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ABSTRACT

Magnetic Resonance (MR) images often exhibit grayscale
nonuniformities, caused by radio frequency (RF) coil design
or acquisition sequences. Many algorithms to remove these
nonuniformities have been proposed in the past decade. How-
ever, only minor attention has been given to the performance
evaluation of existing methods. We derive a link between
the estimation performance and underlying image structure.
For a piecewise constant 1D signal model with equal size re-
gions we demonstrate that the variance in estimation grows
as M2 , where M is the number of regions. In 2D case the
growth becomes linear in M .

1. INTRODUCTION

Magnetic Resonance Imaging (MRI), a popular non-invasive
2D - 3D medical visualization technique, often suffers from
the presence of grayscale nonuniformities. This artifact re-
veals itself as a smoothly varying multiplicative field, also
called the bias field. Removal of bias field is essential for
many automated segmentation and tissue classification al-
gorithms.

Knowledge of image segmentation greatly simplifies the
problem of bias field estimation. To obtain preliminary seg-
mentation early publications suggested using phantom ob-
jects [1] or user-defined set of control points [2]. Many
automatic segmentation-based methods for removal of bias
fields have also been developed [3], [4], [5], [6]. For exam-
ple, Meyer et al [3] obtains a preliminary segmentation us-
ing an inhomogeneity-tolerant segmentation algorithm. Least
square estimates of the parameters of a polynomial bias field
are then obtained by combining local estimates from the
segmented regions. Wells et al [4] uses EM algorithm to it-
erate between segmentation and estimation of the bias field.
There are also solutions that do not use image segmenta-
tion. These are based on energy minimization formulation
[5], sharpening of the intensity histogram [6], and homo-
morphic filtering [7].

Even though great effort has gone into developing new
approaches, only minor attention has been given to the per-
formance evaluation of existing methods. A recently con-
ducted empirical evaluation of six algorithms [8] concludes

that “none of the six chosen algorithms perform ideally un-
der all circumstances”. There is also no established link be-
tween the image structure and the estimation performance.
For example, inhomogeneity-tolerant segmentation algorithm
in [3] stops partitioning the image after region sizes become
smaller than the number of unknown parameters. However,
the effect of such a fine partitioning on the estimation per-
formance is unclear.

The main contribution of this paper is a simple formula
that links the variance in estimation with the number of im-
age partitions M . We demonstrate that for a linear bias field
and image with a uniform partition, the variance of the bias
field slope estimate grows as M2 for 1D signals and as M
for images. For non-linear bias field these values are further
multiplied by a constant that depends on the chosen set of
basis functions.

2. BIAS FIELD ESTIMATION

Medical images typically consist of a set of uniform in in-
tensity regions corresponding to particular organs and tis-
sues. Hence we model the given data image as a piecewise
constant model image that is corrupted by noise and bias
field, see Figure 2 for an example of such image. The the-
ory developed can also be applied to 1D signals corrupted
by bias field (Figure 1).
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Fig. 1. (a) 1D Model piecewise constant signal. (b) 1D
model signal corrupted by additive bias and noise

Taking the logarithm of image intensities converts a mul-
tiplicative bias field into an additive one. Following the no-

0-7803-9134-9/05/$20.00 ©2005 IEEE III-732



(a) (b)

Fig. 2. (a) Model piecewise constant image. (b) Model im-
age corrupted by additive bias and noise

tation introduced in [3], the log intensity of the data image

o(s) = c(s) + b(s) + e(s) (1)

Here s is a pixel, o(s) and c(s) are the intensities of the data
image and piecewise constant model image respectively, b(s)
is the bias field and e(s) is the noise. Smoothness of the
bias field is captured by modeling it as a linear combination
of P basis functions, b(s) =

∑P
k=1 akϕk(s). We assume

that the model image contains M regions, where m-th re-
gion contains Nm pixels with intensity cm. Let S be a set
of all pixels. The underlying structures define a partition
π = (π1, π2, · · · , πM ) on S.

Rewriting equation (1) in a matrix form yields

o = Am + e (2)

where o ∈ R
N is the observation vector of logarithmic pixel

intensities, m = (a1, · · · , aP |c1, · · · , cM )� is the vector of
unknown parameters and A ∈ R

N×(P+M) has the follow-
ing form:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(v1) . . . ϕP (v1) 1 0 . . . 0
...

. . .
...

...
... . . .

...
ϕ1(vN1) . . . ϕP (vN1) 1 0 . . . 0

ϕ1(vN1+1) . . . ϕP (vN1+1) 0 1 . . . 0
...

. . .
...

...
... . . .

...
ϕ1(vN1+N2) . . . ϕP (vN1+N2) 0 1 . . . 0

...
. . .

...
...

... . . .
...

ϕ1(vN ) . . . ϕP (vN ) 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where vi is the Cartesian coordinates of pixel si. A least
squares error (LSE) estimate of m is

m̂ = (AT A)−1AT o (4)

3. PROBLEM STATEMENT

We assume that the noise is i.i.d. Gaussian r.v. with zero
mean and variance σ2 = 1. Then m̂ in (4) is a maxi-

mum likelihood (ML) estimate with covariance matrix Σ =
(AT A)−1. The first P diagonal entries of Σ correspond
to the variances of â1, â2, · · · âP . Let σ2

k = var(âk). Let
ō(s) = c(s) + n(s) be the true bias free image and ô(s) =
c(s) + b(s)− b̂(s) + n(s) its ML estimate.

Choosing an orthonormal set of basis functions yields
a simple relationship between the averaged over all pixels
estimation error variance and σ2

k’s:

ν2 =
1
N

∑
s

E(ô(s)− ō(s))2

=
1
N

∑
s

E(b̂(s)− b(s))2

=
1
N

P∑
k=1

σ2
k

Here N is the total number of pixels. Due to popularity
of polynomial modeling of the bias field in the literature,
we will limit our analysis to normalized Legendre poly-
nomials. In 2D we will use separable basis function set
φk,l(x, y) = φk(x)φl(y), where φk(x) and φl(y) are 1D
Legendre polynomials.

The goal is to find the relationship between ν2 and the
number and relative sizes of the partition elements. To sim-
plify the initial consideration we will assume that in 2D case
the partition elements are rectangular in shape.

4. PERFORMANCE EVALUATION

For simplicity of notation we will write ϕk instead of ϕk(vi),
so that

∑
π1

ϕ1 =
∑N1

i=1 ϕ1(vi). Then

AT A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0
∑

π1
ϕ1 · · · ∑

πM
ϕ1

...
. . .

...
...

. . .
...

0 · · · 1
∑

π1
ϕP · · · ∑

πM
ϕP∑

π1
ϕ1 · · · ∑

π1
ϕP N1 · · · 0

...
. . .

...
...

. . .
...∑

πM
ϕ1 · · · ∑

πM
ϕP 0 · · · NM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which can be written in a block matrix form as:

AT A =

[
I B

BT N

]
(5)

Let Σ = (AT A)−1 =
[

K L
LT M

]
where matrices K,L

and M have the same sizes as I , B and N respectively.
According to the well known result from the matrix theory
[9],

K = (I −BN−1BT )−1 (6)
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Expanding (6) yields

K =

⎡
⎢⎢⎢⎣

1 − ∑
m

(
∑

πm
ϕ1)2

Nm
· · · −∑

m

∑
πm

ϕ1
∑

πm
ϕP

Nm

...
. . .

...

−∑
m

∑
πm

ϕ1
∑

πm
ϕP

Nm
· · · 1 − ∑

m

(
∑

πm
ϕP )2

Nm

⎤
⎥⎥⎥⎦
−1

Matrix K−1 is square; the number of rows and columns
is equal to the number of the unknown parameters. This
makes the size of K−1 much smaller than the size of AT A,
making it easier to compute the inverse. Before consider-
ing a general case in Section 7 we solve the problem for a
simpler linear bias case.

5. LINEAR BIAS FIELD IN 1D

For linear bias field in 1D case b(x) = a1ϕ1(x). Then K−1

is a scalar and the variance of â1 is

σ2
1 =

(
1−

M∑
m=1

(
∑

πm
ϕ1)2

Nm

)−1

For an unpartitioned image, σ2
1 = 1, which means that the

variance of â1 is equal to the variance of the noise. Parti-
tioning the image leads to larger variance. When the number
of regions is M , we have

σ2
1 =

(
1 −

M∑
m=1

(
∑

πm
ϕ1)

2

Nm

)−1

=

(
M∑

m=1

(
∑
πm

ϕ2
1 −

(
∑

πm
ϕ1)

2

Nm
)

)−1

Note that
∑

πm
ϕ2

1 −
(
∑

πm
ϕ1)

2

Nm
is the variance of ϕ1 over

pixels in πm. Since ϕ1 is linear, for sufficiently large Nm

this variance is proportional to N3
m. Hence

∑
πm

ϕ2
1 −

(
∑

πm
ϕ1)2

N1
≈ N3

m

N3

N∑
i=1

ϕ2
1 =

N3
m

N3

and

σ2
1 =

N3

N3
1 + N3

2 + · · ·+ N3
M

≥ 1 (7)

In particular, when all partitions have the same size Nm =
N
M , the estimation variance grows as the second degree of

the number of partition σ2
1 ≈ M2, yielding ν2 = M2

N

6. LINEAR BIAS FIELD IN 2D

In 2D case the bias field is a weighted sum of two linear
functions in x and y directions:

b(x, y) = a1ϕ1(x)ϕ0(y) + a2ϕ0(x)ϕ1(y)

Here ϕ0 and ϕ1 are zero and first degree Legendre polyno-
mials. Let Nx and Mx be the image dimension and num-
ber of partition elements in the horizontal direction, Ny and
My in the vertical direction. Clearly, M = MxMy and
N = NxNy .

Because of the assumed rectangular shape of partition
elements the 2D problem splits into two 1D problems, where
N and M are substituted for Nx, Mx or Ny , My:

K =

⎡
⎢⎣

N3
x

N3
1,x+···+N3

Mx,x
0

0
N3

y

N3
1,y+···+N3

My,y

⎤
⎥⎦

In particular, when all partition elements have the same
size and Mx = My =

√
M , the diagonal entries of K are

K11 = K22 = M and

ν2 =
2M

N
(8)

Hence, in the 2D case the parameter variances grow linearly
with the number of partitions. This is a remarkable result,
indicating a much slower decline of the estimation perfor-
mance in 2D, compared with the 1D case. This result agrees
well with the experiment, as shown in Figure 3.
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Fig. 3. Variances of parameter estimates: predicted vs. ex-
perimental. Noise variance is σ2 = 0.01.

7. NON-LINEAR BIAS FIELD IN 2D

In the non-linear 2D case we model the bias field as

b(x, y) =
Px−1∑
k=0

Py−1∑
l=0

ak,lϕk(x)ϕl(y)

The following conjecture yields an upperbound on the vari-
ances of the unknown parameters in the asymptotic case as
M → N . Here f(x) denotes the average value of f(x) on
[0, 1].
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Conjecture 1 Let σ2
k,l = var(âk,l). Then if all partition

elements have the same size and Mx = My =
√

M , the
variance of âk,l satisfies

σ2
k,l < CΦk,lM (9)

where Φk,l = 1[
ϕ
′
k
(x)ϕl(y)

ϕ
′
1(x)ϕ0(y)

]2

+

[
ϕk(x)ϕ

′
l
(y)

ϕ0(x)ϕ
′
1(y)

]2

Proof outline: The non-diagonal entries of K−1 are not
zero, but small. Hence we will assume that their influence
on the diagonal entries of K can be limited by a constant
C. The diagonal entry of K−1 corresponding to ak,l is the
sum of variances of ϕk(x)ϕl(y) on all partition elements.
If the partition elements are sufficiently small, we can use
a piecewise linear approximation of ϕk(x)ϕl(y). Then on
πm we have

ϕk(x)ϕl(y) ≈ rx,mϕ1(x)ϕ0(y) + ry,mϕ0(x)ϕ1(y) + D

where rx,m = ϕ
′
k(x∗

m)ϕl(y
∗
m)

ϕ
′
1(x)ϕ0(y)

, ry,m = ϕk(x∗
m)ϕ

′
l(y

∗
m)

ϕ0(x)ϕ
′
1(y)

and

(x∗m, y∗m) are coordinates of some pixel in πm. Using the
linear case result and the fact that M is large to convert the
sum into integral yields (9). �

This result agrees well with the experiment, as shown in
Figure 4. Here we plotted variances â1,0, â1,1 and â3,0 as
functions of M . Straightforward calculations yield Φ1,0 =
1, Φ1,1 = 1

2 , and Φ3,0 = 1
14 . Hence, assuming that constant

C is the same for all estimates, we should have σ2
1,0 : σ2

1,1 =
σ2

3,0 = 1 : 2 : 14. The actual ratio is 1 : 2.67 : 14.1, which
is close to the predicted ratio. The value of constant C is
approximately equal to 1.35.
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Fig. 4. Variances of estimates vs. number of partition el-
ements. Maximum polynomial degree is Px = Py = 3.
Noise variance is σ2 = 0.01

8. CONCLUSION AND FUTURE WORK

We demonstrated a link between the bias field estimation
performance and the image structure. When the bias field is
modelled as a linear combination of orthonormal basis func-
tions, the variance of estimated coefficients grows as M2 in
1D case and linearly with M in 2D case, where M is the
number of partition elements. This relationship is precise
for linear bias field. However, there is still work to be done
on proving the derived upper bound for the non-linear bias
field. Nevertheless, its validity is confirmed empirically.
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