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Abstract

We propose a novel Monte Carlo (MC) method for on-line filtering of dynamical state-space
models called the particle path filter (PPF). The main new feature of the method is the
use of a proposal distribution that exploits two key feature of Markovian systems: The
decomposability of the posterior probability of the latent variables and the exponential
decaying time correlations of the variables. With this proposal distribution, the whole
path of variables affecting the present is sampled. This should be contrasted with two
extremes: Traditional Markov chain MC (MCMC) for filtering draws samples from the
latent variables across the whole time-series and particle filters (PFs) only drawing samples
at the current time step. In both cases knowledge about the correlations is ignored leading
to slow convergence of the Markov chain. We test and compare the PPF with state-of-the-
art PFs for two generic 1d dynamical systems with two attractive fix points emphasizing
the importance of using correlation time information. For filtering of systems with very
short correlation times PFs outperform PPF in terms of the required particles to reach a
given accuracy. For systems with long correlations PPF outperforms PFs with orders of
magnitude.
Keywords: State-space models, Markov Chain Monte Carlo, particle filters, path sam-
pling, mean first passage-time

1. Introduction

A dynamical system with an observed state variable z and a hidden state variable x can
be formulated as

xk = f(xk−1) + vk−1 (1a)
zk = g(xk) + wk (1b)

c©2006 Jesper Ferkinghoff-Borg, Tue Lehn-Schiøler and Ole Winther.



Ferkinghoff-Borg, Lehn-Schiøler and Winther

where v and w are the process noise and the observation noise. The state transition density
is fully specified by f and the process noise distribution pv and the observation likelihood
is fully specified by g and the observation noise distribution pw:

p(xk|xk−1) = pv(xk − f(xk−1)) (2)
p(zk|xk) = pw(zk − g(xk)) . (3)

In filtering, the problem is to find the distribution of the process variable at time k (xk) given
all observation up to time k (z1:k). This marginal distribution is denoted by p(xk|z1:k) =∫

dx1:k−1 p(x1:k|z1:k) where the posterior is

p(x1:k|z1:k) =
1

p(z1:k)

k∏

j=1

[p(xj |xj−1)p(zj |xj)] . (4)

It is well-known that Kalman filters (Kalman, 1960) are optimal for linear state-space models
with Gaussian noise. However, these models are often found to be too restrictive for realistic
data analysis.

The various generalizations and alternatives to the Kalman filters fall into three cate-
gories 1) deterministic methods: Extended Kalman filters, sigma-point filters (Julier and
Uhlmann, 1997), mean field methods (Ghahramani and Jordan, 1995, Jordan et al., 1999,
Heskes and Zoeter, 2002), mixture of Gaussians (Gaussian-sum filters) (Alspach and Sorensen,
1972) and, pseudo-Bayes (Bar-Shalom and Li, 1993), 2) sequential (on-line) Monte Carlo
methods (SMC) also known as particle filters (PF) (Gordon et al., 1993) including various
extension (Pitt and Shephard, 1999, Kotecha and Djuric, 2001, Lehn-Schiøler et al., 2004,
Merwe and Wan, 2003) and 3) off-line Markov Chain Monte Carlo methods discussed in
more detail below.

Originally the use of Monte Carlo techniques for State-Space Models was introduced
by Carlin et al. (1992) and further investigated by Gordon et al. (1993), Shephard (1994).
Tanizaki and Mariano (2000) provides a thorough review of the MCMC sampling in non-
Gaussian State-Space Models. The MCMC-method has the advantage of directly providing
smoothing estimates for the state space process, i.e. p(xk′ |z1:k) with k′ < k, but in its
traditional form the method suffers from poor convergence properties given the amount of
computation typically available in an on-line filtering application. This problem have been
held as an argument in favor for the particle filtering-methods (Pitt and Shephard, 1999).

In the particle filter (PF), the marginal density is represented by a weighted sum of δ-
distributions so-called “particles”. If the particles representing the probability distribution
at a given iteration step is left unaltered at subsequent iterations, the effective sample size
(i.e. the number of particles with non-negligible weights) will invariably decrease over time,
leading to a successively poorer approximation of the true marginal density. The standard
method to reduce the decay of the effective sample size is either to improve the proposal
distribution implied in the particle updates or to perform a resampling of the particles
whenever the effective number fall below a given threshold. The former approach will
always be system specific, whereas the latter approach introduces other deficiencies of the
sampling. In particular, it reduces the diversity of particle paths and consequently makes
any smoothed estimate less reliable.
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The purpose of this paper is two-fold; firstly, we explain why PF-methods in general
will fail for systems with long correlation times. Processes with long correlation times are
characteristic of systems with competing meta-stable phases. Such systems are ubiquitous
in almost all scientific areas ranging from reaction processes in chemical kinetics, homoge-
nous nucleation and phase transitions in statistical physics, electrical circuit theory and
theory of diffusion in solids (Hänggi and Talkner, 1990, Risken, 1996). Meta-stable phases
can be found in non-linear state-space models, when the process function has competing
fixed points, i.e. when the posterior is multi-modal. Secondly, we wish to promote the par-
ticle path filter (PPF) as a novel MCMC method for online filtering. The method is based
on a straight-forward modification of the proposal distribution of off-line MCMC methods:
Variables ∆t before the present time k: xk−∆t are updated using a suitable proposal dis-
tribution, but the probability of choosing that variable decays exponentially ∝ exp−∆t/τq.
The name thus derives from the fact that it is the path of the state vector that is sam-
pled. The free parameter τq should be chosen to optimize the sampling properties. The
correlation time (or “memory”) of the dynamical system τ serves as an upper bound for τq.
With an appropriate choice of τq the method has the added advantage of providing running
smoothing estimates.

The paper is organized as follows. We shortly introduce the fundamentals of Markov
Chain Monte Carlo in Section 2. Particle filters (PFs) and the particle path filter (PPF) are
discussed in Sections 3 and 4. In Sections 5 and 6 we present, analyze and give results for two
different bimodal models where the correlation time can be controlled in a simple manner.
For the first model, which has been studied extensively in the literature (Arulampalam
et al., 2002, Carlin et al., 1992, Gordon et al., 1993, Kitagawa, 1996), the observation
model is reflection symmetric but contains an explicit time dependent term in the hidden
transition probabilities to drive the process across the two modes. This model has very short
correlation time making it ideal for PFs. In the second “Mexican hat” model, the transition
probabilities are time independent but the observation model distinguishes between the two
modes, providing a weak evidence as to which of the two modes the state belongs to. Outlook
and conclusion are given in Section 7.

2. Markov Chain Monte Carlo

In the Markov Chain Monte Carlo (MCMC) method, a state space, φ ∈ Φ is sampled
according to a given probability distribution, φ ∼ p(φ), by generating a Markov chain of
states, {φ(i)}i, through a fixed matrix of transition probabilities. In state-space tracking a
MCMC ’state’ is associated with the entire history of the hidden space p(x1:k|z1:k), eq. (4).

Given the chain φ a new chain φ′ can be selected. The transition probabilities, T (φ →
φ′), are chosen so the condition of detailed balance is satisfied

p(φ)T (φ → φ′) = p(φ′)T (φ′ → φ). (5)

Let p(i)(φ|φ(0)) denote the probability distribution of φ for the i’the element of the Markov
chain, when it is initialized in state φ(0). According to the Perron-Frobenius theorem, p(i)

will converge to the ‘true’ distribution p(φ) independent of the choice of φ(0);

p(φ) = lim
i→∞

p(i)(φ|φ(0)),
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provided that T is ergodic and aperiodic (see for example Ferkinghoff-Borg, 2002). In
practice, some finite Markov chain of length Ñ is generated where the first ñ < Ñ states
are discarded from the calculation of the relevant state observables, to account for the initial
relaxation of the chain.

The transition probabilities are in a computational sense constructed as a product of
a proposal probability distribution q(φ′|φ), and an acceptance rate a(φ′|φ), i.e. T (φ →
φ′) = q(φ′|φ)a(φ′|φ). At the (i + 1)-step in the MCMC algorithm a trial state φ′, is drawn
according to the distribution q(φ′|φ(i)) and accepted as the new state φ(i+1) = φ′ with the
probability a(φ′|φ(i)). Otherwise, one sets φ(i+1) = φ(i).

There is a considerable freedom in the choice of a. The standard Metropolis-Hastings
algorithm (Hastings, 1970) is to use

a(φ′|φ) = min
{

p(φ′)q(φ|φ′)
p(φ)q(φ′|φ)

, 1
}

, (6)

This prescription automatically satisfies the condition of detailed balance, as verified by
direct inspection of eq. (5).

The main deficiency of the MCMC-method in the traditional form outlined above, is its
susceptibility to slow relaxation (long correlation times) of the Markov chain. Slow relax-
ation reduces the effective number of samples and may lead to results which are erroneously
sensitive to the particular initialization of the chain.

3. Particle Filters

In the traditional particle filter approach to state-space tracking, information about the
system is represented by the marginal density, p(xk|z1:k) of the current state, xk, only. It
is further assumed that the marginals p(xk|z1:k) and p(xk−1|z1:k−1) can be estimated by
discrete distributions, a weighted sum of δ-functions

p(xk|z1:k) ≈
N∑

i=1

wiδ(xk − xi
k) .

At each time step these δ-functions (particles) represents the entire knowledge about the
system. The idea is to propagate this knowledge through time by moving the particles and
updating the weights wi. The new particles are found by sampling the proposal distribution
and the weight of a particle is found by evaluating how likely the particle is given the
observation. In the simplest case the proposal density used at time k takes the form

qPF = p(xk|xk−1) = pv(xk − f(xk−1)) , (7)

where the distribution of xk−1 is the weighted empirical distribution of the PF sample at
k−1. The name sequential Monte Carlo filtering arises from the fact that at each time step
a Monte Carlo sample is drawn from the distribution moving the filter to next time step.

4. MCMC Techniques and the Particle Path Filter

In applying the MCMC technique to the tracking problem, a state in the Markov chain, φ,
is identified with the full history of states in the original state-space, φ = x1:k. The Markov
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Figure 1: The correlation function Ĉz(∆t) as function of ∆t (solid). The dashed lines are
exponential fits to Cz(∆t) for small and large times respectively. The initial fast
decay is related to the local fluctuations (τloc ≈ 14) around each stable fixed
point, x = ±xf , whereas the subsequent slow decay is related to the the typical
time to make a transition between the fixed points (τ ≈ 700).

property of the state transition density and the observation likelihood, eq. (1), implies
that the joint posterior density p(φ) = p(x1:k|z1:k) is given by eq. (4). Notice, that the
normalization constant p(z1:k), cancels out in the Metropolis definition of the acceptance
rates, eq. (6).

One obvious advantage of sampling the joint posterior density p(x1:k|z1:k) rather than
the marginalized posterior density p(xk|z1:k) is the gain of statistical information. However,
when the purpose is on-line filtering, one should design the proposal distribution so that
it matches the dynamical properties of the state-space system. An important property of
a dynamical system is the (auto)-correlation function of the characteristic observables, for
example z, Cz(∆t). For a finite sequence of T observations, it can be estimated from

Ĉz(∆t) = c−1
0

[
1

T −∆t

T−∆t∑

i=1

zizi+∆t − 1
(T −∆t)2

(
T−∆t∑

i=1

zi

)(
T∑

i=∆t

zi

)]
, (8)

where c0 = 1
T

∑T
i=1 z2

i −
(

1
T

∑T
i=1 zi

)2
is a normalization constant. Figure 1 gives an

example for the correlation function of the bimodal system studied in Section 5. Most
stochastic processes encountered in physics and chemistry display correlations decaying
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Figure 2: Choosing a new path involves selecting a point according to eq. (10), in this case
xk−1. Once the point is selected a move is proposed according to eq. (11). The
new sequence can be accepted or rejected according to eq. (12)

exponentially in time (van Kampen, 1981), with some characteristic decay constant τ , so
Cz(∆t) ∼ exp(−∆t/τz) for a given component of z. Important exceptions are provided by
critical phenomena, i.e. processes occurring in the vicinity of second order phase transitions,
where correlations typically decay algebraically in time (van Kampen, 1981, Mezard et al.,
1987).

The finite correlation time τ = maxz τz for ’non-critical’ processes implies that the
marginal distribution is not dependent upon all the observations but only the most recent:
p(xk|z1:k) ≈ p(xk|zk−τ ′:k), where τ ′ is a few times τ . This has some important implications
for how we should design sampling schemes: Sampling from only the marginal of the current
state, as in PF, will lead to slow relaxation because we cannot correct for weak evidence
that has build up over time, i.e. correlations beyond one time step are underestimated. On
the other hand performing off-line MCMC is wasteful because data beyond the time horizon
(determined by the correlation time of z) cannot affect the current state.

A simple way to extend the proposal distribution to take time correlation structure into
account is to decompose it into a time (T) and space (X) mixture:

qk(x′1:k|x1:k, z1:k) =
k∑

t=1

qT (t|k)q(t)
X (x′1:k|x1:k,z1:k) . (9)

In effect, sampling from this mixture is a two step process: first a time index is selected,
1 ≤ t ≤ k, independent of the current state x1:k, according to the probability distribu-
tion qT (t|k). Then, a trial path is drawn according to the spatial proposal distribution,
q
(t)
X (x′1:k|x1:k,z1:k). Figure 2 gives a schematic view of the sampling. We will specify the

spatial distribution below.
Since the Markov process is expected to generate states with exponentially decaying

time-correlations, a natural form for qT (t|k) is the exponential distribution, qT (t|k) ∼
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exp((t− k)/τq). Here, τq equals the average size of the back-propagating step in the path-
space sampling following an observation at time k. In order to model the short time scale
correlations (see Figure 1) and equilibrate the chain according to the new information avail-
able, an extra emphasis should be put on the sampling of the latest state, xk. Therefore
the following definition of qT are proposed

qT (t|k) =
{

0 t > k
qnowδt,k + (1− qnow) 1

Nk
exp((t− k)/τq) 0 < t ≤ k

(10)

Here, qnow is the probability of attempting a change to the latest state xk only, and Nk is
a normalization constant, Nk =

∑k
t=1 exp(t− k)/τq = 1−exp(−k/τq)

1−exp(−1/τq) . The algorithm is quite
insensitive to the choice of qnow as long as it is non-negligible (we use qnow = 0.1). The same
can not be said for τq. An upper bound for the necessary τq is the correlation time of the
process because data beyond a few times τ will have no effect on the present state. In our
experience using τq ≥ γτ with γ ∼ 1/5 will give the performance of the traditional MCMC
(but at much lower computational cost), see Section 6. When τq < γτ the performance of
PPF approaches that of the PF methods.

The most direct approach to the spatial proposal distribution q
(t)
X (x′1:k|x1:k, z1:k), is

simply to fix all variables except xt and adopt the proposal distribution applied in a given
PF-method to xt:

q
(t)
X (x′1:k|x1:k, z1:k) = δ(x′1:t−1 − x1:t−1)qPF (x′t|xt−1, zt)δ(x′t+1:k − xt+1:k) , (11)

where qPF is given by eq. (7). With the above choices of qT and qX the acceptance proba-
bility in the MCMC method, eq. (6), takes the particular simple form for 1 ≤ t < k

a(x′t|x1:k,z1:k) = min
{

p(zt|x′t)p(x′t|xt−1)p(xt+1|x′t)qPF (xt|xt−1, zt)
p(zt|xt)p(xt|xt−1)p(xt+1|xt)qPF (x′t|xt−1, zt)

, 1
}

. (12)

For t = k, the ratio p(xt+1|x′t)
p(xt+1|xt)

should be omitted in the above expression. In PPF we thus
exploit the Markov property such that an update is only slightly more expensive than one
particle update in PF. On top of that we will use a second type of “global move” specifically
designed for dynamical systems with known symmetries, see appendix A. This corresponds
to using a proposal that takes the Likelihood term p(zt|xt) into account without explicitly
including the Likelihood in the proposal distribution (Arulampalam et al., 2002).

In essence the on-line version of MCMC selects a single sample from the sequence, pro-
pose a change of that sample and accept it according to eq. (12). Samples near the current
time are selected with higher probability because it is expected that new observations will
be more likely to influence them. Finally, the type of moves used can be expanded using
knowledge about symmetries of the dynamical system.

5. Two Bimodal Models

In order to compare the performance of various particle filtering methods with the PPF-
method two different bimodal models are examined. The first model, which we will refer
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to as the periodically driven (PD) model, has been analysed before in many publications
(Arulampalam et al., 2002, Carlin et al., 1992, Gordon et al., 1993, Kitagawa, 1996):

xk = fPD(xk−1, k) + vk (13a)

fPD(x, k) = fx,PD(x) + fk,PD(k) =
x

2
+

25x
1 + x2

+ 8 cos(1.2k)

zk = gPD(xk) + wk (13b)

gPD(x) =
x2

20

The map fx,PD(x) has two attractive fixed points at x = ±7 and a repulsive fixed point
at x = 0, implying that the state-space is divided into two basins, B− = {x|x < 0} and
B+ = {x|x > 0}. The noise terms, vk and wk are zero mean Gaussian random variables with
variances σ2

v = 10 and σ2
w = 1, respectively (Arulampalam et al. (2002)). The reflection

asymmetry of the posterior distribution is provided by the explicit driving term, fk,PD,
which forces the system to periodically switch between the two basins. With the above
choice of parameters the correlation time is essentially set by the driving frequency, τ ' π

1.2 ,
i.e. a very short correlation time.

In the second model, which we refer to as the Mexican Hat (MH) model, the reflec-
tion asymmetry of the posterior distribution is given by the asymmetry of the observation
function:

xk = fMH(xk−1) + vk (14a)

fMH(x) = x− 2h

xf

((
x

xf

)3

−
(

x

xf

))

zk = gMH(xk) + wk (14b)
gMH(x) = x2 + εx

The map fMH(x) has attractive fixed points at ±xf and a repulsive fixed point at x = 0.
Consequently, the process will spend most of the time fluctuating around xf or −xf . The
parameter h determines the probability of crossing from one basin to the other. In our
experiments xf = 10, ε = 1, the noise contributions vk and wk are normal zero mean with
variance 1. The value of h is varied between 2.5 and 4.5.

The model is instructive because the stationary probability distribution, W0(x), and
the correlation time, τx, of the process can be varied in a controlled manner by changing h.
Here, W0(x) represents the probability density that xk = x at an arbitrary point, k À τx,
in time. Approximate expressions for W0 and τx can be obtained by mapping eq. (14) to a
Fokker-Planck (FP) equation, see appendix B. The FP-equation depends on two functions,
D1(x) and D2(x), which represent respectively the drift and the diffusion of the process.
As described in the appendix, D1(x)=̂f(x)− x and D2=̂σ2

v/2, where σ2
v = 1 is the variance

of the random variable v = vk. The FP-equation is an accurate description of the process
provided that the characteristic length scale, lD for the variation of D1 is much larger than
the local length scale, l(x) '

√
σ2

v + D1(x)2, associated with the change of x in eq. (14), i.e.
lD À l(x) for all x. Here, lD = xf and l(x) ' 1, so this condition is satisfied. Consequently,
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h τ τx (τx)th

2.5 480± 30 585± 20 541
3.0 700± 60 910± 35 860
3.5 1300± 100 1400± 80 1201
4.0 1600± 150 1900± 100 1707
4.5 2200± 200 2550± 130 2473

Table 1: Correlation times obtained from state space process, eq. (14) for various values of
the barrier heights h. (τx)th is the theoretical value τ is estimated from correlations
in the observation sequence z1:T and τx is estimated from correlations in the hidden
sequence. For all values of h there is good correspondence between theory and
numerics.

according to eq. (33) the stationary probability distribution is given by

W0(x) =
1
N exp

(
−2U(x)

σ2
v

)
, (15)

where N =
∫∞
−∞ e−

1
2
U(x)dx is a normalization constant and

U(x)=̂−
∫ x

D1(x′)dx′ = 2h

[
1
4

(
x

xf

)4

− 1
2

(
x

xf

)2
]

(16)

represents the driving potential of the process. From eqs. (15) and (16) calculations show
that for a given process noise, σ2

v , the probability to be at the unstable fixed point, x = 0,
relative to the stable ones, x = ±xf , is solely determined by h, i.e. W0(0)

W0(xf ) = exp(−h/σ2
v).

This implies that the observation noise will be low compared to the process noise most of
the time, since an uncertainty, δz, in the observation variable z is related to an uncertainty
δx = δz

2x+ε in the state variable x. For |x| ' xf one obtains δx ' σw
2xf

¿ σv.
According to eq. (34), the correlation time, τx, of the state space process is approximately

given by the theoretical expression (th)

(τx)th =
2
σ2

v

[∫ ∞

0
dx exp

(
2U(x)/σ2

v

) ∫ ∞

x
dy exp

(−2U(y)/σ2
v

)]
. (17)

The correlation time equals half the average time spend in each basin and it sets the
maximum relevant value for the time scale, τq, in the proposal distribution, eq. (10). In
Table 1 the estimated correlation times, τ and τx, obtained from an exponential fit to the
correlation functions, Cz(∆t) and Cx(∆t) respectively, is listed for different values of h.
The predicted value, (τx)th, obtained from a numerical integration of eq. (17) (numerically
infinity is ' 3xf ) is given in the last row. The Table shows that the two correlation times,
τ and τx are of the same order and reasonably well estimated by the theoretical expression,
eq. (17). An example of a typical correlation profile in the present model is shown in Figure
1 for h = 3.0.
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6. Simulation Results

To quantify the results of the PPF method compared to the traditional PF-methods two
error measures are studied. The traditional root-mean-square error is given by

RMSE =

√√√√ 1
T

T∑

1

(xk − 〈xk〉)2

where T is the total number of steps and 〈xk〉 is the posterior average of the state variable
at time k estimated through a given algorithm. In addition to this the Basin Error (BE)
defined as

BE =
1
2
(1− 1

T

T∑

1

(sign(xk)sign(〈xk〉))

is used. It quantifies the fraction of times the algorithm predicts a wrong sign for the state
variable x. A value of BE = 0.5 means that the performance of the algorithm in resolving
the basin-state of the system is the same as by guessing at random.

6.1 Periodically Driven Model

In Figure 3, we show in solid line the filtered RMS-error of the PPF-method as function of
the number of trial states, Ñ , generated at each time, k. The first half of the trial states are
discared in the calculation of the posterior average 〈xk〉. The RMSE values are calculated
in the same manner as in (Arulampalam et al., 2002), as the average over 100 MC-runs each
of length T = 100. The parameter, τq, in the time proposal function, qT is set to τq = 3.
However, due to the small correlation times of the PD-model the PPF-method gives similar
results for all τq < τ ′ with τ ′ ∼ 10 (data not shown). For the spatial proposal function, qX ,
the standard particle filter proposal distribution has been adopted, in conjunction with the
global move, x → −x, chosen with probability q± = 0.15, see appendix A.

From Figure 3 we observe that the limiting performance is obtained around Ñ ' 2000.
The RMS-error of the standard particle filter algorithm with N = 50 particles and resam-
pling at each step is RMSE = 5.54 (Arulampalam et al., 2002), which for the PPF-method
is obtained around Ñ ' 400 trial steps. In terms of computational time to reach a certain
accuracy of the filtered estimates the PPF-method is ∼ 4 or 8 times slower, depending on
whether the resampling step in the particle filter algorithm is included in the comparison or
not. The PFs thus more or less reach the limiting performance of filtering with only N = 50
particles. So in a model like this with short correlation time and no large barrier between
fixed points the PF is very effective. Figure 4 (left) illustrates a typical behaviour of the
PF-method applied to the PD-model. As shown, the marginal probability distribution is
centered around the true state value most of the time.

It should be emphasized that since PPF-method in principle samples from the total
joint posterior density, p(x1:k|z1:k), rather than the marginalized posterior density alone,
p(xk|z1:k), it directly facilities the calculation of smoothed estimates; something that is
difficult to achieve with Particle Filters. The RMS-error of the smoothed estimates is shown
with dashed line in Figure 3. The limiting value of the smoothed RMSE corresponds to a
reduction of the basin error from BE = 0.2±0.004 (filtered estimates) to BE = 0.024±0.002.
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This means that if we can wait only τ ' 3 time steps before making predictions we can
gain an order of magnitude in precision.

Figure 3: RMS-error as function of the number of trial states, Ñ , in the periodically driven
model using the PPF-algorithm. The solid line is the error of the filtered estimates
and dashed line is the error of the smoothed estimates.

6.2 Mexican Hat Model

The success of the PF-method compared to the PPF-method in the previous example is most
likely due to the small correlation time of the state process. In order to test this hypothesis
we will in the following focus on the Mexican hat (MH) model, where the correlation times
are long and the observation model only provides weak evidence as to which of the two
basins the state belongs to.

For each value of h in the MH-model, 10 independent realizations of the state process,
eq. (14), is generated starting from x0 = 0. The process in each realization is iterated
T = 15000 times to ensure a non-vanishing number of transitions between the basins for all
h, cf. eq. (17). For each realization, a corresponding observation path z1:T is generated. All
algorithms discussed below are tested on this fixed set of state and observation realizations.1

In Table 2 the RMSE and BE of the various sequential filtering algorithms for h =
3.0 are listed. The ReBEL toolbox2 by van der Merwe and Wan was used to perform

1. Programs and this benchmark data set are available from the authors.
2. http://choosh.ece.ogi.edu/rebel/

11



Ferkinghoff-Borg, Lehn-Schiøler and Winther

5 10 15 20 25 30
−30

−20

−10

0

10

20

30

Time

S
ta

te
 (

x)

Weigthed particles
Particle Filter Prediction
True value

5 10 15 20 25 30
−15

−10

−5

0

5

10

Time

S
ta

te
 (

x)

Weigthed particles
Particle Filter Prediction
True value

Figure 4: True and estimated time course using a standard particle filter. The dots are par-
ticles, and their position relative to the time index illustrate the particle weight.
In problems with small correlation length (like the periodical driven system of
eq. (13), left plot) the particle filter performs well but as the correlation length
increases (as in problems of the Mexican hat type eq. (14), right plot) the particle
filter fails.

Method basin error STD RMS error STD
particle filter (SPF) 0.50 0.05 13.3 0.7
Sigma Point particle filter 0.47 0.04 13.0 0.3
Gaussian Sum particle filter 0.59 0.05 14.7 0.7
SRCDKF † 0.55 0.04 14.9 0.7
particle path filter (PPF) 0.51 0.04 13.3 0.47
particle filter global move (SPF*) 0.44 0.05 12.3 0.7
particle path filter global move (PPF*) 0.14 0.002 6.41 0.05

Table 2: Errors obtained with different filtering methods. The ReBEL toolbox was used to
perform the experiments. 1000 particles were used in the PF methods. † Three
times the output was NaN.
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the experiments. The entries give the estimated average error and the uncertainty of the
estimate (STD) based on the 10 realizations and using N = 1000 particles.

The accuracy of the present PPF-method is also given in Table 2 (third last row), where
the standard particle filter (SPF) proposal function has been adopted in the definition of
the spatial proposal distribution, eq. (11). The time-scale, τq for the proposal distribution,
eq. (10), is set to τq = 250 which is approximately one-third of the observed correlation
times τ for h = 3, cf. Table 17. However, without the global move the performance is
insensitive to this choice. The number of trial states, Ñ , generated at each time, k, is
chosen equivalent to the number of particles in the PF-methods, i.e. Ñ = 1000. As before,
we discard the first half of these in the calculation of the posterior average 〈xk〉.

For N = 1000 number of particles (or number of trial states) none of the methods
performs significantly better in estimating the basin than by guessing at random. This
leaves to the conclusion that the accuracy of the various PF-algorithms are more or less
identical for the model at hand, and in the following focus will be on just one of these; the
SPF-method. Figure 4 (right) shows a typical case where the SPF-method fails to predict
the correct basin of the state variable for the MH-model. The total weight of the particles
belonging to the correct basin ’accidentially’ decays to zero in a few time steps after the
system passes the transition region between the two basins. The PF approximation to the
marginal probability distribution fails to recreate its bimodal shape at subsequent iteration
steps.

As discussed in the previous section, one obvious remedy is to complement the proposal
distribution with a move which explicitly carries out the transitions between the two basins.
The second last row of Table 2 gives the accuracy of the SPF method when this operation
is added to the sampling, chosen with the probability q± = 0.05. The abbreviation SPF∗

is used for this modified algorithm. Only a marginal improvement of the algorithm is
observed, which nevertheless indicates that the failure of the method is related to the small
transition probabilities between the basins. However, as shown in the last row of Table 2 the
error reduction is dramatic when the same move is added to the PPF-method, subsequently
abbreviated as PPF∗.

To appreciate the order of the improvement provided by the PPF∗-method we show in
Table 3 how the accuracy of the SPF∗ scales with the number of particles for various choices
of h. Two interesting observations can be made. First, a very large number of particles,
Nlim, are in general needed to reach the limiting accuracy. Secondly, Nlim increases with
increasing h, corresponding to longer correlation times or smaller transition probabilities,
cf. eq. (17). In fact, the limiting accuracy has not yet been reached at N = 106 for h > 3.

In Table 4 we show the performance of the PPF∗-method for various choices of h using
Ñ = 1000 trial states and τq = 250. For all h the method gives significantly better results
than the SPF∗-method with the equivalent number of particles, N = 1000. In fact, for
h > 2.5 the results of the PPF∗-method compares favorably with the SPF∗-method even
in the case where N = 106 number of particles are used. This corresponds to at least a
three-order of magnitude improvement in terms of the computational time required to reach
a certain accuracy. For h = 2.5 the limiting accuracy obtained by SPF∗-method at N = 105

is reached with the PPF∗-method using Ñ ≈ 104 trial states.
In Figure 5 the dependency of the basin error on how far back in time samples ares

changed (the choice of τq) is shown in solid line. In the limit τq → 1 the accuracy is com-

13



Ferkinghoff-Borg, Lehn-Schiøler and Winther

100 1000 10000 100000 1000000
2.5 0.53 ± 0.05 0.55 ± 0.03 0.30 ± 0.03 0.17 ± 0.02 0.17 ± 0.02
3.0 0.45 ± 0.05 0.44 ± 0.05 0.30 ± 0.04 0.18 ± 0.02 0.13 ± 0.02
3.5 0.60 ± 0.03 0.58 ± 0.06 0.35 ± 0.04 0.17 ± 0.02 0.12 ± 0.02
4.0 0.54 ± 0.06 0.44 ± 0.05 0.32 ± 0.05 0.14 ± 0.05 0.09 ± 0.02
4.5 0.50 ± 0.07 0.58 ± 0.07 0.30 ± 0.07 0.08 ± 0.03 0.09 ± 0.03

Table 3: Experiments with particle filter using global move. The Basin Error for varying
barrier heights (h) and number of particles. A very large number of particles are
needed to reach the limiting accuracy. Also note that the algorithm performs worse
for small values of h, corresponding to larger transition probabilities between the
basins.

Basin error STD RMS error STD
2.5 0.24 0.005 8.51 0.38
3.0 0.140 0.002 6.41 0.05
3.5 0.090 0.001 5.18 0.04
4.0 0.056 0.002 4.14 0.08
4.5 0.079 0.002 4.95 0.07

Table 4: Experiments with PPF-method using global moves and τq = 250 for different
barrier heights (h). Compared to the particle filter in Table 3 the errors are very
small given that only Ñ = 1000 particles were used.
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parable to the results of the SPF∗-method. As τq is increased the error drops significantly
until a limiting value is reached around τq ≈ 150− 200. This value is lower than one might
expect from the observed correlation times, cf. Table 1. However, the correlation time only
sets the maximum relevant time scale for the proposal distribution. In the present case, the
error saturation around τq ' 150 − 200 simply reflects the typical number of observations
needed to accumulate evidence as to which of the two basins the state belongs to.

Figure 5: The filtering error as function of the time scale, τq, in the PPF proposal distribu-
tion. The errors are calculated for different barrier heights (h). Left plot shows
the Basin Error (BE), the right plot shows the root-mean-square error (RMSE).
In both error measures a sharp decrease of the error is observed as τq is increased.
The error saturates around τq ' 150− 200.

Again we can get smoothing estimates. In Figure 6 we show the BE- and the RMSE-
error of the smoothed estimates after k = T = 15000 as function of τq for different choices
of h. As expected, the error of the smoothed estimates is considerably reduced compared
to the error of the filtered estimates for all τq À 1.

7. Conclusion and Outlook

We have demonstrated that it is possible to formulate a Markov chain Monte Carlo (MCMC)
algorithm, the particle path filter (PPF), that explicitly uses the time-correlation structure
of the dynamical system we are filtering. The main problem with MCMC for online filtering
is the slow relaxation of the Markov chain and thus a prohibitive amount of computation
needed in order to give a proper sampling. The key point made in this article is that we
can avoid this by only considering the states in the past that are actually relevant for the
present state. A correlation analysis gives the information we need to define the “tempo-
ral” component of the proposal distribution, i.e. which state to change using the “spatial”
proposal. After this temporal selection process we can use the same spatial proposal distri-
bution as in the particle filter (PF) method. The temporal proposal distribution we used
was a simple mixture of choosing the present and an exponential for past states. One can
imagine more refined distributions such as sums of exponentials that reflects the different
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Figure 6: The smoothing error as function of the time scale, τq, in the PPF proposal dis-
tribution. The errors (Basin error left and RMS-error right) are calculated for
different barrier heights (h). As expected, for all τq À 1 the errors are significantly
reduced compared to the filtered estimates (Figure 5).

time-scales of the dynamical system, for example short time adaptation within a basin and
inter-basin dynamics.

It has been shown that there are no hinderance in using MCMC in online applications
and the experiments indicate that with the same computational complexity MCMC methods
can produce much superior results. The reason for the success of the MCMC methods is the
ability to accumulate evidence over several time steps, thus utilizing the small differences
in posterior probabilities. Whether a particle filter approach is sufficient depends crucially
on the temporal correlations present in the dynamical system. Performing a correlation
analysis will thus provide valuable information: If the correlation time is short, say 1− 10
time steps – like the periodic driven model considered in this paper – PFs outperform the
PPF in terms of computation needed in order to achieve a given error level. On the other
hand, if the correlation time is long, 100+ time steps, the PFs will typically fail as illustrated
by the Mexican hat model.

Besides handling long correlation times there are more added benefits to using a MCMC
method: 1) We get smoothing (back in time) estimates for free since we are in principle
sampling the whole chain and 2) we can use standard ways of improving the performance
of MCMC methods such as parallel tempering and bridging (Iba, 2001) which can also give
us marginal likelihood estimates.
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Appendix A. Global Moves and Extended Ensembles

Knowledge about the global symmetries of the system at hand can be incorporated into
the sampling procedure. For example, for the periodically driven (PD) model discussed
in Section 5, the state process, fPD(x), and the observation model, gPD(x), are reflection
symmetric. Thus, for a given time-step ∆t back from the present time, t, the spatial
proposal function is naturally augmented with a proposal to change the part, x(t−∆t):(t), of
the sequence according to

x(t−∆t):t →
(−x(t−∆t);−x(t−∆t+1); . . . ;−xt

)
. (18)

The Mexican hat model displays a reflection symmetry, fMH(−x) = −fMH(x), for the
state process, fMH , and a shifted reflection symmetry gMH(−x − ε) = gMH(x) for the
observation model, gMH . In principle both transformations could be incorporated in the
sampling procedure. As discussed in Section 5, the observation noise is low compared to
the process noise. Therefore, for the MH-model we should expect the latter transformation,
x → −x− ε, to be more effective in reducing the relaxation time of the sampling procedure.
Consequently, we use the global move

x(t−∆t):t →
(−x(t−∆t) − ε;−x(t−∆t+1) − ε; . . . ;−xt − ε

)
. (19)

In both models the global move is chosen with some low probability q± and is to be ac-
cepted with an acceptance rate similar to eq. (12). Note, that for the particle filter methods
this move can only be applied to the latest state, xt. Exploiting symmetries is a computa-
tional cheap version of the Likelihood particle filer (Arulampalam et al., 2002) which uses
p(xt|zt, xt−1) ∝ p(zt|xt)p(xt|xt−1) as proposal.

The global move that is augmented here to the local sampling procedure reflects a
symmetry property of the system at hand which is obviously not generic. It is possible,
though, to circumvent the need of ingenious and system-specific move-schemes altogether
and make use of “extended” type of ensembles instead (Iba, 2001, Ferkinghoff-Borg, 2002).
This approach, which has proven very successful in various problems in statistical physics,
refers to a family of algorithms where the probability distribution of interest, p, is replaced
with an “artificial” distribution, p̃, constructed either as an extension or by composition of
the original ensemble. The extended distribution, p̃, acts as a ’bridge’ from the ensemble
where the M arkov chain suffers from slow relaxation to an ensemble where the sampling is
free from such problems. An instructive example of an extended ensemble is given by the
parallel tempering (PT) algorithm (Iba, 2001), see the online Appendix.

Appendix B. Mapping from discrete to continous processes

In this appendix we describe how to obtain the stationary probability distribution, W0(x),
eq. (15) and the relevant time-scales for a state space process on the form

xt+1 = f(xt) + v(xt), v(x) ∼ N(µ(x), σ2(x)), (20)

where v(x) is a Gaussian distributed stochastic variable with mean µ(x) and variance σ2(x).
Since the process is easier to analyse in the continous time-limit, we extend eq. (20) to any
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finite time-step ∆t in the following way

xt+∆t = xt + D1(xt)∆t +
√

2D2(xt)∆tγt. (21)

Here, γt is a Gaussian random variable with zero mean and δ-correlated in the chosen time
discretization, 〈γt〉 = 0 and 〈γtγt′〉 = δtt′ . The functions D1 and D2, which characterize
respectively the drift and the diffusion of the process, are here defined so as to match eq. (20)
when ∆t = 1;

D1(x) = f(x)− x, D2(x) = σ2(x)/2. (22)

The evolution of the probability distribution W (x, t) for the stochastic variable x in eq. (21)
is given by

W (x, t + ∆t) =
∫

P∆t(x|x′)W (x′, t)dx′, (23)

where the transition probabilities are

P∆t(x|x′) =
1√

4πD2(x′)∆t
exp

(−(x− x′ −D1(x′)∆t)2

4D2(x′)∆t

)
. (24)

The advantage of studying the state process, eq. (20), in the continuous time limit is that
the integral equation, eq. (23), can be approximated by a differential equation in both t
and x. This is accomplished in two steps. First, the integral operator on the right hand
side of eq. (23) can be expressed as a differential operator in x by rewriting the transition
probability function in terms of its moments, Mn(x′,∆t),

Mn(x′;∆t)=̂
∫

(x− x′)nP∆t(x|x′)dx. (25)

Following Risken (1996) the inversion of this expression is most easily done by noting that
the characteristic function

C(u, x′;∆t)=̂
∫

eiu(x−x′)P∆t(x|x′)dx (26)

is the generating function for the moments Mn(x′;∆t) = (−i)n ∂nC(u,x′;∆t)
∂nu

∣∣∣
u=0

. Conse-

quently, a Taylor expansion of eq. (26) around u = 0 gives

C(u, x′;∆t) = 1 +
∞∑

n=1

(iu)n

n!
Mn(x′; ∆t) .

Since the transition probabilities is the inverse Fourier transform of the characteristic func-
tion one obtains

P∆t(x|x′) =
1
2π

∫
e−iu(x−x′)

[
1 +

∞∑

n=1

(iu)n

n!
Mn(x′;∆t)

]
du

The integral over u can be rewritten by applying

1
2π

∫
(iu)ne−iu(x−x′)du = (−1)n ∂n

∂xn

1
2π

∫
e−iu(x−x′)du = (−1)n ∂n

∂xn
δ(x− x′)
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and since f(x′)δ(x− x′) = f(x)δ(x− x′) one finally obtains

P∆t(x|x′) =

[
1 +

∞∑

n=1

1
n!

(
− ∂

∂x

)n

Mn(x;∆t)

]
δ(x− x′) . (27)

Inserting this equation into eq. (23) leads to

W (x, t + ∆t) = W (x, t) +
∞∑

n=1

(−1)n

n!
∂n

∂xn

(
Mn(x;∆t)W (x, t)

)
. (28)

The mapping of eq. (28) to a differential equation in t is facilitated by Taylor expanding
eq. (28) to first order in ∆t,

∂W (x, t)
∂t

=
∞∑

n=1

(−1)n ∂n

∂xn

(
Dn(x)W (x, t)

)
. (29)

Here, Dn(x)=̂ 1
n! lim∆t→0

Mn(x;∆t)
∆t are known as the Kramer-Moyal expansion coefficients.

Note, that the two functions, D1 and D2, entering the state space process, eq. (21), are
indeed the first and second coefficients in this expansion. Furthermore, due to the particular
simple form of the transition probabilities, eq. (24), Dn = 0 for all n > 2. The equation
obtained by truncating Kramer-Moyals expansion to n = 2 is generally known as the Fokker-
Planck (FP) equation:

∂W (x, t)
∂t

= LFP W (x, t), (30)

where

LFP W (x, t) = − ∂

∂x

(
D1(x)W (x, t)

)
+

∂2

∂x2

(
D2(x)W (x, t)

)
. (31)

The mapping from eq. (20) to eq. (30) can relatively straight forward be generalized to
the multivariate case as well. However, in both cases the accuracy FP-equation to describe
probability evolution of the original discrete process, on the form of eq. (20), relies on the
approximate constancy of the drift and diffusion function(s) on the length scale(s), l(x,∆t)
of the process associated with ∆t = 1 and with the spatial domain, x, of interest. In the 1D
case, l(x,∆t = 1) '

√
2D2(x) + D1(x)2. If the length scale associated with the variation

of D1 and D2 is denoted lD, the requirement would be l(x,∆t) ¿ lD for all x.
Assuming the FP-equation to be a reasonable approximation all relevant information of

the dynamics of eq. (20) is contained in the spectral decomposition of LFP . In particular,
since the total probability is conserved under the action of LFP , its largest eigenvalue is
λ0 ≤ 0. Therefore, if a stationary distribution, W0(x), exists, λ0 = 0, then W (x, t) → W0(x)
at large times. The solution to LFP W0(x) = 0 yields

W0(x) =
1
N exp

(∫ x D1(x′)
D2(x′)

dx′
)

, (32)

where N is the normalization constant. In order words, W0 exists provided that N < ∞.
Defining U(x)=̂− ∫ x

D1(x′)dx′ one obtains

W0(x) =
1
N exp

(
−U(x)

D

)
(33)
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for a constant D2 = D.3. From the formal equivalence between eq. (33) and the Boltzmann
probability distribution of a thermal ensemble we may view U as a potential energy function
and D as the effective temperature.

The second largest eigenvalue, λ1 < 0 of LFP determines the relaxation rate towards
the steady state, in the sence that any deviation δW (x, t) = W (x, t) − W0(x) will decay
(for large times) according to δW (x, t) ∝ exp(λ1t). Therefore, the second largest eigenvalue
defines the correlation time τx of the process, τx = |λ1|−1. However, in most cases only
an approximative expression for λ1 can be given. For a bistable symmetric potential with
minima in = ±xf and local maximum in x = 0 it can be shown Risken (1996) that for large
barrier heights, ∆U/D = (U(x0)−U(xf ))/D À 1 the eigenvalue is approximately given by

|λ1| ≈ D

[∫ x∞

0
dx exp

(
U(x)
D

) ∫ x∞

x
dy exp (−U(y)/D)

]−1

, (34)

where the point xinf > xf is chosen so exp (−U(x∞)/D) ≈ 0. In the bistable symmetric
potential the correlation time, τx equals half the average time it takes to make a transition
from one minimum to the other.

Appendix C. Online Appendix: Extended Ensembles

The state space in the parallel tempering (PT) algorithm is composed of R replicas of the
original state space, so a PT-state is a family of R states, φ̃PT = {φr}R

r=1, where φr = [x1:k]r
in the present case. The target distribution in the PT-algorithm takes the form

pPT (φ̃|z1:k) =
∏
r

pr([x1:k]r |z1:k), (35)

where the probability distribution associated to the r’th replica is defined in terms of an
inverse temperature βr, i.e.

pr(x1:k|z1:k) = Z−1
r

k∏

j=1

[p(xj |xj−1)p(zj |xj)]
βr . (36)

Here, Zr =
∫

dx1:k
∏k

j=1 [p(xj |xj−1)p(zj |xj)]
βr , is the normalization constant. The original

posterior distribution is recovered for β = 1. By setting β1 = 1 and β1 > β2 > · · · > βR ' 0,
the distributions, pr, will become successively flatter and consequently give rise to faster and
faster relaxation times, as r increases. The ’bridging’ between the different distributions
is provided by augmenting the proposal density distribution, qr, for each replica with a
replica-exchange move chosen with some prescribed probability qex. In the traditional form
of this move candidates of new states φ′r1 and φ′r2 are defined by the exchange of states
of the two replica, φ′r1 = φr2 and φ′r2 = φr1. If the acceptance probability, a, is on the
Metropolis form, a = min{1, ã}, the rate will —according to eq. (35)— be given by

ã =
pr1(φ′r1)pr2(φ′r2)
pr1(φr1)pr2(φr2)

. (37)

3. In the 1D case, D2(x) can always be transformed to an arbitrary constant, D, by the transformation
x̃(x) =

R xp
D/D2(x′)dx′ In effect, we may assume D2 to be constant without loss of generality Risken

(1996).
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Note that in analogy to the acceptance rate, eq. (6), the normalization constants, Zr1 and
Zr2 cancel out in this expression. It can be shown (Iba, 2001) that the number, R, of
distributions required to cover the state space with finite replica exchange rates scales with
the system size, k, as R ∝ k1/2. It implies that the traditional replica-exchange move in the
PT-algorithm can not directly be applied to the on-line filtering problem. However, the idea
underlying the PPF-approach suggests to exchange only the last ∆t part of the sequence
associated with each of the two replica. In effect, for a given backward step in time, ∆t
(chosen according to eq. (10)), candidates of the new states φ′r1 and φ′r2 are chosen according
to φ′r1 = (

[
x1:(k−∆t−1)

]
r1

,
[
x(k−∆t):k

]
r2

) and φ′r2 = (
[
x1:(k−∆t−1)

]
r2

,
[
x(k−∆t):k

]
r1

). This
ensures that number of required replica can be kept fixed during the on-line filtering and
that the computational cost of evaluating the acceptance rate, Eq. (37), is independent of
k (for k À τq).

The PT-approach for the present model does indeed circumvent the need of the system
specific global move, Eq. (19), though the efficiency of the replica exchange move in reducing
the relaxation times is inferior to Eq. (19). Preliminary runs for h = 3 with sampling
parameters (Ñ , τq, qex) = (5 · 103, 700, 0.1) and with 10 replicas in the interval [β10, β1] =
[0.3; 1] gives BE = 0.31 ± 0.02 and RMSE = 9.62 ± 0.25 for the filtered estimates, and
BE = 0.23±0.03 and RMSE = 8.7±0.5 for the smoothed estimates. Further improvement
of the application of the PT-algorithm to the on-line filtering problem should be possible
and will be the subject of a separate work. In the present context is suffices to say that
all algorithms based on the extended ensemble approach facilitate fast relaxation times
in the ensemble of interest by the propagation of states from high to low temperatures,
which in effect is an elegant way of improving the proposal density distribution in the
original ensemble. As we shall see in Section 6, the direct extension of the proposal density
distribution in the form of eq. (19) is much better exploited by the PPT-method compared
to traditional PF-methods. We expect this also to be true in general with the type of
move-class extensions provided by the extended ensemble approach.
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