
Viola project

Morten Silberbauer Sabinsky

Kongens Lyngby 2006

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

This thesis describes how a ”State of the art” framework for embedded systems
can be designed. The target for this framework is a transcutane monitor also
known as a TCM device. A TCM is a device capable of measuring blood gasses,
pulse rate and oxigen saturation through the skin of a patient, without piercing
the skin. The goal of the thesis is to create a framework consisting of a number
of self contained software modules each capable of carrying out one specific
task. Emphasis have been put on the usage of design patterns and usage of the
most current theories regarding designing embedded frameworks. This means
theories of software evolution, composite design patterns and slippage problems
has been used in the framework design. The thesis explores how some of these
theories can be used to create new design patterns and use excisting patterns
to combining several small patterns into a new larger pattern.

The software modules designed in this framework cannot communicate directly
with each other. For this reason a software module have been created to handle
communication between software modules. Also modules controlling how ob-
jects are shared, how user the user interfaces are controlled and how integrity
is kept in XML based configuration files.

The thesis is separated into 4 main chapters.

Chapter 1 is designed to give the reader a description of the target TCM
system, the overall goals for the thesis and a preliminary analysis of the
requirements and concepts to be used. Lastly there is a small description
of the challenges solved before the design was created.

Chapter 2 describes each module designed during the thesis. The modules

ii

describes methods for sharing objects between the modules using a fac-
tory sphere, methods for using a unified way of communication using a
communication manager, method for controlling user interfaces using an
input controller and configuration files using a configuration manager.

Chapter 3 shows how the designed modules can be used together to create a
TCM device and how to solve some of the problems the given design gives.

Chapter 4 contains the conclusion of the thesis and a list of items where im-
provement could be done and areas that should be included if further
development should be done.

Resumé

Dette speciale beskriver hvordan et ”State of the art” framework til et embed-
ded system kan designes. Det beskrevne framework er designet til køre p̊a en
transcutan monitor, i dette tilfælde et TCM apparat. Et TCM apparat bruges
til at måle blodgasser, puls og iltmætning igennem en patients hud, uden at
prikke hul i huden. Målet for dette speciale, er at lave et framework, som best̊ar
af små selvstændige software moduler, som kan løse en specifik opgave. Vægten
i dette speciale er lagt i brugen af design patterns og det nyeste teorier for de-
sign af embeddede frameworks. Det betyder at teorier om software evolution,
sammensatte design patterns og udvidelsesproblemer er blevet brugt i designet.
I specialet vil der ogs̊a blive set p̊a, hvordan nye typer design patterns kan laves
og hvordan små design patterns kan kombineres til større og mere komplekse
design patterns.

De software moduler der er designet i dette framework, kan ikke kommunikere
direkte med hinanden. Det betyder at de kræver hjælp fra andre moduler og
derfor er der lavet software moduler til at styre kommunikation, objektdeling,
brugerinterface og integritet af XML baseret konfigurationsfiler.

Specialet er delt op i 4 hovedafsnit

Kapitel 1 giver læseren et overblik over TCM systemet, de overordnet krav til
og begrænsninger for specialet. En tidlig analyse af specialet er lavet for
at f̊a et overblik over koncepter og krav. Sidst er der en kort beskrivelse
af en række udfordringer som er blevet løst for at give et bedre grundlag
for designet.

Kapitel 2 beskriver de software moduler som er blevet designet. Software mod-

iv

ulerne beskriver metoder for deling fabriksobjekter mellem software mod-
uler, metode til kommunikation mellem software moduler ved brug af en
kommunikations manager. Dertil metode til at styre views ved brug af en
input controller og metode til at styre konfigurationsfiler.

Kapitel 3 bruges til at vise en række eksempler p̊a TCM relateret brug af det
implementerede framework, samt hvordan nogle af modulerne i samspil
kan løse nogle af de beskrevne problemer.

Kapitel 4 indeholder specialets konklusion og lister en række punkter, hvor
forbedringer er nødvendige hvis frameworket skal bruges.

Preface

This thesis is a result of the Master of Science project done in collaboration
between IMM/DTU1 and Radiometer Medical ApS2. The thesis has been made
by Morten S. Sabinsky student no. S973936 and have been supervised by Bjarne
Poulsen at IMM/DTU and Jørgen Belfalas at Radiometer Medical ApS, TCM
development.

The purpose of this cooperation is to bring new knowledge and demonstrate new
technology to Radiometer that could be used for the next generation of TCM
devices. None of the methods and theories in this thesis has been used for TCM
devices before, making this a new area of software design and development for
Radiometer.

The thesis was original called ”Modular TCM Application” it was however in
the beginning of the thesis given the codename ”Viola” by Radiometer. This
name has been used since then.

It is recommended the reader of this thesis have some experience with design
pattern, understands UML diagrams and some basic knowledge regarding C#
and the .NET 2.0 framework.

1Richard Petersens Plads. DTU - Bygning 321. 2800 Lyngby. reception@imm.dtu.dk. Tlf.
4525 3351

2Radiometer Danmark. Åkandevej 21. 2700 Brønshøj. Tlf: 3827 2829. Fax: 3827 2712.

vi

Acknowledgements

First I want to thank Radiometer for allowing me to make this exciting thesis.
I thank all who have supported me during the period of this thesis and to all of
you who have been reviewing the thesis with me.

My thanks go to
Counseling
Bjarne Poulsen IMM/DTU
Jørgen Belfalas RMED TCM development

Proofreading
Michael Ditzel RMED TCM Development
Ole Hansen REMD TCM Development
Oluf Dannevang RMED TCM Development
Thomas Gerken

viii

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Thesis vision . 2

1.2 About Radiometer . 2

1.3 TCM devices . 2

1.4 Preliminary analysis . 5

1.5 Challenges . 13

1.6 Test strategy . 15

1.7 Overall requirements and limitations 17

x CONTENTS

1.8 Introduction summery . 18

2 Analysis of core architecture for future TCM device 21

2.1 Preliminary architecture overview 23

2.2 Software modules . 24

2.3 Factory sphere system . 31

2.4 Module communication . 47

2.5 Configuration manager . 58

2.6 Controlling user interface . 64

2.7 Design summery . 74

3 Case studys 79

3.1 Case A - High speed communication 80

3.2 Case B - Configuration security 84

3.3 Case C - Distributed system . 87

3.4 Case D - Interaction between user interfaces 89

3.5 Case E - Evolution on communication channels 92

3.6 Case F - Controlling measurement location 95

3.7 Case G - Auto configuration . 96

4 Conclusion 101

4.1 Overall results . 101

4.2 Design results . 102

4.3 Case study conclusion . 104

CONTENTS xi

4.4 Future development . 107

A CD content and Glossary 111

A.1 CD content . 111

A.2 Glossery . 112

B Platform and Visual Studio 2005 113

B.1 Platform requirements . 113

B.2 Visual Studio . 114

C Module GUID ID’s 117

D Thesis description 119

D.1 Projekt oplæg til modulær TCM applikation V 0.4 119

E Protocols 123

E.1 Base document . 123

E.2 Measurement . 124

E.3 Key fetch . 126

E.4 KeyData . 126

E.5 Data storage fetch . 127

E.6 Data . 128

E.7 Return path . 128

F Thread memory leak test 131

xii CONTENTS

G Test protocols 133

G.1 Template for test protocol . 133

G.2 Test protocol for Communication Manager 134

G.3 Test protocol for Factory sphere 135

H Time schedules 139

H.1 Thesis time schedule for introduction 140

H.2 Schedule for core architecture . 143

H.3 Schedule for case study . 145

I Challenges 149

I.1 Platform image . 149

I.2 Connectivity between Visual Studio and CE 151

I.3 Serial connection . 152

I.4 Event handling . 152

I.5 Software module integrity . 153

I.6 Third party software modules . 154

I.7 Module hardware interface . 155

I.8 Loading modules Runtime . 155

I.9 String localization . 156

I.10 Modules version control . 157

I.11 Integrity of configuration files . 158

I.12 Serializing objects . 158

CONTENTS xiii

I.13 FDA and CE approval . 159

List of figures . 163

Bibliography . 165

xiv CONTENTS

Chapter 1

Introduction

Contents

1.1 Thesis vision . 2

1.2 About Radiometer . 2

1.3 TCM devices . 2

1.4 Preliminary analysis 5

1.5 Challenges . 13

1.6 Test strategy . 15

1.7 Overall requirements and limitations 17

1.8 Introduction summery 18

This chapter is used to give some background information’s about the TCM
devices, method and tools used. Books, papers and links are shown in the bib-
liography and a small description of each is given this chapter. It also contains
the preliminary analysis done before the design. This analysis was done to plot
areas that needed to be probed before the design could begin. This analysis was
also an important part in establishing a time schedule for this thesis.

2 Introduction

1.1 Thesis vision

The purpose of this thesis is to explore a modular software design where 3 TCM
variants can be combined into one application. The design should be easy to
evolve, maintain and allow reuse of components. In this thesis the main focus
will be the design of a framework to support a modular software system. The
framework should be as general as possible and to show how it can be used a
number of cases will be described.

1.2 About Radiometer

Radiometer Medical is a company that is specialized in devices that can measure
different parameters in blood. Currently they are one of world biggest companies
in this area with a global marked share around 50%. It was founded in 1935
where they developed measuring devices for the radio industry. They started
producing medical devices in 1954.

There are 2 main types of blood measuring devices developed by Radiometer.
The main product type if called ABL. This is a device that measures directly
on blood samples and is capable of measuring a large number of parameter.
Some of these are pO2, pCO2, cK+, cNa+, cGlu, cLac. More can be seen at
http://www.radiometer.com/

The second type of device is called TCM and these devices are the once this
thesis will concentrate on.

1.3 TCM devices

TCM stands for Transcutane Monitor. This type of device is used to measure
blood gasses through a patient’s skin. This is a noninvasive way of measuring
patient vitals and is therefore used for long term measuring to determine trends.

The current TC-Monitor version is 4 and it comes in 3 variants. These are
TCM4, TCM40 and TCM400.

The hardware platform for these variants is mostly the same. The Hardware
platform consists of a base unit where up to 6 hardware-measuring modules

1.3 TCM devices 3

can be attached. Depending on the hardware configuration there are 2 different
software packages. These are a TCM4/40 package and a TCM400 package.

The platform currently uses Windows CE 4.2 as a operating system.

1.3.1 Device overview

TCM4
This device is capable of measuring O2 and CO2 using a single sensor that
combines the parameters.
This device is mainly used in neonatal care.
This device consists of a TCM4/40 software package and a hardware mod-
ule capable of measuring O2 and CO2.

TCM40
This device is capable of measuring O2 and CO2 using a single sensor that
combines the parameters. It can also measure pulse in beats/minutes and
SpO2 using a second sensor.
This device is mainly used in sleep labs when treating sleep disorders.
This device consists of a TCM4/40 software package and 2 hardware mod-
ules. The first module can measure O2 and CO2 and the second can mea-
sure SpO2 and Pulse.

TCM400
This device is capable of measuring O2 using up to 6 independent sensors.
This device is mainly used in wound treatment.
This device consists of a TCM400 software package and between 1 and 6
hardware modules capable of measuring O2.
This allows for measuring O2 in up to 6 different places on the body.

Common for all of the devices is that measurements for O2 and CO2 can be
displayed using mmHg or kPa.

1.3.2 TCM4 History

The first TCM4 variant was the TCM400 and it was released around the year
2000. Then came the TCM4 variant and a later extension allowed for a TCM40

4 Introduction

variant. The software for these variant has been continuously updated the last
6 years to keep up the new demands for functionality.

This has evolved the application far beyond what the original was designed for
and resulted in an application that is complex and difficult to maintain. It has
also been through several hardware versions and Windows CE versions requiring
small modifications to the application.

1.3.3 Problems with the currents design

The current applications are not only difficult to maintain but they are also
difficult to extend. Extending the applications to support new parameters or
sensors requires changes to large portions of the application. This requires a lot
of retesting before the applications can be released.

The 2 software packages also come in up to 12 different versions depending on
the language selected.

1.3.4 Future TCM

How a future TCM device should be is currently not known. This makes it
challenging to design a framework that could support it. However it is know
a future system would support the current parameters and probably more. To
start with the thesis should take the current technologies and use these as a
foundation but also keeping in mind that this could change. Every thing dis-
cussed in this thesis has never been done before for a TCM device and should
be considered as an evaluation model.

1.4 Preliminary analysis 5

1.4 Preliminary analysis

To get at overview of the Thesis a small analysis is required. This analysis is
used to get an overview of the technology required, the methods and tools to
use. It should also be used to generate some concept ideas to be used later in
the design process.

The section contains:

• Description of the technology used.

• Description of the tools used.

• Description of methods used.

• Description of some of the most current theories used.

• Description of some concepts to be used when designing a software module.

After reading this section an overview of the methods and theories used, should
have been gained. Also a preliminary system has been given and will be used
as a guideline for the final system.

1.4.1 Technology

The software development will use compact framework 2.0 and windows CE 5.0.
The reason for selecting compact framework 2.0 is its support for communication
with serial ports. This new addition to the framework makes it attractive for
Radiometer to investigate possible usages of .NET. The size of the framework is
also a factor since the software has to run on a small-embedded platform with
limited space for storing applications and data.

An alternative to compact framework 2.0 is OpenNETCF1. This is an open
source version of the compact framework. The reason this framework has not
been taken into consideration is concerns regarding license requirements. If this
framework is to be used then the legal department has to explore the license
requirements first to give an overview of any license problems.

The reason for selecting Windows CE 5.0 is that it is the only platform currently
supporting compact framework 2.0, for customized Windows CE images. If this

1See more at http://www.opennetcf.org

6 Introduction

project has to be used commercially later, the price per license is also an issue.
Using Windows CE the price for a license is about $4 to $20 per device, were
an alternative OS like Embedded XP is about $70 to $80 per device.

Embedded XP have been disused as an alternative usage to Windows CE the
reason for this is it can support the full .NET 2.0 framework. The reason for
not selecting this product is primarily its size and resource usage. Windows CE
have an image footprint of about 16Mb where Embedded XP is about 300Mb.

Open source operating systems like BSD and Linux has not been considered as
a viable solution. This is primarily because license concerns regarding source
code, application and time consumption trying to implement a system like this.
Although this could be an interesting project later on since most can be freely
distributed saving the license cost to Microsoft.

1.4.2 Tools

Visual Studio
Visual Studio 2005 can be used for developing the software. It can also be
used to generate some of the simple class diagrams needed.

Platform builder
Platform builder 5.0 is used to create Windows CE images to test the
application on.

CE Emulator
CE 5.0 Emulator is used to launch generated Windows CE images.

Visio
Visio 2003 will be used to create drawing to support the documentation.
These are sequence diagrams, class diagrams and all other drawings. The
reason for using Visio for class diagrams is because the class diagram
system in Visual Studio cannot show all the necessary information’s to
explain relations.

LaTeX
LaTeX will be used to generate the thesis documentation. This is a re-
quirement from DTU. Delivery information’s can be found at:
http://www2.imm.dtu.dk/teaching/thesis/

TeXnicCenter
TeXnicCenter is an IDE for LaTeX. This will be used for writing the thesis
in LaTeX. Information about TeXnicCenter can be found at:
http://sourceforge.net/projects/texniccenter/

1.4 Preliminary analysis 7

1.4.3 Methods

Iteration
When developing the software an iterative method will be used. The
method will follow the procedure

1. Analysis and requirement specification

2. Design

3. Implementation

4. Test

5. Summery

If the summery says the result is not satisfactory or some of the require-
ments are not met, then the procedure starts again using the current result
as a basis. Iterations can skip 4 and 5 if a design flaw is discovered during
the implementation. This should save time in the overall development pro-
cess. When skipping steps is should be considered if the summery could
have any value. Describing the design flaw might help avoiding the same
pitfall at a later iteration.

To limit the time spent on a specific part of the application there should
not be performed more than 4 iterations in each part.

Design pattern
Design patterns are predefined software structures describing common
functionally used in applications. This could be functionality describ-
ing object creation and how object interacts. They should be used when
possible. Not meaning to force the used of design patterns but using the
where it makes sense.

UML
To document the application UML diagrams will be used, to support the
descriptions. Class diagram and sequence diagram will mainly be used.
Class diagrams will be used to give an overview of interface and class
relations. Sequence diagrams will be used to give an overview of complex
functionality.

The reason for using UML to support the documentation is because Ra-
diometer Medical uses UML in their development process.

1.4.3.1 Summery

Chapter 2 contains the design of the system. Each main section describes a
specific part if the system using the iterations described. This means each
section self contained from the rest of the design.

8 Introduction

The methods and tools described are only a part of what is used. The next
section describes the theories used.

1.4.4 Analysis of current theories

This is a part of the method analysis. The reason for this is because most of
what is found in the books and papers will be the basis for the method used in
this thesis. The purpose of this section is to shortly describe the papers used
containing some of the newest knowledge in the areas of interest.

1.4.4.1 Books

Design patterns [1]
This book describes commonly used design patterns. I have chosen this
book because the description of the patterns are good and it also describes
when it is most beneficial to use the patterns. The patterns described in
this book are most commonly used to implement specific functionality. I
have mostly used this book as a library to lookup descriptions of patterns
I needed.

Patterns of Enterprise Application Architecture [2]
This book is used to describe how to implement enterprise systems and
design patterns used in enterprise applications. Although most of the
designs are for large system and not embedded system, there are some
patterns that are interesting for this thesis. These are patterns describing
data storage, plug-in systems and user interface control.

1.4.4.2 Papers

How to tackle the Slippage Problem in object systems [3]
This paper describes methods for handling slippage problems and methods
for avoiding slippage problems. A slippage problem is a situation where a
piece of software has to be extended beyond what the design is capable of.
As an example this could be an added parameter to an interface function,
this often requires changes to large part of the software. What will be
used from this paper are the parts that describe the methods for avoiding
slippage problems.

Adaptive Plug-and-Play Components for Evolutionary SWD [4] 2

2SWD : Software Development

1.4 Preliminary analysis 9

This paper discusses methods and techniques for creating modular soft-
ware solutions and methods for evolving these. Mostly the techniques for
modular systems will be used from this paper. However the description
of how to evolve the system could be interesting to look at, at a later
date. Especially if evolution process could be combined with the slippage
problems.

Composite Design Patterns [5]
This paper discusses how to combine design patters to create new larger
design patterns. This is interesting since combining design patterns can
solve complex problems. The guideline described should to help avoid the
pitfalls described when designing the software.

A Layered Architecture for Uniform Version Management [6]
This paper discusses administrative methods for controlling software ver-
sions for both small applications and large component based system. It
also gives some insight into the tools that could be used to keep track of
versions. What are interesting in this paper are the methods used. Some
of these could be implemented into the software itself.

A Simple and Practical Approach to Unit Testing [7]
This paper discusses methods for unit testing software. It is especially
design for Java and it also discusses some of the tools available. The
methods described can however be transferred to any system.

Patterns as Signs [8]
This paper discusses methods for identifying patterns in software and tries
to give a definition of what a design pattern is. This is interesting since
it in combination with Composite Design Patterns paper can be used to
verify the end result.

1.4.4.3 Links

Wiki [9]
This site contains links to different sites containg informations about de-
sign patterns of different types and methods to implement these.

1.4.4.4 Summery

There is not much documentation describing framework design for embedded
systems. Most of what can be found is for large enterprise systems. This means
that most of the methods described in the books and papers cannot be directly

10 Introduction

used in the form they have. However they can be used for inspiration, to make
lighter version of the methods and patterns, and to help avoid some of the
pitfalls described in the papers.

1.4.5 Concept ideas

These ideas came up during a brainstorm and sorted for usability. This means
these concepts are the ones that were considered to give the best preview for
the components in the desired system.

1.4.5.1 Concept 1 HAL ������� ���	
������
���
��
���
�	�� �
��� ����������� ���
�������	�����
�����������

Figure 1.1: Hardware abstraction layer

A hardware abstraction layer (Will be referenced as HAL) is needed to keep
weak bindings between the software and hardware. This layer hides the hard-
ware specific information from the software above. This ensures the software
functionality if the under laying hardware is changed. The concept idea is shown
on figure 1.1

1.4.5.2 Concept 2 Core components

A modular software design needs a core system to support the modules. This
core system or framework consists of several sub components, each mandatory
for the application functionality. The concept idea is shown on figure 1.2

HW discovery
This component is used to identify connected hardware modules. Once
all hardware modules have been identified, it selects a configuration file
describing the modules that is needed.

1.4 Preliminary analysis 11

� !"#$% &!$'
()!*+, -$'. (/%0 12*34&1&3$' /554 !"#$+6.+7$4% 3

Figure 1.2: Core components

Config manager
This component is to handle global application configuration and local
configuration for each module. Global configurations could be license re-
striction and default data. Local configuration could be alarm limits or
ranges selected for displayed curves.

Module loader
This component is responsible for loading application/software modules,
verify integrity and initialize them.

System log
This component is responsible for storing log information for the entire sys-
tem in a common format. Log information’s could contain information’s
about errors or other event important for the overall system operation.

App modules
These components are software modules loaded to make up the functional
part of the application. These software modules could be modules used to
measure O2 or SpO2 values and modules to display O2 or SpO2 values.

1.4.5.3 Concept 3 Module layering

Layering of the modules is needed to give a functional overview. Modules are
to be separated into 3 layers seen on figure. 1.3

Layer 3
This layer is to contain user interface software modules.

12 Introduction

89:;< =>;9?@<;A;BC ADE@F;?89:;< GH9C9 A9B9I;A;BC89:;< JK?;< LBC;<M9N;
Figure 1.3: Module layers

Layer 2
This layer is to contain software modules responsible for data management.
This is storing measurement, exporting/importing data.

Layer 1
This layer is to contain measuring software modules.

1.4.5.4 Concept 4 Resources

Software components often need software resources like text strings or images,
especially if the system needs to display text in different languages. To sim-
plify resource management only software modules in layer 3 may have language
dependent resources. No software module should share a software resource.

1.4.5.5 Concept 5 Events

Since this application is build up of many small software modules it would be
beneficial to have a system to handle events. This event system should be able
to dynamically add and remove events. Software module requiring an event
should be able to add a listener to an event.

1.4.5.6 Summery

The concepts given describe a modular system and this should be the goal of
this thesis to create a system. The concept does not give solutions that can be
used directly, but they give inspiration and a direction for the design process.

1.5 Challenges 13

1.5 Challenges

Before design of the modules can begin a number of challenges have to be
solved. These challenges are done to highlight and eliminate certain problem
areas, which exist due to lack of knowledge.

The challenges that have been looked at in this thesis are:

1. Platform image.

2. Connectivity between Visual Studio and CE.

3. Serial connection.

4. Event handling.

5. Software module integrity.

6. Third party software modules.

7. Module hardware interface.

8. Loading modules Runtime.

9. String localization.

10. Modules version control.

11. Integrity of configuration files.

12. Serializing objects.

13. FDA and CE approval.

Appendix I gives a detailed description of each challenge and the results.

1.5.1 Summery

Most of the challenges solved were relative easy once the problem was specified.
However there were some problems that took a lot longer to solve than expected.

Creating a custom CE device to the current hardware platform proved impossi-
ble with CE 5.0. The problems found might have been solved if more time had
been available. A bug in the CE 5.0 was discovered when creating images to

14 Introduction

at PC. COM1 was always locked to send out debug information’s, even though
the loader was told to shut down the debug system. A solution was found but
not tested due to time restrictions. The image used, uses the CE emulator. The
solution is acceptable but performance cannot be tested in this environment.

Creating a connection between a Windows CE and Visual Studio 2005 (VS) was
a lot more difficult than expected. VS depend on the Active Sync application to
handle the communication. This makes it very easy to develop applications to
handheld devices. But VS has almost no support for developing applications to
custom CE device. A guide in appendix B describes what have to be included
in the custom CE device and all the manual steps that have to be carried out
to establish a connection.

1.6 Test strategy 15

1.6 Test strategy

A test strategy is necessary to insure the quality of the application. This has
to be sketched out before the application design starts, in order to incorporate
testable requirements. Inspiration for the test strategy have been found using
ref. [7].

Unit testing ensures a uniform test of objects but can also be quite difficult,
especially if there are many similar objects in the system. This is because
normally there is one unit test for each object. This causes repetition of test
steps. To reduce the complexity to the unit test, it will be split into 2 levels for
each object.

Level 1 test
The purpose of this test is to verify implemented interfaces. These tests
are common for all objects using a specific interface.

Creating a standardized interface test reduces overall complexity for the
unit testing system. Instead of repeating steps in several unit tests, it can
now reuse the same test for several objects. Creating a standardized test
however does have some problems. Firstly it cannot test all functionality
in an object, secondly the interface have to have a strong specification,
describing all input and output, and reactions to failure.

This type of test can be implemented into the application itself. This
could help development of object by letting the application test the object
before it is initialized the first time. Also it can help third party developers
because they do not need to have a test environment for the objects.

Level 2 test
The purpose of this test is to test functionality not covered by level 1 test.
This type of unit test uses an external test environment designed for the
specific object.

Non-unit test
Not all functionality can be tested by automatic unit tests. Most of these
tests are tests requiring user input or visual inspections.

These are often objects used to display user interfaces. Testing these ob-
jects can be done, by creating test stubs simulating the underlying system.
Simulation is preferred since this can control all underlying functionality
and thereby allowing the test to get into all states of the user interface.

Integrations test
Integrations tests are used to verify the interaction between several ob-
jects/software modules. This can be the final application or parts of it.

16 Introduction

These tests should be relative simple tests since the interfaces used for
interaction have been tested.

1.6.1 Test documentation

To document how a test is performed a step-by-step list has to be made. This
list should describe requirement/functionality tested and expected result. The
test description must include the test type, the interface or object tested and test
results for each step. A template for a test protocol can be found in appendix
G.1. Once a test protocol have described for an object, a review of the protocol
must be performed. The purpose of this review is to validate the protocol against
the objects requirements and design. This should revile any flaws in the test
protocol.

If an error is found in a objects that have passed its test protocol, a new review
should be made of the requirements, design and test protocol. This is to revile
where the errors come from and where changes have to be made, so this error
can be caught if it should occur again.

1.7 Overall requirements and limitations 17

1.7 Overall requirements and limitations

The overall requirements have been created from the information given in the
thesis description in appendix D and the information gained during the chal-
lenge analysis. The overall requirements and limitations are used to create a
preliminary time schedule.

Specific requirements for each module are identified in the design for each mod-
ule.

1.7.1 Overall requirements

OR1 The framework must be module based.
OR2 The modules must be signed.
OR3 The modules must be identifiable with a GUID value.
OR4 Events handling must be done using delegates.
OR5 Module must be loaded using reflections.
OR6 Traceability must be implemented into the thesis documentation.
OR7 The framework must be developed in Visual Studio 2005.
OR8 The framework must be implements using Compact framework 2.0.
OR9 The framework must be executable on a Windows CE 5.0 emulator

target.
OR10 The framework must be implemented using the language C#.
OR11 Test strategy must be described.
OR12 Software modules must use a serial port for communication

with hardware modules.

OR4 events using delegates
Challenge 4 was used to test different ways to perform event handling.
Primary focus should be put on using delegates to perform the event han-
dling. The reason for this is delegates seems to offer the most flexible
functionality.

OR6 Traceability
This is a requirement given by FDA. Traceability is to give the reader a
chance to see where requirements are described, implemented and tested
in the documentation done for a project. In this thesis all requirements
have been given an Id. Sections that describes requirements will have a
reference to the requirements.

18 Introduction

1.7.2 Limitation

The main focus of this thesis should be in the design of the framework software
modules. Software modules for user interfaces, data storage and measurement
should be secondary. They should only be implemented in a limited version to
evaluate the framework functionality.

The main focus on the framework should be to develop the methods in the
following order:

1. Method for object sharing between all the modules.

2. Method for event handling between the modules.

3. Method for data transfer between modules.

4. Method for controlling user interfaces.

5. Method for controlling framework configuration.

6. Method for loading modules runtime.

7. Method for separating modules from communicating directly with hard-
ware.

8. Method for discovery of hardware modules.

9. Method for controlling languages in the user interface.

All methods from 5 to 9 are only to be made once there is a satisfactory result
of the previous items is established. The items should therefore not be outlined
in the preliminary time schedule. If these items make it into the thesis they
should be shown in the final time schedule in appendix H.2.

A test strategy must be described however there should not be implemented a
test for every module created. Test should only be implemented to demonstrate
and verify some of the main modules functionality.

1.8 Introduction summery

This chapter have been used to give some background information about TCM
devices and their usage. Information’s about tools and methods have been given.

1.8 Introduction summery 19

A number papers and books have been shortly described. These describe some
of the most current theories available. Theories for making modular systems
for embedded devices are almost non-existing. Most of the theories found have
their main focus in large applications and enterprise system. This means most
of the theories cannot be used directly in this thesis. They can however be
used for inspiration to make new theories and designs. The chapter contains
descriptions of a number of challenges. These challenges have been identified
and solved to help establish a foundation for the design of the framework.

The next chapter will concentrate on designing modules for the framework.
The chapter will mainly focus on modules to the framework. The modules
will be designed using the iterative method described. This means each section
describing a module contains analysis, design and implementation.

20 Introduction

Chapter 2

Analysis of core architecture

for future TCM device

Contents
2.1 Preliminary architecture overview 23

2.2 Software modules . 24

2.3 Factory sphere system 31

2.4 Module communication 47

2.5 Configuration manager 58

2.6 Controlling user interface 64

2.7 Design summery . 74

This chapter contains several sections each describing a software module in the
framework architecture. The chapter has the following structure.

1. A short overview is given, to show all the components in the framework
and a small description of where focus have been put in the framework

2. A section describing the basic architecture of the software modules used
in the framework.

3. A section describing a method for sharing factory objects between software
modules without the software modules know each other.

22 Analysis of core architecture for future TCM device

4. A section describing a method for software modules to communicate with
each other.

5. A section describing a method for controlling configuration files and en-
suring the integrity of these

6. A section describing a method for controlling views in a user interface.

7. Lastly a small summery of what have been archived and a discussion
of whether some of the solutions could be seen as a new type of design
patterns.

2.1 Preliminary architecture overview 23

2.1 Preliminary architecture overview

Module A

Configuration
Manager Factory

Module CModule B

Communication
Manager Factory

Framework

View Manager
Factory Communication

Manager

Factory Sphere
Manager

Configuration
Manager

Register framework
factories

R egi ster obj ect

factory

Get object
instance

Get object
instance

Communication
Channels

Factory Sphere

View Manager

Module C Object
Factory

Figure 2.1: Preliminary architecture of framework

Figure 2.1 shows the architecture for the system to be designed.

The system has 3 main components. To the right is the framework block. This
is the block where the main focus will be put in the design. The purpose of
the framework block is to contain a number of modules capable of controlling
and support the external software modules. The software modules shown in the
right block will be described in the coming sections.

The middle contains a sphere. The main purpose of this sphere is to contain
factory objects capable of creating objects used and shared by the framework
and external modules. The factory sphere is a virtual container used by the
framework.

The bottom shows 3 external software modules. These modules could be mea-
surements modules measuring O2 and CO2. They could also be module used
to store data and user interface components. External modules will loosely be
described but will not be designed.

24 Analysis of core architecture for future TCM device

2.2 Software modules

The purpose of this section is to describe an overall design for software mod-
ules in the framework architecture. This means the design should be used for
both framework software modules and external software modules. The section
contains.

1. An analysis describing the overall module design and desired structure.

2. List of requirements for a basic software module.

3. Information about how versions should be handled.

4. Information about how integrity of software modules should be tested.

5. An interface design for software modules. This interface should be the
only part of the software modules, exposed of the outside.

6. Some guidelines for initialization and configuration of software modules.
These are only overall guidelines. Specific information about configuration
located in the design of each software module module.

2.2.1 Module analysis

Software modules are the basic components in the framework architecture.
These components are used in the framework core and as plug in modules.

A software module can be seen as a UML package that contains on or more ob-
jects. The defined software module interface is the entry point into the package.

Figure 2.2 shows a concept idea on how software modules should be build.
The software module interface should be as minimal as possible, removing all
operation-oriented functionality from the interface. By operation oriented func-
tionality it is ment all access to specific functionality in a module should not
be allowed. Communication between the modules through the module interface
should not be allowed. The reason for these restrictions is to minimize bindings
between the modules. The module interface should however contain a function
to set a reference to a global factory system, allowing object to be shared in a
controlled manner between the modules. Also a function to initialize the module
should be present. Inspiration for this design comes from ref. [3] and [4]

2.2 Software modules 25

Module A

Object B

Object C
Object A

Module
interface

Module B

Object B

Object C
Object A

Module
interface

External
object

Figure 2.2: Module concept

2.2.1.1 Design qualities

• No binding between modules.

2.2.1.2 Design drawback

• No way to interact between modules.

2.2.1.3 Summery

This design will generate modules that can function by them self, with no soft-
ware binding to other software modules. This type of software module can then
be used as building blocks to make a larger system. The only function a module
should have is an initialization function (MIR2 found in section 2.2.2).

2.2.2 Module interface Requirements

MIR1 Module must have a unique GUID value to identify the module.
MIR2 Module must have an initialization function.
MIR3 Module must have a reference to the factory sphere.
MIR4 Modules must use strong name signing.

Requirement MIR4 can only be fulfilled during compilation of the module.
Hence this is something that has to be setup in the project itself.

26 Analysis of core architecture for future TCM device

2.2.3 Module identification

Software modules should be uniquely identifiable to ensure the software modules
are of a valid type and not loaded more than once. Only allowing software
modules to be loaded once limits the overhead in integrity testing modules. A
GUID value has been selected to identify software modules. A GUID value is a
128bit value usually generated using a random generator. This gives with high
probability a unique value.

Using these unique values to identify a software module can not only be used to
identify software module type, but also a specific software module version. These
values can be put into a database linking them to module type and version. This
gives us the ability to control module types, versions and owners.

Instead of using random numbers in the GUID value a system could be used by
splitting up the 128bit value into sections, type, version and owner. Splitting
up the values like this does however create some limit on the amount of modules
for the system. But it can also give a better overview of the modules and to a
limit remove the need for an external database of the software modules.

2.2.3.1 Design qualities

• Gives a unique Id of module and version.

• Gives a way to administrate modules and versions.

2.2.3.2 Design drawbacks

• Requires administration of modules and versions.

2.2.3.3 Summery

The use of GUID values should be added as a requirement (MIR1). The ad-
ministration of GUID values is seen as a drawback and a quality of the design.
The reason for this is administration can be time consuming and cost money,
but it gives a way to control the modules. GUID’s must be implemented in this
thesis, but methods for version control will not be discussed.

2.2 Software modules 27

2.2.4 Module integrity

Compact Framework 2.0 supports strong named assemblies. Strong named as-
semblies are assemblies there have been signed with a private RSA (ref. [10])
key and with the public key embedded into the assembly. The RSA key pair can
be supplied through a simple key pair file or through a Personal Information
Exchange certificate (similar to X.509 certificate ref. [11]). If an assembly is
signed then the compact framework will automatically verify the signature. If
the verification fail then the loading of the module will be aborted. If software
modules are static linked then all software modules have to be signed. Software
modules however do not need to use the same key pair. This gives the possibility
to have different key pairs to different module suppliers. By creating a list of
valid third party public RSA keys and compare these keys to the module key,
then it is possible to control access to supplier’s modules. This will however
require some form of updating of the key list. Another solution could be that
all modules have to se signed using the same key. This will require some type
validation procedure from Radiometer. One problem to consider when select-
ing method, is that the signing procedure for strong named assemblies, is done
during build time.

2.2.4.1 Design qualities

• Gives a strong integrity verification.

• Gives the ability to verify module owner.

• Gives the ability to control allowed third party modules.

2.2.4.2 Design drawbacks

• Gives a longer load time for modules.

2.2.4.3 Summery

The only drawback when using strong name signing is the load time. This is
increased since modules must be verified before they are executed. This however
only affect the time it takes to start the application. Once the application is
started it has no effect on performance.

Strong name signing must be added as a requirement (MIR4).

28 Analysis of core architecture for future TCM device

2.2.5 Module interface designOOPQRQSTQUVWXYZ[\]^Z_`abcde
OfghiTVWWXjYj]kjlZWXYZ[\]^Zmnco`nap̀ e

Figure 2.3: Module interface design.

Figure 2.3 shows how the software module interface is designed. The interface
has 2 properties. The module interface does also have a small initialization
interface. This interface is used to initialize modules and also certain objects.

oFactoryManager
Property is used to set a share a global abstract factory system for object
sharing. This is specified as a requirement (MIR3).

oModuleID
Property used to get a GUID value used to identify a software module
(MIR1).

Initialize
Function used to initialize a software module (MIR2).

Figure 2.4 shows how a module is initialized.qrstuv wxyz{u |}tu~���u�ut vxyz{u |�qut ���tx~r x��u�t|}�t��{��u��
Figure 2.4: Sequence for module initialization.

2.2 Software modules 29

2.2.6 Initialization and configuration guidelines

2.2.6.1 Initialization

This section describes some guidelines modules should follow when initializing
software modules. The initialization of software modules should be done in 3
stages.

Stage 1
First a module should get the configuration it needs to set itself up. Once
the configuration have been retrieved it should be checked for missing data
and if data follow the setup requirements. As an example if a limit is set
higher than allowed.

If the configuration cannot be verified as valid a default configuration
should be used instead. A note in a log system should also be set, saying
the retrieved configuration was not valid.

Stage 2
Required objects located in the factory sphere, should be retrieved and if
necessary initialized.

Stage 3
Threads and listeners should be initialized.

2.2.6.2 Configuration

This section describes some guidelines modules should follow when it is con-
figured. In section 2.4.2 a method for communication using channels between
software modules is described. To make a software module as flexible as possi-
ble, the identification for the input and output channels should be described in a
configuration file. This would allow for redirection of data without recompiling
the software modules.

As an example a system can have two channel, channel A and channel B. Chan-
nel A show data on the screen and in this system is used for debugging. Channel
B is used in the final system and stores data on a disk. When working on a
module or interaction between modules the system can be configured to send
data to channel A to see if data is correct. Once data is verified then the con-
figuration can be changed to channel B storing data instead. If no software
changes have been performed on the software module then test of the modules
is not necessary. However if channels were hard coded into the modules. It

30 Analysis of core architecture for future TCM device

would then be necessary to test the module every time a change was done. The
ability to redirect data in the configuration should also make it easier to reuse
a module.

2.3 Factory sphere system 31

2.3 Factory sphere system

The purpose this section is to give the description on how factory objects can
be shared between software modules in the framework and external software
modules. The design given tries to make a new type of factory system, which is
similar to an abstract factory.

1. The first thing given is a small description of where the factory system fits
into the framework architecture.

2. The analysis starts with a small description of the abstract factory pattern
and lists some for the qualities and drawbacks of this design.

3. A prototype design of the factory sphere is created to see if the qualities of
the abstract factory can be maintained in a system that can be configured
at runtime.

4. A front-end prototype for the factory sphere is created to se if this can
solve some of the problems that were discovered when Implementing the
prototype factory sphere.

5. After the analysis and prototypes a list of requirements are given.

6. A final design is described, this design contains information about inter-
faces used, how generic factory objects can be made, how objects created
should be initialized and how creational patterns can be implemented as
generic factory objects.

7. An overview of the objects and interfaces designed, and relations between
these are given.

8. A summery for the factory sphere system.

2.3.1 Architecture overview for Factory Sphere

The highlighted components in figure 2.5, shows where the factory sphere man-
ager fits into the framework architecture. The factory sphere manager module
is a part of the framework and it is responsible for controlling how software
modules can share access to factory objects.

As shown in the interface design for the module in section 2.2.5, each module
contains a property to set a reference to the factory sphere. This means all

32 Analysis of core architecture for future TCM device

Module A

Configuration
Manager Factory

Module CModule B

Communication
Manager Factory

Framework

View Manager
Factory Communication

Manager

Factory Sphere
Manager

Configuration
Manager

Register framework
factories

R egi ster obj ect

factory

Get object
instance

Get object
instance

Communication
Channels

Factory Sphere

View Manager

Module C Object
Factory

Figure 2.5: Architecture overview for factory sphere system.

software modules have access to the sphere and they can register factories and
access factory objects to get object instances.

Inspiration for this system comes from ref. [1], [5] and [8].

2.3.2 Abstract factory

It is not unusual to use abstract factory patterns when designing large software
systems since this decrease the bindings between the used objects. This design
is especially used when object needs to be shared globally and in reconfigurable
system where underlying layers can be substituted.

Figure 2.6 shows the normal design of an abstract factory and is based on the
design in ref [1]. Here an interface is used to describe the basic functionality
and two subclasses implementing the interface. This design allows substitution
of ”ModuleA” with ”ModuleB”, giving the system the ability to use different
functionality depending of the situation. The design does however not offer a
unified way to control availability of an object, as an example what to do if
”ObjectA’ is missing in ”ModuleA”. It can also get very complex and difficult
to maintain when there are a large number of objects in the system.

2.3 Factory sphere system 33�������� ���������������������� �¡¢£ ¤ ���� �¡���������� �¥¢£ ¤ ���� �¥
¦§¨©ª«¬�����������®�̄���������������������� �¡¢£ ¤ ���� �¡���������� �¥¢£ ¤ ���� �¥ ¦§¨©ª«°�����������®�̄���������������������� �¡¢£ ¤ ���� �¡���������� �¥¢£ ¤ ���� �¥

Figure 2.6: Abstract factory design

2.3.2.1 Design qualities

• Binds between objects are weak, allowing easy substitution.

• Forces the developers to make objects that are easier to reuse.

• Simple design.

2.3.2.2 Design drawbacks

• Increased complexity for every object added to the factory system.

• It can be difficult to handle availability of objects.

2.3.2.3 Requirements for new factory system

1. The new factory system for the framework should keep the qualities from
the abstract factory system.

2. The new factory system for the framework must be able to handle dynam-
ically adding of factory objects.

3. The complexity of the factory system should not be increased when adding
new factory objects to the factory sphere.

34 Analysis of core architecture for future TCM device

2.3.3 Prototype design

This section describes an alternative method for managing factory objects. The
alternative factory system is seen as a sphere containing factory objects respon-
sible for creating or sharing object instances. The factory system is thus called
factory sphere. The purpose of this prototype is to see if it is possible to create a
new type of factory system where the qualities from the abstract factory system
is kept and where factory objects can be added runtime.±²³´µ¶·¸¹º»¼·¼½¾¿ÀÀÁÂÃÄÅÆÇÈÂÃÉÊÇÃËÊÌÂÍÇÃÎÏÊÐ ÇÃÎÑÒÓÂÌÃÔËÕÂÖ × ÅÒÓÂÌÃØÂÐÏÇÃÂÎÙËÌÃÅÎÚÍÇÃÎÏÊÐ ÇÃÎÑÒÓÂÌÃÔËÕÂÛ ÉÑÒÓÂÌÃÙËÌÃÅÎÚ ÅÑÒÓÂÌÃÙËÌÃÅÎÚÖ × ÜÅÏÆ Ý²³´µ¶·¸Þßà¼´µáâãäåæ¿çäÁÂÃÄÅÆÇÕèÑÒÓÂÌÃéÏÇÃ

Figure 2.7: Prototype design for factory sphere system.

Figure 2.7 shows proposed design for the new factory sphere system. It contains
2 objects the ”CFactorySphere” and ”IFactoryObject”. The factory sphere ob-
ject is responsible for containing an arbitrary number of factory objects. The
factory sphere handles all the communication between the system and the fac-
tory objects.

2.3.3.1 Register factory objectêëìíîï ðñòóíôõëêö÷îõîøù úîûüìíîõ ýòóíôõë üþìíòþóî ÿù�îõüýë ô��îóí þòïî üì �þü��î�ù �õîòíî ýòóíôõë ô��îóí üþìíòþóî
� ù�		 ô��îóí ýòóíôõë íô ô��îóí
üìí

Figure 2.8: Sequence for register factory object.

Figure 2.8 shows how factory objects are registered into the sphere.

1. The system that wants to share an object starts by creating a factory
object that can create instances of the desired object.

2.3 Factory sphere system 35

2. The factory object can then be registered by calling the ”RegisterFactory”
function using a string to identify the factory object and a reference to
the factory object.

3. Before a factory object is registered into the sphere, the factory system
verifies the identification for the factory object is unique.

4. If no other objects are registered under the desired name the factory object
is then stored in the sphere.

Factory objects are registered into the system while the application is running.
This means factories can be registered at any time. However the registration
procedure should be contained to the initialization process of the system. The
reason for this is to minimize the dependencies between modules at start up.
If the factories have been registered during the initialization then all software
module have access to the factory when they are started.

2.3.3.2 Get object instance����� �������������� ���������������� ��� ������ � �� �� !� ������ "�� ������ � �����#� ��� ������ � �� �� $� %����� ������ � �� ��
Figure 2.9: Sequence for getting object instance.

Figure 2.9 shows how objects instances should be created.

1. The sequence is started when the system request an object instance.

2. The factory sphere starts searching for the requested factory object using a
supplied Id for the factory object. In the prototype design, factory objects
are identified using strings.

3. Once a factory object is located the factory sphere system calls the factory
objects ”CreateObject” function to get an object instance.

36 Analysis of core architecture for future TCM device

4. The factory objects can then, depending of the rules implemented, create
a new object instance and return it to the system.

The factory objects in this design are similar to the create functions in the ab-
stract factory design. This object keeps the weak bindings between the objects
as required. The prototype design shows the factory object as an interface. This
allows for different implementations of the factory objects. These implementa-
tions could be different creational patterns like singleton or session patterns.

2.3.3.3 Design qualities

• Binds between objects are weak, allowing easy substitution.

• Forces the developers to make objects that are easier to reuse.

• Can reconfigure the factory system at runtime.

• No increase in complexity when adding a new factory objects.

2.3.3.4 Design drawbacks

• Factory object can be removed runtime.

• Non-specific object instances returned.

• Performance.

2.3.3.5 Prototype summery

The prototype design fulfills the requirements. The register function allows
for dynamic adding of factory objects. The create function can create object
instances without any increase in complexity. The qualities from the abstract
factory have been kept. The design is however not as simple as the abstract
factory.

The drawbacks from the abstract factory have been solved in this design. How-
ever a new set of problems has been created.

Removal of factory objects
As shortly mentioned factory objects are added runtime. Adding a remove

2.3 Factory sphere system 37

function to the system could allow for reconfiguration at runtime, removing
one factory and replacing it with a new one. This is however not desirable
because it would be difficult to keep consistency in the system.

An example could be the system creates 2 instances of specific objects
using the Id ”TestObject”. The factory that is linked to ”TestObjects”
is now exchanged with another factory object. Now if the system creates
instance using ”TestObjects” it would get a different object than the 2
first ones. This could lead to unpredictable results because there is not
consistency between the objects. The system could also completely re-
move a factory from the system. This would lead to the question, are the
instances still valid. For these reasons removal of factory objects should
not be allowed.

However if the consistency problem and validity problems could be con-
trolled, then this could become a strong tool in a modular system.

Performance
The system stored the factory object and identification of these in some
type of list. The prototype uses a simple dictionary to store the factory
objects in and strings to identify factory objects. Using strings to identify
factory objects are not necessarily the best way to go. If the list used
contains a large amount of strings it could become a problem.

Object type
The biggest problem in the prototype design is the fact that objects created
by the factory objects, are returned without a type making them non-
specific. This makes the returned objects useless and a solution must be
found to solve this problem.

2.3.4 Prototype front-end design&'()*+),-./01123456789:3;43<=>3?4@AB C <=>3?4@&'()*+),D./01123456789:3;43<=>3?4EAB C <=>3?4E
F&GH*('IJKL+'+./011MN3O78PQ<=>3?4RN84 C SM;?46:T<=>3?4UV2345678W34SX84;X?3AB C 6=>3?4Y3ZN843:M;?46:TAB C [6N7PQ6M;?46:T\]53:3PQ6M;?46:T\]53:3

Figure 2.10: Frontend design for factory sphere system.

38 Analysis of core architecture for future TCM device

One way to solve the problem of the non-specific object generated by the factory
objects, described in the prototype design, could be by using some of the abstract
factory design. This could be creation of front-ends to the factory sphere as
shown on figure 2.10. The front-ends contains like the abstract factory a create
function. Only responsibility is to get an instance from the factory sphere and
type convert it.

This gives a global check from the factory sphere, on availability and the front
end gives a type specific object.

2.3.4.1 Design qualities

• Validation on object type.

• Returning type specific objects.

2.3.4.2 Design drawbacks

• Gives more complexity in design.

2.3.4.3 Front end summery

The design gets a little more complex since a create function for each factory
object is needed. It is however easier to add and remove factory objects from
the front end because of the underlying factory system. The front end do not
need the create functions for all the objects and it is possible to use more than
one front end on top of the factory sphere.

2.3.5 Requirements for factory sphere

The ideas and experience gained during implementation of the prototypes was
used to generate the following requirements, described in this section.

2.3 Factory sphere system 39

2.3.5.1 Factory sphere interface

FAC1 The interface must have a ”RegisterFactory” function.
FAC2 The interface must have a ”GetInstance” function.
FAC3 The interface must have a ”ReleaseInstance” function.
FAC4 Factories are identified using strings.
FAC5 The factory sphere system may not remove registered objects.

2.3.5.2 Factory object interface

FAC6 The interface must have a ”GetInstance” function.
FAC7 The interface must have a ”ReleaseInstace” function.

2.3.5.3 Factory sphere object

FAC8 This object must implement ”IFacatorySphere” interface.

2.3.5.4 Factory objects

FAC9 These objects must implement ”IFactoryObject” interface.
FAC10 A generic factory object must be implemented.
FAC11 A generic singleton pattern factory must be implemented.
FAC12 A generic session pattern factory must be implemented.
FAC13 A generic pool pattern factory must be implemented.
FAC14 A generic prototype pattern factory must be implemented.

2.3.5.5 Implementation priority

Implementation of the factory sphere system has been prioritized in order to get
an overview of where focus should be put. There are 3 levels of priorities these
are:

High
Items that must be implemented before the system works.

40 Analysis of core architecture for future TCM device

Med
Items that would be helpful to have, but not necessary for the overall
functionality.

Low
Items that is not necessary but nice to have.

Below is a table showing the implementation priority.

Factory sphere High
Factory object High
Generic factory High
Singleton Pattern Med
Session Pattern Med
Pool pattern Low
Prototype pattern Low

2.3.6 Design

This chapter describes the final design of the factory sphere manager. This
design is based on the requirements described and the experience gained during
the implementations of the prototypes.^_`abcdefghidi ^_`abcdejkliabmnopqrnstuvwxsxy mnopqrnstz{|r}~~�

Figure 2.11: Relations between factory sphere objects.�� ��������� ¡�����������������������������
Figure 2.12: Interfaces for factory sphere system.

Figure 2.11 show the relations between the objects and figure 2.12 shows the
final interface design.

2.3 Factory sphere system 41

There are 2 interfaces specified to allow access to the factory sphere. The ”IFac-
torySphere” interface is the main interface for the factory sphere system. This
interface is responsible for registration of factory objects and instance creation
of objects. In also have a function for releasing objects. This function was
added to support certain types of creational patterns, like the session/pool pat-
tern where an object instaces must be released before another instance can be
created.

The ”IFactoryObject” is responsible for creating instances of a specific object.
The factory object implements the creational rules and is responsible for creating
the specific object instances.

Once a factory object is registered into the factory system, is cannot be removed
again. This means factory object registered must live until this application is
closed. This restriction has been added to avoid the problems that could arise
if a factory object was to be removed from the system.

2.3.6.1 IFactorySphere functions

GetInstance
This function returns an object instance. This function takes a string
containing the name of the desired factory object.

RegisterFactory
This function registers a factory object into the factory sphere under a
specific Id.

ReleaseInstance
This function is used to release instances from certain types of design
patterns. The function requires the Id of the factory object and a reference
to the instance.

2.3.6.2 IFactoryObjects

GetInstance
This function creates an instance of an object. This function can imple-
ment different creational rules.

ReleaseInstance
This function can be used to release an object instance from a pattern.
If the factory object does not implement a pattern that needs a instance
releasing, this call can be ignored. The function requires a reference to
the instance.

42 Analysis of core architecture for future TCM device

2.3.7 Generic factory objects

In .NET 2.0 it is allowed to create template classes also called generic classes.
This can be used to create generic factory objects.¢£¤¥¤¦§¨©ª¨«¬¦®¯°±¤¨«²³¤´µ¶·¶¸¹º »¼½¾¾¿ÀÁÂÃÄÅÆÇ¿ÈÉÊÇËÌÍÎÏÁËÁ Ð Ñ¿ÈÉÊÇËÌÍÎÏÁËÁÒËÇÎÁËÊÀÁÄÇ¿ÈÉÊÇËÌÍÎÏÁËÁ Ð Ñ¿ÈÉÊÇËÌÍÎÏÁËÁÓÁÊÏÇÃÄÔÁÊÑÕÄÊÈÕÉÁÖ× Ð ÇØÙÁÉÊ ÖÚ Û ÇÜÁËÂÇÈÃ×ÝÁÂÁÈÄÁÑÕÄÊÈÕÉÁÖ× Ð ÜÇÀÃ

Ñ¿ÈÉÊÇËÌÞØÙÁÉÊ

Figure 2.13: Generic factory object.

Figure 2.13 shows how such a class can be created. By implementing the inter-
face ”IFactoryObject” into a generic class, the non-generic part of the class is
exposed. This allows the generic object to be inserted directly into the factory
sphere. To allow a generic class to create instances of an object some restrictions
have to be added to the types allowed. The first restriction is the type must
implement the ”new()” operator. This means all primitive times are excluded
from using the generic factory. The new operator can however only be used
without parameters meaning the instance created cannot be initialized through
the constructor. This means an interface for initialization is required. This leads
to the second restriction. In order to initialize the objects they must implement
an interface containing functionality for initialization.

2.3.8 Object initialization

As described in the previous section 2.3.7 it is not possible to use parameters in
constructors using the described structure.ßßàáâáãäáåæçèéêëìíîêïðñòóôõ

Figure 2.14: Interface for object initialization.

2.3 Factory sphere system 43

Allowing the object to implement an interface containing functions to initialize
the object can solve this. Figure 2.14 shows an interface that solves the problem.
During the creational process a check on the object could be done to se if it
contains the interface. If the object has the interface, then the initialization
functions could be called. These functions can have any parameters required.
The function should be called right after the object has been created.

2.3.9 Creational patterns

The purpose of this chapter is to give a short description of the designed cre-
ational patterns used. A complete description of the creational patterns can be
found in ref [1].

2.3.9.1 Singleton patternö÷øùøúûüýûùþÿø��ù����øü����ø	
����� ������������������� !"#$� � % &����� !"#$� ����'()���&*���*�� % '()���+!#����+$ ���,��- % �()���. �#� ���������� !"#$� � % &����� !"#$� ��'()���&*���*�� % '()���+!#�/��$���0��&*���*��12 % �()��� 13 4 �5� ����26������&*���*��12 % 5���
&����� !'()���

Figure 2.15: Generic singleton pattern implementation.

”CGenericSingleton” in figure 2.15 implements a generic version of the single-
ton pattern, allowing only one instance of an object to be created. The class
implements the ”IAbstractFactory” interface to make it compatible to the fac-
tory sphere system. The current implementation ignores release calls so once an
object instance is created the instance will live until the application is closed.

44 Analysis of core architecture for future TCM device789:9;<=>9??<@:ABCD9=EFGH9IJKLKMNO PQRSSTUVWXYZ[\T]^_\`abcdV`V e fT]^_\`abcdV`VZ[\bVYYU\ghUY_ e iV]jkVlV`Vg^VmnZ[\od`V]Xh\^j e \pqV^_Z[Y_`rZc_abW_s_T\tgX e Y_`UguZ[Y_`fgv]WUXbVYYU\ghUY_ e Y_`Uguw`\cV`_UVY\T]^_\`abcdV`V e fT]^_\`abcdV`VxV_d\XYyV_fgY_]g^Vz{ e \pqV^_ z| } \vV`W\]X{fgU_U]WU~Vz{ e v\UX z| } \vV`W\]X{kVWV]YVfgY_]g^Vz{ e v\UXkVZ\vV�V]X�pqV^_Yz{ e v\UX

fT]^_\`a�pqV^_ffgU_U]WU~V

Figure 2.16: Generic session pattern implementation.

2.3.9.2 Session pattern

”CGenericSession” in figure 2.16 implements a generic session pattern, allowing
a limited number of instances to be created. The class implements the ”IAb-
stractFactory” interface to make it compatible to the factory sphere system.
The object uses ”WeakReference” object to create a weak reference to the re-
turned objects. This ensures the garbage collector still releases objects thrown
away from the receiving party. This makes the release instance function op-
tional. However since the system wont directly control the garbage collector it
is however preferable to release instances in the pattern.

2.3.9.3 Generic front-end object

Like the factory objects it is possible to make a generic object that can function
as the front end for an object in the factory sphere.

Figure 2.17 shows how such an object could look like. When the generic front-
end is created, it is given the Id of the object to create and reference the factory
sphere it has to use. The generic object has also given the type it has to
convert to. The create function then gets the object instance through the factory
sphere and converts it before returning it. The create function should verify the
returned object can be converted to the valid type.

2.3 Factory sphere system 45�������������������������������������� ������ ¡¢£¤¥¦§�¨©ª§«¬®¯¡«¡ ° §±²¡©ª³¡ª¯§£¤´µ¡¶¡« ©�«§¶ª·¶£¸¹´«¡¨ª¡º±²¡©ª¸¹ ° »¶ª¡«¼¨©¡½¬®¡¾¡¢¡¨¤¡º±²¡©ª¸¹ ° ¿§ £
Figure 2.17: Generic implementaion implementation.

2.3.10 Object overview ÀÁÂÃÄÅÆÇÈÉÊËÆË ÀÁÂÃÄÅÆÇÌÍÎËÃÄÏÐÑÒÓÔÐÕÖ×ØÙÚÕÚÛ ÏÐÑÒÓÔÐÕÖÜÝÞÔßààáâãËäËÆåÃÁÆÅäÄæäçèÌÍÎËÃÄéÇÉËê
ÀÌÍÎËÃÄÀäåÄ âÁÂÃÄÅÆÇÈÉÊËÆËëÑÒÓÔÐÕÖ×ØÙÚÕÚëìíîÚÓÔëïÝÔßààáÏÐÑÒÓÔÐÕÖ×ØÙÚÕÚÛ âãËäËÆåÃÈåäðñËÄÅäèÌÍÎËÃÄéÇÉËê âãËäËÆåÃÈËòòåÅäèÌÍÎËÃÄéÇÉËêëÑÒÓÔÐÕÖìíîÚÓÔ ëÑÒÓÔÐÕÖìíîÚÓÔëìíîÚÓÔëïÝÔ

âãËäËÆåÃÁÂÃÄÅÆÇèÌÍÎËÃÄéÇÉËêëÑÒÓÔÐÕÖìíîÚÓÔ
Figure 2.18: Class diagram for factory sphere system.

Figure 2.18 give an overview of the objects and interfaces designed for the factory
sphere system.

CGenericSingleton, CGenericSession, CGenericFactory are all implementations
the IFactoryObject.

CFactorySphere are an implementation of the IFactorySphere.

2.3.11 Test

The factory sphere system works as expected. To test system a small unit test
application was created. The test protocol used, can be found in appendix G.3

46 Analysis of core architecture for future TCM device

2.3.12 Summery

It is surprisingly easy to use the generic factory object, register and get object
instances from the factory system.

The factory sphere system can be used on any type of objects since factory
object that create the objects can be customized if needed. The generic factory
objects designed can in most cases be used without any modifications.

The factory sphere has the same qualities as the abstract factory design but
with the addition that it can handle new object added at runtime.

The downside to the factory sphere could be performance depending on how
factory objects in the factory sphere are searched and identified. This is some-
thing that must be looked at if this is to be used in the future. The factory
sphere also contains more components than the original abstract factory making
it more complex to implement.

The qualities of the factory sphere system do however make it attractive to use.
The system can be reconfigured without the need of recompilation of any parts
of the system.

Only 3 of the required factory objects have been implemented, these are Generic
factory, Singleton factory and Session factory.

2.4 Module communication 47

2.4 Module communication

The purpose of this section is to give a description on how events/communication
can be performed between modules.

The section starts with a small description of where the communication system
fits in to the framework architecture:

1. A small analysis was done to get an overview of the desired communication
architecture.

2. A description of the mediator pattern is given, listing qualities and draw-
backs. A small description is given on how this mediator pattern helped
to inspire the design.

3. A list of requirements is given to specify the communication systems func-
tionality.

4. Interfaces for the communication system are designed, describing how call
through the communication system can be done both synchronously and
asynchronously, qualities and drawbacks. The interface design ends with
a small summery.

5. A small description of how to manage channels and protocol used are
given.

6. A small test is described and used to test the implemented communication
system.

7. A summery with drawbacks and qualities of the design is given.

2.4.1 Architecture overview for Communication system

The highlighted components in figure 2.19 shows the items for the communi-
cation system to be designed. The communication manager is a part of the
framework and is registered as a generic singleton factory when it is initialized.
This is done to give all other software module access to the same communication
channel in the system. The communication manager is as the factory system
one of the main components in the framework. Its purposes are to give all soft-
ware modules a unified way of communicating with each other. A unified way
of communication should minimize the bindings between all software modules.

Concept 5 in section 1.4.5.5 is the main inspiration for this design. But also ref.
[1] and [3] have been used.

48 Analysis of core architecture for future TCM device

Module A

Configuration
Manager Factory

Module CModule B

Communication
Manager Factory

Framework

View Manager
Factory Communication

Manager

Factory Sphere
Manager

Configuration
Manager

Register framework
factories

R egi ster obj ect

factory

Get object
instance

Get object
instance

Communication
Channels

Factory Sphere

View Manager

Module C Object
Factory

Figure 2.19: Architecture overview for communication system.

2.4.2 Analysis

The software modules in this system do not have a direct way of communication
since this is not supported in the interface. Instead I have borrowed an idea
from network theory to create communication between the software modules.

User interface
module

Log module

Measurement
module B

Measurement
module A

Storage
module

Channel 1
Channel 2
Channel 3

Figure 2.20: Concept for module communication.

Instead of creating interfaces and start sharing object through the factory sys-
tem, this idea is based on using communication channels. Figure 2.20 shows
the concept of how this could work. The figure displays 3 channels. Channel
1 is a channel used by the user interface, module A and the storage module to
send events to a log module. Channel 2 is used by module A to send measure-

2.4 Module communication 49

ment data to the storage module. Channel 3 is used to send measurements from
module B to the storage system and user interface.

A communication channel is a place where modules can register listeners to
receive data. If multiple listeners are registered on a channel (Channel 3) then
data is broadcasted to all listeners. A channel can also have multiple senders
(Channel 1) allowing modules to share functionality in one module.

2.4.3 Mediator pattern

The communication manager that controls the communication channels can be
seen as a kind of Mediator pattern. The object contains a list of functions to be
called. Each list contains an unique Id. When calling a list using the Id, then
all the functions in the list are executed.

The mediator pattern is designed to execute some type of interaction between
objects without the objects know anything about the other objects. The medi-
ator pattern is described in ref. [1] page 273.

The mediator pattern can however not directly be used because the mediator
pattern have to know all the objects or at least an interface to these objects.

2.4.3.1 Design qualities

The mediator pattern have the following qualities that is attractive to keep:

• Gives weak bindings between objects.

• Give object the ability to interact without knowing each other.

2.4.3.2 Design drawbacks

The mediator does also have some drawbacks. These are:

• Mediator needs to know all the objects that requires interaction.

• Mediator requires a unique implementation for each interaction type.

50 Analysis of core architecture for future TCM device

2.4.3.3 Summery

The design should focus on solving the drawbacks of the mediator pattern and
keep the qualities.

2.4.4 Requirements

COM1 The interface must contain a function for adding channels.
COM2 The interface must contain a function for registering a listener on a channel.
COM3 The interface must contain a function for removing a listener on a channel.
COM4 The interface must contain a function verifying the existents of a channel.
COM5 The interface must contain a function for sending data to a channel.
COM6 Channels must be identified using strings.
COM7 Listeners can be registered as synchronized.
COM8 Listeners can be registered as asynchronized.
COM9 Channel may not be removed.

Channels must not be removed from system once the application is running.
Removing a channel could lead to unpredictable results. As an example a defect
software module is loaded. When the software module is initialized, it removes
all channels in the system. This scenario could be devastating for the entire
system.

Listeners may however be removed. The reason for this is because in order to
remove a listener from a delegate, a reference to the listener is required. This
means only the owner module can remove a listener from a channel. If a defect
in the module would remove all its listeners it would not be devastating for the
entire system. The problem would be contained in the specific software module.

2.4.5 Channel interface

First the focus have to be on how communication should be performed between
the modules. To solve the problem of the mediator needing to know all the
objects required for interaction, it could be turned around. This means all
the software modules that needs interaction should know the mediator. This
however requires some interfaces to be specified.

The channel interface should be used to give a unified way for communication

2.4 Module communication 51

between the modules. óôõö÷÷øùúûüýø÷øþÿ��������������	
��� � �����	
���
Figure 2.21: Channel listener interface.

The method chosen is shown on figure 2.21. It is a delegate that contains a
reference to a XML document.

A delegate can be used to contain a list of functions following the specified
format. This means that one delegate can function as one channel simply by
sharing the delegate among the modules that needs to interact. The modules
can then register functions into this delegate. A module calling this delegate
does not need to know any thing about the other modules.

Using delegates in Compact Framework 2.0 does however have one large draw-
back. This only supports synchronous communication. This means if a module
calls the channel it will have to wait until all the functions in the delegate have
been executed. This is not always desirable and for this reason an asynchronous
way of communication must be designed.

2.4.5.1 Asynchronous communication

In order to create asynchronous communication I have added the following
classes.

Figure 2.22 show the objects used to create an asynchronous function call. The
”CListener” is an object that is used to hold the references to a listener function
that needs to be called. The ”CListener” object specifies whether the given
listener is called synchronous or asynchronous. When the ”CListener” object
is registered onto a channel as an asynchronous listener. It is the ”CListener”
”AsyncListener” listener function that will be registered into the channel. For
synchronous listeners it is the ”m oListener” attribute in the ”CListener” object
that will be registered into the channel.

Figure 2.23 and 2.24 shows the sequences the done when registering and calling
an asynchronous class.

The thread created in the ”CListener” object is thrown away and left to itself

52 Analysis of core architecture for future TCM device������������������ !"#$%&'()*)+,'#-.'()/"&.#-#01#.2)%&3/"&.#-#0420#5%6.50.
������������ !"#$%&'(768-+0)-"9#%'()/"&.#-#0:0);#0."#&768-+0)-"9#%)/"&.#-#0)<0=/"&.#-#01#.2)%&>&8-+/"&.#-#03/"&.#-#0);#05.)0 ?);#05.)0 @
Figure 2.22: Asynchronous listener objects.ABCDEF GHFFIJKLMDKHJNMJMOEPQEOKCDEP RIJLDKHJ HJ LSMJJET GUKCDEJEPGPEMDE JEV GUKCDEJEPAED RIJLDKHJAED CDMDIC DH MCBJLWMJXTE DH YCBJLUKCDEJEP RIJLDKHJ

Figure 2.23: Sequence for register asynchronous listener.Z[\]^_ `a__bcdef]dacgfcfh^i `jd\]^c^i `jd\]^c^ikli^fmZ^cm _^\\fh^ n^] elfcc^o`foo p\[cejd\]^c^i `i^f]^ c^q `jd\]^c^ikli^fm`foo Z]fi] rbce]dacs^hd\]^i aidhdcfo rbce]dacs^hd\]^i mf]ftfeufh^
Figure 2.24: Sequence for executing asynchronous listener.

2.4 Module communication 53

once it has been started. This means no one have a reference to the create
thread at it will simply die once the function call is completed. Concerns were
raised whether this approached would lead to a memory leak. For this reason
a small test application was created to test for a leak. The test can be seen in
appendix F.

2.4.5.2 Design qualities

• Unified interface.

• Can add listener’s runtime.

• Can execute functions synchronous and asynchronous.

• Gives weak bindings between objects.

• Give object the ability to interact without knowing each other.

2.4.5.3 Design drawback

• Channel needs to be shared between all modules.

• Can only support one type of functionality.

• Cannot support complex interaction between modules.

2.4.5.4 Summery

The current system has kept the qualities from the mediator. It has also solved
the drawbacks from the mediator. Giving the system a unified interface for com-
munication and using delegates removes the need for a unique implementation.

However some new drawbacks have also created. Unifying the interaction in a
delegate makes it difficult to implement complex interaction between modules.
As an example the system cannot get data from one module and then send it
to another in the same delegate. However since interaction between modules
should be as limited as possible this is not considered a problem.

A way to share a channel between the modules have to be found, since all the
modules that need this channel for interaction, needs to be able to either register
a function or call the delegate. One way to solve the problem could be to use
the designed factory to handle the sharing.

54 Analysis of core architecture for future TCM device

DChannelListener ChannelA

DChannelListener ChannelC
DChannelListener ChannelB

CChannelList

Figure 2.25: Concept of channels list.

One delegate should only be used for one type of functionality. This should
give the best design. A function crammed with functionality can be difficult to
implement and maintain. For this reason a solution must be found in order for
the system to handle more than on channel.

Validation of the data transmitted has to be performed by the receiving mod-
ules. Creating a global verification system is not an acceptable solution. Not
only could a global verification system function as a bottleneck, it would also
very complex since it would have to be able to validate all types of protocols.
Validating received data in every software module does however decrease per-
formance.

2.4.6 Managing Channels

Figure 2.25 shows a prototype for an object that could be used to handle more
than one channel. This figure contains 3 channels and if it were shared between
the modules in figure 2.20 they would all have access to call and registered
functions. This object could be registered into the factory system. Since all
modules have access to the factory system they could then retrieve it. This
would however require an interface to be specified.

2.4.6.1 Communication manager interface

Figure 2.26 shows the designed interface for a communication manager object
that is responsible for handling the communication channels.

AddChannel
This function is responsible for adding a channel to the system. Strings
identify channels, hence the function requires a string containing the chan-
nel name.

AddListener

2.4 Module communication 55vwxyyz{|}~�|x{�~{~��������������������������
Figure 2.26: Interface for communication manager.

This function is used to add a listener to the channel. The function re-
quires the channels name and a reference to the listener to be registered.
By default listeners are added as asynchronous functions. A secondary
function is available where the synchronized parameter can be supplied.

RemoveListener
This function removes a listener from a channel. The function requires
the channels name and a reference to the listener to be removed.

Exists
This function returns a Boolean to tell if a channel is found in the internal
channels list. The function requires a channel name to be supplied.

SendData
This function sends data out on a selected channel. The function requires
a channel name to be supplied and a data package.

2.4.6.2 Protocols

The communication system needs some specified protocols in order to give a
structured communication system. Since the protocols are XML documents,
the documents required and their attributes are specified in appendix E.

2.4.7 Test

To verify the system works a small test application have been made to perform
unit testing of the communication system The test protocol used can be found
in appendix G.2. The result of the test shows the system works as expected.

56 Analysis of core architecture for future TCM device

2.4.8 Summery

The design of the communication gives a system that is very flexible. An arbi-
trary number communication channels can be created to support an arbitrary
number of functionality. The system uses an XML document as a parameter
allowing for an arbitrary number of attributes to be supplied to the functionality

This design has a few drawbacks that have already been discussed. However
performance could also be a problem using this system. The XML document
itself is not parsed to all the listeners, but only the reference. However all the
attributes in the XML document must be converted from string to the needed
format and when added to the document they must be converted from the
format to string.

Data integrity could also be an issue, since it is only a reference that is passed
between the listeners. One listener could modify the data resulting in invalid
data for all the other listeners. For this reason listeners should be restricted to
read received data only.

The few drawbacks this system has are outweighed by the qualities of the system.
It gives us a way to runtime configures how modules should interact without
the module has to know any thing about each other, expect channel name and
protocol.

The given design contains 2 add functions for adding channels. The only differ-
ence between the functions is the parameter ”bSyncronized”. This parameter
is used to select whether the listener registered is synchronous or asynchronous.
The add function without the parameter will always register listeners as asyn-
chronous. This means the function containing the parameter most likely only
will be used to register synchronous listeners. The next version should there-
fore remove the this parameter and have add function for registering listeners
directly to synchronous or asynchronous.

2.4.8.1 Design qualities

• Unified interface.

• Can add listener’s runtime.

• Can remove listeners runtime.

• Can execute functions synchronous and asynchronous.

• Gives weak bindings between objects.

2.4 Module communication 57

• Give object the ability to interact without knowing each other.

• Flexibility in communication.

2.4.8.2 Design drawbacks

• Channel needs to be shared between all modules.

• Cannot support complex interaction between modules.

• Performance.

• Data integrity.

58 Analysis of core architecture for future TCM device

2.5 Configuration manager

The purpose of this section is to describe how configuration files should be
handled.

1. To start with a small description of where the configuration system fits
into the framework architecture is given.

2. A small analysis was done to get an overview of how configuration files
should look and be controlled.

3. Description of security issues regarding configuration files is given and also
a method for integrity testing configuration files.

4. A design of the main configuration files is given, with a description of how
external and custom designed configuration files could be added.

5. The section ends with a small summery and a list of qualities and draw-
backs of the design configuration system

2.5.1 Architecture overview for Configuration Manager

Module A

Configuration
Manager Factory

Module CModule B

Communication
Manager Factory

Framework

View Manager
Factory Communication

Manager

Factory Sphere
Manager

Configuration
Manager

Register framework
factories

R egi ster obj ect

factory

Get object
instance

Get object
instance

Communication
Channels

Factory Sphere

View Manager

Module C Object
Factory

Figure 2.27: Architecture overview for configuration manager

2.5 Configuration manager 59

The highlighted components in figure 2.27, shows where the configuration sys-
tem is located in the framework architecture. The configuration system is a
part of the framework and is used to load and save configuration files. The
configuration manager registers a factory allowing all modules to access it. It
registers the factory object using a generic singleton factory. This is done to
increase performance since loaded configuration files only have to be loaded and
parsed once.

Inspiration for this module is mainly based of the module described in Concept
2 section 1.4.5.2.

2.5.2 Analysis

The configuration system uses XML files. The reason XML files have been
chosen is because they are easy to edit and readers and writers are supported
in compact framework. The readers and writers make it easy to extract and
modify the configuration from the application.

2.5.3 Security

There are several problems involved when having external configuration files.
These are:

Data corruption
This could result in impassable configuration data or invalid configuration
of system. An invalid configuration could harm the patient or result in
wrong treatment. Data corruption could come from a damaged disk or by
accidentally overwriting the configuration file. External editing could also
be a problem. Especially since the files are in clear text.

License restriction
Depending on the product purchased, it could be necessary to implement
certain license restrictions into the configuration files. These restrictions
should be protected so the buyer can’t gain access to restricted services
by editing the configuration files.

These problems can be solved by digitally signing the configuration files when
created or modified.

60 Analysis of core architecture for future TCM device

2.5.3.1 Signing using RSA

Signing data using RSA keys are done by following the procedure shown in
figure 2.28. ������ �� ¡¢£¤¥ ¥£�¦

§�� ¨©ª«¢¬ �® ¯��
°�¥± ¬� ¡¢£ ±¥�¥°�¥± �¢£ ¥�©¦�²¥¦�� ¬� ¡¢£ ±¥�¥ �³¦�©£³ �´®µ
¶��¬¦� �̈ �¢£ ¥�©¦� ±¥�¥���¨¥¦� �¢£ ¥�©¦� �� �´®µ ¦��©«��� ¡¢£ ±¥�¥ ¢ ·¤° ±�¬©�� �

°�¥± ¬� ¡¢£

Figure 2.28: Sequence for signing data.

Data are first parsed through a hash algorithm in this case SHA1 ref. [13]. This
generates a unique hash of the file. This hash value is then encrypted using the
private key from the RSA key pair to prevent editing. This gives us a signature
of the file. ¸¹º»¼½ ¾¿ÀÁÂÃÄÅÀÅÃ¼Æ¸ÅÇ¼ È¿ÀÁÂÃ ÉÅÆº¼ È¿ÀÁÂÃ ÊÅ»Å »ËÆ¿ÌÃ»Ë ¸ÍÎÏÐ¼» ÑÆÂÇÅ»¼ Ò¼¹ÓÀÈÆ¹Ñ» ºÂÃÀÅ»ÌÆ¼¸ÅÇ¼ È¿ÀÁÂÃ ÊÅ»Å¸ÅÇ¼ ºÂÃÀÅ»ÌÆ¼ ÁÂÔ¼

Figure 2.29: Sequence for verifying data.

Verification procedure is shown on figure 2.29. Data is passed through the SHA1
algorithm. If the data have not been changed since it was signed then the hash
value is the same as it was when it was signed. To verify this, the public RSA

2.5 Configuration manager 61

key is used to decrypt the signature and then compare the two hash values. If
the hash values do not mach then the file is declared corrupt.

The strength of the signature depends on the hash algorithm used, the number
of hash algorithm used and the RSA key size used.

2.5.4 Requirements

In order to sign the configuration files some requirements must be met by the
configuration system.

CFR1 The system must be able to handle static configuration.
CFR2 The system must be able to handle dynamic configuration.
CFR3 Only the public RSA key must be available for static configuration files.
CFR4 Private RSA key must be available for dynamic configuration files.
CFR5 A files signature must be verified when loaded.
CFR6 A files signature must be updated when saving.

2.5.5 Design

The functions to load and save XML files are built into compact framework 2.0.
So are RSA functions to sign and verify data. This means the only thing to be
designed are the file buildup.

2.5.5.1 Main configuration file

The main configuration file is called ”FrameworkConfig.xml”. This file is static
configuration file containing the overall configuration of the system and links to
external configuration files.

The configuration files consist of sections following the format

<ModuleConfig ID="">

<External></External>

<SaveAllowed></SaveAllowed>

<ConfigFile></ConfigFile>

62 Analysis of core architecture for future TCM device

<ConfigSignatureFile></ConfigSignatureFile>

<KeyID></KeyID>

<ConfigData>

...

</ConfigData>

</ModuleConfig>

ID
This attribute is part of the ”ModuleConfig” section and is used to sep-
arate the sections from each other. The ID normally contains the GUID
value for a specific module.

External
This attribute is used to signal if the module configuration is located in
an external file or if it is embedded in the main configuration file. If the
attribute contains the value ”True” then the configuration is located in an
external file. If the value is ”False” then the configuration is embedded in
the main configuration file.

SaveAllowed
This attribute is used to signal if the configuration is static or dynamic.
If the attribute contains the value ”True” then it is allowed to modify and
save the file. If the value is ”False” then modification of the configuration
file is not allowed.

Restrictions
This value must be set to ”False” if the ”External” attribute is set to
”False”. This is because the main configuration is static and cannot be
changed.

ConfigFile
This attribute contains the path and filename for an external configuration
file to load or save.

Restrictions
This attribute requires the attribute ”External” to be set to ”True”. Else
it will be ignored

ConfigSignatureFile
This attribute contains the path and filename for a file containing the
signature of the external configuration.

The signature file is a primitive XML file containing a ”Signature” tag
that holds a hex encoded signature.

<Signature>83,6F,4C,... ...,5D,85,78</Signature>

2.5 Configuration manager 63

KeyID
This attribute is used to point to a RSA key in the key manager.

Restrictions
This attribute requires the attribute ”External” to be set to ”True”. Else
it will be ignored

If the attribute ”SaveAllowed” contains the value ”True” the ”KeyID”
attribute must point at a private RSA key

ConfigData
This attribute is used to encapsulate configuration data for a module if
the attribute ”External” is set to ”False”. Else this attribute is ignored.

2.5.6 Summery

There are performance issues that have to be considered in the final system.
Every time a configuration file is loaded it has to be parsed through the signing
algorithm and then parsed by the XML system. Saving a configuration also
requires a parse through the signing algorithm. This is time consuming could
give problems if the selected processor have a low execution capacity.

The design is relative simple because of the XML usage. XML files are well
supported by the compact framework giving a lot of tools to manipulate these
files. The compact framework also supports the signing system. This means
most of the design for the configuration system is in how the files should be
built.

2.5.6.1 Design qualities

• The design gives the ability to control who is allowed to edit files.

• The design gives a good integrity test of configuration files.

• The design gives ”easy to edit” configuration files.

• The design uses a well supported system for modifying configurations.

2.5.6.2 Design drawbacks

• Performance.

64 Analysis of core architecture for future TCM device

2.6 Controlling user interface

The purpose of this section is to describe how user interfaces should be con-
trolled.

1. To start with a small description of where the control system fits into the
framework architecture is given.

2. A small analysis of control systems is given, describing how an application
controller pattern could be used. The analysis list identified qualities and
drawbacks for this pattern.

3. A list of requirements are given to describe the view systems functionality.

4. A design of the control systems is given. This design contains descriptions
of the designed interfaces, object relations, interaction between objects,
qualities and drawbacks of the design and a small summery.

5. A description of how the control system should be configured is also given.
The section describes how configuration files should be built and discusses
how to move from state diagram to a configuration file and bindings be-
tween views. It ends up with listing qualities and drawbacks for the meth-
ods and gives a small summery.

2.6.1 Architecture overview for View Manager

The highlighted components in figure 2.30, shows where the view manager is
located in the framework architecture. The view manager is used to link user
interface views together. A view is one screen in the user interface. The purpose
of the view manager is to allow several views to be easily configures into a
coherent user interface. The system allows easy reuse and exchange of view in
the user interface.

The main inspiration for this design was the Application Controller pattern
described in ref. [2].

2.6.2 Application Controller

The ”Application Controller” [2] is a design pattern used in enterprise applica-
tions to control interaction between user interfaces and execution of commands

2.6 Controlling user interface 65

Module A

Configuration
Manager Factory

Module CModule B

Communication
Manager Factory

Framework

View Manager
Factory Communication

Manager

Factory Sphere
Manager

Configuration
Manager

Register framework
factories

R egi ster obj ect

factory

Get object
instance

Get object
instance

Communication
Channels

Factory Sphere

View Manager

Module C Object
Factory

Figure 2.30: Architecture overview for view manager.

based on system and user input. Figure 2.31 show a sequence diagram for an
application controller. This design is taken from ref [2] page 379.ÕÖ×ØÙÚ ÛÜÝÞØ ßàÜØáàâÙá ãÝÝâäßåØäàÜ æàÜØáàââÙá ã çäÙèã áÙéÞÙ×Ø êÙØ æàÚÚåÜë ÕÖ×ØÙÚ àìíÙßØîïÙßÞØÙêÙØ çäÙè Õðàè

Figure 2.31: Application Controller pattern sequence.

The ”Application Controller” pattern consist of several patterns that interacts
to give this functionality. Some of these are state patterns used to control the
application state and knowledge objects that contain command sequence, list
of user interfaces for specific application states. Many of these patterns make
it possible to externally configure the system, exchange functionality and user

66 Analysis of core architecture for future TCM device

interfaces as needed. This gives an abstraction between the user interface and
underlying business logic, allowing for substitution of modules in both layers.

2.6.2.1 Design qualities

• Easy substitution of user interface.

• Easy substitution of business logic.

• Easy reuse of user interfaces.

• Easy reuse of business functionality.

• Give an overview of user interaction at design time.

2.6.2.2 Design drawback

• Performance.

• Requires large amount of design documentation.

• Design is for large systems.

2.6.2.3 Summery

The ”Application Controller” pattern can be complex to use, and since the
target application is an embedded system. One way to use this application is
to reduce the pattern and only take a part of it. The part that is interesting to
take is the part that controls the user interface. The part that controls function
execution should be ignored. This can be ignored since interaction between the
modules should be done through the communication channels. Also the main
purpose of the user interface is to present data send from the underlying system,
minimizing the amount interaction with the underlying system.

Performance could be an issue depending of how views are identified in the
knowledge object. The design performance will not be considered because it is
to demonstrate functionality only. For easy implementation the identification
will de done using strings.

The easy reuse and substitution of user interfaces should be kept in the final
design

2.6 Controlling user interface 67

2.6.3 Requirements

VR1 View must be signaled when opened.
VR2 View must be signaled when closed.
VR3 View must be able to access input controller.
VR4 Input controller must be configured externally.
VR5 Views should know where the system comes from.
VR6 Views should know where the system is going.

2.6.4 View system design

Using the ”Application Controller” pattern as inspiration. The following system
have been designed.ñòóôõö ÷øùúûô÷üùôýüþþõýÿ� ÷��ù�õ��õ����õ� ø�	 ÷ûýýõùôñô�ôõ
� �õôñô�ôõ���õ� ø�	 ÷��õ�÷üùôýüþþõý�� �õô��õ����õ� ø�	� �õô��õ��÷ûýýõùô��õ� ø�	

÷ûýýõùô��õ� �õ���õ�
�� �õ��õñô�ôõ���õ� ø�	�� �ùôõýñô�ôõ�÷ûýýõùô��õ� ø�	�� ñ��õ ùõ� óô�ôõ �ó �ûýýõùô óô�ôõ

Figure 2.32: Sequence for changing views.

Figure 2.32 shows the sequence used to change views in the ”View Controller”.

1. The system starts by sending a request to the input controller to show a
specific view.

2. The input controller asks the knowledge object ”CurrentState” to return
the state containing the requested view.

3. When a valid state is returned, it is possible to ask the knowledge object
”CViewController” for a reference to the physical view.

4. For bookkeeping a reference to the current view is also needed.

68 Analysis of core architecture for future TCM device

5. Using the reference to the current view it is now possible to tell the view
that the system is leaving it (VR2, VR6). When leaving a view the input
controller gives an Id to the view the system is going to.

6. Once the system have left a view it can signal the new view that it is active
(VR1, VR5). When signaling the view and Id is supplied describing where
the system comes from.

7. The last this is to update the current state attribute. Storing the new
state in the current state attribute does this.

The views are responsible for showing and hiding themselves when entering and
leaving.

����������� �� ����!"#$%&'()$*&)+*,,-+
.����!"$/)0)-%)-12 .345�677��898�8�2 �:�8�798�8� �� ;75398�8�!"#�<��=�98�8� �� >598�8�!"#.���� !" %?@-A�B�8���� �� ����!"#$?@-A$*&)+*,,-+ 2.345����<�C82DDE2.345�����5�875FF�72 2.345!�G68�5�875FF�72

2.34598�8�<�C8 HDDE
Figure 2.33: Class interaction for view system.

Figure 2.33 shows a class diagram for the ”View controller”.

CInpuntController
The input controller object is a part of the state pattern used to control
the current active view. This object is responsible for storing the current
state, validate input and change the system state depending on input given
and the current state. It is also used to signal the views when the system
enters or leaves a view.

CStateItem
This object contains information about a specific state. The object itself
is a knowledge object. It contains an Id for a specific view to be shown
and information’s about the states the view can go to.

CViewController
This is a knowledge object combining view identification to a physical
reference of a view.

2.6 Controlling user interface 69IJKLMNOPQRLSTUVWXYZV[\]^_\`a_bc_`d]eb
Figure 2.34: IViewModule interface.

IView
This is an interface used to access functionality in the views.

2.6.4.1 View module design

Figure 2.33 show the ”IView” as a component needed by view controller system.
The interface designed is shown in figure 2.34.

oAvalibleViews
This property is to give the view a list of view Id’s this view is allowed to
go to.

strViewID
This property is to get of set the view Id for the view.

GetForm
This is a function used by the view system to get access to the ”Form”
object to show the user interface.

EnterView
This function is used to signal a view that it is now active.

LeaveView
This function is used to signal a view that it is now inactive.

2.6.4.2 Design qualities

• Easy reuse of views.

• Easy substitution of view.

• Easy reconfiguration of views.

70 Analysis of core architecture for future TCM device

• Give an overview of user interaction at design time.

2.6.4.3 Design drawbacks

• Limited interaction between views.

• Performance.

2.6.4.4 Summery

The view system design is a reduced version of the ”Application controller”
pattern. This design only controls the user interface part. This results in a
lighter and easier system that can be implemented into an embedded system. It
does however create a new drawback in the design. Since the control system only
controls the views and not function calls, this limits the interaction between the
views significantly. The views only get information’s about the views available,
where the view comes from when entering and where it is going when leaving.
However the few drawbacks there are in this system do not outweigh the qualities
in the system. The ability to substitute a view with another just by changing
the ID makes the system easy to adapt and gives an easy way to reuse user
interface.

2.6.5 View configuration

As described the input controller shown on figure 2.33 is just a state machine
that based on some input is capable of changing state. To make the state
machine as dynamic as possible is should be build up around a configuration
file describing the states.

2.6.5.1 Configuration file

The configuration files have two main sections. The fist is a list of views to be
loaded and the second it a list that describes each state.

Before generating a configuration files a state machine should be drawn to get
an overview of the states in the system.

2.6 Controlling user interface 71

fghijhkl
jhklm

jhkln
jhklo

jhklpqm fghijhklpq
fghijhklpq jhklpqo

jhklpqnjhklpqm

Figure 2.35: State diagram for views.

Figure 2.35 show the system this section will use to show the configurations.
This system has 4 views. From this the first part of the configuration can be
defined.

The view list is build as following

<Views>

<View>

<ViewID>MainView</ViewID>

<ModuleFile>Dll filename for the view</ModuleFile>

<ModuleObject>Object name of the view</ModuleObject>

</View>

<View>

<ViewID>View1</ViewID>

<ModuleFile>Dll filename for the view</ModuleFile>

<ModuleObject>Object name of the view</ModuleObject>

</View>

<View>

<ViewID>View2</ViewID>

<ModuleFile>Dll filename for the view</ModuleFile>

<ModuleObject>Object name of the view</ModuleObject>

</View>

<View>

<ViewID>View3</ViewID>

<ModuleFile>Dll filename for the view</ModuleFile>

72 Analysis of core architecture for future TCM device

<ModuleObject>Object name of the view</ModuleObject>

</View>

</Views>

The section ”View” is an entry that describes one single view.

ViewID
This attribute is used to give a view a unique Id to identify it by.

ModuleFile
This attribute contains the filename and path for a DLL file containing
the view.

ModuleObject
This attribute contains the name of an object in a DLL file that functions
as the entry point for a view module.

The combination of the filename and object name uniqly described the module
to be loaded. This means more than one view can be located in the same DLL
file.

The second part of the configuration file describes the relations between the
views. From figure 2.35 the following can be described:

<States>

<InitialView>MainViewId</InitialView>

<view>

<ViewID>MainViewId</ViewID>

<State>ViewId1</State>

</View>

<View>

<ViewID>ViewId1</ViewID>

<State>ViewId2</State>

</View>

<View>

<ViewID>ViewId2</ViewID>

<State>MainViewId</State>

<State>ViewId1</State>

<State>ViewId3</State>

</View>

<View>

<ViewID>ViewId3</ViewID>

2.6 Controlling user interface 73

<State>MainViewId</State>

</View>

</States>

InitialView
This attribute defined the view to be showed at startup. In figure 2.35
this is showed as the initial state.

The configuration files contains a list of ”View” sections. These sections describe
the state a specific view is allowed to go to by listing the Id’s for the allowed
states.

ViewID
This attribute is used to define the view for the state list.

State
This attribute contains the Id of a view where the defined ViewID is
allowed to go to. The section can contain 1 to many of this attribute.

As an example of how a section to build up it can be seen ”View2” can go to
”MainView”, ”View1” and ”View3”. The section that defined the states for
”View2” contains the Id for these 3 views.

2.6.5.2 Dependencies between views and input controller

Defining the state machine is however not enough to make it work. The views
have to give feedback to the input controller in order to change views.

The input controller required the viewId’s to be given as input when changing
views. This means button or actions in a view have to be linked to a ViewId.

This can be done using a simple configuration file like this.

<ButtonLinks>

<ButtonID>ButtonA</ButtonID>

<ViewID>ViewId1</ViewID>

</ButtonLinks>

This creates a dependency between the views and the input controller because
the view needs to know what view it has to go to. This link is unavoidable,

74 Analysis of core architecture for future TCM device

however keeping it in configuration files give the possibility to reconfigure the
views without recompiling the views.

The dependency could be moved to the view controller by modifying it to re-
spond to button Id’s instead of ViewId. This however would require the input
controller to know about the buttons in the views. Where this dependency
should be considered before a final system is created.

2.6.5.3 Design qualities

• Easy to reconfigure view interaction without recompiling views.

2.6.5.4 Design drawbacks

• There are dependencies between the input controller and views.

2.6.5.5 Summery

The way the view system is build up generates some dependencies between the
views and the input controller. A larger analysis should be performed to see
if this dependency could be reduced and where it should be located. It will
probably not be possible to remove this dependency because views can have an
arbitrary number of buttons and can go to any view. This means some one have
to know about the internals of the view and how the view should navigate to
other views.

2.7 Design summery

This chapter describes how modules should be designed and describes 4 imple-
mented software modules.

2.7.1 Module design

The design shows how a basic software module should look. Access to software
modules can only be done through a simple interface. This limits bindings be-

2.7 Design summery 75

tween software modules. All software modules rely on external help for all types
of communication between software modules. This has been done to remove any
slippage problems when it comes to communication between software modules.

Slippage problems often shows themselves when module that have not been
designed to communication with each other suddenly have to. The interfaces
between these are in most cases not compatible. Forcing modules to communi-
cate through a common interface removed the problem.

2.7.2 Factory sphere

This module was developed to give a common way for all software modules to
share factory objects. The system works by letting software modules register a
factory object into the factory sphere, which is responsible for creating object
instances. The factory sphere consists of a number of general interfaces designed
to allow almost all types of objects to be created. Modules should also be able
to register any type of factory objects into the sphere. This generality have
been designed into the module to allow easy evolution of the entire framework.
The only restrictions in the factory sphere are the factory objects have to im-
plement a simple interface. If modules exclusively rely on the factory sphere for
communication with other modules, slippage problems could become a problem.

The factory system used the Abstract Factory patterns as baseline of compar-
isons to develop a system where factories can be added runtime. The final result
has almost the same qualities as the original factory. The biggest drawback is
this system is more complex to implement.

The factory sphere implements a number of generic creational patterns that can
be used to create object with. These are session and singleton patterns. The
generality of the factory sphere could be seen as a sign, that the factory system
could be a design pattern. However before this can be determined analysis of
this must be done.

2.7.3 Communication Manager

This module controls communication channels between modules. The commu-
nication manager have been developed to minimize the effect evolution can have
on communication between modules and thus reduce slippage problems. The
communication manager lets modules create channels to communicate over us-
ing parsed XML documents as protocols. Not only gives this method a very

76 Analysis of core architecture for future TCM device

flexible method for communication, but also a unified interface for this.

The communication system is relative simple to implement and use. But it has
some problems. Data have to be packed into and out of a XML document. This
requires time and lower performance. This means this system has to be tested
on the final hardware platform before any conclusion of usability can be done.
There is also a problem regarding data integrity. To increase performance in the
communication system, it is only the reference to the XML document that is
parsed to each listener. This means if one listener modifies the protocol contents
it could affect other listeners.

2.7.4 Configuration Manager

This module can be used by other modules to load and save configuration files
and test integrity. The module is relative simple to implement because the con-
figuration files are XML documents and the .NET framework has XML classes
capable of this. Most of the work in this module was on the implementation of
the integrity test.

2.7.5 Controlling user interfaces

To control the views in the user interface a reduced version of the application
controller pattern was implemented. The implemented solution works, but the
overall result for this software module is not a complete success. Reducing pat-
terns cannot be recommended. It is time consuming and the end result is not
as usable as could be desired. The implemented view manager has some unre-
solved issues regarding how dependencies between the views should be. There is
also a lot of work to be done regarding configuration of the system. Before this
software module should be used a cost/benefit analysis of the software module
should be done and compared to a normal implementation of a user interface.

If this module was to be redesigned it could be more beneficial to use ref [5] and
combine patterns into a useful solution.

2.7.6 Design patterns

During the design several patterns have been used and what could be considered
new patterns have been created. The factory sphere and communication system

2.7 Design summery 77

could be considered as new patterns because they work on generally any thing.
But before this can be concluded a comprehensive analysis has to be performed.
Ref [8] describes how design patterns could be identified. Before a code structure
can be considered a pattern, it has to general enough to be used by any object
with only a small modification. It also has to be implementable in more than
one language and a usability study has to be performed. None of these things
have been analysed in this thesis and the reasons for this is time. An analysis
of the factory sphere and communication manager would take approximately 2
to 3 month.

A faster way could be trying to implement these as templates instead (or generic
in C#). When implementing the factory sphere it was discovered that many
design patterns are easy to implement as templates. It could be interesting to
see which of these method best could describe a design pattern.

78 Analysis of core architecture for future TCM device

Chapter 3

Case studys

Contents
3.1 Case A - High speed communication 80

3.2 Case B - Configuration security 84

3.3 Case C - Distributed system 87

3.4 Case D - Interaction between user interfaces 89

3.5 Case E - Evolution on communication channels . . 92

3.6 Case F - Controlling measurement location 95

3.7 Case G - Auto configuration 96

In this chapter cases will be discussed for framework usability regarding TCM
related devices. The cases described have been kept small in order to keep focus
on specific problems and solutions. Creating one large case study could obscure
some of the details involved. The case studies will describe different problems
identified in the design of each software module. They will also describe some
of the concepts and requirements.

The chapter contains information about:

• How high-speed communication between modules can be made.

• How restrictions can be implemented into configuration files.

80 Case studys

• How the communication system could be extended into a distributed sys-
tem.

• How interaction between user interfaces could be performed.

• What happens when a protocol for a communication channel is evolved.

• How measurements could be controlled in a user interface.

• How the framework could be auto configured by detecting connected hard-
ware.

3.1 Case A - High speed communication

This case describes the different options for communication supported in the
framework. This case have been selected because section 2.4.8 describes per-
formance problems in the communication system. SpO2 requires high-speed
synchronised communication, describing each available method should help fur-
ther development in selecting the correct methods.

3.1.1 Problem description

Section 2.4 describes how communication between modules can be performed
using communication channels. A problem using this system for communication
could be performance. In most TMC related measurements performance should
not be a problem since data is send with an interval of 2s. However there is one
module where performance could be a problem.

The TCM40 device has a hardware module used to measure SpO2 and pulse.
This module can also send out graph data. The graph data sent from the
SpO2 hardware module is used to show the rhythm of the heartbeat. To depict
how this rhythm, there is sent data for the graph with an interval of a few
milliseconds. The SpO2 can send wave information with the intervals 79Hz,
38Hz, 25.3Hz or 19Hz depending on configuration. This gives the system min
13ms and max 52ms to handle the graph value. As default the hardware module
sends data every 13ms this is also used by the current TCM40 devices.

It is also very importent that measurements are received in the correct order and
with an even interval. This is because the curve has to be drawn at a specific
speed of about 25mm/s. If graph data do not come with an even interval, it is
impossible to draw the graph correctly.

3.1 Case A - High speed communication 81

3.1.2 Scenario

The framework gives 3 methods for communication. These are synchronous
and asynchronous communication through the communication system. The last
method bypasses the communication system and creates a bridge between the
modules.

This case will use a SpO2 module configured to send data every 52ms. This has
been select because this is the system have to run on the emulator device.

Before a method can be used it must fulfil the following requirements:

• Graph data must come with an even interval of 52ms or less.

• Graph data come in the correct order.

3.1.3 Solutions

3.1.3.1 Method 1

As default the communication system used asynchronous communication be-
tween software modules. This method cannot be used because asynchronous
communication cannot guarantee either of the requirements. Measurements
can come in a different order than they are measured. The time interval for
receiving the measurements can also very, depending on the load of the system.

3.1.3.2 Method 2

Communication channels can be setup to transmit communication synchronously.
This guaranties the measurements comes in the order they are measured and
also measurements come in an even interval. Using the communication system
could however give problems on low-end systems. The problem is data have to
be packed and unpacked from an XML document and this takes time. Low-end
system could have trouble creating these XML documents within 52ms and still
have an acceptable safety margin on resource usage.

Creating a system where some modules require 99% of the resources are not
acceptable because other parts of the system then easily could disrupt the data
flow, if they suddenly require a large amount of resources.

82 Case studys

Using this method is acceptable but is requires an analysis of the performance
on the desired platform.

3.1.3.3 Method 3

This method uses the factory sphere to create a bridge between the SpO2 soft-
ware measurement module and the software module used to display the SpO2

values.

rstuvwxtywz{t|}~���
Figure 3.1: Bridge interface and object.

Figure 3.1 shows the interface and object defined to the bridge between the
two modules. The interface is shared between the modules and the object is
registered into the factory sphere. The interface have a function used to set
SpO2 value, the object is responsible for implementing and handling the values.

SpO� receiver
object

Factory sphere

SpO� measurement
module

SpO� Display
Module

1. Register CSpO2Receiver
factory

2. Get instance of
SSpO2Receiver

SpO2 Receiver
interface

3. SetWaveValue

Figure 3.2: Connection modules through bridge.

Figure 3.2 shows an overview for how the bridge is created.

1. When the system is initialized the view responsible for displaying the wave
values register the object ”CSpO2Receiver” object into the factory sphere.

2. This allows the SpO2 measurement module to get an instance of the object.

3.1 Case A - High speed communication 83

3. Using the shared interface on the instance received allows the measurement
module to set SpO2 values into the object. The object can then function
as a bride between the measurement module and the display module.

This method is a little more complex to implement than using the communica-
tion system. However because the SpO2 data do not have to be packed into an
XML document, makes this method a lot more efficient.

3.1.4 Summery

Method 2 and 3 are both acceptable solutions for the problem and can both be
used depending on performance requirements and capabilities of the system.

3.1.4.1 Method 2

This method should be used if possible because this method makes the system
more flexible. The method allows transmission to more than one module without
creating any bindings between these.

Qualities

• No extra implementation required.

• No extra bindings or dependencies on other modules.

• Send data to multiple sources.

Drawbacks

• Worse performance compared to method 3.

3.1.4.2 Method 3

This method creates a weak binding between the modules because they need the
interface for the bridge object. There is also some dependency on the sequence of
initialization. The measurement module cannot get the bridge object before the
display module register it. The shown example can also only send data to one
other module. The communication module allows for data to be transmitted to

84 Case studys

multiple listeners. To achieve this using the factory sphere as a way to bridge the
modules would require a more complex implementation of the ”CSpO2Receiver”
object. One way to solve the problem could be by letting the object implement
an observer pattern [1]. This would require all the modules to share the interface
creating a weak bound between them.

Qualities

• Better performance than method 2.

Drawbacks

• More complex implementation.

• Creates dependency and weak bindings between modules.

3.2 Case B - Configuration security

This case has been selected to show the different options available in the config-
uration system described in section 2.5. Showing the available options should
help in selecting the correct type of configuration file in the future.

3.2.1 Problem

Section 2.5 describes how the configuration uses a digital signature to verify the
integrity of configuration files. There are several types of data that could be
interesting to store an external configuration files. These could be default data
for modules, user configuration, and license information. License information’s
could be the number of allowed modules of a specific type and other information
used to restrict module functionality.

This means some of the configuration files must not be changeable and others
should be changeable.

3.2 Case B - Configuration security 85

3.2.2 Scenario

The case will describe 2 types of configuration files. The first type is called a
dynamic configuration file. This type of configuration file is a file where the
framework is allowed to alter data. The second type of configuration is a static
configuration file where the framework cannot alter data.

3.2.3 Solutions

3.2.3.1 Dynamic configurations files

Dynamic configuration files are containing parameters the user is allowed to
adjust. These parameters could be printer setup or alarm limits for O2 or CO2.

Dynamic configuration files require a private RSA key to be preset in framework
in order to generate a new signature when the file is saved. For this reason the
signature in this type of configuration file, is for integrity test only. The private
key could be extracted from the system and used for manually updating.

This makes dynamic configuration file unsuitable to store static data, but it
allows for storage of user changed data.

Qualities

• Detection of corrupt disk.

• Attributes can be changed in the configuration files.

• Attributes can be added.

• Attributes can be removed.

Drawbacks

• Limited detection of external editing.

3.2.3.2 Static configuration files

Static configuration is designed to hold license information used to limit func-
tionality in the framework. But they can also be used to hold factory default

86 Case studys

values and other parameters that are not allowed to be changed. License in-
formation’s could be information’s about how many O2 hardware modules that
is supported by the framework. It is not desirable to let a costumer use more
O2 sensors the than they have bought licenses for. Another example could be
to limit the number of sensors allowed in the system because of user interface
limitations.

The main difference between the static and dynamic configuration files are, the
static does not need a private RSA key to be present. This means the framework
cannot change the configuration files. This means not only do the system offers
detection of corrupt disks it also offers detection of external editing. Since the
private key is not necessary to have on the system, like it is for the dynamic
configuration file, makes it difficult to edit the files because the signature cannot
be updates.

3.2.3.3 Qualities

• Detection of corrupt disk.

• Detection of external editing.

• Cannot be changed.

3.2.4 Drawbacks

• Only the files owner can change it.

3.2.5 Summery

The configuration system gives a way to control license information in the ap-
plication. This is done in a way that makes it difficult for the costumer to alter.
The configuration system also gives a way to let the user store a system setup
on the disk in a secure way. Meaning the configuration system detects if the
setup have been damaged by a corrupt disk and for limited external editing.

The system does not give a way to store data encrypted on the disk. This means
if there is sensitive data in a configuration file, then this data can be read by
anyone.

3.3 Case C - Distributed system 87

3.3 Case C - Distributed system

This case have been selected to show the modularity of the framework, when
software modules use the communication manager described in section 2.4 to
interact. The framework was not indented to become a distributed system, but
the designed system allows it. The purpose of this case is to show how this is
done and some of the problems that have to be looked at in future development.

3.3.1 Problem

How the next TCM system will be is currently not known. This means the
future system could be a distributed system where modules are located on more
than one TCM device. This case explores how a distributed system could be
created using the communication system described in section 2.4.

3.3.2 Scenario

SpO� Measurement
Module

TCM Device

SpO� View module

Figure 3.3: Standard module setup.

Figure 3.3 shows how a normal device could look. The system contains a mod-
ule for measuring SpO2 and a module that can show the measurements on the
screen. These modules are connected using the frameworks communication sys-
tem. The system will be used to demonstrate how modules could be distributed
to more than one device.

88 Case studys

NetSender NetListener

SpO� Measurement
Module SpO� View module

Device A Device B

Network

Figure 3.4: Distributed module setup.

3.3.3 Solution

Because the modules only know the protocol and channel used, makes it relative
simple to split up the system into 2 different devices. Figure 3.4 shows how the
system could be split. Device A in this system contains the SpO2 measurement
module. The communication channel where it sends measurements out on a
network sender is now connected instead of the view module. Device B contains
a network listener that receives packages sent from Device A. These packages are
then send to the view module, displaying the SpO2 measurements on a display.

The two SpO2 modules do not care how data are transmitted between the mod-
ules. As long as they sends and listens to a SpO2 channel they can communicate.
What is in between is transparent for the modules.

This method could be used to create small and cheap measurements systems
placed locally at the patient’s side. And a central unit used to monitor all
patients.

3.3.4 Qualities

• The communication system makes the transport media transparent for the
modules.

• The same modules can be used in a compact and distributed system.

3.3.5 Drawbacks

• Net senders and listeners can be very complex to implement regarding
security requirements.

3.4 Case D - Interaction between user interfaces 89

• Not all measurement type can be sent over all type of transport media.

3.3.6 Summery

The current framework has a prototype network sender and listener that simply
takes the protocol received and transmits it directly over the Internet. There
are a lot of security considerations that have not been taken into consideration
regarding sending data over a network. Also some of the measurements made
by the modules cannot be sent over all types of networks.

The SpO2 module sends a graph used to show the heart rhythm. Data for this
graph must be displayed within a specific time interval in order to show the
rhythm correctly. Sending data for this graph over the network could result in
a graph that cannot be shown correctly. There is also an issue about the time
it takes to transmit data over the network. The purpose is to send medical data
used in treatment. Harm could come to a patient if data is received too late.

Some module types would however be beneficial to have located in a central
place. These could be modules responsible for storing measurements, where the
time is takes to transmit data is not important. Also modules responsible for
controlling encryption keys could be beneficial to have located in one place.

3.4 Case D - Interaction between user interfaces

This case was selected to show how interaction between views in the user inter-
faces could be implemented into the framework. Section 2.6 describes how views
are controlled and the limitations there are in the views. Interaction was not
a part of the analysis done during the development of the system, but should
have been a requirement. The purpose of the case is to show how an external
system and the framework can be used to implement interaction.

3.4.1 Problem

Chapter 2.6 describes how the views in the user interface interacts. The inter-
action supported by the framework is very limited. This is however a problem
considering views some time has to share datasets and modify these in. Also
disabling buttons could be a problem when not knowing anything about other

90 Case studys

views.

3.4.2 Scenario

A common problem in TCM could be the control of patient Id. In TCM4
system it is possible to enter a patient Id. This Id is shown on all the views
displaying measurement data. In the TCM400 system it is also used to control
measurement sessions.

3.4.3 Solutions

3.4.3.1 Using communication channels

One method for creating interaction between the views could be by using com-
munication channels.

A view could create a channel and use this channel every time a change to a
dataset has been performed. Any one interested in the data could then listen
to this channel and get updates.

This is however not preferred since all views that have data to exchange need
to create a channel and send data over. Changing the rules for notification
of changes is difficult because changes have to be made in all the views. This
would also give some undesired bindings between the modules since they have
to communicate directly if values have to be modified.

The preferred way would be to implement an Observer pattern to handle this
type of traffic.

3.4.3.2 Observer pattern

This section describes how an observer pattern can be implemented into the
framework.

A Common way to create interaction between views is to create an observer that
could hold the required data and then notify the views when data is changed.
An example of an observer pattern can be seen in ref [1] page 293. The design
to be used is very close the one described in ref [1].

3.4 Case D - Interaction between user interfaces 91

�� ¡¢£¤¥ ¦§�¨ ¡¢£¤¥ ¦§�©¡¡£ª«¬® ¯° ¯¦§�± ¡£ª«¬® ¯° ¯¦§²³ µ́¶·¸¹º¶»¼½¾¿ÀÁÂÃ ÄÅÆµ³̧ ÇÈÉÊ½¾¿ÀÁÂÃËÌÍÎÏ¶ºµ
Figure 3.5: Interface and object for observer implementation.

Figure 3.5 show the object and interface needed. The implemented subject
object should be shared through the factory sphere system. This would give all
the views access to the object. Views can then through the interface access the
subject object and register observers.

Subject

View 1 View 2 View 3

Communication
Manager Notify

NotifyChannel Register
observer Modify data

Figure 3.6: Structure of observer pattern implementation.

Figure 3.6 give an overview of how it should look. The system uses the com-
munication system to send notification messages to the views. This method has
been selected because the subject objects need a list of observers to contact when
values is updated. The communication system has a system that can be used
for this so instead of implementing a new system to send a signal to multiple
listeners the communication system is used. By letting listeners to the channel
be registered through the subject object makes the channel used transparent for
the views.

3.4.4 Summery

Using the observer pattern the given structure on figure 3.6 allows for exchange
of the subject object if different notification rules are needed. This can be done
without having to recompile the views. The structure is also very similar to the
original observer pattern described in ref [1].

92 Case studys

The bindings between the modules have not been increased since they have to
communicate with the subject object. The system is also better than using the
communication system directly because the values are stored in a central place.

The subject object has to be implemented for each type of interaction required.
This could mean that there should be a subject object for disabling buttons,
and subject objects for different datasets.

3.4.4.1 Qualities

• No bindings between the views.

• Transparent usage of the communication system.

• Allowed other objects to interact with multiple views.

3.4.4.2 Drawbacks

• Different implementations of subject object might be needed depending
on the systems configuration.

3.5 Case E - Evolution on communication chan-

nels

This case has been selected to show how the concept of evolution and slippage
problems described in ref. [3] affect the communication system described in
section 2.4. The purpose of this case is to show the effect module evolution have
on the system. Since communication between modules should only be performed
using the communication system means this is where evolution problem could
show them self.

Evolution is defined as system object changing the way they communicate with
other systems.

Communication is done using XML based protocols. The following example will
be used to show how evolution can affect the communication in this system.

<Protocol>

3.5 Case E - Evolution on communication channels 93

<SpO2Value></SpO2Value>

</Protocol>

Measurement
module SpOÐ

Data storage
module

View displaying
SpOÐ

Figure 3.7: Modules linked through a communication channel.

The system used is shown on figure 3.7. The system shows a SpO2 module
sending out measurements to a storage system and to a view displaying the
results.

Evolution can go two ways in the communication system. Attributes can be
added to the protocol due to new parameters. Attributes can be removed do to
obsolete parameters.

3.5.1 Adding new parameter

An attribute called BPM could be added to the protocol allowing it to transmit
the SpO2 pulse parameter.

<Protocol>

<SpO2Value></SpO2Value>

<BPMValue></BPMValue>

</Protocol>

Considering the storage and view module currently do not know the attribute
”BMPValue” means this attribute is simply ignored. For the modules to use it
they need to be upgraded. This means if an attribute is added to a protocol a
combination of both old and new modules could be used at the same time.

As an example only the storage module is upgraded to support the new param-
eter. Both modules would still be able to handle the new protocol. Retesting is
only required of the storage module.

94 Case studys

3.5.2 Removing a parameter

Both storage and view module are now upgraded to use both attributes in the
protocol. Now the SpO2 parameter will be removed from the system.

<Protocol>

<BPMValue></BPMValue>

</Protocol>

If the storage and view modules got this protocol they would both fail because
they expect the SpO2 module. When designing modules they should be prepared
to handle situations where one or more parameters are missing. This is to ensure
that one defect module cant crash the system because is sends defect packages
out on a channel.

3.5.3 Summery

Attributes can easily be added to the protocols without having to upgrade all the
modules using the protocol. This makes it easy to extend the system. Removing
attributes however can become a very complex affair since all the modules have
to be upgraded to use the new protocol.

Using normal interfaces between the modules instead of the communication
channels would require recompilation of each module and retesting every time an
attribute is added or removed. The same would apply if a static data structure
were used.

3.5.3.1 Qualities

• Easy to extend protocols.

• Extension requires minimal amount of testing.

3.5.3.2 Drawbacks

• Difficult to reduce protocols.

• Reduction requires complete retesting of all affected modules.

3.6 Case F - Controlling measurement location 95

3.6 Case F - Controlling measurement location

This have been selected to show how the configuration manager described in
section 2.5 can be used to control where the measurements are shown in a view
and what have to be implemented in the future. The purpose of this case is to
show how to control measurements on the user interface.

The system can have more than one sensor of the same type located. The
current TCM device can have up to 6 O2 measurement modules connected at
the same time. A method is needed to ensure the measurements from specific
modules always are shown in the same position on the screen.

In the current TCM system measurements are shown in the screen based on
the port it is connect to. The method is possible to use on the TCM device
because each module have a dedicated serial port. However this system cannot
be used if the TCM device uses another communication system. If the modules
are connected through USB or Ethernet then it could be a problem to ensure
the same module always has the same position on the screen. This is because
the not necessarily can be identified on the port used, because these can be
changed every time the system starts up.

The measurement protocol contains a ”HardwareID” attribute than can be used
to uniquely identify each hardware module. The identification can be done using
the hardware modules serial number.

By having a unique identification of each module it is now possible to create a
configuration file describing where each module should be shown on the view.

3.6.1 Qualities

• Modules can be uniquely identified.

• Can control modules placement on the view.

3.6.2 Drawbacks

• Currently it is not all modules that contains a serial number.

• Require reconfiguration when modules are changed.

96 Case studys

3.6.3 Summery

The solution is relative simple using the module serial number. Currently there
is one problem using this method. That is the SpO2 module does not support
retrieval of the modules serial number. However normally it is not necessary to
use more than one module when measuring SpO2 and pulse. O2 is the most
common modules used when it comes to using multiple sensors. The reason for
this, is this type of sensors are used in wound treatment where several sensors
are placed around the wound. The O2 modules do have a serial number that
can be retrieved.

The biggest problem would be if modules are changed for a new one. A change
like that would require a reconfiguration of the view. For this reason it should
be considered if a tool for reconfiguring should be implemented into the system.

3.7 Case G - Auto configuration

This case have been selected to show how a future system could be if concepts
described in section 1.4.5.2 were to be implemented and the overall requirement
OR12 were to be removed. This case will discuss how the system could be
automatically configured if two of the concepts in the preliminary analysis was
implemented. The concepts are ”Hardware Abstraction Layer” and ”Hardware
Discovery”.

3.7.1 Hardware Abstraction Layer

The preliminary analysis section 1.4.5.1 contains a concept called the HAL was
shown. This is not something that has been discussed during the design, but is
a relative important part for a larger system.

Figure 1.1 in the preliminary analysis shows the concept of the HAL layer. This
is a small abstraction layer between the software modules and the hardware. The
purpose of the layer is to have an abstraction between the software and hardware
allowing the software to communicate with the hardware without knowing how
the communication is performed. This means there could be several different
hardware versions of O2 modules each using different hardware interfaces. Since
the software module do not communicate directly with the hardware makes it
possible reuse of the same software modules. Changing hardware should result
in a reconfiguration or a new HAL layer only. The main purpose of the HAL

3.7 Case G - Auto configuration 97

layer is to contain a list of hardware ports and rules to communicate with these.
It should also contain a number of bridges for the software modules to allow
them to communicate with the hardware.

3.7.2 Hardware discovery

Figure 1.2 in the preliminary analysis have a concept called Hardware Discovery
(HWD). The purpose of this module is to identify the hardware module con-
nected to the device. This module is closely linked to the HAL layer. It contains
rules for identifying different hardware modules.

3.7.3 Bridge objects

In order for the software modules to communicate with the hardware a number
of bridge objects are needed. Figure 3.8 shows how these could be designed.ÑÒÓÔÕÖ×ÑØÙÚÛÓÖ×ÑÜÝÞßààÓáÛÓÕÖ×ÑâÓÛãßÕäåÓæçèÓÖ×éêëìíîïðñíòóôõö÷øùú ûúö÷üýþÿö�õö÷øùú �ûõþÿö�õö÷øùú þ��þÿö�õö÷øùú���îê��í ���îê��í ���îê��í

Figure 3.8: Bridge objects for HAL layer.

The bridge objects implements a common interface allowing a unified way of
communication to a hardware device. The interfaces shown here, contains read
and write functions used to send and receive data from a module. Each of the
shown objects implements the ”HWBridge” interface, this hides any specific
hardware information’s from the software modules. This allows the software
modules to use any type of hardware communication.

3.7.4 Stating HWD

Once the HAL layer and the HWD module have been initialized they can start
the discovery process. The process is as follows:

1. The HWD asks the HAL layer of a list of available hardware ports.

98 Case studys

2. Create a bridge object for each port.

3. Try to discover the identity of modules connected to each port.

4. Bridge objects connected to a hardware module is registered in the HAL
layer.

The end result for this procedure is a list of bridge objects in the HAL layer.
These bridge objects allow the software modules to communicate with the hard-
ware.

3.7.5 Using HAL and HWD to start the framework

Up till now it has been shortly described how hardware modules should be iden-
tified and how software modules should connect to these. The software modules
implemented for a TCM device would in most cases be distributed as one large
software package. This package not only contains all the modules implemented,
but also a number of configuration files describing how the software modules can
be combined. There could be a configuration file describing a TCM400 device
or a TCM4 device. The result from the HWD could be used at startup to select
one of these configurations. This would allow the application to automatically
start the needed modules for a specific configuration.

Consider the HWD discovers 6 O2 modules connected to the device. Using the
current TCM devices as a reference this would then be identified as TCM400
device. The HWD could then lookup in a rule list to se if there is a valid
configuration file for the found modules. A rule for a TCM400 device could be
only O2 module found and only between 1 and 6 modules allowed.

Given the HWD now have identified the device type it could give the TCM400
configuration file to the framework. The framework would then start loading
the appropriate modules.

A rule for TCM4 device could be only one combo module found. If this was the
case the HWD could give a TCM4 configuration file to the framework and it
would start as a TCM4.

The current TCM devices rely on a technician to manually configure the device
to a specific type, depending on the modules connected. This means if the
modules were changed to reflect a different TCM device, the system would have
to be manually reconfigured to reflect the changes.

3.7 Case G - Auto configuration 99

3.7.6 Qualities

• Automatic recognition of device type.

• Automatic loading of required modules.

• Easy to add new device types to the system.

• No hardware bindings between the hardware module and software mod-
ules.

3.7.7 Drawbacks

• Complex to implement.

• Identification could be time consuming.

3.7.8 Summery

The system could be relative complex to implement depending on the number
of different type of communication options that have to be available. Also a
relative large number of configuration files have to be available depending on
how many different combinations of hardware modules that are allowed. The
discovery process could also be an issue if the HWD has to ask all available
ports for all types of hardware modules. This could especially be a problem at
startup time. Consider a system containing 10 ports. There are 10 different
hardware modules. If it takes 6 seconds to search for one module it could in a
worst case take up to 10 ∗ 10 ∗ 6/60 = 10 minutes for the search to complete.
In most situations this would be an unacceptable startup time. This could be
solved implementing rules describing the type of hardware a specific hardware
module can be connected to. Also implement an efficient identification system
into each module could help. This is currently not available in the hardware
modules, but should be considered for the next generation.

The biggest advantages using the system are the communication between the
hardware and software modules have been separated. The bridge objects allowed
different connection type completely invisible from the software’s point of view.
The HWD’s value however could be discussed. Its biggest advantage is the
system automatically can configure itself depending on the connected hardware
modules. However the current devices in existence are selfdom reconfigured
once sold to a costumer. This means the time used to configure the devices is

100 Case studys

relative small. However if a future system is meant to become for fluent than
the current system it could be considerer as a possible solution.

Chapter 4

Conclusion

Morten S. Sabinsky S973936

This chapter describes the overall results of the thesis. It contains

• Description of the overall results and what has been accompliced.

• A description of the results for each designed module.

• Description of items to be looked at in the future.

4.1 Overall results

This thesis have been used to design and implement a ”State of the art” frame-
work for an embedded system. The framework currently consists of software
modules that handle object sharing, communication between software modules,
configuration files and user interfaces.

The implemented modules shows that the theories and selected methods can
be used. The theories and methods have to be refined before they will be

102 Conclusion

usable in a medical grade application. Some of the refinements that should be
performed for the designed software modules are described in the next sections.
During the refinement process an evaluation on each software module should be
performed. The evaluation should result in an overview of cost/benefit regarding
the software modules. If the software module should become over complex to
implement and offer only limited benefit for the overall solution they should be
removed. There are already concerns regarding the user interface system. This is
a good example where the design may give more problems than is solves. In these
situations a more traditional design could be used, where severe components are
statically linked together. As an example all the views are linked together an
functions like one software module instead of each view is a software module.

As shown in the final time schedules for the thesis in appendix H, the overall
time consumption for thesis has been following the predicted schedule. The
reason why it have been possible to follow these schedules so precisely is mainly
because of the challenges solved in the start of the process, also having the
concepts as guidelines during the module design have been helpful. However
the concepts might also have limited the creativity process a little, because it
was difficult to move focus away from these.

Overall the thesis shows new ideas and interesting solutions for both object
sharing and communication between modules. The current state of the frame-
work allows the framework modules to be exchanged without having any direct
effect on any other modules. The way the system is designed allows for easy
evolution of modules. The communication system allows modules requiring dif-
ferent protocol versions to function together as long as backward compatibility
is maintained. The factory system allowed modules an easy way of sharing
objects without the framework have to be recompiled to support these. The
designed configuration system allows many of the dependencies in the system
to be located in configuration files and not in source code. This means most of
the code dependencies have been removed.

4.2 Design results

4.2.1 Factory Sphere

The factory sphere descibed in section 2.3, is a software module that control
how objects can be shared between modules. The system works by allowing
modules to register a factory object. Other modules can then use the factory
objects to create an instance of a specific object.

4.2 Design results 103

In its current state, it is fully functional. There are some issues that needs to
be looked at:

Performance
Performance is an item that should be looked at once a hardware platform
has been specified.

Factory removal
There are also some issues regarding removal of factories from the sphere.
Currently this is not allowed because there are no methods to handle this
safely. However if this could be handled safely a hole new area of usability
for the factory system could be reveled.

4.2.2 Communication Manager

The communication manager described in section 2.4, is a software module that
is used to control how modules communicate with each other. The Communi-
cation manager creates channels between the modules where protocols can be
transmitted.

In its current form, it is fully functional, but there are some issues that must
me looked at:

Performance
Currently a reference to a parsed XML document is sent to each listener.
This means data have to be parsed in to text format and from text format
to be used. An exploration for a better method for data transmission
should be explored.

Data integrity
Listeners can currently modify data in the received XML documents. Since
the listeners only receive a reference, a modification could influence other
listeners. This is a problem because this could lead to unpredictable re-
sults.

Distributed system
As described in section 3.3 the communication system could be used to
distribute modules over several devices. It could be extremely interesting
to map and explore problems and usable cases for this. It is not some that
have had the direct focus in this thesis, but it is possible to implement
with only minor modifications.

104 Conclusion

4.2.3 Configuration manager

The confuguration manager descibed in section 2.5, is a software module that
contains a simple implementation allowing load and save of XML files and signa-
ture verification and generation. Its current form if fully functional, but there is
one item that should be explored. This could be some type of basic encryption
of the data stored in the configuration files.

4.2.4 Controlling user interfaces

This system is descibed in section 2.6 and is a system that controls the user
interface is a reduced version of the application controller pattern described in
[2].

The implemented module works, but there are some issues regarding dependen-
cies between the modules that have to be solved.

This implementation requires a lot of documentation. Not only must every
implemented user interface be described. But also the state machine controlling
the user interfaces must describe all interaction.

This might not be the best solution. A better solution could be to create a
complete software package where each view is statically linked. In most cases the
user interfaces would always be configured in one specific way. Once configured
it will seldom change. The reusability of that is gained using the application
controller pattern, might not be more cost effective than implementing a normal
user interface, because of the documentation amount.

User interfaces that have been carefully designed can have views statically linked
to each other, without this gives any problems.

4.3 Case study conclusion

The cases study has been used to show how the software modules can be used
and what should be considered for future development. The purpose of this
section is to shortly describe and summaries the results for each of cases shown
in the case study.

4.3 Case study conclusion 105

4.3.1 Case A - High speed communication

Case A described in section 3.1, is used to described how the factory sphere in
section 2.3 and the communication manager in section 2.4, both can be used to
establish communication between software modules.

The use case describes 3 methods available in the framework and discusses the
usability regarding transmission of data from a SpO2 software module. Method
1 cannot be used since this is an asynchronous method and do not guaranty
measurements come in the correct order and at an even interval. Method 2 can
be used, but this method could have some performance issues that have to be
solved. By method 2 is the preferred method because it uses the communication
system. Method 3 uses the factory sphere to create a bridge between the software
modules. This method offers the best performance, but creates a dependency
between the modules that have to communicate. This dependency can give rise
to slippage problems at a later time.

4.3.2 Case B - Configuration security

Case B described in section 3.2, is used to describe how configuration files can
be secured using a digital signature. The case describes the different types of
configuration files (static and dynamic) and what purposes the configuration
files are bested suited for.

Static configuration files should be used to store default configuration data for
modules. They are also suitable to store license restrictions in because they
cannot be altered. Dynamic configuration files are however only suitable to
store user controlled data. They are less secure that static files because the
private RSA key used to generate the configuration files signature, have to be
stored on the TCM device.

4.3.3 Case C - Distributed system

Case C described in section 3.3, is used to describe how the framework can be
distributed if the software modules rely on the communication manager in sec-
tion 2.4 for communication. The case described what is necessary to implement
in the current framework and what considerations that have to be done for a
future system.

106 Conclusion

The framework can easily be distributed if modules only rely on the communi-
cation manager. Section 4.4.4 describes some of the problems that have to be
considerer before this is done.

4.3.4 Case D - Interaction between user interfaces

Case D described in section 3.4, used to describe how interaction between views
in the user interface is possible. As described in section 2.6 this is not possible
in the current design of the views. But a combination of an external module
sharing a subject object using the factory sphere and using the communication
system to notify views, allows complex interactions. The system shown in the
case study allows views to interact without communication directly with each
other. This means there is almost no bindings between the views and they
should be easy of exchange or exclude. A multiple number of these subject
objects could be implemented allowing very complex interaction to occur.

4.3.5 Case E - Evolution on communication channels

Case E described in section 3.5, shows the effect evolution have on module using
the communication manager to interact. This shows why it could be beneficial
to use such a system, because adding parameters to the protocol do no effect
modules using an older version of the used protocol.

4.3.6 Case F - Controlling measurement location

Case F described in section 3.6, show how the communication could be used to
control the locations of measurements in a view. This could be a problem in a
dynamic where it not necessarily knows where measurements are coming from.
The case also describes how a tool on the device to configure the measurement
locations in a view, could be helpful to have.

4.3.7 Case G - Auto configuration

Case G described in section 3.7, discuses how the framework could be auto
configure it to load a specific set of software module, based on the connected

4.4 Future development 107

hardware module. The case is based on the concepts described in section 1.4.5.2,
specifically the concepts about Hardware Abstraction and Hardware Detection.

The case main purpose was to map out how the framework will function after
these modules are implemented.

4.4 Future development

As described in the earlier in chapter 1.3.4 the model implemented in this thesis,
is only an evaluation model. This also means the list of future improvements are
relative long. This section however will only show some of the most important
improvements needed if this framework is to be used.

4.4.1 Performance

Several times during the development of the core modules performance have
been mentioned. The framework design has not taken into consideration the
type of hardware platform it should run on. This is because the profile for a
new TCM device is not developed. Once this is known performance must be
tested.

Some of the initiative that could be taken to increase performance could be by
selecting different methods for transmitting data. Also using different methods
for storing and identifying channel and object factories.

4.4.2 User interface

The system that controls the user interfaces should be looked at again. The
reason for this is to streamline the dependencies between the user interface
module and the control system. The way the dependencies are between the user
interface modules and the control system are currently not the most optimal.

4.4.3 Is .NET the best framework?

The framework has been developed to run using .NET Compact Framework
2.0. The framework gives access to a large number of tools that makes software

108 Conclusion

development easy. However there are a few problems when using the .NET
framework. The first problem is access to external hardware. The support for
this in .NET is currently limited to serial ports. This means any other type
of access could be difficult to implement into the application. The framework
itself does also take up space on the disk. Depending on the platform used for
the next generation TCM device this could be a problem. Moving the final
application from one OS to another can also be a problem. The problem is
mostly when trying to move user interface components. If an OS like Linux or
BSD is used, then the mono framework could be used. However this framework
do not support the user interface components. An alternative could be to use
GTK#1 for user interface modules, but license requirements should be explored
before any usage.

4.4.4 Distributed system

As described in the case study in section 3.3, modules that used the communica-
tion system to interact with other modules can be distributed to other devices.
However when the communication system was designed this usage was not a
part of the considerations done. There are a lot of security considerations that
have to be considerer before the framework is used in this matter. The following
list contains descriptions of some of the considerations that are needed.

4.4.4.1 Online/Offline

Then devices are network connected there are a lot of external elements that
can influence the channels used. This means that devices are not always capable
of communication with each other. How modules or the framework should react
when communication to an external device must be considered before usage.
Should data be stored in buffers and if so how much data should be stored.
How should module react when they are starved of data. Can the module
function if not connected.

4.4.4.2 Security

Transmission security must be a required exploration before this is used. How
to ensure data received is valid, encryption of transmitted data. Recognition
of devices is just some of the things to be explored. Allowing devices to be

1A free open source user interface system.

4.4 Future development 109

connected to a network also brings up the question of how to make it resistance
to network worms and other types of attack. This is something that highly relies
on the OS chosen.

4.4.4.3 High-speed synchronous communication

Hardware modules like the SpO2 module sends graph data continuously. For
those graphs to be shown correctly requires synchronous communication and
enough bandwidth for the data to be transferred. Distributing modules like this
over a network is almost impossible since there is no control of it. This means
restrictions on how the system can be distributed must be specified.

4.4.5 Communication system

The designed communication system allows all modules to listen to any channel
on the system. It should be considered if some type of restrictions should be
implemented on this. The reason for this is allowing confidential data to be
transmitted between modules. This protects sensitive personal data, propertary
protocols or restricts access to certain functionality.

4.4.6 Factory system

The factory sphere is used as a global factory system for modules in the frame-
work. Like the communication system all modules have access to the factory
system. Here could access restrictions to certain objects be used to protect the
system from modules accessing certain functionality. Like the communication
system this protects sensitive data and restrict access to some functionality.

4.4.7 Using C#

The framework designed has been implemented using C#. Most of the current
software written to the TCM devices is written in C/C++. This makes it dif-
ficult to directly reuse code. This forces the developers to rethink and rewrite
the code so if fits better into the framework, but it is also much more costly
to do this. Using C# should also depend on the usage of the .NET Compact

110 Conclusion

Framework. If this were not to be used, it would be better to choose an imple-
mentation done in C/C++. Linking unmanaged code to the framework could
solve some of these problems.

4.4.8 Hardware abstraction layer

The hardware abstraction layer (HAL) is one on the concepts in the preliminary
analysis that did not make it into this thesis. Currently the modules have to
communicate directly to an external port. The purpose of the HAL layer is
to separate the software modules from the hardware. This is a part of the
framework that must be designed and implemented if the framework is to be
used. Shielding the software modules from the hardware would make it easier
to reuse the software module in a future system.

Appendix A

CD content and Glossary

A.1 CD content

This appendix describes the content of the supplied CD.

/Viola-print.pdf
This is an eletronic version of the printed thesis.

/Viola-net.pdf
This is an electronic version of the thesis meant for network distribution.

/Source/Prototypes
This directory contains prototype solutions created during the challange
analysis and the design.

/Source/Viola
This directory contains unit test modules created for implemented mod-
ules.

/Source/ViolaV2
This directory containes the implemented software modules.

/Papers
This directory containes electronic versions of some of the papers used.

112 CD content and Glossary

/PlatformFiles
This directory contains some of the custom files required by the created
CE image.

/Misc
This directory contains drawing, documents and the latex version to this
thesis.

A.2 Glossery

GUID Global Unique Identifier. A 128 bit value
BPM Heartbeats per minutes
CO2 Carbon dioxide blood gas parameter
FDA Federal Drug Administration
HAL Hardware Abstraction Layer
Hardware Module Hardware used to perform some type of measurement
O2 Oxygen blood gas parameter
Object Class or software module
Pulse Heartbeats per minutes or Beats per munites
RqId Requirement ID
Software Module A number of objects describing a specific functionality
SpO2 Oxygen saturation parameter measured in %
TCM Transcutaneous monitoring
US United States Of America
Neonatal Child born to early
Runtime The application is currently executed
Non-specific object Object have no type
HWD Hardware Discovery

Appendix B

Platform and Visual Studio

2005

The purpose of this chapter is to describe how connectivity is established be-
tween Visual Studio 2005 and a CE device over an Ethernet channel. The de-
scription below is based on information found in the help files of Visual Studio
2005 and the Platform Builder and the compressed into this small document.

As standard Visual Studio 2005 use Active Sync to communicate with CE de-
vices. Active Sync is designed for CE client device, communicating over USB
or a serial connection. The device this project uses does not have USB client
compatibility and serial communication is not practical to use. The device does
however have an Ethernet port suitable for downloading and debugging appli-
cation, but using this requires a workaround of the Active Sync connection.

B.1 Platform requirements

When designing the platform, one library component must be included into
the project. This is component is ”CAB File Installer/Uninstaller”. This com-
ponent allows the installation of a CAB file generated by Visual Studio to be
installed on the CE device.

114 Platform and Visual Studio 2005

Additionally the following files have to be added manually:

• ”clientshutdown.exe”

• ”CMAccept.exe”

• ”ConmanClient2.exe”

• ”eDbgTL.dll”

• ”TcpConnectionA.dll”

These files can on a standard installation of the Visual Studio 2005 be found at:
”C:\Program Files\Common Files\Microsoft Shared\CoreCon\1.0\Target\wce400\x86”

The reason these files have to be added manually is because we do not use active
sync. Normally Visual Studio 2005 will download these files and activate these
files if missing from the device. But since we du not use Active Sync, Visual
Studio 2005 can’t see the CE device and download them.

Once the CE device is active we have to get the device current IP address.
This can be done by typing ”s ipconfig /d” in the Platform Builders command
console. ”s” specifies you want to start the application ”ipconfig” and the ”/d”
redirects the application output to the Platform Builders command console.

B.2 Visual Studio

To establish communication with the CE device, we need to know the device
IP address. Once the address is known we can in Visual Studio configure the
target device.

1. Enter ”Tools” → ”Options”.

2. Open ”Device Tools” and select ”Devices”.

3. Select ”Windows CE 5.0 Device” and press ”Properties” button.

4. Select ”Use specific IP address” and enter the CE device current IP ad-
dress.

5. Start ”\Windows\ConmanClient2.exe” on the platform.

6. Start ”\Windows\CMAccept.exe”on the platform.

B.2 Visual Studio 115

Know you have 3 minutes to deploy an application to the CE device. Once an
application is deployed within 3 minutes, you can continue to deploy application
indefinitely.

116 Platform and Visual Studio 2005

Appendix C

Module GUID ID’s

This chapter have a complete list of guid values used to identify modules.

Module class Guid ID
CKeyManager {49BF16AD-8CC5-43b2-9E00-8F2F199AF27B}
CModuleManager {ED4C44CA-0DD0-4854-83D4-B5C6CA26E925}
CViewManager {E05E0A5E-6B0C-49b8-800F-C65C1E448E62}
CConfigManager {9DC957E3-E027-44d0-9005-2EC00F12A0C7}
CCommunicationCore {E691CA8A-5C4E-4b8b-BAA8-B80E617CF133}

Table C.1: Module GUID ID’s

118 Module GUID ID’s

Appendix D

Thesis description

This chapter containes the danish description of the thesis, used to getit ap-
proved.

D.1 Projekt oplæg til modulær TCM applika-

tion V 0.4

Projekt location
Radiometer Danmark
Åkandevej 21
DK-2700 Brønshøj
Afd. 422 TCM Udvikling

Radiometer vejleder
Jørgen Belfalas
Tlf. 38273340
Email: jeb@radiometer.dk

Vejleder p̊a DTU
Bjarne Poulsen

120 Thesis description

Tlf. 45255274
Email bjp@imm.dtu.dk

Projekt info
Projekt start 10/1-06
Projekt slut 31/07-06
Point 40

D.1.1 Problem stilling

P̊a nuværende tidspunkt, har man 2 forskellige TCM applikationer, som man
benytter alt efter hvilken hardware konfiguration man benytter. Ud over at ap-
plikationerne afhænger af hvilken hardware man benytter, s̊a er der ogs̊a relativ
stor forskel i opbygningen af applikationerne, hvilket gør at man ikke direkte
kan flytte funktionalitet mellem applikationerne hvis man ønsker dette. Dette
kunne f.eks. være at man i TCM400 ønsker et interface til Vuelink som findes
i TCM4/40. Eller omvendt man ønsker at benytte TCM400 mere avanceret
datamaneger i TCM4/40.

Et andet problem med at have 2 applikationer, er den løbende vedligeholdelse.
Da disse applikationer ikke er bygget ens op, betyder det, at man skal omstille
sig fra et design til et andet. Dette er noget der tager tid fra udvikling processen,
som kunne bruges bedre.

D.1.2 Løsnings forslag og m̊al

Dette ønskes løst ved at designe et state of the art framework som kan benytte
komponenter fra et komponent bibliotek. Disse komponeter kunne være følgende

• Måleenhed som fortager måling

• En datamaneger komponent, som fortager data opsamling

• En kommunikations komponent som fortager kommunikation med eksterne
enheder

• En IU komponent

D.1 Projekt oplæg til modulær TCM applikation V 0.4 121

For at kunne lave et s̊adan bibliotek, s̊a må det kræves, at disse komponenter
skal have en meget skarp grænseflade. En s̊adan grænseflade, vil ogs̊a give den
fordel, at man kan fortage unit test p̊a hver komponent.

Målet med at have dette et bibliotek med komponenter, er at man via det de-
signet framework kan modulært stykke en applikation man ønsker at benytte,
sammen. Dette kunne være en fuld applikation, som kan alt, en h̊andholdt app-
likation, som kun benytter en elektrode komponent og et simpelt IU komponent.
Eller en målestation som ikke indeholder en IU, men man kan kommunikere via
en webserver i stedet.

Målet med frameworket, er at kunne loade moduler runtime, n̊ar der er brug
for dem

D.1.3 Problem stillinger

Det er dog ikke uden problemer, at lave et bibliotek med komponenter. Følgende
problemer skal der tages stilling til.

• Hvordan skal data flyde rundt i et komponent design

• Hvordan skal signalering af events fungerer

• Hvordan skal versions styring af moduler styres

• Hvordan skal moduler opdateres

• Hvordan sikres modulers integritet

• Skal tredje parts leverandører kunne levere komponenter (Hvis man må,
hvad skal der s̊a være af krav til et s̊adant modul)

• Hvordan sikres korrekt modul type (f.eks. hvis man har flere forskellige
IU komponenter, hvordan ved man s̊a, at det er den korrekte type)

• Hvad skal der være af krav til komponent konfigurering

• Hvordan en test strategi skal udformes

• Hvordan h̊andteres sprogvarianter

122 Thesis description

D.1.4 Ønsker og krav

Projektet ønskes udført som en .NET v2.0 løsning, hvor der benyttes C# og
.NET compact framework. Som krav stilles det, at design af komponenter i det
omfang det er relevant, benytter design patterns.

Appendix E

Protocols

E.1 Base document

This document is the foundation of all the documents and contains information
about the system and protocol type.

<Base>

<DeviceType></DeviceType>

<DeviceSerial></DeviceSerial>

<ProtocolID></ ProtocolID>

<DeviceIP></DeviceIP>

<PackageLifeCount><PackageLifeCount>

<ReceiveIP></ReceiveIP>

<ReceiveChannel></ReceiveChannel>

...

Insert sub document here

...

</Base>

DeviceType
Describes the configured device identification. On the current system this

124 Protocols

means if the device is a TCM4, TCM40 or TCM400. It could also be the
name of the configuration.

DeviceSerial
This is the serial number of the device. Each device has a unique serial
number used to identify the device. This ID can be used if data have to be
collected from more than one source. This enables back tracing of data.

ProtocolID
This attribute is used to identify the contents of the protocol. The table
below shows identified protocol ID’s

Protocol Id Description
Measurement This is the protocol used to transfer information about

a measurement
KeyFetch This is used to request at key from the key manager system
KeyData Used to return key data
DataFetch This is used to request data from a storage system
Data Used to return data from storage system

DeviceIP
This is the IP address of the device. This is only used in distributed
systems.

PackageLifeCount
This is a number that specifies the number of times a package may parse
a communication manager. The package is not retransmitted if Pack-
ageLifeCount <= 0. This attribute is to prevent data packages from
being transmitted for an eternity if there is a loop in the communication
system. Data packages dropped because of a low life count must be stored
in frameworks log system

ReceiveIP
Optional attribute specifying a remote device to receive the package

ReceiveChannel
Optional attribute specifying receiving channel on remote system.

E.2 Measurement

This is a sub document inserted into the base document.

<Measurement>

E.2 Measurement 125

<ParameterName></ParameterName>

<ParameterUnit><ParameterUnit>

<Value></Value>

<HardwareID></HardwareID>

<LowerAlarmLimit></LowerAlarmLimit>

<UpperAlarmLimit></UpperAlarmLimit>

<Alarm></Alarm>

<Timestamp></Timestamp>

<SampleID></SampleID>

</Measurement>

ParameterName
This is used to name the measurements type. Current valid names are O2,
CO2, SpO2 and Pulse.

ParameterUnit
This describes the unit measurements are represented in. Current valid
units are mmHg for O2 and CO2. SpO2 are measured in % and pulse is
in beats pre minutes.

Value
This is the value of the measurements

HardwareID
This is an identification field used to uniquely identify the hardware mod-
ule. This could be the serial number of the measurements device. Cur-
rently it is not possible to get the serial number of all measurement devices.
For that reason this ID is currently optional. The reason for putting this
attribute into the protocol is the desire to be able to track a measurement
to its source.

LowerAlarmLimit
This is a value describing the lowest value allowed before an alarm is
activated. Alarm is activated the value < LowerAlarmLimit

UpperAlarmLimit
This is a value describibg the higest allowed value before an alarm is
activated. Alarm is activated when the value > UpperAlarmLimit.

Alarm
This is an optional field used to signal if an alarm is active. Valid values
for this attribute are None, Low and High. This can also be derived using
the given alarm limit.

Timestamp
This field must contain the time when the measurements were taken. For-
mat for the timestamp is YYYY-MM-DD hh:mm:ss.

126 Protocols

SampleID
This attribute is to accommodate .NET compact frameworks ”Date” ob-
ject. Depending on the underling system the .NET framework does not
guaranty a time resolution of more than one second. If more than one
measurement is to be made during one second then they will get the same
timestamp at we can use the sample ID to separate the measurements.
The sample ID must be unique within one second. Every new sample ID
must be incremented by the value 1.

E.3 Key fetch

This protocol is used to request encryption key data from a key manager.

<KeyFetch>

<KeyID></KeyID>

<ReturnPath></ReturnPath>

</KeyFetch>

KeyID
This is the ID of the key requested

ReturnPath
This is the GUID value of the module performing the request or channel
name

E.4 KeyData

This protocol is used to distribute key data in the system

<KeyData>

<KeyType></KeyType>

<PrivateKey></PrivateKey>

<KeyDataFormat></KeyDataFormat>

<Key></Key>

<KeyOwner></KeyOwner>

</KeyData>

E.5 Data storage fetch 127

KeyType
This is used to specify what type of key is used. Currently only RSA is
supported

PrivateKey
Specify if the key contains private key data. Current values are ”False”
for public RSA keys and ”True” for private RSA keys

KeyDataFormat
This described the keys data format. Currently only SNK format is sup-
ported.

Key
This attribute contains the key data. Key data comes in the comma
separated hex numbers like this ”AA,BB,10,11,12,FF”

KeyOwner
This is an optional attribute containing information about the key owner.

E.5 Data storage fetch

This protocol is used to request all measurement data for a specific time period
using a specified time interval.

<DataFetch>

<Starttime></Starttime>

<Stoptime></Stoptime>

<TimeInteval></TimeInteval>

<SessionID></SessionID>

<ReturnPath></ReturnPath>

</DataFetch>

Starttime
This attribute defines the start time for when data is to be retrieved.
The time format is ”YYYY-MM-DD hh:mm:ss”. Data returned is where
Starttime = Timestamp

Stoptime
This attribute defines the stop time for when data is to be received. The
time format is ”YYYY-MM-DD hh:mm:ss”. Data returned is where Stop-
time = Timestamp

128 Protocols

TimeInteval
This attribute is used to describe the number of seconds returned mea-
surement values should be interleaved with.

SessionID
This is an optional attribute than can be used to specify a specific session
in the storage system. This should only be used if the storage system
stores data in sessions.

ReturnPath This is the GUID value of the module performing the request or
a channel name

E.6 Data

This protocol is used to send series of measurement data

<Data>

<SampleCount>< /SampleCount>

<Measurement ID=’’’’>

... Measurment block ...

<Measurement>

</Data>

SampleCount
This attribute is used to describe how many samples are returned.

Measurement
This is a measurement sub document used to hold measurement data. The
block has been given an ID to uniquely identify each sample. Contents of
the measurement block can be seen under E.2 page 124. Data returned are
sorted descending using ”Timestamp” as primary sort and ”SampleID” as
secondary sort

E.7 Return path

When communicating between modules it is sometime necessary to give a return
path where a response can be directed. For this reason one attribute is added
to the base document and one the request documents.

E.7 Return path 129

In the base document there is an attribute called ”DeviceIP”. This attribute
contains the devices IP address and is used if a request is directed to another
device.

In the request documents there is an attribute called ”ReturnPath”. This at-
tribute contains a channel where the requests should be directed.

The combination of IP and channel name makes is possible to send data to
another device. The base document contains two optional attributes used to
specify a remote receiver these are ”ReceiveIP” and ”ReceiveChannel”. Using
the device IP and return path from the request document we can initialize this
two attributes a send the requested data back.

130 Protocols

Appendix F

Thread memory leak test

The communication system creates a new thread every time an asynchronous call
is made. Once a thread is created and started all references to it are thrown away
by the communication system and the thread is left to itself. This method raised
some questions about the garbage collectors ability to cleanup dead threads. For
this reason I have made a small test that creates and starts 1000 thread at throws
them away once started. I then monitor the memory usage to see if it remains
stable over several runs. Figure F.1 shows a log created of the memory usage
during the test. The yellow lines split the log into 4 sections. Each yellow line
represents a new run where I creates and starts 1000 threads. The first section
leading up to the first yellow line represents the first execution of the run. After
this run I get a baseline of a 35% memory usage of the system. Each subsequent
run of the test returns to the same baseline at 35%. From this I can conclude
the garbage collector can cleanup thread correctly.

The test follows the procedure below.

1. Start garbage collection to remove all unwanted object from memory

2. Print out memory usage

3. Create and start 1000 threads and throw away the handles

4. Sleep to allow the threads to be executed

132 Thread memory leak test

Memory thread leak test

0

5

10

15

20

25

30

35

40

45

50

1 20 39 58 77 96 11
5

13
4

15
3

17
2

19
1

21
0

22
9

24
8

26
7

28
6

30
5

32
4

34
3

36
2

Sample

M
em

o
ry

 u
sa

g
e

in
 %

Memory usage
Memory usage at start
New loop

Figure F.1: Memory usage during leak test

5. Start garbage collection

6. Print out memory usage

7. Wait for restart or quit command

The functions called in the threads are just empty functions. This is to avoid too
much cluttering of the memory that might obscure the results. During the test
the memory usage was sampled every second and assigned a sample number.
All measurement are supplied the CD.

Appendix G

Test protocols

G.1 Template for test protocol

Test name
Test case 1 to x

Test type
Level 1, level 2, Non-unit test or integration test.

Name of interface or object

Test steps

Step RqId Tested functionality Expected result Success/Failed
1
...
X

Results of failed tests

134 Test protocols

Step Actual result
X

G.2 Test protocol for Communication Manager

Test name
Test of ”ICommunicationManager” interface

Test type
Level 1

Name of interface or object
ICommunicationManager

Test steps

Step RqId Tested functionality Expected result Success/Failed

1 COM1 Create ”ChannelA” -
2 COM4 Verify ”ChannelA” exists Channel exist
3 COM1 Create ”ChannelB” -
4 COM4 Verify ”ChannelB” exists Channel exits
5 COM2 Add ”Listener1” to -

”ChannelA”
6 COM2 Add ”Listener2” to -

”ChannelB”
7 COM5 Send data to ”ChannelA” -
8 Verify ”Listener1” have Data was

received data received
9 Verify ”Listener2” have No was data

not received data reveived
10 COM5 Send data to ”ChannelB” -
11 Verify ”Listener1” have No data

not received data received
12 Verify ”Listener2” have Data Reveived

received data
13 COM2 Add ”Listener3” to -

”ChannelA”
14 COM5 Send data to ”ChannelA” -
15 Verify ”Listener1” have Data was

received data received

Continued on next page

G.3 Test protocol for Factory sphere 135

Step RqId Tested functionality Expected result Success/Failed
16 Verify ”Listener2” have No was data

not received data received
17 Verify ”Listener3” have Data was

received data Received
18 COM3 Remove ”Listener2” from Error received

”ChannelA”
19 COM3 Remove ”Listener1” from -

”ChannelA”
20 COM5 Send data to ”ChannelA” -
21 Verify ”Listener1” have No was data

not received data received
22 Verify ”Listener2” have No was data

not received data received
23 Verify ”Listener3” have Data was

received data received
24 COM8 Add ”SleepListener” to -

”ChannelA” as asynchronous
25 COM7 Add ”SleepListener” to -

”ChannelB” as synchronous
26 COM5 Send data to ”ChannelA” -
27 Verify ”SleepListener” is Listener is

executed after send is executed after
completed send is completed

28 COM5 Send data to ”ChannelB” -
29 Verify ”SleepListener” is Listener is

executed before send is executed before
completed send is completed

Results of failed tests
No errors

G.3 Test protocol for Factory sphere

Test name
Test of ”IFactorySphere” interface

Test type
Level 1

136 Test protocols

Name of interface or object
IFactorySphere

Test steps

Step RqId Tested functionality Expected result Success/Failed

1 Create instance of -
”CFactorySphere” object

2 FAC8 Verify instance have ”IFactorySphere”
”IFactorySphere” is implemented
implemented

3 FAC1 Register ”TestFactory” -
using ”TestFactory” as Id

4 FAC2 Get instance using Instance returned
”TestFactory” as Id

5 Verify returned instance is Instance is of
”TestObject” correct type

6 FAC1 Register ”TestObject” -
using the generic factory
object ”GTest” as Id

7 FAC2 Get instance using ”GTest” Instance returned
as Id

8 Verify returned instance is Instance is of
”TestObject” correct type

9 Save instance reference as -
”Test1”

10 FAC2 Get instance using ”GTest” Instance returned
as Id

11 Verify returned instance is Instance is of
”TestObject” correct type

12 FAC10 Verify returned instance The instances are
reference is different from different
”Test1” reference

13 FAC1 Register ”TestObject” -
using the generic singleton
object ”STest” as Id

14 FAC2 Get instance using ”STest” Instance returned
as Id

15 Verify returned instance is Instance is of
”TestObject” correct type

16 Save instance reference as -
”Test1”

Continued on next page

G.3 Test protocol for Factory sphere 137

Step RqId Tested functionality Expected result Success/Failed
17 FAC2 Get instance using ”STest” Instance returned

as Id
18 Verify returned instance is Instance is of

”TestObject” correct type
19 FAC11 Verify returned instance The instances have

reference is the same as the same reference
”Test1” reference

20 Init generic session object -
with the limit of 3 objects

21 FAC1 Register ”TestObject” -
using the generic session
object ”SesTest” as Id

22 FAC2 Get 3 instances using 3 instances
”SesTest” as Id returned

23 Verify each returned Instances is of
instance is ”TestObject” correct type

24 FAC12 Try to get new instance Error thrown
using ”SesTest” as Id

25 FAC3 Release instance using the -
first returned reference

26 FAC2 Get new instance using Instance returned
”SesTest” as Id

27 Verify returned instance is Instance is of
”TestObject” correct type

Results of failed tests
No errors

138 Test protocols

Appendix H

Time schedules

1
4
0

T
im

e
sc

h
e
d
u
le

s
H.1 Thesis time schedule for introduction

Weeks
Project titel 2 3 4 5 6 7 8 9 10 11 12 - 20 21 - 29 30
Introduction/Startup
Preliminary analysis
Challenges
Framework design
Case study
Correcting thesis documentation

H.1 Thesis time schedule for introduction 141

Introduction/Startup
This phase is used to get an overview of the thesis and to create a schedule
for the first part of thesis. Description of the thesis is generated.

Preliminary analysis
The preliminary analysis is used to get an overview of the methods to
use, find relevant documentation, tools and brainstorm for ideas to finally
generated concepts.

Risk Analysis
This part is used to analyze and find solutions to risks identified during
the preliminary analysis

Framework design
8 weeks are set aside to for creating a framework design. A schedule for
the framework design will first be created during the startup process of
the design.

Case study
8 weeks have been set aside to make case studies of the framework. A
schedule for this will be made during the startup process of the case stud-
ies.

Correcting thesis documentation
The last week of the thesis will be used to create and correct the final
documentation for this thesis. Documentation for the individual parts of
the thesis should be made during each process.

H.1.1 Actual time used for introduction

Introduction/Startup started week 2 9/1 - ended week 2 14/1
Completed introduction chapters and stated working on concept ideas

Preliminary analysis started week 3 16/1 - ended week 9 3/3
Concept generation
This was already stated during the approval period of the thesis. In the analysis
phase the main purpose of the concept generation is to select the most useful
ideas.

Technology/Tools/Methods
Most of the methods and tools were given in the thesis descriptions. Most of the
work done in these sections was to find alternative tools to use. The sections
was completed 30/1

142 Time schedules

Analysis of current theories
Most of the work done in the preliminary analysis is in this section. It was
more time consuming to find relevant papers and books than expected. The
reason for this is the limited number of relevant papers for this area of software
development. This section was concluded 3/3.

Challenges started week 10 6/3 - ended week 12 23/3
This section describes the challenges that were solved before the main framework
design started.

Test strategy
Base on the papers describing unit testing a test strategy was formulated. This
was completed 24/3

Overall requirements and summery
These sections was completed 25/3

H.1.2 Summery

The introduction chapter took 6 days more than expected. The main reasons
was the search for relevant papers and books took longer than expected. Some of
the time lost when searching for papers was gained when solving the challenges.
Most of these were easier than expected.

H
.2

S
c
h
e
d
u
le

fo
r

c
o
re

a
rc

h
ite

c
tu

re
1
4
3

H.2 Schedule for core architecture

Weeks
Project 2-11 12 13 14 15 16 17 18 19 20 21-29 30
Introduction
Modules
Factory sphere
Module Communication
Configuration manager
Controlling user interface
Case study
Correcting thesis documentation

144 Time schedules

Modules
This is used to describe how individual modules should be designed.

Factory sphere
This time is to be used to develop a method for sharing objects between
framework modules and external modules.

Module Communication
This time is used to develop a method for communication between frame-
work modules and external modules.

Configuration manager
This time is used to develop a method for controlling configuration files

Controlling user interface
This time is used to develop a method for controlling user interfaces

H.2.1 Actual time used for designing the core architecture

Modules started week 13 27/3 - ended week 13 30/3
The time was used for designing a basic module to use in the framework. One
day was gained

Factory sphere started week 13 31/3 - ended week 16 21/4
This module was designed in the limited time allowed.

Module Communication started week 17 24/4- ended week 19 10/5
This module has taken 3 days longer to implement than expected. The main
reason for this, it was more difficult to implement the solution than expected

Configuration Manager started week 19 11/5 - ended week 20 17/5
The design and implementation of this module took 1 day less than expected.
The reason for this is the implementation was easy.

Controlling user interfaces started week 20 18/5 - ended week 23 9/2
Reducing the application controller pattern and implementing is was more dif-
ficult than anticipated. For this reason this module took 5 days more to imple-
ment than expected.

H.3 Schedule for case study 145

H.2.2 Summery

The phase of developing and implementing modules have taken 2 weeks longer
than expected. This is mainly because of difficulties regarding implementation
of the designed modules.

H.3 Schedule for case study

Before a time schedule can be made, it is necessary to identify the cases that
are to be looked at. Each case should be given a case Id.

H.3.1 Defined cases

Case A High speed communication
Purpose of this case is to explore how performance effective communication
can be done using the framework.

Case B Configuration security
Purpose of this case is to explore how license relevant information’s can
be stored in configuration files without being altered.

Case C Distributed system
Purpose of this case is to explore how the system can be split up into
several smaller devices.

Case D Interaction between user interfaces
Purpose of this case is to explore how interaction between user interface
modules can be performed.

Case E Evolution on communication channels
Purpose of this case is to explore what happens to the communication
between modules when the protocol used is evolved.

Case F Controlling measurement location
The purpose of this case is to explore how to ensure measurement modules
are displayed at the correct location every time they are displayed.

146 Time schedules

H.3.2 What to be done during case study

During a case study a small implementation is created to verify the described
solution.

H
.3

S
c
h
e
d
u
le

fo
r

c
a
se

stu
d
y

1
4
7

H.3.3 Schedule

Weeks
Project 2-11 12-20 21 22 23 24 25 26 27 28 29 30
Introduction
Core architecture
Case A
Case B
Case C
Case D
Case E
Case F
Case G
Thesis documentation
Correcting thesis documentation

148 Time schedules

H.3.4 Actual time used for Case studies

Case A started week 24 12/6 - ended week 15 15/6
This case have been reduced to 4 days to catch up the delays

Case B started week 24 16/6 - ended week 25 21/6
Case C started week 25 22/6 - ended week 26 27/6
Case D started week 26 28/6 - ended week 27 3/7
Case E started week 27 4/7 - ended week 27 6/7
Case F started week 27 7/7 - ended week 28 10/7
Case G started week 28 11/7 - ended week 28 13/7

Thesis documentation and corrections started week 28 14/7 - ended
week 31 7/8
This part have mainly been used to collect all the written material and proof-
reading of the thesis. Proofreading started 24/7.

H.3.5 Summery

Due to the delays of the previously part of the thesis, the case studies had to
be reduced in order to complete them in time.

One week was added to the thesis period due to supervisor’s vacation plans.
Delivery have been moved from 31/7 to 7/8

Appendix I

Challenges

Purpose of this chapter is to give an overview of problems that needs to be
addressed before the design of the application can commence. Each identified
challenge will be given an ID for later reference.

I.1 Platform image

Challenge 1

This project requires a Windows CE 5.0 image supporting Compact Framework
2.0 running on the TCM platform. The platform builder contains a limited
amount of hardware drivers that can make it difficult to work on the TCM
platform. Alternative platforms could be a standard PC image or CE emulator
image.

150 Challenges

I.1.1 Device image

Before starting configuration of a Windows CE 5.0 image a copy of the current
image used on the TCM was analyzed. This was done to have a list of drivers
needed for getting the image to work on the TCM device. Using the driver list
as a reference several images was created and tested. None of the images tested
worked. It was discovered that the driver used to control the graphic card on
the device was incompatible with the hardware. This was already known on
the old platform, but a small modification to the graphic driver made it work.
This modification did however not work on the new graphic driver. It was then
decided to find another solution.

I.1.2 PC Image

After 2 configuration attempts a working CEPC image was ready.

Using a CEPC image generated a problem. When calibrating O2 and CO2 sen-
sors the current barometer pressure is needed in order to get a precise calibra-
tion. Since there is no barometer in a normal PC this value have to be hardcode
or typed into the system meaning a precise calibration cannot be made.

During analysis of challenge 3 it was discovered that on a CEPC image COM1
is used to send out debugging information for the image. This was a problem
since the only available PC’s only had one COM port. Several attempts to
disable this feature failed and it was decided to use an emulator image instead.
Later it was discovered the reason why the attempts to disable the debugging
feature failed. The reason for this is a bug in the boot loader used to initialize
the image. The bug and a solution are described at:
http://blogs.msdn.com/mikehall/archive/2005/03/14/395317.aspx
This solution has not been tested since I had a working image for the emulator.

I.1.3 Emulator image

The emulator image was up and running in the fist attempt. Using the emulator
give the same problem as using an image on the PC. There is no access to
barometer pressure. It also adds the problem of performance testing. Running
performance test in the emulator is almost impossible since the system is at the
mercy of the host PC and what it is doing at the moment. This means a piece of
code can be executed in 1ms the first time executed. The second time it could

I.2 Connectivity between Visual Studio and CE 151

take 10 second because the PC is scanning for viruses.

I.1.4 Summery

The emulator image has been chosen as a usable solution. The problem of the
barometer pressure can be ignored since this software is not for medical usage.
Imprecise value can still be used to demonstrate the basic functionality.

The performance issues using the emulator can largely be ignored since it is
not currently known what hardware platform that will be used in the future.
However areas where performance could be an issue should be noted for later
investigation.

I.2 Connectivity between Visual Studio and CE

Challenge 2

To run and debug applications on the CE platform requires some form for con-
nection between the CE platform and Visual studio.

This challenge could have a high impact on the implemetation schedule since
it is an essential part for the success of this project. Searching the help files in
Visual Studio 2005, Platform Builder and google search has solved this problem.
A small guide for how to get connectivity can be found in Appendix B.

I.2.1 Summery

It seems Visual Studio is mainly designed to create applications for small hand-
held devices when it comes to compact framework. Support for devices that do
not support Active Sync1 is not directly available. The guide created explains
the requirements needed in the CE image and setup procedure required to es-
tablish communication. Support for this type of development is better when
using platform builder 4.2 and embedded visual studio 4.0.

1Active Sync is tool used to establish a connection between a PC and a handheld CE
device.

152 Challenges

I.3 Serial connection

Challenge 3

The current hardware modules require a serial connection. In Compact Frame-
work 2.0 serial support has been included, but how to use and what limitations
the implemented objects have, is currently not known.

The software connection to communicate with modules is an essential part of
the project, but the project can be complete using simulated values instead of
real measurements from a hardware module.

After several attempts to get serial communication on the CEPC platform, it
was discovered the CEPC image was unable to initialize the computers serial
port.

The solution to this problem was to make an emulator image and through this
communication with serial ports is possible.

The emulators mapping is not entirely logical the emulators COM1 is reserved
for serial debugging and cannot be seen from the CE image running in the
emulator. The emulators COM2 port is from the CE image seen as COM1.
This port can in the emulator’s configuration be mapped to a hardware COM
port.

Using the serial class in .NET is relative simple.

I.3.1 Summery

Once the image configuration problems were solved communication was imme-
diately available. The serial support in Compact Framwork 2.0 works without
any problems.

I.4 Event handling

Challenge 4

I.5 Software module integrity 153

.NET has several ways of event handling. These are message queues, delegates
and events (Extended version of delegate.). Before designing the application it
is needed to know strength and weakness of each event type.

The application will require some type of event handling but how this is done
is currently not important and the method should be selected during design of
event system.

The message queue system is a new addition to Compact Framework 2.0 and
it allows global message queues. This enables cross application communication
on the same system and over a network if necessary. It can however be difficult
to multicast an event over a message queue since the queue system is designed
for multiple senders and one receiver.

The event class is an extended version of a delegate. Both classes contains a list
of listener functions that are executed when the event or delegate is invoked.
The main difference between events and delegates are, events can be declared in
interfaces and there is a restriction on who is allowed to invoke the event. Only
the object that owns the event is allowed to invoke it.

Currently the focus of the event system should be on event or delegates. The
functionality in the message queue system seems to be more complex than
needed.

It should be noted that events and delegates in Compact Framework 2.0 do not
support asynchronies calls.

I.4.1 Summery

After implementing prototypes to test the different events methods, they showed
the methods are easy to use. Event methods should therefore not be considered
as a problem area anymore.

I.5 Software module integrity

Challenge 5

The design is supposed to be modular, with interchangeable modules. Before

154 Challenges

initializing a module a check of the module must be performed to ensure it has
not been corrupted.

The chances of the disk corrupts a module is low. The current system uses
industrial grade flash disks that can handle a large amount write operations
before damage occurs. Software modules will properly only be update once or
twice per year, meaning the probability for modules being damaged by a corrupt
disk is relative small. If however a damaged module is initialized and used, it
could have serious impact on application performance. A damaged module
could crash the application or give wrong results, causing wrong treatment of a
patient.

Compact Framework 2.0 supports strong named assemblies. Strong named as-
semblies are assemblies that have been signed with a private RSA ref. [10] key
and with the public key embedded into the assembly. The RSA key pair can
be supplied through a simple key pair file or through a Personal Information
Exchange certificate (similar to X.509 certificate ref. [11]). If an assembly is
signed then the compact framework will automatically verify the signature. If
the verification fails then the loading of the software module will be aborted. If
software modules are static linked then all modules have to be signed. Software
modules however do not need to use the same key pair. This gives the possibility
to have different key pairs to different module suppliers. By creating a list of
valid third party public RSA keys and compare these keys to the module key,
then it is possible to control supplier’s modules. This will however require some
form of updating of the key list. Another solution could be that all software
modules have to be signed using the same key. This will require some type
validation procedure from Radiometer. One problem to consider when selecting
a method is that the signing procedure for strong named assemblies is done
during build time.

I.5.1 Summery

It is relative simple to create keys and setup the projects to sign the build
software. This is no longer considered a problem.

I.6 Third party software modules

Challenge 6

I.7 Module hardware interface 155

Software modules supplied by a third party must be verified and approved by
Radiometer before it is used in a TCM device. This is to ensure these software
modules are not malicious or otherwise damaging to the system. The chances
of a third party supplier creates malicious software modules are very low but a
software module with errors in it could course the application to crash or give
bad values. To avoid this there must be a procedure to describe how software
modules are tested and a detailed description of software module interfaces.

A solution for module control is described in challenge 5. A test strategy is
described in section 1.6

I.6.1 Summery

This is not something that will be looked at further in this thesis. This should
only be taken into consideration if the design is to be used commercially.

I.7 Module hardware interface

Challenge 7

Most serial ports on PC use the voltage range -15v to +15v. The measurement
modules for the TCM platform use 0v to 5v. To avoid burning out the hardware
an interface is required.

I.7.1 Summery

This was discovered not to be a problem at all since such an interface is already
available.

I.8 Loading modules Runtime

Challenge 8

156 Challenges

In .NET it is possible to load modules runtime using the reflection package. In
Compact Framework a reduced version the reflection package is implemented.
Some test implementations is required to find out the limits of the Compact
Framework reflection package.

A small test application was created (appendix A.1) to demonstrate reflection
functionality. This application also makes use of strong named DLL files. A
common interface shared among the modules must be designed.

I.8.1 Summery

The test application demonstrated that it is easy to load and execute external
DLL files at runtime. If a DLL file is signed the reflection framework will
automatically check the integrity of the DLL file before loading it.

I.9 String localization

Challenge 9

If the application is to support multiple languages it is necessary to use multiple
resource files containing the applications strings. Since I never have used multi-
ple resource files in a project before, it was necessary to make a small prototype
application demonstrating the principle. This should help avoid any problems
using resource file during the application design.

I.9.1 Naming resource files

The resource system in .NET has standardized the naming scheme for resource
files. Naming resource files in this project have to follow the naming scheme
”Module name.LanguageID.resx”

According the resource documentation language ID has to follow ISO 639-1 or
ISO 639-2 if ISO 639-1 (ref. [12]) is not possible.

I.10 Modules version control 157

I.9.2 Summery

The test application created (appendix A.1) demonstrates it is possible to create
an application containing multiple language files. This makes it possible to
switch languages at runtime. The test also showed it can be a little tricky to
get it to work. If the language files are not named correctly or if one of the
resource files is missing the application could fail unexpectedly. This means
great care have to taken to ensure that all the languages exits and they have all
the necessary strings. This will require a lot of manual testing.

I.10 Modules version control

Challenge 10

Assembly files can in its standard attributes contain information about the
company that have created it and version information. In a standard project
these information are located in the ”AssemblyInfo.cs” file.

One assembly could be seen as a software module2. If this method is used then
the standard attributes could be used for version control. This is however not
attractive to use since this could result in a very large number of files.

An alternative could be to se an assembly as a package instead. When seen as
a package the assembly can contain more than one software module. Since each
of the software modules must have the version number it is no longer possible to
use the assembly own attributes. These can only be used to version the package.
One way to solve the problem could be, by giving each module a GUID value.

A GUID value is a 128bit value normally used to uniquely identify objects. This
could be used for version information and also depending on how the value is
split, be used to identify the module type. The reason for selecting a GUID
value is the possibility extending the information about a module by splitting
the value up into smaller parts.

2A software module can contain one or more objects

158 Challenges

I.10.1 Summery

GUID values should be used to identify modules. The way they should be used
must be specified in the design. There is no problem in using GUID values
since the amount of unique values should last the lifetime of the application.
However if the value is split up into sections some limitations of its lifetime
could be introduces. This should be taken into consideration during the design.

Listing the allowed GUID values in a configuration file could be used to control
the dependencies between modules and versions.

I.11 Integrity of configuration files

Challenge 11

This system can have multiple configuration files. This could be files contain-
ing configuration for a specific module, or files containing descriptions of valid
system configurations. To avoid the files becomes corrupted by a bad disk or
external editing these files should be signed. In Compact Framework 2.0 digital
signing is possible by creating a SHA1 hash value and encrypts it with a private
RSA key.

I.11.1 Summery

Securing the integrity is important and if a configuration control system is im-
plemented, the focus should be on the security part.

I.12 Serializing objects

Challenge 12

Serialization of objects can be necessary when saving objects to the disk. This
has low priority in the projects since test stubs can be used in these situations.

I.13 FDA and CE approval 159

Compact Framework 2.0 supports serialization to xml files through the ”XmlSe-
rializer” objects. This object serializes all public attributes in an object to a
stream, as long as these are primitive types. Other types of serialization are cur-
rently not supported by the framework. Since it is not attractive to use public
attributes in objects and it only supports primitive type, it should be considered
to make a custom serialization system. The XML system does however have a
method for serializing a XML document to a text files and also to deserialize a
text file to a XML document.

I.12.1 Summery

Since serialization is not directly available it should be considered to contain all
data that needs to be saved in XML a document. This should make it easier to
load and save data.

I.13 FDA and CE approval

Challenge 13

As a medical device the TCM monitor must get approval from several different
organisations. Some of these are FDA, UL and CE

To approval from these organisations there is a lot of requirement that have to
be fulfilled. To get an overview what these requirements are and if any should
be taken into consideration during the system design, a small meeting with
Radiometer is needed.

After the meeting about approval, it was clear the requirements are mostly
focused on controlling the development process and electrical security. Most of
the requirements are therefore not relevant for this thesis, and can largely be
ignored. The few requirements that could influence this thesis are the following.

Traceability
FDA has a requirement about traceability of product requirements in the
documentation. The purpose of this traceability seen from a software per-
spective is the ability to trace a software requirement from requirement
description to design and to test. Adding a unique ID to a software re-
quirement can do this.

160 Challenges

Test strategy
FDA requires a test strategy, since this is something I need anyway this
requirement will also be taken into consideration.

Language localization
CE approval requires a product to be translated into the native language
in the target marked. In challenge 9 there is a discussion on how string
localization could be done, so this requirements should be taken into con-
sideration during the design process.

I.13.1 Summery

Since the purpose of this project is not to make an application ready for sale,
these requirements will have a low priority.

List of Figures

1.1 Hardware abstraction layer . 10

1.2 Core components . 11

1.3 Module layers . 12

2.1 Preliminary architecture of framework 23

2.2 Module concept . 25

2.3 Module interface design. 28

2.4 Sequence for module initialization. 28

2.5 Architecture overview for factory sphere system. 32

2.6 Abstract factory design . 33

2.7 Prototype design for factory sphere system. 34

2.8 Sequence for register factory object. 34

2.9 Sequence for getting object instance. 35

2.10 Frontend design for factory sphere system. 37

162 LIST OF FIGURES

2.11 Relations between factory sphere objects. 40

2.12 Interfaces for factory sphere system. 40

2.13 Generic factory object. 42

2.14 Interface for object initialization. 42

2.15 Generic singleton pattern implementation. 43

2.16 Generic session pattern implementation. 44

2.17 Generic implementaion implementation. 45

2.18 Class diagram for factory sphere system. 45

2.19 Architecture overview for communication system. 48

2.20 Concept for module communication. 48

2.21 Channel listener interface. 51

2.22 Asynchronous listener objects. 52

2.23 Sequence for register asynchronous listener. 52

2.24 Sequence for executing asynchronous listener. 52

2.25 Concept of channels list. 54

2.26 Interface for communication manager. 55

2.27 Architecture overview for configuration manager 58

2.28 Sequence for signing data. 60

2.29 Sequence for verifying data. 60

2.30 Architecture overview for view manager. 65

2.31 Application Controller pattern sequence. 65

2.32 Sequence for changing views. 67

LIST OF FIGURES 163

2.33 Class interaction for view system. 68

2.34 IViewModule interface. 69

2.35 State diagram for views. 71

3.1 Bridge interface and object. 82

3.2 Connection modules through bridge. 82

3.3 Standard module setup. 87

3.4 Distributed module setup. 88

3.5 Interface and object for observer implementation. 91

3.6 Structure of observer pattern implementation. 91

3.7 Modules linked through a communication channel. 93

3.8 Bridge objects for HAL layer. 97

F.1 Memory usage during leak test 132

164 LIST OF FIGURES

Bibliography

[1] Design Patterns : Elements of Reuseable Object-Oriented Software
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides
ISBN 0-201-633610-2

[2] Patterns Of Enterprice Application Archiecture
Martin Fowler
ISBN 0-321-12742-0

[3] Evolution of Object Systems or How to tackle the Slippage Problem in
object systems
Kai-Uwe M.tzel, Walter Bischofberger
Ubilab, Union Bank of Switzerland
Bahnhofstr. 45, CH-8021 Zurich
e-mail: Kai-Uwe.Maetzel, Walter.Bischofberger@ubs.com

[4] Adaptive Plug-and-Play Components for Evolutionary Software Develop-
ment
Mira Mezini and Karl Lieberherr
College of Computer Science, Northeastern University, Boston, MA 02115-
9959
E-mail: fmira,lieberg@ccs.neu.edu

[5] Composite Design Patterns
Dirk Riehle
Ubilab, Union Bank of Switzerland, Bahnhofstrasse 45, CH-8021 Zurich
Phone: +41-1-234-2702, fax: +41-1-236-4671
E-mail: Dirk.Riehle@ubs.com or riehle@acm.org

166 BIBLIOGRAPHY

[6] A Layered Architecture for Uniform Version Management
Bernhard Westfechtel, Bjùrn P. Munch, and Reidar Conradi, Member,
IEEE

[7] A Simple and Practical Approach to Unit Testing : The JML and JUnit
Way
Yoonsik Cheon and Gary T. Leavens
ECOOP 202 - Object-Oriented Programming
ISBN 3-540-43759-2

[8] Patterns as Signs
James Noble and Robert Biddle
ECOOP 202 - Object-Oriented Programming
ISBN 3-540-43759-2

[9] http://en.wikipedia.org/wiki/Design pattern (computer science)
Wiki containing links to different design pattern sites.

[10] http://en.wikipedia.org/wiki/RSA
Information regarding RSA encryption usage.

[11] http://en.wikipedia.org/wiki/X.509
Description of the X.509 certificate.

[12] http://www.loc.gov/standards/iso639-2/englangn.html
Link to ISO 639 1 and 2.

[13] http://en.wikipedia.org/wiki/SHA
Link to SHA algorithms.

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Thesis vision
	1.2 About Radiometer
	1.3 TCM devices
	1.4 Preliminary analysis
	1.5 Challenges
	1.6 Test strategy
	1.7 Overall requirements and limitations
	1.8 Introduction summery

	2 Analysis of core architecture for future TCM device
	2.1 Preliminary architecture overview
	2.2 Software modules
	2.3 Factory sphere system
	2.4 Module communication
	2.5 Configuration manager
	2.6 Controlling user interface
	2.7 Design summery

	3 Case studys
	3.1 Case A - High speed communication
	3.2 Case B - Configuration security
	3.3 Case C - Distributed system
	3.4 Case D - Interaction between user interfaces
	3.5 Case E - Evolution on communication channels
	3.6 Case F - Controlling measurement location
	3.7 Case G - Auto configuration

	4 Conclusion
	4.1 Overall results
	4.2 Design results
	4.3 Case study conclusion
	4.4 Future development

	A CD content and Glossary
	A.1 CD content
	A.2 Glossery

	B Platform and Visual Studio 2005
	B.1 Platform requirements
	B.2 Visual Studio

	C Module GUID ID's
	D Thesis description
	D.1 Projekt oplæg til modulær TCM applikation V 0.4

	E Protocols
	E.1 Base document
	E.2 Measurement
	E.3 Key fetch
	E.4 KeyData
	E.5 Data storage fetch
	E.6 Data
	E.7 Return path

	F Thread memory leak test
	G Test protocols
	G.1 Template for test protocol
	G.2 Test protocol for Communication Manager
	G.3 Test protocol for Factory sphere

	H Time schedules
	H.1 Thesis time schedule for introduction
	H.2 Schedule for core architecture
	H.3 Schedule for case study

	I Challenges
	I.1 Platform image
	I.2 Connectivity between Visual Studio and CE
	I.3 Serial connection
	I.4 Event handling
	I.5 Software module integrity
	I.6 Third party software modules
	I.7 Module hardware interface
	I.8 Loading modules Runtime
	I.9 String localization
	I.10 Modules version control
	I.11 Integrity of configuration files
	I.12 Serializing objects
	I.13 FDA and CE approval
	List of figures
	Bibliography

