mel
filtering.

The idea behind mel filtering was basically that the mel feature vectors rep-
resent the important features in each vector, and therefore we would like to
cluster vectors that have similar mel features. This should ensure that the
members in a cluster all sound alike, which can account for the good results
we have gotten from performing mel filtered clustering. But it seems that
due to the reduced dimensionality of the mel filtered vectors we may simply
end up blurring the harmonics when the centroid of each cluster is calculated.
This would account for poor performance in Section C.3 since it is primarily
the harmonics being reconstructed there, and is supported by the smeared
look of the reconstructed parts in the figures of section 15.2.1.
Also, the reduced dimensionality might acount for the problems in filtered
reconstruction, since the excact position of details like harmonics may be
smeared.

In the results in Sections C.1, C.2, and C.3, in most cases, the MFCC achieves
better SNR than HFCC for reconstruction purposes. For training purposes
they each achieve the better SNR an equal amount of times. Based on the
performance of each of the filters we cannot say that either one is better than
the other, but rather that their performances are data dependant.
The idea that filter bandwidth should be based on knowledge of human
perception, as is the case with HFCC [24], is appealing, but the practical
implementation of the filter in this case is problematic due to the numeric
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nature of matlab as seen in Figure 13.5 where the filters should have been
of equal height.

16.2.3 Voiced / unvoiced

In Table 15.3 we see that voiced / unvoiced divided codebooks have poor
SNRspectrogram with no knowledge of which codebook to use, however, with
reliable knowledge of which codebook to use, it achieves very close to the
same SNRspectrogram as the non voiced / unvoiced approach does. A little
bit better in the ideal binary mask and random masked cases, even.
We also see that the VUS decision based on SFM calculated on interpolated
frames is in no way as good as the ideal case, and not even as good as the
merged codebook approach.
This tells us, that for the division of the codebook to work it is important
to use a robust means of doing a VUS decision on masked data, and that if
such a means could be found, it would indeed be beneficial to use voiced and
unvoiced codebooks.
From the reconstruction examples in section 15.2.2, particularly on Figure
15.18 we see poor reconstruction of certain frames for the voiced / unvoiced
codebook. In the original spectrogram, the frames were silence, but only
low frequency bins survived the masking process. Because of this, unvoiced
frames with high energy at the high frequency bins, were chosen as a tem-
plates. This is in fact a problem generated by the remaining bins method, and
therefore it could be alleviated by using a different reconstruction method
than “remaining bins”, since the other methods are more robust against this
type of error, or it could be alleviated by even stricter rules for the selected
templates for frames with few surviving bins.

16.2.4 Speaker dependancy

In Section C.4 we see that speaker independant codebooks, have allowed for
much larger training sets, but perform poorly in our ideal binary masked
signal experiments, and in general for the male codebooks.
In the female random and box masked signal experiments, despite the added
complexity of the codebook with more speakers, the performance increases
as the amount of training data grows.
This goes to show that the more data you have, the more likely it is that
you will find a good match for the vector you are trying to reconstruct. Of
course, though, since we are using a constant number of cluster centroids,
we need the data to have some common characteristics, so that we do not
end up having to group vectors with vastly different features. This seem to
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be the case for the female voices used, but we would expect this to be very
dependant on data set.

In general the mixed gender codebooks perform better, the more speakers
are added, but for the ideal masked signal experiments as well as the ran-
dom masked signal experiments, even a large 6 speaker training set performs
poorer than the single speaker reconstructions. This goes to show, that when
the data set is not homogenous we end up grouping vectors with vastly dif-
ferent features. This could be fixed by increasing the amount of clusters
however, keeping in mind, though, that this will increase run-time as seen on
Figure 15.2 and Figure 15.3.
The box masked signals for mixed gender codebooks, however, get excellent
SNR, again showing that the more data you have, the more likely it is that
you will find a good match for the vector you are trying to reconstruct. But
casual listening tests reveals that the speaker voice has been warped.

16.2.5 Linear Interpolation reconstruction

In Table 15.2 we see that the Linear Interpolation method did well in the
ideal binary masked spectrogram example, as well as for the random mask,
while it did rather poorly for the box masked spectrogram.
The fact that it did poorly for the box mask is to be expected since the
straight line initial guess made by linear interpolation across the height of
the box is a poor estimate of the harmonics which were removed.
The performance gained in the ideal binary masked experiment compared
to the remaining bins method is likely due to the fact that frames with few
surviving bins from the masking in most cases will only be filled with low
energy bins due to the linear interpolation across the span of bins. And in
that way, we avoid the problems with unvoiced high energy frames selected
to template what in fact was supposed to be silence.
This method performs well with the random masked experiments which is
likely because there are rarely a large number of consecutive bins which did
not survive the masking process, and therefore the linear interpolation in
many cases come close to the original enough to be an asset in the template
selection.

16.2.6 Weighted reconstruction

In Table 15.2 we see that the weighted reconstruction did well in the ideal
binary masked spectrogram example, while it did rather poorly for the box
masked and random masked spectrograms.
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We would expect the method to do well in reconstruction of voiced data
since the harmonics are often similar in neighbouring spectra, and also we
would expect that it reduces the tendency of inserting unvoiced data, with
high energy in for high frequencies, in a silent area. It seems to do the latter,
but the former seems not to be the case; for instance when looking at Figure
15.22.
It is evident that the approach performs poorly when the data from the same
frequencies are missing from a number of consecutive spectra in the spectro-
gram where changes occur since any errors are carried over in the weighted
contribution from previous spectra. this explains why the box masked exper-
iment did poorly, and to a degree also why the random masked experiment
did poorly, since this particular mask has had a great deal of data removed.
A crude solution might be to simply only carry over weighted contributions
for original data and not data that was reconstructed in the previous spec-
trum.
The reason for the improved performance of reconstructing the ideal binary
masked spectrogram is very likely just caused by the fact that the silent areas
no longer get higher energy unvoiced data inserted.
One of the reasons that this method does not do well in reconstructing the
voiced harmonics is probably found in the making of the codebook through
clustering. In section 16.2.2 we noted that the reduced dimensionality of mel
feature vector based clustering had a smearing effect on the codebook data,
an effect that does not seem to be entirely avoided in the regular full vector
based clusterings as seen in the examples of section 15.2.2. To reduce this
problem we need to:

• Either, increase the number of clusters in the data clustering, and con-
sequently also the amount of training data vectors, to get clusters with
similar harmonics only.

• Or in stead of using the cluster centroid, which in essence is a mean of
the members in an entire cluster, one could usie the actual unaltered
cluster member closest to the cluster mean, as a representative of the
cluster. Unfortunately this has not been attempted due to the time
constraints of this project.

• Or, as in [19] not try to get seperate codebook states for every possible
spectral configuration through data clustering, but only a limited set
of “sharp” states that can still cover the full spectral variety of a source
via the contribution of the previous frame.
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16.3 Summary of Main Conclusions

The main conclusions of part III (Vector Quantization) were:

• The clustering process using spectrogram frames as training data vec-
tors, will usually end up in local minima, but this can be alleviated
by performing the clustering process multiple times, each time with a
different random initialisation.

• The accelerated k -means algorithm as used in our experiments has no
protection against ending in local minima, and is therefore more af-
fected by the above, than the generic Matlab kmeans function, which
does have some protection.

• The accelerated k -means algorithm has a significantly lower run time
than the generic Matlab kmeans function. This has more significance,
the larger the values of K and Mtrain used.

• The silent frames in any training set are so alike that a clustering will
group these together in a single large cluster

• Mel filtering in the clustering process reduces run time, and in most
cases it also improves the resulting SNRspectrogram of the reconstruc-
tions. While used in the reconstruction itself, mel filtering significantly
reduces the SNRspectrogram.

• VUS divided codebooks reduces the run time significantly, but unless a
robust means of performing VUS decisions on masked spectrograms, is
developed, this approach does not perform well during reconstruction.

• For the investigated sizes of K, the codebooks constructed are quite
gender specific, but evidence suggests they can be speaker independant
for voices with similar characteristics.

• The remaining bins reconstruction method can be used to improve on
masked spectrograms, but does not always select good templates for
frames that have few remaining bins after the masking process.

• The linear interpolation reconstruction method can also be used to im-
prove on masked spectrograms, but does not always select good tem-
plates for frames that have had many consecutive bins of a frame re-
moved in the masking process.
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• The weighted predecessor reconstruction method can also be used to
improve on masked spectrograms, but performs poorly when the mask-
ing process has removed the same bin in several consecutive frames.

• Our clustering approach of using cluster centroids in the codebook pro-
duces “smeared” harmonics (along with other details), and therefore it
is speculated that larger amounts of clusters along with larger training
sets would be beneficial to our approach, and it is furthermore specu-
lated that a different cluster representative approach might be also be
beneficial.



Part IV

Conclusion and Future Work





Chapter 17

Summary of Main
Contributions

The main objective was to:
Investigate means of reconstructing a speech signal from binary masked spec-
trogram, with high percieved quality and naturalness as the goal.

In this thesis, several components for reconstructing a speech signal has been
investigated, that comply to the objective. The components belong to the
two main parts of the objective - Signal estimation used to synthesise speech
signals from spectrograms and vector quantization used to reconstruct miss-
ing data in spectrograms:

17.1 Signal Estimation

This part of the objective was realised through an in depth analysis of existing
algorithms for signal estimation and the parameters they depend on. The
algorithms are those proposed by Griffin & Lim [10], Kannan et al. [12], and
Bouvrie et al. [2].
For each of the algorithms, the following investigations were conducted:

• Performance as function of initial phase estimate.

• Performance on unmodified spectrograms.

• Performance as function of different spectrogram parameters.
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17.2 Vector Quantization

For a vector quantization approach to reconstructing a binary masked spec-
trogram, the k -means algorithm has been implemented, key components in
data clustering have been implemented and investigated, as well as different
methods for reconstruction and voiced / unvoiced handling.

Data clustering

• An accelerated k -means algorithm was used to speed up the clustering
process.

• Pre emphasis filtering was employed to balance the energy dependant
focus of the data analysis.

• A well proven MFCC mel filterbank as well as a rather new HFCC
filterbank were implemented and used.

• A simple and fast method for voiced / unvoiced detection was employed
for codebook size reduction ultimately in order to reduce run time.

Spectrogram reconstruction

• Three different types of simulated binary masks were used to consider
the lack of data that may occur in the process of bnary masking.

• Three different methods for template selection during reconstruction
were considered and implemented.

• The already mentioned mel filterbanks were used for reconstruction
purposes and optimal filter combinations were investigated.

• The voiced / unvoiced detection method was used in conjunction with
linear interpolation to provide a possible means of determining voiced
and unvoiced areas in a binary masked spectrogram.
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Suggestions for Future Work

• At the end of our project there were still possibilities for improvement
that we unfortunately did not have time to implement and test. The
most obvious for the signal estimation part was the ability to use STFT
analysis windows other than boxcar windows in the Bouvrie algorithm.
This is needed to reconstruct sound from a good quality spectrogram
for the vector quantization.

• Work still need to be done on the Kannan algorithm to identify what
causes the phase discontinuities at the borders of the overlapping seg-
ments. The Kannan algorithm could potentially be very powerful if
better reconstruction was achived since the prior could maybe be used
indirectly to fix some of the erros that may occur in the regeneration
of the spectrogram using the vector quantization.

• A representative member approach to constructing the clustering code-
books would be easy to implement, and might offer a way to reduce
the “smeared” effect of the data inserted during reconstruction.

• For the vector quantization, we belive that a Hidden Markov Model
may help to improve the reconstruction of the spectrogram. A sta-
tistical approach such as this, would help to avoid placing obviously
wrong frames at the wrong place, ex. placing an s sound or silence in
the middle of a voiced frame, even though the distance in the k-means
codebook was the shortest.

• A less simplified version of the deformable spectrograms approach [19]
could be used in conjunction with vector quantization. We feel it is
likely such an approach could:
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1. Combine the performance in reconstruction of voiced speech from
the deformable spectrograms approach with the overall recogni-
tion of frames using a VQ template approach.

2. Work around the drawback of poor coherence between neighbour-
ing frames using VQ, as well as the drawback of not being able to
use deformable spectrograms on frames bordering between voiced
and unvoiced speech.



Chapter 19

Conclusion

The reconstructions we obtained using our vector quantization approach
leaves much to be desired. Even though we showed that it was possible
to improve on the masked spectrograms through vector quantization, we did
not manage to produce speech which was pleasant to listen to. Due to the
timeframe of this project, we have only been able to investigate some of
the possible extensions for this approach, and it is therefore likely that even
better reconstructions can be obtained in future versions.

The quality of the reconstructed signal after spectrogram regeneration
and the following signal estimation, is a result of the performance of these
two independent steps in the speech signal regeneration process. Since both
the methods used had sources of error, the reconstructed signal never became
better than the weakest link in the chain. In our case, it was especially
difficult to obtain a good spectrogram reconstruction using simple k-means
data clustering.

In our examination of the algorithms for signal reconstruction, we showed
that the algorithm by Griffin & Lim [10] generally achieves good results in
a very short time. The algorithm by Bouvrie et al. [2] was however able
to achieve perfect reconstruction for a larger overlap, but was also much
slower. Certainly one should also take into account the reconstruction of the
spectrogram in the choice of the signal estimation algorithm. Perfect signal
estimation is no good, if the spectrogram is poorly reconstructed. During
the project, the processing power of our PC’s were time and again pushed to
the limit. This is a good indication of the computational demands of these
advanced algorithms, and it shows that there is still a long way to go before
a practical solution for hearing aid applications exists.

A big problem in the area of speech quality evaluation is the lack of a
robust objective quality measure. The signal to noise ratio measures used in
this report are often used in papers to compare the performance of different



176 CHAPTER 19. CONCLUSION

algorithms. Throughout our report, and especially for the signal estimation
part, we note that these measures can often be misleading in terms of the
perceptual sound quality. The problem is well known, and our results confirm
the need for a objective perceptual quality measure.

The entire project was an immense learning experience for us in the field
of speech separation and reconstruction, and getting to know a few pieces of
the puzzle only left us craving for more. The idea, of making computers able
to completely seperate the speech of a single speaker from background noise
or competing speech, is now over 50 years old. The use of modern computers
as well as the extensive research in the past years have pushed the limits
what can be achieved, and each year we come closer to the goal.
The benefits of this research area may even go beyond help for hearing im-
paired people. As research progresses, it may one day not be a question of
trying to match the capabilities of the brain, but to improve and extend the
senses we are born with.



Appendix A

The Probabilistic Signal
Estimation Model In Detail

A.1 The Model

In the following we will explain in detail the calculations of the algorithm
suggested by [12] for signal estimation from the STFT magnitude. We will
also discuss the optimizations needed to use this very computational intensive
algorithm in Matlab (see subsection A.2).

The idea behind the algorithm is to maximize the joint probability:

P (x,Y) = P (Y|x)P (x) (A-1)

where x is a signal, and Y is a spectrogram. P (x,Y) is the joint prob-
ability of the signal x and the spectrogram Y. P (x) is known as the prior,
and functions as a weight that changes according to some prior known infor-
mation about the signal. If no prior information about the signal is known,
then all signals er equally probable, and the prior can be set to 1. P (Y|x)
is known as the likelihood and describes the probability of observing the
spectrogram Y given the signal x. The likelihood function and the prior are
given by [12] as:

P (x) ∝
N∏

n=1

exp



−

1

2ρ2

(
R∑

r=1

arxn−r − xn

)2


 (A-2)

Where R is the model order, ar are the AR model coefficients, N the total
number of samples and xn the sample at sample number n. ρ2 is the noise
in the prior.
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P (Y|x) ∝
∏

k

exp

{
− 1

2σ2
‖|Ŷk| − |Yk|‖2

}
(A-3)

Where |Ŷk| is the magnitude spectrum of the estimated signal x at frame
k. and |Yk| is the magnitude spectrum of the modified spectrogram at seg-
ment k. δ2 is the noise in the observed spectra. Note that the noise variances
need not be known in order to optimize on the joint probability since they are
only constants being multiplied on the liklihood and prior, and can therefore
be omitted in an optimization algorithm. The joint probability can now be
written:

P (x,Y) =
∏

k

exp

{
− 1

2σ2
‖|Ŷk| − |Yk|‖2

} N∏
n=1

exp



−

1

2ρ2

(
R∑

r=1

arxn−r − xn

)2




(A-4)

Since we need |Ŷk| to be expressed as a function of the individual samples
in frame k, xk, [12] descibes |Ŷk| as:

|Ŷk| = Fxk ◦ F∗xk (A-5)

F is the Fourier matrix which is simply the matrix version of a Fourier
transform. F · x is equal to X(k) =

∑N−1
n x(n)e−i2πkn/N . * denotes com-

plex conjugation and ◦ denotes element wise product. Since the product
of a complex number c and its conjugate c∗ gives |c|2 what we get is, the
squared magnitude of the Fourier transform. Kannan et al. apparently use
the squared magnitude for their definition of the spectrogram, where we only
use the magnitude. This means that if we want the same result, we should
change our |Ŷk| with our definition to |Ŷk|2. Equation (A-4) can then be
rewritten as:

P (x,Y) =
∏

k

exp

{
− 1

2σ2
‖Fxk ◦ F∗xk − |Yk|2‖2

} N∏
n=1

exp



−

1

2ρ2

(
R∑

r=1

arxn−r − xn

)2




(A-6)

To use an optimization algorithm to maximize P(x,Y) we need to have
the likelihood and prior as aditive functions instead of products. This is
obtained by taking the logarithm, which gives us:
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log P (x,Y) =−
∑

k

{
1

2σ2
‖Fsk ◦ F∗xk − |Yk|2‖2

}

−
N∑

n=1





1

2ρ2

(
R∑

r=1

arxn−r − xn

)2




(A-7)

Since most optimization algorithms use minimization and not maximiza-
tion, the negative logarithm is often used:

−log P (x,Y) =
1

2σ2

∑

k

{‖Fxk ◦ F∗xk − |Yk|2‖2
}

+
1

2ρ2

N∑
n=1





(
R∑

r=1

arxn−r − xn

)2




(A-8)

Expanding the norm of (A-8) we get

−log P (x,Y) ∝ 1

2σ2

∑

k

∑
i

(
Ω∑

j=1

Ω∑
j=1

Fijxk(Ω/2)+jF
∗
ilxk(Ω/2)+l − |Yki|2

)2

+
1

2ρ2

N∑
n=1





(
R∑

r=1

arxn−r − xn

)2




(A-9)

Where j and i are the indexes of the Fourier matrix, and Ω then length
of the Fourier transform. Note that the indexes on x are different from
kannan’s notation since their index does not start at x0 but on xΩ/2 or x−Ω/2

depending on their starting value of k. We also need to expand equation
(A-9) to include a window function w that we used to make |Yk|2 (see section
5). This changes equation (A-9) to:

−log P (x,Y) ∝ 1

2σ2

∑

k

∑
i

(
Ω∑

j=1

Ω∑
j=1

Fijxk(Ω/2)+jw(j)F ∗
ilxk(Ω/2)+lw(l)− |Yki|2

)2

+
1

2ρ2

N∑
n=1





(
R∑

r=1

arxn−r − xn

)2




(A-10)
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In order to use (A-10) in a conjugate gradient optimizer, we need the
derivatives with respect to each sample xn. Since the likelihood and prior
are now additive, we can take the derivative of each of them by themselves
and add them in the end. Starting with the likelihood, we find the derivatives
with respect to sample xu:

∂ − logP (Y|x)

∂xu

∝ 1

2σ2

∑

k

∑
i

2

(
·

Ω∑
j=1

Ω∑

l=1

Fijxk(Ω/2)+jw(j)F ∗
ilxk(Ω/2)+lw(l)− |Yki|2

)

·
Ω∑

j′=1

Ω∑

l′=1

Fij′w(j′)
∂xk(Ω/2)+j′

∂xu

F ∗
il′xk(Ω/2)+l′w(l′)

+ F ∗
il′w(l′)

∂xk(Ω/2)+l′

∂su

Fij′xk(Ω/2)+j′w(j′)

(A-11)

∂xk(Ω/2)+j′
∂xu

Corresponds to a delta function at index u = k(Ω/2) + j′ ⇒
j′ = u− k(Ω/2). We then rewrite eq.(A-11) to:

∂ − logP (Y|x)

∂xu

∝ 1

2σ2

∑

k

∑
i

2

(
·

Ω∑
j=1

Ω∑

l=1

Fijxk(Ω/2)+jw(j)F ∗
ilxk(Ω/2)+lw(l)− |Yki|2

)

·
Ω∑

j′=1

Ω∑

l′=1

Fij′w(j′)δj′=u−k(Ω/2)F
∗
il′xk(Ω/2)+l′w(l′)

+ F ∗
il′w(l′)δl′=u−k(Ω/2)Fij′xk(Ω/2)+j′w(j′)

(A-12)

In the same way, we continue to obtain the partial derivatives with respect
to sample xu of the prior:

∂ − logP (x)

∂xu

∝ 1

2ρ2

∑
n

2

(
R∑

r=1

arxn−r − xn

)(
R∑

r′=1

ar′
∂xn−r

∂xu

− ∂xn

∂xu

)

(A-13)
As before, ∂xn−r

∂xu
can be described as a kronecker delta function. We insert

these delta functions to reveal:

∂ − logP (x)

∂xu

∝ 1

2ρ2

∑
n

2

(
R∑

r=1

arxn−r − xn

)(
R∑

r′=1

ar′δr′=n−u − δr′=u

)

(A-14)
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We are then finally able to write the partial derivatives for P(x,Y) as:

∂ − logP (x,Y)

∂xu

∝ 1

2σ2

∑

k

∑
i

2

(
·

Ω∑
j=1

Ω∑

l=1

Fijxk(Ω/2)+jw(j)F ∗
ilxk(Ω/2)+l|Yki|2

)

·
Ω∑

j′=1

Ω∑

l′=1

Fij′w(j′)δj′=u−k(Ω/2)F
∗
il′xk(Ω/2)+l′w(l′)

+ F ∗
il′w(l′)δl′=u−k(Ω/2)Fij′xk(Ω/2)+j′w(j′)

+
1

2ρ2

∑
n

2

(
R∑

r=1

arxn−r − xn

)(
R∑

r′=1

ar′δr′=n−u − δr′=u

)

(A-15)

Theses partial derivatives must be calculated for each iteration of a op-
timization algorithm like the one we used by Carl Rasmussen [30]. As we
can see from equation (A-15), this is a very computationally expensive algo-
rithm. Signals of a few seconds can easily mass up a total number of samples
of 40000 or more. Which means that 40000 partial derivative must be done
at each iteration. We will continue in the next section to describe how we
can be most effecient when doing some of the calulations.

A.2 Optimization tips for Matlab

In order to use this computationally expensive algorithm in Matlab, we need
to optimize it as much as possible using matrix and vector evaluations and
matlab functions. Just entering the sums in equation (A-15) as for-loops
could easily make the program run until the end of the next millinium for
even a fairly small signal. First we need to translate equation (A-15) into
using vectors and matrixes instead of sums. The likelihood can be written
as:

∂logP (Y|x)

∂xu

∝− 1

2σ2
· 2

∑

k

∑
i

(
Fxkw ◦ F ∗xkw − |Yk|2

)

· (Fwδu ◦ F∗xkw + F∗wδu ◦ Fxkw)

(A-16)

here xk is a vector containing all samples that are included in frame/segment
k of the STFT. To ensure we had the correct samples at any amount of over-
lap, we created a matrix that contained the index of the used samples in each
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frame when we did the STFT. The delta function is now a vector with the
same length as the length of the fourier transform (or fourier matrix). The
vector is pure zeros except for a 1 at the position where sample xu is located
in frame k. Equation (A-16) can however be optimized if we only sum over
those frames ku that contains the sample xu. Further we can also remove
the calculations that result in a zero due to the delta functions. Since the
delta function multiplied with the window w corresponds to the value of the
window at wi and the delta function multiplied on the Fourier matrix gives
a sigle column of the matrix, we can write:

∂ − logP (Y|x)

∂xu

∝ 1

2σ2
· 2

∑

ku

∑
i

(
Fxkw ◦ F∗xkw− |Yk|2

)

· (fuwi ◦ F∗xkw + f∗uwi ◦ Fxkw)

(A-17)

Equation (A-17) can be reduced a little since the last part of the equation
can be reduced to:

∂ − logP (Y|x)

∂xu

∝ 1

2σ2
· 2

∑

ku

∑
i

(
Fxkw ◦ F∗xkw − |Yk|2

)

(2 · < {fuwi ◦ F∗xkw})
(A-18)

Where < is the real part of the result in the parenthesis. Instead of using
the Fourier matrix we can use the matlab function fft() to do our fourier
transforms. Simply replace Fxk with fft(xk). ifft() can be used instead of
F∗, so F∗xkw is equal to ifft(xkw) ·Ω. Notice that we need to multiply with
the length of the Fourier transform, Ω, in order to use ifft(), since ifft() is
defined as 1

Ω

∑
x(n) · ei2πnk/Ω. fu can be calculated simply by using fft() on

the delta function vector described earlier.

If we take a look at the prior and write it as:

∂ − logP (x)

∂xu

∝ 1

2ρ2

∑
n

2
(∑

a · xn−r − xn

) (
R∑

r′=1

ar′=n−u − δr′=u

)
(A-19)

where a is a vector containing the AR coefficients of the AR model and
xt−r is a vector with the elements [xn−1, ..., xn−R]. We can now finally write
the joint probability as:
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∂ − logP (x,Y)

∂xu

∝ 1

2σ2
· 2

∑

ku

∑
i

(
Fxkw ◦ F∗xkw − |Yk|2

)

· (2 · < {fuwi ◦ F∗xkw})

+
1

2ρ2

∑
n

2
(∑

a · xn−r − xn

) (
R∑

r′=1

ar′=n−u − δr′=u

)

(A-20)

For-loops can not be avoided all togehter, mostly due to extreme memory
requirements if we were to do 3D matrix calculations on large signals, but by
being careful on what to calculate (not doing calculations that will end up
being zero and using the same for-loop to do different calculations that are
independent of each other) we were able to reduce the number of calculations
significantly. The major time consumer is the calculation of the gradients
at each and every iteration of the optimization algorithm, which can take
a long time even when handling signals of a few seconds. Please look in
APPENDIX B, kanrow.m for our implementation of the calculations of the
likelihood, prior and gradients.





Appendix B

HFCC Filter Parameters

B.1 HFCC filter centers

For a frequency range between fmin and fmax, the center frequencies of the
first and last filters are determined as follows.
Define fli , fci

and fhi
, as the low, center and high frequencies for the ith filter

in linear frequency. The triangular filters are equilateral in mel frequency.
That is,

f̂ci
=

1

2
(f̂hi

+ f̂li) (B-1)

Unwarping to linear frequency using Equation 13.6 yields

log[1 +
fci

700
] =

1

2
(log[1 +

fhi

700
] + log[1 +

fli

700
])

log[1 +
fci

700
] =

1

2
log[(1 +

fhi

700
)(1 +

fli

700
)]

(700 + fci
)2 = (700 + fhi

)(700 + fli) (B-2)

which, solved for fh1 and flN , in terms of fc1 and fcN
, given fl1 = fmin and

fhN
= fmax, yields

fh1 =
700 + f 2

c1

700 + fmin

− 700 (B-3)

flN =
700 + f 2

cN

700 + fmax

− 700 (B-4)
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Furthermore from Equation 13.8 for a triangular filter with |H(fc)| = 1,

ERB =

∫ fc

fl

f − fl

fc − fl

df +

∫ fh

fc

f − fh

fc − fh

df

ERB =
1

2
(fh − fl) (B-5)

so from Equation B-5 and Equation 13.9,

af 2
ci

+ bfci
+ c =

1

2
(fhi

− fli) (B-6)

for fci
in Hz, given the values in Equation 13.10.

For fmin or fmax consider values â, b̂ and ĉ, so that

af 2
ci

+ bfci
+ c = âf 2

ci
+ b̂fci

+ ĉ (B-7)

then
f 2

ci
+ b̄fci

+ c̄ = 0 (B-8)

where

b̄ =
b− b̂

a− â

c̄ =
c− ĉ

a− â

so fc1 and fcN
can be found by solving

fci
=

1

2
(−b̄±

√
b̄2 − 4c̄) (B-9)

where only a + sign leads to meaningful center frequencies.

The values for â, b̂ and ĉ are calculated for the first and last filter respectively,
by inserting each of Equations B-3 and B-4 into B-6

For the first filter, where fl1 = fmin,

â =
1

2

1

700 + fmin

b̂ =
700

700 + fmin

ĉ = −fmin

2
(1 +

700

700 + fmin

) (B-10)
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For the last filter, where fhN
= fmax,

â = −1

2

1

700 + fmax

b̂ = − 700

700 + fmax

ĉ =
fmax

2
(1 +

700

700 + fmax

) (B-11)
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B.2 HFCC bandwidth

When the ERBi and the center frequencies fci
have been determined, the

upper and lower filter frequencies are determined as follows. From Equation
B-5 the upper frequencies are isolated,

fhi
= fli + 2ERBi (B-12)

which can be put into Equation B-2 to yield

(700 + fci
)2 = (700 + fli + 2ERBi)(700 + fli) (B-13)

then, since we have already determined ERBi and fci
, we can solve the

quadratic function with respect to the lower frequencies

fli = −(700 + ERBi)±
√

(700 + ERBi)2 + fci
(fci

+ 1400) (B-14)

where only a + sign leads to meaningful results. Equation B-12 is used to
find fhi



Appendix C

Reconstruction Results

C.1 Ideal binary masked signal reconstruc-

tion

Table C.1: Reconstruction 1 - Overfitted reconstruction, where K = M .
reconstruction filter mfcc hfcc none
Testdata included in training
SNRspectrogram 6.00 dB 5.38 dB 23.44 dB
PQE 2 2 4
Testdata excluded from training
SNRspectrogram 5.27 dB 5.42 dB 12.70 dB
PQE 2 2 3
Voiced / unvoiced
SNRspectrogram 6.42 dB 6.24 dB 15.12 dB
PQE 2 2 3
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Table C.2: Reconstruction 2 - Reconstruction, where K = 500.
reconstruction filter mfcc hfcc none
No mel filter used in training
SNRspectrogram -3.87 dB -3.91 dB 9.57 dB
PQE 1 1 3
HFCC filter used in training
SNRspectrogram 3.21 dB 2.23 dB 11.92 dB
PQE 1 1 3
MFCC filter used in training
SNRspectrogram 3.55 dB 3.52 dB 11.85 dB
PQE 1 1 3

C.2 Random masked signal reconstruction

Table C.3: Reconstruction 5 - Overfitted reconstruction, where K = M .
reconstruction filter mfcc hfcc none
Testdata included in training
SNRspectrogram 1.19 dB 0.46 dB 26.83 dB
PQE 1 1 4
Testdata excluded from training
SNRspectrogram 0.87 dB 0.28 dB 8.45 dB
PQE 1 1 3
Voiced / unvoiced
SNRspectrogram 1.16 dB 0.89 dB 8.38 dB
PQE 1 1 3
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Table C.4: Reconstruction 6 - Reconstruction, where K = 500.
reconstruction filter mfcc hfcc none
No mel filter used in training
SNRspectrogram -6.86 dB -7.68 dB 8.38 dB
PQE 1 1 3
HFCC filter used in training
SNRspectrogram 0.61 dB -0.61 dB 8.67 dB
PQE 1 1 3
MFCC filter used in training
SNRspectrogram -0.07 dB -0.59 dB 8.61 dB
PQE 1 1 3

C.3 Box masked signal reconstruction

Table C.5: Reconstruction 8 - Overfitted reconstruction, where K = M .
reconstruction filter mfcc hfcc none
Testdata included in training
SNRspectrogram 13.98 dB 14.21 dB 47.06 dB
PQE 3 3 5
Testdata excluded from training
SNRspectrogram 13.97 dB 14.03 dB 19.40 dB
PQE 3 3 3
Voiced / unvoiced
SNRspectrogram 14.88 dB 14.89 dB 19.46 dB
PQE 3 3 4
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Table C.6: Reconstruction 9 - Reconstruction, where K = 500.
reconstruction filter mfcc hfcc none
No mel filter used in training
SNRspectrogram 12.22 dB 13.88 dB 20.22 dB
PQE 3 3 3
HFCC filter used in training
SNRspectrogram 14.81 dB 14.34 dB 19.83 dB
PQE 3 3 3
MFCC filter used in training
SNRspectrogram 14.11 dB 14.37 dB 20.07 dB
PQE 3 3 3

C.4 Speaker independant reconstruction

Table C.7: Female reconstruction - Here we use female codebooks, K =
500.

Number of speakers 1 2 4 6 Masked Spectrogram
M = 6178 12372 23060 33520
Ideal binary mask
SNRspectrogram 21.47 dB 19.91 dB 17.14 dB 15.51 dB 30.29 dB
PQE 3 3 3 3 4
Random mask
SNRspectrogram 8.98 dB 9.26 dB 9.31 dB 9.27 dB 3.42 dB
PQE 3 3 3 3 3
Box mask
SNRspectrogram 21.36 dB 21.11 dB 21.95 dB 23.05 dB 19.41 dB
PQE 3 3 3 3 3
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Table C.8: Male reconstruction - Here we use male codebooks, K = 500.

Number of speakers 1 2 4 6 Masked Spectrogram
M = 4367 9477 19502 29404
Ideal binary mask
SNRspectrogram 11.85 dB 10.84 dB 10.13 dB 10.25 dB 18.65 dB
PQE 3 3 3 3 3
Random mask
SNRspectrogram 8.61 dB 8.74 dB 8.49 dB 9.17 dB 2.98 dB
PQE 3 3 2 2 3
Box mask
SNRspectrogram 20.07 dB 20.23 dB 19.73 dB 19.82 dB 15.71 dB
PQE 3 3 3 3 3

Table C.9: Mixed reconstruction - Here we use mixed codebooks contain-
ing both genders, K = 500.

Number of speakers 2 4 6
M = 10547 21851 31039
Ideal binary mask
SNRspectrogram 9.04 dB 11.21 dB 11.66 dB
PQE 3 3 3
Random mask
SNRspectrogram 7.88 dB 8.29 dB 8.23 dB
PQE 2 2 2
Box mask
SNRspectrogram 19.94 dB 30.15* dB 31.24* dB
PQE 3 3 3

* It is noted through casual listening tests, that even though the SNR is high
for these cases, the speaker voice seems warped.
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