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Summary

This thesis is to study the threat in the key establishment protocols in wireless
networks and to implement a secure key establishment protocol in embedded
system. The confidentiality, integrity and authenticity becomes the major is-
sues in the security of the key establishment protocols. Several existing solutions
have been studied in this work. They use the help from public key cryptogra-
phy or DH method to deal with confidentiality. Message digest provide integrity.
The authenticity is provided by several different ways. Distance bounding au-
thenticator has been focused in this work. The key establishment protocol with
distance bounding is thoroughly studied and analyzed. The implementation of
this protocol is also described. The test shows the protocol implementation in
this work is secure.
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Abbreviation

ADC Analog-Digital Converter
AVR Advanced Virtual RISC
ATPG Automatic Test Pattern Generator
CBC Cipher Block Chaining
CIA Confidentiality, Integrity and Availability
CMOS Complementary Metal-Oxide Semiconductor
CRC Cyclic redundancy check
CTL Computation tree logic
DES Data Encryption Standard
DUT Device Under Test
ECC Error correction code
EMI Electromagnetic interference
FIFO First-in-First-out
FSA Finite State Automaton
FSM Finite State Machine
IR Infrared
ISM Industrial, Scientific and Medical
ISP In-System Programmable
IV Initialization Vector
JTAG Joint Test Action Group (IEEE 1149.1 standard)
LFSRs Linear Feedback Shift Registers
MAC Message Authentication Code
MD Message Digest
MITM Man-In-The-Middle
MSB Most Significant Bit
PWM Pulse Width Modulation
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RSSI Received Signal Strength Indication
UART Universal asynchronous receiver transmitter
US Ultrasound
SECDED Single Error Correction and Double Error Detection
SHA Secure Hash Algorithm
SRD Short Range Device
TCP Transfer Control Protocol
VHDL VHSIC Hardware Description Language
WEP Wireless Equivalent Privacy
WLAN Wireless Local Area Network
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Chapter 1

Introduction

1.1 Background

The benefit from a laptop computer is not only the light weight, but also the
mobility. The user can bring the computer inside a hand bag to participate in a
conference. Without turning off the power, the user can freely move from a lab-
oratory to a library; in the mean while, a session that downloads an important
circuit diagram from another computer can be kept without being disturbed.
The handhold devices such as PDAs, are also equipped with wireless LAN net-
work and Bluetooth. With less powerful processor unit, such device is still
capable of playing movies, read ‘pdf’ files and share information. The mobile
phones with infrared and Bluetooth technology are not new. The user can access
Internet directly from mobile phone without carrying a PC. With Bluetooth,
the user can explore friends in the surroundings, exchange lecture notes and etc,
without use of public wireless network.

Security problems can be found in any networks, especially in peer-to-peer net-
work. In peer-to-peer network, there is no fixed network topology and no se-
curity infrastructure available. Eavesdropping is very easy on a wireless con-
nection, since it is basically a broadcast channel. To protect the information,
the user has to execute a protocol that authenticate each other, and develop a
temporary secret key (as session key) between them. Further communication
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can be protected using encryption with the session key.

Nearly every wireless network technologies all have security measures. In 802.11
wireless local area network (WLAN), the information is protected with WEP
(Wireless Equivalent Privacy). The data packets are encrypted, and check sum
is calculated to detect any modification in the packet. In Bluetooth, two parties
can establish an Initialization Key, which is used further for Link Key genera-
tion.

Using a key to encrypt any information seems to be secure. However this is not
the end of the story.

1.2 Existing problems

1.2.1 Few words about 802.11 and WEP

In 802.11 WLAN, WEP is used to have a security level equivalent to wired
connections. It uses CRC (Cyclic redundancy check) for check summing and
RC4 stream cipher. It first computes the CRC code over a message, and append
at the end of the message to form a plain text. An Initialization Vector (IV)
is then randomly chosen. The IV is 24 bits long. A key stream is computed
using RC4 from IV and a shared key. The key stream is XORed with plain text
message. Unfortunately several flaws have been found in WEP. Since IV is only
24 bits, and it is transmitted with data packet in clear text. An attacker can
observe IV collision (so keystream reuse), to reconstruct the plain text message.
A table (decryption dictionaries) of keystreams corresponding to each IV can be
built by an attacker. By building such table, there won’t be any privacy in the
network. In addition, the attacker can also modify messages. The check sum
provided by CRC-32 is flawed. It has been shown that the malicious modification
made in the message cannot be detected by the check sum. The WEP is found
to be vulnerable. There have been several paper addressing WEP vulnerability,
the above is just a short description, reader may refer to the original full text
in [1].

The public network may not be very secure, the user may establish a secret key
and create a private secure channel themselves. A key establishment protocol
should be executed.
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1.2.2 Key establishment in Bluetooth

In Bluetooth, two devices first establish an Initialization key. This key is used
to secure the communication for Link key generation. The Initialization key is
established briefly in two steps, as shown in figure 1.1([2]).

Figure 1.1: Establishment of Initialization Key in Bluetooth

There are two Bluetooth devices, A and B. Each has a Bluetooth Device Address
(BDA), BDAA and BDAB respectively. Assume they share a secret pin code
PIN . Device B first generates a random number NB and sends to device A.
Both devices compute the initialization key K from function f(·) over PIN ,
BDAA and NB . To verify the key, device B generates a random number R and
sends to device A. Both devices compute using function f(·) over BDAA, R and
the key K, produce verification stream V and V’ respectively. Device A sends
V’ to device B for verification. The key K is accepted only if V = V ′. This
initialization key K will be used to establish a Link key that is used to encrypt
data in further communication. Unfortunately several attacks have been found
in this key establishment protocol.

It can be seen clearly that the initialization key K is a function of PIN , BDAA

and NB . The Bluetooth device address BDAA is known from every device. The
random number NB is transmitted in clear text. The only thing left secret is
the PIN . If the PIN is not available, it is in default set to zero. The PIN can
be entered to each device by user. In case the attacker does not know the PIN ,
he can perform exhaustive search. Since the PIN code is a string that user
may often use, to perform dictionary attack might be sufficient. The attacker
eavesdrops the above communication shown in figure 1.1 and obtains V ′ (which
equals to V ). By guessing a PIN from his dictionary, and computes the key K ′,
runs the verification and produces V ′′. If V ′′ = V , then he successfully obtains
the key K. With the initialization key, the attacker will be able to eavesdrop
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the Link key generation protocol and obtain link key easily. Device A and B
believe they are the only ones who have the secret key, however, the attacker
also obtains a copy. He breaks the key establishment protocol from the very
beginning.

The above short description shows security problems found in Bluetooth key
establishment protocol. The details of this attack as well as several other kind
of attacks in Bluetooth can be found in the original full text in [2].

1.3 Conclusion

In WEP, the IV collision hence keystream reuse and the checksum failure from
using CRC code have demonstrated general problems found in security solutions
that violate Confidentiality, Integrity and Authenticity. The problem found in
Bluetooth further illustrates a specific problem in the key establishment pro-
tocols. To protect the communication in peer-to-peer network, secret key is
necessary. To establish a secret key without any infrastructure as well as ensur-
ing the security of establishment itself is a serious task.

This thesis is to address the secure key establishment in wireless network. In
chapter 2, several key establishment techniques are described. Each technique
has been analyzed from security point of view as well as their feasibility in
embedded computing environment. Chapter 3, the use of distance bounding
protocols in key establishment and other purposes are discussed. The distance
bounding protocol itself can be used as an authenticator. In Chapter 4, a key
establishment protocol based on distance bounding is implemented. Implemen-
tation issues are explained. The implementation is tested and described in
Chapter 5. For the reader that wishes to review some basic concepts about
security may refer to Appendix A.



Chapter 2

Key establishment techniques

This chapter introduces several key establishment techniques. The discussion
starts from establishing a key with public key cryptography. Diffie-Hellman
method is then described, which the two parties do not have any prior knowl-
edge. Several variants that use DH method are described. Each technique is
analyzed from security pointer of view.

2.1 Protection from Public Key Cryptography

A simple key establishment technique is to use public key cryptography [39].
Two parties A and B each hold a public and private key pair, (KA

PUB , KA
PRI)

and (KB
PUB , KB

PRI). The public key is known to every one. To establish a
session key, A could simply choose a key KAB . He encrypts this session key
with his private key KA

PRI , and further encrypted with B’s public key, that is:

EncKB

P UB

(EncKA

P RI

(KAB))

The outer encryption ensures only the one holds private key KB
PRI can see the

message (confidentiality), which must be B himself. Since everyone knows B’s
public key, this message can be sent from any one. So the inner encryption
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ensures that the key KAB is sent only by A (authenticity). By such a way,
party A and B established a session key.

The downside of this scheme is obvious, the public key cryptography is very
computational expensive. This technique is not feasible in many embedded
devices, which have limited resources. In addition, the two communicating
parties should already have public/private key pair, and each others public key
has been authenticated through secure channel.

2.2 Diffie-Hellman

2.2.1 Description

One of the principle ideas to establish a key between two communicating parties
is to use Diffie-Hellman (DH) technique [3]. The idea is to use the fact that
computing some mathematical forward function is easy, whereas computing the
inverse function is hard. For example, computing y = αx is as simple as can
be solved by hand, but computing x = logα y is much more difficult. For two
parties, Alice and Bob, wish to establish a key. Each generates an independent
random number X from the set of integers [1, 2, . . . , q − 1], where q is a prime
number. In addition, each computes Y by:

Y = αX mod q

where α is a fixed primitive element of finite field GF (q). Each party puts his Y
in public, but X must be kept secret. Y can be named ‘public key information’,
since it is a piece of information about the key that is placed in public. So Alice
has XA, YA and Bob has XB and YB . To establish a key between Alice and
Bob, they exchange their public key information, that is: Alice gives Bob YA,
and Bob gives Alice YB . For Alice, the key is derived by:

KAB = Y XA

B mod q (2.1)

=
(

αXB

)XA

mod q (2.2)

For Bob, the key is

KAB = Y XB

A mod q (2.3)

=
(

αXA

)XB

mod q (2.4)

The procedure of establishing a key using DH method can be shown in figure 2.1.
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Figure 2.1: Key establishment - DH

2.2.2 Analysis

The DH method is found vulnerable to Man-In-The-Middle (MITM) attack.
The fundamental problem of the DH method is that the receiver of the public
key information cannot verify the sender. Consider the following scenario: Alice
and Bob are establishing a key via wireless network, where Mallory notices the
progress and interferes with the communication. One special skill Mallory has
is to modify the data packet during transmission. As shown in figure 2.2, the

Figure 2.2: Analysis - DH

public key information Y A is modified by Mallory into Y AM , and Y B is changed
into Y BM . Alice and Bob will proceed with the DH method as usual. But what
Alice derived is:

KAM = Y XA

BM mod q (2.5)

=
(

αXBM

)XA

mod q (2.6)
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and Bob gets:

KBM = Y XB

AM mod q (2.7)

=
(

αXAM

)XB

mod q (2.8)

Now the key derived by Alice KAM is not the same as the one derived by Bob
KBM without even noticed. Even worse, Mallory has both keys. So Bob begins
to send secret message to Alice by the key derived, KBM . Apparently Alice
can not read this message, but Mallory can. Mallory reads the message by key
KBM and make up a new message, encrypted with KAM and sends to Alice.
Now Alice receives a message, and believing it is from Bob. The communication
between Alice and Bob with the DH key established provides no security at all.

2.3 Location limited Pre-Authentication

2.3.1 Basic Pre-authentication

As known from previous analysis, the DH method establishing a key between
two communicating parties is a good start, but not really secure. One of the
solution to such problem is proposed by Balfanz et al. in [4]. The idea is to
use a ‘Location limited channel’ to bootstrap the authentication. They use the
advantage that location limited channel can exchange data physically between
the involving parties without third party intervention. Such channel is best
found to be infrared, due to its directionality.

One basic protocol the author proposed is shown in figure 2.3. The protocol

Figure 2.3: Basic Pre-authentication

assumes two parties A and B use public key cryptography. To establish a secure
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channel, they have to exchange their public key, PKA and PKB respectively.
The protocol starts with Pre-authentication phase. In pre-authentication, two
parties use location limited channel, such as IR, to exchange messages. Instead
of sending the public key, party A hash the key PKA and sends to B. The hash
has to be a secure cryptographic hash function, so what has been transmitted
is the digest of the key. Likewise B sends PKB to A in the same way. The
protocol continues with the public communication channel, e.g. wireless LAN.
The following messages are basically to exchange each public key. Any key
exchange protocol can be used. After public keys are exchanged, each party
computes hash upon key received and matches with the hash received from
pre-authentication.

2.3.2 Analysis of Basic Pre-authentication

The basic pre-authentication protocol uses cryptographic hash function to au-
thenticate public keys exchanged via public access network. If there is any
intruder to interfere with the key, the hash value will detect such unautho-
rized modifications (Integrity). The only question is if the hash received can be
trusted.

Apparently that is what location limited channel used for. For example, using IR
channel, the two communicating parties have to make their transceivers facing
each other within certain distance range. Especially with IR that is directional
sensitive, it makes the user to have physical insurance that it is the devices we
are talking to (Authenticity). Such physical contact makes the MITM attack
impossible.

This protocol uses public cryptosystem, however not every device can be equipped
or afford such algorithm. A modified version of pre-authentication is proposed
and shown in section 2.3.3.

2.3.3 Light weight Pre-authentication

A protocol that supports of one device without public key is proposed. This
protocol used for situation where one party has limited computation resource,
and not feasible for public key cryptography. The other party still uses public
key cryptosystem. The protocol is shown in figure 2.4.

In pre-authentication phase, the party A computes the hash of the public key and
sends to B. Party B prepares a secret that he wishes to inform A, denoted as SB .
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Figure 2.4: Light weight Pre-authentication

Party B hash the secret SB . The above two messages, again exchanged using
location limited channel. The protocol proceed with public wireless channel.
Party A sends the public key PKA to B. B has to verify this key with the hash
found in pre-authentication. If the key is authenticated, he can continue to
submit the secret to A. Since it is a secret, it has to be concealed by encrypting
the secret with PKA. Everyone can receive the encrypted secret on the wireless
network but only the one holding the private key can decrypt the cipher, which is
party A. A decrypts the message, obtains the secret SB . He checks the integrity
and authenticity by computing the hash of the secret and compares with the
hash received in pre-authentication.

2.3.4 Analysis of light weight Pre-authentication

This protocol provides a key establishment with single public key. The other
party could be computational limited. The use of location limited channel pos-
sess of the same property described in the basic pre-authentication protocol in
section 2.3.1. The hash ensures the integrity and location limited channel en-
sures authenticity of the message. Due to the nature of location limited channel,
such as IR, the MITM attack is prevented.

Even though the two protocols proposed by the author prevents the MITM
attack, the downside of the protocol is the usability. Not all devices are equipped
with IR channels; some laptop computers may have, but most don’t. In addition,
due to location limited channel, the users are forced to move closely to the device
to be used, which is not always very convenient.
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2.4 Password Authenticated Key Exchange

2.4.1 Encrypted key exchange (EKE)

Instead of using additional communication channel with limited access range,
a technique using password was proposed. The original protocol was called
‘Encrypted Key Exchange’ (EKE) by Bellovin and Merrit, reviewed in [5]. The
two parties in a conference room wish to establish a key. They first agree
upon a password that is written on a blackboard or on a piece of paper. Then
type the password into the device (PC,PDA etc.). A password with sufficient
length and well chosen combinations can be used. To be user friendly, the
password has to be easily recognized. But such passwords are very few, and
susceptible to dictionary attack. A stronger session key is derived from the
weak password. The procedure that derives the session key from the password
is shown in figure 2.5.

The two parties that wish to derive a strong key are A and B. Before everything
starts, they decide a password P that is shared between A and B, no one else
should know the password. Party A then generates a pair of asymmetric key
EA and DA for encryption and decryption purpose. He also generates a random
string CA as a challenge string, and SA as the key information. At the same
time, party B also generates R as a symmetric key, CB as a challenge string and
SB as the key information. The key establishment process possesses of several
public known functions; they are ENCK(X), the encryption function based on
key K of information X ; DECK(X), the decryption function based on key K
of information X ; h(·) is a one way function and f(SA, SB) key establishment
function based on key information SA and SB .

After generating adequate information, the communication starts. The protocol
starts from party A by sending encrypted version of EA by password P . Upon
reception, party B obtains A’s public key EA by decryption. Party B encrypts
his symmetric key R with EA and further encrypted under password P . Party
A decrypts the message with password P and decryption key DA to obtain R.
The third message in the protocol is by party A sending his key information SA

and a challenge CA. The two items are encrypted under the symmetric key R.
Party B decrypts the message and reveals the information. He also computes
HCA by function h(CA). Then HCA, the challenge CB and key information
SB are encrypted under key R and sent back to party A as response. Party A
decrypts the message and verifies that h(CA) == HCA. If the two matches, it
indicates that party B does know password P so he is able to obtain A’s public
key EA. Party A then computes HCB in the same manner, encrypted with key
R and sends to B. Party B verifies HCB after decryption. If the verification is



12 Key establishment techniques

Figure 2.5: Encrypted key exchange - EKE

successful, then B is convinced that party A also knows the password, and he
can obtain symmetric key R, so that the key information exchanged SA and SB

was secure. The session key K is then generated for both parties by computing
f(SA, SB).

2.4.2 Analysis of EKE

The key establishment was based on information that are kept secret by encryp-
tion with password P in the first two steps, and with key R in the following
three steps. The first two steps make the two parties agree on EA and R. So
the password is the essential key-point to this solution. But is the password
really secure? As the author mentioned, the user friendly password can suffer
from dictionary attack. So even if the attacker is outside the ‘conference room’,
so he cannot see the password inside the room, he still can run through entire
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dictionary and try to find a match. In addition, to obtain the password is prob-
ably not difficult by current technology after all. A camera with telephoto lens,
or wiretapping equipment makes it very easy to ‘hear’ and ‘see’ the password
on the blackboard or paper. The user also needs to type the password into
the device. The keyboard snooping attack is already not new technique to us.
As soon as the password is obtained by the attacker, the MITM attack can be
mounted right away.

When the password is exposed, the eavesdropper can obtain EA. Since A uses
asymmetric cryptosystem, the attacker cannot break the message M2 and obtain
R. Without R, the attacker cannot eavesdrop further communications and
obtain key information. To break the asymmetric cryptosystem is very hard,
so the attacker takes the alternative. When party A sends the message M1,
the attacker eavesdrops the message (obtain EA) and then jams it (to prevent
from being received by B). The attacker sends his message M ′

1 to party B. This
message is given by M ′

1 = ENCP (E′

A) (where E′

A is attackers encryption key).
Before B sends the message M2, the attacker could send his message M ′

2 first.
This message is given by M ′

2 = ENCP (ENCEA
(R′)), where R′ is attacker’s

symmetric key. Then party B sends M2. Since EA 6= E′

A, this message will only
be understood by the attacker. Now the situation is A and the attacker shares
EA and R′, whereas B and the attacker shares E ′

A and R. It forms MITM
attack.

In addition, this method requires asymmetric cryptosystem, which is very com-
putational expensive.

2.4.3 Password authenticated DH key exchange

In paper [5], author also proposed a protocol that uses password authenticated
key exchange together with DH method. The idea is same as described in
section 2.4.1. The procedure is shown in figure 2.6.

The two parties should agree on a password P and type into the device. The
public key information YA and YB should be generated. Private key information
XA and XB should be kept extremely secure. Challenge CA and CB should also
be generated as random. Party A should encrypt YA with password P and
sends to B. Party B decrypts the message by P and obtains YA. He is capable
of deriving the session key K by DH method. Party B should in turn gives A his
public key information YB in the same manner encrypted by P . In addition, he
also encrypts the challenge CB with the session key K. Upon reception, party A
first decrypts the message and gets YB , so that he can derive the session key K.
With session key in hand, then he can decrypt the last part of the message and



14 Key establishment techniques

obtains the challenge CB . As a reply to the challenge, party A encrypts the CB

together with his challenge CA and sends to B. Party B decrypts the message,
and verifies CB . If the received CB is correct, party B is convinced that the
sender of this message indeed knew the password P and successfully derived the
session key K. At the last, party B should reply to A with encrypted CA. Party
A also verifies CA similarly.

Figure 2.6: Password authenticated key exchange

2.4.4 Analysis of Password authenticated DH key exchange

This protocol uses the advantage of DH method, and avoid of using asymmetric
cryptosystem in party A. But the same attack found in section 2.4.2 will also
occur. If someone is outside the room and does not have visual contact with the
password, he can still run a dictionary attack. If a password is hit, the attacker
can decrypt all the messages he eavesdropped. But due to the DH method, the
public key information is intended to be public. Even though the attacker can
see the information in the message, he cannot derive the session key K. But
this does not make this protocol very strong.

The message is authenticated by party B if he is convinced that sender has the
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password, likewise for A. The password can be exposed soon after it is decided.
If it is exposed, the encryption at the first and second step provide no secrecy.
It is exactly the same as DH method shown in figure 2.1, and suffers from the
MITM attack shown in figure 2.2 on page 7.

2.5 Seeing is Believing (SiB)

2.5.1 Description

Inspired by Balfanz et al. with pre-authentication in [4], McCune et al. uses
visual pre-authentication using camera phones and bar code to exchange key
materials in [6]. For human to read and compare a long meaningless hash
strings in hexadecimal number system is cumbersome. Instead, a bar code is
generated based on the hash value, and it is captured by a digital camera on
mobile phone. The procedure is shown in figure 2.7.

Figure 2.7: Seeing is Believing (SiB)

Two parties A and B wish to exchange their public key to establish a secure
communication channel. They are all equipped with mobile phones that have
digital cameras and LCD displays. Party A first computes the hash of this
public key KA resulting hA. Then he transforms the hash value into a graphical
bar code and shows it on the LCD. Party B then uses his digital camera to
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focus on A’s LCD, and captures the bar code. The pre-authentication phase is
finished here. Party A can use public wireless channel to send KA to party B.
If secrecy is still wanted on the public key, encryption or other key exchange
protocol can also be used. Upon receiving KA, party B computes the hash
value and verifies with the one received through pre-authentication phase. The
establishment failed if the two do not match.

2.5.2 Analysis of SiB

This novel approach for public key exchange uses the advantage of imaging
capability in modern electronics. By capturing an image (a bar code), the
device is ensured to communicate with the one intended to. If the other device
is not compromised, the bar code displayed can be understood as a signature
of that device (don’t confuse this signature with ‘Digital signature’, here means
something that device uniquely possessed). The third party has no way to
modify such information. So MITM attack cannot be mounted in this proposal.

The requirement of this proposal is that the devices are equipped with cameras
and displays. If one party does not have camera nor display, an unidirectional
authentication also can be realized. The displayless device can be a printer
or wireless access point (A.P.). The unidirectional authentication requires the
displayless device to hold a public/private key pair. A bar code is computed
and printed on a plate that is physically attached to the device housing.

However such attachment might not be physically secure. It is like a vehicle
licence plate. It can be manually removed, exchanged or swapped. A user may
wish to establish a connection with a printer to print a confidential document.
Assume the printer has no display, so bar code is attached to the housing.
However this bar code plate was manually swapped by a spy with a fax machine.
When the connection was established and believed to be secure, the user sends
the document to print, which in fact was sent to the fax machine and transmitted
out of the country.

For devices that are both equipped with cameras and displays, this proposal is
secure. For the situation where only unidirectional authentication is possible,
physical security of the bar code must be guaranteed. Further more, there are
many devices that cameras are not standard components, such as PDA. This
proposal will be difficult to invoke under insufficient light condition, such as
darkness or smoke.
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2.6 Loud and clear (L&C)

2.6.1 Description

The previous technique uses visual contact to authenticate public key materials.
In this section, the idea of using audio channel to authenticate the message is
described. The idea is the same as PGPfone in [7].

Figure 2.8: PGPfone

In figure 2.8 [7], a PGP public key block is shown. At the bottom of the
figure, the key fingerprint is computed to verify the integrity. The fingerprint
of the PGP key is further encoded into human language vocabulary to ease
memorization. This is the idea of PGPfone. As can be seen, the PGPfone maps
the fingerprint into words that does not necessarily make up into a meaningful
sentence. In [8], a solution called ‘Loud and Clear(L&C)’ is developed. It
uses the ‘Text-to-Speech’ engine to generate robust-sounding and syntactically
correct English sentence mapped from hash of a public key.

The principle steps of key exchange using ‘L&C’ is shown in figure 2.9.

Two devices exchange public key. Party A starts by computing hash of his public
key PKA and obtain hKA. Then he runs through ‘L&C’ library to generate
a syntactically correct sentence S. Such sentence is output to the speaker by
‘Test-to-Speech’ technology. In the mean while, the public key PKA is sent over
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Figure 2.9: Laud and Clear

wireless link to party B. The party B’s device should compute the same hash
and run through the ‘L&C’ library, maps the hash into sentence. If the sentence
mapped by B is the same as he heard, the public key from A is authenticated.

2.6.2 Analysis

This technique uses the audio channel to transfer information to authenticate the
public key. For devices such as PDA and laptop computers, sound generation
through on board speaker is rather easy to detect and recognised by human.
Certainly this does require an advanced research and development of ‘Text-to-
Speech’ technology and the ‘L&C’ library. This method however, won’t work
with person who has hearing disability. Further more, this solution will not
be very trustworthy if the loud speaker is external instead of embedded. Since
external speaker is usually wired or sometime wireless, wiretapping or MITM
attack can be mounted between the speaker and the voice generator (i.e. PDA,
laptop).

2.7 Short string comparison (MANA)

2.7.1 MANA I&II

The solution in [10] provides several proposals using short string comparison to
manually authenticate public key information. The initial idea was found by
Maher in US patent 5,450,493 [9]. The MANA protocol is an improvement over
Maher’s idea. The procedure of MANA I is shown in figure 2.10.
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Figure 2.10: MANA I

The procedure involves party A and B. They wish to exchange public key in-
formation D. Party A first sends D to B over any means, such as wireless
connection without any protection. In order for B to authenticate D, party A
generates a key K that is 16˜20 bits long. Then he uses a function MK(·) to
compute a check-value over D and obtain HD. The function MK(·) can be an
universal hash function family. Party A types in the key K and the check-value
HD to B’s device, or B can take a look at A’s display and types in himself.
With key K in hand, party B recomputes the check-value upon the received D
(noted as D′ in the figure). He obtains the check-value HD′ and compares with
the HD that was typed in by A. If the two matches, the D is authenticated,
abort otherwise.

Another variant was developed for devices do not have a keypad. In this case,
the key and the check-value cannot be manually typed in. The solution is to
transfer the key K also in wireless channel. Both devices then compute check-
value and displayed on the screen. The user has to visually verify his key and
check-value against the others. This version of the solution is called ‘MANA II’.

2.7.2 Analysis of MANA I&II

The MANA I solution uses a stronger authenticated channel [11] to provide
check-value. A stall-free transmission is a property of stronger authenticated
channel. A face to face conversation is a stall-free transmission, and hence
stronger authenticated, whereas E-mail is not. The user A typed key and check-
value personally into B’s device. Such check-value cannot be tampered, unless
A is dishonest or the device is already compromised, which we assume that
is not the case. The attacker is not constrained to find the second preimage.
By knowing D from wireless connection, and observing the check-value, the
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attacker can try to compute another message D̂ that is different from D, but
MK(D) = MK(D̂). As has been analyzed in [10], the probability of such a
successful attack is less than 2−13 for 16-bit keys and check-values, and less
than 2−17 for 20-bit keys. The attacker has to perform excessive attempt with
very small chance to succeed.

2.7.3 MANA III

This solution is aimed at devices that have keypad, but simple displays such
as seven-segment display. This solution also uses MAC (Message Authentica-
tion Code) with key K to compute check-value. The procedure is shown in
figure 2.11.

Figure 2.11: MANA III

Party A sends public key information D to B via wireless connection. Then he
generates a random string R and typed into both A and B’s device manually by
hand. Party A computes the MAC value over IA, D and R with key KA, where
|| denotes for concatenation in the figure, and IA is the identifier for A. He sends
the MAC value M1 to B. At the same time, party B performs similar operation,
computes M2 over IB , D and R sends to A, where IB is the identifier for B.
Both parties exchange the key KA and KB . The last step, party A verifies M2

and party B verifies M1. If both are authenticated and display ‘SUCCESS’, the
public key information D is accepted, abort otherwise.
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2.7.4 Analysis of MANA III

Since the attacker does not know R, which is typed in by keypad, it is very
difficult to perform an attack on this solution. To simply modify D into some
other value basically does not work. The M1 sent by party A will detect such
modification. To modify or even make up and replace both D,M1 and key KA

can neither break this solution. Since the lack of knowledge of R, to find same
MAC value from different R is rather difficult. To work out R from MAC in the
absence of the keys, as the author mentioned, is infeasible.

2.8 DH with Short string comparison (DH-SC)

2.8.1 Description

A key agreement protocol using string comparison based on DH method is
proposed by Cagalj et al. in [14]. The protocol achieves optimal trade-off
between security and usability. The protocol is shown in figure 2.12.

Figure 2.12: DH with short string comparison

The protocol agrees upon a key between party A and B. Each at the first place,
generates a public key information YA and YB respectively. A random number
that is k bits long is also generated, noted as NA and NB. Each party produces a
message, MA and MB by concatenating Y and N leading with their identity tag,
IDA or IDB . Each party commits to the message and obtains a commitment-
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opening pair (C, D) . The commitment possesses of hiding and binding property.
It is infeasible to find a D̂ that is different from D, so that (C, D̂) pair reveals
another message M̂ that is different from M . In the following, two parties
exchange commitment CA, CB as well as the opening value DA and DB . With
(CB , DB) in hand, party A is able to open the B’s message and denoted as M ′

B .
The notation M ′

B is to distinguish the received copy from the original value.
Similarly, party B opens A’s message M ′

A. Both parties should first verify the
ID tag from the message, abort the protocol if altered. Then party A computes
NA⊕N ′

B and denoted as iA, where ⊕ indicates XOR. In turn, party B computes
N ′

A ⊕ NB and denoted as iB . If iA = iB, then the message is authenticated,
both A and B accept public key information YB and YA.

2.8.2 Analysis

The DH-SC protocol is analyzed through a MITM attack scenario. The attack
is shown in figure 2.13.

Figure 2.13: MITM Attack in DH-SC protocol

This analysis introduces the third party M as Mallory. He makes up some
message MMA and MMB , also computes the commitment pairs (CMA, DMA)
and (CMB , DMB) respectively. When party A commits and sends CA to B,
Mallory reads this message and then prevents it from being received by B. He
then transmits his version of the commitment denoted as CMA to B. From B’s
point of view, this commitment is still sent from A. In turn, B commits to his
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message and sends CB to A. Similarly, Mallory intercepts this transmission, and
provides his version CMB to A. Likewise, the opening value DA is replaced by
DMA and DB is replaced by DMB .

The two legal parties A and B now open the message and perform authentica-
tion. The attack will be successful if two parties cannot recognise the change
made in the commitment; that is A’s string iA matches with B’s iB . In order
to have iA = iB, the XOR operation computed in both parties have to be the
same; that is:

NA ⊕ NMB = NMA ⊕ NB

It can be seen easily, the only condition for such equation to hold is NMB = NB

and NMA = NA. Since at the time Mallory commits to his message MMA

and MMB , he does not have any knowledge about NA and NB . In order for
Mallory to have NMB = NB and NMA = NA, he has two choices; either wait for
opening value is published, which will be too late for him to attack the protocol;
or Mallory has to make a wild guess. The probability for NMA = NA depends
on the length k, i.e. PSUCC = 2−k. For k = 16, the chance to be success is only
0.0015%. For a well chosen value k, the probability for the attacker to success
will be significantly small.

2.9 DH with Distance bounding (DH-DB)

2.9.1 Description

The previous DH method with short string comparison shown in figure 2.12,
requires the user A and B to visually compare strings iA and iB . This method
is secure, however not very user friendly. A new procedure has been proposed
to automate such tedious procedure. It is DH method with distance bounding
protocol by Capkun et al. in [14]. The protocol is shown in figure 2.14. The
procedure to exchange commitment CA, DA and CB , DB is the same as DH-SC
protocol, therefore not shown here. Only the procedure to compare iA and iB
is briefly explained.

The idea is for two parties further exchange their iA and iB . Each party prepares
a k bits random string, RA and RB respectively. They commit R and obtain
(C ′

A, D′

A), (C ′

B , D′

B). They exchange the commitment C ′

A and C ′

B . The distance
bounding phase can be started. In each step, party A computes

αi = RAi ⊕ iAi ⊕ βi−1
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Figure 2.14: DH-DB protocol

where i=1,2,...,k, and β0 = 0. Party B computes

βi = RBi ⊕ iBi ⊕ αi

In such a way, α hides iA by RA and β, and β hides information about iB by RB

and α. For party B, each bit in α is a challenge, and β is the response. Likewise,
the previous bit βi−1 is the challenge for party A, and αi is the response. Each
should send out response as soon as possible. Party A measures the time between
αi and βi; party B should measure the time between βi−1 and α. When all k
rapid bit exchanges are finished, A and B will have an estimation of the distance
between them. If the value found by distance bounding phase matches with the
true distance, then the protocol continues, abort otherwise. The following steps
of the protocol is to decommit by exchanging D′

A and D′

B. Each party opens
and obtains RB and RA, reveals i. For party A,

iBi = αi ⊕ βi ⊕ RBi

and for party B,
iAi = αi ⊕ βi−1 ⊕ RAi
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Now party A and B can verify the equality of iA and iB locally by their computer.
This protocol uses automated method to compare two strings to authenticate
message. It also uses the location information to verify the sender of the mes-
sage. In this section, only the basic idea is explained, and short version of the
protocol is demonstrated. In chapter 3, the use of distance bounding protocol
will be thoroughly studied, further details and analysis will be explained.

2.10 Shake them up

2.10.1 Description

The previous protocols discussed are based on DH method, which use secret
exponent to compute public key information. Such method cannot always be
applied. For example, for devices with very limited CPU resource, memory and
power, such method can be overkill. A protocol proposed by C.Castelluccia et
al. called ‘Shake them up’ in [12] can be used for such situation. The protocol
proposed is inspired from the protocol developed by Alpern and Schneider. The
protocol made by Alpern et al. requires 4n messages to be exchanged to establish
a n bits secret key. The ‘Shake them up’ protocol further optimizes the number
of messages into n. The protocol proceed in following steps:

1. Party A selects n/2 random bits, RA[1], RA[2], . . . , RA[n/2]

2. Party B selects n/2 random bits, RB [1], RB[2], . . . , RB [n/2]

3. Party A forms n/2 messages, mA[1], mA[2], . . . , mA[n/2]
where the source address of the message is:

src =

{

A if RA[j] = 1
B if RA[j] = 0

4. Party B forms n/2 messages,mB[1], mB[2], . . . , mB [n/2]
where the source address of the message is:

src =

{

B if RB [j] = 1
A if RB [j] = 0

5. Party A and B send their message to each other in n steps. For the ith

step, only the message RA[j] or RB [j] is sent. The order between A and
B is purely random.
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6. Upon reception of the message, A and B checks whether the source address
is correct to determine the current bit value for the key KAB .

An example is shown in figure 2.15([12]). Two devices wish to derive a secret key
to secure further communication. The key size is 8 bits, each need to prepare 4
random bits so in total 8 message exchanges.

Figure 2.15: Shake them up

The protocol starts by device A sending a START message, which contains ‘k’
that is the size of the key, and the address of A. Party B should reply another
START message containing the address of B. The following message exchanges
progress by time slots. In the first time slot, device A looks at his random bit
RA[1] = 1, he marks a ‘1’ in this secret key string and sends a message containing
correct source address,i.e. ‘src=A,dst=B,data=NULL’. The message only have
source and destination address without any data payload. Upon reception,
device B knows the message is sent from A, since he didn’t send any message.
He checks the source address that is correct, he also marks a ‘1’ in the secret key
string. In second time slot, B decided by random to send a message. He looks at
his random bit RB [1] = 0, he marks a ‘0’ in the secret key string, and make up
a message with wrong source address, i.e. ‘src=A,dst=B,data=NULL’. Upon
reception, A knows the message is sent from B, and the source address is wrong
so he also marks a ‘0’ in his secret key string. The following messages proceed in
the same manner. When 8 messages are exchanged, each device should compute
a hash and send to the other device for verification.
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This protocol did not use cryptography to protect the secret. The attacker is
allowed to eavesdrop the communication. But the idea to protect the infor-
mation is similar to what is done in cryptography. One technique to achieve
confidentiality is by confusion. In this protocol, the confusion is realized by
Source Indistinguishability. The protocol executant should not expose who sent
which message. The source indistinguishability is provided by two major contri-
butions, i.e. Temporal indistinguishability and Spatial indistinguishability. The
randomness of true message sender provides temporal indistinguishability. The
attacker cannot determine who should send the next message. Whereas spa-
tial indistinguishability is bit difficult to realize. The attacker can measure the
signal strength and distinguish the source. The solution of this problem is to
move the device around, turn them up and down, and hold in hand shake them
up during key exchange. The movement provided by shaking randomizes the
device location, so signal strength analysis cannot be performed.

2.10.2 Analysis

The confusion provided during secret key exchange makes the attacker has no
idea of who actually send which message. However, in the first two messages
exchange, the device A also have no insurance of device B is the one he selected.
MITM attack might be attempted. The solution to such problem is to define a
signal level threshold. The author discovered that when two devices are placed
2cm apart and when they touch each other, the signal level are significantly
different. The closer they are, the higher signal level they have. By defining
a signal level threshold, the device in the proximity that exceed this threshold
can continue with the key exchange. That is when a user wishes to establish a
connection between two devices and moved them closer to each other.

Even though the protocol provides confusion to the attacker, there will still be
information leakage. Each radio transceiver exhibits some unique characteris-
tic, such as radio central frequency. Such characteristic is determined during
manufacture, it is like in nature that no two tree-leaves are exactly the same.
The crystal clock oscillator generates carrier signal. One clock will be different
from the other, and hence the central frequency of the carrier. By further in-
vestigation, each device’s unique characteristic known as ‘signature’ or ‘signal
fingerprint’ can be recognised. The attacker can pin-point the exact sender of
any message. In this case, the protocol will not be secure. On the other hand,
it also require the attack has a very advanced RF signal analyzer.
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2.11 Conclusion

This chapter studied several proposals of key establishment with many differ-
ent techniques. The strong cryptography protected key establishment is secure
and difficult to break, but also very difficult to implement in embedded system
with limited resources. The DH method instead, expose only public partial key
information. The key is established through the use of public key information
together with another partial information that is kept secret. This method is fea-
sible in embedded system, but many implementations are vulnerable to attacks.
The message and entity authentication has been used in the key establishment.
Use of location limited channel prevents the attacker from interception; provides
the legal devices with appropriate physical contact. A secret such as a password
can be used to authenticate the entity, and derive a stronger key from the weak
password. Audio and images have also been used to authenticate legal parties.
Short strings can be computed and used for visual comparison, so to mutual
authenticate two devices with a very high probability. Physical distance from
the message receiver to the message sender can be found from distance bound-
ing. Such distance authenticator provides a very reliable authentication. In the
mean time, it automates the key establishment process. A key establishment
protocol without cryptographic protection has also been proposed. The designer
uses temporal and spatial indistinguishability to confuse the eavesdropper.

The techniques described in this chapter all have different measures to counter
attack. The specialty they have, also exhibits a special requirement for im-
plementation. Not all devices are equipped with infrared, keypad, especially
cameras. Very few embedded system can afford ‘Text-to-Speech’ engine. In
contrast, distance authenticator verifies the sender of the message. The dis-
tance can be measured by time-of-flight with radio or ultrasound wave, which
can be implemented in many devices that has radio or ultrasound transceiver.

In next chapter, the use of distance bounding protocol in key establishment as
well as in many other protocols to authenticate entities will be explained.



Chapter 3

Distance Bounding Protocols

The previous chapter has described several key establishment techniques. This
chapter will focus on distance bounding protocols and the use in the key es-
tablishment. The distance bounding with rapid single bit exchange (DB-BE) is
described in section 3.2. Followed by distance bounding word exchange (DB-
WE) in section 3.3. The DH method used together with distance bounding is
in section 3.4. The echo protocol designed in Berkeley and the DBP protocol
from Cambridge are also discussed in section 3.5 and 3.6. The so called MAD
protocol used in SECTOR is shown in section 3.7. Each protocol has been an-
alyzed. First, this chapter starts from an appetizer, which is a simple protocol
as an introduction.

3.1 Appetizer

3.1.1 Protocol Description

The first protocol designed in this chapter is a simple key exchange protocol
that is inspired by string comparison protocol according to the work in [13] [14].
The protocol is shown in figure 3.1. Bob prepares the message M containing the
public partial key information, Y as noted in previous chapters. Bob commits to
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Figure 3.1: Appetizer

the message by standard commitment scheme. The most simple implementation
of commitment is using hash function, hKB

(·). For an input message, it will give
an unique hash value. The commonly known hash functions are MD4, MD5,
SHA etc. The commitment scheme using cryptosystem can be used as well.

Bob initiates the protocol by sending the commitment C to Alice via radio.
Then the protocol enters the second phase for Bob to decommit. This phase
is started by Alice sending a random number NA, a sequence of arbitrary 0s
and 1s , as a challenge (authenticator). NA should be the same size as KB .
Upon reception of the entire nonce, Bob computes XOR between NA and KB

as NA ⊕ KB and denoted as d. The decommitment d is sent via ultrasound.
The time between the challenge and the arrival of the response is measured by
Alice and denoted as TDB . The last phase of the communication is sending the
message by Bob in clear, and denoted as M ′.

When the above process finished, Alice will compute hKB
over the message

M ′ and denoted as C ′. She compares C ′ with C. If they match, the protocol
succeed, abort otherwise.

3.1.2 General security analysis

This protocol intends to provide Alice the public key information contained in
a string M from Bob. MITM attack can be attempted in this protocol. The
attacker Mallory could simply tamper the communication. He prevents C to
be received from Alice (e.g. corrupt the message), and sends his version of
the commitment CM to A. By XOR NA with his hash key KM and replaces
the message string to MM , the key derived by A is in fact between A and the
attacker Mallory.
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However, Alice will not be fooled. The extra measure to prevent the intruder is
the distance measurement, namely TDB . Alice records the time when NA was
sent, and stops her watch when the response d is received. From the knowledge
about the physics, she can properly compute the distance (radio or ultrasound)
message travelled, so to determine the location of the actually sender. Alice
roughly estimates the distance between herself and Bob (who she intends to
communicate), denoted as DAB. If the distance she measured does not match
with the true distance DAB , the intrusion is detected and discard all the message
she had received.

The attacker also noticed the distance measurement in the protocol, he did not
give up. Instead, he like to cheat. There are several cases to be considered.
The attacker is geographically further away from Alice than Bob, or he is in
somewhere between them. In the first situation, the attacker has to perform
distance shortening attack; whereas in the second, he has to perform distance
enlargement attack. These two kinds of attacks can be very successful. The
details of the attack is explained in the coming two sub-sections.

3.1.3 Analysis - Distance shortening

To understand distance shortening attack, consider the simpler situation only
involves Alice and Bob, but Bob is the dishonest prover (so to remove the third
role in the discussion). Alice receives key information from Bob, but Bob would
like to cheat on the location where he actually is. He decided to appear with
shorter distance on Alice’s screen. The protocol shown in figure 3.1 can be
decomposed further into more detailed steps as shown in figure 3.2.

The first and the last message sent by Bob is non-important in this attack.
The attack will appear in the challenge and response steps, and therefore noted
differently in this figure to have timing visualization. Alice sends the challenge
NA bit by bit over radio link. Assuming radio signal travels in the air at speed of
light, i.e. c = 3×108m/s. Upon reception of the entire challenge, Bob computes
the response NA ⊕ KB , denoted as d, and sends back to Alice over ultrasound.
The ultrasound travels much slower than radio, but provides a more precise
distance measurement. The processing time between the reception of the nonce
and sending of the response is defined as ∆p. As shown in the figure, T0 denote
the time in which first challenge bit is sent. Alice can send out the second bit
of the challenge after the first bit has been completely sent, which depends on
the channel bit rate br( bits per second). Therefore,

Ti = Ti−1 +
1

br

(3.1)
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Figure 3.2: The appetizer with expanded details

where br is the bit rate over radio link. As in commercial product such as
Chipcon CC1000 will operate at 20kbps. In other words, it takes 50us until the
next bit can be transmitted. Similarly, the data transmission over ultrasound
channel behaves in the same way, but much more slower than radio channel.
The sound signal travels in air at speed of 340m/s, defined as s. Tdi denotes the
arrival time of the ith response bit (shown in the figure). In contrast to radio
links, the bit rate of ultrasound communication is much slower than in radio. In
this work, the bit rate over ultrasound bs is about 16bps, or 60ms/bit (details
please refer to section 4.4 Data transmission over ultrasound).

Tdi = Tdi−1 +
1

bs

(3.2)

For the sake of simplicity, the processing time ∆p is assumed to be negligibly
small. In order for Alice to determine Bob’s location, she must record T0 and
Td0 and calculates TDB.

TDB = Td0 − T0 (3.3)

=
l

c
+

n

br

+
l

s
(3.4)
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where, l is the distance between Alice and Bob, n is the nonce length. Equa-
tion 3.3 gives a clear model of what contribute into the time measurement. l

c

indicates the time takes for the first challenge bit to travel over the distance l.
n
br

indicates the time for the entire n-bit nonce to be sent. l
s

indicates the time
for the first response bit to travel over distance l. The three quantities can be
denoted as t1, t2 and t3 respectively. The distance can then be found by:

TDB = t1 + t2 + t3 (3.5)

TDB =
l

c
+

n

br

+
l

s
(3.6)

TDB −
n

br

=
l

c
+

l

s
(3.7)

(

TDB −
n

br

)

· c · s = l(s + c) (3.8)

l =

(

TDB − n
br

)

· c · s

s + c
(3.9)

Equation 3.9 shows the calculation of the distance based on timing measure-
ment. However, equation 3.3 and 3.5 is based on the assumption that one event
occurred after another in a consecutive (sequential) manner. Meaning t3 cannot
occur until t2 is finished. Unfortunately such assumption is not always valid.
A dishonest prover, Bob in this case, could send out the first response earlier
before t2 elapsed. He could even start sending before verifier (as Alice) sent
the challenge (before t1 starts). Now, the previous model 3.5 is not valid. t3
overlaps on t1 and t2. From verifier’s point of view, t3 is shortened or even dis-
appeared. The entire timing measurement TDB is much smaller than the true
value, hence, the distance calculation shown in equation 3.9 is telling no more
the truth.

The prover has successfully broken the distance measurement in this protocol,
but he still has to make sure the response bit is correct. Since the attacker needs
to send the response earlier than the challenge is arrived, he does not have the
correct challenge. What he can do is to make a wild guess. To guess for one
challenge bit, he has 50% chance to be correct. To guess n challenge bits, he
only has 2(−n) chance to succeed. Unfortunately, this number doesn’t always
reflect of what is actually happening in real implementation.

As mentioned, the ultrasound communication device has a much slower bit rate
than the radio device (be aware, here is talking about bit rate instead of the
velocity of the signal). Such as in this work, to send one bit in ultrasound takes
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about 60ms, whereas in radio link takes only 50us. To send a 64-bit challenge
in radio takes 3.2ms. Assume the attacker need to send out his response at the
same time as Alice sends the challenge. The attacker flips a coin to guess the
first challenge bit and then sends the response. It is clear that it takes 60ms
to send the first response bit. To send the second response bit, he needs to flip
another coin. But he noticed, during the first 60ms, all other radio challenge
bits have already been received (which only takes 3.2ms). What the attacker
needs to do is using the challenge, and sends the response!

For n bits challenge, it supports to have success probability of only 2(−n). But
in real implementation, what he need is to guess the first bit of the challenge.
During the sending of the first response bit, all other challenge bits come for
free. The attacker only need to make ONE guess, the probability to be suc-
cess becomes 50%!! The attacker reduced the distance, and has a very high
probability to break the authentication. This protocol is not secure any longer.

3.1.4 Analysis - Distance Enlargement

Similar to distance shortening attack, the prover can also mount distance en-
largement attack. Referring to figure 3.2 on page 32, instead of sending response
earlier, the prover postpones the reply. The timing measurement TDB now has
an offset. The distance calculation will be a much larger result. By adjusting
the delay offset, the prover can be at any location he wishes.

Such attack can be used in the situation where Alice and Bob is trying to
exchange key, and Eve is sitting (physically) somewhere in the middle. Eve
can invoke such attack to successfully establish a key with Alice, to whom the
distance corresponds to Bob’s location.

For such kind of attack, the solution is for the legally involved two parties to look
around the vicinity, if no one is in between, then such attack can be avoided.
This introduces the new concept “Integrity Region” [14].

3.1.5 Analysis - Integrity Region

The ‘Integrity Region’ is a 3-D space (two spheres) that is each centered at one
legitimate party with radius d that is equal to the distance between the two,
shown in figure 3.3 [14]. There are two possibilities that an attacker can be.
Either he is inside the spheres, or outside. For attacker who is outside the sphere,
he has to play distance shortening attack to pretend being correct position. If
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Figure 3.3: Integrity Region

the attacker is inside the spheres, he need to play distance enlargement attack.

For correct implementation of distance authenticator, the distance shortening
attack cannot be performed successfully with probability less than 2−n, where
n is the size of the random string. However the distance enlargement attack
is easier, the attacker obtains the challenges for free. Since the attacker has to
be within the spheres, this attack can be defeated if the legitimate parties can
make sure that no one else is physically inside the spheres.

In this protocol, the two parties look around and visually make sure that there
is no third party within the ‘Integrity Region’, the distance enlargement attack
is avoided. For distance shortening attack, a correct implementation of distance
authenticator can be found in next section: ‘Distance bounding - Bit exchange’.

3.2 Distance bounding - Bit exchange (DB-BE)

3.2.1 Protocol description

The protocol is shown in figure 3.4. Two parties, Alice and Bob wishes to
exchange key. Bob commits to the secret message M , by standard commitment
scheme hKB

(·).

Bob initiates the protocol by sending the commitment C to Alice. Now the
protocol enters the distance bounding phase. In distance bounding phase [15],
Alice first generates an n bits random sequence NA. In each step, she sends one
bit N i

A from the sequence to Bob as a challenge, and expecting the response.
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Figure 3.4: Distance bounding protocol - Bit exchange

Upon the reception of N i
A Bob should compute:

di = N i
A ⊕ Ki

B (3.10)

and send the response back to Alice immediately. Alice should record the time
when challenge is sent and the response is received, denoted as T i

DB . Alice and
Bob will repeat such steps. The distance bounding phase is finished when every
bit in KB is XORed with NA and received by Alice. The time T i

DB is measured
in each steps. At the last step of the communication, the secret message M can
now be sent to Alice in clear, denoted as M ′.

Since Alice possesses of the random sequence NA, she can derive KB from d as
decommitment.

KB = d ⊕ NA (3.11)

She now computes C ′ = hKB
(M ′) and compares with previously received C. If

C ′ == C, then the key is agreed, otherwise the process fails.

3.2.2 Analysis - Distance shortening

This protocol is an enhancement based on Protocol Appetizer, the procedure
is shown in figure 3.4. As discussed in section 3.1.3, the location verification is
based on the timing measurement contributed from the three factors shown in
equation 3.5 and 3.6 on page 33. The problem is the factors that being modelled
in the equation do not, by nature, exhibit a sequential ordering. The dishonest
prover can simply guess the first challenge bit, and obtain the rest challenge bits
in the mean time. Even worse, this is the only timing measurement being used
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for location verification. So, that protocol can be seen as an one-phase distance
bounding protocol. The nonce length doesn’t weaken the attack.

In this protocol, the attention to such weakness has been paid. The protocol uses
the advantage of the lengthy nonce. The verifier challenges the prover bit by bit,
one bit at a time. The prover should reply to each challenge-bit individually.
One challenge bit should be sent only after the previous response bit has been
received (this is different from the appetizer). Each challenge and response pair
is composed into a distance bounding step. There will be N distance bounding
steps in the protocol, in which N is the number of bits in the random nonce. The
timing should be measured in each step and contributes to the final distance
verification. A graphical demonstration is shown in figure 3.5 to give timing
visualization.

Figure 3.5: Expanded details

The timing measurement for each phase is denoted as T i
DB, in which i ∈ {0, n− 1}.

T i
DB can now be modelled as:

T i
DB = t1 + t2 + tp + t3 (3.12)

=
l

c
+

n

br

+ ∆p +
l

s

It is the time for the challenge to travel through the medium, t1; the time for
the entire bit to arrive at the destination, t2. The prover’s processing time,
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tp, and the time for response to travel back to the verifier, t3. t1 and t3 are
the same as before. n is the number of bit in each distance bounding step,
in this protocol, n is one. The processing time is assumed to be negligibly
small. In this protocol construction, the distance shortening attack can also be
attempted. The dishonest prover may send the response bit prior the challenge
bit has been received, so he has to guess the challenge. But in this protocol,
the next challenge bit is not revealed until the previous challenge is replied, he
has to guess the challenge bit for each distance bounding step. For each step,
the prover has 50% probability of succeed in the random process. But for N
bits challenges, and hence N steps of distance bounding, the probability that
an attacker survived is reduced to P = 2−N .

3.2.3 Analysis - Distance Enlargement

Similar to section 3.1.4, the distance enlargement attack can be attempted in this
protocol. The prover may delay his response to impersonate someone further
away. The solution is already given in previous section, and hence not explained
again here.

3.2.4 Analysis - Signal encoding attack

Besides distance shortening by purely chance, another form of attack can be
explored in ultrasound physical signal encoding scheme.

As explained in the previous section, the data rate of the ultrasound transmission
is, in this work, about 60ms per bit, or 17bps (details please refer to section 4.4
Data transmission over ultrasound). In order to send a logic one, 8 cycles of
ultrasound pulses, in total 200us are sent at the beginning of 60ms period. To
denote a logic zero, the channel will be silenced for 60ms. Similarly in the
receiver, it looks into 60ms interval (defined as sampling interval). A logic ‘1’ is
concluded if there is ultrasound signal detected, otherwise logic ‘0’ is received.
In the protocol, there is a requirement of measuring the arrival of the response
by the prover. However by this encoding of logic ‘0’ and logic ‘1’, the arrival
of ‘0’ cannot be timed. Fortunately, the data transmission format solved such
problem. The format is, for convenience, shown below.

During transmission of the ultrasound data, a synchronization prefix is sent
prior the data payload. The synchronization prefix is always ‘1’. The first bit
of the data payload, which is designated to be the response bit, is following the
prefix. The rest payload bits are for miscellaneous purpose. Such transmission
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Figure 3.6: Ultrasound packet format

format uses the synchronization bit to provide a potential opportunity to encode
the response bit. The encoding scheme can be summarized in table 3.1.

Encoding Value
sync response bit

1 0 0
1 1 1

Table 3.1: Signal encoding scheme

From the receiver, he sees a ‘1-0’ pattern to interpret a logic zero as a response,
and ‘1-1’ as a logic one. This encoding scheme makes sure that the verifier can
time both the arrival of ‘1’ as well as arrival of ‘0’.

Although this technique satisfies the functional requirement, it does violate the
security need. The physical signal of the encoding is shown in figure 3.7.

Figure 3.7: Physical signal representation. a)encoding of logic ‘1’, b) encoding
of logic ‘0’
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The actual ultrasound pulses last only for 200us. There are more than 59ms
channel idle time to avoid echoes reflected from vicinity (also due to hardware
limitations). In the receiver, to provide flexibility, it does not restrict the ultra-
sound pulses to appear at the beginning of the 60ms sampling interval. Because
of this, a cooperative attack can be mounted to this protocol. Based on the cur-
rent encoding scheme, the dishonest prover Bob could simply reply a ‘zero’ to
the verifier at arbitrary time according distance he wishes to cheat. The ‘team
member’ Mallory, a malicious attacker, he listens to the radio message sent from
Alice and inject ultrasound pulses into the medium. The attack is illustrated in
figure 3.8.

After Bob commits to the verifier Alice, a challenge bit will be sent to Bob.
The challenge bit is denoted as N i

A. Bob was prepared to cheat on the distance,
so he sent the response di much earlier. In order to pass the authentication of
the commitment scheme, he could guess the challenge bit, as being done in the
attacks of the previous protocols. But now in this protocol, Bob won’t survive,
because there are many challenge bits he has to guess on. There is neglectablly
small probability such kind of attack succeed. But due to the encoding scheme,
Bob doesn’t have to concern about the value of the challenge bit, what he need
to do is simply sent a logic ‘0’ to the air, and Mallory will do the rest. Mallory
is the one that stood in the middle of Alice and Bob. He can listen to message
sent by both parties. Mallory particularly interested in the challenge N i

A, since
the correct response sent by the prover also depends on the challenge. If the
current challenge N i

A equal to Ki
B , then the response should be 0 as it was sent

by Bob. If the challenge is different from K i
B, the response should be 1, and

Mallory should now be active and inject an ultrasound pulse into the channel.

The figure only shows signal injection in one distance bounding step. Signal P
is what Mallory injected into the data, which is originally sent by Bob. P is
found by:

P =

{

1 if N i
A 6= Ki

B

0 otherwise
(3.13)

Assume the true distance between Alice and Bob is 100m, and denoted as D,
the distance Bob pretends to be is 10m from Alice, denoted as l. The speed of
sound s is 340m/s. The time takes for Bob’s ultrasound message to arrive at
Alice is tBA:

tBA =
D

s
=

100m

340m/s
= 294ms (3.14)

The time for message sent from the legitimate party called Carol, l meters away
from Alice, is found by:

tCA =
l

s
=

10m

340m/s
= 29.4ms (3.15)
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Figure 3.8: Cooperative attack on Protocol II by injection

tB = tBA − tCA = 294ms− 29.4ms = 264.6ms (3.16)

Therefore, Bob has to sent the response 264.6 ms earlier in order to pretend to
be Carol’s position, denoted as tB (Assuming radio message does not take time).
Bob now knows precisely when to sent his message to break the protocol. The
question is where should Mallory stand. Since the ultrasound receiver doesn’t
restrict the ultrasound pulses to be at the beginning of the sampling interval, so
there are plenty of time for Mallory to react and inject pulses into the message.

tM = 120ms− 200us = 119.8ms (3.17)

DM = tM · s = 119.8ms · 340m/s = 40.7m (3.18)

Equation 3.17 and 3.18 shows the Mallory’s location. As shown in figure 3.7,
two bits encode one bit logic value, which is 120ms (each bit is 60ms). The
ultrasound signal lasts for 200us. The attacker can wait for 119.8ms to inject
an ultrasound signal. During this time, Mallory can determine the correct re-
sponse. This time correspond to distance of 40.7m. So in order for Mallory to
perform signal injection attack, he should stand at most 40.7m away from Alice.
The graphical representation of each party’s geographical position is shown in
figure 3.9. As indicated in the figure, both Bob and Mallory are outside the
radius l between Alice and Carol , but the protocol still can be broken.

The problem of such attack is from the fact that logic ‘0’ is represented by absent
of ultrasound signals. It can be easily modified. This problem is originated from
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Figure 3.9: Geographical position of the attack

the hardware construction. The solution is to implement an extra ultrasound
hardware transceiver, a better signal encoding such as ‘Manchester code’ can
be implemented. In Manchester encoding, the logic value is represented by a
transition, i.e. logic ‘1’ is encoded by -5V to +5V transition, whereas logic ‘0’
is encoded by +5V to -5V transition. Once the logic value is sent through the
transceiver, it is very hard to modify.

3.3 Distance bounding - Word exchange (DB-

WE)

3.3.1 Description

This protocol, shown in figure 3.10, is very similar from the previous two. The
first protocol described in section 3.1 is efficient with less overhead. The second
protocol described in section 3.2 is more redundant, but more secure. The
protocol designed here understand the previous protocols as two extremes, and
takes the advantages of both two.

The procedure of this protocol does not differ very much from the previous.
After Alice received commitment from Bob, she will send nonce to Bob as chal-
lenge. In the previous protocols, the nonce is either sent entirely to Bob at once,
or sent one bit at a time and another bit after receiving the previous response.
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Figure 3.10: Distance bounding - Word exchange

In this protocol, the N bits random nonce is divided into “words”, each word
is composed of several bits. The word size is defined as W . As shown in fig-
ure 3.10, assuming word size is defined as W = 8. Alice will send the first 8 bits
of NA to Bob, i.e. N0

A ˜ N7
A. After receiving W bit challenge, Bob should send

corresponding bits in KB XORed with the challenge and reply to Alice as soon
as possible. The time between the challenge and the response is recorded, and
denoted as T 0

DB .

The next challenge word can be sent by Alice, and expecting the response. The
challenge and the response word can be formalized as:
The ith challenge:

N i∗W
A ∼ N

(i∗W+W−1)
A , i = 0 . . .

N

W
(3.19)

The ith response:

[N i∗W
A ∼ N

(i∗W+W−1)
A ] ⊕ [Ki∗W

B ∼ K
(i∗W+W−1)
B ], i = 0 . . .

N

W
(3.20)

where i is non-negative integer from 0 to N
W

, and N is the length of the nonce,
W is the word size.
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The challenge and response steps will be repeated until Bob decommit all the
bits in KB . There will be i rounds distance bounding in this protocol. The time
taken between challenge and response is denoted as T i

DB . Notably the nonce
size N should be integer multiple of word size W .

At last, the message M will be sent by Bob in clear in the same manner as the
previous protocols.

After the communications are finished, Alice will check the Integrity of the mes-
sage the same as described in the previous protocols. The timing measurement
will be used to verify the location of Bob. In case of no violation is found, the
message is accepted, failed otherwise.

This protocol can be seen as a generalization of the previous two. It has the
same nonce size as Protocol Appetizer, but less distance bounding rounds, and
hence less communication overhead. In security point of view, this protocol
is less stronger than Distance bounding - bit exchange. This protocol can be
trimmed to have minimum overhead, i.e. word size W equal to nonce length
N , which will result to be protocol Appetizer. It can also be trimmed to have
maximum security, i.e. word size W equal to 1, which is the second protocol.

3.4 DH with Distance bounding (DH-DB)

3.4.1 Description

The DH key exchange with distance bounding protocol has been introduced in
section 2.9. This protocol is based on DH-SC string comparison, and further
extended with distance bounding. The advantage of DH-SC is to strong au-
thenticate public key information through human string comparison. The user
compares two strings displayed on each other’s screen. To reduce such tedious
process, the user exchanges two strings with each other, and compare by com-
puters. The strings are hidden by random nonce, and exchanged in a bit-by-bit
manner. By measuring the time during rapid bit exchange, the distance between
the two parties can be determined. This distance value will be used to verify
the sender of the message.
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Figure 3.11: DH with distance bounding (DH-DB)
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The detailed procedure of DH-DB is shown in figure 3.11 [14]. The same as
DH-SC protocol, Alice generates public key information YA, nonce NA and
concatenates with IDA into message MA. She commits to the message and
obtains (CA, DA) pair. Bob does the same. In addition, another nonce RA

is generated, and committed with IDA into (C ′

A, D′

A) pair, likewise for Bob.
Alice and Bob exchange (C, D) pair, open the message and compute iA and iB
respectively. Notice that the commitment C ′

A and C ′

B is also exchanged in the
above steps. However, the decommitment D′

A and D′

B should NOT be sent by
now, the reason will be explained in the coming analysis(section 3.4.2).

Distance bounding phase will start from this point. The distance bounding
repeats for k steps, where k is the size of nonce RA as well as NA. Each step,
Alice computes:

αi = RAi ⊕ iAi ⊕ βi−1

where i=1,2,...,k, and β0 = 0. Alice sends αi to Bob as a challenge. Bob should
in turn compute:

βi = RBi ⊕ iBi ⊕ αi

and send β back to Alice immediately. Alice measures the delay between α and
β. Alice should not relax, βi is a challenge to Alice as well. She must compute
the next bit of α and sends back to Bob right away. In turn, Bob also measures
the time between β and α. After repeat for k times, distance bounding phase is
terminated. Each party should now decommit and exchange D′

A and D′

B . They
opens the message and obtain R′

B and R′

A. Reveals i′B and i′A as:

i′Bi = R′

Bi ⊕ αi ⊕ β′

i (3.21)

i′Ai = R′

Ai ⊕ α′

i ⊕ βi−1 (3.22)

Alice can compare iA with i′B , and Bob compares i′A with iB, which can be
done by computer. They discard the exchanged key if the comparison failed.
In addition, Alice and Bob should verify the distance between them against the
value obtained from distance bounding phase. If the measurement corresponds
with the true distance, they can accept the public key exchanged, and derive
the session key by DH method; abort otherwise.

3.4.2 Analysis - Distance shortening attack

The distance bounding is to determine the location of the actual message sender.
Distance shortening is an obvious attack on such protocol. For Alice, the dis-
tance is determined by measuring the time between α and β. To reduce the
time, the attacker has to reply β earlier. As can be seen, the response β is a
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function of the challenge α. Without knowing α, the attacker cannot compute
correct response β. To know α, the attacker has to know RA. It is very diffi-
cult (almost impossible) for an attacker to obtain RA before distance bounding
phase terminated. The hiding property of commitment scheme ensures that only
(C ′, D′) pair can open the the message R. To reveal R from C ′ is not feasible.
Therefore, the decommitment D′ is exchanged only after distance bounding is
terminated.

3.4.3 Analysis - MITM attack

The DH method with string comparison (DH-SC) has been analyzed in sec-
tion 2.8.2 on page 22 and concluded to be secure. Any attacker intercepts the
message will be detected by string comparison. In DH with distance bounding
protocol (DH-DB), the string comparison is not performed by human visual
inspection. MITM might be attempted. To analyze such situation, figure 3.12
demonstrates such attack.

Assume Alice and Bob exchange public key information using DH-DB proto-
col. Mallory tampered the messages sent by each party. He successfully ex-
changed the messages containing his version of the public key with Alice as
well as with Bob. So that Alice hold string iA, Mallory hold corresponding
iMB = iA. Bob hold iB and Mallory hold corresponding iMA = iB, but iA 6= iB .
Alice and Bob generate RA and RB respectively. They commit to R obtain
(C ′

A, D′

A) and (C ′

B , D′

B). In turn, Mallory generates RM
B and RM

A , and com-
mitment (CM

B ′, DM
B ′) and (CM

A ′, DM
B ′). During distance bounding, Alice sends

challenge α to Bob, but Mallory jams this message so to prevent it to be received
by Bob. He replies βM to Alice. Similarly, Mallory sends αM to Bob, pretends
to be Alice and expects β from Bob. After k steps of distance bounding, each
send his decommitment and reveals R. Alice verifies the string iA == iMB ′ and
Bob verifies iB == iMA ′. Certainly both device will display ‘SUCCESS’. The
attacker played MITM attack, and passed string authentication. Alice and Bob
did not exchange key with each other, but in fact exchanged public key with
Mallory. However, the protocol did not fail. There is one more step for distance
authentication.

Alice and Bob look at the screen, the distance measured during distance bound-
ing phase does not correspond to the true distance between them. In stead of
accepting the key just exchanged, they decide to abort. The key should only
be accepted if the verification shows ‘SUCCESS’ and the distance matches with
the true value.

As explained in the previous analysis, distance shortening attack on distance
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Figure 3.12: MITM attack of DH with distance bounding (DH-DB)

bounding protocol is not possible, any one far from Alice and Bob cannot pass
final verification. Distance enlargement can be avoided if no one is between
Alice and Bob.

3.5 Berkeley Echo

3.5.1 Description

As it has been shown in the previous protocols, the security of the protocol,
also relies on the distance measurement between the verifier and the prover.
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A protocol proposed in [16] called ‘Echo’ protocol securely verifies the location
claims. As stated in the original paper, the protocol proposed is focused on
in-region verification instead of secure location determination. In the former
topic, the protocol verifies the location claimed, accepts or rejects that claim.
In the latter topic, the verifier attempts to securely discover physical location
of the prover [16]. This protocol takes into account of the security influenced by
the processing time of the device and the communication time. The protocol
constructs a Verifiable region called Region Of Acceptance (ROA) that ensures
the prover only has negligibly small success probability. The later section will
show that in some cases the ROA can be reduced to be so small, which makes
the protocol infeasible.

This protocol uses techniques that similar to others previously described, which
the verifier sends several challenge bits and expecting the prover to respond
immediately. However, in real systems, there will always be some processing
delay, denoted as ∆p. The prover need to inform the verifier that the processing
delay experienced. The verifier has to subtract the time he measured with the
processing delay declared, to yield a time value corresponds to the distance.
The problem occurs when a dishonest prover with an advanced device, which
has almost no processing delay, but claims a false value of ∆p. The verifier has
no way to verify the amount of processing delay claimed, therefore, the prover
may cheat the location by ∆p · s meters, where s is the speed of sound. The
solution to such problem was to reduce the verifiable region by ∆p · s amount.
Resulting ‘Region of Acceptance’ (ROA) as:

ROA = R − ∆p · s (3.23)

and denoted as ROA(v,∆p), where R in this equation is the original verification
radius. It is a circle centered at verifier v. Now, if the claimed location of the
prover, is within the ROA, the verifier can verify such claim.

Such problem also occurs with communication time. The radio signal travels
at the speed of light. But when radio signals are used in communications,
the data transmission time will depend on the data rate of the communication
hardware. In real system, especially in small embedded systems with limited
power resources, to provide a reliable communication, the radio channel data
rate is considerably slow. In this work, Chipcon CC1000, provides data rate
of 20kbps. This figure is sometimes comparable with ultrasound channels [16].
Even though both channels’ data rate are slow, there will be a one that is
faster than another. Assuming the verifier sends challenges in a faster channel,
and prover responds in a slower channel, and the nonce size is N -bit. The
prover could guess few number of challenge bits m(m < N) and send responds
earlier. To guess m bits correctly, he has 2−m success probability. During the
transmission of m bits data, all N challenge bits are exposed. Depending on the
distance he wishes to cheat and the data rate of the slower channel, m can be



50 Distance Bounding Protocols

Figure 3.13: Berkeley Echo - Region of Acceptance

as small as 1 bit, the success probability now increased to 50%. The problem
arises when prover’s channel is slower than the verifier and try to sacrifice some
response bit m to gain knowledge of N − m bits of the challenge. The more
he wishes to cheat on distance, the larger m will be, and hence the less success
probability is. The solution proposed by [16] categorize the distance corresponds
to data transmission time to be non-verifiable and contribute to the calculation
of ROA. The equation for finding ROA is then:

ROA = R − ∆p · s −

(

N

bs

+
N

br

)

· s (3.24)

where bs is the data rate of prover’s channel sending reply with unit of bps, and
usually ultrasound; N is the number of challenge (or response) bits. Again, R is
the original verifier region. The proposed method guarantees that the location
claimed to be in ROA is verifiable. The prover’s success probability fully depends
on the size of challenge N . In further analysis shown in section 3.5.2 on page 50,
the proposed method does ensure the security, but the ROA can be reduced to
be very small. The geographical view of the situation is shown in figure 3.13,
where V is verifier, P is the prover,L is the location claimed [16].

3.5.2 Analysis

The fundamental procedure of the key establishment protocol was shown in
figure 3.2 on page 32. For convenience the communication part concerning the
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Figure 3.14: Timing details for legitimate parties

distance bounding is shown again here in figure 3.14. The timing relevant to this
discussion is marked in the figure. Assuming the verifier sends message using
radio, prover sends response using ultrasound. Further assume radio channel
data rate is faster than the ultrasound.

In figure 3.14, t1 is the time for the first challenge bit travels over DV P (the
distance between two parties); t2 is the time to send entire radio message; ∆p

is the prover’s processing time; t3 is the time for first response bit to travel over
DV P , and t4 is the time to send entire ultrasound message. Each quantity can
be found by:

t1 =
DV P

c
(3.25)

t2 =
N

br

(3.26)

t3 =
DV P

s
(3.27)

t4 =
N

bs

(3.28)

∆p ∈ Z
+ (3.29)
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where, c is the speed of light, s is the speed of sound in m/s, br and bs are the
radio and ultrasound channel data rate in bps, and Z

+ is non-negative integers.

It has been explained how a dishonest prover can cheat within processing time
and data transmission time, and this protocol has modelled the distance cor-
responding to such time to be non-verifiable. The Region of Acceptance was
introduced to be a reduction from R by processing time and packet transmission
time, shown in equation 3.24 on page 50.

Assume a prover P is located outside the verification range R, but claimed to the
verifier V at location L within R. A timing diagram is shown in figure 3.15. t1 to
t3 and ∆p is as previously defined in figure 3.14 and Ti,Tdi and TDB was defined
in figure 3.2. Further introduce t4 as packet transmission time over ultrasound.
In order to demonstrate the effectiveness of the protocol, P is assumed to be just
outside R, and L is exactly on the edge within ROA. So the following formulae
hold:

DV P = DV L + DLP > R (3.30)

DV L ≤ ROA (3.31)

DV L ≤ R − (∆p · s) −

(

N

bs

+
N

br

)

· s (3.32)

DV L ≤ R − (∆p + t2 + t4) · s (3.33)

DV L + (∆p + t2 + t4) · s ≤ R (3.34)

The distance between the verifier V and prover P is composed of distance be-
tween V and L, DV L, and distance between L and P, DLP . Since DV L is known
to be within ROA, by putting equation 3.30 into 3.34:

DV L + (∆p + t2 + t4) · s ≤ R < DV P (3.35)

DV L + (∆p + t2 + t4) · s < DV L + DLP (3.36)

the distance between prover P and the location claimed L, DLP , can be found
by the time for ultrasound to travel, and denoted as tLP (as marked in the
figure), therefore:

DV L + (∆p + t2 + t4) · s < DV L + tLP · s (3.37)

(∆p + t2 + t4) · s < tLP · s (3.38)

∆p + t2 + t4 < tLP (3.39)
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Figure 3.15: Berkeley Echo with security analysis
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In order for prover P to pretend being at L, his ultrasound packet has to arrive
at L at time instant TL as noted in the figure. The time takes for an ultrasound
message to travel between P and L is denoted as tLP found from equation 3.39,
then the time for P to start sending the packet is:

TP = TL − tLP (3.40)

where TP is the time instant that prover start to send the packet. By rearranging
equation 3.40:

TL − TP = tLP > ∆p + t2 + t4 (3.41)

It can be seen from figure 3.15:

TL = t1 + t2 + ∆p (3.42)

So, put equation 3.42 back into 3.41:

t1 + t2 + ∆p − TP = tLP > ∆p + t2 + t4 (3.43)

t1 − TP > t4 (3.44)

Assume t1, the time for radio signal to travel between verifier V and L, to be
zero.

− TP > t4 (3.45)

TP < −t4 (3.46)

|TP | > t4 (3.47)

Again, TP is the time when P start sending the packet. Since t4 is the time
spent to send the entire packet, it can’t be negative, therefore TP has to be
negative. That indicates the prover has to send the responses before time ‘0’.
By taking numerical values of TP as equation 3.47, TP is larger than the packet
transmission time. In other words, in order for P to pretend being at L, he has
to send entire packet before the verifier sends the first challenge. By doing so,
the protocol ensures the challenges are exposed only after the cheater sent the
response. The cheater can provide a false position in this case, but he cannot
provide correct response. Since the cheater has no chance to gain knowledge
about the challenge before he sends any response bit, the success probability to
break the authentication is only 2−N .

The above argument proves that this protocol does effectively verify the loca-
tion claimed by the prover, when the location claimed is within the Region of
Acceptance. Claims will be refused otherwise.

However the size of ROA may not be realistic. As shown in equation 3.24 on
page 50, assuming the processing time is bounded and cannot affect the ROA
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significantly, ROA will be decrease if N increases. ROA is also affected by
ultrasound channel data rate. The slower the data rate, the smaller ROA will
be. As what is usually seen, the ultrasound channel is rather slow. In this work,
the ultrasound transmission achieves about 17bps. This means for N = 16 bits,
and assume no processing delay, the verifier must has R of 321 meters in order
to have 1 meter ROA (assuming radio channel is very fast) i.e:

ROA ≈ R −
N

bs

· s (3.48)

ROA ≈ 321m−
16b

17bps
· 340m/s

ROA ≈ 321m− 320m

ROA ≈ 1m

A MATLAB program has been written to demonstrate the use of this protocol,
and to illustrate the deficiency of the protocol. The MATLAB program source
code is shown in Appendix F. The results are shown in the following.

Figure 3.16 shows the simulation setup. The verifier is placed in the center,
coverage the range of 500 meters in radius. The prover is just outside the
coverage, 501 meters away from the verifier. The location prover claimed is just
inside ROA, which is 176 meters. The radio channel is much faster than the
ultrasound. The size of the nonce (challenge string) used for authentication is
16 bits. The ROA(P) is the ROA only consider processing delay, found from
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Figure 3.16: MATLAB simulation of Berkeley Echo protocol
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equation 3.23; the ROA(PT) is the ROA that includes both processing delay
and transmission time, found from equation 3.24. In the following discussion,
‘ROA’ refers to ROA(PT).

As shown from figure 3.17, in order to have ROA of 100 meters, the verifier’s
radius must be at least 424 meters.
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Figure 3.17: Verifier ROA and radius R

Figure 3.18 further demonstrates the effect of ROA influenced by the size of N
and bit rate. The axis are the nonce length N (bits), verifier radius R (meters),
and the ROA shown as the vertical axis. There are four planes in the figure.
Each plane indicates different bit rate under evaluation. As can be seen, the
larger N is, the smaller ROA is going to be. The rate of change is determined
by the data rate. The slower the data rate is, the greater the ROA is affected.
The plane for data rate of 5bps is much more steep than the one with 17bps.

Figure 3.19 shows the effect by using this protocol. The prover P and verifier V
are 500m away. P claims to be at L, which is 176m away from V. The vertical
axis is the time line. At time 0, V sends a challenge string to P. P has to reply
to the challenge. It is very clear that, in order to cheat on the distance, the
prover has to send the entire packet of response (on the P side) before the first
challenge bit is being sent (on the V side). In such a way, the prover has no
chance to gain knowledge of challenges. The probability of success by breaking
the message authentication is a function of nonce size, as 2(−N). The larger N ,
the smaller success probability.
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Figure 3.18: ROA as a function of N and data rate
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3.6 Cambridge DBP

3.6.1 Protocol description

Similar to section 3.5.1, a distance bounding protocol used for RFID tags has
been proposed in [17]. This protocol is to prove to the verifier that a RFID token
is located not more than a distance upper bound from the verifier. Like other
protocols, this protocol also uses the cryptographic function h(·), i.e. a pseudo
random function in this case, and distance bounding for location verification.
This protocol has three phases. The procedures of the protocol is shown in
figure 3.20 [17].

Figure 3.20: Cambridge DBP

Two parties are involved in the execution of the protocol. A verifier V, i.e. an
RFID reader, and a prover P, i.e. an RFID token. Both parties share secret
key K, and both agree on the pseudo random function h(·). In the first phase
of the protocol, the verifier V sends a nonce NV to the prover P. The prover
will compute R by using function h(·) with secret key K and NV . Rather
than producing an n bits sequence as in the previous protocols, this protocol
generate a 2n sequences, denoted as R. The result R can be represented as a
2-by-n matrix. Each row has n bits sequence, and there are two rows.

R =

(

R0
1 R0

2 R0
3 . . . R0

n

R1
1 R1

2 R1
3 . . . R1

n

)

The protocol enters second phase, i.e. the distance bounding. The verifier
generates a random string C and resets a counter i. It sends one bit Ci to
prover as a challenge and expecting a response. Unlike the original distance
bounding in [15] and other related protocols, this protocol does not compute
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simple cryptographic function, such as ‘XOR’. Instead it uses the challenge Ci

and counter i as a entry to the matrix R. i is used to select the column, Ci

is used to select the row. After received the challenge, the prover selects the
correct entry, and sends it back to the verifier as the response. Both parties
increment the counter i. The time between the challenge and the response is
measured. The action required for the prover to perform can be very fast and
efficient. Since the matrix can be, in computer system, a two-dimensional array.
To fetch an item only needs to read a memory location. The hardware overhead
taken to access the first memory location is the same as accessing the last. The
distance bounding repeats n times. In the last phase of the protocol, the verifier
stores the responses as D. It also computes the pseudo random function h(·)
with K and NV and denoted as matrix R′. By using Ci and i to address the
item in the matrix, a vector D′ can be found. Verifier compare D′ and D,
success if they are the same, failed otherwise.

3.6.2 Analysis - Distance shortening

This protocol has many similarities with what previously introduced. The
pseudo random function h(·) with secret key K performs message authenti-
cation. The pseudo random function is assumed to be collision resistant. The
protocol invokes the distance bounding with rapid single bit exchange. The time
between the challenge and the response is proportional to the distance between
the two. The generation of the response is somewhat different. The challenge
Ci and the current counter i acts as an index to the entry of the response matrix
R. The counter i indicates the column that is selected, which is known to both
parties; the challenge Ci will determine which row to select. Since the response
matrix contains binary numbers, the ith column of the matrix forms a column

vector,

(

R0
i

R1
i

)

and there are only four possibilities:

(

0
0

) (

0
1

) (

1
0

) (

1
1

)

It is easy to see that the uncertainty comes only when the rows of the responses
are different. When the rows of the matrix are the same, the response bit will
be independent of the challenge. Therefore, it gives the attacker a space to
cheat. since the generation of the response matrix is a pseudo random function,
the likelihood for the binary number from two rows depends on the distribution
of the function itself. When the row vector R0 is entirely the same as R1

then the response is completely independent of the challenge. There will be no
insurance of whether the prover is cheating or not. On the other hand, R0 is
the inverse, (logical NOT function) of R1, it is similar as using ‘XOR’ in the
previous protocols.
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In the response matrix R with n columns, and if m columns are having the same
rows, the dishonest prover can cheat on the distance in m columns without effort.
For the rest of the columns, the cheater has to guess what challenge is. The
probability that a prover can cheat successfully is reduce to 2(n−m).

3.6.3 Analysis - Man in the middle attack

A MITM attack can be attempted with this protocol. An attacker only has
knowledge about nonce NV , since it is transmitted in the open air, and he has
access to the specification of the function h(·). The attacker has no knowledge
about the secret key K shared with prover and the verifier.

The attacker cannot compute the correct response matrix R, he has to gain
the knowledge from the prover. This can be realized by attacker accelerating
the clock signal sending anticipated challenge C ′

i before the verifier’s challenge
Ci [17]. The prover will reply to the attacker corresponding response Di. If
C ′

i = Ci, the attacker can use Di as reply, and the probability of C ′

i = Ci

is one half. In case that C ′

i 6= Ci, the response got from the prover R
C′

i

i will

not provide any value to the attacker. He has to guess RCi

i ∈ {0, 1}. The
probability of success will be again one half. In order word, the attack fails only
when C ′

i 6= Ci and he guessed the wrong response, which gives probability 1
4 .

For n-bit challenges, the attack succeed with probability
(

3
4

)n
.

3.7 SECTOR-MAD

3.7.1 Description

Another protocol developed in [18] introducing ‘SECTOR’ a set of mechanisms
for secure verification of the time of encounters between nodes in multi-hop
wireless networks. The ‘SECTOR’ is used to prevent wormhole attacks in ad hoc
networks. The wormhole attack was introduced by Yih-Chun Hu et al. in [19].
In [18], Mutual Authentication with Distance Bounding protocol (MAD) was
proposed. The protocol uses the distance bounding technique to determine the
upper bound on the physical distance between two parties. Thus prevents false
encounter certification caused by wormhole attacks. Even though this protocol
is not proposed particularly for the purpose related to this work, the protocol
does provide a good use of distance verification and message authentication.
The distance verification and message authentication are the major techniques
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Figure 3.21: MAD protocol

used in this work.

This protocol is composed of three phases, initialization phase, distance bound-
ing phase and authentication phase. The demonstration of the protocol is shown
in figure 3.21 [18].

In the initialization phase, two parties each generates two random numbers,
(r,r′) for party U , and (s,s′) for party V . They are represented as binary strings.
r and s are with length l, whereas r′ and s′ are length l′. The two parties will
commit the random numbers to each other, by using any commitment scheme.
In [18], collision resistant one-way hash function H is used, i.e.:

U : cU = H(r|r′) (3.49)

V : cV = H(s|s′) (3.50)

cU and cV will be exchanged via communication channel.

The protocol enters distance bounding phase. In each steps, U will send V one
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bit denoted as αi, and V will also send U one bit βi. i.e.:

U : α1 = r1

αi = ri ⊕ βi−1 (i = 2, . . . , l)

V : βi = si ⊕ αi (i = 1, . . . , l)

For the first bit of α, it is just r1 as a challenge to V . In return, V will XOR
αi with si as a response. U measures the time taken between sending of αi and
reception of βi. Similarly, the βi has just been received by U acts as a challenge.
U should not hesitate, he should perform XOR of ri with βi−1 and send the
result back to V . These steps are repeated l times. After l steps of distance
bounding, the protocol enters final authentication phase.

The authentication phase is mainly to authenticate that s obtained by U was
initially committed by V ; at the same time, r got by V was the same U com-
mitted. So that both U and V knows they ran the distance bounding with each
other. For U to authenticate s, he has to compute all the bits of s from α and
β. It is known that:

[α1, α2, . . . , αl] = [r1, r2, . . . , rl] ⊕ [0, β1, . . . , βl−1]

[β1, β2, . . . , βl] = [s1, s2, . . . , sl] ⊕ [α1, α2, . . . , αl]

More formally,

αi = ri ⊕ βi−1, i = 1, 2, . . . , l; β0 = 0 (3.51)

βi = si ⊕ αi, i = 1, 2, . . . , l (3.52)

Therefore, s and r can be found by U and V :

V : r̄i = αi ⊕ βi−1, i = 1, 2, . . . , l; β0 = 0 (3.53)

U : s̄i = βi ⊕ αi, i = 1, 2, . . . , l (3.54)

and denoted as r̄i and s̄i respectively to indicate as a copy after transmission.

In order for U to authenticate s̄, message authentication code (MAC) is used.
In addition, the protocol also provide a way to check the integrity of (s, s′) and
(r, r′), namely using the hash function H(·). U recomputes c̄V from H(s̄|s′) by
himself and compares with the one received, cV . Similarly, V can compute c̄U

from H(r̄|r′). However, r′ and s′ has not been exchanged. The r′ and s′ are
exchanged with MAC in the following way.

Based on r̄i and s̄, U and V compute a message authentication code (MAC):

V : µV = MACKuv
(v|u|s1|r̄1| . . . |sl|r̄l) (3.55)

U : µU = MACKuv
(u|v|r1|s̄1| . . . |rl|s̄l) (3.56)
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where Kuv is the secret key between V and U . U sends µU together with r′

to V and V sends µV together with s′ to U . The communication ends at this
point.

Now U has (s̄, s̄′), he can check cV and µV .

U : c̄V = H(s̄|s̄′) (3.57)

¯̄µV = MACKuv
(v|u|s̄i|ri), i = 1, 2, . . . , l (3.58)

s and s′ are authenticated by U only when cV = c̄V and µV = ¯̄µV . As can be
seen from equation 3.50, and 3.57, the former holds if and only if s = s̄ and
s′ = s̄′, and latter holds from 3.55 and 3.58 if and only if s = s̄ and r = r̄:

cV = c̄V iff s = s̄ and s′ = s̄′ (3.59)

µV = ¯̄µV iff s = s̄ and r = r̄ (3.60)

In other word, since party U and V has secret key Kuv, the µU computed
from MAC can be used for V to authenticate r; and µV can be used for U to
authenticate s. To authenticate r′, V can compute hash over (r|r′) and check
with CU ; and to authenticate s′, U can compute hash over (s|s′) and check with
CV .

Similarly, to authenticate (r, r′), V needs to check cU and µU :

V : c̄U = H(r̄|r̄′) (3.61)

¯̄µU = MACKuv
(u|v|r̄i|si), i = 1, 2, . . . , l (3.62)

r is authenticated by V , if the following equations are satisfied:

cU = c̄U iff r = r̄ and r′ = r̄′ (3.63)

µU = ¯̄µU iff s = s̄ and r = r̄ (3.64)

3.7.2 Analysis - Distance shortening

Two parties meet each other in the ad hoc network. The MAD protocol can be
invoked to authenticate each other. The execution style of distance bounding is
rather similar to the protocol shown in section 3.4. In each step, only involves
one bit of challenge and response. The response βi is a function of the challenge
αi. The prover V seen from U cannot send response earlier without knowing
the challenge. If the prover guessed a challenge, the success probability for
each distance bounding step will be 1

2 . For l bits, where l is a big integer
e.g. 128 bits, the success probability will be only 2−l, which is considerably
small. Since the protocol is symmetrical, the same property applies to U . The
detailed reasoning and analysis of distance shortening attack please refer back
to section 3.1.3 and 3.2.2.
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3.7.3 Analysis - Man in the middle

The MITM attack can be attempted in this protocol. In this section cooperative
attack is discussed, i.e. two intruders are in the attack scenario. Assuming the
commitment scheme used in the protocol is secure, this discussion will focus
only on distance bounding.

The attack introduces two intruders V̄ and P̄ denoting fraudulent verifier and
prover. P̄ will pretend to be P and prove to the verifier V , similarly, V̄ will
communicate with P . The consequence is that honest prover P believes its
identity has been verified by V , and further communication can proceed between
P and V , however this is not what actually happened. It seems for P and V
that they are communicating with each other, but in fact, V̄ and P̄ are standing
in the middle. Message sent from one honest party can be dropped, modified,
forged and injected. An example, also easily performed, of such attack is shown
in [15]. The fraudsters V̄ and P̄ complete the distance bounding with one party
entirely, then with another. For conventional Man-in-the-Middle attack, there
is no restriction on the intruder’s physical position.

By using distance bounding, the party that involved in the protocol cannot
shorten the physical distance between the parties. If the distance between
fraudulent prover P̄ and verifier V is longer than P to V , then as explained
in section 3.7.2, P̄ cannot shorten the distance with success probability greater
than 2−l. In other word, P̄ and V̄ has to be physically between V and P . Now
the problem can be simplified. The intruder basically cannot broke the protocol
from somewhere further away than the honest prover. For situation where the
intruder is physical between the V and P , a solution proposed in [14] can be
used. The concept ‘Integrity Region’ has been explained in section 3.1.5. The
‘Integrity Region’ is a 3-D space (two spheres) that is each centered at one party
with radius d that equal to the distance between the two parties. During the
execution of the protocol, the two parties look around and visually make sure
that there is no third party within the ‘Integrity Region’, then the protocol just
executed is reliable.

The original use of the protocol is for secure tracking of node encounters. The
MITM cannot be performed either. The message authentication code computed
in the protocol uses the secret key shared between the two parties. Without
knowing the key, the intruder’s message will not be authenticated.
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3.8 Conclusion

This chapter demonstrates several protocols that use distance bounding proto-
col to authenticate the participant. An appetizer introduces the use of distance
information to verify the sender of the message with one round distance bound-
ing in key establishment. This protocol leads to 50% attack success rate. To
obtain better security, Distance bounding with bit exchange protocol is devel-
oped. This protocol has an n rounds distance bounding phase. The bigger n
is, the harder to cheat. After n rounds distance bounding, the receiver and
the message sender are bounded by the distance between the two. By visual
inspection, the user can verify if the participant of the protocol is the one he
believed. The attacker only has 2(−n) probability to break the protocol. If the n
is chosen large enough, the probability to be attacked can be significantly small.
To speed up the protocol execution, distance bounding with word exchange uses
the same idea, but with less security insurance. The DH-DB protocol has been
proposed by Capkun et al. The protocol is developed based on DH-SC. The
string comparison has been automated with help from distance bounding. The
user mutually authenticate each other within one protocol run. The probability
of a successful attack is also less than 2(−n).

The Berkeley Echo protocol uses distance bounding to verify location claims.
This proposal models several important factors encountered in practical imple-
mentation. They considered the device processing time as well as transmission
delays. An attacker can successfully cheat the distance bounding from the un-
certainty provided by the above two factors. The use of ROA eliminates such
attack. However the solution they provided is effective, but not very efficient.
Similarly, Cambridge DBP protocol verifies the location of an RFID token. The
protocol used a response matrix instead of XOR function. The attacker has
probability of ( 3

4 )n to successfully break the protocol. The MAD protocol pro-
posed in secure tracking of node encounters also uses distance bounding protocol.
This protocol has a similar fashion as used in DH-DB protocol, and shares the
same security property.

Essentially the distance bounding protocol will be used in this work for key
establishment. This chapter illustrated several examples that successfully adopt
the distance bounding protocol. In next chapter, A key establishment protocol
with distance bounding will be discussed and implemented. The implementation
procedure and issues will be addressed.
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Chapter 4

Implementation of Key
Establishment Protocol based

on Ultrasound Distance
Bounding

This chapter will focus on how secure key establishment protocol has been im-
plemented, and implementation issues considered. The Cricket in door location
system from MIT has been used in this project. The choice of key establishment
protocol among different solutions is first described. The Cricket system is then
briefly described. The fundamental concepts about the embedded operating
system TinyOS that is running on Cricket system is explained. The imple-
mentation of the protocol is divided into several small modules that are the
building blocks to the final implementation. Each building block is described,
implementation issues and design decisions are discussed along the way.
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4.1 Introduction

In Chapter 2, several different key establishment techniques have been described.
A session key can be decided by one party and established with use of public key
cryptography. Each party possesses of a key pair. Encryption using the sender’s
private key can be used to authenticate the message by the receiver. Encryp-
tion using the receiver’s public key ensures only the true recipient can open the
secret message. The use of public key cryptography is a secure measure, but the
computational cost is too high. In this work, the Cricket system is used, it is a
simple device with very limited resources. The use of public key cryptography is
basically not feasible. The Diffie-Hellman method seems to be very appropriate.
The direct implementation of DH method has been found flawed. Several other
proposals are available. The Pre-Authentication is a good start. The use of lo-
cation limited channel such as infrared ensures no other devices could intercept
with the authentication. However, the Cricket system does not provide any lo-
cation limited communication channel. Password Authenticated Key Exchange
uses a shared weak password to derive a stronger secret key. It is extended
from the ‘EKE’ method. This method requires the user to provide a secret
password in the field, and typed into the device. Such requirement cannot be
satisfied by the Cricket system. Similarly, the Seeing is Believing(SiB) requires
a digital camera and a display to complete the key establishment. The Loud
and clear(L&C) uses a specific library to generate text strings, and ‘Text-to-
Speech’ library to provide audio signals. Those requirements cannot be fulfilled
in this work. The Short string comparison (MANA) and DH-SC method also
requires a keypad or an output for string comparison, but they moved one step
further for automated method. The DH-DB is a protocol uses DH method with
distance bounding. The DH-DB protocol extends the DH-SC with automated
string comparison. The ‘success/failure’ can be indicated by two Leds. The
protocol also involves distance bounding, which provides a device localization
mechanism to prevent MITM attack. This protocol doesn’t require any infor-
mational input from user. The output can be displayed on a PC or iPAQ via a
serial cable. The last described technique Shake them up, is designed for device
with very limited resources. The key point of this method is to use device in-
distinguishability instead of existing cryptofunctions. In this work, the Cricket
system is capable of handling symmetric cryptography, therefore this method is
not further considered.

Chapter 3 further discussed several variant use of distance bounding proto-
cols. Some are used for key establishment, others are used for verifying location
claims. The first four protocols use the distance bounding for key establishment.
Berkeley Echo is a verification of location claims. The significant downside of
this protocol is the fact that ROA can be reduced to very small, so the protocol
may not be very efficient. The Cambridge DBP protocol is used to verify the
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location of an RFID tag. The attack success probability is higher than the one
found in DH-DB. The MAD protocol is used for mutual authentication for node
encounters. This protocol assumes the two nodes already have a symmetric
MAC key before protocol execution.

The ‘Distance bounding - bit exchange’ protocol can be seen as a simplified ver-
sion of DH-DB. One execution of the protocol provides a public key information
from one party to another. By exchanging role and re-invoke the protocol, both
key information can be exchanged. The ‘Distance bounding - Word exchange
protocol’ and the ‘Appetizer’ are two variant.

For the sake of simplicity, ‘Distance bounding - bit exchange’ protocol is imple-
mented to demonstrate the principle idea behind secure key establishment with
distance bounding.

In the following sections, the hardware system and software environment are ex-
plained. Several modules have been designed and implemented. Those modules
are the building blocks toward protocol implementation. The next two sections
will describe the hardware Cricket system, and the operating system it runs –
‘TinyOS’.

4.2 Cricket System

The Cricket in door location system from MIT has been used in this work.
This system provides complete hardware solution for low cost battery powered
distributed embedded system. The Cricket system was designed in MIT and first
described by Nissanka Bodhi Priyantha et al in [20] [21]. It is now commercially
available from Crossbow Technologies1.

The Cricket system benefits from the high integration of current IC technology.
The small footprint makes it very attractive in many distributed embedded ap-
plications. The system consists of an 8 bits microcontroller, a pair of ultrasound
transducers, a radio unit and external I/O ports[23].

The microcontroller used in the system is ATMEGA128 from ATMEL. It is an
8 bits microcontroller in Atmel AVR family[24]. AVR2 stands for ‘Advanced
Virtual RISC’, is a RISC microcontroller family. This microcontroller has many
advanced features. The microcontroller is currently clocked at 7.3728 MHz

1Crossbow Technologies, http://www.xbow.com/
2 AVR was originally conceived by Alf-Egil Bogen and Vergard Wollan at Norwegian In-

stitute of Technology and further developed at Atmel Norway.
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frequency, it is able to operate at 16 MHz. It has 32 8-bit general purpose
working registers. Unlike many other 8051 compatible microcontroller family,
ATMEGA128 executes most of the instructions in single clock cycle and has
an on-chip 2-cycle multiplier. There are 128K bytes In-System Programmable
(ISP) Flash memory, 4K bytes Internal SRAM. This microcontroller also fea-
tures from several on-chip peripheral components, i.e. two 8-bit timer/counters,
two expanded 16-bit timer/counters; several PWM (Pulse Width Modulation)
channels, 8 channels of 10-bit ADC (Analog-Digital Converter). Two-wire serial
interface, dual USART, and SPI serial interface enhanced the controller with
connectivity and extensibility. IEEE 1149.1 compliant JTAG boundary scan
supports on-chip debug capability. Six sleep modes, software selectable clock fre-
quency make this controller suitable for many power-efficient and power-aware
applications.

The ultrasound transducer pair is from Kobitone audio company. On each
Cricket system, there is a transmitter and a receiver. Both operate at 40 KHz
center frequency, bandwidth of 2 KHz. The transmitter operates at 12V supply
voltage, driven by MAX864 DC-DC converter [25]. The receiver detects ultra-
sound signal and converts into voltage, an interrupt will be generated when the
voltage level is higher than a pre-defined threshold. Details about ultrasound
transducer can be found from corresponding datasheet3 in [26].

The Cricket system has a low power RF transceiver on the board. It uses an
0.35µm CMOS (Complementary Metal-Oxide Semiconductor) single chip radio
solution CC1000 from Chipcon. It operates on UHF frequency band (examples
of frequency allocation and radio spectrum, please refer to [28]). It is mainly
intended for Industrial, Scientific and Medical (ISM) and Short Range Device
(SRD) frequency bands at 315, 433, 868 and 915 MHz. It is also programmable
to be used at any other frequencies in 300-1000MHz range[27]. This transceiver
supports programmable output power and operates at low supply voltage. It
also provides RSSI (Received Signal Strength Indication) output. Interfaced
with microcontroller using SPI.

There are two external interface available on the Cricket system. One is 51-pin
connector mainly used for programming the device, and the other is 9-pin RS232
serial port. There are several signals can be reached from 51-pin connector, such
as external interrupt, A/D convertor input, SPI, two wire serial interface, etc.
This connector is mainly used to attach the device to the programmer board to
download firmware. RS232 serial port can be used for attach the device to a
PC or any other devices with same port. It can be used for software debugging,
or user interface with interactive functionalities.

3The part number of ultrasound transmitter is 255-400ST12 and receiver is 255-400SR12.
They are produced and distributed by Mouser electronics.
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Further details about Cricket v2 system hardware and precompiled firmware
can be found in Cricket User manual in [22].

4.3 TinyOS

The scaling of technology has shown a great impact on small computing devices
with low power, distributed, self-organised embedded systems. Wireless sensor
network is a very good example. The sensor nodes are equipped with many dif-
ferent technologies such as microcontroller, A/D converter and communication
transceiver, all in a chip. But it is constrained with very limited resources, such
as RAM, computation power, and energy. An underlying operating system is
designed to be used in such scenario, it is TinyOS. There are several paper ad-
dress the need for such operating system, and described the details of TinyOS,
such as [44][45] and [46]. This section will only give a very brief description and
introduction to basic concepts, so to understand the implementation described
in the coming sections.

Figure 4.1: Mica2 Blink application

TinyOS communicates directly with hardware components. Each hardware com-
ponent is managed and represented by a software Module. A Module can be
understood as a driver to the specific hardware. Hardware components can
interact and cooperate with each other, so software Modules can be brought
together to perform some functions. In software, it is called a Configuration.
The connection between software Modules (and hence hardware components) is
called wiring. It has rather similar fashion to hardware description languages
such as VHDL and Verilog. The modules and configuration that provide some
functionalities is called a Component. The component can be a single module.
It can also be a configuration that wires several modules. Each component also
defines an interface that could communicate with another component. The in-
terface ‘possess’ of two sets of functions. One set of functions is commands .
The other set is events. A command is called by an upper layer component, and
an event is signaled by a lower layer component due to hardware interrupt or
event occurred. To use or provide an interface, the functionality of a component
can be utilized.
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An example is shown in figure 4.1. The ‘Main’ is the main component from
TinyOS. This component is usually not visible from user application, but wired
through ‘StdControl’ interface. The ‘BlinkM’ is a module that uses ‘Leds’ and
‘Timer’ interfaces, which in turn provided by ‘LedsC’ and ‘SingleTimer’ compo-
nents. Since ‘LedsC’ and ‘SingleTimer’ are configurations, they are further wired
together by several smaller components that are not shown. The ‘SingleTimer’
will signal a ‘Timer.fired’ event, which is handled by ‘BlinkM’ component. In
this event handler, Leds will be toggled by calling a command ‘Leds.redToggle’.
Notice, every action performed is due to an event. The event is signaled and
handled in a manner similar to ‘call back’ functions.

Commands and events are meant to be non-blocking. A command is a request
to perform a service, e.g initiate an A/D sampling or send a radio message. The
command should not wait until the message is completely sent. The event is
used to signal the completion of such service. This is called a split phase oper-
ation. In some cases, a computational intensive operation might be needed in a
command, e.g. compression or cryptofunctions. For such hardware independent
algorithmic operations can be executed in a task. The task can be understood as
a special type of thread. They are managed and scheduled by the operating sys-
tem and executed at some later time. This allows the command and event to be
more responsive. The standard TinyOS task schedular uses a non-preemptive,
FIFO scheduling policy.

4.4 Data transmission over Ultrasound

In the protocol that is to be implemented, there is a need to transmit data be-
tween two parties via ultrasound. By now, the Cricket system does not provide
any hardware nor software support for such functionality. This part has to be de-
signed and implemented. This section first introduces the ultrasound primitive
functions provided by Cricket. It shows the principles of data communication
over ultrasound. Ultrasound transceiver is then designed and explained. A state
machine is used to ensure the correct functioning.

4.4.1 Ultrasound primitives

In the Cricket system, there is a piece of program that provides ultrasound
capability as primitive functions. The user program could use such primitives
to send ultrasound pulses and detect the existence of the ultrasound signal. The
primitive provides functions for both the transmitter and the receiver.



4.4 Data transmission over Ultrasound 73

In the ultrasound transmitter primitives, a sequence of ultrasound pulses can
be generated in each sending. The pulses consist of 8 cycles of ultrasound
signal, each cycle is 25us (corresponds to 40kHz). Therefore the duration of the
pulses is 200us. The signal is captured by oscilloscope and shown in figure 4.2.
It is measured on capacitor C54 right before the transducer. The tail after
the 200us pulses are due to bouncing in the mechanical systems. There was
several software bugs found in the original Cricket system. It exhibits slow
discharging effect and timer errors due to software deficiency, which prevents
the program from correct functioning. The details about the bugs found in this
work and the fixes are explained in Appendix B. The circuit diagram of the
Cricket system hardware construction with component annotation can be found
in Appendix C4.

Figure 4.2: Sending Ultrasound Pulses

In the receiver, ultrasound pulses will be detected by the transducer. The signal
pattern is shown in figure 4.3. It is measured just before the regulation diode
D7. The additional capacitor C49 and resistor R49 together with D7 is similar
to AM demodulation circuit. It is responsible for amplitude detection. The
signal duration is about 1.3ms, it can be clearly seen that the signal is distorted
heavily during transmission. The signal did not die out after this interval, there
are small pulses following the main pulse. The reason for such occurrence is due
to the echo come from any material it experienced. (Further details about US
circuitry can be found in [30].)

By sending a limited number of ultrasound pulses, a signal with highest energy
followed by several smaller ones can be detected. This indicates an informational
relationship between the sender and the receiver. In the later section, a timing
relationship is demonstrated. The situation shown in figure 4.2 and 4.3 can be

4 or from original website: http://cricket.csail.mit.edu/
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Figure 4.3: Ultrasound Pulses received

considered as an one-bit data transmission. A multi-bits data can be realized
by repeating the above procedure.

4.4.2 Design ultrasound transceiver

Data rate

Based on the primitives, data transmission over ultrasound is now possible.
The sender informs the receiver that an event has occurred by simply sends
pulses. If no signal has been detected indicates that such event did not occur.
By such method, one bit information can be represented. In data communica-
tion, an interval is usually defined for each bit, known as the bit width, has unit
of second per bit . One bit is accommodated in such interval. Therefore, one bit
can be sent to the channel after another, so that multiple bits can be transmit-
ted. The closely related concept is data rate, the reciprocal of bit width. The
data rate constrains the communication speed, and has unit of bits per second
(bps).

Ideally the bit width can be determined by the signal length at the transmitter.
However in this case, due to the nature of sound signal, it is more easy to be re-
flected and distorted, the determination of the bit width is slightly complicated.
Apparently the received signal in figure 4.3 is much longer than the sending
signal shown in figure 4.2. However, by extending the time in the oscilloscope,
it gives a more surprising result. As shown in figure 4.4, not only one pulse is
found in the received US signal, more pulses followed. Some pulses are smaller,
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few is even bigger. The reason for such effect is very simple, it is due to the
reflection. The signal is sent to the open air, and propagates in a broadcast
manner. The smaller echo is reflected from the material that absorbs the most
energy, e.g. an open window, or the wall at the far end. The echo with high
energy in this case, is likely due to the ceiling. The test environment took place,
has a ceiling about 3 meters above the floor, the two Cricket devices under test
are placed on the desk, which is about 1 meter above the floor. The transducers
on the Cricket devices are all facing the ceiling. The maximum energy of the
sound signal is therefore experienced by the ceiling. After traveling the round
trip from sender to ceiling and back to the receiver, the distance is about 4
meters, which correspond to about 12ms. The 2nd pulse with high energy in
the figure is located approximately with the same time. (Note that the time
base is set to 10ms/div)

Figure 4.4: Ultrasound echoes

The echo greatly affects the signal reception. The transmitter sends one bit
of information, multiple of signals are received. This phenomenon complicates
the data transmission. In advanced data communication devices such as radio
transceiver, similar effect such as multipath fading also exist. The common
solution is to use dedicated hardware performs signal processing and use error
correction code(ECC). The simplest ECC can perform Single Error Correction
and Double Error Detection (SECDED). However for the current hardware con-
struction, the Cricket system is so simple that a bandpass filtering is not even
performed in ultrasound circuit (this fact can be observed in circuit diagram).

The only solution for the echoes with current hardware construction is to wait
until all possible echo dies out, then sends another bit. Therefore the determi-
nation of the bit width becomes very important and affects the communication
reliability.
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From figure 4.4, it is observed that after sending one bit, the channel is free of
echoes after about 40ms. After the implementation and by experiment, the bit
width of no less than 50ms is experienced. It gives an acceptable ultrasound
data communication channel in the current test environment. For maximum
reliability, bit width of 60 ms is used in the current setup. Longer bit width is
not possible in the current Cricket system, due to the limitation of the hard-
ware timer. It is also worth mention that in the real scenario, it is likely that
the devices are in the open space where obstacles such as ceiling does not ex-
ist; and by correct mounting of ultrasound transducers and proper instruction,
the transducers are facing each other. In such a way, the echoes are further
eliminated providing a more reliable channel.

Communication protocol

After determine the communication data rate, a protocol is needed to spec-
ify the communication format. A protocol is a set of rules for the order in which
messages of particular types are exchanged [31]. In this case, a simple protocol is
needed to specify the data format, type and error handling. The basic function
that are required for the protocol is to:

1. The receiver is capable of obtaining the data that has been sent by the
transmitter.

2. The transceiver in both end should finish communication in finite time
interval.

3. The data should be accommodated in a common unit, such as bit, byte
or word.

4. An error detection mechanism should be adopted, e.g. CRC, Parity check.

The simplest protocol that can achieve such requirement is Serial communica-
tion Protocol, which is widely used in RS232 interface driven by a UART(Universal
asynchronous receiver transmitter). It is a very economic protocol used in data
communications between electronic devices and terminals. Data are transmitted
in a serial manner. Usually the hardware UART is implemented in the devices.
The parity check can be enabled to provide error detection. The channel is syn-
chronised by a Start bit. In this protocol, the data transmission speed is defined
by the baud rate agreed by the two terminals. Therefore to transmit a finite
amount of data, the transmission time is bounded by a finite and deterministic
time interval. The same property applies to the receiver. The data payload is
usually one byte (i.e. 8 bits). One parity check bit follows the data payload
providing error detection.
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Since RS232 serial communication protocol satisfies the functional requirement,
therefore it is used in this work to realize ultrasound data communication. The
detail information about RS232 interface and serial communication can be found
in chapter 16 in [32].

It is also worth mention that:

• Since the main focus of this work is not to develop and implement a
reliable wireless communication protocol, further robust protocols are not
investigated. However it can be left as a future work.

• The parity check has its widely known disadvantage. It can only detect
single bit errors. CRC (Cyclic redundancy check) can be used instead.
However it requires more computation power and implementation effort.
For the sake of simplicity, the parity check is used as it was in the original
RS232 standard.

4.4.3 Transceiver state machine

The hardware that realize the serial communication protocol is known as UART.
There are many commercial products available. However in this work, there is no
space for such expansion in hardware, it has to be implemented in the software.
In hardware implementation, it is usually realized by a Finite State Machine
(FSM). In software implementation, such methodology can also be used, known
as Finite State Automaton (FSA). This method models the system behavior by
states and transitions. Actions can be taken in state or during transition. In
this work, UPPAAL is used as a tool to model the ultrasound transceiver state
machine. It is capable of modeling, simulate and verify the system behavior.
Further details about FSM can be found in Appendix B.6 of [33] and section
8.5 of [34]. A tutorial of UPPAAL can be found in [35].

The coarse representation of the FSA is shown in figure 4.5, and only the fun-
damental principle is described here. The detailed complete FSA diagram with
description of every guard,invariant,channel synchronization and etc. is shown
in Appendix D.

The left one in the figure models the ultrasound transmitter, and the one on the
right models the receiver. Both start at the idle location. When a transmission
begins, the transmitter will be signaled on channel ‘Send’ and taken the transi-
tion into the location StartBit. This location indicates that the transmitter sent
one start bit to synchronize the channel. At the same time, it should also sent
an ultrasound signal noted by Signal=1. By this signal, the receiver’s internal
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Figure 4.5: FSA of Ultrasound transceiver

clock is synchronized with the transmitter. After the synchronization signal is
sent, the transmitter uses an internal clock (usually a hardware timer) to count
the time elapsed. When the time is exactly equal to the bit-width pre-defined,
the transition fired and bring the transmitter into location DataBits. From this
location and here after, the transmitter will send the actual data bits to the
channel. In this location, it will check if there is more data bit to be sent. If
there is, it fetches the corresponding data bit and send to the channel. Again,
the transmitter counts time to satisfy the signal bit-width requirement. When
satisfied, it will fetch another bit to sent. If there is no more data bit, the
transmitter will take the other transition from location DataBits and fire into
location StopBit1. One of the purposes of StopBit1 and StepBit2 is to confirm
with the receiver that there is no more data bits from the transmitter. Even
though the number of bits in each transmission is pre-defined and known be-
tween transmitter and receiver, the stop bits give a further confirmation. The
stop bits are provided by the transmitter sending logic ‘0’ and bring the channel
to idle. By using stop bits, the noise such as echo can be further reduced, so to
provide a more reliable communication. The physical signal representing logic
‘1’ and ‘0’ is discussed in section 4.4.4.

The receiver will constantly listen to the channel. As soon as an ultrasound
signal is detected, the receiver will fire the transition, go to StartBit location
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and be synchronized with the transmitter. It is now capable of receiving the
data bits, as denoted by the DataBits location. In this location, the receiver
listens to the channel for a time period defined by the bit width. If logic ‘1’ is
detected, the receiver will go into ReceivedOne location; if logic ‘0’ is detected,
it will go into ReceivedZero location. When every bits have been received, it
will take the transition and go to StopBit1 location.

The model has been extended with higher level ‘Sender’ and ‘Reader’. The
‘Sender’ uses the Transmitter to send data, received by Receiver and provided
to the ‘Reader’. By simulation in UPPAAL, the transceiver works well. In order
to prove the correctness of the model, verification in UPPAAL by simplified
Computation tree logic (CTL) is performed. The verification is performed by
queries expressed in CTL. Several queries has been stated and checked, they
can be summarized as below:

1. There is no deadlock in transceiver.

2. The current communication taken place in the transceiver can terminate
eventually. So that it does not suffer from livelock 5.

3. If no error taken place, e.g. due to noise and echo, the data received by
the receiver is exactly the same as it was sent by the transmitter.

4. The communication time for a given amount of data is bounded by a
deterministic value.

The above properties has been checked, and the model satisfies these properties.
The formal expression of the queries can also be found in Appendix D.

4.4.4 Implementation

The protocol to be implemented follows from the RS232 standard. However,
this standard was originally applied to wired communication between electronic
devices, the signal logic level and physical signal representation does not apply
to this work directly. Therefore, minor modification is required.

In RS232 standard, the channel is kept by constant logic ‘1’ to represent an idle
channel. In this work, sending ultrasound constantly to indicate idle channel
requires huge amount of energy consumption, which is not realistic for battery

5Livelock is defined as a program is alive, but the processes are not going anywhere. [36]
chapter 2 page 77



80
Implementation of Key Establishment Protocol based on Ultrasound

Distance Bounding

RS232 Ultrasound
Logic ‘1’ -5 to -15V 200 us ultrasound pulses
Logic ‘0’ +5 to +15V no ultrasound pulse

Channel idle logic ‘1’ logic ‘0’
Start bit logic ‘0’ logic ‘1’
Stop bit logic ‘1’ logic ‘0’

Table 4.1: Modification of RS232 standard in ultrasound communication

powered device. Therefore, idle channel is represented by logic ‘0’. Similarly,
the second modification is on the start bit. In RS232 standard, the start bit is
represented by logic ’0’. In this work, the start bit is represented by logic ‘1’.
Third, in RS232, the physical signal representation for logic ‘1’ is an electric
signal between -5 and -15V, where logic ‘0’ is signal between +5 and +15V. In
this work, the logic ‘1’ is by sending ultrasound pulses using Cricket primitive
functions. Logic ‘0’ is by not sending ultrasound pulses. Notice that the Cricket
primitive function sends ultrasound pulses with duration of 200us, whereas in
previous section, the bit width is determined of about 60ms. The bit width is
much longer than the actual pulse width. This interesting fact is due to the
interference from the echo previously discovered in section 4.4.2. If the echoes
can be eliminated, the bit width must be very close or equal to the pulse width.
However, this is out of the scope in this work. Fourth, the stop bits in RS232
standard are represented by logic ‘1’, due to above reasons, they are modified
to be logic ‘0’. The above four main changes is summarized in table 4.1. The
ultrasound communication packet format is then shown in figure 4.6.

Figure 4.6: Ultrasound communication packet format

The ultrasound transceiver has been implemented using nesC language into
Cricket system. The following paragraphs will explain some implementation
issues, which is closely related to nesC language. For the readers that is not
interested about the details, may proceed directly to section 4.5. The following
paragraphs explains the software structure, program interface, how ultrasound
sender and detector is implemented, how data rate are kept in communication
and the arrival time of the packet.

The software structure of US transceiver is simple. The interface file is pro-
vided by ‘usTransceiver.nc’ and following the nesC naming convention, the con-
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figuration file is ‘usTransceiverC.nc’ with module file ‘usTransceiverM.nc’. The
usTransceiverM module uses UltrasoundControl interface, which provides ultra-
sound primitive functions. The events that are signaled from UltrasoundControl
are also handled by usTransceiverM.

The program interface allows the US transceiver to be used by higher level mod-
ules. There are two major interface provided, a command ‘SendWord’ and an
event ‘DataReceived’. The ‘SendWord’ can be invoked to start an US transmis-
sion with data in the parameter field. The data can be any bits (no longer than
15) defined in the header file as a constant. When an US packet is received, the
data will be extracted and signaled as an event to the higher level module. If
the parity check is needed, the ‘SendWord’ command also computes the parity
value of the data, and append it at the end of the data word. Similarly the
receiver also verifies the correctness of the data word by matching the parity
value.

To send and detect ultrasound, primitive functions must be invoked. A se-
quence of ultrasound pulses are sent by calling ‘SendPulse’ command. Eight
cycles of 40kHz in total 200us signal is generated. Such signal can be detected
by the receiver and generates an hardware interrupt, which signals an event
named‘PulseDetected’ that is handled by usTransceiver.

To keep both transceivers with the same pace, both end must have same data rate.
One way is to use a software timer. By setting the timer interval equal to the
bit width of 60ms, a timer-fired event will occur when the time elapsed. The
downside of this approach is that the software timer is not very accurate. Start
and stoping a timer also adds overhead which makes the timing property even
worse. The second approach is to play a trick; reuse ultrasound hardware timer.
By using ultrasound primitive functions, the US detector can be enabled or
disabled. Once enabled, the detector will listen to the channel. A dedicated
hardware timer is also activated. When the timer expires, the detector will be
turned off and an event will be signaled. By this approach, an event with an
accurate timing property can be realized. In the event handler, the ultrasound
detector can be restarted again, a time out event can be signaled periodically.
The time out interval is hard coded by a constant defined in the header file. By
such method, the same data rate in both transmitter and receiver can be kept
according to the requirement.

An additional event is signaled in the usTransceiver to indicate Time of Arrival
of the first bit in the packet. This event is named ‘usMsgDetected’. It will give
the handler a time reference of when the message actually reached the receiver.
This can be used for distance measurement and ranging. Further details on this
topic will be elaborated in section 4.6
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The source code of Ultrasound transceiver is shown in Appendix G.1.

4.5 Radio transmission

The radio communication in Cricket system is well defined. It is based on
Mica2 sensor node. There have been working programs developed for Cricket
radio module. A RF transceiver module is developed in this work, it simply
combines several radio communication module from Cricket system into one
module. The transceiver uses interface ‘BareSendMsg’ and ‘ReceiveMsg’, which
is responsible for sending and receiving. A command is supplied to change the
role of the transceiver (as being transmitter or receiver). The radio packet is
defined by ‘TOS Msg’ structure, which defines the destination address, packet
type, group ID, data payload, and length. A field for CRC code is also avail-
able. Transmitting a packet is done in split phase. The ‘Send’ command start
sending the radio packet. When transmission is done, a ‘sendDone’ event will be
signaled for notification. When a packet is received, ‘receive’ event will be sig-
naled. In addition, there is an interface called ‘RadioCoordinator’ can be used
during sending and receiving data packet. This interface provides an excellent
mechanism to trace the progress of current transmission. This will be further
explained in section 4.6 ranging precision.

For further details of radio message and radio protocol stack, please refer to [37]
and [38]. The source code can be found in Appendix G.3.

4.6 Ranging over Ultrasound

The distance measurement using Time of Arrival [29] can be realized by ultra-
sound. The ranging can be demonstrated by following experiment. Two devices
are placed about 31cm apart, a transmitter and a receiver. The transmitter
sends an US pulse, and detected by the receiver. The signal is measured by
oscilloscope and shown in figure 4.7.

For distance of 31cm at speed of 340m/s, it takes ultrasound signal about 0.91ms
to travel. In the measurement, time difference between sending and reception
is found to be 1.04ms, which is very close to the calculation. So by knowing
the sending time and measure the arrival time, the distance between two parties
can be determined. However, two separate devices are not synchronised. The
receiver does not know when the ultrasound signal was sent. To synchronise the
devices requires extra effort such as performing synchronisation protocol.
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Figure 4.7: Ultrasound ranging

A simple way without using synchronisation protocol is to use radio link together
with ultrasound. The ranging starts by sending a message from Alice over radio.
Assuming radio travels at the speed of light. Bob will receive the message
right away and send a message back to Alice via ultrasound. Alice can use
a watch to record the time between sending of her message and reception of
the response. Since ideally the radio wave travels at the speed of light, which
is neglectable, therefore the time measured corresponds to the distance that
ultrasound physically travelled (assuming no cheating take place).

Small programs are developed in nesC to realize ranging as described above.
The following paragraphs will explain some implementation issues, the readers
that are not interested in the detail may proceed to section 4.7.

‘KeySender’ and ‘KeyReceiver’ are developed in nesC. These two programs can
be further extended for key exchange. By now, they are implemented with
ranging functionality. The ‘KeySender’ (from here on noted as KS) sends a radio
message to ‘KeyReceiver’ (noted as KR). Upon reception, KR immediately sends
an ultrasound message back to KS. The software structure is simple and based
on the module previously developed. It uses ‘usTransceiver’ and ‘rfTransceiver’
module for US and radio transmission. For debugging purpose, ‘Leds’ and
‘RS232’ are also used.

A timer module is used to regulate the pace of program execution. Once the
timer is expired, an event is signaled. A radio packet is sent during the event
handler. When the radio message is received, KR sends back an ultrasound
message. The ultrasound message will be detected by KS and signal a ‘DataRe-
ceived’ event. The ultrasound detector will be enabled and counting time be-
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tween the sending of radio message and the arrival of the ultrasound.

Ranging precision of more than 10cm was experienced. The problem is mainly
due to the nondeterministic nature of ‘task’ execution. As mentioned in sec-
tion 4.3, tasks are posted into a globally managed queue. The task queue is
normally serviced with First-in-First-out (FIFO) policy. In addition, the oper-
ating system also posts tasks to the same queue. Therefore, the user program
does not have any knowledge of task completion. In the radio transceiver soft-
ware module, event ‘DataReceived’ is signaled by a task that is posted in a
module at lower layer (module is named ‘CRCPacket’). Therefore the time KR
is informed about the reception of the radio packet is not exactly the time when
it reaches KR. Hence, the ultrasound reply is delayed, the precision is lost. The
solution to such problem is to use ‘RadioCoordinator’ interface. This interface
will wire ‘rfTransceiver’ with module ‘CC1000RadioIntM’, which directly com-
municate with hardware transceiver. An event called ‘byte’ will be signaled
each time one byte of the packet is being sent or received. By examining the
source code, and trace down to the lowest level6, this event is signaled directly
from hardware. So KS can know exactly when a certain byte is being sent, and
KR can know when it is being received. Since radio wave travels fast enough,
so it can be understood that sending and receiving one byte occur at the same
time. Both parties are now ‘synchronised’ at byte level. In KS, the ultrasound
detector should be enabled during ‘byte’ event, and KR should correspondingly
send ultrasound response back to KS. By such technique, the precision has been
improved to less than 10cm, but this is not the limit. Due to software over-
head, (such as context protection for function call) and/or interference from
preemptions (such as hardware/software interrupts), so that both transmitter
and receiver are synchronised in the same byte but not the same bit. The Cricket
system provides additional function to fine tune the synchronisation. By calling
function ‘GetRxBitOffset’, the current bit index of that byte can be obtained.
This bit index indicates how much radio receiver lags with transmitter7. Since
it is a bit offset, the value is between 0 and 7. Value 0 indicates that it lags
the most and 7 indicates no lag. The KR as radio receiver should obtain such
information and send back to KS for correction. This information is carried in
the ultrasound packet as the reply. By experiment, such technique has improved
the precision to less than 2cm.

It should be noticed that the ultrasound ranging program proceed in a way that
is very similar to Distance bounding protocol. This piece of software makes one
step further towards the final implementation of the secure protocol, and play
a significant role along the development.

6No literature has been found describing the construction of ‘RadioCoordinator’, therefore
the source code is examined here. This event is eventually signaled from module ‘HPLSpiM’

7This technique is concluded by careful study of the Cricket system source code, supplied
as open source
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The source code for ultrasound ranging can be found in Appendix G.5.

4.7 Integrity and Authenticity

The essential goal of this work is to implement a secure key exchange protocol.
Security is based on Confidentiality, Integrity and Availability (CIA) [39]. As
known from Chapter 2, key establishment protocol exchanges public key infor-
mation, instead of informing each other the final key. By public key information,
the two parties involved in the key establishment will derive the final key through
mathematical computation. In such a way, the exchanged key information need
no longer to be private and secret. Confidentiality is not a necessity in this
work. Since the key is established from public key information, this information
must be kept unchanged during execution. Integrity is most important. Since
key exchange protocol will not be executed very often, therefore availability will
not be addressed.

Integrity prevents unauthorized modification. There are several method to de-
tect such modification. As has been mentioned many times and used a lot in
the communication society, Parity check and CRC are very popular. Error cor-
rection code also exist. This kind of error detection method is mainly used to
detect nonmalicious changes during faulty transmission, introduced by noise or
interference from nearby electronics. Malicious modification must be handled
so that prevents the attacker from modifying data as well as error detection
mechanism [39]. In security society, it is done by cryptographic checksum.

A cryptographic checksum is a function that uses cryptography to produce a
checksum, also known as message digest. For error detection code, change made
in the detection code can match the modified data. When using cryptographic
checksum, such attack can be prevented. One bit modification alters the cipher
text significantly, and vice versa. Some cryptographic function hardly have an
inverse function8, e.g. one-way hash function.

Security provided with TinyOS is through the use of TinySec. It is a link layer
security architecture especially designed for wireless sensor networks. TinySec
uses CBC-MAC (Cipher Block Chaining Message Authentication Code) to ad-
dress message integrity and authenticity. The MAC implemented in the TinySec
uses the same block cipher that is used for encryption, therefore the MAC is very
easy to be used. TinySec offers two block ciphers, RC5 and Skipjack. Since RC5
is patented, Skipjack is the default cipher. Also from evaluation result, Skipjack
is faster than RC5 in computation time [40].

8by hardly, we mean it is computational infeasible to compute the inverse
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A small program is implemented with use of TinySec, MACsender and MACre-
ceiver. The software structure is to wire the program to ‘CBCMAC’ module,
and ‘CBCMAC’ is wired with ‘SkipJack’ module. When the program needs
to compute MAC value, it essentially executes Skipjack block cipher. ‘rf-
Transceiver’ module is also used for radio communication.

The program execution is: The MACsender computes the MAC on predefined
clear text. Both clear text and MAC value are sent to the MACreceiver. Upon
reception, MACreceiver recomputes the MAC value based on clear text, and
compares with the one received. The received value and computed value are
sent to PC through serial cable, hexadecimal value is displayed for visual in-
spection. Both end are provided with the same MAC key. It should be noticed
that computing MAC is still time consuming. It should not be used in event
handler. A ‘task’ should be posted into the global task queue to perform MAC
computation. When the task is done, a flag should be set for notification.

The source code mentioned with use of TinySec can be found in Appendix G.6.

4.8 Debugging utility

The debugging capability of Cricket system is very limited. Unlike the common
PC programming interface, e.g. Visual C++, MATLAB. There is no visual in-
terface for debugging purpose. There are three LEDs on the Cricket hardware,
which can be used to monitor program behavior, however very limited. Com-
munication between Cricket and PC through a serial cable is provided. This
gives a better chance for program analysis and trouble shooting.

A ‘RS232’ module is developed. It uses ‘Serial’ module, which wires with
hardware UART module. To initiate serial communication, ‘SetStdoutSerial’
is called through ‘Serial’ interface. Function ‘printf’ can be use to send a string
to PC. Upon receiving a string from PC, ‘Receive’ event will be signaled.

Debugging nesC code with AVR JTAG ICE is also available. It is an in-circuit
debugging interface through JTAG technology9. With JTAG ICE, many debug-
ging techniques can be used, such as breakpoint, memory and register content
reading, etc. However, it requires additional hardware component to be pur-
chased, e.g. JTAG ICE pod; and hardware modification is needed for certain
device. Therefore, this method has not been experienced. Further details can
be found in article ‘Debugging nesC code with the AVR JTAG ICE’ in TinyOS

9JTAG is a test interface used in boundary scan. It is widely used for circuit board testing
and chip verification.
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documentation[42].

Source code for ‘RS232’ module can be found in Appendix G.7.

4.9 Protocol Implementation

4.9.1 Distance bounding - bit exchange (Revisited)

There are several building blocks have been designed and implemented in the
previous sections. This section will describe the implementation of the secure
key establishment protocol. Before discussing the details of implementation
issues, here is a review of the protocol. The protocol was shown in figure 3.5 on
page 37. For convenience, shown again here in figure 4.8.

Figure 4.8: Distance bounding - Bit exchange with Expanded details(revisited)

Two parties Alice and Bob wish to establish a session key using DH method.
Each should send their public key information to the other. This protocol starts
from Bob. Bob picks up a number as public key information and makes up a
message M containing the key information. He first commits to the message ob-
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tains C and sends to Alice via radio channel. Commitment can be implemented
by using cryptographic hash functions, or any other cryptofunctions. As shown
in the figure, a keyed hash function hKB

(·) is used. KB is the hash key. Alice
generates an n-bit nonce N , and sends to Bob as a challenge. The challenge
is sent in n rounds, one bit at a time. In each round, Bob should receive the
challenge, computes the response di (by N i

A ⊕ Ki
B, where Ki

B is ith bit in hash
key.) and sends it back to Alice immediately using ultrasound. When Alice
received the reply, she continues with the next round. Alice measures the time
between sending of the challenge and arrival of the response, denoted as T i

DB .
When all n rounds are finished, distance bounding phase is completed. Bob
reveals the message by sending it in clear text.

Alice obtains the hash key KB from the response di and the nonce N i. She
recomputes the C by hash function hKB

(·) over the message received in the
last step M . She compares with the one received from the first step. If the
two matches, the integrity property of the message M is satisfied; i.e. no one
has modified the message. However, the authenticity of the message also need
to be proved. This is achieved by distance bounding. Alice verifies the dis-
tance between her and Bob, and compares with the number found from dis-
tance bounding phase. She looks around, if no one else is within the ‘Integrity
Region’ and the distance measured is true, then the message is authenticated,
failed otherwise.

4.9.2 Implementation issues

Software structure

The protocol consists of basically three main phases: Commitment, Distance
Bounding and Decommit. The commitment to the message indicates that the
sender of the message had decided a key information, and will not change from
here on. The MAC can be used as a commitment scheme, which is essentially
a cryptographic function. The distance bounding phase consists of rapid bit
exchange, in the form of challenge response pair. The challenge is sent in radio
channel and response in ultrasound. Since radio travels at the speed of light,
so the time depends on distance that sound travels. The decommit phase is
to send key information committed in clear text. So the following functions
are needed: Ultrasound transmission, Radio transmission, Cryptographic func-
tionality and Ranging. These functions have already been realized by previous
section from 4.4 to 4.7. To show the correct execution of the protocol and
also ease the debugging, serial communication with PC is used. The following
modules are used and wired together in the implementation: rfTransceiverC,
usTransceiverC, CBCMAC, SkipJackM, RS232C, TimerC, LedsC.
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The use of those modules makes the implementation issues addressed in previous
sections also apply here in this implementation. Here is a short summary: The
data rate of ultrasound transmission is 60 ms; the communication protocol uses
RS232 standard, i.e. one start bit, 8 bits data payload, one parity check bit,
and two stop bits; ranging precision is ensured by using ‘RadioCoordinator’ and
replying the bit offset as computation overhead; the MAC computation should
be placed in a ‘task’, since it is a intensive computation.

Program execution

Two programs are developed, ‘PtlSender’ and ‘PtlReceiver’. The former (on
behalf of Bob) initiates the key exchange protocol with commitment. The latter
starts distance bounding with radio challenge. When the challenge is received,
with the use of ‘RadioCoordinator’ for synchronization, ultrasound response
is sent. As discussed in section 4.6, ‘RadioCoordinator’ ensures the ranging
accuracy. The program execution is controlled by a state machine. Each state
has an output that is the action to be taken, such as sending the commitment.
When the action is performed, the state variable is updated. The action is taken
when an event occur. For example, after ‘PtlSender’ sent the commitment, the
state variable should be updated to the next value. Ultrasound response must
be sent when a challenge is received. The state machine, unlike conventional
FSM usually seen in the digital electronics such as hardware transceiver and
processor unit, which is usually driven by a global clock10. The state machine
developed in this work, progresses under events, it executes in an asynchronous
fashion.

System State Machine

The state machines in ‘PtlSender’ and ‘PtlReceiver’ are very similar. State ma-
chine of ‘PtlSender’ is shown in table 4.2. The Entry indicates the event handler
or tasks that perform actions and generates Output. It also determines the Next
State. After the system is started, it resets the system into PHASE START
state. A timer is used to pace the system and brings it into PHASE IDLE
state. In the mean time, task ‘compute cipher’ is computing the MAC and
change the next state into PHASE1. When the timer is fired again, it will
encounter PHASE1 state and send the commitment. During transmission, the
system is in PHASE1 WAIT state. When ‘sendDone’ is signaled, next state is
changed to PHASE2. In this state, challenges will be received and the response
should be sent. The system keeps in PHASE2 state until enough challenges are
received, then change the next state into PHASE3. Finally, the system is in
PHASE4, the public key information is sent in clear text.

10 Certainly asynchronous circuit also exist. Recently, researchers have paid more attention
to asynchronous circuit, due to the fact that it brings a better power profile with less dynamic
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PtlSender
Entry Output Next State

StdControl.init Reset System state PHASE START
Timer.fired Computing MAC PHASE IDLE

compute cipher Compute MAC PHASE1
Timer.fired Send commitment PHASE1 WAIT

rfTransceiver.sendDone Commitment sent PHASE2
RadioReceiveCoord.byte Send response PHASE2

rfTransceiver.receive Accumulate challenge PHASE3
Timer.fired —— PHASE4
Timer.fired Send message ——

in clear text

Table 4.2: PtlSender state machine

In the ‘PtlReceiver’, the system is reset into PHASE START state. When timer
is fired, the system is ready to receive commitment and change the next state
to PHASE1. When commitment is actually received, the system is ready to be
PHASE2. It should send challenges and expect ultrasound response in PHASE3.
When all responses are collected, it will set next state to PHASE4 and wait
for decommitment. The system in PHASE4 should check the key information
with the commitment and conclude the result. The state machine is shown in
table 4.3.

PtlReceiver
Entry Output Next State

StdControl.init Reset System state PHASE START
Timer.fired Wait for commitment PHASE1

rfTransceiver.receive —— PHASE2
Timer.fired Send challenge PHASE3

usTransceiver.msgDetected Time US response PHASE3
usTransceiver.DataReceived Get US response PHASE4

rfTransceiver.receive Authenticate message ——

Table 4.3: PtlReceiver state machine

Ultrasound Ranging

The principle of precise ranging has been described in section 4.6. In this para-
graph, the implementation details are explained. The ranging consists of a radio

energy consumption.
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challenge sent by Alice, and Bob returns an ultrasound reply. The synchroniza-
tion in ‘byte’ level is to use ‘RadioCoordinator’. The lag between Alice and
Bob’s transceiver is indicated by bit offset, denoted as comp. In order to have
a good ranging precision, the value comp should be informed to Alice by Bob.
Alice will use comp to compensate the measured time-of-flight. Since it is known
that radio transceiver has a bit rate of 20kpbs, it takes about 48.8us to transmit
or receive one bit. By multiply comp with 48.8us, the lag time can be found.
From Cricket user manual [22], it states that there are timer offset of 550us due
to software overhead, and denoted as OF . The speed of sound is approximately
340m/s, or equivalent to 34mm/100us in order to avoid numerical errors. The
computation needed to obtain the distance between Alice and Bob is:

T = TOF − comp ∗ 48 − OF (4.1)

S = v · T (4.2)

where TOF is time-of-flight, comp is bit compensate, OF is timer offset, T is
the corrected time, v is the speed of sound and S is the distance.
It has been found during test that offset OF of 550us is not precise, 900us is
found to be more accurate.

Distance bounding

Distance bounding technique has a significant role in this protocol. The dis-
tance between two communicating parties is bounded by the result determined.
To incorporate ranging with distance bounding in this implementation, some
modification is required. The challenge sent over radio is only one bit. From
original distance bounding protocol, only one bit response is needed. However
as discussed in section 4.6, a correction is needed to obtain ranging precision.
The correction is a integer number between 0 and 7, as a bit offset from radio
transceiver. The ultrasound response packet should accommodate both infor-
mation. The bit offset can be represented by a 3-bit binary number, together
with one response bit, they can be accommodated in 8 bits data payload. The
packet format is shown in figure 4.9.

Figure 4.9: Ultrasound reply packet format

In the original distance bounding protocol, the arrival of the response is notified
by the reception of xi. xi could be either ‘1’ or ‘0’. In this implementation,
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logic ‘0’ is represented by absent of ultrasound signal in the channel. Without
ultrasound signal, the ranging is impossible. If half of the responses are ‘0’,
half of the challenge response pair will have no distance measurement. This
significantly weaken the security property of distance bounding protocol. In
this implementation, such problem is solved by ultrasound transmission protocol
described in section 4.4.4 figure 4.6. The arrival of the ultrasound packet is
notified by the start bit. When the start bit is found by the ultrasound receiver,
it should stop the watch and record the time. This method uses the advantage of
the packet, makes the distance measurement independent of the data payload,
and maintained the distance bounding protocol security property.

Commitment

The commitment is another important concept in this protocol. Bob cannot
change the message M after she commits to the message and sent C, which is
called binding. Alice cannot obtain any information from the commitment C
about M, until Bob opens it, which is called concealing [43] [14]. The use of
the commitment is to improve the security of the protocol, the security of the
commitment scheme itself is not considered here in this work. The essential goal
is to ensure the integrity of the message M. MAC is commonly used for such
purpose as been used in section 4.7. One way hash is another example. TinySec
provides MAC functionality. As in the previous section, MAC is implemented
by a cryptofunction ‘Skipjack’. The MAC size determines the security of the
protocol. If the MAC is only one bit, then the attacker has 2(−1) chance to
succeed. The longer MAC size, more security the protocol has. Since this
implementation is a demo of the protocol, default size of 64 bits is used. The
chance for an attacker to succeed is therefore 2(−64). Usually more than 128
bits is preferred.

Concurrency and race condition

It has been noted several times that TinyOS is an event-driven operating sys-
tem. During normal program execution, software event (such as timer expired)
and hardware interrupt (such as data is sampled from A/D converter) can oc-
cur. The current program execution can be preempted by other event. Access
of the shared variables in one ‘thread’ can be raced by another ‘thread’. The
issues in concurrent/parallel programs also exist in this case. The solution pro-
vided by TinyOS is to use keyword atomic. The instruction guarded by atomic
keyword will be protected from race conditions. Some implementation of the
atomic action is through the use of hardware ‘Test and Set ’ instruction([36]
pp.99). In TinyOS, the current implementation of atomic is by disabling and
enabling interrupts [41]. This implementation has very low overhead. This ap-
proach is very effective and efficient. However the downside is also apparent:
leaving interrupts disabled for a long period, makes the system less responsive,
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i.e. samples can be lost from A/D converter, and radio packet cannot be re-
ceived. Therefore excessive use of atomic keyword should be avoided. Atomic
statements are not allowed to call commands or signal events [41].

(a) race condition (b) atomic guarded

Figure 4.10: State transition

By now, access shared variable can be protected with atomic keyword, however,
there is a particular case that should be mentioned, state variable. The program
execution is guided by a state machine. The state variable is also a shared
variable and should be protected. The protection from race condition should
be taken place during state transition. A very common implementation of state
transition is to use if branch or switch case statement. An example is shown in
figure 4.10, where (a) shows a piece of code that may suffer from race condition,
there is no concurrency protection. The safest implementation is to guard the
entire code segment by atomic keyword. Since it may contain command calls
or event signaling, this method should be avoided. The recommended solution
is shown in figure 4.10(b). The current state value is stored into a temporary
variable as an atomic statement. the temporary variable should be a local
variable that cannot be accessed by any other event handler. Any changes to
the state value is made on this temporary variable. When the required actions
are taken, the state value is then saved back into the global ‘state’ variable.

Reliability

This implementation of the protocol is mainly focused on the security aspect.
However, since it is also a distributed system, it shares the problem that may
occur in every distributed system. For example, a packet might be lost, data
can be corrupted. The error occurred in data can be detected by error detection
code, in this implementation, parity check is used in ultrasound communication
and CRC in radio protocol stack. The cryptographic function used in MAC
also provides such detection capability. The packet loss however, will create
an impact to the program execution. The protocol progresses according to the
state machine. The state value is updated after an event occur. The event is
triggered by an arrival of a message. If a message is lost, the corresponding
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event won’t occur and the state machine will not function correctly. This will
essentially lead to a deadlock situation. Device A will not send message M 2

A

until device B sends a message M 1
B . Device B will not send message M 3

B until
M2

A is received. But if M1
B is lost at the first place, the sending of the following

two messages from both A and B will not happen. Both devices cannot progress.

One solution to such problem can be found from TCP protocol, which provides
a reliable connection. An acknowledgment ‘ACK’ is used as a response to inform
a packet has been received. If ‘ACK’ is not replied within certain time interval,
the packet is found to be lost and retransmission is required. In some cases,
negative acknowledgment ‘NACK’ can also be found. This approach will add
further complexity to the implementation, and the security property need to be
re-evaluated. This approach is not used in this work. It can be left for further
study.

The second solution is to use a ‘Watch dog’. ‘Watch dog’ can be seen in many
embedded systems. When the system is not responsive for a certain period of
time, the ‘Watch dog’ will reset the system to a known state. Usually ‘Watch
dog’ is a specific hardware module in the microcontroller. This solution is very
simple. To be used in this implementation, only a software timer is needed.
When a message is received, the event handler will reset the timer. If the
message is not received due to packet loss, the watch dog timer will be fired
after pre-defined interval. It will reset the system state machine, and restart
the entire protocol. For current implementation, the sender of the key has a
watch dog timer interval of 7 second, the receiver is set to 5 second. The reason
for such inequality is that the sender initiates the protocol, the receiver has to
be ready before that point of time.

The source code of ‘PtlSender’ and ‘PtlReceiver’ is shown in Appendix G.8.

4.10 Conclusion

The key establishment protocol has been implemented and described in previous
sections. In this section, the protocol is reviewed, implementation details are
summarized. The final protocol is shown in figure 4.11 on page 96.

Two parties A and B establish key by exchanging public key information. The
protocol sends such information only from B to A. Before protocol starts, B
should generate public key information and contained in message M. Both A
and B should generate random nonce NA and KB respectively. The length of
nonce is denoted as L, which is usually 64 bits or longer. The MAC is computed
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over M with nonce KB, denoted as C and transmitted to A over radio link. The
MAC is computed beforehand as a ‘task’. In order to obtain B’s nonce KB

to authenticate M, rapid bit exchange is invoked. Party A sends one bit of
nonce NA via radio link as challenge. Upon reception, B computes N i

A ⊕ Ki
B

and denoted as xi. B should also obtain radio bit offset denoted as oft to keep
synchronization as described in section 4.6. xi is concatenated with oft denoted
as di, and sent over ultrasound channel. The ultrasound packet format is also
shown in figure 4.11. A receives the ultrasound response, and records the time
between sending of challenge and reception of the response. This procedure
repeats for L times, and forms the distance bounding. After this phase, the
distance between A and B is determined. B will send M in clear text to A
for integrity check. A will determine the nonce KB from x. He computes
MACKB

(M ′) and compare with C. Key is established if the two matches, abort
otherwise. A should also check if the distance between A and B matches with
the one determined from distance bounding. If they don’t match, the key should
be discarded. By reversing the role, A’s key information can be sent to B.
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Figure 4.11: Protocol summary



Chapter 5

Tests

This chapter describes how each building blocks and the implementation of the
secure key establishment protocol are tested. The test strategies are described,
and test result is summarized.

5.1 Ultrasound transmission

The first building block to be tested is ultrasound transmission, ‘usTransceiver’
module. The test uses ‘usSender’ to send data to ‘usReceiver’ via ultrasound.
The test is mainly focused on functional test, i.e. correct behavior in normal
condition. The test evaluates whether transmission can be established, the
correctness, and the coverage.

Test of transmission establishment

This is a rather simple functional test. The test is performed by sending regular
data to the receiver. The test pattern is ‘0x30,0x31,0x32,0x33’ and circulating.
Two devices are placed on desk with about 30cm apart. The test result shows
the same data patterns have been received. The result is captured by ‘Hyper
terminal’ and shown in Appendix E.1. Notice that the MSB (Most Significant
Bit) is the parity bit.
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Test of correctness

The correctness of the transmission is tested. The purpose is, 1st to evaluate
that the correct transmission is independent of both the time and data. 2nd

if noise is presented, error should be detected by error detection mechanism
within its capability. To evaluate the first goal, the devices should be tested for
a long time interval. The exhaustive test pattern should be applied. In digital
circuit tests, pseudo random test patterns are often used. It can reduce the total
number of test patterns applied to the system [47]. Both are used to test that
the system does not suffer from certain data pattern. Exhaustive test is to use
an Automatic Test Pattern Generator (ATPG) traverse all possible data in the
Device Under Test (DUT). The pseudo random test pattern generator is usually
implemented by a Linear Feedback Shift Registers (LFSRs). To evaluate the
second goal, sound noise should be generated.

The ‘usTransceiver’ module is designed to carry 15 bits data payload. The bit
width is 60ms. To send a data packet with payload of 15 bits, including 4
bits overhead (start bits, parity bit and stop bits), in total 19 bits are sent,
which takes at least 1.14s (19 × 0.06s = 1.14s). 15 bits data will result of
32768 patterns. To exhaustively test all patterns requires 37355.52 second,
which is about 10 hours. Such test is not realistic. Pseudo random test will
reduce total number of test patterns, and the test result is a probability that the
system functions correctly. However, an additional channel is needed to agree
the current test pattern. Therefore, in this work, a so called partial exhaustive
test is conducted. Since 8 bits data are commonly used, the test only evaluate
the correctness of communication with 8 bits data. This method reduces the
number of test patterns to 256. Each transmission only involves 12 bits, which
is 0.72 second. To complete the test, about 3 minutes are required. This test
interval is also enough to demonstrate time independency.

The test result found out that the parity bit has a ‘stuck-at-0’ fault1. It means
the parity bit is always logic ‘0’ independent of data pattern. This fault is due
to the overflow of the data buffer in the transmitter. The fault is fixed, and the
transceiver is working correctly. Test result is shown in AppendixE.1.

To evaluate second goal, sound noises are generated in the surroundings. The
test location is picked as a nature environment with activities, i.e. a lab in
DTU building 322 room 229. At the time test is conducted, there are about 25
students in the lab doing their exercises. The exercises are multi-people group
work, hence increase the background noise. Intensive noises are also introduced,
such as hitting the desk and drop a metal at the place very close to the DUT2.

1 A ‘stuck at’ fault is a most common fault model used in digital circuit. It indicates a
node in the circuit being fixed at logic 0 or logic 1.

2by close to, we mean less than 5 cm
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The test is conducted for 2 minutes. The first 1 minute is tested only with
background noise, and second minute is tested with intensive noise. The test
result shows that the DUT can work correctly under background noise. With
intensive noise, several errors has be detected. However, it also shows that
there are errors not detected, e.g. data pattern ‘0x1f3’ received was neither
generated, nor detected as error. The reason for such undetected fault is due
to the inefficiency of the parity check mechanism. The pattern supports to be
‘0x133’, which is equivalent to ‘100110011B’. The pattern received is ‘0x1f3’,
which is ‘111110011B’. The faulty pattern has two bit errors. The parity check
is not capable of detecting such error. To improve the error detection rate, a
better coding scheme might by used. The test result is shown in AppendixE.1.

Coverage

The coverage of the ultrasound transceiver is roughly evaluated. This test is
just to give an idea of maximum communication distance between the trans-
mitter and the receiver. This test is not meant to be precise. The coverage is
determined at the distance when receiver fails to correctly receive data from the
transmitter. The coverage is found to be about 3 meters. (The precise method is
to calculate sound pressure at the receiver’s position. It is known that distance
doubles, the sound pressure reduces by half.)

5.2 Radio transmission

The radio transceiver module ‘rfTransceiver’ is tested by ‘rfSender’ and ‘rfRe-
ceiver’ module. Since ‘rfTransceiver’ used modules that are defined in TinyOS,
intensive tests are not required. Only functional test is conducted. The test
patterns are binary number sequence from 0x0 to 0x7. The patterns received
are displayed on LEDs. The test result shows that the radio transmission func-
tioning correctly.

5.3 Ultrasound ranging

An ranging application using ultrasound has been developed, and described in
previous chapter. Two devices are used for ranging test, one is programmed
with ‘KeySender’ and the other with ‘KeyReceiver’. Two major aspects are
concerned in the test: the correct functioning of the ranging system and the
accuracy.



100 Tests

Functional test

Two devices are place 30 cm apart. The test lasts for one minute, the distance
measured is very accurate. By input test result into MATLAB, accuracy is
calculated by mean value and standard deviation. The mean is µ = 29.677, and
standard deviation is ρ = 0.599.

Accuracy test

The accuracy is evaluated by testing at different distances, record the result and
tabulate the mean and standard deviation. The table is shown below:

Test condition (cm) Mean Std Dev. Bias
(d) (µ) (ρ) |d − µ|
30 29.677 0.599 0.323
60 58.233 0.568 1.767
100 99.846 0.464 0.154
200 196.5 0.5099 3.5

Table 5.1: Ranging accuracy

The mean value is the average of the test result. Standard deviation indicates
how much the test result differ from the mean. It can be seen that the test
readings are rather stable. The bias indicates how much the measured value
differs from the truth. At 200 cm distance, the measurement has the maximum
error.

The test data can be found in Appendix E.2.

5.4 Commitment

This section is to test commitment scheme. The MAC is used for commitment.
It is implemented by invoking Skipjack ciphers. Two programs ‘MACSender’
and ‘MACReceiver’ are developed to test the commitment. The former sends
a radio packet containing 29 bytes of data. 4 bytes MAC code are computed
over the data. The MAC is sent again over radio link. The latter receives two
packets and computes the MAC of data packet. The clear text data, MAC
received and the MAC computed are sent over serial cable to PC, displayed on
HyperTerminal.

Two tests have been conducted, a functional test and a test under attack.
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Functional test

The functional test is to test the correct behavior of the system. The ‘MACRe-
ceiver’ should compute the MAC of received data. The result of computed MAC
should match the one received. The test data (test pattern) are 29 bytes long.
To run exhaustive test over 29 bytes data is impossible. The test patterns are
arranged such that there are correlation between each byte in one test, and cor-
relation between the current test pattern and the next. In total 20 patterns are
tested. The test result shows that without interference (and no error situation)
the MAC computed matches with the MAC received. There is no obvious corre-
lation between each byte in the MAC, nor correlation between the current MAC
computed and the next MAC. The test result confirms with the expectation.
The result is shown in Appendix E.3.

Attack situation

The situation where attacker is involved is also tested. A third device is pro-
grammed with ‘rfSender’ developed in previous section. The purpose of this
device is to send arbitrary data over radio link so that collision will alter the
packet content in the radio channel. Such modification should result of sig-
nificant change between MAC received and the one computed. The same test
patterns are used in this test. Some test results are selected and listed in ta-
ble 5.2. The full listing is shown in Appendix E.3.

Test Correct Received Computed Authenticity Modification
MAC MAC MAC

1 2d 9 96 86 2d 9 96 86 2d 9 96 86 Yes No
2 30 99 4a 79 31 0 0 0 30 99 4a 79 No MAC
3 8a bf 23 11 33 0 0 0 66 ae c7 8d No Text + MAC
4 9c 5e ba 80 32 33 34 35 39 59 aa 2d No Text + MAC
5 47 52 42 9c 31 0 0 0 3c 3e d9 41 No Text + MAC

Table 5.2: Test of MAC

The correct MAC values are listed. Only the data from first test was authen-
ticated, the others have been modified. The second test, the computed MAC
equals to the correct MAC, but the received MAC is different. The MAC has
been changed. For other three shown in the table, neither MAC received nor
computed matches with the correct MAC, modification is found in both clear
text and MAC. The MAC has successfully detected unauthorized changes.
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5.5 Key establishment protocol

The key establishment protocol has been implemented and described in sec-
tion 4.9.2. Two Cricket devices are required, one is programmed with ‘PtlSender’
and the other is programmed with ‘PtlReceiver’. The former initiates the pro-
tocol and sends his key information to the latter. The protocol involves com-
mitment and distance bounding. Two tests have been applied, functional test
and intrusion test. Since the key exchange protocol is implemented by small
modules that have been tested in previous sections, therefore, in this section,
block tests will not be conducted.

Functional test

The functional test is to show the system can behave correctly. Two devices
are placed about 60cm apart. The messages received by ‘PtlReceiver’ are
sent through serial cable to HyperTerminal. The test result is shown in Ap-
pendix E.4. It first shows the commitment, followed by distance bounding. The
information supplied during distance bounding has the following format:

bt:2559us, 0 @1, ofst:4, t:1803us, D:61cm

The meaning for each abbreviation is shown in table 5.3. The above line says:
The response data is ‘0’, at bit index 1 (0 @1); the uncorrected time is found to
be 2559us(bt:2559us), with bit offset 4(ofst:4); the corrected time is calculated
as 1803us(t:1803us), and hence distance is 61cm(D:61cm).

bt:nnnn us, n @n, ofst:n, t:nnnn us, D:nn cm
uncorrected time bit value bit index bit offset corrected time distance

Table 5.3: Information format for Distance bounding

The data in clear text is also displayed. The ‘PtlReceiver’ derives the MAC key
of ‘PtlSender’, computes the MAC over the clear text and compares with the
MAC received.

The test result shows that the implementation is functioning correctly.

Distance shortening attack

Intrusion test has been performed. The test is focused on distance shortening
attack. A dishonest key sender has been developed to perform such attack. The
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attacker is a modified version of the ‘PtlSender’. There are two places to be
modified, i.e. the byte level synchronization and bit level offset correction. In
this test, the attacker is synchronized two byte ahead of time, this will give the
attacker about 768us to save (2 ·8 ·48us = 768us), which correspond to 261mm
shortened. For bit level offset correction, the minimum bit level offset is always
replied to the key receiver, which is 7 (indicates no lag). The test condition is
exactly the same as functional test: two devices placed 60cm apart. The test
result is recorded by HyperTerminal, and shown in Appendix E.4. It shows that
the distance has been shortened with about 20cm. Using MATLAB, the mean
value is 42.78cm, the standard deviation is 4.045cm, maximum distance mea-
sured is 49cm and minimum distance measured is 37cm. The standard deviation
is much larger than the test conducted in section 5.3 Ultrasound ranging.

Even though the distance has been shortened, it does not bring any advantage
to the attacker. At the end of the protocol, key receiver performs message
authentication by MAC matching. The result shows that two MAC don’t match
with each other. The authentication found that the key sender is not trusted,
the key establishment failed! In order to show that this single test was not a
coincidence, this test has been performed 3 more times. The test results all
confirm with the first one, distance is shortened but key establishment failed
due to authentication. The extra 3 tests are also shown in the Appendix. The
statistical data of the distance bounding result over all four tests are shown in
table 5.4.

Test condition (cm) Mean Std Dev. Shortened Max. Min.
(d) (µ) (ρ) |d − µ|
60 42.78 4.045 17.22 49 37
60 41.67 3.40 18.33 49 37
60 42.95 4.138 17.55 49 36
60 43.40 3.70 16.6 49 37

Table 5.4: Statistical data of distance bounding under attack

It should be emphasized again that when the attacker cheats on the distance, he
has to send out the response before he could know the challenge. The response
to be correct is purely by chance. The attacker has only 2(−n) probability to
be completely correct. In this test, the MAC size is 8 bytes that is n = 64 bits.
The chance for attacker to succeed is extremely small.

By the above four tests under distance shortening attack, this implementation
of the protocol is concluded to be correct and secure.
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5.6 Conclusion

The implementation of secure key establishment protocol in chapter 4 is based
on several building blocks developed. Each building block has been tested in
this chapter for functionality and correctness. For ranging and commitment
building blocks, the precision and security are also tested specifically. The key
establishment protocol is evaluated with functional test. A modification has
been made to perform an attack. The implementation correctly passed the
functional test and successfully rejected the message from dishonest attacker.
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Conclusion

The technology is developing faster and faster, the expanding of the Internet
makes people connected. There have been many forms of connections in cyber-
space, e.g. wired connection, wireless network, structured network, Ad-hoc net-
work, etc. The life will be rather different if without any form of communication.
Certainly the security will be a great concern in such beneficial technology. The
security measures to provide Confidentiality and Integrity has been taken into
account in the design of such technology. Cryptographic is a magic that plays
a significant role in security. Messages are encrypted with a key and check sum
can be computed. However, the design failure and implementation fault makes
the protection easy to be broken.

To protect the information exchanged between two participants is to use en-
cryption. The encryption key is required to be established. The key established
will be used for security, but what can secure the key establishment. During
exchanging of the key, anyone can eavesdrop the communication since it is an
open network (no secrecy). The information transmitted in the network can be
modified without being detected (no integrity). The attacker can even replace
the entire message of a packet false claim to be someone else (no authenticity).
The three problems above are the major issues in key establishment. Especially
in the ad-hoc network, there is no infrastructure available in the network in any
form.
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Several proposals have been studied in this work. The proposals all focus on the
above mentioned three issues, and provide reasonable solutions. Some proposal
uses public key cryptography. The users only exchange the public key. Since
such a key is intended to be public, the secrecy is no more a concern. Similarly,
public key exponent can be exchanged (DH key exchange), which has the same
property. The attacker can eavesdrop the information exchanged, but he cannot
derive the session key. The concept about Integrity and Authenticity is different,
but somehow related. In public key cryptography, the session key is encrypted
by sender’s private key. The receiver can authenticate the message by decryption
with sender’s public key. Since the message is also encrypted by receiver’s public
key, no one can modify the message so to ensure the Integrity. Without public
key cryptosystem, other proposals use other ways to protect the integrity and
authenticity. To ensure integrity, message digest or cryptographic hash is used.
Upon reception of the message, the receiver computes the digest of the message
and compares with the digest received. If the two matches, the message is free
from modification. The authenticity is the last issue to be address, but not the
least. Many attacks actually succeed from the failure of the authenticity check.
Some proposal converts the digest into image and displayed on the screen. The
other participant captures the image to authenticate the message sender. This
is called an image authenticator. Some proposal uses audio. Others use string
authenticator. A solution uses the distance (physical truth) to authenticate the
sender of the message. It is known as distance bounding authenticator.

The distance bounding authenticator uses the distance bounding protocol. The
distance bounding protocol discovers the physical distance between the message
sender and receiver. The user should visually inspect the distance between
them. If no third party is within the bound, the information exchanged is
considered to be secure. However, the implementation of the distance bounding
authenticator can be flawed. The attacker can perform distance shortening
attack. The Distance Bounding - Bit exchange (DB-BE) maximizes the security
insurance. The challenge-response pair is proceeded in a sequential manner,
which makes the attacker very difficult to succeed. The DH-DB protocol puts
the key exchange into a symmetric form, the key information is exchanged and
key established in one pass of the protocol. It shares the same property with DB-
BE. There are also several implementations of the distance bounding protocol
used for many different purposes, still closely related with localization.

The key establishment protocol using distance bounding with bit exchange is im-
plemented. The implementation targets on small embedded device with limited
resources. Cricket system is used. It runs TinyOS, an embedded operating sys-
tem. Since it has limited resources, DH method is suitable for such scenario. The
DB-BE has been implemented. Several functional blocks have been developed.
They are responsible for ultrasound communication, radio communication, ul-
trasound ranging, cryptography and debugging. The detailed implementation
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issues have been discussed. The key establishment protocol is implemented
based on those building blocks. One device initiates the protocol by sending
commitment of the public key information. It is followed by distance bounding.
The receiver of the message reveals the information and authenticates with the
distance bounding authenticator. Since the public key information is intended
to be public, confidentiality is not an issue. The commitment provides hiding
and binding property, which ensures the integrity.

The implementation of the protocol has been tested. The building blocks are
tested before the final system test. Functionality and correctness is tested. Some
block is even tested with attack scenario. The test result shows the building
blocks are all working properly. There is no security flaw found. The implemen-
tation of the protocol is tested of functionality. The implementation works well.
Distance shortening attack is also performed to test the security of the protocol.
This implementation has successfully detected and rejected the attacker.
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Basics about Security

A.1 Encryption

The three important aspects of computer security are Confidentiality, Integrity
and Availiablity [39]. The confidentiality ensures that the information is not
accessed by any unauthorized parties. In security society, confidentiality is en-
sured by encryptions. A very simple encryption, for example for a text sentence,
is to scramble the sequence. The reader has to know the correct sequence, as a
key, to unscramble the text. The algorithm that encrypts the clear text into ci-
pher text is the encryption algorithm. The encryption algorithms are all public
and well known. For example, the information about the well known encryp-
tion algorithm ‘Data Encryption Standard (DES)’ can be found in [48] and
can be freely downloaded from Internet. Therefore, the secret is protected by
technology (more precisely by mathematics) not by another secret.

To encrypt a message M , a secret key KE is needed. The resulting cipher text
C is:

C = Enc(M, KE)

To reveal the message M from C is called decryption, is a reverse function of
the encryption. Decryption requires the party possess of decryption key KD:

M = Enc(C, KD)
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If the key K ′

D possessed by a party that is different from KD, the resulting
message M ′ should be significantly different from M .

There are two kinds of encryption algorithms, symmetric and asymmetric. Sym-
metric algorithm has the same key used for both encryption and decryption,
whereas in asymmetric algorithm KE is different from KD. The well known
symmetric algorithms are: DES, Advanced Encryption Standard (AES) (can be
obtained from [49]), RC5 [50] and Skipjack [51]. The example of asymmetric
key algorithm (also known as public key cryptography) is RSA [52].

The two basic techniques for encryption are Diffusion and Confusion. The more
systematic study about encryption can be found in [39].

A.2 Integrity

Even though the secrecy provided by encryption makes the intruder to be con-
fused enough and have no way to figure out what the secret is, that does not
always satisfy everyone’s need. Encryption does not prevent the intruder from
modifying the information. The mechanism to detect such unauthorized modi-
fication, so to ensure information integrity should be provided.

The fundamental idea to detect message modification is by message digest or
sometimes called a digital fingerprint. It is for a message M , computes a unique
output via a function h(). Error detection code found in communication society
is an example of such digital figureprint. Parity check code is the most basic
form of error detection code. It only checks the parity of the information during
transmission. Most severe problem of parity code is that it only detects one
bit error. CRC (Cyclic redundancy check) is a much improved error detection
code. However, those error detection code is mainly focused on error introduced
by noise and Electromagnetic Interference(EMI).

The cryptographic hash function is a hash function with additional security
properties. A good cryptographic hash funciton is a one-way function, that is
to compute a hash of the message is easy, whereas to compute the original mes-
sage from hash value is impossible. This is also known as preimage resistant.
For example, the hash of a message ‘I am at school’ might be ‘0xABCDE’. To
obtain hash value ‘0xABCDE’ from plain text message is a simple computation.
However, the hash value does not reveal any information about plain text mes-
sage. Another property of cryptographic hash is second preimage resistant. For
a given message M , to find another message M ′ that is different from M but
hash(M)=hash(M) is very hard. For example, the message ‘I’m at school’ is
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similar to the first example, but the hash might be ‘0x12345’, which is quite dif-
ferent1. By using exhaustive search to go through all combinations hence hash
values to match with the one under attack be computational infeasible. The
most commonly known cryptographic hash functions are MD5 (MD for message
digest) and SHA (Secure Hash Algorithm). Further information about MD5 can
be found in rfc1321 [53], and SHA-1 can be found in rfc3174 [54]. Unfortunately
security flaws have been found in both algorithms.

A concept that is very similar to hash function is MAC (Message Authentication
Code). Unlike hash functions, MAC function take two inputs to produce an
output. It has the form MAC(k, M), where M is the message, and k is the key
to compute the message authentication code. The MAC is used to authenticate
the message. It protects both a message’s integrity as well as its authenticity.
Sometime, MAC is called a keyed hash function. Hash function can also be used
to implement MAC. Consider the following scenario, two party Alice and Bob
communicate with each other via a wireless link. Alice wishes to send a message
containing the most recent data sampled for scientific research. The reliability of
the information is very important, so that no false data from adversary should be
reported. To authenticate the message, the MAC of each message is computed,
tagged at the end of the message and sent over the radio link. In order to check
the authenticity at the receiver side, the receiver Bob must also hold Alice’s
MAC key beforehand. Upon reception of the message, Bob recomputes the
MAC value over the message body received, and matches with the MAC tagged
at the message body. If the two match, the message is authenticated to be sent
from Alice. A key-chain is some time used. After the current message is sent
and authenticated at the receiver, both Alice and Bob advance their key by one,
so new MAC key is generated and replaces the key used for last communication.
Such method is used to avoid replay attack.

1The hash values shown here in this section are arbitrary numbers for demonstration pur-
pose only.
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Cricket system bugs and fixes

There are several bugs found in the Cricket software system. This Appendix
will describes the bugs and corresponding fixes.

B.1 Ultrasound transmitter power shut down

In the ultrasound primitive functions provided in the file ‘UltrasoundControlm.nc’,
the ultrasound transmitter sends pulses by command ‘UltrasoundControl.SendPulse’,
and stopped by interrupt handler
‘TOSH INTERRUPT(SIG OUTPUT COMPARE2)’. However the two func-
tions start and stop the transmitter by enable and disable the FET (Field Effect
Transistor) transistor Q2, which in turn shuts down the device U18 (MAX864).
The U18 is a DC-DC voltage converter supply power to OP-AMP (U17) that
drives the ultrasound transmitter (US2). When U18 is shut down, the U17 will
be shut down. When the program call the command to send a sequence of
ultrasound pulses, the transmitter will be powered for a while, and shut down
soon. The fault effect can be seen in figure B.1.

The oscilloscope is adjusted to time base of 200us/div. The first 200us shows
the ultrasound pulses. After the end of the pulses, a slow discharge effect can be
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Figure B.1: Ultrasound transmitter power shut down

seen. This effect lasts for more than 1ms. This fault may influence the accuracy
of signal duration. The solution is to disable the the following instruction in the
interrupt handle ‘TOSH INTERRUPT(SIG OUTPUT COMPARE2)’:
sbi(PORTG,2);

The correct signal is shown in figure B.2.

Figure B.2: Correct ultrasound signal
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B.2 Ultrasound receiver power shut down

Similar problem also found in ultrasound receiver software. In ultrasound prim-
itive functions, command ‘UltrasoundControl.StartDetector’ and ‘Ultrasound-
Control.StopDetector’ are used to start and stop the detector. It not only ma-
nipulates the timers/counters, it also enables and disables the FET Q3, which
directly control the power source of U13A and U14. The U13A and U14 are
two OP-AMPs that used to detect signal level and generate interrupts to micro-
controller. The fault effect is when detector is stopped and restarted again, an
interrupt will be generated even without ultrasound in the channel. This fault
will generate false detections, which influence the correct program execution.

The solution to this fault is to disable the following instrcution in command
‘UltrasoundControl.StartDetector’:
cbi(PORTB, 4);
and the following in ‘UltrasoundControl.StopDetector’:
sbi(PORTB,4);
To correct enable and disable the power of ultrasound receiver, TinyOS API
can be used:
‘TOSH SET US IN EN PIN()’
and
‘TOSH CLR US IN EN PIN()’.

B.3 Ultrasound receiver timer out failure

The ultrasound receiver, the detector has a time-out interval defined in
‘UltrasoundControl.StartDetector’ command. The time-out is set by calling
‘ outw(OCR1AL, timeout)’ instruction to set timeout value to register ‘OCR1AL’.
The prototype of this instruction is defined in ‘avrhardware.h’ as:

#define outw(val, port) outw(port, val);

Notice, in the prototype, the time-out value first, port number after. The Cricket
source code has swapped the two, which means that an illegal value (OCR1AL)
is written to port that is specified by the time-out. The correct time-out value
has not been written to the correct register. The solution to this bug is to
replace original instruction with the following:

outw(timeout , OCR1AL);
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Cricket Circuit Diagrams
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Appendix D

Modelling of ultrasound
transceiver FSM

This Appendix describes the UPPAAL model of ultrasound transceiver. The
model uses formal prove with CTL logic. The coarse repesentation was explained
in section 4.4.3. The model include a receiver, a transmitter. To test the
transceiver, a sender and a reader are also created.

D.1 Ultrasound receiver FSM

The receiver model start from ‘Idle’ location, indicate channel idle. There are
two edges out from this location; one is leading to ‘StartBit’, the other leads
back to ‘Idle’. The invariant ‘rx clk¡=1’ indicates that one of the edges has to be
taken when the clock increment to ‘1’. One edge can be taken when there is no
ultrasound signal detected, that is guarded by ‘Signal==0’. If this edge is taken,
the system reset the receiver bit index (‘bit index’) and the clock (‘rx clk’). If
there is an ultrasound signal detected (by guard ‘Signal==1’), that means the
transmitter has send a pulse to channel to synchronize the receiver. The sys-
tem will be taken to ‘StartBit’ location. The system will stay in this location
for time duration specified by the guard and the invariant. The time dura-
tion must satisfy the transceiver bit rate requirement (‘rx clk¡=DATA RATE’).
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When both inveriant and guard are satisfied, the edge will be taken and bring
the system to ‘DataBits’ location to receive data. During the transition, re-
ceiver clock and bit index are reset. There are 5 possible outgoing edges to 3
locations. Two edges leads to location ‘ReceivedOne’, two edges leads to lo-
caiton ‘ReceivedZero’ and one edge leads to ‘StopBit1’. Location ‘ReceivedOne’
indicate that a logic ‘1’ is received by the receiver, where ‘ReceivedZero’ indi-
cate that a logic ‘0’ is received. The different between the two is whether an
ultrasound signal is detected. If ultrasound signal is found (noted by guard ‘sig-
nal==1’), a ‘1’ is concluded; otherwise a ‘0’ is concluded. An addition guard is
used to ensure the data rate (‘rx clk==DATA RATE’). However error may oc-
cur during transmission and falsely conclude a ‘1’ or ‘0’. This is modelled by the
guard ‘FAULT==1’ in the second transition. After receive one bit, the system
increment the bit counter (‘bit index++’) and reset receiver clock (‘rx clk=0’),
bring the system back to ‘DataBits’ location. When all the data bits are received
(‘bit index==DATA WIDTH’), the last edge from this location will be taken
and bring the system to ‘StopBit1’ location. This location and the one follows
it (‘StopBit2’) are used to receive stop bits. When two stops are received, the
last edge of the system will be taken, bring the system back to idle and signal
the ‘Reader’ process that data has been received. Notice that location ‘Receive-
dOne’, ‘ReceivedZero’ and ‘Stopbit2’ are marked as urgent, so this location will
not spend any time. It will take the outgoing transition as soon as possible.
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Idle

rx_clk<=1

DataBitsrx_clk<=DATA_RATE

ReceivedOne ReceivedZero

StopBit1

rx_clk<=DATA_RATE

StopBit2

rx_clk<=DATA_RATE

rx_clk==DATA_RATE,
bit_index<DATA_WIDTH,
Signal==1

rx_clk==DATA_RATE,
bit_index<DATA_WIDTH,
Signal==0

rx_clk=0,
rxBit[bit_index]=1,
bit_index++

rx_clk=0,
rxBit[bit_index]=0,
bit_index++

rx_clk==DATA_RATE
rx_clk = 0

Received!

rx_clk = 0,
rx_time = 0

rx_clk==DATA_RATE,
bit_index<DATA_WIDTH,
FAULT == 1

rx_clk==DATA_RATE,
bit_index<DATA_WIDTH,
FAULT == 1

rx_clk==DATA_RATE,
bit_index==DATA_WIDTH
rx_clk = 0

Signal ==0,
rx_clk==1

bit_index=0,
rx_clk = 0,
rx_time = 0Signal ==1,

rx_clk==1

rx_clk==DATA_RATE

bit_index=0,
rx_clk = 0

Figure D.1: US receiver FSM
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D.2 Ultrasound transmitter FSM

Similarly, the transmitter start from ‘Idle’ location. When there is a data packet
to be sent in ultrasound, the sender will signal the transmitter by ‘Send!’, cor-
respondingly the transmitter is signaled by ‘Send?’. This will take the edge and
bring the system to ‘StartBit’ location. At the same time set send ultrasound
pulses (‘Signal=1’) to synchronize the channel. After the amount of time speci-
fied by the invariant and guard (‘tx clk¡=DATA RATE’, ‘tX CLK==DATA RATE’),
the system take the edge and fired to location ‘DataBits’. From this location,
the transmitter start sending actual data bits. The transmission is divided into
two phases, a signal generation and signal stablisation (noted by location ‘Send-
ing’ and ‘Sent’ respectively). The signal generation is to determine what to send
(by assignment ‘Signal=(txbit[bit index]==1)?1 0’). and generate corresonding
signal to the channel. The signal stablisation is to satisfy the bit rate (tim-
ing) requirement. After one bit is actually sent, the system will increment the
bit counter (‘bit index++’) and fired back to ‘DataBits’ location. When every
data bits are sent (‘bit index¿=DATA WIDTH’), the system will take edge from
‘DataBits’ to ‘StopBit1’ location. Similar to receiver, two stop bits are defined.
The transmitter signal the sender by ‘SendDone!’ and back to idle.
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idle

DataBitstx_clk<=1

Sent

StopBit1
tx_clk<=DATA_RATE

StopBit2

tx_clk<=DATA_RATE

Sending
tx_clk<=DATA_RATE

StartBit

tx_clk<=DATA_RATE

tx_clk=0,
bit_index++

Signal = 0,
tx_clk = 0

tx_clk==DATA_RATE

SendDone!

tx_clk==DATA_RATE

Signal = 0,
tx_clk = 0,
tx_time = 0

tx_clk==1,
bit_index>=DATA_WIDTH
Signal = 0

Signal = (txBit[bit_index]==1)?1:0

tx_clk==1,
bit_index<DATA_WIDTH

tx_clk==DATA_RATE,
bit_index<DATA_WIDTH

tx_clk==DATA_RATE

tx_clk = 0

Send?
bit_index= 0,
tx_clk = 0,
tx_time = 0,
Signal = 1

Figure D.2: US transmitter FSM
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D.3 Sender & Reader

Idle

clk<=10

Sending

Send!

SendDone?
clk = 0

Idle DataReceived

Received?

Figure D.3: US transmitter FSM

D.4 CTL verification

//Verification.q //This file was generated from UPPAAL 3.4.11, Jun 2005

/*

The receiver can obtain the data within limited time

For all path, always satisfy the following requirement:

( One start bit + Two stop bits + Data Bits ) * Data rate = Communication time

*/

A[] (Receiver.rx_time<=(1+DATA_WIDTH+2)*DATA_RATE)

/*

The data is sent within limited time

For all path, always satisfy the following requirement:

( One start bit + Two stop bits + Data Bits ) * Data rate = Communication time

*/

A[] (Transmitter.tx_time<=(1+DATA_WIDTH+2)*DATA_RATE)

/*

What has been received is what was transmitted

For all path, the received value eventually is the same as sent value

rxBit[i] = txBit[i]

*/

A<>(Receiver.StopBit2 and (Receiver.rxBit[7] == Transmitter.txBit[7])

and (Receiver.rxBit[6] == Transmitter.txBit[6]) and (Receiver.rxBit[5]

== Transmitter.txBit[5]) and (Receiver.rxBit[4] == Transmitter.txBit[4])

and (Receiver.rxBit[3] == Transmitter.txBit[3]) and (Receiver.rxBit[2]
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== Transmitter.txBit[2]) and (Receiver.rxBit[1] == Transmitter.txBit[1])

and (Receiver.rxBit[0] == Transmitter.txBit[0]))

/*

The data can be sent

For all path, eventually in StopBit2 location

*/

A<>(Transmitter.StopBit2)

/*

The receiver can stop

For all path, eventually in StopBit2 location

*/

A<>(Receiver.StopBit2)

/*

System without deadlock

*/

A[](!deadlock)
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Test result

E.1 Test of US transmission

Test of transmission establishment

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133



140 Appendix E

data received: 130

data received: 31

data received: 32

data received: 133

Test of correctness with exhaustive test

data received: 100 data received: 121

data received: 1 data received: 122

data received: 2 data received: 23

data received: 103 data received: 124

data received: 4 data received: 25

data received: 105 data received: 26

data received: 106 data received: 127

data received: 7 data received: 128

data received: 8 data received: 29

data received: 109 data received: 2a

data received: 10a data received: 12b

data received: b data received: 2c

data received: 10c data received: 12d

data received: d data received: 12e

data received: e data received: 2f

data received: 10f data received: 130

data received: 10 data received: 31

data received: 111 data received: 32

data received: 112 data received: 133

data received: 13 data received: 34

data received: 114 data received: 135

data received: 15 data received: 136

data received: 16 data received: 37

data received: 117 data received: 38

data received: 118 data received: 139

data received: 19 data received: 13a

data received: 1a data received: 3b

data received: 11b data received: 13c

data received: 1c data received: 3d

data received: 11d data received: 3e

data received: 11e data received: 13f

data received: 1f data received: 40

data received: 20 data received: 141
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data received: 142 data received: 6e

data received: 43 data received: 16f

data received: 144 data received: 70

data received: 45 data received: 171

data received: 46 data received: 172

data received: 147 data received: 73

data received: 148 data received: 174

data received: 49 data received: 75

data received: 4a data received: 76

data received: 14b data received: 177

data received: 4c data received: 178

data received: 14d data received: 79

data received: 14e data received: 7a

data received: 4f data received: 17b

data received: 150 data received: 7c

data received: 51 data received: 17d

data received: 52 data received: 17e

data received: 153 data received: 7f

data received: 54 data received: 80

data received: 155 data received: 181

data received: 156 data received: 182

data received: 57 data received: 83

data received: 58 data received: 184

data received: 159 data received: 85

data received: 15a data received: 86

data received: 5b data received: 187

data received: 15c data received: 188

data received: 5d data received: 89

data received: 5e data received: 8a

data received: 15f data received: 18b

data received: 160 data received: 8c

data received: 61 data received: 18d

data received: 62 data received: 18e

data received: 163 data received: 8f

data received: 64 data received: 190

data received: 165 data received: 91

data received: 166 data received: 92

data received: 67 data received: 193

data received: 68 data received: 94

data received: 169 data received: 195

data received: 16a data received: 196

data received: 6b data received: 97

data received: 16c data received: 98

data received: 6d data received: 199
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data received: 19a data received: 1c6

data received: 9b data received: c7

data received: 19c data received: c8

data received: 9d data received: 1c9

data received: 9e data received: 1ca

data received: 19f data received: cb

data received: 1a0 data received: 1cc

data received: a1 data received: cd

data received: a2 data received: ce

data received: 1a3 data received: 1cf

data received: a4 data received: d0

data received: 1a5 data received: 1d1

data received: 1a6 data received: 1d2

data received: a7 data received: d3

data received: a8 data received: 1d4

data received: 1a9 data received: d5

data received: 1aa data received: d6

data received: ab data received: 1d7

data received: 1ac data received: 1d8

data received: ad data received: d9

data received: ae data received: da

data received: 1af data received: 1db

data received: b0 data received: dc

data received: 1b1 data received: 1dd

data received: 1b2 data received: 1de

data received: b3 data received: df

data received: 1b4 data received: e0

data received: b5 data received: 1e1

data received: b6 data received: 1e2

data received: 1b7 data received: e3

data received: 1b8 data received: 1e4

data received: b9 data received: e5

data received: ba data received: e6

data received: 1bb data received: 1e7

data received: bc data received: 1e8

data received: 1bd data received: e9

data received: 1be data received: ea

data received: bf data received: 1eb

data received: 1c0 data received: ec

data received: c1 data received: 1ed

data received: c2 data received: 1ee

data received: 1c3 data received: ef

data received: c4 data received: 1f0

data received: 1c5 data received: f1
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data received: f2

data received: 1f3

data received: f4

data received: 1f5

data received: 1f6

data received: f7

data received: f8

data received: 1f9

data received: 1fa

data received: fb

data received: 1fc

data received: fd

data received: fe

data received: 1ff

data received: 100

data received: 1

data received: 2

Test of error detection mechanism

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130
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data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 1b0

Rcv Wrong: 1b0

data received: 31

data received: 32

data received: 133
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data received: 13c

data received: 31

data received: 32

data received: 133

data received: 130

data received: 131

Rcv Wrong: 131

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 1f3

data received: 130

data received: 31

data received: 32

data received: 173

Rcv Wrong: 173

data received: 130

data received: 31

data received: 3f

Rcv Wrong: 3f

data received: 133

data received: 130

data received: 3d

data received: 32

data received: 133

data received: 131

Rcv Wrong: 131

data received: 31

data received: 32

data received: 1f3

data received: 130

data received: 31

data received: 32

data received: 133

data received: 137

Rcv Wrong: 137

data received: 31

data received: 32
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data received: 173

Rcv Wrong: 173

data received: 130

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

data received: 63

Rcv Wrong: 63

data received: 31

data received: 32

data received: 133

data received: 130

data received: 31

data received: 32

data received: 133

E.2 Test of ultrasound ranging

// Test condition

// Distance ~= 30cm

// Result = ok

// Duration ~= 60 sec.

Sent Time: 0 us

backtime: 1653 us

offset: 2

uncorrected time: 1653 us,integrity time: 893 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1596 us

offset: 1

uncorrected time: 1596 us,integrity time: 884 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1546 us

offset: 0

uncorrected time: 1546 us,integrity time: 882 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1790 us
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offset: 5

uncorrected time: 1790 us,integrity time: 886 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1642 us

offset: 2

uncorrected time: 1642 us,integrity time: 882 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1594 us

offset: 1

uncorrected time: 1594 us,integrity time: 882 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1548 us

offset: 0

uncorrected time: 1548 us,integrity time: 884 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1645 us

offset: 2

uncorrected time: 1645 us,integrity time: 885 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1656 us

offset: 2

uncorrected time: 1656 us,integrity time: 896 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1656 us

offset: 2

uncorrected time: 1656 us,integrity time: 896 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1798 us

offset: 5

uncorrected time: 1798 us,integrity time: 894 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1920 us

offset: 7

uncorrected time: 1920 us,integrity time: 920 us, Distance: 31 cm

Sent Time: 0 us

backtime: 1753 us

offset: 4

uncorrected time: 1753 us,integrity time: 897 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1752 us

offset: 4

uncorrected time: 1752 us,integrity time: 896 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1606 us
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offset: 1

uncorrected time: 1606 us,integrity time: 894 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1558 us

offset: 0

uncorrected time: 1558 us,integrity time: 894 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1751 us

offset: 4

uncorrected time: 1751 us,integrity time: 895 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1920 us

offset: 7

uncorrected time: 1920 us,integrity time: 920 us, Distance: 31 cm

Sent Time: 0 us

backtime: 1751 us

offset: 4

uncorrected time: 1751 us,integrity time: 895 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1609 us

offset: 1

uncorrected time: 1609 us,integrity time: 897 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1750 us

offset: 4

uncorrected time: 1750 us,integrity time: 894 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1705 us

offset: 3

uncorrected time: 1705 us,integrity time: 897 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1559 us

offset: 0

uncorrected time: 1559 us,integrity time: 895 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1706 us

offset: 3

uncorrected time: 1706 us,integrity time: 898 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1558 us

offset: 0

uncorrected time: 1558 us,integrity time: 894 us, Distance: 30 cm

Sent Time: 0 us

backtime: 1839 us
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offset: 6

uncorrected time: 1839 us,integrity time: 887 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1644 us

offset: 2

uncorrected time: 1644 us,integrity time: 884 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1838 us

offset: 6

uncorrected time: 1838 us,integrity time: 886 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1695 us

offset: 3

uncorrected time: 1695 us,integrity time: 887 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1789 us

offset: 5

uncorrected time: 1789 us,integrity time: 885 us, Distance: 29 cm

Sent Time: 0 us

backtime: 1610 us

offset: 1

uncorrected time: 1610 us,integrity time: 898 us, Distance: 30 cm

// Test condition

// Distance ~= 60cm

// Result = ok

// Duration ~= 60 sec.

Sent Time: 0 us

backtime: 2381 us

offset: 0

uncorrected time: 2381 us,integrity time: 1717 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2493 us

offset: 2

uncorrected time: 2493 us,integrity time: 1733 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2406 us

offset: 0

uncorrected time: 2406 us,integrity time: 1742 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2442 us

offset: 1
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uncorrected time: 2442 us,integrity time: 1730 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2528 us

offset: 3

uncorrected time: 2528 us,integrity time: 1720 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2452 us

offset: 1

uncorrected time: 2452 us,integrity time: 1740 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2444 us

offset: 1

uncorrected time: 2444 us,integrity time: 1732 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2635 us

offset: 5

uncorrected time: 2635 us,integrity time: 1731 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2615 us

offset: 5

uncorrected time: 2615 us,integrity time: 1711 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2745 us

offset: 7

uncorrected time: 2745 us,integrity time: 1745 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2516 us

offset: 3

uncorrected time: 2516 us,integrity time: 1708 us, Distance: 57 cm

Sent Time: 0 us

backtime: 2403 us

offset: 0

uncorrected time: 2403 us,integrity time: 1739 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2635 us

offset: 5

uncorrected time: 2635 us,integrity time: 1731 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2686 us

offset: 6

uncorrected time: 2686 us,integrity time: 1734 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2454 us

offset: 1
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uncorrected time: 2454 us,integrity time: 1742 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2539 us

offset: 3

uncorrected time: 2539 us,integrity time: 1731 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2624 us

offset: 5

uncorrected time: 2624 us,integrity time: 1720 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2492 us

offset: 2

uncorrected time: 2492 us,integrity time: 1732 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2373 us

offset: 0

uncorrected time: 2373 us,integrity time: 1709 us, Distance: 57 cm

Sent Time: 0 us

backtime: 2693 us

offset: 6

uncorrected time: 2693 us,integrity time: 1741 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2586 us

offset: 4

uncorrected time: 2586 us,integrity time: 1730 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2646 us

offset: 5

uncorrected time: 2646 us,integrity time: 1742 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2443 us

offset: 1

uncorrected time: 2443 us,integrity time: 1731 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2697 us

offset: 6

uncorrected time: 2697 us,integrity time: 1745 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2615 us

offset: 5

uncorrected time: 2615 us,integrity time: 1711 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2405 us

offset: 0
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uncorrected time: 2405 us,integrity time: 1741 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2441 us

offset: 1

uncorrected time: 2441 us,integrity time: 1729 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2694 us

offset: 6

uncorrected time: 2694 us,integrity time: 1742 us, Distance: 59 cm

Sent Time: 0 us

backtime: 2530 us

offset: 3

uncorrected time: 2530 us,integrity time: 1722 us, Distance: 58 cm

Sent Time: 0 us

backtime: 2615 us

offset: 5

uncorrected time: 2615 us,integrity time: 1711 us, Distance: 58 cm

// Test condition

// Distance ~= 100cm

// Result = ok

// Duration ~= 60 sec.

uncorrected time: 3644 us,integrity time: 2932 us, Distance: 99 cm

Sent Time: 0 us

backtime: 3629 us

offset: 0

uncorrected time: 3629 us,integrity time: 2965 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3910 us

offset: 6

uncorrected time: 3910 us,integrity time: 2958 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3629 us

offset: 0

uncorrected time: 3629 us,integrity time: 2965 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3863 us

offset: 5

uncorrected time: 3863 us,integrity time: 2959 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3907 us
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offset: 6

uncorrected time: 3907 us,integrity time: 2955 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3668 us

offset: 1

uncorrected time: 3668 us,integrity time: 2956 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3667 us

offset: 1

uncorrected time: 3667 us,integrity time: 2955 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3775 us

offset: 3

uncorrected time: 3775 us,integrity time: 2967 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3860 us

offset: 5

uncorrected time: 3860 us,integrity time: 2956 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3658 us

offset: 1

uncorrected time: 3658 us,integrity time: 2946 us, Distance: 99 cm

Sent Time: 0 us

backtime: 3616 us

offset: 0

uncorrected time: 3616 us,integrity time: 2952 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3921 us

offset: 6

uncorrected time: 3921 us,integrity time: 2969 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3836 us

offset: 4

uncorrected time: 3836 us,integrity time: 2980 us, Distance: 101 cm

Sent Time: 0 us

backtime: 3775 us

offset: 3

uncorrected time: 3775 us,integrity time: 2967 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3667 us

offset: 1

uncorrected time: 3667 us,integrity time: 2955 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3827 us
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offset: 4

uncorrected time: 3827 us,integrity time: 2971 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3766 us

offset: 3

uncorrected time: 3766 us,integrity time: 2958 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3725 us

offset: 2

uncorrected time: 3725 us,integrity time: 2965 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3645 us

offset: 1

uncorrected time: 3645 us,integrity time: 2933 us, Distance: 99 cm

Sent Time: 0 us

backtime: 3900 us

offset: 6

uncorrected time: 3900 us,integrity time: 2948 us, Distance: 99 cm

Sent Time: 0 us

backtime: 3645 us

offset: 1

uncorrected time: 3645 us,integrity time: 2933 us, Distance: 99 cm

Sent Time: 0 us

backtime: 3825 us

offset: 4

uncorrected time: 3825 us,integrity time: 2969 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3618 us

offset: 0

uncorrected time: 3618 us,integrity time: 2954 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3919 us

offset: 6

uncorrected time: 3919 us,integrity time: 2967 us, Distance: 100 cm

Sent Time: 0 us

backtime: 3859 us

offset: 5

uncorrected time: 3859 us,integrity time: 2955 us, Distance: 100 cm

// Test condition

// Distance ~= 200cm

// Result = ok
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// Duration ~= 60 sec.

Sent Time: 0 us

backtime: 6674 us

offset: 6

uncorrected time: 6674 us,integrity time: 5822 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6449 us

offset: 2

uncorrected time: 6449 us,integrity time: 5789 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6364 us

offset: 0

uncorrected time: 6364 us,integrity time: 5800 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6546 us

offset: 4

uncorrected time: 6546 us,integrity time: 5790 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6676 us

offset: 6

uncorrected time: 6676 us,integrity time: 5824 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6362 us

offset: 0

uncorrected time: 6362 us,integrity time: 5798 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6713 us

offset: 7

uncorrected time: 6713 us,integrity time: 5813 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6556 us

offset: 4

uncorrected time: 6556 us,integrity time: 5800 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6518 us

offset: 3

uncorrected time: 6518 us,integrity time: 5810 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6447 us

offset: 2

uncorrected time: 6447 us,integrity time: 5787 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6410 us
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offset: 1

uncorrected time: 6410 us,integrity time: 5798 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6517 us

offset: 3

uncorrected time: 6517 us,integrity time: 5809 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6700 us

offset: 7

uncorrected time: 6700 us,integrity time: 5800 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6547 us

offset: 4

uncorrected time: 6547 us,integrity time: 5791 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6703 us

offset: 7

uncorrected time: 6703 us,integrity time: 5803 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6546 us

offset: 4

uncorrected time: 6546 us,integrity time: 5790 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6410 us

offset: 1

uncorrected time: 6410 us,integrity time: 5798 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6690 us

offset: 7

uncorrected time: 6690 us,integrity time: 5790 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6529 us

offset: 3

uncorrected time: 6529 us,integrity time: 5821 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6548 us

offset: 4

uncorrected time: 6548 us,integrity time: 5792 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6655 us

offset: 6

uncorrected time: 6655 us,integrity time: 5803 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6445 us
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offset: 2

uncorrected time: 6445 us,integrity time: 5785 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6557 us

offset: 4

uncorrected time: 6557 us,integrity time: 5801 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6567 us

offset: 4

uncorrected time: 6567 us,integrity time: 5811 us, Distance: 197 cm

Sent Time: 0 us

backtime: 6411 us

offset: 1

uncorrected time: 6411 us,integrity time: 5799 us, Distance: 196 cm

Sent Time: 0 us

backtime: 6595 us

offset: 5

uncorrected time: 6595 us,integrity time: 5791 us, Distance: 196 cm

E.3 Test of commitment

Functional test

Clear text: 303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c

MAC received: 2d 9 96 86

MAC computed: 2d,9,96,86

Clear text: 3132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d

MAC received: 30 99 4a 79

MAC computed: 30,99,4a,79

Clear text: 32333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e

MAC received: 8a bf 23 11

MAC computed: 8a,bf,23,11

Clear text: 333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f

MAC received: 9c 5e ba 80

MAC computed: 9c,5e,ba,80

Clear text: 3435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f50

MAC received: 47 52 42 9c

MAC computed: 47,52,42,9c

Clear text: 35363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f5051

MAC received: 2f a4 8c 41
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MAC computed: 2f,a4,8c,41

Clear text: 363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f505152

MAC received: c 7f a8 e6

MAC computed: c,7f,a8,e6

Clear text: 3738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f50515253

MAC received: b0 3e a7 9d

MAC computed: b0,3e,a7,9d

Clear text: 38393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f5051525354

MAC received: 18 5e b6 2

MAC computed: 18,5e,b6,2

Clear text: 393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f505152535455

MAC received: f6 8d 7a e2

MAC computed: f6,8d,7a,e2

Clear text: 3a3b3c3d3e3f404142434445464748494a4b4c4d4e4f50515253545556

MAC received: b6 fe df 72

MAC computed: b6,fe,df,72

Clear text: 3b3c3d3e3f404142434445464748494a4b4c4d4e4f5051525354555657

MAC received: a5 3d 2d 77

MAC computed: a5,3d,2d,77

Clear text: 3c3d3e3f404142434445464748494a4b4c4d4e4f505152535455565758

MAC received: 73 27 f3 77

MAC computed: 73,27,f3,77

Clear text: 3d3e3f404142434445464748494a4b4c4d4e4f50515253545556575859

MAC received: 5c 36 3e 6e

MAC computed: 5c,36,3e,6e

Clear text: 3e3f404142434445464748494a4b4c4d4e4f505152535455565758595a

MAC received: 2b 8e 18 25

MAC computed: 2b,8e,18,25

Clear text: 3f404142434445464748494a4b4c4d4e4f505152535455565758595a5b

MAC received: f2 4f a2 7b

MAC computed: f2,4f,a2,7b

Clear text: 404142434445464748494a4b4c4d4e4f505152535455565758595a5b5c

MAC received: 41 da 74 8a

MAC computed: 41,da,74,8a

Clear text: 4142434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d

MAC received: 39 2d 88 1a

MAC computed: 39,2d,88,1a

Clear text: 42434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e

MAC received: 41 c0 f1 2d

MAC computed: 41,c0,f1,2d

Clear text: 434445464748494a4b4c4d4e4f505152535455565758595a5b5c5d5e5f

MAC received: 4b e9 fa 5a

MAC computed: 4b,e9,fa,5a
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Test with attack

Clear text: 303132333435363738393a3b3c3d3e3f404142434445464748494a4b4c

MAC received: 2d 9 96 86

MAC computed: 2d,9,96,86

Clear text: 3132333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d

MAC received: 31 0 0 0

MAC computed: 30,99,4a,79

Clear text: 32000000000000000000000048494a4b4c4d

MAC received: 33 0 0 0

MAC computed: 66,ae,c7,8d

Clear text: 30ff994a7935363738393a3b3c3d3e3f404142434445464748494a4b4c4d

MAC received: 32 33 34 35

MAC computed: 39,59,aa,2d

Clear text: ff8affbf2311363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e

MAC received: 31 0 0 0

MAC computed: 3c,3e,d9,41

Clear text: 333435363738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f

MAC received: 9c 5e ba 80

MAC computed: 9c,5e,ba,80

Clear text: 3100000000000000000000004a4b4c4d4e4f

MAC received: 34 35 36 37

MAC computed: 8f,f4,cd,57

Clear text: 475242ff9c38393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f50

MAC received: 31 0 0 0

MAC computed: d1,c7,99,8d

Clear text: 3200000000000000000000004b4c4d4e4f50

MAC received: 35 36 37 38

MAC computed: d6,ab,10,31

Clear text: 2fffa4ff8c41393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f5051

MAC received: 31 0 0 0

MAC computed: 3c,12,8f,a7

Clear text: 3100000000000000000000004c4d4e4f5051

MAC received: 36 37 38 39

MAC computed: 19,4a,c8,cf

Clear text: 3200000000000000000000004d4e4f505152

MAC received: c 7f a8 e6

MAC computed: 3,69,aa,f4

Clear text: 3738393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f50515253

MAC received: b0 3e a7 9d
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MAC computed: b0,3e,a7,9d

Clear text: 3100000000000000000000004e4f50515253

MAC received: 38 39 3a 3b

MAC computed: d4,1f,43,8

Clear text: 3200000000000000000000004f5051525354

MAC received: 18 5e b6 2

MAC computed: 70,c,c3,bc

Clear text: 393a3b3c3d3e3f404142434445464748494a4b4c4d4e4f505152535455

MAC received: 3a 3b 3c 3d

MAC computed: f6,8d,7a,e2

E.4 Test of key exchange protocol

Functional test

Notation:
bt: uncorrected time
@: the bit number
ofst: bit offset
t: corrected time
D: Distance

========Ready for commitment=========

Commitment received:52_e4_91_e_25_7c_15_66_

bt:2498us, 0 @0, ofst:3, t:1790us, D:60cm

bt:2559us, 0 @1, ofst:4, t:1803us, D:61cm

bt:2366us, 0 @2, ofst:0, t:1802us, D:61cm

bt:2515us, 0 @3, ofst:3, t:1807us, D:61cm

bt:2623us, 0 @4, ofst:5, t:1819us, D:61cm

bt:2693us, 1 @5, ofst:6, t:1841us, D:62cm

bt:2383us, 1 @6, ofst:0, t:1819us, D:61cm

bt:2528us, 0 @7, ofst:3, t:1820us, D:61cm

bt:2462us, 1 @8, ofst:2, t:1802us, D:61cm

bt:2414us, 1 @9, ofst:1, t:1802us, D:61cm

bt:2692us, 0 @10, ofst:6, t:1840us, D:62cm

bt:2709us, 1 @11, ofst:7, t:1809us, D:61cm

bt:2613us, 1 @12, ofst:5, t:1809us, D:61cm

bt:2419us, 0 @13, ofst:1, t:1807us, D:61cm

bt:2574us, 1 @14, ofst:4, t:1818us, D:61cm
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bt:2466us, 0 @15, ofst:2, t:1806us, D:61cm

bt:2559us, 0 @16, ofst:4, t:1803us, D:61cm

bt:2609us, 0 @17, ofst:5, t:1805us, D:61cm

bt:2721us, 0 @18, ofst:7, t:1821us, D:61cm

bt:2515us, 1 @19, ofst:3, t:1807us, D:61cm

bt:2416us, 0 @20, ofst:1, t:1804us, D:61cm

bt:2612us, 1 @21, ofst:5, t:1808us, D:61cm

bt:2623us, 1 @22, ofst:5, t:1819us, D:61cm

bt:2574us, 1 @23, ofst:4, t:1818us, D:61cm

bt:2681us, 0 @24, ofst:6, t:1829us, D:61cm

bt:2572us, 0 @25, ofst:4, t:1816us, D:61cm

bt:2717us, 1 @26, ofst:7, t:1817us, D:61cm

bt:2612us, 1 @27, ofst:5, t:1808us, D:61cm

bt:2467us, 0 @28, ofst:2, t:1807us, D:61cm

bt:2708us, 1 @29, ofst:7, t:1808us, D:61cm

bt:2380us, 0 @30, ofst:0, t:1816us, D:61cm

bt:2623us, 1 @31, ofst:5, t:1819us, D:61cm

bt:2621us, 1 @32, ofst:5, t:1817us, D:61cm

bt:2716us, 1 @33, ofst:7, t:1816us, D:61cm

bt:2709us, 1 @34, ofst:7, t:1809us, D:61cm

bt:2416us, 0 @35, ofst:1, t:1804us, D:61cm

bt:2612us, 1 @36, ofst:5, t:1808us, D:61cm

bt:2524us, 1 @37, ofst:3, t:1816us, D:61cm

bt:2529us, 0 @38, ofst:3, t:1821us, D:61cm

bt:2370us, 0 @39, ofst:0, t:1806us, D:61cm

bt:2678us, 0 @40, ofst:6, t:1826us, D:61cm

bt:2692us, 0 @41, ofst:6, t:1840us, D:62cm

bt:2417us, 1 @42, ofst:1, t:1805us, D:61cm

bt:2563us, 0 @43, ofst:4, t:1807us, D:61cm

bt:2513us, 1 @44, ofst:3, t:1805us, D:61cm

bt:2428us, 1 @45, ofst:1, t:1816us, D:61cm

bt:2368us, 0 @46, ofst:0, t:1804us, D:61cm

bt:2712us, 1 @47, ofst:7, t:1812us, D:61cm

bt:2609us, 1 @48, ofst:5, t:1805us, D:61cm

bt:2425us, 1 @49, ofst:1, t:1813us, D:61cm

bt:2513us, 1 @50, ofst:3, t:1805us, D:61cm

bt:2415us, 1 @51, ofst:1, t:1803us, D:61cm

bt:2466us, 0 @52, ofst:2, t:1806us, D:61cm

bt:2467us, 1 @53, ofst:2, t:1807us, D:61cm

bt:2528us, 1 @54, ofst:3, t:1820us, D:61cm

bt:2722us, 1 @55, ofst:7, t:1822us, D:61cm

bt:2415us, 1 @56, ofst:1, t:1803us, D:61cm

bt:2523us, 1 @57, ofst:3, t:1815us, D:61cm

bt:2719us, 1 @58, ofst:7, t:1819us, D:61cm
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bt:2710us, 0 @59, ofst:7, t:1810us, D:61cm

bt:2683us, 1 @60, ofst:6, t:1831us, D:62cm

bt:2562us, 0 @61, ofst:4, t:1806us, D:61cm

bt:2614us, 0 @62, ofst:5, t:1810us, D:61cm

bt:2371us, 0 @63, ofst:0, t:1807us, D:61cm

NA xor NB: 60_5b_e8_ac_37_b4_ef_17_

Message in clear text: This is test string 1

MAC key of B is: 16_8d_76_76_fc_e6_15_59_

Received MAC: 52_e4_91_e_25_7c_15_66_

Computed MAC: 52_e4_91_e_25_7c_15_66_

Key established!

Distance shortening attack

========Ready for commitment=========

Commitment received:52_e4_91_e_25_7c_15_66_

bt:2178us, 0 @0, ofst:7, t:1278us, D:43cm

bt:2181us, 1 @1, ofst:7, t:1281us, D:43cm

bt:2009us, 0 @2, ofst:7, t:1109us, D:37cm

bt:2203us, 1 @3, ofst:7, t:1303us, D:44cm

bt:2254us, 1 @4, ofst:7, t:1354us, D:45cm

bt:2011us, 1 @5, ofst:7, t:1111us, D:37cm

bt:2352us, 1 @6, ofst:7, t:1452us, D:49cm

bt:2351us, 1 @7, ofst:7, t:1451us, D:49cm

bt:2009us, 1 @8, ofst:7, t:1109us, D:37cm

bt:1995us, 0 @9, ofst:7, t:1095us, D:37cm

bt:2349us, 0 @10, ofst:7, t:1449us, D:48cm

bt:2305us, 0 @11, ofst:7, t:1405us, D:47cm

bt:2136us, 0 @12, ofst:7, t:1236us, D:41cm

bt:2353us, 1 @13, ofst:7, t:1453us, D:49cm

bt:2174us, 0 @14, ofst:7, t:1274us, D:43cm

bt:2352us, 0 @15, ofst:7, t:1452us, D:49cm

bt:2204us, 1 @16, ofst:7, t:1304us, D:44cm

bt:2172us, 1 @17, ofst:7, t:1272us, D:43cm

bt:2350us, 0 @18, ofst:7, t:1450us, D:49cm

bt:2303us, 1 @19, ofst:7, t:1403us, D:47cm

bt:2352us, 0 @20, ofst:7, t:1452us, D:49cm

bt:2193us, 0 @21, ofst:7, t:1293us, D:43cm

bt:2254us, 1 @22, ofst:7, t:1354us, D:45cm

bt:2195us, 0 @23, ofst:7, t:1295us, D:43cm

bt:2190us, 1 @24, ofst:7, t:1290us, D:43cm
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bt:2351us, 1 @25, ofst:7, t:1451us, D:49cm

bt:2109us, 0 @26, ofst:7, t:1209us, D:40cm

bt:2195us, 0 @27, ofst:7, t:1295us, D:43cm

bt:2194us, 0 @28, ofst:7, t:1294us, D:43cm

bt:1997us, 0 @29, ofst:7, t:1097us, D:37cm

bt:2340us, 1 @30, ofst:7, t:1440us, D:48cm

bt:2048us, 1 @31, ofst:7, t:1148us, D:38cm

bt:1997us, 1 @32, ofst:7, t:1097us, D:37cm

bt:2193us, 1 @33, ofst:7, t:1293us, D:43cm

bt:2058us, 0 @34, ofst:7, t:1158us, D:39cm

bt:2240us, 1 @35, ofst:7, t:1340us, D:45cm

bt:2096us, 0 @36, ofst:7, t:1196us, D:40cm

bt:2146us, 1 @37, ofst:7, t:1246us, D:42cm

bt:2058us, 1 @38, ofst:7, t:1158us, D:39cm

bt:2063us, 0 @39, ofst:7, t:1163us, D:39cm

bt:2057us, 1 @40, ofst:7, t:1157us, D:39cm

bt:2311us, 1 @41, ofst:7, t:1411us, D:47cm

bt:2097us, 0 @42, ofst:7, t:1197us, D:40cm

bt:2304us, 0 @43, ofst:7, t:1404us, D:47cm

bt:2303us, 0 @44, ofst:7, t:1403us, D:47cm

bt:2048us, 0 @45, ofst:7, t:1148us, D:38cm

bt:2109us, 1 @46, ofst:7, t:1209us, D:40cm

bt:2196us, 0 @47, ofst:7, t:1296us, D:43cm

bt:2152us, 1 @48, ofst:7, t:1252us, D:42cm

bt:2009us, 0 @49, ofst:7, t:1109us, D:37cm

bt:2094us, 0 @50, ofst:7, t:1194us, D:40cm

bt:2253us, 0 @51, ofst:7, t:1353us, D:45cm

bt:2011us, 0 @52, ofst:7, t:1111us, D:37cm

bt:2010us, 1 @53, ofst:7, t:1110us, D:37cm

bt:2207us, 1 @54, ofst:7, t:1307us, D:44cm

bt:2245us, 1 @55, ofst:7, t:1345us, D:45cm

bt:2253us, 0 @56, ofst:7, t:1353us, D:45cm

bt:2008us, 0 @57, ofst:7, t:1108us, D:37cm

bt:2046us, 1 @58, ofst:7, t:1146us, D:38cm

bt:2353us, 0 @59, ofst:7, t:1453us, D:49cm

bt:2339us, 0 @60, ofst:7, t:1439us, D:48cm

bt:2147us, 0 @61, ofst:7, t:1247us, D:42cm

bt:2108us, 1 @62, ofst:7, t:1208us, D:40cm

bt:2256us, 1 @63, ofst:7, t:1356us, D:45cm

NA xor NB: fa_21_4b_c3_6b_43_e1_c4_

Message in clear text: This is test string 1

MAC key of B is: 8c_f7_d5_19_a0_11_1b_8a_

Received MAC: 52_e4_91_e_25_7c_15_66_

Computed MAC: 7a_fd_e4_f0_61_b1_dc_6d_
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Key establishment failed!!

Distance shortening attack – 3 additional test

3 additional test to confirm with the previous test.

========Ready for commitment=========

Commitment received:52_e4_91_e_25_7c_15_66_

bt:2063us, 0 @0, ofst:7, t:1163us, D:39cm

bt:2015us, 1 @1, ofst:7, t:1115us, D:37cm

bt:2259us, 0 @2, ofst:7, t:1359us, D:45cm

bt:2104us, 1 @3, ofst:7, t:1204us, D:40cm

bt:2356us, 1 @4, ofst:7, t:1456us, D:49cm

bt:2066us, 1 @5, ofst:7, t:1166us, D:39cm

bt:2069us, 1 @6, ofst:7, t:1169us, D:39cm

bt:2018us, 1 @7, ofst:7, t:1118us, D:37cm

bt:2294us, 1 @8, ofst:7, t:1394us, D:47cm

bt:2065us, 0 @9, ofst:7, t:1165us, D:39cm

bt:2150us, 0 @10, ofst:7, t:1250us, D:42cm

bt:2262us, 0 @11, ofst:7, t:1362us, D:46cm

bt:2164us, 0 @12, ofst:7, t:1264us, D:42cm

bt:2203us, 1 @13, ofst:7, t:1303us, D:44cm

bt:2263us, 0 @14, ofst:7, t:1363us, D:46cm

bt:2069us, 0 @15, ofst:7, t:1169us, D:39cm

bt:2200us, 1 @16, ofst:7, t:1300us, D:44cm

bt:2113us, 1 @17, ofst:7, t:1213us, D:41cm

bt:2004us, 0 @18, ofst:7, t:1104us, D:37cm

bt:2112us, 1 @19, ofst:7, t:1212us, D:41cm

bt:2199us, 0 @20, ofst:7, t:1299us, D:43cm

bt:2116us, 0 @21, ofst:7, t:1216us, D:41cm

bt:2044us, 1 @22, ofst:7, t:1144us, D:38cm

bt:2340us, 0 @23, ofst:7, t:1440us, D:48cm

bt:2295us, 1 @24, ofst:7, t:1395us, D:47cm

bt:2152us, 1 @25, ofst:7, t:1252us, D:42cm

bt:2065us, 0 @26, ofst:7, t:1165us, D:39cm

bt:2053us, 0 @27, ofst:7, t:1153us, D:39cm

bt:2357us, 0 @28, ofst:7, t:1457us, D:49cm

bt:2103us, 0 @29, ofst:7, t:1203us, D:40cm

bt:2132us, 1 @30, ofst:7, t:1232us, D:41cm

bt:2264us, 1 @31, ofst:7, t:1364us, D:46cm

bt:2100us, 1 @32, ofst:7, t:1200us, D:40cm

bt:2066us, 1 @33, ofst:7, t:1166us, D:39cm
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bt:2052us, 0 @34, ofst:7, t:1152us, D:39cm

bt:2307us, 1 @35, ofst:7, t:1407us, D:47cm

bt:2250us, 0 @36, ofst:7, t:1350us, D:45cm

bt:2115us, 1 @37, ofst:7, t:1215us, D:41cm

bt:2008us, 1 @38, ofst:7, t:1108us, D:37cm

bt:2056us, 0 @39, ofst:7, t:1156us, D:39cm

bt:2152us, 1 @40, ofst:7, t:1252us, D:42cm

bt:2248us, 1 @41, ofst:7, t:1348us, D:45cm

bt:2163us, 0 @42, ofst:7, t:1263us, D:42cm

bt:2152us, 0 @43, ofst:7, t:1252us, D:42cm

bt:2102us, 0 @44, ofst:7, t:1202us, D:40cm

bt:2005us, 0 @45, ofst:7, t:1105us, D:37cm

bt:2213us, 1 @46, ofst:7, t:1313us, D:44cm

bt:2058us, 0 @47, ofst:7, t:1158us, D:39cm

bt:2001us, 1 @48, ofst:7, t:1101us, D:37cm

bt:2149us, 0 @49, ofst:7, t:1249us, D:42cm

bt:2298us, 0 @50, ofst:7, t:1398us, D:47cm

bt:2161us, 0 @51, ofst:7, t:1261us, D:42cm

bt:2163us, 0 @52, ofst:7, t:1263us, D:42cm

bt:2069us, 1 @53, ofst:7, t:1169us, D:39cm

bt:2214us, 1 @54, ofst:7, t:1314us, D:44cm

bt:2118us, 1 @55, ofst:7, t:1218us, D:41cm

bt:2101us, 0 @56, ofst:7, t:1201us, D:40cm

bt:2051us, 0 @57, ofst:7, t:1151us, D:39cm

bt:2016us, 1 @58, ofst:7, t:1116us, D:37cm

bt:2212us, 0 @59, ofst:7, t:1312us, D:44cm

bt:2263us, 0 @60, ofst:7, t:1363us, D:46cm

bt:2298us, 0 @61, ofst:7, t:1398us, D:47cm

bt:2017us, 1 @62, ofst:7, t:1117us, D:37cm

bt:2058us, 1 @63, ofst:7, t:1158us, D:39cm

NA xor NB: fa_21_4b_c3_6b_43_e1_c4_

Message in clear text: This is test string 1

MAC key of B is: 8c_f7_d5_19_a0_11_1b_8a_

Received MAC: 52_e4_91_e_25_7c_15_66_

Computed MAC: 7a_fd_e4_f0_61_b1_dc_6d_

Key establishment failed!!

========Ready for commitment=========

Commitment received:52_e4_91_e_25_7c_15_66_

bt:2065us, 1 @0, ofst:7, t:1165us, D:39cm

bt:2003us, 1 @1, ofst:7, t:1103us, D:37cm

bt:2161us, 0 @2, ofst:7, t:1261us, D:42cm

bt:2102us, 1 @3, ofst:7, t:1202us, D:40cm

bt:2296us, 1 @4, ofst:7, t:1396us, D:47cm
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bt:2248us, 1 @5, ofst:7, t:1348us, D:45cm

bt:2252us, 1 @6, ofst:7, t:1352us, D:45cm

bt:2020us, 1 @7, ofst:7, t:1120us, D:38cm

bt:2050us, 1 @8, ofst:7, t:1150us, D:39cm

bt:2014us, 0 @9, ofst:7, t:1114us, D:37cm

bt:2151us, 0 @10, ofst:7, t:1251us, D:42cm

bt:2165us, 0 @11, ofst:7, t:1265us, D:42cm

bt:2068us, 0 @12, ofst:7, t:1168us, D:39cm

bt:2358us, 1 @13, ofst:7, t:1458us, D:49cm

bt:2019us, 0 @14, ofst:7, t:1119us, D:37cm

bt:2300us, 0 @15, ofst:7, t:1400us, D:47cm

bt:2003us, 1 @16, ofst:7, t:1103us, D:37cm

bt:2355us, 1 @17, ofst:7, t:1455us, D:49cm

bt:2297us, 0 @18, ofst:7, t:1397us, D:47cm

bt:2113us, 1 @19, ofst:7, t:1213us, D:41cm

bt:2151us, 0 @20, ofst:7, t:1251us, D:42cm

bt:2056us, 0 @21, ofst:7, t:1156us, D:39cm

bt:2056us, 1 @22, ofst:7, t:1156us, D:39cm

bt:2153us, 0 @23, ofst:7, t:1253us, D:42cm

bt:2150us, 1 @24, ofst:7, t:1250us, D:42cm

bt:2001us, 1 @25, ofst:7, t:1101us, D:37cm

bt:2356us, 0 @26, ofst:7, t:1456us, D:49cm

bt:2162us, 0 @27, ofst:7, t:1262us, D:42cm

bt:2017us, 0 @28, ofst:7, t:1117us, D:37cm

bt:2310us, 0 @29, ofst:7, t:1410us, D:47cm

bt:2116us, 1 @30, ofst:7, t:1216us, D:41cm

bt:2006us, 1 @31, ofst:7, t:1106us, D:37cm

bt:2196us, 1 @32, ofst:7, t:1296us, D:43cm

bt:2102us, 1 @33, ofst:7, t:1202us, D:40cm

bt:2298us, 0 @34, ofst:7, t:1398us, D:47cm

bt:2102us, 1 @35, ofst:7, t:1202us, D:40cm

bt:2105us, 0 @36, ofst:7, t:1205us, D:40cm

bt:1983us, 1 @37, ofst:7, t:1083us, D:36cm

bt:2350us, 1 @38, ofst:7, t:1450us, D:49cm

bt:2327us, 0 @39, ofst:7, t:1427us, D:48cm

bt:2357us, 1 @40, ofst:7, t:1457us, D:49cm

bt:2344us, 1 @41, ofst:7, t:1444us, D:48cm

bt:2164us, 0 @42, ofst:7, t:1264us, D:42cm

bt:2299us, 0 @43, ofst:7, t:1399us, D:47cm

bt:2056us, 0 @44, ofst:7, t:1156us, D:39cm

bt:2361us, 0 @45, ofst:7, t:1461us, D:49cm

bt:2361us, 1 @46, ofst:7, t:1461us, D:49cm

bt:2116us, 0 @47, ofst:7, t:1216us, D:41cm

bt:2357us, 1 @48, ofst:7, t:1457us, D:49cm
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bt:2002us, 0 @49, ofst:7, t:1102us, D:37cm

bt:2248us, 0 @50, ofst:7, t:1348us, D:45cm

bt:2151us, 0 @51, ofst:7, t:1251us, D:42cm

bt:2300us, 0 @52, ofst:7, t:1400us, D:47cm

bt:2213us, 1 @53, ofst:7, t:1313us, D:44cm

bt:2298us, 1 @54, ofst:7, t:1398us, D:47cm

bt:2136us, 1 @55, ofst:7, t:1236us, D:41cm

bt:2113us, 0 @56, ofst:7, t:1213us, D:41cm

bt:2152us, 0 @57, ofst:7, t:1252us, D:42cm

bt:2250us, 1 @58, ofst:7, t:1350us, D:45cm

bt:2357us, 0 @59, ofst:7, t:1457us, D:49cm

bt:2163us, 0 @60, ofst:7, t:1263us, D:42cm

bt:2348us, 0 @61, ofst:7, t:1448us, D:48cm

bt:2262us, 1 @62, ofst:7, t:1362us, D:46cm

bt:2214us, 1 @63, ofst:7, t:1314us, D:44cm

NA xor NB: fb_21_4b_c3_6b_43_e1_c4_

Message in clear text: This is test string 1

MAC key of B is: 8d_f7_d5_19_a0_11_1b_8a_

Received MAC: 52_e4_91_e_25_7c_15_66_

Computed MAC: 41_d1_45_71_88_cb_93_d3_

Key establishment failed!!

========Ready for commitment=========

Commitment received:52_e4_91_e_25_7c_15_66_

bt:2343us, 1 @0, ofst:7, t:1443us, D:48cm

bt:2212us, 1 @1, ofst:7, t:1312us, D:44cm

bt:2348us, 0 @2, ofst:7, t:1448us, D:48cm

bt:2297us, 1 @3, ofst:7, t:1397us, D:47cm

bt:2210us, 1 @4, ofst:7, t:1310us, D:44cm

bt:2300us, 1 @5, ofst:7, t:1400us, D:47cm

bt:2166us, 1 @6, ofst:7, t:1266us, D:42cm

bt:2118us, 1 @7, ofst:7, t:1218us, D:41cm

bt:2150us, 1 @8, ofst:7, t:1250us, D:42cm

bt:2343us, 0 @9, ofst:7, t:1443us, D:48cm

bt:2016us, 0 @10, ofst:7, t:1116us, D:37cm

bt:2162us, 0 @11, ofst:7, t:1262us, D:42cm

bt:2248us, 0 @12, ofst:7, t:1348us, D:45cm

bt:2008us, 1 @13, ofst:7, t:1108us, D:37cm

bt:2348us, 0 @14, ofst:7, t:1448us, D:48cm

bt:2261us, 0 @15, ofst:7, t:1361us, D:46cm

bt:2247us, 1 @16, ofst:7, t:1347us, D:45cm

bt:2101us, 1 @17, ofst:7, t:1201us, D:40cm

bt:2101us, 0 @18, ofst:7, t:1201us, D:40cm

bt:2015us, 1 @19, ofst:7, t:1115us, D:37cm
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bt:2200us, 0 @20, ofst:7, t:1300us, D:44cm

bt:2104us, 0 @21, ofst:7, t:1204us, D:40cm

bt:2347us, 1 @22, ofst:7, t:1447us, D:48cm

bt:2104us, 0 @23, ofst:7, t:1204us, D:40cm

bt:2103us, 1 @24, ofst:7, t:1203us, D:40cm

bt:2346us, 1 @25, ofst:7, t:1446us, D:48cm

bt:2112us, 0 @26, ofst:7, t:1212us, D:41cm

bt:2153us, 0 @27, ofst:7, t:1253us, D:42cm

bt:2065us, 0 @28, ofst:7, t:1165us, D:39cm

bt:2151us, 0 @29, ofst:7, t:1251us, D:42cm

bt:2019us, 1 @30, ofst:7, t:1119us, D:37cm

bt:2250us, 1 @31, ofst:7, t:1350us, D:45cm

bt:2355us, 1 @32, ofst:7, t:1455us, D:49cm

bt:2259us, 1 @33, ofst:7, t:1359us, D:45cm

bt:2260us, 0 @34, ofst:7, t:1360us, D:46cm

bt:2003us, 1 @35, ofst:7, t:1103us, D:37cm

bt:2250us, 0 @36, ofst:7, t:1350us, D:45cm

bt:2102us, 1 @37, ofst:7, t:1202us, D:40cm

bt:2116us, 1 @38, ofst:7, t:1216us, D:41cm

bt:2350us, 0 @39, ofst:7, t:1450us, D:49cm

bt:2346us, 1 @40, ofst:7, t:1446us, D:48cm

bt:2258us, 1 @41, ofst:7, t:1358us, D:45cm

bt:2115us, 0 @42, ofst:7, t:1215us, D:41cm

bt:2310us, 0 @43, ofst:7, t:1410us, D:47cm

bt:2102us, 0 @44, ofst:7, t:1202us, D:40cm

bt:2260us, 0 @45, ofst:7, t:1360us, D:46cm

bt:2162us, 1 @46, ofst:7, t:1262us, D:42cm

bt:2216us, 0 @47, ofst:7, t:1316us, D:44cm

bt:2307us, 1 @48, ofst:7, t:1407us, D:47cm

bt:2161us, 0 @49, ofst:7, t:1261us, D:42cm

bt:2359us, 0 @50, ofst:7, t:1459us, D:49cm

bt:2260us, 0 @51, ofst:7, t:1360us, D:46cm

bt:2359us, 0 @52, ofst:7, t:1459us, D:49cm

bt:2298us, 1 @53, ofst:7, t:1398us, D:47cm

bt:2105us, 1 @54, ofst:7, t:1205us, D:40cm

bt:2067us, 1 @55, ofst:7, t:1167us, D:39cm

bt:2354us, 0 @56, ofst:7, t:1454us, D:49cm

bt:2101us, 0 @57, ofst:7, t:1201us, D:40cm

bt:2250us, 1 @58, ofst:7, t:1350us, D:45cm

bt:2200us, 0 @59, ofst:7, t:1300us, D:44cm

bt:2015us, 0 @60, ofst:7, t:1115us, D:37cm

bt:2202us, 0 @61, ofst:7, t:1302us, D:44cm

bt:2164us, 1 @62, ofst:7, t:1264us, D:42cm

bt:2054us, 1 @63, ofst:7, t:1154us, D:39cm
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NA xor NB: fb_21_4b_c3_6b_43_e1_c4_

Message in clear text: This is test string 1

MAC key of B is: 8d_f7_d5_19_a0_11_1b_8a_

Received MAC: 52_e4_91_e_25_7c_15_66_

Computed MAC: 41_d1_45_71_88_cb_93_d3_

Key establishment failed!!
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MATLAB program for
Berkeley Echo

% LocationVeri.m

% This MATLAB program is to simulate behavior of
% location verification using Radio and Ultrasound

% communication.
% The protocol is based on Berkeley Echo protocol
%

% Ref:
% Naveen Sastry, Umesh Shankar and David Wagner.

% Secure Verification of Location Claims.
% Proceedings of the Workshop on Wireless Security,
% Proceedings of the 2003 ACM Workshop on Wireless Security.

%
%@version: ver1.0

%@Author: Feng Kai
%@Date: May 3th, 2006

%@Place: Building 322,
% Informatics and Mathematical Modelling (IMM)
% Technical Unversity of Denmark (DTU)

clear;
close all;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameters for situation to be simulated
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%///// Please change the following to simulate\\\\\\
%------------------ Role parameters-----------------

% Location of Prover (meters)
dp = 501;
% Location of Prover claim to be (meters)

dl = 176;
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% Processing time delay Prover claimed
tpp = 0.01;

% Verifier range (meters)
R = 500;
% --------------- Protocol parameters --------------

% Nonce size, bits
N = 16;

% Radio communication bandwidth (bit rate), bits/s
b_r = 48000;

% Ultrasound communication bandwidth (bit rate), bits/s
b_s = 17;
% Radio bit rate, sec/bit

v_r = 1/b_r;
% Ultrasound bit rate, sec/bit

v_s = 1/b_s;
% Time to transmit a radio package, second
t_r = N / b_r;

% Time to transmit a Ultrasound package, second
t_s = N / b_s;

%////////////////// Constants \\\\\\\\\\\\\\\\\\\\\\

% ---------------- Natual constant ----------------
% Speed of light (radio) m/s
C = 3e8;

% Speed of sound m/s
S = 340;

% ---------------- Appearance ---------------------
% Verifier
% color of verifier radius

VERIFIER_COLOR = ’r’;
% color of verifier circle

VERIFIER_RANGE = ’r’;
% color of ROA circle with processing time

VERIFIER_ROA_P = ’g-.’;
% color of ROA radius
VERIFIER_R_P = ’g’;

% color of ROA circle with processing time + transmission time
VERIFIER_ROA_PT = ’b-.’;

% color of ROA radius
VERIFIER_R_PT = ’b’;
% verifier, green small circle

VERIFIER = ’go’;
% Prover

% prover, red pentagram
PROVER = ’rp’;

% prover’s claim , diamond
PROVER_CLAIM = ’d’;

% EPS figure position
epsFigurePos = [0.25 0.25 12 12];

%///////////// Start of simulation \\\\\\\\\\\\\\\\

%//////// Please do not change the following \\\\\\\
% ---------- Calculate current ROA -----------------
% Location of verifier (meters)

dv = 0;
% Location to be verified

dvl = dl - dv;
% True Distance between prover and verifier
Dpv = dp - dv;

% Region of Acceptance (ROA) due to processing time
ROA_P = R - S*tpp;

% ROA due to processing time + transmission time
ROA_ALL = ROA_P - (t_r + t_s)*S;

% ---------- Evaluate ROA 01 -----------------
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% verifier’r radius under evaluation
% 0 ~ 2km

eva_R01 = 0:0.01:2000;
eva_ROA_ALL01 = eva_R01 - S*tpp - (t_r + t_s)*S;
% ---------- Evaluate ROA 02 -----------------

% ROA as a function of (R,n)
% the number of bits for Key

% N = 1 ~ 64 bits
eva_N02 = 1:64;

% R = 0 ~ 4km
eva_r = 1:4000;
eva_r2D = ones(length(eva_N02),1)*eva_r;

eva_ps = S*tpp + (eva_N02/b_r + eva_N02/b_s)*S;
eva_ps = (eva_ps’) * ones(1,length(eva_r));

eva_ROA_ALL02(:,eva_r) = eva_r2D(:,eva_r) - eva_ps(:,eva_r);

for i=1:b_s

eva_r2D_03 = ones(length(eva_N02),1)*eva_r;
eva_ps_03 = S*tpp + (eva_N02/b_r + eva_N02/i)*S;

eva_ps_03 = (eva_ps_03’) * ones(1,length(eva_r));
eva_ROA_ALL03(:,eva_r) = eva_r2D_03(:,eva_r) - eva_ps_03(:,eva_r);

eva_ROA_ALL(:,:,i) = eva_ROA_ALL03(:,:);
clear eva_ROA_ALL03;

%x01(:,:,2) = eva_ROA_ALL03(:,:);

end
% ---------- Evaluate time -----------------

% evaluate time parameters in all communications
% Radio: verifer ----> prover
% time for radio to travel from verifier to prover

tvp_r = Dpv / C;
% time to send a entire radio package

t_r;
% total radio sending time

tvp_pack_r = tvp_r + t_r;
% Radio: verifer ----> l
% time for radio to travel from verifier to prover

tvl_r = dvl / C;
% time to send a entire radio package

t_r;
% total radio sending time
tvl_pack_r = tvl_r + t_r;

% US: l -------> verifier
% time for US to travel from Distance-claimed to verifier

tvl_s = dvl / S;
% time to send the entire US package

t_s;
% total US sending time
tvl_pack_s = tvl_s + t_s;

% US: prover ------> verifier
% time for US to travel from prover to verifier

tvp_s = Dpv / S;
% time to send the entire US package

t_s;
% total US sending time
tvp_pack_s = tvp_s + t_s;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot and visualization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%--------- Calculation of current setup ------------
figure(1)

title(’Situation visualization’);
hold on;

%////////////// Verifier’s location \\\\\\\\\\\\\\\\
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% plot verifier location
plot(dv,0,VERIFIER);

text(dv,5,’Verifier’);
% plot verifier range
ang = 0:pi/100:2*pi;

plot(R*sin(ang),R*cos(ang),VERIFIER_RANGE);
% plot verifier radius

show_ang = 3/4*pi;
x = R*cos(show_ang);

y = R*sin(show_ang);
text(x/2,y/2,’R’);
x = 0:0.1*x/abs(x):x;

y = 0:0.1*y/abs(y):y;
plot(x,y,VERIFIER_COLOR);

% plot verifier’s ROA due to processing time
if ROA_P > 0

ang = 0:pi/100:2*pi;
plot(ROA_P*sin(ang),ROA_P*cos(ang),VERIFIER_ROA_P);

% plot verifier radius
show_ang = 1/4*pi;

x = ROA_P*cos(show_ang);
y = ROA_P*sin(show_ang);
text(x/2,y/2,’ROA(P)’);

x = 0:0.1*x/abs(x):x;
y = 0:0.1*y/abs(y):y;

plot(x,y,VERIFIER_R_P);
end

% plot verifier’s ROA due to processing time + transmission time

if ROA_ALL>0
ang = 0:pi/100:2*pi;

plot(ROA_ALL*sin(ang),ROA_ALL*cos(ang),VERIFIER_ROA_PT);
% plot verifier radius

show_ang = 7/4*pi;
x = ROA_ALL*cos(show_ang);
y = ROA_ALL*sin(show_ang);

text(x/2,y/2,’ROA(PT)’);
x = 0:0.1*x/abs(x):x;

y = 0:0.1*y/abs(y):y;
plot(x,y,VERIFIER_R_PT);

end

%////////////// Prover’s location \\\\\\\\\\\\\\\\
% plot prover true location

plot(dp,0,PROVER);
text(dp,5,’Prover’);

% plot prover’s claimed location
plot(dl,0,PROVER_CLAIM);
text(dl,5,’claimed’);

grid on
axis equal

hold off;
set(gcf, ’PaperPositionMode’, ’manual’);

set(gcf, ’PaperUnits’, ’centimeters’);
set(gcf, ’PaperPosition’, epsFigurePos);
print -depsc2 ’figure01.eps’

% ---------- Evaluate ROA 01 -----------------
% plot verifier’s radius R vs. ROA

figure(2);
hold on;
grid on

axis equal
% plot R vs. ROA

plot(eva_R01,eva_ROA_ALL01);
title(sprintf(’Verifier R vs ROA, N = %d’,N));

xlabel(’Verifier Radius’);
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ylabel(’Verifiable ROA’);
% markers

for i = 0:100:max(eva_ROA_ALL01)
% the R axis
temp = round(i + S*tpp + (t_r + t_s)*S);

% the offset to shift marker up
temp_offsetY = abs(min(eva_ROA_ALL01));

plot(temp,i,’*’);
text(temp+20, i, sprintf(’(%d,%d)’,temp,i));

end;
hold off;
set(gcf, ’PaperPositionMode’, ’manual’);

set(gcf, ’PaperUnits’, ’centimeters’);
set(gcf, ’PaperPosition’, epsFigurePos);

print -depsc2 ’figure02.eps’
% ---------- Evaluate ROA 02 -----------------
% plot ROA vs. (R,N)

figure(3);
% viewing window of R

viewR_wnd = 801:1800;
viewN_wnd = eva_N02;

surf(viewR_wnd,viewN_wnd,eva_ROA_ALL02(viewN_wnd,viewR_wnd));
%text(min(viewR_wnd)+20,max(viewN_wnd),min(min(eva_ROA_ALL02(...
%viewN_wnd,viewR_wnd,i)))+200,sprintf(’BitRate=%d bps’,17));

for i=5:4:b_s
surf(viewR_wnd,viewN_wnd,eva_ROA_ALL(viewN_wnd,viewR_wnd,i));

text(min(viewR_wnd)+20,max(viewN_wnd)+10,min(min(eva_ROA_ALL(...
viewN_wnd,viewR_wnd,i)))+200,sprintf(’BitRate=%d bps’,i));
hold on

end
title(’ROA as a function of R and N’);

xlabel(’R verifier radius(meter)’);
ylabel(’N nonce length(bits)’);

hold off;
set(gcf, ’PaperPositionMode’, ’manual’);
set(gcf, ’PaperUnits’, ’centimeters’);

set(gcf, ’PaperPosition’, epsFigurePos);
print -depsc2 ’figure03.eps’

% ---------- Evaluate time parameter ------------
% plot time sequence diagram of communications
figure;

title(’Time sequence diagram’);
set(gca,’YDir’,’reverse’);

xlabel(’Distance (meters)’);
ylabel(’Time (1000 x microseconds)’);

DispUnitScaler = 1000;
hold on;
grid on;

%Plot Verifier and her time axis
X_POS = 1; Y_POS = 2;

VerifierPos = [0,0];
TimeLine_Length = round((tvp_pack_r + tvl_pack_s)*DispUnitScaler);

plot([VerifierPos(X_POS) VerifierPos(X_POS)],[VerifierPos(X_POS)...
TimeLine_Length]);

text(VerifierPos(X_POS)-10,VerifierPos(Y_POS)-50,’A’);

%Plot Prover and his time axis
ProverPos = [Dpv,0];

plot([ProverPos(X_POS),ProverPos(X_POS)] ,[0 TimeLine_Length]);
text(ProverPos(X_POS)+10,-50,’B’);
%Plot Claimed position and his time axis

ClaimedPos = [dvl,0];
plot([ClaimedPos(X_POS),ClaimedPos(X_POS)] ,[0 TimeLine_Length],’-.’);

text(ClaimedPos(X_POS)+10,-50,’L’);

% Plot radio message sent from verifier to prover
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% Plot only first bit and last bit
% origin

ori = [0,0];
src = ori;
tar = [ProverPos(X_POS),tvp_r*DispUnitScaler];

plot([src(X_POS) tar(X_POS)], [src(Y_POS) tar(Y_POS)],’g>-’);
for idx = 1:(N-1)

src = src + [0,v_r*DispUnitScaler];
tar = tar + [0,v_r*DispUnitScaler];

plot([src(X_POS) tar(X_POS)], [src(Y_POS) tar(Y_POS)],’g>-’);
end
%text(tar(X_POS),tar(Y_POS),sprintf(’(%d,%d)’,tar(X_POS),round(tar(Y_POS))));

% Plot ultrasound message from prover
tar = [0,tvl_s*DispUnitScaler];

src = [ProverPos(X_POS), (tvl_s+tvl_pack_r-tvp_s)*DispUnitScaler];
TimeLine_Cheater = src(Y_POS)-100;
plot([src(X_POS) tar(X_POS)], [src(Y_POS) tar(Y_POS)],’r<-’);

text(src(X_POS),src(Y_POS),sprintf(’(%d)’,round(src(Y_POS))));
text(tar(X_POS),tar(Y_POS),sprintf(’(%d)’,round(tar(Y_POS))));

for idx = 1:(N-1),
src = src + [0,v_s*DispUnitScaler];

tar = tar + [0,v_s*DispUnitScaler];
plot([src(X_POS) tar(X_POS)], [src(Y_POS) tar(Y_POS)],’r<-’);
text(src(X_POS),src(Y_POS),sprintf(’(%d)’,round(src(Y_POS))));

text(tar(X_POS),tar(Y_POS),sprintf(’(%d)’,round(tar(Y_POS))));
end

% Axis
axis([VerifierPos(X_POS)-20 ProverPos(X_POS)+20 TimeLine_Cheater...

TimeLine_Length+100]);

hold off;
set(gcf, ’PaperPositionMode’, ’manual’);

set(gcf, ’PaperUnits’, ’centimeters’);
set(gcf, ’PaperPosition’, epsFigurePos);

print -depsc2 ’figure04.eps’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Show result
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

disp (’ ’);
disp(’%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’);
disp(’%%%%% The result summary %%%%%’);

disp(’%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%’);
disp(’--------------- General result ----------------------’);

disp(’True Distance betwwen Prover and verifier: (meters)’);
disp(Dpv);

disp(’Prover claimed distance: (meters)’);
disp(dvl);
disp(’Verifier range: (meters)’);

disp(R);
disp(’Verifier ROA due to processing time: (meters)’);

disp(ROA_P);
if ROA_P < 0

disp(’Protocol not engaged’);
end
disp(’Verifier ROA due to processing time + transmission time: (meters)’);

disp(ROA_ALL);
if ROA_ALL < 0

disp(’Protocol not engaged’);
end

disp(’---------- Timing result for current setup -------------’);
disp(’Time for radio to travel from verifier to prover: (milisecond)’);

disp(tvp_r * 1000);
disp(’Time for entire package to arrive at prover: (milisecond)’);

disp(t_r * 1000);
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disp(’Total time from sending radio package till received: (milisecond)’);
disp(tvp_pack_r * 1000);

disp(’Time for US to travel from distance-claimed to verifier: (milisecond)’);
disp(tvl_s * 1000);

disp(’Time for entire US package to arrive at verifier: (milisecond)’);
disp(t_s * 1000);

disp(’Total time from sending US package till received: (milisecond)’);
disp(tvl_pack_s * 1000);

disp(’Time for US to travel from prover to verifier: (milisecond)’);
disp(tvp_s * 1000);

disp(’Time for entire US package to arrive at verifier: (milisecond)’);
disp(t_s * 1000);

disp(’Total time from sending US package till received: (milisecond)’);
disp(tvp_pack_s * 1000);
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NesC source code

G.1 US transceiver

usTransceiverM.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."

* All rights reserved.
*
*/

/*

*
* Authors: Feng Kai <s030656@student.dtu.dk>

*
* Revision: usTransceiverM.nc, 2006/02/27 22:00:00
*/

module usTransceiverM {

provides {
interface usTransceiver;

}
uses {

interface Leds;

interface UltrasoundControl;

}
}
implementation {
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/*

* variables for transmitter
*/

//Data to be transmitted

uint32_t Tx_Data;
// Data has been sent

bool Tx_dataSent;
// New data to be sent is ready

bool Tx_dataReady;
// Transmitter current state
uint8_t Tx_currentState;

/*
* variables for receiver
*/

// The whole data byte received
uint32_t Rx_data;

// New data byte has been received
bool Rx_dataReceived;

// Current bit received
bool Rx_CurrentBit;
// Receiver current state

uint8_t Rx_currentState;
// us receiver enable, to avoid multiple INT within the same bit

bool Rx_enable;

/*

* variables for application
*/

// Data received
uint16_t Rx_buffer;
// Parity check of data received

bool Data_Healthy;
// First data bit arrival time

uint16_t arrivalTime;

/*

* Configuration variables
*/

bool Sender;
uint8_t us_Gain;

/**

* Initialize the component.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t usTransceiver.init() {

atomic {

// initialize Tx variable
Tx_Data = 0;

Tx_dataReady = 0;
Tx_dataSent = 1;
Tx_currentState = US_OFFLINE;

// initialize Rx variable

Rx_enable = 1;
Rx_data = 0;

Rx_CurrentBit = 0;
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Rx_dataReceived = 0;
Rx_currentState = US_OFFLINE;

}

//Default as receiver

call usTransceiver.setRole(US_RECEIVER);
//Default gain

call usTransceiver.setGain(127);
//Enable ultrasound receiver

TOSH_CLR_US_IN_EN_PIN();
// Init LEDs

call Leds.init();

return SUCCESS;
}

/**

* Start things up. Start US detector if configured as receiver.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t usTransceiver.start() {

if (!Sender)

call UltrasoundControl.StartDetector(US_DETECT_TIMEOUT);

return SUCCESS;
}

/**
* Halt execution of the application.

* Stop US detector
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t usTransceiver.stop() {

call UltrasoundControl.StopDetector();
return SUCCESS;

}

/**
* Set role of transceiver

* @param tx options are RF_SENDER or RF_RECEIVER
* @return Always returns <code>SUCCESS</code>

**/
command result_t usTransceiver.setRole(bool tx) {

atomic Sender = tx;

// Stop detector if it is a sender
if (Sender)

call UltrasoundControl.StopDetector();

return SUCCESS;
}

/**
* Set gain

* @param g 0~255, typically 127
* @return Always returns <code>SUCCESS</code>
**/

command result_t usTransceiver.setGain(uint8_t g) {
us_Gain = g;

call UltrasoundControl.SetGain(us_Gain);
return SUCCESS;

}
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/**

* Send one word of data
* @param data Data to be sent, type: uint32_t
* @return Always returns <code>SUCCESS</code>

**/
async command result_t usTransceiver.SendWord(uint32_t data) {

uint32_t i = 0;
uint32_t mask = 1;

bool parity = 0;
uint32_t databuf = 0;

/* Sending detector to keep communication data rate */
call UltrasoundControl.StartDetector(US_DETECT_TIMEOUT);

/* Sending a start bit to sync channel*/
call UltrasoundControl.SendPulse();

/**
* Compute parity bit of data if enabled

*
**/

if (US_PARITY_CHECK) {
for (i=0;i<US_DATABITS;i++) {

parity ^= ((data & mask)?1:0);

mask *= 2;
}

/**
* parity format: even/odd
*

**/
if (US_PARITYFORMAT == US_ODD_PARITY)

parity = ((parity)?0:1);
else

parity = parity?1:0;

//add parity into data word

databuf = data | (0x100 * parity);
/**

* Put stop bits into data word, by clearing bit 15~9
**/
databuf = databuf & 0x1FF;

}
else {

databuf = data;
/**

* Put stop bits into data word, by clearing bit 15~8
**/

databuf = databuf & 0xFF;

}

atomic{
/**

* indicate new Tx_Data ready to send
**/
Tx_dataReady = 1;

Tx_Data = databuf;
/**

* data has not been sent
**/
Tx_dataSent = 0;

/**
* transmitter current state offline

**/
Tx_currentState = US_TRANSMIT;

}



US transceiver 183

return SUCCESS;
}

command bool usTransceiver.isLastDataSent() {
bool r;

atomic r = Tx_dataSent;
return r;

}

command bool usTransceiver.isNewDataReady() {
return Rx_dataReceived;

}

command uint32_t usTransceiver.ReceiveWord() {

atomic Rx_dataReceived = 0;

return (Rx_data);
}

command bool usTransceiver.Rx_dataHealthy() {

uint32_t i = 0;
uint32_t mask = 1;
bool parity = 0;

uint32_t data;
atomic data = Rx_buffer;

/**
* Compute parity bit if enabled and put into data word

*
**/

if (US_PARITY_CHECK) {
for (i=0;i<US_DATABITS;i++) {

parity ^= ((data & mask)?1:0);
mask *= 2;

}

/**

* Determine parity bit to be added according to pairty format
*
**/

if (US_PARITYFORMAT == US_ODD_PARITY)
parity = parity?0:1;

else
parity = parity?1:0;

}
data = data>>US_DATABITS;

return ( (data&1) == parity);
}

// this event should be implemented in the user of sender

default event result_t usTransceiver.SendDone(){
return SUCCESS;

}

// this event should be implemented in the user of Receiver
default event uint32_t usTransceiver.DataReceived(uint32_t usData , uint16_t tStamp){

return usData;
}
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task void reportPD(){
printf("Signal detected,");

}

task void usMsgDetected() {

uint16_t t;
atomic t = arrivalTime;

signal usTransceiver.msgDetected(t);
}

/**
* This event is signaled when a Ultrasound pulse is detected.

*
* @param timer the time spent since the start of detector, of type uint16_t

* @return Always returns <code>SUCCESS</code>
**/

async event result_t UltrasoundControl.PulseDetected(uint16_t timer)

{
bool en;

atomic en = Rx_enable;
if ((!Sender) && (en))

{
atomic {

en = 0;

Rx_enable = en;
Rx_CurrentBit = 1;

arrivalTime = timer;

if (Rx_currentState == US_OFFLINE) {

/*
* The first pulse of the byte

*/
post usMsgDetected();

call UltrasoundControl.StopDetector();
Rx_CurrentBit = 0;

Rx_dataReceived = 0;
Rx_currentState = US_ONLINE;

call UltrasoundControl.StartDetector(US_DETECT_TIMEOUT-US_SETUPTIME);
}

}

}
return SUCCESS;

}

task void reportonline(){
printf("Online\r\n");

}

task void reportrx(){

printf("receive\r\n");
}

task void reportstop(){
printf("Stop\r\n");

}

task void reportz(){
printf("0");

}

task void reporto(){

printf("1");
}
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task void usSendDone() {
signal usTransceiver.SendDone();

}

task void usDataReceived() {

uint16_t r;
atomic r = Rx_buffer;

signal usTransceiver.DataReceived(r,0);
}

/**
* This event is signaled when a Ultrasound detector time out.

*
*

* @return Always returns <code>SUCCESS</code>
**/
async event result_t UltrasoundControl.DetectorTimeout()

{
static uint32_t tx_d = 0;

// Index for current bit to be sent
norace static uint32_t Tx_Index = 0;

// Current sending bit mask
norace static uint32_t Tx_BitMask = 1;

uint32_t rx_d;
// Weight of Current bit received

// (data[Rx_Index])
// 2 = Rx_CurrentBit * Rx_BitMask
norace static uint32_t Rx_BitMask = 1;

// Current receiving bit index
norace static uint32_t Rx_Index = 0;

uint8_t state;

uint32_t tempbit;

if (!Sender) {

/*
* Start detector for the next receiving bit

*/

atomic state = Rx_currentState;

switch (state) {

case US_OFFLINE:
/*

* No signal detected
*/
break;

case US_ONLINE:
/*

* First pulse detected, byte synchronized
*/

atomic {
state = US_RECEIVE;

Rx_CurrentBit = 0;

Rx_enable = 1;
}

break;
case US_RECEIVE:

atomic {
rx_d = Rx_CurrentBit;

Rx_CurrentBit = 0;
Rx_enable = 1;

}
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Rx_Index++;
/*

* online and A pulse is received
* or time out is found

*/

if (Rx_Index <= (US_DATABITS+US_STOPBITS+US_PARITY_CHECK)){ //
/*

* a Rx_data Rx_BitMask of 1
*/

if (rx_d == 1) {
atomic Rx_data = Rx_data | Rx_BitMask;

}

else
;

/*
* no pulse received
* else

*/
Rx_BitMask*=2;

}
else

/*
* final stop bit
*/

{

atomic {
Rx_buffer = Rx_data&0x1ff;
Rx_data = 0;

Rx_dataReceived = 1;
state = US_OFFLINE;

Rx_Index = 0;
Rx_BitMask = 1;

post usDataReceived();
}

}

break;
/* End switch*/

}
atomic Rx_currentState = state;
call UltrasoundControl.StartDetector(US_DETECT_TIMEOUT);

//////////////////////////////////////////////////////////////////
/* End Receiver */

}
else {

/*
* Sender
*/

/*
* restart timer to send next bit

*/
atomic state = Tx_currentState;

call UltrasoundControl.StartDetector(US_DETECT_TIMEOUT);
switch (state) {

case US_OFFLINE:
break;

case US_ONLINE:
state = US_TRANSMIT;
break;

case US_TRANSMIT:
/*

* ONLINE, Sending Tx_BitMask by Tx_BitMask,
* from Tx_BitMask 1 to Tx_BitMask 8

*/



US transceiver 187

atomic Tx_Index++;
if (Tx_Index <= (US_DATABITS + US_STOPBITS + US_PARITY_CHECK) ){

/*
* send Tx_Data
*/

atomic tempbit = Tx_Data & Tx_BitMask;
/**** send a pulse if ’1’ ****/

if (tempbit>=1)
{

call UltrasoundControl.SendPulse();
}

/**** send nothing if ’0’ ****/

/*

* shift to next Tx_BitMask for examination
*/

Tx_BitMask *= 2;

}
else

/*
* ONLINE, Send done

*/
{

atomic {

Tx_dataReady = 0;
Tx_dataSent = 1;

state = US_OFFLINE;
tx_d = 0;
Tx_Index = 0;

Tx_BitMask = 1;
}

post usSendDone();
}

}
atomic Tx_currentState = state;
/*

* End sender
*/

}
return SUCCESS;

}

/**

* Get the current time stamp.
*

* @return uint32_t time stamp
**/

command uint16_t usTransceiver.getTimeStamp() {

uint16_t t;
atomic t = 0;

return t;
}

}

usTransceiverC.nc

/**
* @author Feng Kai s030656@student.dtu.dk

**/
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includes usTransceiver;

configuration usTransceiverC{
provides interface usTransceiver;

}
implementation {

components usTransceiverM,UltrasoundControlM,LedsC;

usTransceiver = usTransceiverM.usTransceiver;

usTransceiverM.UltrasoundControl -> UltrasoundControlM;

usTransceiverM.Leds -> LedsC.Leds;

}

usTransceiver.nc

/**

*
* @author s030656@student.dtu.dk

**/

interface usTransceiver {

command result_t init();

command result_t start();

command result_t stop();

command result_t setRole(bool tx);

command result_t setGain(uint8_t g);

/*
* Send

*/
async command result_t SendWord(uint32_t d);

command result_t isLastDataSent();

event result_t SendDone();

/*
* Receive
*/

event uint16_t msgDetected(uint16_t timeStamp);

event uint32_t DataReceived(uint32_t Rx_data,uint16_t timeStamp);

command bool isNewDataReady();

command uint32_t ReceiveWord();

command bool Rx_dataHealthy();

/*
* Time stamping services

*/
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command uint16_t getTimeStamp();

}

usTransceiver.h

/*

* definition.h
* Feng Kai<s030656@student.dtu.dk>
*

*/

#ifndef _USTRANSCEIVER_H

#define _USTRANSCEIVER_H

#include <stdio.h>

#include <avr/eeprom.h>

//Configuration
#define US_RECEIVER 0

#define US_SENDER 1

#define US_GAIN_NORMAL 127
// The speed of sound used for distance calculation

#define SPEED_OF_SOUND 342

#define US_OFFLINE 0

#define US_ONLINE 1
#define US_RECEIVE 2

#define US_TRANSMIT 3

// UltraSound transmission bit rate

// unit: ms/bit

#define US_DETECT_TIMEOUT (unsigned int)(60000)

// UltraSound transmission data width
#define US_DATABITS 8
// Define number of Stop bit

#define US_STOPBITS 2
// Define parity bit

#define US_PARITY_CHECK 1
// Define parity check, even

#define US_EVEN_PARITY 0
#define US_ODD_PARITY 1
#define US_PARITYFORMAT US_ODD_PARITY

// US receiver setup time in microsecond (us)
#define US_SETUPTIME 5000

#endif
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G.2 US sender and receiver

UseTxM.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."

* All rights reserved.
*

*/

/*
*
* Authors: Feng Kai <s030656@student.dtu.dk>

*
* Revision: UseTxM.nc, 2006/02/27

*/

module UseTxM{

provides {
interface StdControl;

}
uses {

interface Leds;
interface usTransceiver;
interface Timer;

interface RS232;
}

}
implementation {

// data to be sent
uint8_t data;

/**

* Initialize ultrasound transceiver.
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.init() {

call Leds.init();
call usTransceiver.init();
call usTransceiver.setRole(US_SENDER);

call usTransceiver.setGain(US_GAIN_NORMAL);
data = 0x0;

call RS232.init();
return SUCCESS;

}

/**
* Start timer and usTransceiver.

*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.start() {

call Timer.start(TIMER_REPEAT, 1000);

call usTransceiver.start();
return SUCCESS;

}

/**

* Halt execution of the application.
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*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.stop() {

call usTransceiver.stop();

return SUCCESS;
}

/**

* This event is signalled when US packet is sent.
*
* @return Always returns <code>SUCCESS</code>

**/
event result_t usTransceiver.SendDone(){

return SUCCESS;
}

/**
* This event is signalled when a message is detected.

* It detect the first presents of the US bit.
*

* @return Always returns <code>SUCCESS</code>
**/

event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){

return timeStamp;

}

/**

* This event is signalled when US packet is received.
*

* @return Always returns US Data
**/

event uint32_t usTransceiver.DataReceived(uint32_t usData , uint16_t timeStamp){
return usData;

}

/**

* Periodically send US data.
*
* @return Always returns <code>SUCCESS</code>

**/
event result_t Timer.fired()

{

if (call usTransceiver.isLastDataSent()) {
// Send US data

call usTransceiver.SendWord(data);

// light up LED
switch(data&0xFF) {

case 0x30: call Leds.yellowOff();call Leds.greenOff();call Leds.redOff();break;
case 0x31: call Leds.yellowOn();call Leds.greenOff();call Leds.redOff();break;

case 0x32: call Leds.yellowOff();call Leds.greenOn();call Leds.redOff();break;
case 0x33: call Leds.yellowOn();call Leds.greenOn();call Leds.redOff();break;

}

// incrementing data, data should be between 0x30 and 0x33
data++;

}
return SUCCESS;

}

/**

* This event is signalled when PC send a string.
*

* @return Always returns <code>SUCCESS</code>
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**/
event result_t RS232.Receive(char * buf, uint8_t data_len){

return SUCCESS;
}

}

UseTx.nc

/**

* This application is a ultrasound sender.
*
* @author s030656@student.dtu.dk

**/
includes usTransceiver;

configuration UseTx {
}

implementation {
// Components used for UseTxM
components Main, TimerC, LedsC, UseTxM;

// Components used for usTransceiverC
components usTransceiverC;

// Components RS232
components RS232C;

// Wire of component UseTxM
Main.StdControl -> UseTxM.StdControl;

Main.StdControl -> TimerC.StdControl;
UseTxM.Leds -> LedsC.Leds;

UseTxM.Timer -> TimerC.Timer[unique("Timer")];

// Wire of components usTransceiverC

UseTxM.usTransceiver -> usTransceiverC.usTransceiver ;

// RS232
UseTxM.RS232 -> RS232C.RS232;

}

UseRxM.nc

/*

* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.
*

*/

/*
*

* Authors: Feng Kai <s030656@student.dtu.dk>
*
* Revision: UseRxM.nc, 2006/02/27

*/

module UseRxM{
provides {

interface StdControl;
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}
uses {

interface Leds;
interface usTransceiver;
interface Timer;

interface RS232;
}

}
implementation {

uint16_t data;
bool sent;

uint32_t time;

/**
* Initialize ultrasound transceiver and RS232 communication.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {
call Leds.init();

call usTransceiver.init();
call usTransceiver.setRole(US_RECEIVER);
call usTransceiver.setGain(US_GAIN_NORMAL);

data = 0;
sent = 1;

call RS232.init();
return SUCCESS;

}

/**
* Start timer and ultrasound receiver.

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
call Timer.start(TIMER_REPEAT, 1000);

call usTransceiver.start();
return SUCCESS;

}

/**

* Halt execution of the application.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.stop() {

call usTransceiver.stop();
return SUCCESS;

}

/**
* This event is signalled when a string is received from PC.
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t RS232.Receive(char * buf, uint8_t data_len){
return SUCCESS;

}

/**

* This event is signaled when US packet is sent.
*

* @return Always returns <code>SUCCESS</code>
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**/
event result_t usTransceiver.SendDone(){

return SUCCESS;
}

event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){
return timeStamp;

}

task void reportData(){
printf("data received: %x\r\n",data);

}

task void dataerr(){

call Leds.redToggle();
printf("Rcv Wrong: %x\r\n",data);

}

/**

* This event is signalled when Data is recieved from US channel.
*

* @return Always returns <code>SUCCESS</code>
**/

event uint32_t usTransceiver.DataReceived(uint32_t Rx_data , uint16_t timeStamp){

atomic data = Rx_data;
post reportData();

if (call usTransceiver.Rx_dataHealthy()) {
switch(Rx_data&0xFF) {

case 0x30: call Leds.yellowOff();call Leds.greenOff();call Leds.redOff();break;
case 0x31: call Leds.yellowOn();call Leds.greenOff();call Leds.redOff();break;

case 0x32: call Leds.yellowOff();call Leds.greenOn();call Leds.redOff();break;
case 0x33: call Leds.yellowOn();call Leds.greenOn();call Leds.redOff();break;

}
}
else

{
post dataerr();

}

return Rx_data;
}

/**

* This is event is signalled when timer fired. Not used in this application.
*
* @return Always returns <code>SUCCESS</code>

**/
event result_t Timer.fired()

{
return SUCCESS;

}

}

UseRx.nc

/**
* This application is a ultrasound receiver.

*
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* @author s030656@student.dtu.dk
**/

includes usTransceiver;
configuration UseRx {
}

implementation {
components Main, UseRxM, LedsC;

components TimerC;
components RS232C;

components usTransceiverC;

components TimerC as usTimerC;

Main.StdControl -> UseRxM.StdControl;
Main.StdControl -> TimerC.StdControl;
UseRxM.Leds -> LedsC.Leds;

UseRxM.Timer -> TimerC.Timer[unique("Timer")];

UseRxM.usTransceiver -> usTransceiverC.usTransceiver ;

UseRxM.RS232 -> RS232C.RS232;

}

G.3 RF transceiver

rfTransceiverM.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.

*
*/

/*
*

* Authors: Feng Kai <s030656@student.dtu.dk>
*

* Revision: rfTransceiverM.nc, 2006/03/18 23:00:00
*/

module rfTransceiverM {

provides {
interface rfTransceiver;

}

uses {
interface Leds;
interface StdControl as RadioControl;

interface BareSendMsg as RadioSend;
interface ReceiveMsg as RadioReceive;

async command uint8_t GetRxBitOffset();

}
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}
implementation {

/**
* The role of this transceiver

* Can be configured as transmitter <code> RF_SENDER</code>
* or receiver <code> RF_RECEIVER</code>

**/
bool bRole;

//Busy flag
bool senderBusy;

/**
* Set the role of this transceiver
* @param role The role of the transceiver. Can be configured

* as transmitter <code> RF_SENDER</code>
* or receiver <code> RF_RECEIVER</code>

* The transceiver need to be stoped first,
* change the role by calling this command

* and restarted again by calling start command.
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t rfTransceiver.setRole(bool role) {

bRole = role;
return SUCCESS;

}

/**
* Initialize the component, and set default role as receiver.

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t rfTransceiver.init() {
//call Leds.init();

// Init radio
call RadioControl.init();
// Default role as receiver

bRole = RF_RECEIVER;
// reset variable

senderBusy = 0;

return SUCCESS;
}

/**

* Start transceiver according to the role. Therefore
* the role should be set after init() command

* and before start() command.
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t rfTransceiver.start() {

// Start the system if it is a receiver
if (bRole == RF_RECEIVER)

call RadioControl.start();

return SUCCESS;
}

/**

* Halt execution of the application.
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*
* @return Always returns <code>SUCCESS</code>

**/
command result_t rfTransceiver.stop() {

call RadioControl.stop();

return SUCCESS;
}

/**
* Send radio packet.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t rfTransceiver.Send(TOS_MsgPtr msg)
{

int result = 0;

atomic senderBusy = 1;
call RadioControl.start();

result = call RadioSend.send(msg);

return SUCCESS;
}

/**
* Default event handler when sending is done.

*
**/

default event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success){

}

/**

* Default event handler when a radio packet arrived.
*
**/

default event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data){

}

/**

* Fetch current sender status by return busy flag.
*

* @return Always returns senderBusy
**/

command bool rfTransceiver.isSenderBusy() {
return senderBusy;

}

/**

* This event is signaled from underlying software
* indicate an packet is sent.

*
* @return Always returns <code>SUCCESS</code>
**/

event result_t RadioSend.sendDone(TOS_MsgPtr rmsg, result_t success) {
call RadioControl.stop();

atomic senderBusy = 0;
signal rfTransceiver.sendDone(rmsg, success);

return success;

}

/**

* This event is signaled from underlying software,
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* indicate an actual packet is received.
*

* @return Always returns radio packet received.
**/

event TOS_MsgPtr RadioReceive.receive(TOS_MsgPtr data) {

signal rfTransceiver.receive(data);
return data;

}

}

rfTransceiverC.nc

includes rfTransceiver;

configuration rfTransceiverC {
provides {
interface rfTransceiver;

interface RadioCoordinator as RadioSendCoord;
interface RadioCoordinator as RadioReceiveCoord;

async command uint8_t GetRxBitOffset();
}

}

implementation {
components rfTransceiverM, LedsC;

components RadioCRCPacket as Comm, CC1000RadioIntM as Radio;

// rfTransceiverM
rfTransceiver = rfTransceiverM.rfTransceiver;

rfTransceiverM.Leds -> LedsC;
rfTransceiverM.RadioControl -> Comm;

rfTransceiverM.RadioSend -> Comm;
rfTransceiverM.RadioReceive -> Comm;
GetRxBitOffset = Radio.GetRxBitOffset;

RadioSendCoord = Radio.RadioSendCoordinator;
RadioReceiveCoord = Radio.RadioReceiveCoordinator;

}

rfTransceiver.nc

includes AM;

interface rfTransceiver {

command result_t setRole(bool role);

command result_t init();

command result_t start();

command result_t stop();

command result_t Send(TOS_MsgPtr msg);



RF sender and receiver 199

command bool isSenderBusy();

event result_t sendDone(TOS_MsgPtr rmsg, result_t success);

event TOS_MsgPtr receive(TOS_MsgPtr data);

}

rfTransceiver.h

#ifndef _RFTRANSCEIVER_H

#define _RFTRANSCEIVER_H

#include <stdio.h>

#define SYN1 0x0f
#define SYN2 0x0e

#define RF_SENDER 0

#define RF_RECEIVER 1

#endif

G.4 RF sender and receiver

rfSenderM.nc

module rfSenderM {
provides {

interface StdControl;
}

uses {
interface Leds;

interface Timer;
interface rfTransceiver;

async command uint8_t GetRxBitOffset();
}

}
implementation {

// Message
TOS_Msg msg;

/**

* Initialize the LED, rfTransceiver(as sender).
*
* @return Always returns <code>SUCCESS</code>

**/
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command result_t StdControl.init() {
int i;

call Leds.init();
call rfTransceiver.init();
call rfTransceiver.setRole(RF_SENDER);

msg.length = 23;

msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<8;i++)
msg.data[i] = 0x00;

msg.data[0] = 0x30;
return SUCCESS;

}

/**
* Start 1 second timer, and start radio transceiver.

*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.start() {

// Start a repeating timer that fires every 1000ms

call rfTransceiver.start();
call Timer.start(TIMER_REPEAT, 1000);

return SUCCESS;
}

/**
* Halt execution of the application.

*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.stop() {

call rfTransceiver.stop();

call Timer.stop();
return SUCCESS;

}

/**
* Send a radio packet. A number is sent, circulating from 0x30 to 0x37

*
* @return Always returns <code>SUCCESS</code>

**/
event result_t Timer.fired()
{

int result = 0;
if (! call rfTransceiver.isSenderBusy()) {

// Send a packet
result = call rfTransceiver.Send(&msg);

if (result == SUCCESS)
{
// test pattern generator

msg.data[0]++;
if (msg.data[0] == 0x38)

msg.data[0] = 0x30;
call Leds.greenToggle();

}

}
return SUCCESS;

}
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/**
* This event is signaled when packet is sent.

*
* @return Always returns <code>SUCCESS</code>
**/

event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

return SUCCESS;
}

/**

* This event is signalled when a radio packet is received
*

* @return Always returns <code>SUCCESS</code>
**/

event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

return data;

}
}

rfSenderC.nc

includes rfSender;
includes rfTransceiver;

configuration rfSenderC {

}
implementation {

components Main, rfSenderM,TimerC, LedsC;
components rfTransceiverC;

Main.StdControl -> rfSenderM;
Main.StdControl -> TimerC;

rfSenderM.Timer -> TimerC.Timer[unique("Timer")];
rfSenderM.Leds -> LedsC;

// Radio
rfSenderM.rfTransceiver -> rfTransceiverC.rfTransceiver;

}

rfSender.h

#ifndef _RFSENDER_H
#define _RFSENDER_H
#include <stdio.h>

#define SYN1 0x0f
#endif

rfReceiverM.nc
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module rfReceiverM {

provides {
interface StdControl;

}

uses {
interface Leds;

interface Timer;
interface rfTransceiver;

async command uint8_t GetRxBitOffset();
}

}
implementation {

// Message
TOS_Msg msg;

/**
* Initialize the LED, rfTransceiver(as receiver).

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {
int i;

// init LEDs
call Leds.init();
// init RF and Ultrasound transceiver

call rfTransceiver.init();
// set RF transceiver as receiver

call rfTransceiver.setRole(RF_RECEIVER);

// format RF message
msg.length = 23;
msg.type = SYN1;

msg.addr = TOS_BCAST_ADDR;

for(i=0;i<8;i++)
msg.data[i] = 0x00;

return SUCCESS;
}

/**
* Start timer and radio receiver.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
// Start a repeating timer that fires every 500ms

call Timer.start(TIMER_REPEAT, 500);
// start the RF receiver
call rfTransceiver.start();

return SUCCESS;

}

/**

* Halt execution of the application.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.stop() {
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// stop everything
call rfTransceiver.stop();

call Timer.stop();
return SUCCESS;

}

/**
* When timer is fired, this event is signaled. Not used in this application.

*
* @return Always returns <code>SUCCESS</code>
**/

event result_t Timer.fired()
{

return SUCCESS;
}

/**

* This event is signaled when packet is sent.
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

return SUCCESS;

}

/**
* This event is signalled when a radio packet is received.

* It displays the data received. The number should be between 0x30 and 0x37
*

* @return Always returns <code>SUCCESS</code>
**/

event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

switch(data->data[0]) {
case 0x30: call Leds.yellowOff();call Leds.greenOff();call Leds.redOff();break;

case 0x31: call Leds.yellowOn();call Leds.greenOff();call Leds.redOff();break;
case 0x32: call Leds.yellowOff();call Leds.greenOn();call Leds.redOff();break;
case 0x33: call Leds.yellowOn();call Leds.greenOn();call Leds.redOff();break;

case 0x34: call Leds.yellowOff();call Leds.greenOff();call Leds.redOn();break;
case 0x35: call Leds.yellowOn();call Leds.greenOff();call Leds.redOn();break;

case 0x36: call Leds.yellowOff();call Leds.greenOn();call Leds.redOn();break;
case 0x37: call Leds.yellowOn();call Leds.greenOn();call Leds.redOn();break;

}
return data;

}

}

rfReceiverC.nc

includes rfReceiver;
includes rfTransceiver;

configuration rfReceiverC {

}
implementation {

components Main, rfReceiverM,TimerC, LedsC;

components rfTransceiverC;
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Main.StdControl -> rfReceiverM;

Main.StdControl -> TimerC;
rfReceiverM.Timer -> TimerC.Timer[unique("Timer")];
rfReceiverM.Leds -> LedsC;

// Radio

rfReceiverM.rfTransceiver -> rfTransceiverC.rfTransceiver;
}

rfReceiver.h

#ifndef _RFRECEIVER_H

#define _RFRECEIVER_H

#include <stdio.h>
#define SYN1 0x0f
#endif

G.5 Ultrasound ranging

KeyReceiverM.nc

/*

* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.
*

*/

/*
*
* Authors: Feng Kai <s030656@student.dtu.dk>

*
* Revision: KeyReceiverM.nc, 2006/03/15

*/

module KeyReceiverM {
provides {

interface StdControl;
}

uses {
interface Leds;

interface Timer;
interface rfTransceiver;
interface usTransceiver;

interface RadioCoordinator as RadioSendCoord;
interface RadioCoordinator as RadioReceiveCoord;

interface RS232;

async command uint8_t GetRxBitOffset();

}
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}
implementation {

// Message
TOS_Msg msg;

uint8_t count;
/**

* Initialize the component.
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.init() {

int i;
// init LEDs
call Leds.init();

// init RF and Ultrasound transceiver
call rfTransceiver.init();

call usTransceiver.init();
// set RF transceiver as receiver

call rfTransceiver.setRole(RF_RECEIVER);
// set Ultrasound transceiver as sender
call usTransceiver.setRole(US_SENDER);

call RS232.init();
// format RF message, boardcast

msg.length = 29;
msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<8;i++)
msg.data[i] = 0x00;

return SUCCESS;
}

/**
* Start Timer, radio receiver and ultrasound transmitter
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
// Start a repeating timer that fires every 500ms

call Timer.start(TIMER_REPEAT, 500);
// start the RF receiver
call rfTransceiver.start();

// start the US sender;
call usTransceiver.start();

return SUCCESS;

}

/**

* Halt execution of the application.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.stop() {

// stop everything
call rfTransceiver.stop();

call Timer.stop();
call usTransceiver.stop();

return SUCCESS;
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}

/**
* Timer fire, no action taken here

*
* @return Always returns <code>SUCCESS</code>

**/
event result_t Timer.fired()

{
return SUCCESS;

}

/**

* RF message send done
*
* @return Always returns <code>SUCCESS</code>

**/
event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

return SUCCESS;

}

/**
* A RF message received

*
* @return Always returns <code>SUCCESS</code>
**/

event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

return data;
}

async event void RadioSendCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {}

async event void RadioSendCoord.blockTimer() {}
/**

* RadioSend Coordinator
*
**/

async event void RadioSendCoord.byte(TOS_MsgPtr rfmsg, uint8_t cnt)
{

}

task void report_rx() {
uint8_t c;

atomic c = count;
printf("byte @%u\r\n",c);

}

async event void RadioReceiveCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {};
async event void RadioReceiveCoord.blockTimer() {};

/**
* RadioReceive Coordinate

*
**/

async event void RadioReceiveCoord.byte(TOS_MsgPtr rfmsg, uint8_t cnt)

{
uint16_t compensation;

if (cnt == (offsetof(struct TOS_Msg,type) +

sizeof(((struct TOS_Msg*)0)->type))+3) {
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/*
* Get radio receiver hardware offset,

* this is the hardware overhead that experienced.
* it should be sent back to KeySender for distance correction.
*/

atomic compensation = call GetRxBitOffset();
call usTransceiver.SendWord(compensation);

atomic count = rfmsg->data[0];
post report_rx();

}
}

/**
* A US message sent

*
* @return Always returns <code>SUCCESS</code>
**/

event result_t usTransceiver.SendDone(){

return SUCCESS;
}

/**
* A US message detected. It is not used in this program

*
* @return Always returns <code>SUCCESS</code>

**/
event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){

return timeStamp;
}

/**
* US data packet received, not used in this program.
*

* @return Always returns <code>SUCCESS</code>
**/

event uint32_t usTransceiver.DataReceived(uint32_t Rx_data , uint16_t timeStamp){
return Rx_data;

}

/**

* A RF message received, serial communication.
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t RS232.Receive(char * buf, uint8_t data_len){

return SUCCESS;
}

}

KeyReceiver.nc

/**
* @author Feng Kai s030656@student.dtu.dk

**/

includes KeyReceiver;

includes rfTransceiver;
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includes usTransceiver;

configuration KeyReceiver {

}

implementation {
components Main, KeyReceiverM,TimerC, LedsC;

components rfTransceiverC;
components usTransceiverC;

components RS232C;

Main.StdControl -> KeyReceiverM;

Main.StdControl -> TimerC;
KeyReceiverM.Timer -> TimerC.Timer[unique("Timer")];

KeyReceiverM.Leds -> LedsC;

// Radio

KeyReceiverM.rfTransceiver -> rfTransceiverC.rfTransceiver;
KeyReceiverM.RadioSendCoord -> rfTransceiverC.RadioSendCoord;

KeyReceiverM.RadioReceiveCoord -> rfTransceiverC.RadioReceiveCoord;
KeyReceiverM.GetRxBitOffset -> rfTransceiverC.GetRxBitOffset;

//Ultra Sound

KeyReceiverM.usTransceiver -> usTransceiverC.usTransceiver;

//RS232
KeyReceiverM.RS232 -> RS232C.RS232;

}

KeyReceiver.h

#ifndef _KEYRECEIVER_H
#define _KEYRECEIVER_H

#include <stdio.h>

#define SYN1 0x0f
#endif

KeySenderM.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."

* All rights reserved.
*

*/

/*

*
* Authors: Feng Kai <s030656@student.dtu.dk>

*
* Revision: KeySenderM.nc, 2006/03/15
*/
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module KeySenderM {
provides {

interface StdControl;

}
uses {

interface Leds;
interface Timer;

interface rfTransceiver;
interface usTransceiver;
interface RS232;

interface RadioCoordinator as RadioSendCoord;
interface RadioCoordinator as RadioReceiveCoord;

async command uint8_t GetRxBitOffset();
}

}
implementation {

// Message

TOS_Msg msg;
// Replay flag for ultrasound message
bool usReply = 1;

// The data to be sent
uint8_t data;

// Radio sending time
uint16_t sendT;
// ultrasound back time

uint16_t backT;
// The time corresponding to the true distance

uint16_t integrityTime;

/**
* Initialize the LED, radio transceiver, ultrasound transceiver and RS232 link.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {
int i;
call Leds.init();

call rfTransceiver.init();
call rfTransceiver.setRole(RF_SENDER);

call usTransceiver.init();
call usTransceiver.setRole(US_RECEIVER);

call RS232.init();

msg.length = 29;

msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<29;i++)

msg.data[i] = i;
return SUCCESS;

}

/**
* Start radio transceiver and timer.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
// Start a repeating timer that fires every 2000ms

call rfTransceiver.start();
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call Timer.start(TIMER_REPEAT, 2000);

return SUCCESS;
}

/**
* Halt execution of the application.

*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.stop() {

call rfTransceiver.stop();

call usTransceiver.stop();
call Timer.stop();

return SUCCESS;
}

/**

* When timer fired, send a radio packet.
* And incremental data.

*
* @return Always returns <code>SUCCESS</code>
**/

event result_t Timer.fired()
{

int result = 0;
int i;

if ((! (call rfTransceiver.isSenderBusy())) && usReply) {

usReply = 0;

result = call rfTransceiver.Send(&msg);
if (result == SUCCESS)

{
for (i= 0;i<29;i++) {

msg.data[i]++;

}
}

}

return SUCCESS;

}

task void report_sendtime() {

uint16_t st;
atomic st = sendT;
printf("Sent Time: %u us\r\n",st);

}

/**
* This event is signalled when radio packet is sent.

*
* @return Always returns <code>SUCCESS</code>
**/

event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

return SUCCESS;
}

/**

* This event is signalled when radio packet is received.
*

* @return Always returns <code>SUCCESS</code>
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**/
event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr rfdata) {

return rfdata;
}

/**

* This event is signalled when US data is sent.
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t usTransceiver.SendDone() {

return SUCCESS;

}

task void report_backTime() {

printf("backtime: %u us\r\n",backT);
}

task void report_integrity(){

uint16_t distance = 0;
uint16_t measuredTime;

uint16_t truetime;

atomic {

// The time-of-flight
integrityTime = backT - sendT;

measuredTime = integrityTime;
// The time-of-flight, corrected with processint time

truetime = integrityTime - (data - 7)*48;
// corrected with timer offset

truetime -= 900;

}
if ((data<=7)&&(truetime>10)) {

// s = v/t
distance = (uint16_t)(truetime)/10 * 34;
// distance in centimeter

distance /=100;

printf("uncorrected time: %u us,integrity time: %u us, Distance: %u cm\r\n",
measuredTime,truetime,distance);

}
else
{

printf("No update, integrity time: %u us, Distance: %u cm\r\n",integrityTime,distance);
}

}

/**
* This event is signalled when a message is detected.

* This gives a time when the packet is first reached receiver.
*

* @return Always returns <code>SUCCESS</code>
**/

event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){

call Leds.greenOff();
atomic backT = timeStamp;

post report_backTime();

return timeStamp;
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}

task void report_data() {
printf("offset: %x\r\n",data);

}

/**
* This event is signalled when a US packet is received.

*
* @return Always returns <code>SUCCESS</code>
**/

event uint32_t usTransceiver.DataReceived(uint32_t Rx_data , uint16_t timeStamp){
atomic data = Rx_data;

post report_data();
post report_integrity();

call usTransceiver.stop();
if (call usTransceiver.Rx_dataHealthy()) {

}
else
{

}

usReply = 1;
return Rx_data;

}

async event void RadioSendCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {}
async event void RadioSendCoord.blockTimer() {}

async event void RadioSendCoord.byte(TOS_MsgPtr rfmsg, uint8_t cnt)
{

if (cnt == (offsetof(struct TOS_Msg,data) + 3)){

// When synchronized, start US receiver.
call Leds.greenOn();

call usTransceiver.start();
sendT = call usTransceiver.getTimeStamp();
post report_sendtime();

}

}

async event void RadioReceiveCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {};
async event void RadioReceiveCoord.blockTimer() {};
async event void RadioReceiveCoord.byte(TOS_MsgPtr rfmsg, uint8_t cnt)

{

}

event result_t RS232.Receive(char * buf, uint8_t data_len){
return SUCCESS;

}

}

KeySender.nc

/**
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* @author Feng Kai s030656@student.dtu.dk
**/

includes KeySender;
includes rfTransceiver;

includes usTransceiver;

configuration KeySender {

}
implementation {

components Main, KeySenderM,TimerC, LedsC;

components rfTransceiverC;
components usTransceiverC, TimerC as usTimerC;

components RS232C;

Main.StdControl -> KeySenderM;

Main.StdControl -> TimerC;
KeySenderM.Timer -> TimerC.Timer[unique("Timer")];

KeySenderM.Leds -> LedsC;

// Radio
KeySenderM.rfTransceiver -> rfTransceiverC.rfTransceiver;
KeySenderM.RadioSendCoord -> rfTransceiverC.RadioSendCoord;

KeySenderM.RadioReceiveCoord -> rfTransceiverC.RadioReceiveCoord;

// Ultrasound
KeySenderM.usTransceiver -> usTransceiverC.usTransceiver;

//RS232
KeySenderM.RS232 -> RS232C.RS232;

}

KeySender.h

#ifndef _KEYSENDER_H

#define _KEYSENDER_H

#include <stdio.h>

#define SYN1 0x0f
#endif

G.6 TinySec and Integrity

MACsenderM.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."

* All rights reserved.
*
*/
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/*
*

* Authors: Feng Kai <s030656@student.dtu.dk>
*
* Revision: MACsenderM.nc, 2006/03/08

*/

module MACsenderM {

provides {
interface StdControl;

}

uses {
interface Leds;

interface Timer;
interface rfTransceiver;
interface MAC;

async command uint8_t GetRxBitOffset();

}
}

implementation {

// Message

TOS_Msg msg;

// MAC variables
MACContext macContext;
uint8_t key_tmp[2*TINYSEC_KEYSIZE] = {TINYSEC_KEY};

uint8_t MACKey[TINYSEC_KEYSIZE];

// My text
uint8_t myText[30];

/**
* Initialize the component.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {
int i;
call Leds.init();

call rfTransceiver.init();
call rfTransceiver.setRole(RF_SENDER);

//MAC

memcpy(MACKey,key_tmp+TINYSEC_KEYSIZE,TINYSEC_KEYSIZE);

call MAC.init(&macContext,TINYSEC_KEYSIZE,MACKey);

msg.length = 29;

msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<msg.length;i++)
myText[i] = i+0x30;

for(i=0;i<msg.length;i++)

msg.data[i] = 0;

return SUCCESS;

}

/**

* Start timer and RF transceiver
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*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.start() {

call rfTransceiver.start();
call Timer.start(TIMER_REPEAT, 3000);

return SUCCESS;
}

/**
* Halt execution of the application.

*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.stop() {

call rfTransceiver.stop();

call Timer.stop();
return SUCCESS;

}

/**
* Each time the Timer fired, send a message to receiver.

* The clear text message is sent first, MAC is sent at the next round.
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t Timer.fired()

{
static int mac = 0;

int i;
result_t result;

if (! call rfTransceiver.isSenderBusy()) {
// Prepare clear text message
if (!mac) {

memcpy(msg.data,myText,30);

mac = 1;
}

else {

// compute MAC
call MAC.MAC(&macContext,

(uint8_t*) myText, CLEARTEXTSIZE,
msg.data,CIPHERSIZE);

for(i=0;i<msg.length;i++)
myText[i] +=1;

mac = 0;

}

// Send actual message over radio link
result = call rfTransceiver.Send(&msg);

if (result == SUCCESS)
{

call Leds.greenToggle();

}
}

return SUCCESS;
}

event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

return SUCCESS;

}
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event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

return data;
}

}

MACsenderC.nc

/**
* @author Feng Kai s030656@student.dtu.dk

**/

includes MACsender;
includes rfTransceiver;
includes CryptoPrimitives;

configuration MACsenderC {

}
implementation {

components Main, MACsenderM,TimerC, LedsC;
components rfTransceiverC;

components CBCMAC as MAC;
components SkipJackM as Cipher;

Main.StdControl -> MACsenderM;
Main.StdControl -> TimerC;

MACsenderM.Timer -> TimerC.Timer[unique("Timer")];
MACsenderM.Leds -> LedsC;

// Radio
MACsenderM.rfTransceiver -> rfTransceiverC.rfTransceiver;

//MAC

MACsenderM.MAC -> MAC.MAC;
MAC.BlockCipher -> Cipher.BlockCipher;

MAC.BlockCipherInfo -> Cipher.BlockCipherInfo;

}

MACsender.h

/**

* @author Feng Kai s030656@student.dtu.dk
**/

#ifndef _MACSENDER_H

#define _MACSENDER_H

#include <stdio.h>
#define SYN1 0x0f
#define CLEARTEXTSIZE 29

#define CIPHERSIZE 4
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#endif

.tinyos keyfile

# TinySec Keyfile. By default, the first key will be used.
# You can import other keys by appending them to the file.

default 2D1565C6B1138D394CF1B5D45801E75E

MACreceiverM.nc

/*

* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.

*
*/

/**
* @author Feng Kai s030656@student.dtu.dk
**/

/*
*
* Authors: Feng Kai <s030656@student.dtu.dk>

*
* Revision: MACreceiverM.nc, 2006/03/08

*/

module MACreceiverM {
provides {

interface StdControl;
}

uses {
interface Leds;
interface Timer;

interface rfTransceiver;
interface MAC;

interface RS232;

async command uint8_t GetRxBitOffset();
}

}

implementation {

// Message
TOS_Msg msg;

// MAC variables
MACContext macContext;

uint8_t key_tmp[2*TINYSEC_KEYSIZE] = {TINYSEC_KEY};
uint8_t MACKey[TINYSEC_KEYSIZE];

// My text
uint8_t myText[30];

uint8_t cipher[30];



218 Appendix G

/**
* Initialize the component.

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {
int i;

// init LEDs
call Leds.init();

// init RF and Ultrasound transceiver
call rfTransceiver.init();
// set RF transceiver as receiver

call rfTransceiver.setRole(RF_RECEIVER);
// RS232

call RS232.init();

//MAC

memcpy(MACKey,key_tmp+TINYSEC_KEYSIZE,TINYSEC_KEYSIZE);

call MAC.init(&macContext,TINYSEC_KEYSIZE,MACKey);

// format RF message
msg.length = 29;
msg.type = SYN1;

msg.addr = TOS_BCAST_ADDR;

for(i=0;i<msg.length;i++)
msg.data[i] = 0x00;

for(i=0;i<msg.length;i++)
myText[i] = i+0x30;

return SUCCESS;

}

/**
* Start timer and RF transceiver

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
// Start a repeating timer that fires every 500ms

call Timer.start(TIMER_REPEAT, 500);
// start the RF receiver

call rfTransceiver.start();

return SUCCESS;

}

/**
* Halt execution of the application.

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.stop() {
// stop everything

call rfTransceiver.stop();
call Timer.stop();
return SUCCESS;

}

event result_t Timer.fired()

{
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return SUCCESS;

}

event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

return SUCCESS;
}

/**

* Receive radio message containing cipher text and clear text.
* This event handler also verifies the integrity of the message.

*
* @return Always returns <code>SUCCESS</code>
**/

event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {
char buf[80];

static int mac = 0;
int i;

if (!mac) {
// clear text received, compute MAC over clear text
call MAC.MAC(&macContext,

(uint8_t *)data->data , CLEARTEXTSIZE,
myText, CIPHERSIZE );

printf("Clear text: ");
for (i=0;i<CLEARTEXTSIZE;i++)

printf("%x",data->data[i]);

printf("\r\n");
mac = 1;

}
else {

// MAC received, compare MAC computed with the one received
mac = 0;
printf("MAC received: ");

for (i=0;i<CIPHERSIZE ;i++)
printf("%x ",(uint8_t)(data->data[i]));

printf("\r\n");
printf("MAC computed: %x,%x,%x,%x\r\n",myText[0],myText[1],myText[2],myText[3]);

}
}

event result_t RS232.Receive(char * buf, uint8_t data_len){
return SUCCESS;

}

}

MACreceiverC.nc

/**
* @author Feng Kai s030656@student.dtu.dk

**/

includes MACreceiver;
includes rfTransceiver;

includes CryptoPrimitives;
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configuration MACreceiverC {

}
implementation {

components Main, MACreceiverM,TimerC, LedsC;
components rfTransceiverC;

components CBCMAC as MAC;
components SkipJackM as Cipher;

components RS232C;

Main.StdControl -> MACreceiverM;

Main.StdControl -> TimerC;
MACreceiverM.Timer -> TimerC.Timer[unique("Timer")];

MACreceiverM.Leds -> LedsC;

// Radio

MACreceiverM.rfTransceiver -> rfTransceiverC.rfTransceiver;

//MAC
MACreceiverM.MAC -> MAC.MAC;

MAC.BlockCipher -> Cipher.BlockCipher;
MAC.BlockCipherInfo -> Cipher.BlockCipherInfo;

//RS232
MACreceiverM.RS232 -> RS232C.RS232;

}

MACreceiver.h

/**
* @author Feng Kai s030656@student.dtu.dk

**/
#ifndef _MACRECEIVER_H

#define _MACRECEIVER_H

#include <stdio.h>

#define SYN1 0x0f
#define CLEARTEXTSIZE 29

#define CIPHERSIZE 4
#endif

.tinyos keyfile

# TinySec Keyfile. By default, the first key will be used.

# You can import other keys by appending them to the file.

default 2D1565C6B1138D394CF1B5D45801E75E
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G.7 Debugging

UseRS232M.nc

/*

* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.

*
*/

/*
*

* Authors: Feng Kai <s030656@student.dtu.dk>
*

* Revision: UseRS232M.nc, 2006/02/25
*/

module UseRS232M{

provides {
interface StdControl;

}
uses {

interface Timer;

interface Leds;
interface RS232;

}
}
implementation {

/**

* Initialize the component.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {

call Leds.init();
call RS232.init();

return SUCCESS;
}

/**

* Start things up. This just sets the rate for the clock component.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {

// Start a repeating timer that fires every 1000ms
return call Timer.start(TIMER_REPEAT, 1000);

}

/**
* Halt execution of the application.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.stop() {
return call Timer.stop();

}
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event result_t RS232.Receive(char * buf, uint8_t data_len){
return SUCCESS;

}

/**

* Toggle the red LED in response to the <code>Timer.fired</code> event.
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t Timer.fired()
{

char data[10];

sprintf(data,"Hello!!\r\n");
call RS232.SendString(data);

call Leds.redToggle();
return SUCCESS;

}

}

UseRS232.nc

/**
* @author Feng Kai s030656@student.dtu.dk
**/

configuration UseRS232 {

}
implementation {

components Main, UseRS232M, RS232C,LedsC, TimerC;

Main.StdControl -> TimerC.StdControl;

Main.StdControl -> UseRS232M.StdControl;
UseRS232M.Timer -> TimerC.Timer[unique("Timer")];

UseRS232M.Leds -> LedsC.Leds;
UseRS232M.RS232 -> RS232C.RS232;

}

RS232M.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.

*
*/

/*

*
* Authors: Feng Kai <s030656@student.dtu.dk>
*

* Revision: RS232M.nc, 2006/02/25
*/

module RS232M {
provides {

interface RS232;
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}
uses {

interface Serial;
}

}

implementation {

/**
* Initialize the component.

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t RS232.init() {
// Enable RS-232 Chip

TOSH_CLR_US_IN_EN_PIN();
TOSH_SET_BAT_MON_PIN();

// Wait until the RS-232 start
TOSH_uwait(2000);

// Init serial port

call Serial.SetStdoutSerial();

return SUCCESS;

}

async command result_t RS232.SendString(char *data)
{

printf("%s",data);

return SUCCESS;
}

event result_t Serial.Receive(char * buf, uint8_t data_len) {

signal RS232.Receive(buf,data_len);
return SUCCESS;

}

}

RS232C.nc

/**

* @author Feng Kai s030656@student.dtu.dk
**/

configuration RS232C {
provides interface RS232;

}

implementation {
components RS232M;

components SerialM, HPLUARTC,LedsC;

RS232 = RS232M.RS232;

RS232M.Serial -> SerialM.Serial;

SerialM.HPLUART -> HPLUARTC;
SerialM.Leds -> LedsC;

}
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RS232.nc

/**

* @author Feng Kai s030656@student.dtu.dk
**/

includes RS232;

interface RS232 {

command result_t init();

async command result_t SendString(char data[]);

event result_t Receive(char * buf, uint8_t data_len);
}

RS232.h

#ifndef _RS232_H
#define _RS232_H

#include <stdio.h>

uint8_t debug_out = 1;

#define UARTOutput(__x,__y,__args...) do { \

static char __s[] PROGMEM = __y; \
if (debug_out) \

printf_P(__s, ## __args); \
} while (0)

#endif

SerialM.nc

/*

* SerialM.nc
* David Moore <dcm@mit.edu>

*
* Module to connect standard output to the serial port. Allows use
* of printf() for debugging and status messages.

*
* Usage:

* call Serial.SetStdoutSerial() to attach stdout to the Serial UART.
* Any further commands that use stdout such as printf() will output

* to the serial port.
*/

/*
This software may be used and distributed according to the terms

of the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on this skeleton fall under the GPL and must retain
the authorship (implicit copyright) notice.
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This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

*/

module SerialM {

provides {
interface Serial;

}
uses {

interface HPLUART;

interface Leds;
}

}
implementation {
#define IDLE 0xff

#define WAITING 0xfe
#define BUF_LEN 32

#define RECV_BUF_LEN 32
volatile uint8_t tx_head = IDLE;

volatile uint8_t tx_tail = 0;
uint8_t txbuf[BUF_LEN];
uint8_t rx_state = IDLE;

uint8_t rx_len = 0;
uint8_t rxbuf[RECV_BUF_LEN];

int put(char c) __attribute__ ((C,spontaneous))
{

uint8_t start_tx = 0;
uint8_t new_tx_tail = 0;

uint8_t new_tx_head = 1;

/* Do the busy wait if the tx buffer is full */
while (new_tx_head != IDLE &&

(new_tx_tail+1)%BUF_LEN == new_tx_head) {

atomic {
new_tx_tail = tx_tail;

new_tx_head = tx_head;
}

}

atomic {

/* Initialize queue */
if (tx_head == IDLE) {

txbuf[0] = c;
tx_head = tx_tail = 0;
start_tx = 1;

}
/* Enqueue */

else {
txbuf[tx_tail] = c;

tx_tail = (tx_tail+1)%BUF_LEN;
}

}

if (start_tx)
call HPLUART.put(txbuf[0]);

return 0;
}

async event result_t HPLUART.putDone() {

uint8_t do_tx = 0;
uint8_t tx_ch = 0;

atomic {
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if (tx_head == tx_tail || tx_head == IDLE) {
tx_head = IDLE;

}
else {

do_tx = 1;

tx_ch = txbuf[tx_head];
tx_head = (tx_head+1)%BUF_LEN;

}
}

if (do_tx)
call HPLUART.put(tx_ch);

return SUCCESS;

}

void task recv_str()
{

uint8_t len;

atomic len = rx_len;
signal Serial.Receive(rxbuf, len);

atomic {
rx_len = 0;

rx_state = IDLE;
}

}

#ifndef PLATFORM_PC

void outc(uint8_t c)
{

loop_until_bit_is_set(UCSR0A, UDRE);

outp(c, UDR0);
}

void printbyte(uint8_t b)

{
uint8_t n;
n = (b & 0xf0) >> 4;

if (n <= 9)
outc(’0’ + n);

else
outc(n - 10 + ’A’);

n = (b & 0x0f);

if (n <= 9)
outc(’0’ + n);

else
outc(n - 10 + ’A’);

outc(’ ’);
}

void stack_trace(uint8_t extra, uint16_t val) __attribute__ ((C,spontaneous))
{

uint8_t * ptr = (uint8_t *) inw(SPL);

/* Disable serial interrupts */
uint8_t tmp = inb(UCSR0B);
outp((1 << RXEN) | (1 << TXEN), UCSR0B);

outc(’\n’);

if (extra) {
outc(’<’);
printbyte(val & 0xff);

printbyte((val >> 8) & 0xff);
outc(’>’);

}

printbyte(inb(SPH));
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printbyte(inb(SPL));
outc(’:’);

for (ptr += 27; ptr < (uint8_t *)0x1100; ptr++) {
printbyte(*ptr);

}
outc(’\n’);

outp(tmp, UCSR0B);

}
#endif

async event result_t HPLUART.get(uint8_t data)
{

uint8_t state;

atomic state = rx_state;

//#ifndef PLATFORM_PC

// if (data == ’q’)
// stack_trace(0, 0);

//#endif

// if (data == ’\r’ || state == WAITING)

// stack_trace(0, 0);
// return SUCCESS;

if (data == ’\r’ || data == ’\n’) {
if (post recv_str()) {

atomic {
rx_state = WAITING;

rxbuf[rx_len] = ’\0’;
}

}
else {

atomic rx_len = 0;

}
return SUCCESS;

}

atomic {

if (rx_len < RECV_BUF_LEN-1)
rxbuf[rx_len++] = data;

}

return SUCCESS;
}

command result_t Serial.SetStdoutSerial() {
#ifndef PLATFORM_PC

/* Initialize the serial port */
call HPLUART.init();

/* Use the put() function for any output to stdout. */
fdevopen(put, NULL, 0);

#endif

return SUCCESS;
}

}

Serial.nc
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/*
* Serial.nc

* David Moore <dcm@mit.edu>
*
* Module to connect standard output to the serial port. Allows use

* of printf() for debugging and status messages.
*

* Usage:
* call Serial.SetStdoutSerial() to attach stdout to the Serial UART.

* Any further commands that use stdout such as printf() will output
* to the serial port.
*/

/*

This software may be used and distributed according to the terms
of the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on this skeleton fall under the GPL and must retain

the authorship (implicit copyright) notice.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

*/

interface Serial {

command result_t SetStdoutSerial();
event result_t Receive(char * buf, uint8_t len);

}

G.8 Protocol implementation

PtlSenderM.nc

/*
* "Copyright (c) 2006 The Technical University of Denmark."

* All rights reserved.
*

*/

/*
*
* Authors: Feng Kai <s030656@student.dtu.dk>

*
* Revision: PtlSenderM.nc, 2006/02/27 22:00:00

*/

module PtlSenderM {
provides {

interface StdControl;
}

uses {
interface Leds;
interface Timer;

interface rfTransceiver;
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interface usTransceiver;
interface MAC;

interface RadioCoordinator as RadioSendCoord;
interface RadioCoordinator as RadioReceiveCoord;
interface RS232;

async command uint8_t GetRxBitOffset();

}
}

implementation {

/*

* System variables
*/

/* Protocol state */
uint8_t state;

/*
* Radio

*/
/* RF package */

TOS_Msg msg;
/* RF receive bit offset */
uint8_t rf_offset;

/*
*MAC variables

*/
/* MAC context */
MACContext macContext;

/* Keys */
uint8_t key_tmp[2*TINYSEC_KEYSIZE] = {TINYSEC_KEY};

uint8_t MACKey[TINYSEC_KEYSIZE];
uint8_t KeyReceived[TINYSEC_KEYSIZE];

/* Clear texts */
char myText[4][30] = TEXT;

int textID;

/* NA index */
uint8_t idxNA;

/* watch dog timer*/
uint8_t wdTime;

/**

* Initialize the component.
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.init() {

int i;
/* init LEDs */

call Leds.init();
/* init RF transceiver set as sender */
call rfTransceiver.init();

call rfTransceiver.setRole(RF_SENDER);
/* US receiver, set role as sender */

call usTransceiver.init();
call usTransceiver.setRole(US_SENDER);

/* MAC */
memcpy(MACKey,key_tmp+TINYSEC_KEYSIZE,TINYSEC_KEYSIZE);

call MAC.init(&macContext,TINYSEC_KEYSIZE,MACKey);

/* RS232 */
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call RS232.init();

/* format RF message */
msg.length = RF_DATA_LENGTH;
msg.type = SYN1;

msg.addr = TOS_BCAST_ADDR;

for(i=0;i<RF_DATA_LENGTH;i++)
msg.data[i] = 0x00;

atomic {
/* Initial system state */

state = PHASE_START;
/* Text string ID */

textID = 0;
/* initialize NA index */
idxNA = 0;

/* Initial watch timer*/
wdTime = 0;

}
return SUCCESS;

}

/**
* Start system FSM, start RF sender and US sender

*
* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
/* start the RF receiver */

call rfTransceiver.start();
call usTransceiver.start();

/* start FSM */
call Timer.start(TIMER_REPEAT, SYSTEM_REACTION_RATE);
return SUCCESS;

}

/**
* Halt execution of the application.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.stop() {
/* stop everything */

call rfTransceiver.stop();
call usTransceiver.stop();
call Timer.stop();

return SUCCESS;
}

/**

* Commitment
**/
task void compute_cipher(){

/* compute MAC */
printf("\r\n");

call MAC.MAC(&macContext,
(uint8_t*) myText[textID], strlen(myText[textID]),
msg.data ,MACSIZE);

/* bring the system into PHASE 1*/
atomic state = PHASE1;

}
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/**
* Watchdog

**/
uint8_t evaluateWatchdog() {

uint8_t t;

uint8_t result;
atomic t = (++wdTime);

if (t >= WATCHDOGTIME)
{ /* time out */

result = 1;
atomic wdTime = 0;

}

else
result = 0;

return result;
}

/**
* reset watch dog

**/
void resetWatchdog() {

atomic wdTime = 0;
}

/**

* watchdog time out
**/
task void WatchdogFired() {

int i;
printf("Session time out! Key establishment failed, restart...\r\n");

atomic {
/* init RF transceiver set as sender */

call rfTransceiver.setRole(RF_SENDER);
/* format RF message */
msg.length = RF_DATA_LENGTH;

msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<RF_DATA_LENGTH;i++)
msg.data[i] = 0x00;

/* Text string ID */

textID = 0;
/* initialize NA index */

idxNA = 0;
/* Initial watch timer*/
wdTime = 0;

}
}

/**

* System FSM
*
* @return Always returns <code>SUCCESS</code>

**/
event result_t Timer.fired()

{
result_t result;
uint8_t tempState;

atomic tempState = state;

switch (tempState) {

case PHASE1 : /* Sending Commitment */
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if (! call rfTransceiver.isSenderBusy())
{

/* send msg */
call rfTransceiver.Send(&msg);

/* wait until a response to bring into 2nd phase*/

tempState = PHASE1_WAIT;
}

break;
case PHASE1_WAIT:

/* phase 1 wait state */
break;

case PHASE2 : /* Receive NA */

if (evaluateWatchdog())
{

tempState = PHASE_START;
post WatchdogFired();
}

break;

case PHASE3 : /* Send NA xor NB by ultrasound */
tempState = PHASE4;

break;
case PHASE4 : /* Sending message in clear text by radio */

call Leds.greenToggle();

/* change role to receiver */
call rfTransceiver.stop();

call rfTransceiver.setRole(RF_SENDER);
call rfTransceiver.start();
/* Send message */

memcpy(msg.data,myText[textID],RF_DATA_LENGTH);
call rfTransceiver.Send(&msg);

textID ++;

if (textID == 4)
textID = 0;

tempState = PHASE_START;

break;
case PHASE_IDLE:

break;

case PHASE_START :

//compute commitment
post compute_cipher();

atomic idxNA = 0;
tempState = PHASE_IDLE;

break;
}

atomic state = tempState;
return SUCCESS;

}

/**
* Signaled when RF package send done
* @param rmsg Message pointer

* @param success state of the transmission
* @return Always returns <code>SUCCESS</code>

**/
event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

uint8_t tempState;

atomic tempState = state;
/* the message from phase 1 is sent*/

if (tempState == PHASE1_WAIT) {
/* change role to receiver */

call rfTransceiver.stop();
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call rfTransceiver.setRole(RF_RECEIVER);
call rfTransceiver.start();

call Leds.greenToggle();
/* bring the system into phase 2, distance bounding */

tempState = PHASE2;

}
// state transition

atomic state = tempState;

return SUCCESS;
}

/**

* Signaled when a new data package being received by Radio.
* @param data New data package being received
* @return Always returns <code>SUCCESS</code>

**/
event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

if (idxNA == (TINYSEC_KEYSIZE*8-1)) {

/* bring the system into phase 3 to end distance bounding */
atomic state = PHASE3;

}else

/* continue distance bounding */
atomic idxNA++;

/* Reset watch dog timer */
resetWatchdog();

return data;
}

/**

* Signaled when message sent over ultrasound transmitter.
* @return Always returns <code>SUCCESS</code>
**/

event result_t usTransceiver.SendDone() {
call Leds.redToggle();

return SUCCESS;
}

/**
* Signaled when synchronization bit is detected in Ultrasound transciver

* @param timeStamp Time Stamp when sync signal is detected, this value is uncorrected.
* This value may contains hardware overhead.

* @return Always returns <code>SUCCESS</code>
**/

event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){

return timeStamp;
}

/**
* Signaled when entire data byte is received from Ultrasound transceiver.
* @param Rx_data The data being received.

* @param timeStamp Time Stamp entire data word is received,
* this value is uncorrected.

* This value may contains hardware overhead.
* @return Always returns <code>SUCCESS</code>
**/

event uint32_t usTransceiver.DataReceived(uint32_t Rx_data , uint16_t timeStamp){
return Rx_data;

}

norace uint8_t po;
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norace uint8_t count;
task void reportCNT() {

printf("%x, cnt:%u, ",count,po);
}

async event void RadioSendCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {}
async event void RadioSendCoord.blockTimer() {}

async event void RadioSendCoord.byte(TOS_MsgPtr pmsg, uint8_t cnt){}

async event void RadioReceiveCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {};
async event void RadioReceiveCoord.blockTimer() {};
async event void RadioReceiveCoord.byte(TOS_MsgPtr pmsg, uint8_t cnt)

{
static uint8_t i = 0;

uint8_t tempState;
// cnt == 6
if (cnt == (offsetof(struct TOS_Msg,type) +

sizeof(((struct TOS_Msg*)0)->type) +3)){

atomic tempState = state;
///call Leds.yellowToggle();

/* Phase 2: distance bounding in place */
if (tempState == PHASE2) {

i =(MACKey[idxNA/8] >>(idxNA%8)) & 0x1;

/* combined with response */

if (pmsg->data[0] != 0)
i = (1^i);

/* Get RF receive bit offset */
rf_offset = call GetRxBitOffset();

rf_offset *=2;
i|=rf_offset;

call usTransceiver.SendWord(i);

}

}
}

event result_t RS232.Receive(char * buf, uint8_t data_len){
return SUCCESS;

}

}

PtlSender.nc

/**

* @author Feng Kai s030656@student.dtu.dk
**/

/* Radio transciver */
includes rfTransceiver;
/* Ultrasound transciver */

includes usTransceiver;
/* Cryptogrohpic primitives for MAC*/

includes CryptoPrimitives;
/* Protocol */
includes PtlSender;

includes MyMessages;



Protocol implementation 235

configuration PtlSender {

}
implementation {

/*
* Use of components

*/
/* Application components */

components Main, PtlSenderM,TimerC, LedsC;
/* RF */
components rfTransceiverC;

/* Encryption */
components CBCMAC as MAC;

//components RC5M as Cipher;
components SkipJackM as Cipher;
/* Ultrasound */

components usTransceiverC;
/* Debug by RS232 */

components RS232C;

/*
* Wire of components
*/

/* Application control */
Main.StdControl -> PtlSenderM;

Main.StdControl -> TimerC;
PtlSenderM.Timer -> TimerC.Timer[unique("Timer")];
PtlSenderM.Leds -> LedsC;

/* Radio transceiver and coordinate */

PtlSenderM.rfTransceiver -> rfTransceiverC.rfTransceiver;
PtlSenderM.RadioSendCoord -> rfTransceiverC.RadioSendCoord;

PtlSenderM.RadioReceiveCoord -> rfTransceiverC.RadioReceiveCoord;
PtlSenderM.GetRxBitOffset -> rfTransceiverC.GetRxBitOffset;

/* MAC */
PtlSenderM.MAC -> MAC.MAC;

MAC.BlockCipher -> Cipher.BlockCipher;
MAC.BlockCipherInfo -> Cipher.BlockCipherInfo;

// Ultrasound
PtlSenderM.usTransceiver -> usTransceiverC.usTransceiver;

/* RS232 */

PtlSenderM.RS232 -> RS232C.RS232;
}

PtlSender.h

/**
* @author Feng Kai s030656@student.dtu.dk

**/

#ifndef _PROTOCOLSENDER_H
#define _PROTOCOLSENDER_H

#include <stdio.h>

/*
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* Radio package setup
*/

#define RF_DATA_LENGTH 29
#define SYNC 0x16

#define MACSIZE 8

/*

* System finite state machine
* Phase Work
* 0 Start, computing cipher

* 1 Sending cipher
* 2 Receiving Nounce Na

* 3 Sending Na xor Nb
* 4 Sending message in clear text
* 10 Waiting task to complete

*/
#define PHASE_START 0

#define PHASE1 1
#define PHASE1_WAIT 10

#define PHASE2 2
#define PHASE3 3
#define PHASE4 4

#define PHASE_IDLE 11

/* System response time, controls FSM, in ms */
#define SYSTEM_REACTION_RATE 1000
/* watchdog timer value, unit is response time */

#define WATCHDOGTIME 7

#endif

MyMessages.h

/**
* @author Feng Kai s030656@student.dtu.dk

**/
#ifndef _MYMESSAGES_H
#define _MYMESSAGES_H

#define TEXT {"This is test string 1","This Is Test String 2",
"Computer System Engineering","Computer Science Engineering"}

#endif

.tinyos keyfile

# TinySec Keyfile. By default, the first key will be used.

# You can import other keys by appending them to the file.

default 35C9991B589AF29F168D7676FCE61559

PtlReceiverM.nc
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/*

* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.
*

*/

/*
*

* Authors: Feng Kai <s030656@student.dtu.dk>
*
* Revision: PtlReceiverM.nc,

*/

module PtlReceiverM {
provides {

interface StdControl;

}
uses {

interface Leds;
interface Timer as FSMtimer;

interface rfTransceiver;
interface usTransceiver;
interface MAC;

interface RS232;
interface RadioCoordinator as RadioSendCoord;

interface RadioCoordinator as RadioReceiveCoord;
}

}

implementation {
/**

* System variables
**/

/* Protocol state */
uint8_t state;
/* Message in clear text */

uint8_t TextInClear[30];
/* the commitment */

uint8_t cipher[30];
/* computed cipher text */
uint8_t computedCipher[30];

/* Integrity region */
uint16_t sendT;

uint16_t backT;
uint16_t integrityTime;

uint16_t integrityDistance;

/**

* Radio
**/

/* RF package */
TOS_Msg msg;

/* RF receive bit offset */
uint8_t rf_offset;

/**
* MAC variables

**/
/* MAC context */
MACContext macContext;

/* Keys */
uint8_t key_tmp[2*TINYSEC_KEYSIZE] = {TINYSEC_KEY};

/* random nounce */
uint8_t NA[TINYSEC_KEYSIZE];

uint8_t KeyReceived[TINYSEC_KEYSIZE];
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/**

* Phase 2 and 3, distance bounding protocol
**/
/* index of NA to be sent */

uint8_t idxNA;
uint8_t curData;

/**

* System watchdog timer
**/

uint8_t wdTime;

/**

* Initialize the component.
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.init() {

int i;
/* init LEDs */

call Leds.init();
/* init RF transceiver set as receiver */
call rfTransceiver.init();

call rfTransceiver.setRole(RF_RECEIVER);
/* US receiver, set role as receiver */

call usTransceiver.init();
call usTransceiver.setRole(US_RECEIVER);
call usTransceiver.setGain(US_GAIN_NORMAL);

/* RS232 */
call RS232.init();

/* MAC, copy the random nounce */

memcpy(NA,key_tmp+TINYSEC_KEYSIZE,TINYSEC_KEYSIZE);

/* format RF message */

/* set message length, address to broadcast*/
msg.length = RF_DATA_LENGTH;

msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;
for(i=0;i<msg.length;i++)

msg.data[i] = 0x00;

/* Initial system state */
state = PHASE_START;

/* Initial NA index*/
idxNA = 0;

/* Initial watch timer*/

wdTime = 0;
return SUCCESS;

}

/**
* Start system FSM, start RF receiver

* Bring the system ready for 1st phase
*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.start() {

/* Start FSM */
call FSMtimer.start(TIMER_REPEAT, SYSTEM_REACTION_RATE);

/* start the RF receiver */
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call rfTransceiver.start();

return SUCCESS;
}

/**
* Halt execution of the application.

*
* @return Always returns <code>SUCCESS</code>

**/
command result_t StdControl.stop() {

/* stop everything */

call rfTransceiver.stop();
call usTransceiver.stop();

call FSMtimer.stop();
return SUCCESS;

}

/* */
task void report_phase2() {

char buf[80];
int msglen = 0;
int i;

// Print out received value
msglen += sprintf(buf,"Sending NA:");

for (i=0;i<TINYSEC_KEYSIZE;i++)
msglen += sprintf(buf + msglen,"%x_",NA[i]);

sprintf(buf+msglen,"\r\n");

printf(buf);

}

/**
* Watchdog

**/
uint8_t evaluateWatchdog() {

uint8_t t;
uint8_t result;
atomic {

wdTime++;
t = wdTime;

}

if (t >= WATCHDOGTIME)
{ /* time out */
result = 1;

atomic wdTime = 0;
}

else
result = 0;

return result;
}

/**
* reset Watchdog

**/
void resetWatchdog() {

atomic wdTime = 0;

}

/**
* Watchdog time out

**/
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task void WatchdogFired() {
int i;

printf("Session time out! Key establishment failed, restart...\r\n");
atomic {

/* Reinitialize the system */

/* init RF transceiver set as receiver */

call rfTransceiver.stop();
call rfTransceiver.setRole(RF_RECEIVER);

call rfTransceiver.start();

/* format RF message */

/* set message length, address to broadcast*/
msg.length = RF_DATA_LENGTH;

msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;
for(i=0;i<msg.length;i++)

msg.data[i] = 0x00;

/* Initial NA index*/
idxNA = 0;

/* Initial watch timer*/
wdTime = 0;

}
}

/**
* System FSM
*

* @return Always returns <code>SUCCESS</code>
**/

event result_t FSMtimer.fired()
{

uint8_t tState;

atomic tState = state;

switch(tState) {
case PHASE1 :/* Waiting for commitment */

break;
case PHASE2 : /* initiating distance bouding */

/* Send NA first bit by radio */

msg.data[0] = (NA[idxNA/8] >>(idxNA%8)) & 0x1;
call rfTransceiver.Send(&msg);

tState = PHASE3;
break;

case PHASE3 :/* Distance bounding in progress */
/* Evaluate watchdog timer, restart when time out */

if (evaluateWatchdog())

{
tState = PHASE_START;

post WatchdogFired();
}

break;
case PHASE4 :/* Receive message in clear text */

break;

case PHASE_WAIT :
break;

default :
/* bring the system into phase 1*/

tState = PHASE1;

idxNA = 0;
printf("========Ready for commitment=========\r\n");

}
/* FSM state transition*/

atomic state = tState;
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return SUCCESS;
}

task void report_sendtime() {
printf("Sent Time: %u us\r\n",sendT);

}

/**
* Signaled when RF package send done

* No action taken in this implementation.
* @param rmsg Message pointer
* @param success state of the transmission

* @return Always returns <code>SUCCESS</code>
**/

event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {
return SUCCESS;

}

/**
* In phase 1, show the commitment received

**/
task void report_RFphase1() {

char buf[80];

int msglen = 0;
int i;

// Print out received value
msglen += sprintf(buf,"Commitment received:");
for (i=0;i<MACSIZE;i++)

msglen += sprintf(buf + msglen,"%x_",cipher[i]);
sprintf(buf+msglen,"\r\n");

printf(buf);
}

/**
* In phase 4, show the summary

**/
task void report_phase4() {

int i;
char buf[80];
int msglen = 0;

uint8_t match = 1;
// Print out received value

sprintf(buf,"Message in clear text: %s\r\n",TextInClear);

call RS232.SendString(buf);

msglen = sprintf(buf,"MAC key of B is: ");

for (i=0;i<TINYSEC_KEYSIZE;i++)
msglen += sprintf(buf + msglen,"%x_",KeyReceived[i]);

sprintf(buf+msglen,"\r\n");
printf(buf);

msglen = sprintf(buf,"Received MAC: ");
for (i=0;i<MACSIZE;i++)

msglen += sprintf(buf + msglen,"%x_",cipher[i]);
sprintf(buf+msglen,"\r\n");

printf(buf);

msglen = sprintf(buf,"Computed MAC: ");

for (i=0;i<MACSIZE;i++) {
msglen += sprintf(buf + msglen,"%x_",computedCipher[i]);

if (cipher[i]!=computedCipher[i])
match = 0;

}
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sprintf(buf+msglen,"\r\n");
printf(buf);

if (match)
printf("Key established!\r\n");

else
printf("Key establishment failed!!\r\n");

}
/**

* Signaled when commitment package being received by Radio
* @param data data package being received
* @return Always returns <code>SUCCESS</code>

**/
event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

uint8_t tempState;
uint8_t i;

atomic tempState = state;

/* Phase 1, commitment received */
if (tempState == PHASE1){

/* copy commitment text */
memcpy(cipher,data->data,MACSIZE);
/* report the commitment */

post report_RFphase1();
/* Radio transceiver turn over */

/* wait for 10ms in order to make Bob change into receiver */
TOSH_uwait(10000);
/* change to RF sender */

call rfTransceiver.stop();
call rfTransceiver.setRole(RF_SENDER);

call rfTransceiver.start();
/* state transition */

tempState = PHASE2;
}

/* Phase 4, */

if (tempState == PHASE4) {
printf("NA xor NB: ");

for (i=0;i<TINYSEC_KEYSIZE;i++) {
printf("%x_",KeyReceived[i]);
KeyReceived[i] ^=NA[i];

}

printf("\r\n");
/* copy clear text message */

memcpy(TextInClear,data->data,RF_DATA_LENGTH);
/* compute h(m||Ns) */
call MAC.init(&macContext,TINYSEC_KEYSIZE,KeyReceived);

call MAC.MAC(&macContext,
(uint8_t*) data->data, strlen(data->data),

computedCipher ,MACSIZE);
tempState = PHASE_START;

post report_phase4();
}

/* State transition */

atomic state = tempState;
return data;

}

/**

* Signaled when message come from serial port.
* No action taken in this implementation.

* @param buf data buffer
* @param data_len length

* @return Always returns <code>SUCCESS</code>
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**/
event result_t RS232.Receive(char * buf, uint8_t data_len){

return SUCCESS;
}

/**
* Signaled when a message sent over Ultrasound transmitter

* No action taken in this implementation.
* @return Always returns <code>SUCCESS</code>

**/
event result_t usTransceiver.SendDone(){

return SUCCESS;

}

/**
* Report the decommit response time, uncorrected.
**/

task void report_backTime() {
printf("bt:%uus, ",backT);

}

/**
* Signaled when synchronization bit is detected in Ultrasound transciver
* @param timeStamp Time Stamp when sync signal is detected, this value is uncorrected.

* This value may contains hardware overhead.
* @return Always returns <code>SUCCESS</code>

**/
event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){
atomic backT = timeStamp;

post report_backTime();
return timeStamp;

}

uint8_t curBit;
/**
* report the decommit bit received, and the bit index

**/
task void reportUSdata() {

printf("%u @%u, ",curData,curBit);
}

/**

* Calculate Integrity region
**/

task void CalculateIntegrityRegion(){
uint16_t truetime;

uint16_t distance;
uint16_t rawtime;
uint16_t bitoffset;

atomic {

rawtime = backT - sendT;
bitoffset = rf_offset;

}
if ((bitoffset <=7) && rawtime != 0){

/* the corrected time */

truetime = rawtime - (bitoffset - 7) * RF_COMPENSATION- 900;
/* the diatance */

distance = truetime/10 * US_SPEED;
distance /=100;

atomic {

integrityTime = truetime;
integrityDistance = distance;

}
}

}
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/**

* Show the result for Integrity region of current bit
**/
task void report_integrity(){

if (rf_offset<=7) {
printf("ofst:%u, ",rf_offset);

printf("t:%uus, D:%ucm\r\n",integrityTime,integrityDistance);
}

else{
printf("!ofst:%u, t:%uus, D:%ucm\r\n",rf_offset,integrityTime,integrityDistance);

}

}

/**
* Signaled when entire data byte is received from Ultrasound transceiver.
* @param Rx_data The data being received.

* @param timeStamp Time Stamp entire data word is received,
* this value is uncorrected.

* This value may contains hardware overhead.
* @return Always returns <code>SUCCESS</code>

**/
event uint32_t usTransceiver.DataReceived(uint32_t Rx_data , uint16_t timeStamp){

uint8_t tempState;
static uint8_t ti =0;

atomic {
tempState = state;

curData = Rx_data&0x1;
curBit = idxNA;

rf_offset = Rx_data;
rf_offset = rf_offset/2;

}
/* Reset watch dog timer */
resetWatchdog();

post reportUSdata();

post CalculateIntegrityRegion();
post report_integrity();

if (tempState == PHASE3) {
/* Record current diatance bounding response */

if (curData == 0)
KeyReceived[idxNA/8] = KeyReceived[idxNA/8] & (0xff - (uint8_t)(pow(2,(idxNA%8))));

else
KeyReceived[idxNA/8] |=(uint8_t)( (uint8_t)(pow(2,(idxNA%8)))?pow(2,(idxNA%8)):1);

if (idxNA == (TINYSEC_KEYSIZE*8 -1)) {
/* Enough response received */

/* After Phase2, NA is sent, Change to RF receiver */
call rfTransceiver.stop();

call rfTransceiver.setRole(RF_RECEIVER);
call rfTransceiver.start();

/* when enough bit received, go to phase 4 */

tempState = PHASE4;
}

else {
/* Send next NA challenge bit over radio */

idxNA++;

msg.data[0] = (NA[idxNA/8] >>(idxNA%8)) & 0x1;
call rfTransceiver.Send(&msg);

}
}

/* state transition */
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atomic state = tempState;
return SUCCESS;

}

async event void RadioSendCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {}
async event void RadioSendCoord.blockTimer() {}

async event void RadioSendCoord.byte(TOS_MsgPtr tmsg, uint8_t cnt)
{

/* Synchronized at the first data byte */
// cnt == 8

if (cnt == (offsetof(struct TOS_Msg,data) +3)){

/* start US receiver to reset the watch*/
call usTransceiver.start();

}
}

async event void RadioReceiveCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {};
async event void RadioReceiveCoord.blockTimer() {};

async event void RadioReceiveCoord.byte(TOS_MsgPtr tmsg, uint8_t cnt){}

}

PtlReceiver.nc

/**

* @author Feng Kai s030656@student.dtu.dk
**/

/* Radio transciver */

includes rfTransceiver;
/* Ultrasound transciver */

includes usTransceiver;
/* Cryptogrohpic primitives for MAC*/
includes CryptoPrimitives;

/* Protocol */
includes PtlReceiver;

includes MyMessages;

configuration PtlReceiver {

}

implementation {
/*

* Use of components
*/
/* Application components*/

components Main, PtlReceiverM,TimerC, LedsC;
/* RF */

components rfTransceiverC;
/* Encryption */

components CBCMAC as MAC;
//components RC5M as Cipher;
components SkipJackM as Cipher;

/* Debug by RS232 */
components RS232C;

/* Ultrasound */
components usTransceiverC;

/*
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* Wire of components
*/

/* Application control */
Main.StdControl -> TimerC;
Main.StdControl -> PtlReceiverM;

PtlReceiverM.FSMtimer -> TimerC.Timer[unique("Timer")];
PtlReceiverM.Leds -> LedsC;

/* Radio transceiver and coordinate */

PtlReceiverM.rfTransceiver -> rfTransceiverC.rfTransceiver;
PtlReceiverM.RadioSendCoord -> rfTransceiverC.RadioSendCoord;
PtlReceiverM.RadioReceiveCoord -> rfTransceiverC.RadioReceiveCoord;

/* MAC */

PtlReceiverM.MAC -> MAC.MAC;
MAC.BlockCipher -> Cipher.BlockCipher;
MAC.BlockCipherInfo -> Cipher.BlockCipherInfo;

/* RS232 */

PtlReceiverM.RS232 -> RS232C.RS232;

/* Ultrasound */
PtlReceiverM.usTransceiver -> usTransceiverC.usTransceiver;

}

PtlReceiver.h

/**

* @author Feng Kai s030656@student.dtu.dk
**/

#ifndef _PTLRECEIVER_H
#define _PTLRECEIVER_H

#include <stdio.h>
#include <math.h>

/*
* Radio package setup

*/
#define RF_DATA_LENGTH 29

#define SYNC 0x16

/*
* MAC parameters
*/

/* MAC key size, byte */
#define MACSIZE 8

/*
* System finite state machine
* Phase Work

* 0 Idle
* 1 Receiving cipher

* 2 Sending Nounce Na, and start distance bounding
* 3 distance dounding in place
* 4 Receiving message in clear text

*/
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#define PHASE_START 0
#define PHASE1 1

#define PHASE2 2
#define PHASE3 3
#define PHASE4 4

#define PHASE_WAIT 10
/* System response time, controls FSM, in ms */

#define SYSTEM_REACTION_RATE 1000
/* watchdog timer value, unit is response time */

#define WATCHDOGTIME 5

/*

* Distance measurement
*/

/* Radio send receive offset in microsecond(us) */
#define RF_OFFSET 0
/* Ultrasound transmitter overhead, microsecond(us) */

#define US_SENDDELAY 0
/* Speed of sound mm/100us */

#define US_SPEED 34
/* The time a bit takes to travel over the radio

* the radio monitor works at 20kbps */
#define RF_COMPENSATION 48

#endif

MyMessages.h

/**
* @author Feng Kai s030656@student.dtu.dk

**/
#ifndef _MYMESSAGES_H
#define _MYMESSAGES_H

#define TEXT {"This is test string 1","This Is Test String 2",
"Computer System Engineering","Computer Science Engineering"}

#endif

.tinyos keyfile

# TinySec Keyfile. By default, the first key will be used.
# You can import other keys by appending them to the file.

default 49A28CB92F5A23E776D69EDACB52FA4E

G.9 The attacker

PtlSenderM.nc
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/*

* "Copyright (c) 2006 The Technical University of Denmark."
* All rights reserved.
*

*/

/*
*

* Authors: Feng Kai <s030656@student.dtu.dk>
*
* Revision: PtlSenderM.nc, 2006/02/27 22:00:00

*/

module PtlSenderM {
provides {

interface StdControl;
}

uses {
interface Leds;

interface Timer;
interface rfTransceiver;
interface usTransceiver;

interface MAC;
interface RadioCoordinator as RadioSendCoord;

interface RadioCoordinator as RadioReceiveCoord;
interface RS232;

async command uint8_t GetRxBitOffset();
}

}
implementation {

/*
* System variables

*/
/* Protocol state */

uint8_t state;

/*

* Radio
*/

/* RF package */
TOS_Msg msg;

/* RF receive bit offset */
uint8_t rf_offset;

/*

*MAC variables
*/

/* MAC context */
MACContext macContext;

/* Keys */
uint8_t key_tmp[2*TINYSEC_KEYSIZE] = {TINYSEC_KEY};
uint8_t MACKey[TINYSEC_KEYSIZE];

uint8_t KeyReceived[TINYSEC_KEYSIZE];

/* Clear texts */
char myText[4][30] = TEXT;
int textID;

/* NA index */

uint8_t idxNA;

/* watch dog timer*/
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uint8_t wdTime;

/**
* Initialize the component.
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.init() {
int i;

/* init LEDs */
call Leds.init();
/* init RF transceiver set as sender */

call rfTransceiver.init();
call rfTransceiver.setRole(RF_SENDER);

/* US receiver, set role as sender */
call usTransceiver.init();
call usTransceiver.setRole(US_SENDER);

/* MAC */

memcpy(MACKey,key_tmp+TINYSEC_KEYSIZE,TINYSEC_KEYSIZE);
call MAC.init(&macContext,TINYSEC_KEYSIZE,MACKey);

/* RS232 */
call RS232.init();

/* format RF message */

msg.length = RF_DATA_LENGTH;
msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<RF_DATA_LENGTH;i++)

msg.data[i] = 0x00;

atomic {
/* Initial system state */
state = PHASE_START;

/* Text string ID */
textID = 0;

/* initialize NA index */
idxNA = 0;

/* Initial watch timer*/

wdTime = 0;
}

return SUCCESS;
}

/**

* Start system FSM, start RF sender and US sender
*

* @return Always returns <code>SUCCESS</code>
**/

command result_t StdControl.start() {
/* start the RF receiver */
call rfTransceiver.start();

call usTransceiver.start();
/* start FSM */

call Timer.start(TIMER_REPEAT, SYSTEM_REACTION_RATE);
return SUCCESS;

}

/**

* Halt execution of the application.
*

* @return Always returns <code>SUCCESS</code>
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**/
command result_t StdControl.stop() {

/* stop everything */
call rfTransceiver.stop();
call usTransceiver.stop();

call Timer.stop();
return SUCCESS;

}

/**
* Commitment
**/

task void compute_cipher(){
/* compute MAC */

printf("\r\n");
call MAC.MAC(&macContext,

(uint8_t*) myText[textID], strlen(myText[textID]),

msg.data ,MACSIZE);
/* bring the system into PHASE 1*/

atomic state = PHASE1;

}

/**

* Watchdog
**/

uint8_t evaluateWatchdog() {
uint8_t t;

uint8_t result;

atomic t = (++wdTime);
if (t >= WATCHDOGTIME)

{ /* time out */
result = 1;

atomic wdTime = 0;
}

else

result = 0;
return result;

}

/**

* reset watch dog
**/

void resetWatchdog() {
atomic wdTime = 0;

}

/**

* watchdog time out
**/

task void WatchdogFired() {
int i;

printf("Session time out! Key establishment failed, restart...\r\n");
atomic {

/* init RF transceiver set as sender */

call rfTransceiver.setRole(RF_SENDER);
/* format RF message */

msg.length = RF_DATA_LENGTH;
msg.type = SYN1;
msg.addr = TOS_BCAST_ADDR;

for(i=0;i<RF_DATA_LENGTH;i++)

msg.data[i] = 0x00;

/* Text string ID */
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textID = 0;
/* initialize NA index */

idxNA = 0;
/* Initial watch timer*/
wdTime = 0;

}
}

/**

* System FSM
*
* @return Always returns <code>SUCCESS</code>

**/
event result_t Timer.fired()

{
result_t result;
uint8_t tempState;

atomic tempState = state;

switch (tempState) {

case PHASE1 : /* Sending Commitment */
if (! call rfTransceiver.isSenderBusy())
{

/* send msg */
call rfTransceiver.Send(&msg);

/* wait until a response to bring into 2nd phase*/
tempState = PHASE1_WAIT;

}

break;
case PHASE1_WAIT:

/* phase 1 wait state */
break;

case PHASE2 : /* Receive challenge */
if (evaluateWatchdog())

{

tempState = PHASE_START;
post WatchdogFired();

}
break;

case PHASE3 : /* Send (response = NA xor NB) by ultrasound */
tempState = PHASE4;

break;
case PHASE4 : /* Sending message in clear text by radio */

call Leds.greenToggle();
/* change role to receiver */
call rfTransceiver.stop();

call rfTransceiver.setRole(RF_SENDER);
call rfTransceiver.start();

/* Send message */
memcpy(msg.data,myText[textID],RF_DATA_LENGTH);

call rfTransceiver.Send(&msg);

textID ++;

if (textID == 4)
textID = 0;

tempState = PHASE_START;
break;

case PHASE_IDLE:

break;

case PHASE_START :
//compute commitment

post compute_cipher();
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atomic idxNA = 0;
tempState = PHASE_IDLE;

break;
}

atomic state = tempState;
return SUCCESS;

}

/**
* Signaled when RF package send done
* @param rmsg Message pointer

* @param success state of the transmission
* @return Always returns <code>SUCCESS</code>

**/
event result_t rfTransceiver.sendDone(TOS_MsgPtr rmsg, result_t success) {

uint8_t tempState;

atomic tempState = state;
/* the message from phase 1 is sent*/

if (tempState == PHASE1_WAIT) {
/* change role to receiver */

call rfTransceiver.stop();
call rfTransceiver.setRole(RF_RECEIVER);
call rfTransceiver.start();

call Leds.greenToggle();
/* bring the system into phase 2, distance bounding */

tempState = PHASE2;
}

// state transition

atomic state = tempState;

return SUCCESS;
}

/**

* Signaled when a new data package being received by Radio.
* @param data New data package being received

* @return Always returns <code>SUCCESS</code>
**/

event TOS_MsgPtr rfTransceiver.receive(TOS_MsgPtr data) {

if (idxNA == (TINYSEC_KEYSIZE*8-1)) {

/* bring the system into phase 3 to end distance bounding */
atomic state = PHASE3;

}else
/* continue distance bounding */

atomic idxNA++;

/* Reset watch dog timer */

resetWatchdog();
return data;

}

/**

* Signaled when message sent over ultrasound transmitter.
* @return Always returns <code>SUCCESS</code>

**/
event result_t usTransceiver.SendDone() {
call Leds.redToggle();

return SUCCESS;
}

/**

* Signaled when synchronization bit is detected in Ultrasound transciver



The attacker 253

* @param timeStamp Time Stamp when sync signal is detected, this value is uncorrected.
* This value may contains hardware overhead.

* @return Always returns <code>SUCCESS</code>
**/

event uint16_t usTransceiver.msgDetected(uint16_t timeStamp){

return timeStamp;
}

/**
* Signaled when entire data byte is received from Ultrasound transceiver.
* @param Rx_data The data being received.

* @param timeStamp Time Stamp entire data word is received,
* this value is uncorrected.

* This value may contains hardware overhead.
* @return Always returns <code>SUCCESS</code>
**/

event uint32_t usTransceiver.DataReceived(uint32_t Rx_data , uint16_t timeStamp){
return Rx_data;

}

norace uint8_t po;
norace uint8_t count;
task void reportCNT() {

printf("%x, cnt:%u, ",count,po);
}

async event void RadioSendCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {}
async event void RadioSendCoord.blockTimer() {}

async event void RadioSendCoord.byte(TOS_MsgPtr pmsg, uint8_t cnt){}

async event void RadioReceiveCoord.startSymbol(uint8_t bitsPerBlock, uint8_t offset, TOS_MsgPtr msgBuff) {};
async event void RadioReceiveCoord.blockTimer() {};

async event void RadioReceiveCoord.byte(TOS_MsgPtr pmsg, uint8_t cnt)
{

static uint8_t i = 0;

uint8_t tempState;

/****
* Attack on Sync mechanism, 2 byte earlier + large bit offset
****/

if (cnt == (offsetof(struct TOS_Msg,type) +
sizeof(((struct TOS_Msg*)0)->type) +3-2)){

printf("cnt:%d\r\n",cnt);
atomic tempState = state;

/* Phase 2: distance bounding in place */
if (tempState == PHASE2) {

i =(MACKey[idxNA/8] >>(idxNA%8)) & 0x1;

/* combined with response */
if (pmsg->data[0] != 0)

i = (1^i);

/* Get RF receive bit offset */

//rf_offset = call GetRxBitOffset();
rf_offset = 7;

rf_offset *=2;
i|=rf_offset;

call usTransceiver.SendWord(i);

}
}

}

event result_t RS232.Receive(char * buf, uint8_t data_len){



254 Appendix G

return SUCCESS;
}

}

PtlSender.nc

/**
* @author Feng Kai s030656@student.dtu.dk

**/

/* Radio transciver */
includes rfTransceiver;

/* Ultrasound transciver */
includes usTransceiver;
/* Cryptogrohpic primitives for MAC*/

includes CryptoPrimitives;
/* Protocol */

includes PtlSender;
includes MyMessages;

configuration PtlSender {

}
implementation {

/*
* Use of components
*/

/* Application components */
components Main, PtlSenderM,TimerC, LedsC;

/* RF */
components rfTransceiverC;

/* Encryption */
components CBCMAC as MAC;
//components RC5M as Cipher;

components SkipJackM as Cipher;
/* Ultrasound */

components usTransceiverC;
/* Debug by RS232 */
components RS232C;

/*

* Wire of components
*/

/* Application control */
Main.StdControl -> PtlSenderM;
Main.StdControl -> TimerC;

PtlSenderM.Timer -> TimerC.Timer[unique("Timer")];
PtlSenderM.Leds -> LedsC;

/* Radio transceiver and coordinate */

PtlSenderM.rfTransceiver -> rfTransceiverC.rfTransceiver;
PtlSenderM.RadioSendCoord -> rfTransceiverC.RadioSendCoord;
PtlSenderM.RadioReceiveCoord -> rfTransceiverC.RadioReceiveCoord;

PtlSenderM.GetRxBitOffset -> rfTransceiverC.GetRxBitOffset;

/* MAC */
PtlSenderM.MAC -> MAC.MAC;
MAC.BlockCipher -> Cipher.BlockCipher;

MAC.BlockCipherInfo -> Cipher.BlockCipherInfo;
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// Ultrasound

PtlSenderM.usTransceiver -> usTransceiverC.usTransceiver;

/* RS232 */

PtlSenderM.RS232 -> RS232C.RS232;
}

PtlSender.h

/**

* @author Feng Kai s030656@student.dtu.dk
**/

#ifndef _PROTOCOLSENDER_H

#define _PROTOCOLSENDER_H

#include <stdio.h>

/*

* Radio package setup
*/

#define RF_DATA_LENGTH 29
#define SYNC 0x16

#define MACSIZE 8

/*

* System finite state machine
* Phase Work
* 0 Start, computing cipher

* 1 Sending cipher
* 2 Receiving Nounce Na

* 3 Sending Na xor Nb
* 4 Sending message in clear text

* 10 Waiting task to complete
*/

#define PHASE_START 0

#define PHASE1 1
#define PHASE1_WAIT 10

#define PHASE2 2
#define PHASE3 3

#define PHASE4 4
#define PHASE_IDLE 11

/* System response time, controls FSM, in ms */
#define SYSTEM_REACTION_RATE 1000

/* watchdog timer value, unit is response time */
#define WATCHDOGTIME 7

#endif

MyMessages.h

/**
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* @author Feng Kai s030656@student.dtu.dk
**/

#ifndef _MYMESSAGES_H
#define _MYMESSAGES_H
#define TEXT {"This is test string 1","This Is Test String 2",

"Computer System Engineering","Computer Science Engineering"}
#endif

.tinyos keyfile

# TinySec Keyfile. By default, the first key will be used.

# You can import other keys by appending them to the file.

default 35C9991B589AF29F168D7676FCE61559
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