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Abstract

We discuss aspects of multivariate fMRI modeling, including the statistical evalua-
tion of multivariate models and means for dimensional reduction. In a case study we
analyze linear and non-linear dimensional reduction tools in the context of a ‘mind
reading’ predictive multivariate fMRI model.
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Introduction

The human brain processes information in a massively parallel network of
highly interconnected neuronal ensembles. In order to understand the resulting
long range spatio-temporal correlations in functional image sets, we and others
have pursued a wide variety of multivariate analysis strategies. To reduce
the two important sources of bias in neuroimage analysis, namely model bias
and the statistical bias arising from relatively small sample sizes available for
modeling.

Neuroimaging experiments are designed to explore the spatio-temporal pattern
of information processing in the brain associated with a given behavior or
delivery of stimulus. Stimuli may be external, e.g., passive viewing, hearing
etc., or may be internally generated by spontaneous cognitive processes or
physical activity, e.g., speaking, motor activity; for a review see (Frackowiak
et al., 2003). The brain imaging device measures the mesoscopic brain state,
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i.e., information processing averaged over small volumes, called voxels. We
denote this high-dimensional image measurement by x(¢), with ¢ being the
time of acquisition. The corresponding macroscopic cognitive state is denoted
by g(t). The total amount of data is denoted D = (x4, g, )t = 1,...,T.

Thus, the neuroimaging agenda is to explore the joint distribution: p(x,g)
based on D and background neuroinformatics knowledge bases.

The joint distribution of brain states and behavior can be modelled directly, or
as more frequently done by one of the two equivalent factorizations: p(x,g) =

p(x|g)p(g) or p(x,g) = p(g|x)p(x).

By factoring p(x,g) = p(x|g)p(g), we consider the stimulus as the control
signal and look for differences in the neuroimage distribution among different
cognitive states. This is the most prevalent mode of analysis, dating back
to the so-called subtraction paradigm, in which the mean images from two
different conditions are subtracted and shown as a measure of contrast. This
approach has been refined in the several neuroimage analysis tools, e.g., SPM,
see (Frackowiak et al., 2003). In SPM the conditional neuroimage distribution
is further factorized as p(x|g) ~ [I; p(xi|g), where x; are individual voxel
measurements. A product of such univariate factors amounts is equivalent to
assuming voxel-to-voxel independence, also known as ‘naive Bayes’. Further,
by assuming that the univariate conditionals are all Gaussian distributions
we arrive at the generative model equivalent to SPM’s mass univariate t-test
approach, framed in the so-called general linear model, see also (Kjems et al.,
2002) for further discussions of the naive Bayes generative model.

On the other hand by factoring the joint pdf as p(x,g) = p(g|x)p(x), we enter
was has been dubbed the mind reading paradigm, in which the model is set
up to infer the instantaneous cognitive state from the concurrent neuroimage.
This approach was first developed by in the mid-90s (Lautrup et al., 1994;
Morch et al., 1995, 1997) for functional neuroimaging based on PET and fMRI,
and has also more recently gained interest in the machine learning community,
see e.g., (Mitchell et al., 2004). As a historical note: the first application of
artificial neural networks for classifications of brain scans date back to the
1992 (Kippenham et al., 1992), and concerned the classification of regionally
averaged PET data in terms of normal and Alzheimers disease. Univariate and
multivariate models including: SPM, cross-correlation analysis, independen
component analysis, artificial neural networks, were carefully compared using
both simulate and real data in the 1999 Neurolmage paper by (Lange et al.,
1999).



Predictive value: The generalizability of a model

We model probability distributions (countable support) or probability den-
sity functions (continuous support) using parameterized families, p(x,g) ~
p(g,x|0), where the parameters 6 can be both continuous (like means and
variances) or discrete (like model orders, number of components, etc.). A neu-
roimaging experiment is not able to pin down the parameters, rather we are left
with an uncertainty captured by the so-called posterior distribution p(6|D).
Given the posterior distribution we may predict or simulate future data based
on the initial data

pxier,gen|D) = [ plxisr, genl0)p(0]D)do, M

The closer these predictions are to ‘true’ pdf’s: p(x;y1,&¢+1), the more gener-
alizable the model is, i.e., the more similar are the two stochastic processes.
Closeness may be measured by one of several costfunctions. Often used cost-
functions are the miss-classification rate, the mean square error, and the de-
viance (Ripley, 1996). The generalization error is defined as the expected cost
on a new datum.

The expected deviance is - apart from a an additive constant - identical to the
basic information theoretic Kullback-Leibler measure,
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This loss is zero if the predictive distribution is identical to the ‘true’ distribu-
tion and otherwise positive for all other distributions. The generalization error
difference between two models may be estimated by a sample of test data
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This test error is an unbiased estimate of the generalization error if the test
set is sampled independently from the training data D.
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The generalization error typically depends strongly on the amount data in the
training set N = |D|, and is also strongly dependent on the complexity of the
model. Most often the generalization error decreases as a function of N, hence
the models generalize better the more data is provided. If the model family can
be described by a single complexity parameter, say the number of estimated
parameters, there is typically a bias-variance trade-off: The best model is not
too simple (biased) and not too complex. If the model is too complex the
predictive distribution will be able to adapt to closely to the training data,
hence, be highly too different between different training sets (variance).



Hence, one could say that there is always a hidden agenda in modeling from
data: We are interested in models that predict well, not simply models that
fit well to the training data.

It can be shown that for the deviance loss function the optimal predictive
distribution is obtained using so-called Bayesian averaging,

p(D|0)p(6)
S p(D|0)p(0)do’

p(0|D) = (4)

where p(D|6) is the likelihood function, and p(0) is the ‘true’ prior distribution.
In practise the true prior is not available and most often the likelihood is at
best an approximation to the true likelihood. However, it is an empirical find-
ing that even rather crude approximate Bayesian averaging procedures provide
better predictive distributions than that obtained from using a point estimate,
e.g., a maximum likelihood estimate p(.) ~ p(.|0nw (D)), where Oy, (D) maxi-
mize the likelihood function. The main difficulty with the Bayesian estimators
is the often significant computational overheads incurred by parameter aver-
aging. Note that the generalization error and the unbiased estimate can be
used to evaluate any model, no matter how the models predictive distribution
is obtained.

In neuroimaging we are interested in models that generalize and models that
can be interpreted, typically in terms of a ‘brain map’: an image or volume of
local activation involvement, i.e., a statistical parametric map. For multivari-
ate neuroimaging models of the SPM is a function of the model parameters,
hence, we are interested in a models for which the parameters are relatively
robust.

To investigate the stability of representations we have suggested the NPAIRS
framework. NPAIRS is based on split half resampling. For two models adapted
to fit two independently sampled data subsets of the same size, i.e., the two
sets in split half, any derived parameters should be identical between the two
subsets. Thus the difference between SPMs estimated in the two sets is an
unbiased estimator of the pixel-by-pixel variance. For additional discussion
and examples see (Kjems et al., 2002; Strother et al., 2002). Other resampling
strategies may under different assumption provide useful estimators, e.g., boot-
strap and jackknife which is closely related to leave-one-out cross-validation,
see e.g., (Kjems et al., 2000). In our analysis below we are primarily inter-
ested in the predictive value of the models, hence, we use the leave-one-out
for estimation of performance.



Models

We characterize models as parametric, non-parametric, and semi-parametric
(Bishop, 1995). Parametric models have fixed parameter sets, say mean and
co-variance for a normal pdf model. Non-parametric models use the data set
as model, e.g., nearest neighbor density models. Semi-parametric models have
a general structure but with variable dimensionality of the parameterization,
e.g., mixture models where the number of mixture components is determined
from data. Examples of parametric models cover, e.g, modelling with nor-
mal distributions. The normal distribution is described by the mean vector
and the co-variance matrix. Gaussian mixture models (clustering) and artifi-
cial neural networks are typical semi-parametric systems (Bishop, 1995). The
parametrizations are adapted to the given data set. Nearest neighbor meth-
ods are generic non-parametric models. Non-parametric models are extremely
flexible and need careful complexity control.

In machine learning a further distinction is made between supervised and
unsupervised learning. In supervised learning the aim is to model conditional
distributions, e.g., p(g|x). To adapt models we need supervised data sets with
both inputs x) and outputs g. In unsupervised learning we are interested in
modeling marginal pdf’s, e.g., p(x), which can be adapted from a sample of
‘input’ data only (Mgrch et al., 1997).

Dimensionality reduction

Data sets of neuroimages usually have many more voxels J than image samples
(T'" << J). This means that multivariate models involving the image repre-
sentation can easily be ill-posed. If, e.g., a parameter is used for each image
dimension we would thus invoke at least J parameters, which would be esti-
mated on 7" samples. Thus, we need to consider the representation carefully
for example by an initial dimensional reduction step prior to modeling.

The primary objective of dimensional reduction is to create a mapping from
the original high dimensional image space to a relevant low dimensional sub-
space in which we can safely establish the posterior distribution. Principal
component analysis (PCA) is a well established scheme for dimension reduc-
tion in functional imaging, see e.g., the discussions in (Kjems et al., 2000, 2002;
Strother et al., 2002). PCA identifies an orthogonal basis for a subspace which
captures the most variance for a given dimensionality. Dimensional reduction
using PCA is meaningful if the dominant effects in the data are those in-
duced by the stimulus. More advanced representations based linear projection
schemes, some of which are further including information from the reference



function are discussed in (Worsley et al., 1997).

It is worth noting that the PCA approach is not jeopardized if the data con-
tains high variance, confounding signal components because these can be sup-
pressed in the subsequent modeling; the requirement is that the effects of
interest are present in the subspace. We will therefore be quite liberal in our
choice of subspace dimension in the following. PCA is achieved by singular
value decomposition (SVD), see e.g. (Kjems et al., 2000). The data matrix D
of size J x T where T' < J, is decomposed into

D=USV', (5)

where U is a J x T orthonormal matrix, S is a T' x T" diagonal matrix and V
is T' x T orthonormal matrix using a so-called ‘economy size’ decomposition
where the null space has been removed. The diagonal of matrix S has nonneg-
ative elements in descending order. These diagonal elements are the singular
values that correspond to standard deviations of the input data projected onto
the given basis vectors represented by matrix U. The reduced input space is
obtained by using only some fixed K < N number of the largest principal
components. The reduced data matrix is given by

X =U'D, (6)

where the transformation matrix from the original input space to the reduced
inputs space is given by U, a F' x K sub-matrix of U. Here we use the fact
that U is orthonormal giving U~! = U,

Our focus here is on the prediction and reproducibility performance of models.
We will invoke a resampling (cross-validation) scheme. Thus we need to enforce
that not only the classifier is generalizable, but also the reduced representation.
Using all the data to estimate the transformation matrix U would introduce
dependence between the training set and test set. To avoid this dependence,
the PCA is computed using only training data, giving a U transformation
matrix. This matrix is then used to transform the test data to the lower
dimensional subspace with

Xie = UTDtea (7)

which ensures the unbiased nature of the test data. Tools exist for optimizing
the PCA signal-to-noise ratio, with respect to the dimensionality K (Hansen
et al., 1999; Beckmann et al., 2001).

Linear dimension reduction can be based on more advanced decompositions,
such as independent component analysis (ICA) (McKeown et al., 2003). The
advantage of ICA is that is not subject to the strong orthogonality constraints
of PCA, which means that it can eliminate more subtle artifacts than PCA.
For relatively high-dimensional mappings the difference in subspaces spanned



by the orthogonal basis by PCA and the non-orthogonal basis of ICA is not
likely to be of much significance.

Non-linear dimensional reduction has not been explored nearly as widely as
their linear counterparts. (Thirion and Faugeras, 2004) investigated so-called
Laplacian eigenmaps (Belkin and Niyogi, 2002) as a dimensional tool, these
maps are created as non-linear low-dimensional representations that as closely
as possible maintains the topological neighbors in a high-dimensional fea-
ture space, similar in spirit to the classical multi-dimensional scaling method
(Kruskal and Wish, 1978).

The Laplacian eigenmap is based on a non-Euclidean metric, defined though
a kernel function

d(j, k) = K(xj — x) (8)
In many applications the kernel is chosen to be the gaussian function K (u) =
exp(—u?/c?). Based on the metric the N x N matrix Q is established as the
matrix of pairwise distances between data points. Let r; be the j'th row sum of
Q, and let R be the diagonal matrix with vector r in the diagonal. The Laplace
eigenmaps are the N-dimensional eigenvectors of matrix Q — R. The Laplace
eigenmap is closely related to so-called spectral clustering (Weiss, 1999), and
the interpretation is similar. Two data points are active in a given Laplace
eigenmap if there is a ‘diffusion path’ between the two formed by neighboring
data points active in the given map. While linear dimensional reduction based
on variance can be expected to work well for modelling strong mean difference
effects, the Laplacian eigenmap can form a representation in which warped
mean effects are present, say in the presence of a weak non-stationarity or
drift of the class means so that they form non-linear trajectories in input
space, say as function of time, see e.g., (Ng et al., 2001) for several creative
illustrations.

Case Study

The data set used for illustration of multivariate models in this presentation
was acquired by dr. Egill Rostrup at Hvidovre Hospital on a 1.5 T Magnetom
Vision MR scanner. The scanning sequence was a 2D gradient echo EPI (72x
weighted) with 66 ms echo time and 50 degrees RF flip angle. The images were
acquired with a matrix of 128 x 128 pixels, with FOV of 230mm, and 10mm
slice thickness, in a para-axial orientation parallel to the calcarine sulcus. The
visual paradigm consisted of a rest period of 20sec of darkness using a light
fixation dot, followed by 10sec of full-field checkerboard reversing at 8Hz,
and ending with 20sec of rest (darkness). In total, 150 images were acquired
in 50sec, corresponding to a period of approximately 330msec per image. The
experiment was repeated in 10 separate runs containing 150 images each. In



order to reduce saturation effects, the first 29 images were discarded, leaving
121 images for each run.

Representations

Based on the 1210 scans included in the analysis we form a linear princi-
pal component representation and a nonlinear representation based on the
Laplacian eigenmaps. The topology of the two representations are illustrated
in Figure and Figure respectively. The linear representation shows a pro-
nounced mean difference effect between baseline and activation scans, while
the non-linear representation is somewhat more subtle showing difference in
the shape of the clusters of baseline and activation scans, revealing potential
non-stationarity in the two states.

[Figure 1 here]

[Figure 2 here]

Non-parametric modeling

The next step in modeling is to construct a map representing the relation be-
tween brain image and brain state. This have been accomplished using both
parametric models, e.g., (Kjems et al., 2002), semi-parametric (Mgrch et al.,
1997), and non-parametric models e.g. (Mitchell et al., 2003). We here follow
the latter and use the k-nearest neighbor model (KNN). This system is typi-
cally computing neighbors using an un-weighted Euclidean metric in feature
space, and most often classifying by majority voting among the neighbors.
It remains to determine the number of neighbors k. We use a leave-one-out
resampling scheme in the training set to select k. This can be done a very lit-
tle overhead. The leave-one-out error can simply be computed by classifying
using the neighbors excluding the actual data point. The optimal £ can then
be used in classifying the training set. If a full Bayes posterior probability is
required, the method is easily extended to compute local pdf values (Bishop,

1995).

We use both PCA and Laplacian eigenmap features to illustrate the procedure.
We split the dataset in two equal size subsets: Five runs for training and
five runs for testing. As the test and training data are independent, the test
error estimates are unbiased estimator of performance. We use a simple on-
off activation reference function for supervision of the classifier. The reference
function is off-set by 4 seconds to emulate the hemodynamic delay.



For each method we estimate k for a number of feature space dimensions
d =1 : 20 using the leave-one-out (LOO) procedure on the training set. The
LOO-optimal k is then applied to the test set for the same feature space
dimensionality and a classification error rate estimated on the test set, the
resulting relations between feature space dimensionality, LOO and test errors
are indicated in Figure 3. The best (LOO) error is obtained for a d = 6
dimensional feature subspace for the Laplacian eigenmap, while the best model
using PCA is a d = 4. The corresponding unbiased test set classification error
rates are 5% and 9%, in favor of the non-linear features.

[Figure 3 here]
[Figure 4 here]

In Figure 4. we show the test set activation time series obtained by the two
models. In the non-linear feature the errors basically occurs at the onset and
at end of stimulation, while the PCA based linear feature representations also
make generalization errors in the baseline, suggesting spurious short burst of
activation.

Discussion

For modeling of neuroimaging data we are in general interested in models that
are able to extract the relevant generalizable long range dependencies between
behavior and brain state, hence, that have predictive power. Because of the
high-dimensional representations that are inherent in multivariate models we
need to exercise extreme care in model optimization. This includes dimen-
sional reduction and feature selection. We have outlined a resampling based
approach framework and demonstrated its implementation for general non-
linear models including also non-linear dimensional reduction schemes. In a
visual simulation study we have shown that non-linear dimensional reduction
and non-parametric modeling led to optimal generalizability.
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Fig. 1. Linear representation by principal component analysis. The individual sub
graphs show scatter plots of the indicated principal component projections of data.
The data set consists of 1210 single BOLD fMRI slices (TR = 0.333 sec) acquired
in a para-axial orientation parallel to the calcarine sulcus. The subject was exposed
visual stimulation in a simple block design in ten runs (stimulated scans marked
as red, baseline marked as blue). The representation is determined by linear pro-
jections of maximum variance. The basis vectors are subject to strict orthogonality
constraints. The baseline-activation difference is seen as a mean shift effect in several
scatter plots, e.g., PC1 vs PC2. The scatter plots below the diagonal are zoomed
and rotated versions of the corresponding plots above the diagonal for illustration
of details in the representation.

12



p1 C T €

« N

hf.a-" LP2 ¥ e

S m s € >
kg, K Pe Ny

" &} W

Fig. 2. Non-linear representation by Laplacian eigenmaps. The individual sub graphs
show scatter plots of the indicated eigenmap projections of data. The data set con-
sists of 1210 single BOLD fMRI slices (TR = 0.333 sec) acquired in a para-axial
orientation parallel to the calcarine sulcus. The subject was exposed visual stimula-
tion in a simple block design in ten runs (stimulated scans marked as red, baseline
marked as blue). The projections are determined as eigenvectors of a neighbor diffu-
sion matrix, hence, data is mapped together if there is a ‘short-hop path’ connecting
via neighbors active in the same map. The baseline-activation difference is seen here
as a projection shape difference as opposed to the mean shift effect of the linear PCA
projections illiustrated in Figure 1. As in Figure 1. the scatter plots below the di-
agonal have been zoomed and rotated relative to the corresponding plots above the
diagonal for illustration of details in the representation.
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Fig. 3. Error rates for k-nearest neighbor classifiers trained on fMRI data from a
single subject and generalizing to data not part of the training set. We train the
classifier on the two different representations obtained by PCA and by Laplacian
eigenmaps, as shown in Figures 1. and 2. We estimate the optimal number of neigh-
bors in the voting classifier in feature space of dimensionality d = 1 : 20. The
leave-one-out optimal dimensionality is d = 4 for PCA and d = 6 for the Laplacian
eigenmap. The resulting classifiers obtain unbiased test set classification error rates
5% and 9%, in favor of the non-linear features.
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Fig. 4. Test set reference activation time course and activation time courses produced
by k-nearest neighbor classifiers based on linear and non-linear feature spaces. The
non-linear feature based classifier’s errors basically occurs at the onset and at end
of stimulation. The KNN model based on the linear feature representation make
additional generalization errors in the baseline, where it suggest a few short burst
of activation.
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